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Abstract. Around 2000, J.-Y. Girard developed a logical theory, called Ludics. This
theory was a step in his program of Geometry of Interaction, the aim of which being to
account for the dynamics of logical proofs. In Ludics, objects called designs keep only
what is relevant for the cut elimination process, hence the dynamics of a proof: a design
is an abstraction of a formal proof. The notion of behaviour is the counterpart in Ludics
of the notion of type or the logical notion of formula. Formally a behaviour is a closed
set of designs. Our aim is to explore the constructions of behaviours and to analyse their
properties. In this paper a design is viewed as a set of coherent paths. We recall or give
variants of properties concerning visitable paths, where a visitable path is a path in a design
or a set of designs that may be traversed by interaction with a design of the orthogonal of
the set. We are then able to answer the following question: which properties should satisfy
a set of paths for being exactly the set of visitable paths of a behaviour? Such a set and its
dual should be prefix-closed, daimon-closed and satisfy two saturation properties. This
allows us to have a means for defining the whole set of visitable paths of a given set of
designs without closing it explicitly, that is without computing the orthogonal of this set of
designs. We finally apply all these results for making explicit the structure of a behaviour
generated by constants and multiplicative/additive connectives. We end by proposing an
oriented tensor for which we give basic properties.

1. Introduction

1.1. Context. At the beginning of the decade 2000, J.-Y. Girard developed a logical theory,
called Ludics [Gir01]. This theory was a step in his program of Geometry of Interaction,
the aim of which being to account for the dynamics of logical proofs. In Ludics, objects
called designs keep only what is relevant for the cut elimination process, hence the dynamics
of a proof: a design is an abstraction of a formal proof. Some notable successes have been
achieved with Ludics, although it has limitations. This theory succeeds in providing several
new concepts and tools for manipulating logic as a theory of interaction. It enables a
new formulation of useful properties like stability, associativity, monotonicity, traditionally
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required for a model of computation, in Ludics in a unique language instead of the usual
dichotomy syntax/semantics. Original concepts are also present: separation (a design is
completely defined by its interacting counterdesigns), incarnation (the relevant part of a
design with respect to a set of designs). Furthermore additive connectives are satisfactorily
handled. One of its most important results is a full completeness theorem for second-
order multiplicative additive (and affine) Linear Logic. Nevertheless, Ludics presents also
limitations. A first one is that objects are rather unfamiliar and seem difficult to manipulate.
A more serious limitation is due to the construction itself. The focalisation property of Linear
Logic makes it possible to consider only proofs respecting a very constrained procedure,
making proof search considerably easier. This enables to grasp cut elimination by means of
proofs built with very few rules. The counterpart is that such proofs are strictly sequential.
A still more serious limitation, when interested in computation, is the difficulty to grasp the
duplication/contraction phenomenon as Ludics is strictly linear.

Even if works in Geometry of Interaction focus more on proof nets ([Gir87] as seminal
paper, [DCKP03, HVG05, Gue11, Sei16] for some recent ones), Ludics provides an interesting
setting for applications. For example, the authors with other researchers have developed in
Ludics a modelling of natural language dialogues and of several other linguistic aspects [LQ09,
Lec11, FQ12]. For such purposes, the specificities of Ludics compared to other theoretical
frameworks are until now essential. In particular, Ludics is developed on an ontological
reversal, in the sense that primitive objects in Ludics are not formulas or types but their
inhabitants, called designs. Hence, for example, non-unicity of typing is given for free and
not an overlay of a logical theory.

1.2. Ludics and Game Semantics. The approach developed in Ludics is closely related
to the Game Semantics approach where execution, i.e., interaction, occurs between player
strategies in a game. Game Semantics has been extremely fruitful for studying various
fragments of Linear Logic or Classical Logic in order to obtain full completeness results
(among others, [HO93, AJ94, Loa94, Lam95, AM99, Lau10]). Basic concepts of Ludics may
in fact be expressed in terms of Game Semantics [Fag02, FH02, CF05, Cur05, BF11]. In a
few words:
• an action is a move, the abstraction of the application of a rule,
• the sequence of actions used during interaction is a play, the cut-elimination steps,
• a design is an innocent strategy, it is also a frame of a sequent calculus derivation.
However there is a fundamental difference between Game Semantics as it is generally used
and Ludics. Strategies are typed, while designs are a priori untyped. More concretely, a game
comes with a set of plays, i.e., sequences of moves that satisfy particular conditions, a strategy
is nothing else but such a set of plays. In Ludics, a play is what results from the interaction
between two designs, and a game, what denotes a formula, is interpreted as a behaviour, i.e.,
a set of designs which is closed under bi-orthogonality. Notice that, considered as an element
of a behaviour, only part of a design may be travelled during interactions with designs in the
orthogonal of the behaviour, and this part has to be considered as a strategy in terms of
Game Semantics. C. Faggian [Fag02, Fag06] studied which part of a design may be travelled
during an interaction. In this paper we go further by studying in which extent a design
may be travelled, when this design is part of a behaviour: in that case, other designs in the
behaviour constrain what can really be travelled by interaction.
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1.3. Extensions of (the original) Ludics. Further works extended original Ludics and
corrected its initial limitations, in particular strict linearity and sequentiality. Ludics nets were
developed as a game model for concurrent interaction by F. Maurel and C. Faggian [FM05]
and more thoroughly analyzed by P.-L. Curien and C. Faggian in [CF05]. In their work,
Ludics nets generalize Ludics designs (or innocent strategies in Game Semantics) by allowing
less sequentiality than required in the focalisation procedure. This is similar to what is at
stake when transforming proof structures into proof nets. M. Basaldella and C. Faggian
in [BF11] extended Ludics with non-linear terms. More precisely they introduce specific
actions (or moves) that are neutral, hence not polarized. The interaction procedure is
modified in such a way that neutral actions may be reused. They obtain a full completeness
result for a variant of Multiplicative-Exponential Linear Logic. K. Terui proposed in [Ter11] a
reformulation of Ludics by means of a notion of c-design, more suitable from a computational
point of view. In particular, a c-design is presented in a λ-calculus style, and may not be linear.
Whereas actions in Ludics (or moves) have fixed locations, i.e., are constants, actions have
relative addresses in a c-design: variables are introduced in the model. This work was further
developed with M. Basaldella in [BT10] to prove a full completeness result with respect
to polarized Linear Logic. To go back to their formal framework, the forest presentation
of Ludics is replaced by a linear one in such a way that the interaction rule becomes an
elegant generalization of the β-reduction rule of λ-calculus. However the characterization of
interaction paths, i.e., sequences of actions that may be followed in an interaction, is not as
simple as in the original presentation of Ludics (see [Pav17] for a work in this direction). For
that reason we stick to the original presentation of Ludics.

1.4. Our aim. We are interested in the study of behaviours. The notion of behaviour is
the counterpart in Ludics of the notion of type or the logical notion of formula. Typed
programming language may be an important domain of application. Whereas operational
semantics is often developed before defining a correct and complete type system, our purpose
is to define a language for behaviours that may be used for conceiving a type system that
extends traditional type systems. The operational semantics and computational rules for
a language with this type system are (quite) given for free: the corresponding concept of
cut-elimination is given ab initio in Ludics, not only for behaviours representing multiplicative-
additive connectives but for the whole system. In this direction, we propose in this paper
a definition of an oriented tensor, different from what has been done for example by M.
Churchill, J. Laird and G. McCusker [CLM13] in the framework of Game Semantics.

Our aim is therefore to explore the constructions of behaviours and to analyse their
properties in order to define a language of behaviours.

1.5. Our methodology. We study behaviours from two complementary approaches:
• Study of behaviours by means of their incarnation. Intuitively the incarnation of a
behaviour is its greatest subset with each element fully used by interaction with counter-
designs, thus sufficient for recovering the behaviour. Furthermore, incarnation is the core
of the original notion of internal completeness. Whereas a behaviour is formally defined
as the closure by bi-orthogonality of a set of designs, tensor or sum of behaviours may
be already defined by construction, without the necessity of bi-orthogonality. What is
at stake is to be able to study a behaviour with respect to its designs, without making
explicit neither its counter-designs nor the whole set of designs of the behaviour.
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• Study of operations on behaviours. We already mentioned the internal completeness
properties for additive and multiplicative connectives. However what characterizes a
behaviour generated from these connectives and logical constants was not known. We
prove that such a behaviour should be regular, i.e., designs in the incarnation are made
of interaction paths. We hope this sheds light on the structure of such connectives. The
characterization we obtain in this paper may be viewed as a generalization to the non-
intuitionistic case of what was given in Game Semantics in the intuitionistic case. In
particular the tensor is semantically obtained as (quite) a shuffle. This characterization
provides also a means for unveiling the structure of a non-regular behaviour. What is
at stake is then to specify which constructions may be defined, which ones are logically
justified and enable the decomposition of all behaviours.

Both these two approaches are complementary in the sense that incarnation, and therefore
internal completeness, is a guideline for defining relevant constructions on behaviours.

For these two approaches the concept of visitable path is central. A visitable path is a
path, inside a design, which is traversed during interaction between this design and a counter
design. This notion is necessarily defined with respect to a fixed behaviour. Nevertheless the
definition may be relaxed using a non necessarily closed set of designs instead of a behaviour.
The notion of visitable path is equivalent to the one of legal play in Game Semantics when
we forget that the path is part of a design of some fixed behaviour. Among the results we
obtain studying visitable paths, let us mention the following ones:
• Characterization of the set of visitable paths of a given set of designs without making
explicit its dual.
• Characterization of the incarnation of a behaviour generated by a set of designs without
making explicit its dual.
• Characterization of the kind of sets of paths that are sets of visitable paths of some
behaviour, without making explicit neither the behaviour nor its dual.

