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Abstract. The spectrum of a first-order sentence is the set of the cardinalities of its finite
models. In this paper, we consider the spectra of sentences over binary relations that use at
least three variables. We show that for every such sentence Φ, there is a sentence Φ′ that
uses the same number of variables, but only one symmetric binary relation, such that its
spectrum is linearly proportional to the spectrum of Φ. Moreover, the models of Φ′ are all
bipartite graphs. As a corollary, we obtain that to settle Asser’s conjecture, i.e., whether
the class of spectra is closed under complement, it is sufficient to consider only sentences
using only three variables whose models are restricted to undirected bipartite graphs.

1. Introduction

The notion of first-order spectrum was first defined by Scholz [18]. Formally, the spectrum
of a (first-order) sentence ϕ (with the equality predicate), denoted by Spec(ϕ), is the set
of cardinalities of finite models of ϕ. A set is called a spectrum, if it is the spectrum of a
first-order sentence. Let Spec denote the class of all spectra.

One of the first and well known problems in finite model theory, called Asser’s conjecture,
asks whether the complement of a spectrum is also a spectrum [1]. It turns out to be equivalent
to NE vs. co-NE problem [13, 6, 7].1 More specifically, it is shown that the class NE is
captured precisely by Spec in the following sense: For every spectrum A, the language that
consists of the binary representations of the numbers in A belongs to the class NE, and
vice versa, for every language L ⊆ 1 · {0, 1}∗ , i.e., it consists of only words that start with
symbol 1, if L ∈ NE, then the set of integers whose binary representations are in L is a
spectrum. For a more comprehensive treatment on the spectrum problem and its history, we
refer interested readers to an excellent survey by Durand, Jones, Makowsky and More [4],
and the references therein.

It is reasonable to say that a definitive solution of Asser’s conjecture seems still far
away. Thus, it is natural to consider the spectra of some restricted classes of first-order logic.

Key words and phrases: Non-deterministic exponential time, first-order spectra, three-variable logic,
bipartite graphs.

1NE is the class of languages accepted by a non-deterministic (possibly multi-tape) Turing machine with
run time O(2kn), for some constant k > 0.
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c© E. Kopczyński and T. Tan
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses
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Fagin [8] was the first to notice that to settle Asser’s conjecture, it is sufficient to consider
only first-order logic over graphs. More formally, he showed that for every spectrum A,
there is a positive integer k > 0 such that {nk | n ∈ A} is the spectrum of a sentence using
only one binary relation symbol. Implicitly, it implies that if there is a spectrum whose
complement is not a spectrum, then there is such a spectrum of first-order sentence using
only one binary relation [7, 6], i.e., Asser’s conjecture can be reduced to first-order sentences
over graphs.

Durand and Ranaivoson [5] considered the class of spectra of sentences using only unary
function symbols and proved that it is included in the class of spectra of sentences using
only one binary relation. In particular, they established that the spectra of sentences using
only unary function symbols are exactly the spectra of sentences using one binary relation
when the models for the latter are restricted to directed graphs of bounded outdegree. They
also showed that there is a sentence ϕ using two unary functions such that the language
{1n | n ∈ Spec(ϕ)} is NP-complete. That two unary functions are necessary to obtain an
NP-complete language is shown immediately by Durand, Fagin and Loescher [5, 3], where
they show that the spectrum of a first-order sentence using only one unary function symbol
is a semilinear set.

Complementing Fagin’s result, we showed that Asser’s conjecture can be reduced to
sentences using only three variables and multiple binary relations [14]. The three variable
requirement seems to be optimal, as we also showed that the class of the spectra of sentences
using two variables and counting quantifiers is precisely the class of semilinear sets and
closed under complement [15]. In fact, we essentially showed that models of two-variable
logic with counting are simply collections of regular bipartite graphs.

In this paper we present the following result.

Theorem 1.1. For every sentence Φ using at least three variables over binary relation
symbols R1, . . . , Rm, there is a sentence Φ′ over a single binary relation symbol E that uses
the same number of variables as Φ such that:

Spec(Φ′) = {pn+ q | n ∈ Spec(Φ)}, for some integers p and q.

Moreover, every model of Φ′ is an undirected bipartite graph.

Since addition, subtraction, multiplication and division by constants can be computed in
linear time (in the length of the binary representation of the input number), the spectra of Φ
and Φ′ do not differ complexity-wise. Combined with our earlier result [14, Corollary 3.5] that
Asser’s conjecture can be reduced three variable sentences with binary relations, Theorem 1.1
immediately implies that Asser’s conjecture can be further reduced to three variable sentences
using only one binary relation with models being restricted to bipartite graphs. It is stated
formally as Corollary 1.2 below.

Corollary 1.2. The following two sentences are equivalent.

• The class of first-order spectra is closed under complement.
• The complement of every spectrum of first-order sentence using only three variables whose

models are all undirected bipartite graphs is also a spectrum.

Note that Corollary 1.2 strengthens the result by Fagin [8] which states that Asser’s
conjecture can be reduced to sentences (with arbitrary number of variables) over graphs. We
also note the difference between Theorem 1.1 and the result by Durand and Ranaivoson [5]
mentioned above. In [5], multiple unary functions are encoded using only one binary relation
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(with the graphs being restricted to those with bounded outdegree), whereas in Theorem 1.1,
multiple binary relations are encoded with one binary relation (albeit with linear blowup in
the size of the model).

