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Abstract. We show that if A is a core relational structure such that CSP(A) can be
solved by a linear Datalog program, and A is n-permutable for some n, then CSP(A) can be
solved by a symmetric Datalog program (and thus CSP(A) lies in deterministic logspace).
At the moment, it is not known for which structures A will CSP(A) be solvable by a linear
Datalog program. However, once somebody obtains a characterization of linear Datalog,
our result immediately gives a characterization of symmetric Datalog.

1. Introduction

In the last decade, algebraic methods have led to much progress in classifying the complexity
of the non-uniform Constraint Satisfaction Problem (CSP). The programming language
Datalog, whose origins lie in logic programming and database theory, has been playing an
important role in describing the complexity of CSP since at least the classic paper of T.
Feder and M. Vardi [FV99], where Feder and Vardi used Datalog to define CSPs of bounded
width. In an effort to describe the finer hierarchy of CSP complexity, V. Dalmau [Dal05]
asked which CSPs can be solved using the weaker language of linear Datalog, and later L.
Egri, B. Larose and P. Tesson [ELT07] introduced the even weaker symmetric Datalog.

We want to show that if CSP(A) can be solved by a linear Datalog program (alternatively,
has bounded pathwidth duality) and A generates an n-permutable variety for some n, then
CSP(A) can be solved by a symmetric Datalog program (and so lies in L). While this yields
an “if and only if” description of symmetric Datalog, it is not a perfect characterization –
describing the structures A such that CSP(A) is solvable by linear Datalog is an open problem.
However, once CSPs for which linear Datalog works are classified, we will immediately get
an equally good classification of symmetric Datalog CSPs.

In particular, should it turn out that admitting only the lattice and/or Boolean tame
congruence types implies bounded pathwidth duality, we would have a neat characterization
of problems solvable by symmetric Datalog: It would be the class of problems whose algebras
omit all tame congruence theory types except for the Boolean type (we go into greater detail
about tame congruence theory in Preliminaries and Conclusions).

Our result is similar to, but incomparable with what V. Dalmau and B. Larose have
shown [DL08]: Their proof shows that 2-permutability plus being solvable by Datalog implies
solvability by symmetric Datalog. We require both less (n-permutability for some n as
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opposed to 2-permutability) and more (linear Datalog solves CSP(A) as opposed to Datalog
solves CSP(A)).

Our proof strategy is this: First we show in Section 3 how we can use symmetric Datalog
to derive new instances from the given instance. Basically, we show that we can run a smaller
symmetric Datalog program from inside another. This will later help us to reduce “bad”
CSP instances to a form that is easy to deal with. Then, in Section 4 we introduce path
CSP instances and show how n-permutability restricts the kind of path instances we can
encounter. We use this knowledge in Section 6 to show that for any variety n-permutable A,
there is a symmetric Datalog program that decides path instances of CSP(A). Finally, in
Section 7 we use linear Datalog to go from solving path instances to solving general CSP
instances and finish our proof.

When writing this paper, we were mainly interested in ease of exposition, not in obtaining
the fastest possible algorithm. We should therefore warn any readers hoping to implement
our method in practice that the size of our symmetric Datalog program grows quite quickly
with the size of A and the number of Hagemann-Mitschke terms involved. The main culprit
is Lemma 4.5 that depends on Ramsey theory.

2. Preliminaries

All numbers in this paper are integers (most of them positive). If n is a positive integer and
a, b are integers, we will use the notation [n] = {1, 2, . . . , n} and the notation [a, b] = {i ∈
Z : a ≤ i ≤ b} (and variants such as [a, b) = {i ∈ Z : a ≤ i < b}).

We will be talking quite a bit about tuples – either tuples of elements of A or tuples of
variables. We will treat both cases similarly: An n-tuple on Y is a mapping σ : [n] → Y .
We will denote the length of the tuple σ by |σ|, while Imσ will be the set of elements used
in σ. Note that if e.g. σ = (x, x, y), we can have |σ| > | Imσ|.

A relation on A is any R ⊆ AX where X is some (finite) set. The arity of R is the
cardinality of X. Most of the time, we will use X = [n] for some n ∈ N and write simply
R ⊆ An.

When R ⊆ An is an n-ary relation and σ = (a1, . . . , an) is an n-tuple, we will often
write R(σ) instead of (a1, . . . , an) ∈ R. Given a mapping f : A→ B and an n-tuple σ ∈ An,
we will denote by f(σ) the n-tuple (f(σ(1)), . . . , f(σ(n))) ∈ Bn.

2.1. Algebras and relational structures. We will be touching some concepts from
universal algebra that would deserve a more detailed treatment than what we will provide
here. See [Ber11] for an introduction to universal algebra.

A relational structure A consists of a set A together with a family R of relations on
A, which we call basic relations of A. In this paper, we will only consider finite relational
structures with finitely many basic relations. We will not allow nullary relations or relations
of infinite arity.

An n-ary operation on A is any mapping t : An → A. We say that an n-ary operation
t preserves the relation R if for all r1, . . . , rn ∈ R we have t(r1, r2, . . . , rn) ∈ R (where
t(r1, . . . , rn) is the tuple we obtain by applying t componentwise to r1, . . . , rn). Given a
relational structure A, an n-ary operation t on A is a polymorphism of A if t preserves all
basic relations of A.

An algebra A consists of a base set A on which acts a set of basic operations of A. We
can compose basic operations of A to get more operations. A term in A is a correctly formed
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string that consists of variables and basic operation symbols of A (as well as parentheses
and commas) and describes a meaningful composition of operations. For example, if A has
the ternary basic operation r, then “r(x3, r(x1, x1, x2), x4)” is a term in A that describes
the 4-ary operation (with variables x1, . . . , x4) we can get by composing r with itself in a
particular way. An algebra is idempotent if for any term operation t in A and any a ∈ A we
have t(a, . . . , a) = a.

The algebra of polymorphisms of A is the algebra with the universe A whose set of
operations consists of all polymorphisms of A. We will use the shorthand A for this algebra.

A congruence α on an algebra A is any binary equivalence relation that is preserved by
all operations of A.

The relational clone of A is the set of all relations on A that can be defined from the
basic relations of A by primitive positive definitions – formulas that only use conjunction,
existential quantification and symbols for variables. We will sometimes call members of the
relational clone of A admissible relations of A. The importance of the relational clone comes
from the fact that A preserves precisely all relations on A that belong in the relational clone
of A [BKKR69, Gei68].

A variety is a class of algebras sharing the same signature (the same basic operation
symbols and arities of basic operations) that is closed under taking subalgebras, products
and homomorphic images. If A is an algebra, then the variety generated by A is the smallest
variety that contains A, or equivalently the class of all homomorphic images of subalgebras
of powers of A.

Since all algebras in a given variety have the same signature, it makes sense to talk
about term operations of a variety. We will be using one particular set of such operations,
called Hagemann-Mitschke terms, in our proofs.

Let us fix a positive integer n. We say that a variety V is (congruence) n-permutable if
for any algebra A in V and any pair of congruences α, β of A it is true that

α ∨ β = α ◦ β ◦ α ◦ . . .
with n− 1 composition symbols on the right side (in particular, 2-permutable is the same
thing as congruence permutable).

A standard free algebra argument gives us that V is n-permutable if and only if we can
find idempotent terms p0, p1, . . . , pn in V such that

x = p0(x, y, z),

pi(x, x, y) = pi+1(x, y, y) for all i = 1, 2, . . . , n− 1,

pn(x, y, z) = z.

The above terms are called Hagemann-Mitschke terms and were first obtained in [HM73].
If the algebra of polymorphisms of a relational structure A generates an n-permutable

variety, i.e. if there are Hagemann-Mitschke operations p0, p1, . . . , pn in A, we say simply
that A is variety n-permutable (the “variety” prefix is here to emphasize that the whole
variety of A, not just A itself, needs to have n-permutable congruences). There are several
other conditions that connect the behavior of congruences in a variety with the variety having
certain term operations. We mention (without going into details) congruence distributivity
and congruence semidistributivity in the next section.
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Bx1 Bx2 Bx3 Bx4 Bx5 Bx6

Figure 1: An example of microstructure with six variables x1, x2, . . . , x6 and five binary
relations (instance solution in bold).