1.6. Content of the paper. The reader may find in the annex (section A.1) the original
concepts of Ludics. In section 2 we depart from this presentation recalling that a design may
equivalently be viewed as a set of coherent paths. We define next what is the shuffle of paths.
Finally we recall or give variants of properties concerning visitable paths, where a visitable
path is a path in a design of a set of designs that may be traversed by interaction with a
design of the orthogonal of the set. This last notion is important as a behaviour, where a
behaviour is a closure of a set of designs with respect to interaction, is fully characterized by
its set of visitable paths.

Section 3 is devoted to answering the following question: which properties should satisfy
a set of paths for being the set of visitable paths of a behaviour? Such a set of paths is said
to be ludicable. A set is ludicable when this set and its dual are prefix-closed, daimon-closed
and satisfy two saturation properties. We explain by means of examples why these properties
are required. This allows us to have a means for defining the whole set of visitable paths of a
given set of designs (not necessarily a behaviour) without computing explicitly the orthogonal
of this set of designs.

In section 4, we apply all these results for proving properties concerning behaviours
obtained by means of (focalised) linear logic connectives, mainly the tensor ‘⊗’ and the plus
‘⊕’. We can then make explicit the structure of a behaviour generated by constants and
multiplicative/additive connectives.
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We begin in a last section (section 5) the study of non multiplicative-additive behaviours.
For this purpose we consider three cases of non-commutative tensors. We prove that the
one defined by J.-Y. Girard is non-commutative but may be expressed by means of the
commutative tensor. We analyze the non-commutative tensor defined by Churchill et al. in
terms of visitable paths. We end by defining a new non-commutative tensor and state a few
properties.

2. Ludics in Terms of Visitable Paths

The precise definition of basic objects of Ludics is set in J.-Y. Girard’s seminal paper [Gir01].
Roughly speaking, the main objects are designs together with a notion of interaction between
them. As in Game Semantics, the basic steps of interaction are actions (moves). In Ludics, an
action is either a special one called daimon, written z, or a proper action written (+/−, ξ, I),
where the polarity is relative to the point of view one adopts (one side or the other of
interaction), the focus ξ determines the position (or address) where this action may occur
in an interaction. The daimon z will be considered as a positive (non-proper) action. An
action either terminates the interaction (if it is the daimon) or creates new addresses (a
set I) on which the interaction may continue. Therefore, the (dynamics of the) interaction
consists in following two dual alternate sequences of actions, one in each design. Two kinds of
sequences of actions, paths and chronicles, may equivalently be used to define designs. The
latter is used by J.-Y. Girard to define a design as a set of chronicles, the former closer to the
notion of play is used in [BF11] as an alternate presentation of Ludics, making explicit the
link between Ludics and Game Semantics. More details on the notions and proofs of above
results may be found in [FQ13], in particular for the notion of paths and the computation of
the incarnation of a behaviour generated from a set of designs.
The reader may find in section A.1 complementary definitions.

2.1. Designs as Sets of Chronicles or Sets of Paths. The notions of paths and chronicles
are closely linked. From paths, we obtain chronicles by means of an operation of view, while
from chronicles we obtain paths by means of an operation of shuffle. A design may then
be viewed either as a set of paths or a set of chronicles. Furthermore a design has a base,
i.e., the specification of initial addresses and the polarity of the actions that have such foci.
Finally an address ξ.i (resp. an action κ with focus ξ.i) is either initial if in the base or
justified by the address ξ (resp. an action κ′ of focus ξ and of polarity opposite to the one of
κ).

Throughout this paper, we note κ+ a positive action, κ− a negative action, κ when the
polarity may be positive or negative.

Definition 2.1 (Base). A base is a non-empty finite set of sequents: Γ1 ` ∆1, . . . ,Γn ` ∆n

such that each ∆j is a finite set of addresses, at most one Γi may be empty and the other
Γi contain each exactly one address. Furthermore if an address appears twice then one
occurrence is in one of Γi of a sequent and the other in one of ∆j of another sequent, otherwise
an address appears only once.

An address may appear twice in a base when this address is a cut in terms of Sequent
Calculus: interaction corresponds to travelling through such pairs.
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Definition 2.2 (Based Sequence). A sequence of actions is based on β = Γ1 ` ∆1, . . . ,Γn `
∆n if each proper action of the sequence which is not justified by one of the previous actions
in the sequence, i.e., is initial, has its focus in one of Γi (resp. ∆i) if the action is negative
(resp. positive).

Definition 2.3 (View). Let s be a sequence of actions based on β, the view psq is the
subsequence of s defined as follows:
• pεq := ε where ε is the empty sequence;
• pκq := κ where κ is an action;
• pwκ+q := pwqκ+ where κ+ is a positive action;
• pwκ−q := pw0qκ− where κ− is a negative action and w0 either is empty if κ− is initial or
is the prefix of w ending with the positive action κ+ which justifies κ−, i.e., the focus of
κ− is built from the one of κ+.

Definition 2.4 (Path). A path p based on β = Γ1 ` ∆1, . . . ,Γn ` ∆n is a finite alternated
sequence of actions based on β such that:
• Let wκ+ be a prefix of p, if κ+ is not initial and is justified by κ− then κ− ∈ pwκ+q.
Roughly speaking, “there is no view change or jump on a positive action”.
• Actions in p have distinct foci.
• One of the Γi is empty iff p is non-empty with first action positive.
• A daimon can only occur as the last action of p.

We say a path is positive-ended (resp. negative-ended) if its last action is positive (resp.
negative), a path is positive (resp. negative) if its first action is positive (resp. negative).
Chronicles are particular paths: namely non-empty paths such that each non-initial negative
action is justified by the immediately previous (positive) action and there is at most one
initial negative action. Then, by construction, a view of a path is a chronicle. More generally,
if we consider the set of all prefixes q of a path p, we obtain the set written pppqq of chronicles
pqq induced by p. Conversely, it is possible to rebuild the path p from the set of chronicles
pppqq. The relevant operation to build paths from chronicles is the operation of shuffle. The
shuffle operation may more generally be defined on paths. The standard shuffle operation
consists in interleaving sequences keeping each element and respecting the order. We depart
from this definition first by imposing that alternation of polarities should be satisfied, second
by taking care of the daimon that should only appear at the end of a path. By this way,
being a path is preserved by the shuffle operation.

Definition 2.5 (Shuffle of paths).
• Let p and q be two positive-ended negative paths on disjoint bases β and γ, and such that
at least one path does not end on a daimon. The shuffle of p and q , noted p q , is the
set of sequences p1q1 . . . pnqn, based on β ∪ γ such that:
- each sequence pi and qi is either empty or a positive-ended negative path,
- p1 . . . pn = p and q1 . . . qn = q ,
- if pn ends with z then qn is empty.
• The definition is extended to paths pκ1z and qκ2z where p and q are two positive-ended
negative paths on disjoint bases:

pκ1z qκ2z := (pκ1z q) ∪ (p qκ2z)
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• The definition is extended to paths rp and rq where r is a positive-ended path and p and q
are two positive-ended negative paths on disjoint bases:

rp rq := r (p q)

It is possible to build paths from a given set of chronicles, provided that these chronicles
are pairwise coherent. Informally, coherence ensures that, after a common positive-ended
prefix, paths are made of negative paths either on disjoint bases or with first actions of same
focus. Let p be a path, it follows from the definition of a view and the coherence relation
that pppqq is a clique of chronicles, i.e., a set of pairwise coherent chronicles. Then we may
extend the coherence relation to paths: p and q are two coherent paths when pppqq ∪ ppqqq is a
clique of chronicles.

Finally a design is a clique of chronicles, or equivalently a clique of paths, satisfying
supplementary conditions. Formal definitions of coherence relation as well as design are given
in annex A.1.

We proved in [FQ13] that a non-empty clique of non-empty paths may give rise to a net
of designs. Furthermore, when R is a net of designs, the closure by shuffle of R, denoted R
is a set of coherent paths (and we say that p is a positive-ended path of a net R whenever p
is in R ). That makes explicit the link between paths and chronicles of a design, and more
generally of a net of designs, hence justifies the switch from/to the reading of designs or nets
as cliques of chronicles to/from the reading of designs or nets as cliques of paths.

2.2. Duality and Legal Paths, Interaction.

Definition 2.6 (Duality, Legality). Let p be a positive-ended alternate sequence.
• The dual of p (possibly empty) is the positive-ended alternate sequence of actions ∼p
(possibly empty) such that1:
– If p = wz then ∼p := w.
– Otherwise ∼p := pz.
• When p and ∼p are positive-ended paths, we say that p is legal.

There exist paths such that their duals are not paths, as illustrated in example 2.7.
Nevertheless, the dual of a chronicle is a path.

Example 2.7. Let us consider the following design. The reader may find in annex A.1 the
way a design may be drawn as a tree of sequents. For ease of reading, in examples, we present
designs as trees of sequents.

ξ000 ` σ00

` σ00, ξ00

σ0 ` ξ00

` ξ00, σ

ξ0 ` σ

ξ100 `
` ξ10

ξ1 `
` ξ, σ

The sequence s =(+,ξ,{0,1})(−,ξ0,{0})(+,σ,{0})(−,ξ1,{0})(+,ξ10,{0}) is
a path based on ` ξ, σ. On the contrary its dual ∼s =
(−,ξ,{0,1})(+,ξ0,{0})(−,σ,{0})(+,ξ1,{0})(−,ξ10,{0})z is not a path based
on the net ξ ` σ `: it does not satisfy the ‘no positive jump’
condition.

Interaction between two designs (or more generally two nets of designs) is at the heart
of Ludics: Two designs are orthogonal when interaction converges. Interaction is realized
by following a path on one design and its dual on the other, hence interaction stops when

1The notation κ is simply (±, ξ, I) := (∓, ξ, I) and may be extended on sequences by ε := ε and wκ := wκ.
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encountering a daimon. Recall that a path p is a path of a net of designs (that may be a single
design) D if p is in D . We give below a definition equivalent to the seminal one [Gir01]:

Definition 2.8. Two (nets of) designs D and E are orthogonal if there exists a path p of D
such that ∼p is a path of E.