At this point, it is natural to ask whether every spectrum is the spectrum of a sentence
over graphs, i.e., a sentence using only one relation symbol of arity 2. It turns out that a
positive answer to this question will imply the separation of a long standing open problem:
NE ( EXPSPACE, and thus, NP ( PSPACE, as stated formally in Remark 1.3 below.

Remark 1.3. Let Spec(arity k) denote the class of spectra of sentences using only relational
symbols of arity k. We will prove the following: If Spec = Spec(arity k), for some integer
k, then NE ( EXPSPACE, and hence, NP ( PSPACE.

First, we show that Spec(arity k) ⊆ DSPACE[2kn], where the input integer is written
in binary form. Let ϕ be an FO sentence using relations of arity at most k. To show that
Spec(ϕ) ∈ DSPACE[2kn], let w be the input word that represents integer N in binary

form. Each relation R of arity k with domain {1, . . . , N} takes Nk = O(2k|w|) space. So,

each model A with relations of arity at most k takes O(2k|w|) space. Checking whether A
satisfies ϕ takes additional O(|w|) space. To check whether ϕ has a model of cardinality
N , one can simply check one by one every possible model with domain {1, . . . , N}, each of

which takes O(2k|w|) space. Therefore, Spec(ϕ) ∈ DSPACE[2kn].
Now, by the space hierarchy theorem [19], DSPACE[2kn] ( EXPSPACE. Thus, if

Spec = Spec(arity k), for some k, then NE ( EXPSPACE, and by standard padding
argument, it implies NP ( PSPACE.

Related work. It is already noted before that first-order logic over arbitrary vocabulary is
too vast a logic to work on. A lot of work has been done to classify spectra based on the
vocabulary, notably on the arity of the relation and function symbols. We will mention some
of them here. Interested readers can consult the cited papers and the references therein.

Let NTIME[Nk] denote the class of sets of positive integers (written in unary form)
accepted by non-deterministic multi-tape Turing machine in time O(Nk), where N is the
input integer. Lynch [16] showed that NTIME[Nk] ⊆ Spec(arity k), for every k > 2. When
k = 1, the addition operator is required, i.e., NTIME[N ] ⊆ Spec(arity 1,+). The converse
of Lynch’s theorem is still open.

Grandjean, Olive and Pudlák established the variable hierarchy for spectra of sentences
using relation and function symbols [9, 10, 11, 12, 17]. Let NRAM[Nk] denote the class
of sets of positive integers accepted by a non-deterministic RAM in time O(Nk), and N
is the input integer. In his series of papers, Grandjean showed that the class NRAM[Nk]
is precisely the class of the spectra of first-order sentences written in prenex normal form
using only universal quantifiers and k variables with vocabulary consisting of relation and
function symbols of arity k [9, 10, 11]. By Skolemisation, this result leads to the fact that for
every integer k > 1, the class of spectra of first-order sentences using relation and function
symbols and k variables is precisely NRAM[Nk]. See also [12, Theorem 3.1].

Grandjean [11] also showed that the class NRAM[N ] is precisely the class of spectra of
sentences of the form ∀xϕ, where ϕ is quantifier free and uses only unary functions. Note
that to express that a relation is a function requires three variables. Since composition of
functions can also be expressed with three (reusable) variables, it implies that NRAM[N ]
is a subclass of the class of spectra involving only binary relations and three variables. By
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padding argument, it also implies that if Asser’s conjecture is negative, it suffices to consider
only three-variable sentences using only binary relations. This is similar to our result in [14].

A result similar to Theorem 1.1 was also obtained by Durand, et. al. [3] where they
showed that if S is a spectrum involving k unary functions, then the set {kn | n ∈ S} is a
spectrum involving only two unary functions. There is a strong evidence that the linear
blow-up is unavoidable [3, Proposition 5.1]. Durand and Ranaivoson [5] also showed that
every spectrum can be transformed (with polynomial blowup) to a spectrum involving only
unary functions, i.e., if S is a spectrum involving k-ary functions, then {nk | n ∈ S} is a
spectrum involving only unary functions. Durand’s thesis [2] is rich with results in this
direction.

Recently we also showed that there is a strict hierarchy of spectra based on the number of
variables used. That is, more variables yield larger class of spectra [14] when the vocabulary
is restricted to relational symbols.

Organization. In the next section we will present the proof of Theorem 1.1, and we
conclude with some remarks in Section 3.

2. Proof of Theorem 1.1

In this paper, by graph we always mean undirected graph. For a graph G = (V,E) and a
subset V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by the subset V ′.

Let R1, . . . , Rm be binary relation symbols. For k > 0, we denote by FOk[R1, . . . , Rm]
the class of FO formulas using k variables and binary relation symbols R1, . . . , Rm. A
formula is a sentence, if it has no free variable. A formula is always written as ϕ(z1, . . . , zl)
to indicate that z1, . . . , zl are the free variables in ϕ.

An interpretation is written in a standard way A = (A,RA
1 , . . . , R

A
m), where A is a finite

domain and each RA
i ⊆ A × A, for each i = 1, . . . ,m. As usual, A |= ϕ denotes that the

sentence ϕ holds in A. For a formula ϕ(z1, . . . , zl), and for i1, . . . , il ∈ A, we write that
ϕ(i1, . . . , il) holds in A, if ϕ(z1, . . . , zl) holds in A by substituting each zj with ij , for every
j = 1, . . . , l.