2.2. Constraint Satisfaction Problem. Let us fix a relational structure A = (A,R) and
define the non-uniform Constraint Satisfaction Problem with the right side A, or CSP(A)
for short. This problem can be stated in several mostly equivalent ways (in particular, many
people prefer to think of CSP(A) as a question about homomorphisms between relational
structures). We define CSP(A) in the language of logical formulas.

Definition 2.1. An instance I = (V, C) of CSP(A) consists of a set of variables V and a set
of constraints C. Each constraint is a pair (σ,R) where σ ∈ V n is the scope of the constraint
and R ∈ R is the constraint relation. A solution of I is a mapping f : V → A such that for
all constraints (σ,R) ∈ C we have f(σ) ∈ R.

If I is an instance, we will say that I is satisfiable if there exists a solution of I and
unsatisfiable otherwise. The Constraint Satisfaction Problem with target structure A has as
its input an instance I of CSP(A) (encoded in a straightforward way as a list of constraints),
and the output is the answer to the question “Is I satisfiable?”

If I = (V, C) is an instance of CSP(A), then any CSP(A) instance J = (U,D) with
U ⊆ V and D ⊆ C is called a subinstance of I. It easy to see that if I has an unsatisfiable
subinstance then I itself is unsatisfiable. If U ⊆ V , the subinstance of I = (V, C) induced by
U is the instance I�U = (U,D) where (σ,R) ∈ D if and only if Imσ ⊆ U .

We can draw CSP instances whose constraints’ arities are at most two as microstructures
(also known as potato diagrams among universal algebraists): For each variable x we draw
the set Bx ⊆ A equal to the intersection of all unary constraints on x. For each binary
constraint we draw lines joining the pairs of elements in corresponding sets. A solution of
the instance corresponds to the selection of one element bx in each set Bx in such a way that
whenever C = ((x, y), R) is a constraint, we have (bx, by) ∈ R (see Figure 1 for an example).

Obviously, CSP(A) is always in the class NP, since we can check in polynomial time
whether a mapping f : V → A is a solution. Had we let the structure A be a part of the
input, the constraint satisfaction problem would be NP-complete (it is easy to encode, say,
3-colorability of a graph as a CSP instance). However, when one fixes the structure A,
CSP(A) can become easier.

A relational structure A is a core if any unary polymorphism f : A→ A is an automor-
phism (i.e. we cannot retract A to a smaller relational structure). To classify the complexity
of CSP(A) for A finite, it is enough to classify cores, see [HN04, p. 142].

The value of the algebraic approach to CSP is that it connects the complexity of CSP(A)
to the algebra of polymorphisms A. Let us highlight one such important connection here:
The tame congruence theory is a tool that arose from the study of finite algebras in the 1980s.
In a nutshell (see [HM96] for more), the theory aims to connect properties of congruences
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in a variety with the existence of certain term operations in that variety and with the set
of so-called types that the variety admits (where “admits” means that a certain technical
construction can, when run on a suitable algebra from the variety, produce a given type). It
turns out [LT09] that we can get lower bounds on the complexity of CSP(A) from the set of
types that the variety generated by A admits. Let us rephrase four out of the five parts of
Theorem 4.1 from [LT09] to include concrete problems that each type brings about:

Theorem 2.2 (B. Larose, P. Tesson; part 1 is due to A. Bulatov, P. Jeavons, and A.
Krokhin [BKJ00]). Let A be a core relational structure (with finitely many basic relations)
and let V be the variety generated by A. Then:

(1) If V admits the unary type (type 1), then 3-SAT reduces to CSP(A) and hence CSP(A)
is NP-hard,

(2) if V admits the semilattice type (type 5), then HORN-3-SAT reduces to CSP(A) and
hence CSP(A) is P-hard,

(3) if V admits the affine type (type 2), then there is a prime p such that the complement
of the p-GAP problem (see [LT09] for definition) reduces to CSP(A) and hence CSP(A)
is ModpL-hard for some prime p,

(4) if V admits the lattice type (type 4), then the directed unreachability problem (the
complement of directed reachability) reduces to CSP(A) and hence CSP(A) is NL-hard.

All the reductions above are first order reductions (see [Imm99] for definition) and are very
natural from the point of view of universal algebra.

Notice that one type is missing from the above theorem: The Boolean type (type 3)
only gives us very weak lower bounds. When A generates a variety that admits the Boolean
type only, the problem CSP(A) is believed to be in L (see Conjecture 8.2).

2.3. Datalog. The Datalog language offers a way to check the local consistency of CSP
instances. A Datalog program P for solving CSP(A) consists of a list of rules of the form

R(ρ)← S1(σ1), S2(σ2), . . . , S`(σ`),

where R,S1, . . . , Sl are predicates and ρ, σ1, . . . , σ` are sequences of variables (we will denote
the set of all variables used in the program by X). Some predicates of P are designated as
goal predicates (more on those later).

In general, the predicates can be symbols without any meaning, but in the programs we
are about to construct each predicate will correspond to a relation on A, i.e. a predicate
S(x1, x2) would correspond to some S ⊆ A2. This will often get us in a situation where, say,
the symbol R stands at the same time for a relation on A, a predicate of a Datalog program,
and a relation on the set V of variables (see below). For the most part, we will depend on
context to tell these meanings of R apart, but if there is a risk of confusion we will employ
the notation RA for RA ⊆ An, RP for predicates of P , and RV for RV ⊆ V n.

Given a Datalog program P that contains predicates for all basic relations of a relational
structure A, we can run P on an instance I = (V, C) of CSP(A) as follows: For each n-ary
predicate RP of P , we keep in memory an n-ary relation RV ⊆ V n. Initially, all such
relations are empty. To load I into the program, we go through C and for every (σ,RA) ∈ C,
we add σ to RV (when designing P , we will always make sure that there is a predicate RP

for each basic relation RA of A).
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After this initialization, P keeps adding tuples of V into relations RV as per the rules of
P : If we can assign values to variables so that the right hand side of some rule holds, then
we put the corresponding tuple into the left hand side relation R.

More formally, we say that P (I) derives RV (ρ) for ρ ∈ V n, writing P (I)`RV (ρ), if one
of the following happens: We have (ρ,RA) ∈ C, or P contains a rule of the form

RP (τ)← SP1 (σ1), S
P
2 (σ2), . . . , S

P
` (σ`),

where τ, σ1, . . . , σ` are tuples of variables from the set of variables X, and there exists a
mapping (evaluation) ω : X → V such that ω(τ) = ρ and for each i = 1, . . . , ` we have
P (I)`SVi (ω(σi)).

If a Datalog program P ever uses a rule with a goal predicate on its left side, then the
program outputs “Yes,” and halts. We will use the symbol G to stand for any of the goal
predicates, writing for example P (I)`G as a shorthand for “P run on I derives a relation
that is designated as a goal predicate.” Another way to implement goal predicates, used e.g.
in [FV99], is to introduce a special nullary relation G that is the goal. We do not want to
deal with nullary relations, but the distinction is purely a formal one: should the reader
want a program with a nullary G, all that is needed is to simply introduce rules of the form
G← R(x1, x2, . . . ) where R ranges over the list of goal predicates.

If a goal predicate is not reached, the program P (I) runs until it can not derive any new
statements, at which point it outputs “No,” and halts. Thanks to the monotonous character
of Datalog rules (we only add tuples to predicates, never remove them), any given Datalog
program can be evaluated in time polynomial in the size of its input instance I.

Given a Datalog program P and a relational structure A we say that P decides CSP(A)
if P run on a CSP(A) instance I reaches a goal predicate if and only if I is unsatisfiable.
We say that CSP(A) can be solved by Datalog if there is a Datalog program P that decides
CSP(A). (Strictly speaking, we should say that P decides ¬CSP(A) in this situation, but
that is cumbersome.)