The path followed by interaction may be defined as an abstract machine in the following
way:

Definition 2.9 (Interaction path). Let (D,R) be a convergent, i.e., orthogonal, closed
cut-net such that all the cut loci belong to the base of D. The interaction path of D with
R, denoted 〈D←R〉, is the sequence of actions of D visited during the normalization. The
construction goes as follows where n is the number of normalization steps so far obtained:
Let κ1 . . . κn be the prefix of 〈D←R〉 already defined (or the empty sequence if n = 0).
• Either the interaction stops: if the main design is a subdesign of R then 〈D←R〉 = κ1 . . . κn,
otherwise the main design is a subdesign of D then 〈D←R〉 = κ1 . . . κnz.
• Or, let κ+ be the first proper action of the closed cut-net obtained after step n, 〈D←R〉
begins with κ1 . . . κnκ+ if the main design is a subdesign of R, or it begins with κ1 . . . κnκ+
if the main design is a subdesign of D.

We note 〈R←D〉 the sequence of actions visited in R during the normalization with D.

It follows from the definition that 〈D←R〉 =
∼〈R←D〉. Abusively, we also call interaction

path the sequence of actions followed by interaction, even if the cut-net is not convergent,
i.e., the definition is followed as long as divergence does not occur.

The closure by bi-orthogonality of a set of designs allows to recover the notion of type,
called in Ludics behaviour. The study of these behaviours is in some aspects more graspable
when interaction is defined on designs presented as cliques of paths. A visitable path in a
behaviour, i.e., in a design of this behaviour, is a path that may be traversed by interaction.

Definition 2.10 (Visitability). Let E be a set of designs of same base. Let p be a path, p
is visitable in E if there exist a design D in E and a net R in E⊥ such that p = 〈D←R〉.
We write VE the set of visitable paths of E.

Remark that a visitable path is necessarily a positive-ended path as it is the result
of a normalization. The following proposition follows immediately from the definitions of
visitability and orthogonality:

Proposition 2.11. [FQ13] Let A be a behaviour, VA =
∼
VA⊥ .

One of the complex aspects of Ludics is to be able to characterize the incarnation of
a behaviour. This incarnation is in some sense the essence of a behaviour: it contains all
visitable paths of the behaviour. However not all paths in the incarnation are visitable.
Hence being able to identify visitable paths is a real challenge. Conversely, there exist sets of
paths that are not sets of visitable paths of behaviours. In terms of Game Semantics, a set of
plays/paths is not necessarily the set of plays/visitable paths of a type/behaviour. The next
section will be devoted to such a characterization. We set here simple properties relating
designs, visitable paths and incarnation of behaviours.

Definition 2.12 (Completion of designs). Let D be a design of base β, the completion of
D, noted Dc, is the design of base β obtained from D in the following way:

Dc := D ∪ {cκ−z ; c ∈ D, cκ− 6∈ D, cκ−z is a chronicle of base β}
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Let R be a net of designs, the completion of R also written Rc is the net of completions of
designs of R.

Note that Dc is a design:
• An action κ− is either initial or justified by the last action of c (in cκ−) hence linearity is
satisfied.
• As chronicles c are in D and κ− are negative actions, chronicles cκ−z are pairwise coherent
and coherent with chronicles of D.

Proposition 2.13. Let D be a design in a behaviour A, consider a design C ⊂ D then
Cc ∈ A.

Proof. Let E ∈ A⊥. Hence E ⊥ D. Let p be the longest positive-ended path in the design
C that is a prefix of 〈D←E〉. Either p = 〈D←E〉, hence E ⊥ C, and also E ⊥ Cc. Or there
exist actions κ−, κ+ and a sequence w such that 〈D←E〉 = pκ−κ+w. Consider the chronicle
c such that ppκ−q = cκ−. By construction, c ∈ C. Either cκ− ∈ C hence also cκ−κ+ ∈ C as
C ⊂ D and there is a unique positive action after a negative action, contradiction as p is
then not maximal. Or cκ−z ∈ Cc hence E ⊥ Cc.

The proposition 2.13 is also true when we have nets of designs instead of designs.

Proposition 2.14. Let E be a set of designs of same base, let p be a path of a design of E,
then p is visitable in E iff pp∼pqqc ∈ E⊥.

Proof. Suppose that p is visitable in E. Then there exist D ∈ E and R ∈ E⊥ such that
p = 〈D←R〉. Furthermore ∼p is a path in R, hence pp∼pqq ⊂ R. It follows from proposition 2.13
that pp∼pqqc ∈ E⊥.
Suppose that pp∼pqqc ∈ E⊥, let D be the design in E such that p is a path of D. Note that
D ⊥ pp∼pqqc and that p =

〈
D←pp∼pqqc

〉
. Hence p is visitable in E.

Corollary 2.15. Let E be a behaviour, let p be a path of a design of E, then p is visitable
in E iff pppqqc ∈ E.

Proof. The path p is visitable in E iff ∼p is visitable in E⊥, and we know by the previous
proposition that the path ∼p is visitable in E⊥ iff pp

∼∼pqq
c
∈ E⊥⊥ = E.

Proposition 2.14 gives a means to compute the set of visitable paths of a set E of designs
of the same base when E is a finite set of finite designs: take each positive-ended path p of
some design of E, test if for all design D in E we have D ⊥ pp∼pqqc.

3. To Grasp Behaviours from Visitable Paths

A behaviour is fully characterized by its incarnation, and this latter by the set of visitable
paths of the behaviour: we proved in [FQ13] that designs in the incarnation coincide with
maximal cliques of visitable paths satisfying extra conditions.

The question now is: In which extent a given set of paths may characterize a behaviour?
More precisely, what conditions should satisfy a set of paths S to be the set of visitable
paths of some behaviour BS , BS not given a priori? Such a set of paths will be called
ludicable. Obviously the paths of S should be legal. Moreover, S has to be prefix and daimon
closed. Then, maximal cliques of S are relevant candidates for retrieving designs of |BS |.
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However, the extra conditions mentioned in [FQ13] assume already given the behaviour! On
the contrary, we give in this paper necessary and sufficient conditions for S to be ludicable
without the behaviour given a priori. First, a path pκ+ obtained as a shuffle of two coherent
elements of S may be visited during an interaction as soon as pz belongs to S. Such a
constraint is satisfied if S is positively saturated: positive saturation ensures that there are
enough specific maximal cliques (called positively saturated cliques) that are really relevant
candidates for building a behaviour BS . Second, if a negative-ended path r is such that,
for every design generated by such a relevant clique, either r is a path of this design or
exits from it on a positive action, then the path rz should necessarily be visited during an
interaction. The condition of negative saturation expresses that such paths rz should belong
effectively to S. Last, these two constraints should be satisfied by the set S and its dual∼
S. This guarantees that no unexpected designs may be generated by cliques of ∼S, hence no
additional path may be visitable.

In order to fully answer the question of ludicability, i.e., of characterizing sets of paths
that give rise to behaviours (subsection 3.3), we begin with a study of positively saturated
cliques (subsection 3.1) where we prove that designs in the incarnation of a behaviour are
generated by cliques that satisfy this constraint. This is a necessary first step towards a study
of the two main constraints that should be satisfied for ludicability: positive and negative
saturation (subsection 3.2). We end this section by providing a constructive way for closing
a set of paths with respect to ludicability (subsection 3.4).

Let us notice that such a question: characterizing sets of paths which are sets of visitable
paths of some behaviour seems meaningless in terms of Game Semantics. Indeed, as Game
Semantics is defined, the notion of plays ontologically depends on the primitive notion of
arena, which itself is relative to a given type. The question makes sense in a realisability
approach, where programs and formulas come together, or even more where programs, as
paths or designs in Ludics, may arise before types. Nevertheless, such a question (and its
answer) may suggest extensions in Game semantics: in order to be able to define new types,
why not consider plays before defining types? Indeed, in subsection 5.2, we give in Ludics
an elegant definition of the (linear) sequoid connective previously defined in terms of Game
Semantics by Churchill et al [CLM13]. An extension of our approach to exponentials is
however necessary to fully address the issue.

3.1. Positively saturated cliques. We already proved in [FQ13] that a design in the
incarnation of a behaviour B is a maximal clique C of visitable paths such that ∼C is finite-
stable and saturated. ∼C finite-stable means that if a strictly increasing sequence (pn) of
paths in ∼C is such that (

⋃
pppnqq)c ∈ B⊥ then this sequence (pn) is finite. ∼C saturated

means that if p is a prefix of an element of C and pκ−z ∈ VB then pκ− is a prefix of an
element of C. While finite-stability is not really a constraint, since such strictly increasing
sequences of paths generate designs either in a behaviour or in its dual2, saturation is not
completely satisfying for our issue, as it presupposes an already given behaviour. We replace
the condition of saturation on the dual of a clique by a condition of positive saturation on
the clique itself. Below we first define positive saturation for cliques, then we give an example
that explains this notion. Last, we prove that this new property still enables to characterize
designs of the incarnation of a behaviour.

2A more complete explanation is given in subsection 3.3.
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Definition 3.1 (Positively saturated clique). Let S be a set of positive-ended paths. A clique
C of S is positively saturated for S when: for all m ∈ C, nκ−κ+ ∈ C, if mκ−z ∈ S
then mκ−κ+ ∈ S (hence, if C is a maximal clique, mκ−κ+ ∈ C).

Let us give now an example that explains this notion of positive saturation.

Example 3.2. Let B = {D,E}⊥⊥ where the designs D and E are given below.

D =

ξ111 `
` ξ11

κ+1

ξ1 ` κ−1

ξ221 `
` ξ22

κ+12

ξ2 ` κ−2
` ξ33

z

ξ3 ` κ−3

` ξ κ+ E =

` ξ11
z

ξ1 ` κ−1

ξ223 `
` ξ22

κ+32

ξ2 ` κ−2

ξ333 `
` ξ33

κ+3

ξ3 ` κ−3

` ξ κ+

The following paths (in particular) are visitable in B: m = κ+κ−1 κ
+
1 κ
−
2 κ

+
12 and κ+κ−3 κ

+
3 .