We reserve the symbol E to be a binary relation symbol that we insist to be always
interpreted by a symmetric relation. In the same way, we let FOk[E] to be the class of FO
formulas using k variables and relation symbol E. All models of sentences from FOk[E] are
graphs, so we will use the standard notation G = (V,E) |= ϕ, or simply G |= ϕ, to denote
that ϕ holds in G.

The following Lemma 2.1 immediately implies Theorem 1.1.

Lemma 2.1. Let k > 3. For every Φ ∈ FOk[R1, . . . , Rm], there is Φ′ ∈ FOk[E] such that
the following holds.

• For every A |= Φ, there is G = (V,E) |= Φ′ such that |V | = (m+ 3)|A|+ 8m+ 2.
• For every G = (V,E) |= Φ′, there is A |= Φ such that |V | = (m+ 3)|A|+ 8m+ 2.

Moreover, all models of Φ′ are bipartite graphs.

The rest of this section is devoted to the proof of Lemma 2.1. We fix a sentence
Φ ∈ FOk[R1, . . . , Rm], and we assume that z1, . . . , zk are the variables used in Φ. Without
loss of generality, we also assume that m > 3. Moreover, we assume that Φ implies
∀x¬R(x, x), for every R ∈ {R1, . . . , Rm}. That is, in every model A |= Φ, every relation RA
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C :

ru1 ru2

r w1r w2pppppppppp
ppppppppppru4m ru4m+1

r w4mr w4m+1

Figure 1: The graph C with 8m+ 2 vertices and 8m+ 1 edges.

D :

rdP

rdQ

rdS

r dR1

r dR2ppppppr dRm

Figure 2: The graph D with m+ 3 vertices and m+ 2 edges.

does not contain self-loop. Note that self-loops can be represented by non self-loops, i.e.,
by adding a new binary relation R′ for each R ∈ {R1, . . . , Rm} and replacing every atomic
formula R(x, y) with R(x, y) ∨ ∃yR′(x, y). The intuition is that in every model A |= Φ, a

self-loop (u, u) ∈ RA is represented by (u, v) ∈ R′A for some v 6= u.
We will first describe the main idea of our proof. The details will be presented immedi-

ately after. Let C be the graph depicted in Figure 1. It has 8m + 2 vertices, denoted by
u1, . . . , u4m+1 and w1, . . . , w4m+1, with the ui’s being those on the left hand side, and the
wi’s being those on the right hand side. The edges are (ui, wi), for each i = 1, . . . , 4m+ 1,
and (ui, ui+1), for each i = 1, . . . , 4m. Throughout this paper, we will always write U and
W to denote the sets {u1, . . . , u4m+1} and W = {w1, . . . , w4m+1}, respectively.

Let D be the graph depicted in Figure 2. It has m+ 3 vertices and m+ 2 edges. The ver-
tices are denoted by dP , dQ, dS , dR1 , . . . , dRm , where dP is adjacent to all of dQ, dR1 , . . . , dRm

and dQ is adjacent to dS .
Our intention is to construct Φ′ such that every model A |= Φ with A = {1, . . . , n} is

represented by a graph G = (V,E) |= Φ′, where there is a partition V = V0 ∪ V1 ∪ · · · ∪ Vn
and the following holds.

• G[V0] is isomorphic to C.
• G[Vi] is isomorphic to D, for each i = 1, . . . , n.

Intuitively, each element i ∈ A is represented by G[Vi]. For simplicity, we will assume that
G[V0] is C itself, i.e., V0 = U ∪W . We also denote the vertices in Vi by iP , iQ, iS , iR1 , . . . , iRm
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which correspond respectively to vertices dP , dQ, dS , dR1 , . . . , dRm in D. Each tuple (i, j) ∈
RA
l will then be represented by the edge (iRl , jS) in G. See Figure 3 for an illustration.

riP

riQ

riS

r iR1ppppr iRlppppr iRm

rjP

rjQ

r
jS

r jR1

r jR2ppppppr jRm

Figure 3: Representing a tuple (i, j) ∈ RA
l with the edge (iRl , jS) in G.

In order to achieve our intention, we differentiate the vertices iP , iS , iR1 , . . . , iRm by
defining them according to their connections with the vertices in U . Of course, the vertices
in U have to be definable, as well.

We first declare the definition of the set U .

(F1) A vertex u ∈ U if and only if it has degree at least 2 and exactly one of its
neighbour has degree 1.

The following are the properties of the set U to be satisfied.

(P1) Every vertex of degree 1 is adjacent to a vertex in U .
(P2) There are exactly two vertices in U that are adjacent to exactly one vertex

in U . More formally, |X| = 2, where X is the following set.

X = {u ∈ U | there is exactly one vertex v ∈ U s.t. (u, v) ∈ E}
(P3) Vertices in U form a tree with diameter 6 4m.
(P4) Between the two vertices in the set X, there is a path ℘ of length 4m that

consists of only vertices in U .

Property P1 states that every vertex of degree 1 is adjacent to one in U . Properties P2 and
P3 state that the vertices in U form a tree with exactly two leaf nodes and diameter at most
4m, which implies that it is a line graph. Property P4 states that the line graph has exactly
4m+ 1 vertices.