For R1, . . . , Rk relations and σ1, . . . , σk tuples of variables, we define the conjunction
R1(σ1)∧· · ·∧Rk(σk) as a relation (resp. predicate) on

⋃
i Imσi. For example, R1(x3, x2, x2)∧

R2(x3, x4) is a relation of arity 3 on the three variables x2, x3, x4.
To slim down our notation, we will for the most part not distinguish the abstract

statement of a Datalog rule (with variables from X) and the concrete realization of the rule
(with the evaluation ω : X → V ). For example, if P contained this rule α:

R(x, z)← S(x, y), T (y, z)

and it happened that P (I)`S(1, 2) and P (I)`T (2, 2), then instead of saying that we are
applying the rule α with the evaluation ω(x) = 1, ω(y) = ω(z) = 2 to add (1, 2) into R, we
would simply state that we are using the rule

R(1, 2)← S(1, 2), T (2, 2),

even though that means silently identifying y and z in the original rule α.
The power of Datalog for CSP is exactly the same as that of local consistency methods.

L. Barto and M. Kozik have given several different natural characterizations of structures
A such that Datalog solves CSP(A) [BK14]. However, this is not the end of the story, for
there are natural fragments of Datalog which have lower expressive power, but also lower
computational complexity.

Predicates that can appear on the left hand side of some rule (and therefore can have
new tuples added into them) are called intensional database symbols (IDB). Having IDBs on
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the right hand side of rules enables recursion. Therefore, limiting the occasions when IDBs
appear on the right hand side of rules results in fragments of Datalog that can be evaluated
faster.

An extreme case of such restriction happens when there is never an IDB on the right
hand side of any rule. It is easy to see that such Datalog programs can solve CSP(A) if
and only if A has a finite (also called “finitary”) duality, i.e. there exists a finite list Q of
unsatisfiable CSP(A) instances such that an instance I of CSP(A) is unsatisfiable if and only
if there exists J ∈ Q such that one can rename (and possibly also glue together) variables of
J to get a subinstance of I. This property is equivalent to CSP(A) being definable in first
order logic by [Ats08] (see also the survey [BKL08]). Structures of finite duality are both
well understood and rare, so let us look at more permissive restrictions.

A Datalog program is linear if there is at most one IDB on the right hand side of any
rule. When evaluating Linear Datalog programs, we need to only consider chains of rules
that do not branch: It is straightforward to show by induction that if P is a linear Datalog
program and I is an instance of the corresponding CSP, then P (I)`R(ρ) if and only if
(ρ,R) is a constraint of I or there is a sequence of statements

U1(ϕ1), U2(ϕ2), . . . , Um(ϕm) = R(ρ)

such that for each i = 2, . . . ,m the program P has a rule of the form

Ui(ϕi)← Ui−1(ϕi−1), T
i
1(τ i1), . . . , T

i
`i

(τ i`i),

where Ui−1 is the IDB in the rule and (τ ij , T
i
j ) are constraints of I for all j = 1, . . . , `i. The

first statement, U1(σ1), is a special case as P must derive it without using IDBs, i.e. there
is a rule of P of the form

U1(ϕ1)← T 1
1 (τ11 ), . . . , T 1

`1(τ1`1)

where all (τ11 , T
1
1 ), . . . , (τ1`1 , T

1
`1

) are constraints of I.
(Note that this is the first time we are using the “concrete realization of the abstract

rule” shorthand.) We will call such a sequence U1(ϕ1), . . . , Um(ϕm) a derivation of R(ρ).
Another way to view the computation of a linear Datalog program is to use the digraph

G(P, I): The set of vertices of G(P, I) will consist of all pairs (ρ,R) where R is an n-ary IDB
predicate of P and ρ ∈ V n. The graph G(P, I) contains the edge from (ρ,R) to (σ, S) if P
contains a rule of the form

R(ρ)← S(σ), T1(τ1), . . . , Tk(τk),

where all (τi, Ti) are constraints of I.
It is easy to see that P (I)`G if and only if there is a tuple ρ and an IDB R such that

P (I)`R(ρ) in one step, without the use of intermediate IDBs, and there is a directed path
from (ρ,R) to a goal predicate in G(P, I). It is straightforward to verify that deciding the
existence of such a path is in NL. (In fact, deciding directed connectivity is NL-complete [AB09,
Theorem 4.18, p. 89] and since there is a linear Datalog program that decides directed
connectivity, it follows that evaluating linear Datalog programs is NL-complete.)

The exact characterization of structures A such that there is a linear Datalog program
deciding CSP(A) is open. A popular conjecture is that CSP(A) can be solved by linear
Datalog if and only if the variety of A admits no tame congruence types except for the lattice
and Boolean type (or equivalently [HM96, Theorem 9.11] that A generates a congruence
semidistributive variety).
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As Larose and Tesson have shown [LT09, Theorem 4.2], admitting no types other than
lattice and Boolean is necessary for core relational structures to yield CSPs solvable by
linear Datalog. On the other hand Barto, Kozik and Willard proved that if A admits an
NU polymorphism then CSP(A) can be solved by linear Datalog [BKW12]. This is almost,
but not quite, what the necessary condition demands: A finite relational structure A with
finitely many relations has an NU polymorphism if and only if the variety generated by A
is congruence distributive [Bar13] if and only if the variety only admits the lattice and/or
Boolean types in a particularly nice way [HM96, Theorem 8.6].

For our purposes, it will be useful to notice that CSP(A) can be solved by a linear
Datalog program if and only if A has bounded pathwidth duality.

Definition 2.3. CSP(A) instance I = (V, C) has pathwidth at most k if we can cover V by
a family of sets U1, . . . , Um such that

• |Ui| ≤ k + 1 for each i,
• if i < j and v ∈ V lies in Ui and Uj , then v also lies in each of Ui+1, . . . , Uj−1, and
• for each constraint C ∈ C there is an i such that the image of the scope of C lies entirely

in Ui.

The name pathwidth comes from the fact that if we arrange the variables in the order they
appear in U1, . . . , Um and look at the instance from far away, the “bubbles” U1, . . . , Um
form a path. The length of the path is allowed to be arbitrary, but the “width” (size of the
bubbles and their overlaps) is bounded.

We say that A has bounded pathwidth duality if there exists a constant k such that for
every unsatisfiable instance I of CSP(A) there exists an unsatisfiable instance J of CSP(A) of
pathwidth at most k such that we can identify some variables of J to obtain a subinstance of
I. (This is a translation of the usual definition of duality, which talks about homomorphisms
of relational structures, to CSP instances.)

Proposition 2.4 ([Dal05]). Assume that A is a relational structure. Then A has bounded
pathwidth duality if and only if there exists a linear Datalog program deciding CSP(A).

Symmetric Datalog is a more restricted version of linear Datalog, where we only allow
symmetric linear rules: Any rule with no IDBs on the right hand side is automatically
symmetric, so the interesting case is when a rule α has the form

R(ρ)← S(σ) ∧ T1(τ1) ∧ T2(τ2) ∧ . . . ,
where R,S are (the only) IDBs. If a symmetric program P contains the rule α, then P must
also contain the rule α′ obtained from α by switching R(ρ) and S(σ) (we will call this rule
the mirror image of α):

S(σ)← R(ρ) ∧ T1(τ1) ∧ T2(τ2) ∧ . . .
Observe that if P is a symmetric Datalog program, then G(P, I) is always a symmetric

graph. Therefore, deciding if P (I)`G is equivalent to an undirected reachability problem.
Evaluating symmetric Datalog programs is thus in L thanks to Reingold’s celebrated result
that undirected reachability is in L [Rei05]. (In fact, undirected reachability is L-complete
under first order reductions, as is evaluating symmetric Datalog programs: Consider the
symmetric Turing machines introduced in [LP82]. When equipped with logarithmic amount
of memory, these machines define the complexity class SL. When one applies the construction
in the proof of Theorem 3.16 in [Imm99] to symmetric logspace machines, one gets that
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undirected reachability is SL-hard modulo first order reductions. Since L ⊆ SL [LP82,
Theorem 1], undirected reachability is L-hard.)