Let C be the set containing these two paths and their positive-ended prefixes. Then C is a
maximal clique of visitable paths of B. Remark that mκ−3 z ∈ VB however mκ−3 κ

+
3 6∈ VB: C

is not positively saturated for VB. Note that ppCqq 6∈ B.

We are able now to characterize designs in the incarnation:

Proposition 3.3. Let B be a behaviour, D is a design in the incarnation |B| iff D = ppCqq
where C ⊂ VB is a maximal clique, positively saturated for VB and such that ∼C is finite-stable
for B⊥.

Proof. (⇒) We prove in [FQ13] that there exists a maximal clique C of VB such that ∼C is
finite-stable and saturated for B⊥ and ppCqq = D. Let m and nκ−κ+ be two elements of C,
and suppose that mκ−z ∈ VB. Since m is an element of C, and since mκ−z ∈ VB, mκ−
is a prefix of an element of C as ∼C is saturated, i.e., there is a path mκ−κ+0 w ∈ C, hence
mκ−κ+0 ∈ C as C is a maximal clique and VB is prefix-closed. Since mκ−κ+ is a path of
ppCqq, the only possibility is κ+ = κ+0 as C is a clique, i.e., mκ−κ+ ∈ C.

(⇐) Let E ∈ B⊥. We consider the interaction between D and E. First we prove that
positive-ended prefixes of 〈D←E〉 are elements of C. If C = {z} the result is immediate.
Otherwise note that if D is a positive design then its first (hence positive) action is an
element of C (as C is a clique), if D is a negative design then the empty sequence is an
element of C. Thus D being of positive or negative base, there exists a prefix of 〈D←E〉 that
is an element of C. Suppose that p is a prefix of an element of C whereas pκ is not a prefix
of an element of C and pκ is a prefix of 〈D←E〉:
• Either κ is a positive action. The path p is negative-ended. The path p cannot be empty
otherwise κ, as a prefix of 〈D←E〉, is the first action of D hence also of paths of C,
contradicting the hypothesis. Then p is of the form p′κ−. As p is an element of C and
elements of C are positive-ended paths, there exists q ∈ C of the form p′κ−κ+p′′. As C is
a clique and as normalization is deterministic, κ+ = κ. Thus p′κ−κ ∈ C, contradiction.
• Or κ is a negative action. Note that pppqqc ∈ B as p ∈ VB and that pκ−z =

〈
pppqqc←E

〉
thus

pκ−z ∈ VB. Furthermore κ− = κ as normalization is deterministic. As κ− appears in ppCqq,
there exists a path nκ−κ′+ ∈ C. Hence as C is positively saturated for VB, pκ−κ′+ ∈ VB.
Hence pκ−κ′+ ∈ C as C is a maximal clique.

We prove now by contradiction that D ⊥ E analysing each possible case. Suppose D 6⊥ E:
• Either normalization goes on infinitely: there is a strictly increasing sequence (pn) of C
such that pn is a path of D and pn is a path of E. In particular for all n pp∼pnqq ⊂ E. Then
as ∼C is finite-stable, the sequence (pn) is finite. Contradiction.
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• Or if pκ+ is a path of D, i.e., pκ+ ∈ C, p is a path of E but pκ+ is not a path of E. We
have that pκ+ ∈ VB, thus pppκ+qq

c ∈ B (corollary 2.15). Thus contradiction as E ∈ B⊥.
• Or if pκ− is a path of E, p is a path of D but pκ− is not a path of D. Hence in particular
κ− is not present in D. Furthermore p is a (positive-ended) prefix of 〈D←E〉 thus p ∈ C
as a consequence of the first part of this proof. Then pppqqc ∈ B (corollary 2.15). But
pκ−z =

〈
pppqqc←E

〉
thus pκ−z ∈ VB. Thus pκ−z could be added to C, contradiction with

the fact that C is a maximal clique.
Hence D ∈ B. Suppose that D 6∈ |B|, then there exists a design E ∈ B such that E ( D,
i.e., there exists a path pκ−κ+ ∈ C such that p is a path in E, pκ−κ+ is not a path in E. As
pκ−κ+ ∈ C, there exists a design F ∈ B⊥ such that

∼pκ−κ+ is a path in F. Hence E 6⊥ F,
contradiction.

3.2. Positive Saturation, Negative Saturation of a set of paths. Let us go back to
the initial question: let S be a set of legal paths, is S the set of visitable paths of a behaviour?
We know from proposition 3.3 that we should base our analysis on the set of positively
saturated maximal cliques of S. As suggested in example 3.5, each path in S should be in
some positively saturated maximal clique of S. Another condition, called negative saturation,
should also be satisfied: a path pκ−z contained in the design generated by some positively
saturated maximal clique should be in S as soon as the design pppκ−qq is orthogonal to
all positively saturated maximal clique of S (see example 3.5). Before that, we recall the
following points: let mn be a visitable path with m positive-ended then m is also a visitable
path, let pκ+ be a visitable path then pz is also a visitable path. Hence a set S should be
prefix and daimon closed:

Definition 3.4 (Prefix closure, daimon closure). Let S be a set of legal paths of same base:
• S is prefix-closed if all positive-ended prefix of an element of S is an element of S.
• S is daimon-closed if for all path pκ+ ∈ S, pz ∈ S.

Example 3.5. Let us first remark that each path in S should be in some positively saturated
maximal clique of S. Let S be the prefix and daimon closure of the two paths κ+κ−1 κ

+
1 κ
−
2 κ

+
2

and κ+κ−2 z. We only have the following maximal cliques of S:
• C0 = {z}
• C1 = {κ+, κ+κ−1 z, κ+κ

−
2 z}

• C2 = {κ+, κ+κ−1 κ
+
1 , κ

+κ−1 κ
+
1 κ
−
2 z, κ

+κ−2 z}
• C3 = {κ+, κ+κ−1 κ

+
1 , κ

+κ−1 κ
+
1 κ
−
2 κ

+
2 }

Note that C3 is not positively saturated: κ+ ∈ C3, κ+κ−1 κ
+
1 κ
−
2 κ

+
2 ∈ C3, κ+κ−2 z ∈ S but

κ+κ−2 κ
+
2 6∈ S. Thus there is no positively saturated maximal clique containing the path

κ+κ−1 κ
+
1 κ
−
2 κ

+
2 . By the way S is not the set of visitable paths of some behaviour.

Let us now motivate the need for negative saturation. Let S be the set of paths
{z, κ+, κ+κ−1 κ

+
1 , κ

+κ−1 z, κ
+κ−2 z}: S is daimon and positive prefix closed. We have the

following maximal cliques of S:
• C0 = {z}
• C1 = {κ+, κ+κ−1 z, κ+κ

−
2 z}

• C2 = {κ+, κ+κ−1 κ
+
1 , κ

+κ−2 z}
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Notice that these three cliques are positively saturated. However the design ppC2qq contains
the path κ+κ−1 κ

+
1 κ
−
2 z. Remark that the design ppκ+κ−1 κ

+
1 κ
−
2
qq is orthogonal to all three

designs ppCiqq but the path κ+κ−1 κ
+
1 κ
−
2 z is not in S. Here too, S is not the set of visitable

paths of some behaviour.

Definition 3.6 (Positive saturation condition). A set S of legal paths of same base is
positively saturated if for each path p ∈ S, there exists a positively saturated maximal
clique C of S such that p ∈ C.

In the following proposition, we remark that, if it exists, there is a standard positively
saturated clique. This clique Cp is in fact the smallest positively saturated maximal clique
containing a given path p.

Proposition 3.7. Let S be a set of legal paths of same base, prefix and daimon closed. The
three conditions are equivalent:
i) S is positively saturated.
ii) For each path p ∈ S, the clique Cp defined below is positively saturated for S:

Cp = {q ; q ∈ S, ppqqq ⊂ pppqq} ∪ {wκ−z ; wκ−z ∈ S, ppwqq ⊂ pppqq, ppwκ−qq 6⊂ pppqq}
iii) For each path p ∈ S, there exists a positively saturated maximal clique C of S without

infinite strictly increasing sequence and such that p ∈ C.

Proof. i) ⇒ ii) Suppose that there exists a path p ∈ S such that Cp is not positively
saturated. This means that there exist two paths m ∈ Cp and nκ−κ+ ∈ Cp, such that
mκ−z ∈ S but mκ−κ+ /∈ S. Note that κ+ 6= z. Note also that m cannot end with a
daimon, otherwise mκ−κ+ is not a path. Therefore ppmqq ⊂ pppqq and ppnκ−κ+qq ⊂ pppqq. As S
is positively saturated, there exists a positively saturated maximal clique C containing p,
hence also m and nκ−κ+ thus mκ−κ+ ∈ S. Contradiction.

ii) ⇒ iii) Let us remark that the clique Cp is a maximal clique of S. Indeed, let m
be an element of S which is coherent with p. Either ppmqq ⊂ pppqq then m ∈ Cp, or there
exists a prefix m0κ

− of m such that ppm0qq ⊂ pppqq and κ− does not occur in p. In such a
case, m0κ

−z ∈ Cp and either m = m0κ
−z which belongs to Cp, or m 6¨ m0κ

−z, i.e., m 6¨ Cp.
Finally the path p has a finite length, hence a path in pppqq has a length bounded by the
length of p (no possibility of using twice an action by linearity condition). A path of Cp
is either a path in pppqq, hence its length is bounded by the length of p, or extended by a
sequence of the form κ−z as z should end a path, thus its length is bounded by the length
of p plus 2. Thus there cannot be infinite strictly increasing sequences in Cp.

iii)⇒ i) This result is obvious.

Let us now define the negative saturation condition. The negative saturation condition
ensures that, as soon as a path p belongs to S, and pκ− generates a design which is orthogonal
with all positively satured maximal cliques of S, then pκ−z ∈ S.