We will show that F1 and P1–P4 can be defined with first-order formulas using only
three variables. Moreover, we will also show that for every graph G = (V,E) that satisfies
P1–P4 with the set U being defined as in F1, there is a subset V0 ⊆ V such that the following
holds.

• G[V0] is isomorphic to C.
• If a vertex v ∈ V is either of degree 1 or such that v ∈ U , then v ∈ V0.

Now, if we assume that V0 = U ∪W , and if we denote the vertices in U by u1, . . . , u4m+1,
we can define u1 and u4m+1 as the end vertices of the line graph G[U ], whereas for each
i = 2, . . . , 4m, vertex ui is defined as the vertex with distance i − 1 and 4m + 1 − i to
u1 and u4m+1, respectively. At this point, note that since we insist the interpretation of
E to be symmetric, our definition does not distinguish between ui and u4m+2−i, for each
i = 1, . . . , 4m+ 1.

The following are the definitions of the vertices iP , iQ, iS , iR1 , . . . , iRm .
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(F2) A vertex u ∈ {1P , . . . , nP } if and only if it is adjacent to exactly one of u1

or u4m+1, and it is not adjacent to any other vertex in U .
(F3) A vertex u ∈ {1Q, . . . , nQ} if and only if it is adjacent to exactly one of u2

or u4m, and it is not adjacent to any other vertex in U .
(F4) A vertex u ∈ {1S , . . . , nS} if and only if it is adjacent to exactly one of u3

or u4m−1, and it is not adjacent to any other vertex in U .
(F5) For each Rl ∈ {R1, . . . , Rm}, a vertex u ∈ {1Rl , . . . , nRl} if and only if it

is adjacent to exactly one of u2l−1 or u4m+1−2(l−1), and it is not adjacent
to any other vertex in U .

Again, we will show that all of them can be defined with first-order formulas using only
three variables.

Finally, to facilitate a correct representation of each relation Rl with FO[E] formulas,
we declare the following additional properties, which can also be defined using only three
variables.

(P5) The vertices iP , iQ, iS , iR1 , . . . , iRm form a graph that is isomorphic to D
via the mapping (iP , iQ, iS , iR1 , . . . , iRm) 7→ (dP , dQ, dS , dR1 , . . . , dRm).

(P6) If there is an edge between the vertices in {iP , iQ, iS , iR1 , . . . , iRm} and
those in {jP , jQ, jS , jR1 , . . . , jRm}, where i 6= j, then it is an edge between
iRl and jS , for some Rl ∈ {R1, . . . , Rm}.

With the definitions of vertices as in F1–F5, we will show that for every graph G = (V,E)
that satisfies properties P1–P6, there is a partition V = V0 ∪ V1 ∪ · · · ∪ Vn such that the
following holds.

• G[V0] is isomorphic to C.
• G[Vi] is isomorphic to D, where Vi = {iP , iQ, iS , iR1 , . . . , iRm}, for each i = 1, . . . , n.
• If there is an edge between Vi and Vj , for some 1 6 i 6= j 6 n, then it is (iRl , jS).

As mentioned earlier, each relation Rl can then be encoded in G by representing each tuple
(i, j) ∈ RA

l with the edge (iRl , jS) in G.
The rest of this section will be devoted to the details of the definitions of F1–F5 and

P1–P6, as well as, the sentence Φ′. We divide them into five main steps. The first step is
for F1 and P1–P4, and the second step is for F2–F5. The third and fourth step are for P5

and P6, respectively. Finally, in the fifth step, we present the construction of the desired Φ′,
where Φ′ uses the same number of variables as Φ.

Step 1: Three variable definitions for F1 and P1–P4. We will need a few auxiliary
formulas. They are all defined using three variables x, y, z, which can be replaced with three
arbitrary variables from among z1, . . . , zk.

The formula Ψdeg=1(x) below defines those with degree 1.

Ψdeg=1(x) := ∃y
[
E(x, y) ∧ ∀z

[
E(x, z) ⇒ y = z

]]
Next, the formula ΨU (x) below defines vertices in U as stated in F1.

ΨU (x) := ¬Ψdeg=1(x) ∧ ∃y
[
E(x, y) ∧ Ψdeg=1(y)

]
That is, ΨU (v) holds if and only if its degree is not 1 and it is adjacent to a vertex with
degree 1. To avoid repetition, by abuse of terminology, when explaining the intuition of a
formula, we always write a set U to mean the vertices on which ΨU (x) holds.
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We can define property P1 with the following sentence.

ΨP1 := ∀x∀y
[[

Ψdeg=1(x) ∧ E(x, y)
]
⇒ ΨU (y)

]
To define the rest, we will need the following two auxiliary formulas.

• The formula Ψend,U (x):

Ψend,U (x) := ΨU (x) ∧ ∃y
[
ΨU (y) ∧ E(x, y) ∧ ∀z

[[
ΨU (z) ∧ E(x, z)

]
⇒ y = z

]]
That is, Ψend,U (v) holds if and only if v is in U and adjacent to exactly one of the vertices
in U . This is intended to define the endpoints of the line graph formed by vertices in U .
• For an integer n > 0, the formula ΨU,n(x, y):

ΨU,0(x, y) := x = y ∧ ΨU (x)

ΨU,n(x, y) := ΨU (x) ∧ ΨU (y) ∧ ∃z
[
ΨU (z) ∧ E(x, z) ∧ ΨU,n−1(z, y)

]
That is, ΨU,n(v1, v2) holds if and only if ΨU (v1),ΨU (v2) hold and there is a path of length
n that consists of only vertices in U .