We will often use Datalog programs whose predicates correspond to relations on A.
However, in doing so we will not restrict ourselves to just the relations from the relational
clone of A. If the predicates RP , SP1 , . . . , S

P
` correspond to relations RA, SA1 , . . . , S

A
` on A

in some agreed upon way, then we say that the rule

RP (ρ)← SP1 (σ1), S
P
2 (σ2), . . . , S

P
` (σ`),

is consistent with A if the corresponding implication holds for all tuples of A, i.e. the
sentence

∀f : X → A, RA(f(ρ))⇐
(
SA1 (f(σ1)) ∧ SA2 (f(σ2)) ∧ · · · ∧ SA` (f(σ`))

)
,

holds in A (recall that X is the list of all variables used in the rules of P ). In other words, a
consistent rule records an implication that is true in A.

For r ∈ N, we construct the r-ary maximal symmetric Datalog program consistent with
A, denoted by PrA, as follows: The program has as predicates all relations of arity at most r
on A (these will be IDBs), plus a new symbol for each basic relation of A of arity at most r
(these symbols will correspond to the relations used in constraints and they will never be
IDBs; thus we have two symbols for each basic relation of A, only one of which can be on
the left hand side of any rule).

The set of rules of PrA will contain all rules α that

(1) are valid linear Datalog rules (i.e. an IDB on the left side, at most one IDB on the
right),

(2) use only tuples of variables from X = {x1, . . . , xr} (i.e. at most r variables at once),
(3) do not have any repetition on the right hand side, i.e. each statement R(σ) appears in α

at most once (however, the predicate R can be used several times with different tuples
of variables),

(4) are consistent with A, and
(5) if α contains an IDB on the right hand side, then the mirror image α′ of α is also

consistent with A.

We will designate all empty relations of arity at most r as goal predicates. We note that
our PrA is a variation of the notion of a canonical symmetric Datalog program (used e.g.
in [DL08]).

It is an easy exercise to show that PrA(I)`S(σ) if and only if G(PrA, I) contains a path
from (ρ,A) to (σ, S) where A is the unary full relation on A and ρ is arbitrary. Starting
with the full relation will help us simplify proofs by induction later.

The set of rules of PrA is large but finite because there are only so many ways to choose
a sequence of at most r-ary predicates on r variables without repetition. Since A and r are
not part of the input of CSP(A), we do not mind that PrA contains numerous redundant or
useless rules.

When we run PrA on a CSP(A) instance I, it attempts to narrow down the set of images
of r-tuples of variables using consistency:

Observation 2.5. Let A be a relational structure, r ∈ N, and I = (V, C) an instance of
CSP(A). Then:

(1) if RA ⊆ An, ρ ∈ V n are such that PrA(I)`RV (ρ), then any solution f of I must satisfy
f(ρ) ∈ RA.
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(2) if PrA(I)`G, then I is not satisfiable.

Proof. To prove the first claim, consider a path in G(P, I) that witnesses P (I)`R(ρ):

(ρ1, S1), (ρ2, S2), . . . , (ρm, Sm) = (ρ,R).

with SA1 = A.
We claim that if f is a solution of I, then for each i = 1, . . . ,m we must have f(ρi) ∈ Si.

We proceed by induction. For i = 1, this is trivial.
Assume now that f(ρi) ∈ Si and that PrA contains a rule α of the form

Si+1(ρi+1)← Si(ρi), T1(τ1), . . . , Tk(τk),

where (τj , Tj) ∈ C for j = 1, . . . , k. Since Tj(τj) are constraints of I, we have f(τj) ∈ Tj for
each j. From the fact that α is a rule consistent with A, it follows that f(ρi+1) ∈ Si+1.

The second statement of the Lemma is a consequence of the first, since reaching a goal
predicate means that PrA(I)` ∅(ρ) for some ρ tuple of variables in V . Using (1), we get that
each solution of I must satisfy the impossible condition f(ρ) ∈ ∅ and so there cannot be any
solution f .

By Observation 2.5, the only way PrA can fail to decide CSP(A) is if there is an
unsatisfiable instance I of CSP(A) for which PrA does not derive G. Our goal in the rest of
the paper is to show that for r large enough and A nice enough such a situation will not
happen.

Let us close this section by talking about necessary conditions for CSP(A) to be solvable
by symmetric Datalog. An obvious condition is that, since symmetric Datalog is a subset of
linear Datalog, CSP(A) must be solvable by linear Datalog.

It turns out that the lower bounds from the tame congruence theory are compatible
with Datalog. If A is a core, then for CSP(A) to be solvable by symmetric Datalog, A must
omit all tame congruence theory types except for the Boolean type [LT09, Theorem 4.2],
from which it follows [HM96, Theorem 9.14] that A must be variety n-permutable for some
n.

Proposition 2.6. If A is a core relational structure such that CSP(A) is solvable by
symmetric Datalog, then A is variety n-permutable for some n and CSP(A) is solvable by
linear Datalog.

Our goal in this paper is to prove that the conditions of Proposition 2.6 are also sufficient:

Theorem 2.7. Let A be a relational structure such that there is a linear Datalog program
that decides CSP(A) and A admits a chain of n Hagemann-Mitschke terms as polymorphisms.
Then there exists an r ∈ N such that PrA decides CSP(A).

3. Stacking symmetric Datalog programs

In this section we describe two tricks that allow us essentially to run one Datalog program
from inside another. The price we pay for this is that the new program can use fewer
variables than the old one.

The first lemma of this section is basically [DL08, Lemma 11] rewritten in our formalism:
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Lemma 3.1 (V. Dalmau, B. Larose). Let A be a relational structure, I = (V, C) an instance
of CSP(A), let S ⊆ As, R ⊆ Ar be two relations, and let σ ∈ V s and ρ ∈ V r. Assume that
PsA(I)`S(σ).

Then for any k ≥ r + s we have

PkA(I)`R(ρ)⇔ PkA(I)`R(ρ) ∧ S(σ).

Proof. Let
U1(ϕ1), U2(ϕ2), . . . , Um(ϕm) = S(σ)

be a path in G(I,PsA) witnessing PsA(I)`S(σ). Then it is easy to verify that

R(ρ), R(ρ) ∧ U1(ϕ1), R(ρ) ∧ U2(ϕ2), . . . , R(ρ) ∧ Um(ϕm) = R(ρ) ∧ S(σ)

is a path in the graph G(I,PkA). Therefore, PkA(I) derives R(ρ) if an only if it derives
R(ρ) ∧ S(σ).

Repeated use of Lemma 3.1 gets us the following:

Corollary 3.2. Let A be a relational structure, I a CSP(A) instance. Let S1, . . . , Sj and R
be relations on A and σ1, . . . , σp, ρ be tuples of variables from I.

If PsA(I)`Sj(σj) for j = 1, . . . , p and both |ρ| and | Im ρ ∪
⋃p
i=1 Imσi| are at most r,

then we have:

Pr+sA (I)`R(ρ)⇔Pr+sA (I)`R(ρ) ∧ S1(σ1)
⇔Pr+sA (I)`R(ρ) ∧ S1(σ1) ∧ S2(σ2)

...

⇔Pr+sA (I)`R(ρ) ∧ S1(σ1) ∧ · · · ∧ Sp(σp)
Definition 3.3. Given an instance I = (V, C) of CSP(A), we say that PrA derives the
instance J = (W,D) from I, writing PrA(I)` J , if W ⊆ V and for each (σ,R) ∈ D we have
PrA(I)`R(σ).

Obviously, if PrA derives an unsatisfiable instance from I, then I itself is unsatisfiable.
Moreover, a maximal symmetric Datalog program run on I can simulate the run of a smaller
maximal symmetric Datalog program on J :

Lemma 3.4. Let A = (A,R1, . . . , Rn) and B = (A,S1, . . . , Sm) be two relational structures
and let I = (V, C) be an instance of CSP(A). Assume that r, s are positive integers and
J = (W,D) is an instance of CSP(B) such that PsA(I)` J and PrB(J)`G. Then Pr+sA (I)`G.