Definition 3.8 (Negative saturation condition). Let S be a set of legal paths of same base,
prefix-closed and daimon-closed.
S satisfies negative saturation if for all path p ∈ S such that pκ−z is a legal path and
for all positively saturated maximal clique C of S we have that ppCqq ⊥ pppκ−qq

c
, then the

path pκ−z ∈ S.
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The following lemma gives rise to equivalent formulations for the negative saturation
condition.

Lemma 3.9. Let S be a set of legal paths of same base, prefix-closed and daimon-closed. Let
p be a path belonging to S, pκ−z be a legal path. Then, the three following conditions are
equivalent:
i) For all positively saturated maximal clique C of S, we have ppCqq ⊥ pppκ−qq

c
.

ii) For all positively saturated maximal clique C of S without infinite strictly increasing
sequence, we have ppCqq ⊥ pppκ−qq

c
.

iii) For all positively saturated maximal clique C of S, for all legal path m in the design ppCqq,
for all negative action κ−0 such that mκ−0 is a path in pppκ−qq then mκ−0 is a path of ppCqq.

Proof. i)⇒ ii) The result is obvious.
ii)⇒ i) Let C be a positively saturated maximal clique of S and suppose that ppCqq 6⊥

pppκ−qq
c
. As paths in pppκ−qq

c
have finite length, divergence occurs in a finite number of

steps, say n. Because pppκ−qq
c
has all negative actions, we know that the action that causes

divergence is a positive one in pppκ−qq
c
, i.e., the dual negative action is not available in C. Let

us define a design D to be the set of chronicles cκ′−z as soon as c has length n+ 1 and there
exist actions κ′− and κ′+ such that cκ′−κ′+ ∈ ppCqq. Let C ′ be the set of paths q such that q
is a path in D and either q ∈ C or q = q0z and there exists a positive action κ′′+ such that
q0κ′′+ ∈ C. Remark that C ′ is a clique as all paths are in a design, and that C ′ is maximal
and positively saturated as C is maximal and positively saturated. Hence by hypothesis
ppC ′qq ⊥ pppκ−qq

c
:
〈
ppC ′qq←pppκ−qq

c
〉

= mκ−0 m ′. Hence contradiction as mκ−0 should also be
the prefix of a path in ppCqq.

iii) ⇒ i) Let C be a positively saturated maximal clique of S. Suppose that ppCqq 6⊥
pppκ−qq

c
. Let m be the longest path in ppCqq such that m is a path in pppκ−qq

c
(as p has a

finite length, paths in pppκ−qq
c
have also a finite length, thus m is well defined). The path m

is necessarily daimon-free otherwise the interaction converges. As pppκ−qq
c
is complete with

respect to negative action, there is a negative action κ−0 such that mκ−0 is not a path in ppCqq
whereas mκ−0 is a path in pppκ−qq

c
. In that case we should have in fact mκ−0 to be a path

in pppκ−qq. Thus mκ−0 is a path in ppCqq (because of hypothesis iii). Contradiction. Thus
ppCqq ⊥ pppκ−qq

c
.

i)⇒ iii) Let C be a positive saturated maximal clique of S, let m be a legal path in the
design ppCqq, let κ−0 be a negative action such that mκ−0 is a path in pppκ−qq. Then, since the
interaction path between ppCqq and pppκ−qq

c
begins with the path m , it should go on with κ−0

in pppκ−qq
c
, then mκ−0 is a path in ppCqq.

3.3. Ludicable sets. We are now ready for fully characterizing a behaviour in terms of
visitable paths:
• The set of visitable paths of a behaviour is ludicable (proposition 3.11).
• A ludicable set of paths is the set of visitable paths of some behaviour (proposition 3.13).
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Definition 3.10 (Ludicable set). A set S of legal paths of same base is pre-ludicable
when S is prefix-closed, daimon-closed, positively and negatively saturated.
A set S is ludicable if S and ∼S are pre-ludicable.

Proposition 3.11. Let E be a behaviour, then its set of visitable paths VE is ludicable.

Proof. We just need to check that VE is pre-ludicable: When E is a behaviour we have∼
VE = VE⊥ , hence

∼
VE is also pre-ludicable.

• VE is both daimon and positive prefix closed. This is a direct consequence of the following
fact: When a design D is obtained from a design E by replacing chronicles cκ+c′ of E by
the chronicle cz then E⊥ ⊂ D⊥.
• Positive saturation. Let p be a visitable path of VE. Then the design pppqqc belongs to E.
Let us consider the clique

Cp = {q ; q ∈ VE, ppqqq ⊂ pppqq} ∪ {wκ−z ; wκ−z ∈ VE, ppwqq ⊂ pppqq, ppwκ−qq 6⊂ pppqq}
We remark that Cp is a maximal clique of VE. Furthermore the design ppCpqq is the
incarnation of pppqqc with respect to E, hence ppCpqq belongs to E.
Let m and nκ−κ+ be two paths belonging to Cp, and suppose that mκ−z ∈ VE, so
ppmκ−qq

c
∈ E⊥. Note that the path mκ− should be a prefix of

〈
ppCpqq←ppmκ−qq

c
〉
and that

ppCpqq ⊥ ppmκ−qq
c
. Hence there exists a positive action κ+ such that mκ−κ+ is a prefix of〈

ppCpqq←ppmκ−qq
c
〉
. In other words, mκ−κ+ ∈ VE.

Conclusion: Cp is positively saturated.
• Negative saturation. Suppose that pκ−z is a legal path such that p ∈ VE and for all
positively saturated maximal clique C of VE we have that ppCqq ⊥ pppκ−qq

c
. Let D ∈ |E|,

it follows from proposition 3.3 that there exists a positively saturated maximal clique C
of VE such that ppCqq = D, therefore pppκ−qq

c
⊥ D. Thus pppκ−qq

c
∈ E⊥. Finally pppqqc ∈ E

and pκ−z =
〈
pppqqc←pppκ−qq

c
〉
, thus pκ−z ∈ VE.

Our issue now is to prove that if a set S of paths is ludicable then it is the set of visitable
paths of some behaviour A. Previously, it is important to notice that such a behaviour A
may not be unique. In some cases, in particular when S is finite, the incarnation of A is
exactly defined from maximal cliques of S, hence A is unique. However, when S is infinite
and, more precisely when it contains at least one infinite strictly increasing sequence of paths,
several choices of behaviour are possible.

Example 3.12. Let us consider for example a set S generated by an infinite strictly increasing
sequence c0 = κ+0 and ci = ci−1κ

−
i κ

+
i , for i ≥ 1, where each action except κ+0 is justified by

the previous one: κ+i is justified by κ−i and κ−i+1 is justified by κ+i . Formally,

S = {z} ∪ {ci ; i ≥ 0} ∪ {ci−1κ−i z ; i ≥ 1}
Note that the elements of S are in fact chronicles. Let us consider the two following
behaviours:

A1 = {ppCqq ; C is a maximal clique of S}⊥⊥
A2 = {ppDqq ; D is a maximal clique of ∼S}⊥

It is worth noticing that S is ludicable and that S = VA1 = VA2 , although A1 6= A2. The
difference between A1 and A2 is that

⋃
i ci is a design of A1 but not of A2. Whereas A2
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contains only designs generated by bounded maximal cliques of S of the form {ci ; i ≤
N} ∪ {cNκ−Nz}. On the opposite,

⋃
i ci belongs to A2

⊥.

Proposition 3.13. Let S be a non-empty set of legal paths of same base, if S is ludicable
then there exists a behaviour E such that S = VE.

Proof. We set:
- E = {ppCqq ; C is a positively saturated maximal clique of S},
- F = {ppDqq ; D is a positively saturated maximal clique of ∼S with no infinite strictly
increasing sequences of paths}.
We shall prove that S = VF⊥ . There may be different choices for E and F with the same
result as it may be deduced from example 3.12: for each infinite strictly increasing sequence
of S, either E or F should have a restriction.
Note that with conditions as stated on E and F , normalization between a design of E and
a design of F cannot continue infinitely: either it converges or it stops because a positive
action in one side has no negative counterpart on the other side.

The proof sketch is as follows:
i) We prove first that E ⊂ F⊥ (hence F ⊂ F⊥⊥ ⊂ E⊥).
ii) Next we prove that S ⊂ VF⊥ .
iii) Then, we prove that VF⊥ ⊂ S.
iv) We conclude from ii) and iii) that S = VF⊥ and the fact that F⊥ is a behaviour.
i) We prove that E ⊂ F⊥. We will show that the interaction between a design of E and a
design of F does not diverge. Therefore, since by construction the interaction cannot go
on infinitely, it converges, so E ⊂ F⊥. Namely, let ppCqq ∈ E and ppDqq ∈ F , we show by
induction on the length of p, a strict prefix of the interaction path of ppCqq with ppDqq, that:
either pz ∈ C, or pz ∈ D, or there exists a proper action κ such that pκ is a prefix of a path
of C and pκ is a prefix of a path of D.
It follows not only that the interaction path continues but it remains a prefix of an element
of S as p (resp. p) is a prefix of an element of C (resp. of D).
• The path p is the empty sequence. Either ppCqq or ppDqq is the set {z} hence the property.
Or suppose ppCqq is a positive design with first (proper) action κ+, then κ+ ∈ C (C is
positive-prefix closed) thus κ+z ∈ ∼S. As D is a maximal clique of ∼S, there should exist
a path beginning with the action κ+, e.g., there exists a positive action κ+0 such that
κ+κ+0 ∈ D. And the property is satisfied. If ppCqq is a negative design, then ppDqq is a
positive design and the same reasoning applies exchanging C and D.
• Let p = p0κ+ and p0 satisfies the property. Note that p0 is negative-ended and that

p0z 6∈ C otherwise p is not a strict prefix as 〈ppCqq←ppDqq〉 = p0z. Thus there exists a
proper action κ+0 such that p0κ+0 is a prefix of a path of C (in fact p0κ+0 ∈ C) and p0κ+0
is a prefix of a path of D. As C is a clique and p is a prefix of 〈ppCqq←ppDqq〉, we should
have κ+0 = κ+. As p0κ+0 is a prefix of a path of D and p0κ+0 is negative-ended and D is
a clique of paths, there should exist a positive action κ+1 such that p0κ+0 κ

+
1 is a prefix of

a path of D. If κ+1 = z, the property is satisfied. Otherwise remark that p0κ+0 κ
+
1 ∈

∼
S,

hence p0κ+0 κ
+
1 is a prefix of an element of S. As p0κ+0 ∈ C and C is a maximal clique of

S, p0κ+0 κ
+
1 should be a prefix of an element of C. Hence the result.