Now, the sentences ΨP2 , ΨP3 and ΨP4 that define P2, P3 and P4, respectively, are as follows.

ΨP2 := ∃x∃y
[
Ψend,U (x) ∧ Ψend,U (y) ∧ ∀z

[
Ψend,U (z) ⇒

[
z = x ∨ z = y

]]]
ΨP3 := ∀x∀y

[[
ΨU (x) ∧ ΨU (y)

]
⇒

4m∨
n=1

ΨU,n(x, y)
]
∧

4m∧
n=1

∀x∀y
[[

ΨU (x) ∧ ΨU (y) ∧ ΨU,n(x, y)
]
⇒

∧
l 6=n and 16l64m

¬ΨU,l(x, y)
]

ΨP4 := ∀x∀y
[[

Ψend,U (x) ∧ Ψend,U (y)
]
⇒ ΨU,4m(x, y)

]
Intuitively, the first line of ΨP3 states that the vertices in U form a graph with diameter
6 4m, while the second line states that the distance between two vertices in U is unique.
Thus, ΨP3 states that vertices in U form a tree with diameter 6 4m. The sentence ΨP4

states that distance between the two leaf nodes is 4m. Now, ΨP2 states that there are only
two leaf nodes. So, altogether ΨP2 ∧ΨP3 ∧ΨP4 states that the set U forms a line graph of
4m+1 vertices. Combining all these with ΨP1 , we obtain that every model of ΨP1 ∧· · ·∧ΨP4

contains a subgraph isomorphic to C, as stated formally below.

Lemma 2.2. For every graph G = (V,E), the following are equivalent.

(a) G |= ΨP1 ∧ΨP2 ∧ΨP3 ∧ΨP4.
(b) There is a subset V ′ ⊆ V such that G[V ′] is isomorphic to C. Moreover, if a vertex

v ∈ V is either of degree 1 or such that ΨU (v) holds, then v ∈ V ′.

Proof. The direction that (b) implies (a) is straightforward. So we prove that (a) implies
(b). Assume that G = (V,E) |= ΨP1 ∧ ΨP2 ∧ ΨP3 ∧ ΨP4 .

Let U ′ be the set {u ∈ V | ΨU (u) holds in G}. The sentence ΨP3 implies that G[U ′] is
a tree of diameter 6 4m, whereas the sentence ΨP2 implies that G[U ′] has only two leaf
nodes. So, altogether, they imply that G[U ′] is a line graph of at most 4m+ 1 vertices. The
sentence ΨP4 implies that it is a line graph with exactly 4m+ 1 vertices.
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Next, let W ′ be the set {w ∈ V | deg(w) = 1}. Thus, if we pick V ′ = U ′ ∪W ′, it follows
immediately that G[V ′] is isomorphic to C. By ΨP1 , it is trivial that if v ∈ V is such that
either deg(v) = 1 or that ΨU (v) holds, then v ∈ V ′.

Step 2: Three variable definitions for F2–F5. The formulas ΨP (x), ΨQ(x), ΨS(x) and

ΨRl
(x), for each Rl ∈ {R1, . . . , Rm}, below defines the vertices iP ’s, iQ’s, iS ’s and iRl ’s,

respectively, as stated in F2–F5.

ΨP (x) := ∃y
[
Ψend,U (y) ∧ ∀z

[
ΨU (z) ⇒

[
E(x, z) ⇐⇒ y = z

]]]
ΨQ(x) := ∃y

[
Ψend,U (y) ∧ ∀z

[
ΨU (z) ⇒

[
E(x, z) ⇐⇒ ΨU,1(y, z)

]]]
ΨS(x) := ∃y

[
Ψend,U (y) ∧ ∀z

[
ΨU (z) ⇒

[
E(x, z) ⇐⇒ ΨU,2(y, z)

]]]
ΨRl

(x) := ∃y
[
Ψend,U (y) ∧ ∀z

[
ΨU (z) ⇒

[
E(x, z) ⇐⇒ ΨU,2l−1(y, z)

]]]
Step 3: Three variable definition for P5. Intuitively, the sentence ΨP5 that defines
P5 states the following: For every vertex x such that ΨP (x) holds, there are vertices
y, z, s1, . . . , sm such that the following is true.

• x, y, z, s1, . . . , sm form a graph isomorphic to D.
• ΨQ(y), ΨS(z),ΨR1(s1), . . . ,ΨRm(sm) all hold.

Such sentence can be trivially written using m + 3 variables. However, since each of the
vertices x, y, z, s1, . . . , sm have distinguished definitions and the distance between them are
all bounded by a fixed length, three variables are sufficient.

Before we proceed to the details, we need the following auxiliary formula. For every
α, β ∈ {P,Q, S,R1, . . . , Rm}, we define the following formula:

Ψα,β(x, y) := Ψα(x) ∧ Ψβ(y) ∧ ∃z
[
Ψγ(z) ∧ E(x, z) ∧ E(z, y)

]
,

where γ is defined according to α and β as follows.

• γ = Q, when either (α, β) = (P, S) or (α, β) = (S, P ).
• γ = P , when either (α, β) = (Rl, Q) or (α, β) = (Q,Rl), for some Rl ∈ {R1, . . . , Rm}.
• γ = P , for every α, β ∈ {R1, . . . , Rm} and α 6= β.