Proof. The derivation of Pr+sA (I)`G will follow the derivation PrB(J)`G, generating the
constraints of J on the fly using PsA(I). Note that since A and B share the same base set,
the predicates of PrB are also predicates of Pr+sA .

Let U1(ϕ1), U2(ϕ2), . . . , Uq(ϕq) be a derivation of G by PrB(J) such that U1 = A.
We proceed by induction on i from 1 to q and show that Pr+sA (I)`Ui(ρi) for all

i. Since all goal predicates of PrA are also goal predicates of Pr+sA , this will show that

Pr+sA (I)`G. The base case is easy: Since U1 is full, Pr+sA has the rule “U1(ϕ1)← ”, giving

us Pr+sA (I)`U1(ϕ1).

Assume that Pr+sA (I)`Ui(ϕi). Since PrB(J) derives Ui+1(ϕi+1) from Ui(ϕi), there have
to be numbers j1, . . . , jp and tuples σ1, . . . , σp such that each (σk, Sjk) is a constraint of J ,
and

Ui+1(ϕi+1)← Ui(ϕi), Sj1(σ1), Sj2(σ2), . . . , Sjp(σp)
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is a rule of PrB. From this, it is easy to verify that the following rule, which we will call α, is
a rule of Pr+sA :

(Ui+1(ϕi+1) ∧ Sj1(σ1) ∧ · · · ∧ Sjp(σp))←
(Ui(ϕi) ∧ Sj1(σ1) ∧ · · · ∧ Sjp(σp)),

Since Pr+sA (I)`Ui(ϕi), Corollary 3.2 yields Pr+sA (I)`Ui(ϕi) ∧
∧p
k=1 Sjk(σk). We then

use the rule α to obtain Pr+sA (I)`Ui+1(ϕi+1) ∧
∧p
k=1 Sjk(σk) and finally use the other

implication from Corollary 3.2 to get Pr+sA (I)`Ui+1(ϕi+1), concluding the proof.

At one point, we will need to look at powers of A. For this, we introduce the following
notation: If

σ = ((s1,1, . . . , sk,1), . . . , (s`,1, . . . , s`,k)) ∈ (Ak)`

is an `-tuple of elements of Ak then by σ we will mean the k`-tuple we get by “unpacking”
σ into Ak`:

σ = (s1,1, . . . , sk,1, . . . , s`,1, . . . , s`,k).

If U ⊆ (Ak)` is a relation on Ak, we will denote by U the relation U = {σ : σ ∈ U} ⊆ Ak`.
The following lemma generalizes Lemma 3.4 to powers of A. The proof is similar to that

of Lemma 3.4 and we omit it for brevity.

Lemma 3.5. Let k ∈ N and assume we have relational structures A and B on the sets A
and Ak respectively. Assume moreover that I = (V, C) is an instance of CSP(A), S1, . . . , Sm
are basic relations of B, σ1, . . . , σm are tuples of elements of V k, and r, s are positive integers
such that:

(1) PrA(I)`Si(σi) for each i = 1, . . . ,m,
(2) PsB(J)`G, where J is the instance J = (V k, {(σi, Si) | i = 1, . . . ,m}) of CSP(B).

Then Pr+ksA (I)`G.

4. Variety n-permutability on path instances

We begin our construction by showing how variety n-permutability limits the kind of CSP
instances a symmetric Datalog program can encounter.

Definition 4.1. An instance I = (V, C) of CSP is a path instance of length ` if:

(1) V is a linearly ordered set (we use V = [`] ordered by size whenever practicable, such as
in the rest of this definition),

(2) for each i ∈ V , I contains exactly one unary constraint with scope i; we will denote its
constraint relation by Bi ⊆ A,

(3) for each i = 1, 2, . . . , `− 1, I contains exactly one binary constraint with scope (i, i+ 1);
we denote its constraint relation Bi,i+1.

(4) I contains no other constraints than the ones named above.

Note that Bi,i+1 can contain tuples from outside of Bi ×Bi+1. We allow that to happen to
simplify our later arguments.

If I is a path instance of length ` and a ≤ b are integers, we define the instance I
restricted to [a, b] as the subinstance of I induced by all variables of I from the a-th to the
b-th (inclusive). We will denote I restricted to [a, b] by I[a,b].
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Figure 2: A sketch of a 4-braid. The solution t from Observation 4.3 pictured as a zigzag.

Definition 4.2. Let I be a path CSP instance on [`] and n ≥ 2 be an integer. An n-braid
(see Figure 2) in I is a collection of n+ 1 solutions s0, s1, s2, . . . , sn of I together with indices
1 ≤ i1 < · · · < in ≤ ` such that for all k = 1, 2, . . . , n− 1 we have

(1) sk(ik) = sk+1(ik), and
(2) sk−1(ik+1) = sk(ik+1).

When we want to explicitly describe a braid, we will often give the (2n+ 1)-tuple

(s0, s1, . . . , sn; i1, . . . , in).

We care about braids because it is easy to apply Hagemann-Mitschke terms to them to
get new solutions of I. This observation is not new; one can find it formulated in a different
language in [VF09, Theorem 8.4]:

Observation 4.3 (R. Freese, M. Valeriote). Let n ∈ N and let A be a variety n-permutable
algebra, I be a path instance of CSP(A), and let (s0, . . . , sn; i1, . . . , in) be an n-braid in I.
Then there exists a solution t of I such that t(i1) = s0(i1) and t(in) = sn(in).

Proof. Since A is variety n-permutable, we have a chain of Hagemann-Mitschke terms
p0, p1, . . . , pn compatible with constraints of I. All we need to do is apply these terms on
s0, s1, . . . , sn.

Denote by rk the mapping rk(i) = pk(sk−1(i), sk(i), sk+1(i)) where k goes from 1 to n−1;
we let r0 = s0 and rn = sn. Since pk is a polymorphism, each rk is a solution of I. Moreover,
one can verify using the Hagemann-Mitschke equations together with the equalities from
the definition of an n-braid that for each k = 1, . . . , n we have rk−1(ik) = rk(ik).

Since I is a path instance, we can glue the solutions r0, . . . , rn together: The mapping
t defined as t(i) = rk(i) whenever ik < i ≤ ik+1 (where we put i−1 = 0 and in+1 = ` for
convenience) is a solution of I. To finish the proof, it remains to observe that t(i1) = s0(i1)
and t(in) = sn(in).
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Figure 3: The conclusion of Lemma 4.5 for n = 3. Important edges ei drawn in bold.

Let I be a path instance of CSP. We will say that a binary constraint Bi,i+1 of I is
subdirect if Bi, Bi+1 6= ∅, Bi ⊆ π1(Bi,i+1 ∩ Bi × Bi+1), and Bi+1 ⊆ π2(Bi,i+1 ∩ Bi × Bi+1).
(We have modified the standard definition of subdirectness a bit to account for the fact that
Bi,i+1 can contain tuples outside of Bi×Bi+1.) An instance is subdirect if all its constraints
are subdirect. Observe that every a subdirect path instance is satisfiable.

Observation 4.4. If I is a subdirect path instance and e ∈ (Bi ×Bi+1) ∩Bi,i+1, then by
walking from e backwards and forwards along the edges defined by the binary constraints of
I we get a solution s of I that contains the edge e, that is (s(i), s(i+ 1)) = e.

The following lemma tells us that if a path instance I is subdirect and we mark enough
edges in I, we can find an n-braid that goes through many edges of our choosing. It is a
Ramsey-like result and we prove it using the Ramsey theorem (see e.g. [vLW01, Theorem
3.3]).

Lemma 4.5. For every n and N there exists an m with the following property: Let I be a
subdirect path CSP instance of length ` > m such that |Bi| ≤ N for each i ∈ [`]. Then for
any choice of indices 1 ≤ j1 < j2 < · · · < jm < ` and edges ek ∈ Bjk,jk+1 ∩ (Bjk × Bjk+1)
for k = 1, . . . ,m, there exists an n-braid (s0, . . . , sn; i1, . . . , in) in I such that for every
k = 1, 2, . . . , n− 1 there is a q so that ik ≤ jq < ik+1 and (sk(jq), sk(jq + 1)) = eq (that is,
between every pair of “crossings” is an edge eq; see Figure 3).