• The case of p negative-ended is symmetrical.



LUDICS BEHAVIOURS 17

ii) We prove that S ⊂ VF⊥ . Let p be an element of S, let C be a positively saturated maximal
clique of S containing p, let D be a positively saturated maximal clique of ∼S containing ∼p
and with no infinite strictly increasing sequences of paths. Remark that 〈ppCqq←ppDqq〉 = p.
Remark also that ppCqq ∈ E and ppDqq ∈ F , and, since E ⊂ F⊥, ppCqq belongs to F⊥. Hence
the path p is the interaction path between a design of F and a design of F⊥, i.e., p ∈ VF⊥ .
iii) We prove now that VF⊥ ⊂ S. Let q be a visitable path of F⊥ and let us denote by p
the longest prefix of q that is a prefix of an element of S. If q is empty then the base of F⊥
hence of S is negative then the empty sequence is in S as S is prefix closed. We suppose
now that q is not empty. Notice that p cannot be empty. Indeed, if q = z, then p = z ∈ S
as S is daimon-closed, otherwise q = κq ′ and either κ is positive and κ ∈ S or κ is negative
and κ ∈ ∼S, i.e., κz ∈ S.
Suppose that p is a strict prefix of q , this means that there is an action κ such that q = pκp′

and neither pκ belongs to S nor pκ belongs to ∼S.
(1) If κ is negative. By hypothesis, pz ∈ ∼S. Since pκp′ is visitable in F⊥, so is pκz.

This means that there exist an element ppD0qq in F and a design D0 ∈ F⊥ such that
pκz = 〈D0←ppD0qq〉. Then we have pκ is a path in ppD0qq. This is only possible when
there exists a path mκ ∈ D0 ⊂

∼
S. Therefore, by positive saturation of D0, pκ ∈ ∼S, hence

pκ ∈ S against the hypothesis: p is not the longest prefix of q that is a prefix of an
element of S.

(2) If κ is positive. By hypothesis p ∈ ∼S. Since pκ is visitable in F⊥ and F⊥ is a behaviour,
the design pppκqqc ∈ F⊥. Therefore, for all positively saturated maximal clique without
infinite strictly increasing sequence D of ∼S, pppκqqc ⊥ ppDqq. Then, since ∼S satisfies the
negative saturation condition (and with lemma 3.9), pκz ∈ ∼S, that is pκ ∈ S, against
the hypothesis that p is the longest prefix of q that is a prefix of an element of S.
We conclude from ii) and iii) that S = VF⊥ and the fact that F⊥ is a behaviour.

3.4. Ludicable closures. In the previous subsection, propositions 3.11 and 3.13 give neces-
sary and sufficient conditions for relating sets of paths and behaviours. In this subsection
we give a constructive means for closing a set of paths S, i.e., for obtaining the minimal
ludicable set containing S.

Definition 3.14 (Ludicable Closure). Let S be a set of legal paths of the same base, we
define the pre-ludicable closure, written S′, of S to be the smallest set of paths including
S that is prefix-closed, daimon-closed, and that satisfies negative saturation and positive
saturation.
The ludicable closure of S, written LC(S), is

⋃
n Sn such that the family (Sn) is defined

inductively in the following way:
• S0 = S.
• Sn+1 = Sn ∪ S′n ∪

∼
(
∼
Sn)′

Lemma 3.15. Let S be a set of legal paths of the same base, LC(S) is well-defined and
pre-ludicable.

Proof. We show that the function f : S → S ∪ S′ ∪
∼
(
∼
S)′, which domain D is the set of

sets of legal paths of same base as S and including S, is Scott-continuous. Hence, Kleene
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fixed-point theorem applies: LC(S) is well-defined and is the least fixed-point of f , i.e.,
LC(S) is pre-ludicable.
We have that S ⊂ f(S). It is also immediate that D is a complete partial order for the
inclusion of sets. Let E be a directed subset of D, note that

∨
S∈E S

′ = (
∨
S∈E S)′ and that∨

S∈E
∼
S =
∼
(
∨
S∈E S). Hence also

∨
S∈E f(S) = f(

∨
S∈E S).

Proposition 3.16. A ludicable closure is a ludicable set of paths.

Proof. We know with lemma 3.15 that LC(S) is pre-ludicable. Let T =
∼
S and (Tn) be the

family defining LC(T ). We prove by induction on n that Tn =
∼
Sn. By definition T0 =

∼
S =
∼
S0.

Suppose that Tn =
∼
Sn, then

Tn+1 = Tn ∪ T ′n ∪
∼∼
Tn
′

=
∼
Sn ∪
∼
Sn
′ ∪
∼∼∼
Sn
′

=
∼
Sn ∪
∼∼∼
Sn
′
∪∼S′n

=
∼
Sn ∪
∼∼
Sn
′
∪ S′n

=
∼
Sn+1

It follows that LC(T ) =
⋃
n Tn =

⋃
n
∼
Sn =
∼⋃
n Sn =
∼
LC(S) thus∼LC(S) is also pre-ludicable.

So LC(S) is ludicable.

Lemma 3.17. Let E be a set of designs of same base, let C be a positively saturated maximal
clique of LC(VE) such that if there is an infinite increasing sequence of paths (pi) in C then⋃

pi is already a path in a design of E, then ppCqq ∈ E⊥⊥.

Proof. Let D ∈ |E⊥|.
(1) The interaction path between ppCqq and the design D cannot be infinite: For each infinite

increasing sequence of paths (pi) in C, the path
⋃

pi is already included in a design of
E, hence there is an index i0 such that pppi0zqq ⊂ D.

(2) We prove by contradiction that the interaction between ppCqq and D cannot diverge
finitely. Let p be the longest interaction sequence of ppCqq with D. Note that p cannot
end with a daimon otherwise the two designs are orthogonal. Let q be the longest prefix
of p such that either qz or q is an element of LC(VE) (depending on the polarity of q).
Note that q is not the empty sequence.
• If qκ+ is a path inD. κ+ cannot be the daimon otherwise the two designs are orthogonal.
Then there exists a path nκ+ ∈ ∼VE that is a path of D. Thus nκ+ ∈∼LC(VE).
Furthermore we can write q = mκ− and mκ−z ∈∼LC(VE) by hypothesis. Finally
m ¨ nκ+. Thus, as∼LC(VE) satisfies positive saturation, qκ+ = mκ−κ+ ∈∼LC(VE),
hence qκ+z ∈ LC(VE). Contradiction.
• If qκ+ is a path in ppCqq. Thus qz ∈ LC(VE). Furthermore there exists a path

nκ+ ∈ LC(VE) in the design ppCqq. We can write q = mκ−, thus as LC(VE) is prefix-
closed, m ∈ LC(VE). Finally, m ¨ nκ+ (as they are paths of the same design ppCqq).
So, by positive saturation of LC(VE), we have qκ+ ∈ LC(VE). Contradiction.

Thus ppCqq ⊥ D. Hence ppCqq ∈ E⊥⊥.
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Proposition 3.18. Let E be a set of designs of the same base, let A be the behaviour
generated by LC(VE) and such that, for each increasing sequence (pi) of paths belonging to
some positively saturated maximal clique C of LC(VE), if

⋃
pi is already a path in E then

ppCqq ∈ A, otherwise pp∼Cqq ∈ A⊥. Then the behaviour A is equal to E⊥⊥.

Proof. The lemma 3.17 enables to affirm that A ⊂ E⊥⊥. On the other side, if D belongs to
|E|, then D ∈ A. Indeed, the set of paths of D which are visitable in E is a maximal clique
of VE . And this maximal clique of VE gives rise to a positively saturated maximal clique of
LC(VE) (the new paths are only the one obtained by positive saturation and are already
some paths in D).

4. A Characterization of MALL behaviours

This section is devoted to a characterization of MALL behaviours in terms of their visitable
paths. A MALL behaviour is built from constants 1, 0, >>>, ⊥⊥⊥ and connectives multiplicative
tensor ‘⊗’, additive sum ‘⊕’, shift ‘´’ and their duals. We first recall definitions and properties
of these connectives. We give an example showing that there exist behaviours that are not
the denotation of a MALL behaviour. We prove then that a MALL behaviour satisfies two
criteria: finiteness, i.e., the incarnation has a finite number of designs and these designs are
finite, and regularity, i.e., a legal path built from actions in designs of the incarnation should
be visitable.

4.1. Linear Connectives. Before establishing properties concerning the behaviours which
may be associated with linear formulas, we recall below the main linear operations on
behaviours: multiplicative tensor ‘⊗’, additive sum ‘⊕’ and also the shift ‘´’ operation. The
shift operation is required as the logic is polarized: it allows for switching from/to a positive
behaviour to/from a negative behaviour. Dual operations are defined in a standard way:
A`B = (A⊗B)⊥, A & B = (A⊕B)⊥ and ˆA = (´A)⊥.

Definition 4.1.
• Let (Gk) be a family of positive behaviours pairwise disjoint,

⊕
kGk = (

⋃
kGk)

⊥⊥

• Let A and B be two positive alien designs3:
- If A or B is {z}, then A⊗B = {z}.
- Otherwise A = (+, ξ, I)A′ and B = (+, ξ, J)B′ then A⊗B = (+, ξ, I ∪ J)(A′ ∪B′).
• Let G and H be two positive alien behaviours, G⊗H = {A⊗B ; A ∈ G,B ∈ H}⊥⊥
• Let G be a negative behaviour of base ξi `, ´G = ((+, ξ, {i})G)⊥⊥.