We let γ undefined for all the other combinations of α and β. Intuitively, Ψα,β(x, y) indicates
that x and y are the vertices in D where Ψα and Ψβ hold, respectively, and that Ψγ holds
in their middle vertex.

Now, the sentence ΨP5 is the conjunction of the following sentences, which for readability,
are written in plain English.

• For every vertex x such that ΨP (x) holds, the following is true.
– x is adjacent to exactly one vertex y where ΨQ(y) holds.
– For every Rl ∈ {R1, . . . , Rm}, x is adjacent to exactly one vertex y where ΨRl

(y) holds.
– There is exactly one vertex y such that ΨP,S(x, y) holds and moreover, E(x, y) does

not hold.
– For every Rl ∈ {R1, . . . , Rm}, if y and z are vertices adjacent to x such that

ΨQ(y) and ΨRl
(z) hold,

then E(y, z) does not hold.
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– For every Rl, Rl′ ∈ {R1, . . . , Rm}, if y and z are vertices adjacent to x such that

ΨRl
(y) and ΨRl′ (z) hold,

then E(y, z) does not hold.
• For every vertex x such that ΨQ(x) holds, the following is true.

– x is adjacent to exactly one vertex y where ΨP (y) holds.
– x is adjacent to exactly one vertex y where ΨS(y) holds.
– For every Rl ∈ {R1, . . . , Rm}, there is exactly one vertex y such that ΨQ,Rl

(x, y) holds
and moreover, E(x, y) does not hold.

• For every vertex x such that ΨS(x) holds, the following is true.
– x is adjacent to exactly one vertex y where ΨQ(y) holds.
– There is exacly one vertex y such that ΨS,P (x, y) holds, and moreover, E(x, y) does not

hold.
– If y and z are vertices such that

ΨQ(y), E(x, y), and ΨQ,Rl
(y, z) hold, for some Rl ∈ {R1, . . . , Rm},

then E(x, z) does not hold.
• For every Rl ∈ {R1, . . . , Rm}, for every vertex x such that ΨRl

(x) holds, the following is
true.
– x is adjacent to exactly one vertex y where ΨP (y) holds.
– There is exactly one vertex y such that ΨRl,Q(x, y) holds and moreover, E(x, y) does

not hold.
– If y and z are vertices such that

ΨP (y), E(x, y), and ΨP,S(y, z) hold,

then E(x, z) does not hold.

Now, consider the following sentence.

Ψ0 := ΨP1 ∧ ΨP2 ∧ ΨP3 ∧ ΨP4 ∧ ΨP5 ∧

∀x
[
¬E(x, x)

]
∧ ∀x

[
Ψdeg=1(x) ∨

∨
α∈{U,P,Q,S,R1,...,Rm}

Ψα(x)
]
.

We have the following lemma.

Lemma 2.3. For every graph G = (V,E) |= Ψ0, there is a partition V = V0 ∪ V1 ∪ · · · ∪ Vn
such that the following holds.

• G[V0] is isomorphic to C.
• For each i = 1, . . . , n, G[Vi] is isomorphic to D, and for every α ∈ {P,Q, S,R1, . . . , Rm},

there is exactly one node v ∈ Vi such that Ψα(v) holds.

Proof. Let G = (V,E) |= Ψ0. Obviously, it does not contain any self-loop. By Lemma 2.2,
there is V0 such that G[V0] is isomorphic to C. Let K = {v ∈ V | ΨP (v) holds}. By ΨP5 , for
every v ∈ K, there is a set of vertices Vv = {uv1, . . . , uvm+2} such that the following holds.

• ΨR1(uv1), . . . ,ΨRm(uvm),ΨQ(uvm+1),ΨS(uvm+2) hold.
• G[{v} ∪ Vv] is isomorphic to D.

Suppose K = {v1, . . . , vn}. By ΨP5 again, we have that {vi}∪Vvi and {vj}∪Vvj are disjoint,
whenever vi 6= vj .

Now, for every vertex v ∈ V , either deg(v) = 1 or there is a α ∈ {U,P,Q, S,R1, . . . , Rm}
such that Ψα(v) holds. Moreover, it is not possible that Ψα(v) and Ψβ(v) hold, for different



A NOTE ON FIRST-ORDER SPECTRA WITH BINARY RELATIONS 11

α, β ∈ {U,P,Q, S,R1, . . . , Rm}. By Lemma 2.2, if v is of degree 1 or that ΨU (v) holds, then
u ∈ V0. Otherwise, v ∈ Vi, for some i = 1, . . . , n. Thus, V is partitioned into V0∪V1∪· · ·∪Vn.
This completes our proof.

Step 4: Three variable definition for P6. Before we define the sentence for P6, we need
the following terminology. Let G = (V,E) |= Ψ0. We say that two vertices u, v ∈ V are in
the same D-component, if there is V ′ ⊆ V such that the following holds.

• u, v ∈ V ′.
• G[V ′] is isomorphic to D.
• For every α ∈ {P,Q, S,R1, . . . , Rm}, there is exactly one w ∈ V ′ such that Ψα(w) holds.