Proof. Without loss of generality we can assume that Bi ⊆ [N ] for each i. For each
k = 1, . . . ,m, we choose and fix a solution σk of I that contains the edge ek (which we get
from subdirectness of I; see above).

Consider now the complete graph G with vertex set [m] whose edges are colored as follows:
For every u < v we color the edge {u, v} ∈

(
m
2

)
by the pair of numbers (σu(jv), σv(ju)) ∈ [N ]2.

By the Ramsey theorem, if m is large enough then there exists a monochromatic induced
subgraph of G on 2n+ 1 vertices. To make our notation simpler, we will assume that these
vertices are 1, 2, . . . , 2n+ 1.

Thanks to edges of G being monochromatic on [2n+ 1], we have that σu and σu′ agree
on jv as long as u, u′, v ∈ [2n+ 1] and either u, u′ < v, or u, u′ > v. Using this, we can easily
verify that (σ1, σ3, . . . , σ2n+1; j2, j4, . . . , j2n) is an n-braid. For each k = 1, 2, . . . , n− 1 we
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get:

σ2k+1(j2k) = σ2k+3(j2k)

σ2k+1(j2k+2) = σ2k−1(j2k+2)

To finish the proof, observe that for every k ∈ [n− 1] we have j2k < j2k+1 < j2k+2 and the
solution σ2k+1 was chosen so that it passes through e2k+1, so we can let q = 2k + 1 and
satisfy the conclusion of the lemma.

Given a path instance I, we will define the sets Ci ⊆ Bi by C1 = B1 and

Ci+1 = {b ∈ Bi+1 : ∃c ∈ Ci, (c, b) ∈ Bi,i+1}.
The sets Ci correspond to the endpoints of solutions of I[1,i], so I is satisfiable if and

only if C` 6= ∅. We will call an edge (d, c) ∈ Bi,i+1 such that d ∈ Bi \ Ci and c ∈ Ci+1 a
backward edge.

Our goal in Section 6 will be to show how to use symmetric Datalog to identify
unsatisfiable path CSP(A) instances for A fixed and variety n-permutable. We will see that
in the absence of backward edges a simple symmetric Datalog program can identify all
unsatisfiable path CSP instances. This is why we want to know what happens when there
are many backward edges. It turns out that an variety n-permutable instance that has too
many backward edges is never subdirect. In Section 6, this will enable us to reduce the size
of the instance.

Lemma 4.6. For every n and N there exists an m such that if I is a path instance of length
` > m and 1 < a < b < ` are such that

(1) each set Bi has cardinality at most N , and
(2) all sets Bi and all relations Bi,i+1 are invariant under a chain of n Hagemann-Mitschke

terms, and
(3) there are at least m distinct indices j in [a, b) such that Bj,j+1 contains a backward edge,

then the instance I[a,b] is not subdirect.

Proof. We pick m large enough to be able to use Lemma 4.5 for sets Bi of maximum size N
and (n+ 1)-braids. Taking this m, we look at what would happen were I[a,b] subdirect.

Let a ≤ j1 < · · · < jm < b be a list of indices where backward edges occur in [a, b).
For each k = 1, . . . ,m, we choose a backward edge ejk ∈ Bjk,jk+1 and apply Lemma 4.5 to
I[a,b]. We obtain an (n+ 1)-braid in I[a,b] that uses n+ 1 of our backward edges; denote the
solutions and indices that make up this braid by s0, . . . , sn+1 and i1, i2, . . . , in+1, respectively.
Moreover, since s1 passes through a backward edge ej for some j ∈ [i1, i2), we get s1(i2) ∈ Ci2 .
Since the only condition on s0 is s0(i2) = s1(i2), we can modify s0 to ensure s0(i1) ∈ Ci1
without breaking the braid. The situation is sketched in Figure 4.

Observation 4.3 then gives us that I[a,b] has a solution t such that t(i1) = s0(i1) ∈ Ci1
and t(in) = sn(in) = sn+1(in) (shown by a dashed line in Figure 4).

Now it remains to see that since t(in) = sn+1(in), there is a path from t(in) to some
backward edge ej , j ≥ in+1. Therefore, t(in) ∈ Bin \ Cin and solution t witnesses that there
is a path from t(i1) ∈ Ci1 to t(in) 6∈ Cin , a contradiction with the way we have defined the
sets Ci.
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Figure 4: A schematic view of the instance I[a,b] (the ellipses are the sets Ci, backward edges
ej are thick).

5. Undirected reachability on path instances

Given a path CSP instance I, we define the digraph Conn(I) of I as the directed graph
with vertex set equal to the disjoint union of all unary constraints B1, . . . , Bn and edge set
equal to the disjoint union of all binary constraints of I (restricted to the sets Bi). The
orientation of Conn(I) establishes levels on the graph (B1 is on the first level, B2 on the
second level and so on).

Given a path CSP instance I and numbers i ≤ j, the relation λI,i,j consists of all pairs
a ∈ Bi, b ∈ Bj that lie in the same component of weak connectivity of Conn(I[i,j]) (i.e. there
is an oriented, but not necessarily directed, path from a to b in Conn(I[i,j])).

Lemma 5.1. If I is a path CSP instance of CSP(A) and i ≤ j, then λI,i,j lies in the
relational clone of A.

Proof. It is easy to see that for a ∈ Bi and b ∈ Bj we have (a, b) ∈ λI,i,j if and only if there
is a digraph homomorphism h : P → Conn(I[i,j]) where P is an oriented path which starts
at level 0, ends at level j − i, has no vertex of level less than 0 or more than j − i, and h
maps the starting point of P to a and ending point of P to b.

Let now the path P witness (a, b) ∈ λI,i,j and the path Q witness (c, d) ∈ λI,i,j .
By [HN04, Lemma 2.36], P ×Q then contains an oriented path R that goes from level 0 to
level j − i. By considering projections of P ×Q, we obtain that R homomorphically maps
to both P and Q and from this it is easy to verify that R witnesses both (a, b), (c, d) ∈ λI,i,j .
Since there are only finitely many pairs in λI,i,j , we can repeat this procedure to find a path
S that witnesses the whole λI,i,j . It is then straightforward to translate homomorphisms
from S to Conn(I[i,j]) into a primitive positive definition of λI,i,j in A.

Lemma 5.2. For every relational structure A, every path instance I of CSP(A), and every
i ≤ j, we have P3

A(I)`λI,i,j(i, j).
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Figure 5: The instance Iλ with i1 = 3, i2 = 6, i3 = 10 (ellipses mark the sets Ci = Di).

Proof. Let us fix i and j. For k ∈ {i, i+ 1, . . . , j}, consider the relation

ρk = {(a, b) ∈ Bi ×Bk : a, b lie in the same component

of weak connectivity of Conn(I[i,j])}.

We show by induction on k that P3
A(I)` ρk(i, k) for every k = i, . . . , j. This will be enough,

since ρj = λI,i,j .

The base case k = i is easy: Since ρi ⊇ {(b, b) : b ∈ Bi}, the program P3
A contains the

rule ρi(x, x)← Bi(x), so we get P3
A(I)` ρi(i, i).

The induction step: Assume we have P3
A ` ρk(i, k). Given the definition of ρk and ρk+1,

it is straightforward to verify that the pair of rules

ρk+1(x, z)← ρk(x, y) ∧Bk,k+1(y, z)

ρk(x, y)← ρk+1(x, z) ∧Bk,k+1(y, z)

is consistent with A and therefore present in P3
A. Applying the first of those rules (with

x = i, y = k, and z = k + 1) then gives us P3
A(I)` ρk+1(i, k + 1), completing the proof.

Let I be a path instance of CSP(A) of length `. In the following, we will again be using
the sets Ci from Section 4.

Let 1 < i1 < i2 < · · · < ik < ` be the complete list of all indices i with a backward edge
in Bi,i+1 (i.e. all i such that that Bi,i+1 ∩ ((Bi \ Ci)× Ci+1) 6= ∅). For convenience, we let
i0 = 0 and ik+1 = `.