Theorem 4.2 (internal completeness [Gir01]).
• Let K 6= ∅,

⊕
k∈K Gk =

⋃
k∈K Gk

• A behaviour of positive base is always decomposable as a
⊕

of connected behaviours.
• Let G and H be two alien positive behaviours, G⊗H = {A⊗B ; A ∈ G,B ∈ H}.
• Let G be a negative behaviour of base ξi `, ´G = {{z}} ∪ (+, ξ, {i})G.

To be complete, let us recall the definition of multiplicative and additive Ludics constants
(on base ` ξ for 1):

3Two positive designs (+, ξ, I)A and (+, ξ, J)B are alien when I ∩ J = ∅. A positive design A and the
design {z} are alien. Two positive behaviours are alien when their designs are pairwise alien.
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Definition 4.3. 1 = {{z}, (+, ξ, ∅)}, ⊥⊥⊥ = 1⊥, 0 = {{z}}, >>> = 0⊥.

We intend to relate MALL logical connectives, in fact ‘⊗’, ‘⊕’, ‘´’, with operations on
visitable paths. Obtaining the set of visitable paths for ‘⊕’ and ‘´’ is quite immediate. The
behaviour A⊕B is the union of the two behaviours A and B, hence visitable paths of the
result should be the union of the two sets of visitable paths. The behaviour ´A is built by
adding to each design the same action at the root, hence visitable paths of the resulting
behaviour should be built by adding this action as prefix of visitable paths of A. As the
operation ‘⊗’ models a kind of concurrency, it is natural to consider that the set of visitable
paths of a tensor should be in some way the shuffle of the sets of visitable paths. Without
surprise, it is necessary to consider only legal paths among the ones obtained by shuffle
of visitable paths. However, being a legal path in the shuffle is not sufficient as shown in
example 4.4.

Example 4.4. Let us consider the two behaviours A which incarnation is the daimon-closure
of the set {A1,A2} and B which incarnation is the daimon-closure of the set {B1,B2}:

A1 =

` α111, α222
z

α22 ` α111
κ−3

` α111, α2
κ+2

α11 ` α2
κ−2

` α1, α2
κ+1

α ` κ−1

` 〈〉 γ
+
0 A2 =

` α111, α222
z

α11 ` α222
κ−2

` α1, α222
κ+1

α22 ` α1
κ−3

` α1, α2
κ+2

α ` κ−1

` 〈〉 γ
+
0 B1 =

β0111 `
` β011

λ+1

β01 ` λ−1

β0222 `
` β022

λ+2

β02 ` λ−2

` β0
λ+0

β ` λ−0

` 〈〉 γ
+
1 B2 =

` β011
z

β01 ` λ−1 β02 `
` β0

λ+0

β ` λ−0

` 〈〉 γ
+
1

Let us consider the three following paths (where γ+ = (+, 〈〉, {α, β})):

• p = κ−1 κ
+
1 κ
−
2 κ

+
2

• q = λ−0 λ
+
0 λ
−
1 λ

+
1 λ
−
2 λ

+
2

• r = γ+λ−0 λ
+
0 κ
−
1 κ

+
1 λ
−
1 λ

+
1 κ
−
2 κ

+
2 λ
−
2 λ

+
2

Remark that γ+0 p ∈ VA and γ+1 q ∈ VB. Furthermore
r ∈ γ+(p q) is a legal path. However r 6∈ VA⊗B.
Indeed pp∼rqqc 6∈ (A⊗B)⊥ as A2 ⊗B2 6⊥ pp∼rqqc. pp∼rqq =

α111 ` β0111

` α11, β0111 κ−2

β011 ` α11 λ+1

` α11, β01 λ−1

α1 ` β01 κ+1

` α22, β0222
z

β022 ` α22 λ+2

` α22, β02 λ−2

α2 ` β02 κ+2

` α, β01, β02 κ−1

β0 ` α λ+0

` α, β λ−0

` 〈〉 γ+

In example 4.4, the behaviour B is not decomposable by means of linear connectives.
We present in the following section a very simple characterization of behaviours which may
be recursively decomposable by means of linear connectives. For such an issue we introduce
the notion of regular behaviour.

4.2. Regular Behaviours. We prove in this subsection that finiteness and regularity as
defined later characterize a behaviour for being the denotation of a MALL formula.

Definition 4.5 (Trivial view/chronicle). A legal path which is equal to its view is a chronicle.
When a chronicle (view) c is such that ∼c is also a chronicle, or, in other words, each action
of c is justified by the immediate previous one, except the first one which is initial, this
chronicle is said to be trivial.
If wκw′ is a path with κ a proper action, the trivial chronicle of κ for wκw′ is a
trivial chronicle with last action κ that is a subsequence of wκ.

Note that an action occurs only once in a path hence there is only one trivial chronicle
of a given proper action that is a subsequence of this path.
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Proposition 4.6. Let V be a set of legal paths and ∼V be its dual. Let wκw′ ∈ V and c be
the trivial chronicle of κ for wκw′. If V and ∼V are both prefix, daimon and view-closed, then
either c ∈ V or cz ∈ V .

Proof. The proof is done with respect to κ.
• Suppose κ initial. Either κ is negative, hence c = κ and w = ε. As κw′ ∈ V and V
daimon-closed then cz = κz ∈ V . Or κ is positive hence wκ ∈ V as V is prefix-closed.
Therefore∼wκ ∈ ∼V . Since κ is a negative initial action, pwκzq = κz ∈ ∼V . Thus c = κ ∈ V .
• Suppose κ non initial and positive, hence wκ ∈ V as V is prefix-closed. Therefore
∼wκ ∈ ∼V . Since κ is a negative action and ∼V is view-closed, pwκzq = pw0qκz ∈

∼
V

where w0 is the prefix of w ending on the justifier κ1 of κ. Therefore, we may write
pwκzq = w1κ1κz ∈

∼
V . And since w1κ1κ ∈ V , we have that pw1κ1κq ∈ V . Since κ1 is

a negative action, pw1κ1κq = w2κ2κ1κ ∈ V where w2κ2 is the view of the prefix of w1

ending on the justifier κ2 of κ1. The chain of justifiers of κ is finite, therefore we obtain in
a finite number of steps that the trivial chronicle c of κ belongs to V .
• Suppose κ non initial and negative, hence wκ ∈ ∼V as ∼V is prefix-closed. The same reasoning
as in the previous item applies exchanging V and ∼V . Thus the result.

In the following we consider mainly legal paths. For that purpose we introduce a specific
definition.

Definition 4.7 (Shuffle of two sets of legal paths). Let V and S be two sets of legal paths
respectively based on σ ` and τ `. The set V l l S contains the legal paths r such that there
are some paths pV ∈ V and pS ∈ S and r ∈ pV pS .

The definition is extended to couples of sets of legal paths V and S, both based on ` ξ,
by considering the set of legal paths (+, ξ, I ∪ J)r such that there are (+, ξ, I)pV ∈ V and
(+, ξ, J)pS ∈ S and r ∈ pV pS (when I ∩ J = ∅).

Remark: the notation l l is a remainder for a shuffle ( ) limited to legal (l) paths.

Definition 4.8 (Regular set of legal paths). Let V be a set of legal paths and ∼V be its dual.
The data V/∼V is a regular data when V and ∼V are both sets of legal paths, prefix closed,
daimon closed, view-closed and moreover, both are shuffle closed, that is:
if p and q belong to V (resp. ∼V ), then p l l q ⊂ V (resp. ∼V ).

We prove in propositions 4.9 and 4.10 that a data V/∼V is regular iff all legal paths made
of actions occurring in V (resp. ∼V ) are in V (resp. ∼V ). These two propositions concern the
non-additive case: a data V/∼V is non-additive if there is no pair of actions occurring in V/∼V
with same focus but different ramifications, i.e., if (+/−, ξ, I) ∈ V and (+/−, ξ, J) ∈ V then
I = J . In such a case, a focus occurs only in one action (that may be present several times
in paths of V or ∼V ). It follows also that a trivial chronicle of an action does no more depend
on a path: it is unique being given a data V/∼V . We show after these propositions that this
may be generalized to the additive case. We think that presenting the propositions in the
non-additive case allows a more explicit reading of what regularity implies.

Proposition 4.9. Let V/∼V be a non-additive regular data. If p is a legal path containing
only actions occurring in V then p ∈ V .

Proof. If p ends with z then ∼p is a z-free legal path containing only actions occurring in ∼V .
Hence, without loss of generality we can suppose that p is z-free.
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Let us consider first that p is a chronicle containing only actions occurring in V . We prove
the result by induction on the number of positive actions which are not justified by their
immediate previous negative action in p.
• If p is a trivial chronicle we already know by proposition 4.6 that p ∈ V .
• Otherwise, we suppose that if the chronicle p is made of actions of V and contains at most
n positive actions which are not justified by their immediate previous negative action, then
p ∈ V . Suppose that p is a chronicle made of actions of V and contains n + 1 positive
actions which are not justified by their immediate previous negative action. Let κ be the
last such positive action occurring in p, that is, p = cκd where κd is a trivial chronicle.
– Either κ is initial. We may write ∼p = cκd z ∈ (c κd z). Note that c and κd z are legal
paths. Since κd z is the dual of a trivial chronicle, it belongs to ∼V ; by induction hypothesis,
c ∈ ∼V , therefore, by shuffle closure, ∼p ∈ ∼V and thus p ∈ V .
– Or κ is justified by an action κ0, and we may write p = c0κ0c1κd , where c0κ0c1 and
c0κ0κd are two chronicles having at most n positive actions which are not justified by
their immediate previous negative action. That c0κ0κd is indeed a chronicle is due to the
fact that in κd all actions are immediately justifed by the immediate previous one. Then,
by induction hypothesis, c0κ0c1 ∈

∼
V and c0κ0κd ∈ V , thus c0κ0κd z ∈ ∼V . It follows that

∼p = c0κ0c1κd z ∈ c0κ0(c1 κd z). Furthermore c0κ0c1 and c0κ0κd z are legal paths. By
shuffle closure, ∼p ∈ ∼V and p ∈ V .