We can define a three-variable formula Ψsame-comp(x, y) such that Ψsame-comp(x, y) holds if
and only if x and y are in the same D-component. This can be done as follows. Suppose
α = S and β = Rl, and that Ψα(x) and Ψβ(y) hold. Then, x and y are in the same D-
component is equivalent to stating that there is z such that E(x, z), ΨQ(z) and ΨQ,Rl

(z, y)
hold. We can enumerate similar formulas for every possible α and β, and conjunct them all to
obtain a formula Ψsame-comp(x, y) that asserts whether x and y are in the same D-component.

Now, the sentence ΨP6 that defines P6 states as follows. For every adjacent vertices x
and y, if they are not in the same D-component, then for some Rl ∈ {R1, . . . , Rm}, either
one of the following holds.

• ΨS(x) and ΨRl
(y) hold.

• ΨRl
(x) and ΨS(y) hold.

The following lemma is immediate from Lemma 2.3 and the intended meaning of ΨP6 .

Lemma 2.4. For every graph G = (V,E), if G |= Ψ0 ∧ΨP6 , then V can be partitioned into
V = V0 ∪ V1 ∪ . . . ∪ Vn such that the following holds.

• G[V0] is isomorphic to C.
• For each i = 1, . . . , n, G[Vi] is isomorphic to D, and for every α ∈ {P,Q, S,R1, . . . , Rm},

there is exactly one node v ∈ Vi such that Ψα(v) holds.
• If there is an edge (u, v) such that u ∈ Vi and v ∈ Vj, for some 1 6 i 6= j 6 n, then either

ΨS(v),ΨRl
(u) hold or ΨS(u),ΨRl

(v) hold, for some Rl ∈ {R1, . . . , Rm}.

Note also that every graph G = (V,E) that satisfies Ψ0∧ΨP6 is indeed a bipartite graph.
Using the same notation as in Lemma 2.3, we assume that G[V0] is C itself. Furthermore, we
also denote by Vi = {iP , iQ, iS , iR1 , . . . , iRl}, where the mapping (iP , iQ, iS , iR1 , . . . , iRm) 7→
(dP , dQ, dS , dR1 , . . . , dRm) is an isomorphism from G[Vi] to D. Then, G is a bipartite graph
with the partition V = V ′ ∪ V ′′, where

V ′ = {u1, u3, . . . , u4m+1} ∪ {w2, w4, . . . , w4m} ∪ {iQ, iR1 , . . . , iRl | i = 1, . . . , n}(2.1)

V ′′ = {u2, u4, . . . , u4m} ∪ {w1, w3, . . . , w4m+1} ∪ {iP , iS | i = 1, . . . , n} (2.2)

Step 5: The construction of Φ′. First, for each formula ϕ(z̄) of Φ, where z̄ = (z1, . . . , zt)
and t > 3, we construct ϕ̃(z̄) with the same free variables z̄ inductively as follows.
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Base case: ϕ(z̄) is an atomic formula Rl(x, y), i.e., z̄ = (x, y) and x, y ∈ {z1, . . . , zt}. Then,

ϕ̃(x, y) := ΨP (x) ∧ ΨP (y) ∧

∃z

ΨQ(z) ∧ E(y, z) ∧

∃y
[

ΨS(y) ∧ E(z, y) ∧ ∃z
[

ΨRl
(z) ∧ E(x, z) ∧ E(y, z)

]]


The variable z is such that z ∈ {z1, . . . , zt} and z 6= x, y. Note also that variables y and
z are being reused.

The intuitive meaning of ϕ̃(x, y) is as follows. Assuming that ΨP (x) and ΨP (y) hold,
ϕ̃(x, y) states that there are three vertices v, v′, v′′ such that the following holds.
• ΨQ(v), ΨS(v′), ΨRl

(v′′) hold.
• (y, v), (v, v′), (x, v′′) and (v′′, v′) are edges.

In a similar way, when ϕ(z̄) is an atomic formula x = y, then,

ϕ̃(x, y) := ΨP (x) ∧ ΨP (y) ∧ x = y.

Induction step:

ϕ̃(z̄) :=


ϕ̃1(z̄) ∧ ϕ̃2(z̄), if ϕ(z̄) is ϕ1(z̄) ∧ ϕ2(z̄)

¬ϕ̃1(z̄), if ϕ(z̄) is ¬ϕ1(z̄)

∃x ΨP (x) ∧ ϕ̃1(x, z̄), if ϕ(z̄) is ∃x ϕ1(x, z̄)

Note that Φ′ uses the same number of variables as Φ.
We have the following lemma which states that Φ and Φ′ are equi-satisfiable.

Lemma 2.5. For every formula ϕ(z1, . . . , zt) ∈ FOk[R1, . . . , Rm], the following holds.

• For every structure A = 〈A,RA
1 , . . . , R

A
m〉, for every i1, . . . , it ∈ A such that

A |= ϕ(i1, . . . , it),

there is a graph G = (V,E) and u1, . . . , ut ∈ V such that

G |= Ψ0 ∧ ΨP6 ∧ ϕ̃(u1, . . . , ut).

• Vice versa, for every graph G = (V,E) and for every u1, . . . , ut ∈ V such that

G |= Ψ0 ∧ ΨP6 ∧ ϕ̃(u1, . . . , ut),

there is a structure A = 〈A,RA
1 , . . . , R

A
m〉 and i1, . . . , it ∈ A such that

A |= ϕ(i1, . . . , it).