Now consider the new path instance Iλ (see Figure 5) with variable set

U = {1, i1, i1 + 1, i2, . . . , ik, ik + 1, `}.
We get Iλ from I�U by filling out the gaps by relations λI,ij+1,ij+1 : For all j such that
ij + 1 < ij+1 (i.e. I�U has no binary constraint between ij + 1 and ij+1), we add the binary
constraint ((ij + 1, ij+1), λI,ij+1,ij+1) to Iλ. See Figure 5.

By Lemma 5.1, the constraints of Iλ belong to the relational clone of A. Let for each
v ∈ U the set Dv ⊆ Bv consist of all values of s(v) where s is a solution of (Iλ)[1,v]. It is
easy to show by induction on v that Dv = Cv for all v ∈ U . In particular, we have that Iλ is
satisfiable if and only if I is satisfiable. Moreover, Iλ has a backward edge in roughly every
other binary constraint. Finally, P3

A derives Iλ from I by Lemma 5.2.
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We can summarize the findings of this section as follows:

Lemma 5.3. Let A be a relational structure and let I be an unsatisfiable path instance
of CSP(A). Then P3

A derives from I the unsatisfiable path instance Iλ with the following
property: For all m ≥ 1, any interval of variables of Iλ of length at least 2m+ 2 contains
at least m indices with backward edges and the constraints of Iλ are invariant under all
polymorphisms of A.

6. Symmetric Datalog solves all variety n-permutable path instances

In this section, we put together the results from the previous two sections to show that for
every variety n-permutable A there is an M such that PMA (I)`G for every unsatisfiable
path instance I of CSP(A):

Theorem 6.1. For each N and n there exists f(n,N) ∈ N so that whenever A is a variety
n-permutable relational structure and I an unsatisfiable path instance of CSP(A) such that

|Bi| ≤ N for all i, then Pf(n,N)
A (I)`G.

Proof. We prove the theorem first in the case when A contains symbols for all binary and
unary relations compatible with A, and then show how the general case follows.

We fix n and proceed by induction on N . For N = 1, a path instance is unsatisfiable if
and only if at least one of Bi,i+1 does not intersect Bi ×Bi+1, which P2

A easily detects, so
f(n, 1) = 2 works.

Assume that the theorem is true for all structures and all instances with sets Bi smaller
than N . Let m be the number from Lemma 4.6 for our n and N . We let f(n,N) =

f(n,N − 1) + 2m + 6 and claim that Pf(n,N)
A (I)`G for any I ∈ CSP(A) whose unary

constraints Bi have at most N elements. For brevity, let us denote 2m+ 2 by L, so we have
f(n,N) = f(n,N − 1) + L+ 4.

Our starting point is the instance Iλ from Section 5. By the first part of Lemma 5.3,
P3

A(I)` Iλ and Iλ is an unsatisfiable path CSP instance of CSP(A). Consider now what PL+1
A

does on Iλ. First of all, if the length of Iλ is at most L, then PL+1
A can easily check feasibility

of Iλ by looking at the whole instance at once. So if Iλ is short, we get PL+1
A (Iλ)`G and

we are done (by Lemma 3.4, we have PL+4
A (I)`G). This is why in the rest of the proof we

will assume that Iλ is longer than L. We show that PL+1
A (Iλ) derives another unsatisfiable

instance K that falls within the scope of the induction hypothesis.
It turns out that Iλ contains many backward edges: By Lemma 5.3, each interval of

Iλ of length 2m+ 2 contains at least m backward edges. We can thus use Lemma 4.6 to
show that any interval of Iλ of length L contains at least one binary constraint that is not
subdirect. These constraints will enable us to shrink the unary constraints on Iλ.

Let ` be the length of Iλ. For 1 ≤ a ≤ i ≤ b ≤ ` we will introduce the following two
relations:

SIλ,[a,b],i = {s(i) : s is a solution of (Iλ)[a,b]},
SIλ,[a,b] = {(s(a), s(b)) : s is a solution of (Iλ)[a,b]}.

It is easy to see that these relations lie in the relational clone of A. From the definitions
above, it easily follows that PL+1

A (Iλ)`SIλ,[a,b](a, b) and PL+1
A (Iλ)`SIλ,[a,b],i(i) whenever
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i1 i2 i3 i41 `

[1, i1 + 1] [i2, i3] [i4 − 1, `]

[i1, i2] [i3, i4]

Figure 6: Constructing the instance K by looking at solutions of intervals of Iλ. Unary
constraints of K shown as ellipses.

b− a ≤ L (this can be done in one step as the program is big enough to simply look at the
whole of (Iλ)[a,b] at once).

We are now ready to show that PL+1
A (Iλ)`K, where K is an unsatisfiable path instance

of CSP(A) whose unary constraints all have at most N − 1 elements.
We construct K as follows: Denote by B′i the unary constraint on the i-th variable

of Iλ. Since subdirectness fails somewhere in [1, L], there is an index i1 ∈ [1, L] such that
SIλ,[1,i1+1],i1 is strictly smaller than B′i1 . Looking at [i1 + 1, i1 +L], we find an index i2 where
subdirectness fails again, so SIλ,[i2−1,i2+1],i2 ( B′i2 . After that, we find i3 ∈ [i2 + 1, i2 + L]
such that SIλ,[i3−1,i3+1],i3 ( B′i3 and so on. Continuing in this manner, we get an increasing
sequence of indices 1 ≤ i1 < i2 < · · · < ik ≤ ` such that for each j = 2, . . . , k − 1 we
have |SIλ,[ij−1,ij+1],ij | ≤ |B′ij | − 1 and ij+1 − ij ≤ L. We end this process when ik + L > `.

To properly analyze what goes on at the end of the chain, we need to consider two cases:
When ik < ` and when ik = `. It is straightforward to verify that in both cases we have
`− ik + 1 ≤ L and SIλ,[ik−1,`],ik ≤ |B

′
ik
| − 1.

We take these indices ij and observe that we have the following derivations (see Figure 6
for reference; note that L is at least 2):

PL+1
A (Iλ)`SIλ,[ij−1,ij+1],ij (ij) for all j = 2, . . . , k − 1,

PL+1
A (Iλ)`SIλ,[1,i1+1],i1(i1),

PL+1
A (Iλ)`SIλ,[ik−1,`],ik(ik),

PL+1
A (Iλ)`SIλ,[i1,i2](i1, i2),

PL+1
A (Iλ)`SIλ,[i2,i3](i2, i3),

...

PL+1
A (Iλ)`SIλ,[ik−1,ik](ik−1, ik).
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We take these relations and use them to build up our instance K of CSP(A): The instance
K has variables i1, i2, . . . , ik. The constraints of K are as follows: K has unary con-
straints (i1, SIλ,[1,i1+1],i1) (for the first variable), (ij , SIλ,[ij−1,ij+1],ij ) for j = 2, . . . , k−1, and

(ik, SIλ,[ik−1,`],ik) for the last variable. The binary constraints of K are ((ij , ij+1), SIλ,[ij ,ij+1])
where j = 1, . . . , k − 1.

Since the relations SIλ,... incorporate all constraints of Iλ, it is straightforward to see
that any solution of K would give us a solution of Iλ, so K is unsatisfiable. Moreover, all
unary constraints of K have at most N − 1 members and all constraint relations of K belong

to the relational clone of A. By the induction hypothesis, we then have Pf(n,N−1)A (K)`G.

It now remains to use Lemma 3.4 twice: We get first Pf(n,N−1)+L+1
A (Iλ)`G, followed by

Pf(n,N−1)+L+4
A (I)`G. Since we chose f(n,N) to be f(n,N −1) +L+ 4, we have the desired

result Pf(n,N)
A (I)`G.

It remains to talk about the case when A does not contain symbols for all unary and
binary compatible relations. Denote by B the relational structure we get from A by adding
those missing relational symbols. Let I again be an instance of CSP(A) with each Bi of size

at most N . By the above argument, we get Pf(n,N)
B (I)`G, so there is a derivation of G in

Pf(n,N)
B from the relations of I. Observe now that the instance I only contains relations

from A and that if we take Pf(n,N)
B and delete rules that contain non-IDB predicates (the

name used in the literature for non-IDB predicates is extensional database symbols) that

are not basic relations of A, we get Pf(n,N)
A . Therefore, the derivation of Pf(n,N)

B (I)`G also

witnesses that Pf(n,N)
A (I)`G and we are done.

By taking M = f(n, |A|), we obtain the following corollary:

Corollary 6.2. For each variety n-permutable relational structure A there exists M ∈ N so
that whenever I is an unsatisfiable path instance of CSP(A), then PMA (I)`G.

7. From linear to symmetric Datalog

It remains to explain how to move from solving path CSP instances to solving general CSP
instances. This is where we will need linear Datalog, or equivalently bounded pathwidth
duality.

Given a relational structure A, we use the idea from [BK12, Proposition 13] and define

the k-th bubble power of A as the structure A(k) with the universe Ak and the following
basic relations:

(1) All unary relations S ⊆ Ak that can be defined by taking a conjunction of basic relations
of A (we are also allowed to identify variables and introduce dummy variables, but not
to do existential quantification), and

(2) all binary relations of the form

EI =

{
((a1, . . . , ak), (b1, . . . , bk)) ∈

(
Ak
)2

: ∀(i, j) ∈ I, ai = bj

}
where I ⊆ [k]2.
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In this section, we show that if A has pathwidth duality at most k − 1, then all we need to
worry about are path CSP instances of CSP(A(k)). Our method is straightforward, but we
need to get a bit technical to take care of all details.

Lemma 7.1. Let A be a (finite) relational structure, k ∈ N. Assume that A has pathwidth
duality k − 1 and let s ∈ N be such that PsA(k)(I)`G for each unsatisfiable path instance I

of CSP(A(k)). Then Pk(s+2)
A decides CSP(A).

Proof. We need to show that Pk(s+2)
A (I)`G for every unsatisfiable instance I. Since A has

pathwidth duality k− 1, it is enough to show that Pk(s+2)
A (J)`G whenever J = (V, C) is an

unsatisfiable CSP(A) instance of pathwidth at most k − 1.
Let X1, . . . , X` be the partition of V witnessing that J has pathwidth at most k − 1.

If Xi ⊆ Xi+1 resp. Xi+1 ⊆ Xi for some i, then we can delete the smaller of the two sets
and still have a partition that satisfies Definition 2.3. Therefore, we can assume that all
neighboring sets are incomparable. From this, it follows that all sets Xi are pairwise different,
because Xi = Xj for i < j implies Xi ⊆ Xi+1.

We fix a linear order ≺ on V . For each i, we will represent Xi by the k-tuple χi ∈ Xk
i

that we get by listing the elements of Xi from ≺-minimal to ≺-maximal, repeating the
≺-maximal element if Xi has less than k elements. Since the sets Xi are pairwise different,
we get pairwise different tuples. Recall that J�Xi denotes the subinstance of J induced by
Xi.

We now construct an unsatisfiable path instance K of CSP(A(k)). The variable set of
K is {χ1, . . . , χ`}. The constraints are as follows:

(1) For each i, the i-th unary constraint relation Bi lists all solutions of J�Xi . More formally,
we let

Bi = {ρ ◦ χi : ρ ∈ AXi , is a solution of J�Xi} ⊆ A
k.

It is straightforward to verify that Bi is a basic relation of A(k).
(2) For each i = 1, 2, . . . , ` − 1, we encode the intersection of Xi and Xi+1 by adding the

constraint Bi,i+1 = EI where I = {(a, b) : χi(a) = χi+1(b)}.
If r is a solution of K, we can construct a solution t of J as follows: For each v ∈ V , find an
i ∈ [`] and j ∈ [k] such that χi(j) = v and let t(v) be the j-th coordinate of r(χi). It is an
easy exercise to verify that the t we obtain would be a solution of J . Since J is unsatisfiable,
so is K.

Since K is a path instance, we get PsA(k)(K)`G. Now extend the set of variables of

K to the whole V k without adding any new constraints. While this new instance K ′ is no
longer a path instance, it is still true that PsA(k)(K

′)`G (the derivation of G can just ignore
the new variables).

We can now use Lemma 3.5: The structure B in the Lemma will be A(k) and the
relations S1, . . . , Sm will be B1, B2, . . . , B` and B1,2, B2,3, . . . , B`−1,`. It is straightforward

to show that P2k(J) derives the instance K: Each of the statements P2k(J)`Bi(χi) and
P2k(J)`Bi,i+1(χi, χi) (where i ranges over [`] and [`− 1], respectively) has a derivation of

length one. Lemma 3.5 then gives us that Pks+2k
A (J)`G, concluding the proof.

We are now ready to prove our main result:
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Theorem (Theorem 2.7 restated). Let A be a relational structure such that there is a linear
Datalog program that decides CSP(A) and A admits a chain of n Hagemann-Mitschke terms
as polymorphisms. Then there exists a number M so that PMA decides CSP(A).

Proof. Since there is a linear Datalog program that decides CSP(A), there is a k ∈ N so
that A has pathwidth duality at most k.

It is straightforward to verify that the basic relations of the bubble power A(k) are
compatible with the Hagemann-Mitschke terms of A applied componentwise (recall that

the universe of A(k) is the k-th power of A), so A(k) is variety n-permutable. Corollary 6.2

then gives us that there is an integer M ′ such that the program PM ′A(k) derives the goal

predicate on any unsatisfiable path instance of CSP(A(k)). Therefore, Lemma 7.1 gives us

that P(k+2)M ′

A decides CSP(A).

8. Conclusions

In Theorem 2.7, we gave a characterization of the class of CSPs solvable by symmetric
Datalog programs. Unfortunately, our result depends on understanding the power of linear
Datalog; the characterization of CSPs solvable by linear Datalog is an open problem at the
moment.

However, once somebody obtains a characterization of linear Datalog, our result imme-
diately gives a characterization of symmetric Datalog. To see how that could come about,
let us reexamine some conjectures about the CSPs solvable by fragments of Datalog [LT09]
that would give us a characterization of symmetric Datalog:

Conjecture 8.1 (B. Larose, P. Tesson). Let A be a finite relational structure such that the
algebra of polymorphisms of A generates a variety that only admits the lattice and/or Boolean
tame congruence theory types (equivalently, the variety is congruence semidistributive).
Then there is a linear Datalog program that decides CSP(A).

An alternative way to settle the complexity of CSPs solvable by symmetric Datalog
would be to replace “linear Datalog” in Theorem 2.7 by just “Datalog”. In particular, if the
following were true, we would get a characterization of symmetric Datalog, too:

Conjecture 8.2 (B. Larose, P. Tesson). Let A be a relational structure such that the
algebra of polymorphisms A of A is idempotent and generates a variety that only admits
the Boolean tame congruence theory type. Then CSP(A) is solvable by linear Datalog.

If Conjecture 8.1 or 8.2 is true, then the following are equivalent for any core relational
structure A:

(1) A is variety n-permutable for some n and CSP(A) is solvable by Datalog.
(2) The idempotent reduct of A generates a variety that admits only the tame congruence

theory type 3.
(3) There exists a symmetric Datalog program that decides CSP(A).

Here the implication (1) ⇒ (3) (or (2) ⇒ (3)) is the unknown one. Implication (3) ⇒
(2) follows from [LT09, Theorem 4.2], while [HM96, Theorem 9.15] together with the
characterization of problems solvable by Datalog [BK14] gives us (1)⇔ (2).

We end with another citation of [LT09] whose consequences we find tantalizing: Assume
that L 6= NL and L 6= ModpL for any p prime. Then we can add a fourth statement to the
above list:
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(d) CSP(A) is in L modulo first order reductions.

From one side, symmetric Datalog programs can be evaluated in logarithmic space. For the
other implication, we cite Theorem 2.2 to see that unless A only admits the Boolean type,
there is a first order reduction to CSP(A) from a problem that is NL-hard or ModpL-hard
for some p.
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