Proof. For a structure A = 〈A,RA
1 , . . . , R

A
m〉, where A = {1, . . . , n}, let G = (V,E) be the

following graph.

• V = U∪W∪V1∪· · ·∪Vn, where each Vi = {iP , iQ, iS , iR1 , . . . , iRm} and U = {u1, . . . , u4m+1}
and W = {w1, . . . , w4m+1}.
• G[U ∪W ] is isomorphic to C and G[Vi] is isomorphic to D, for each i = 1, . . . , n.
• Every vertex u ∈ {1P , . . . , nP } is adjacent to u1, and not to any other vertex in U .
• Every vertex u ∈ {1Q, . . . , nQ} is adjacent to u2, and not to any other vertex in U .
• Every vertex u ∈ {1S , . . . , nS} is adjacent to u3, and not to any other vertex in U .
• For each Rl ∈ {R1, . . . , Rm}, every vertex u ∈ {1Rl , . . . , nRl} is adjacent to u2l−1, and not

adjacent to any other vertex in U .
• For each Rl ∈ {R1, . . . , Rm}, for each (i, j) ∈ RA

l , we have an edge (iRl , jS) in G.
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By straightforward induction on formula ϕ(z1, . . . , zt), we can establish the following. For
every i1, . . . , it ∈ A:

A |= ϕ(i1, . . . , it) if and only if G |= Ψ0 ∧ΨP6 ∧ ϕ̃(iP1 , . . . , i
P
t ).

Vice versa, let G = (V,E) |= Ψ0 ∧ ΨP6 . Let V0 ∪ V1 ∪ · · · ∪ Vn be the partition of V ,
where Vi = {iP , iQ, iS , iR1 , . . . , iRm}, for each i = 1, . . . , n, as in Lemma 2.4. We can define
a structure A = 〈A,RA

1 , . . . , R
A
m〉 as follows.

• A = {1, . . . , n}.
• For each Rl ∈ {R1, . . . , Rm}, for every edge (iRl , jS) in G, we have (i, j) ∈ RA

l .

Again, by straightforward induction on formula ϕ(z1, . . . , zt), we can establish the following.
For every i1, . . . , it ∈ A:

A |= ϕ(i1, . . . , it) if and only if G |= Ψ0 ∧ΨP6 ∧ ϕ̃(iP1 , . . . , i
P
t ).

This completes our proof.

To complete our proof of Lemma 2.1, we set Φ′ as follows.

Φ′ := Ψ0 ∧ ΨP6 ∧ Ψ̃

That Φ′ is the desired sentence follows immediately from Lemmas 2.4 and 2.5.

Note also that for G |= Ψ0∧ΨP6∧Φ̃, the additional edge needed to represent the relation
RA
l (i, j) in G is between iRl and jS , thus the partition V ′ ∪ V ′′ as defined in Equations (2.1)

and (2.2) still preserves the bipartite-ness of G.

3. Concluding remarks

In this paper we have shown that the spectrum of a sentence using at least three variables
and binary relation symbols is linearly proportional to the spectrum of a sentence using the
same amount of variables and only one symmetric binary relation symbol E, whose models
are all bipartite graphs (Theorem 1.1). Building from our previous work [14, Corollary 3.5],
we obtain that to settle Asser’s conjecture, it is sufficient to consider only sentences using
only three variables on bipartite graphs (Corollary 1.2), i.e., the following two sentences are
equivalent.

• The class of first-order spectra is closed under complement.
• For every three-variable sentence ϕ whose models are all undirected bipartite graphs, the

complement of Spec(ϕ) is also a spectrum.

The proof of Corollary 1.2 follows closely the one in [14, Corollary 3.5]. The direction
from the first to the second bullet is trivial. The other direction is as follows. Define the
following class C.

C :=

{
Spec(φ)

φ uses only three variables
and its models are all undirected bipartite graphs

}
co-C :=

{
N− S S ∈ C

}
Suppose that the second bullet holds, i.e., co-C ⊆ Spec. Let S be a set of integers such
that A ∈ NTIME[2n], where the input number is written in binary form. In [14], we
have already shown that S is the spectrum of a three-variable sentence using only binary
relations. By Theorem 1.1, there is p and q such that the set S′ = {px + q | x ∈ S} ∈
C. By the assumption that co-C ⊆ Spec, we have that N − S′ ∈ Spec = NE. Since



14 E. KOPCZYŃSKI AND T. TAN

addition/subtraction/multiplication/division by constant can be performed in linear time,
we have N− S ∈ NE. By padding argument, this implies that for every set S ∈ NE, the
complement N − S also belongs to NE. Then, Corollary 1.2 follows immediately from
NE = Spec.

Note that Corollary 1.2 reduces Asser’s conjecture in two directions: First, it reduces
the number of variables to three, and second, it reduces to sentences whose models are all
undirected bipartite graphs. It should be remarked that bipartite-ness is not first-order
definable, thus, it will be interesting to obtain a characterization of sentences whose models
are all bipartite graphs. We leave this as future work.

It will also be interesting to show whether the linear blowup in Theorem 1.1 is necessary.
As pointed out in the introduction, Durand, et. al. showed that there is a strong evidence
that collapsing the class of spectra involving arbitrary number of unary functions to a fixed
number of unary functions is likely to be difficult [3, Proposition 5.1]. Similar evidence for
Theorem 1.1 will be interesting.
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