Let us consider now that p is a legal path containing only actions occurring in V . We prove
by induction on the number of negative actions which are not justified by their immediate
previous positive action (we call the number of ‘negative jumps’) that p ∈ V .
• If p is a chronicle we know already that p ∈ V .
• Otherwise, we suppose that: if the legal path q is made of actions of V and contains at
most n negative jumps, then q ∈ V . Suppose that p is a legal path made of actions of V
and that p contains n+ 1 negative jumps. Let κ be the last such negative action involving
a negative jump in p, that is, p = wκc where κc is a chronicle.
– Either κ is initial, and we may write p = wκc ∈ (w κc). Since κc is a chronicle,
it belongs to ∼V ; furthermore w is a legal path hence, by induction hypothesis, w ∈ V .
Therefore, by shuffle closure, p ∈ V .
– Or κ is justified by an action κ0, and we may write p = w0κ0w1κc. let us observe that
w0κ0κc is a legal path: (i) w0κ0 is a legal path, (ii) w0κ0κc is a path as any positive action
occurring in c cannot be justified in w1 otherwise p could not be a path, (iii) w0κ0κc is legal
since κ0κc is a chronicle. Then we may apply the induction hypothesis, i.e., w0κ0w1 ∈ V
and w0κ0κc ∈ V .
Finally, p = w0κ0w1κc ∈ w0κ0(w1 κc). Therefore, by shuffle closure, p ∈ V .

That a data V/∼V contains all legal paths written from a set of justified actions is not
only a necessary condition to be regular, but it is also sufficient as stated in the following
proposition.

Proposition 4.10. Let V be a set of legal paths of base β such that V/∼V is non-additive.
Let us say that a set of legal paths of base β is complete if it contains all legal paths of base
β which may be written from actions in its paths. If V and ∼V are complete and non-empty,
then V/∼V is a regular data.
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Proof. Note that, if V is complete, V is exactly the set of legal paths of base β which may
be written from actions in paths of V . Let p ∈ V then prefixes and views of p are made of
actions of p hence are elements of V as V is complete. Similarly, let p, q ∈ V then shuffles of
p and q are made of actions of paths of V hence are elements of V . The same applies for ∼V .
Finally, as V is prefix-closed, ∼V is daimon-closed, and vice-versa.

Let us go back now to the general case where the data V/∼V may be additive. The
following proposition links properties of the non-additive case to the general case.

Lemma 4.11. Let V/∼V be a data set, non necessarily non-additive. Let (Vi/
∼
Vi) be the

family of maximal non-additive data such that Vi ⊂ V . The data V/∼V is regular iff each
Vi/
∼
Vi is regular.

Proof. It is immediate that V and ∼V are sets of legal paths, prefix closed, daimon closed,
view-closed iff each Vi and

∼
Vi have also these properties. Finally the shuffle operation is not

defined on paths that contain two actions with same focus, hence V and ∼V are shuffle closed
iff each Vi and

∼
Vi are shuffle closed.

Proposition 4.12. Let V be a set of legal paths. If V/∼V is a regular data then V is ludicable.

Proof. It follows from lemma 4.11 that we just need to check the positive saturation and
negative saturation on each Vi and

∼
Vi. These properties are trivially satisfied since, as soon

as C is a clique of Vi (resp.
∼
Vi) then all view in ppCqq belongs to Vi (resp.

∼
Vi), by view closure,

and therefore each legal path in ppCqq belongs to Vi (resp.
∼
Vi) by shuffle closure.

Regularity is trivially stable by operations (·)⊥ and ˆ. Let us consider now the tensor of
behaviours.

Proposition 4.13. Let V and S be two sets of legal paths.

V/
∼
V and S/∼S are regular iff V l l S/

∼
V l l S is regular.

Proof. We only deal with the case V and S be two non-additive sets of legal paths respectively
based on σ ` and τ `. Adding a positive action to obtain the same base ` ξ is immediate,
and the possibly additive case is dealt similarly as in lemma 4.11. We prove in each case
that proposition 4.10 may be applied.

(⇐) Since the empty path ε belongs to S, every path pV of V may be seen as belonging to
the shuffle pV ε. Therefore, all legal paths which may be written using only the actions
from V belong to V . Similarly for S.

(⇒) Let r be a legal path made of actions occurring in V or S, we prove first that r ∈ V l l S.
Let v (resp. s) be the subsequence of r made of actions of V (resp. S), hence with foci
subaddresses of σ (resp. τ). Note that if r = w1κ

−κ+w2 then κ− and κ+ are subaddresses
either the two of σ or the two of τ for r to be a path. Thus v (resp. s) is a finite alternated
sequence of actions based on σ ` (resp. τ `). As actions of r have distinct foci and, if
the daimon is present, it is its last action, this is also the case for v and s . Furthermore,
let κ+ be an action of v justified by κ− in r , let r = r0κ

−r1κ
+r2 and v = v1κv2, then

pr0qκ−κ+ = pr0κ−r1κ+q = pv1κ+q thus v is a path. Similarly s is a path. Finally, with
lemma A.13 (see annex 4.2), we have that v and s are legal paths.
Hence v ∈ V and s ∈ S, so r ∈ V l l S. In other words if r is made of actions occurring
in V l l S then r ∈ V l l S. Furthermore if r is a legal path made of actions occurring in
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∼
V l l S then ∼r is a legal path made of actions occurring in V and/or S so ∼r ∈ V l l S, i.e.,
r ∈∼V l l S.
Therefore, by proposition 4.10, the data V l l S/

∼
V l l S is regular.

Definition 4.14. A behaviour A is said regular when VA/
∼
VA is regular.

Proposition 4.15. Let A and B be two positive alien behaviours distinct from 0 and based
on ` ξ, A⊗B is regular iff A and B are regular.

Proof. We just consider the paradigmatic case: as A and B are distinct from 0, we can
suppose that designs of A distinct from z have as first action (+, ξ, I) and designs of B
distinct from z have as first action (+, ξ, J) and I ∩ J = ∅.
• We set C = CA

l l CB where C = {p ∈ pA pB ; p legal, pA ∈ CA, pB ∈ CB}. We prove
first that C is a maximal, positively saturated clique of VA l l VB such that ∼C is finite stable
iff CA and CB are maximal, positively saturated cliques of respectively VA and VB such
that ∼CA and ∼CB are finite stable:
– The equivalence between the maximality of C and the one of both CA and CB is

immediate, as is the equivalence between the finite stability of ∼C and the finite stability
of both∼CA and∼CB.

– Let us check that C is a positively saturated clique of VA l l VB iff CA and CB are
positively saturated cliques of respectively VA and VB.
The condition is necessary: suppose that m ∈ C and nκ−κ+ ∈ C while mκ−z ∈ VA l l VB.
Without loss of generality we can suppose that κ− is an action of VA, therefore κ+ also is
an action of VA. Hence there exist paths mA ∈ CA and nAκ−κ+ ∈ CA and mB ∈ CB and
nB ∈ CB such that m ∈ mA mB, mκ−κ+ ∈ mAκ

−κ+ mB and nκ−κ+ ∈ nAκ−κ+ nB.
Since mκ−z ∈ VA VB, we have that mAκ

−z ∈ VA and since CA is positively saturated,
we have that mAκ

−κ+ ∈ VA. Therefore, mκ−κ+ ∈ VA l l VB.
The condition is also sufficient: suppose that mA ∈ CA and nAκ−κ+ ∈ CA while
mAκ

−z ∈ VA. By applying the positive saturation of C to paths belonging to mA

(+, ξ, J), to nAκ−κ+ (+, ξ, J) and mAκ
−z (+, ξ, J), we may conclude that mAκ

−κ+

belongs to VA. Idem with the behaviour B.
• We prove now that C = CA

l l CB iff ppCqq = ppCAqq⊗ ppCBqq. As sets of views, the designs
ppCqq and ppCAqq ⊗ ppCBqq are clearly identical when C = CA CB. Moreover the set of
legal paths of ppCqq being the sets of shuffles of views of ppCqq which are legal, we have that
C = CA

l l CB as soon as ppCqq = ppCAqq⊗ ppCBqq.
• LetA andB be regular, then VA/

∼
VA and VB/

∼
VB are regular data. Thus VA l lVB/

∼
VA l l VB

is regular (proposition 4.13), hence VA l l VB is ludicable (proposition 4.12). We prove that
the behaviour with VA l l VB as visitable paths is C = A⊗B. Indeed, a design of |C| is
ppCqq when C is a maximal, positively saturated clique of VA l l VB, such that ∼C is finite
stable, that is exactly a design ppCAqq⊗ ppCBqq, or in other words a design A⊗B when A
and B belong respectively to |A| and |B| (by proposition 3.3). By internal completeness,
such designs are exactly the ones of |A ⊗ B|. Thus A ⊗ B is regular. Furthermore
VA⊗B = VA l l VB.
• Suppose now that A⊗B is regular. The inverse reasoning of the previous item yields A
and B regular.

Let us notice that regularity is necessary to ensure VA⊗B = VA l l VB. Indeed, equality is
not true even when behaviours are not view-closed as seen in example 4.4. However the set
of visitable paths of a tensor of two behaviours may be characterized without considering
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hypothesis of regularity. The following proposition 4.16 is a joint work with A. Pavaux. One
may find in [Pav17] the proof in a framework of Ludics à la Terui. A. Pavaux proposed also
in [Pav17] a different proof of proposition 4.15 based on proposition 4.16. In her paper, she
uses these results for studying a representation of data and function types.

Proposition 4.16. Let P and Q be alien positive behaviours,
r ∈ VP⊗Q iff the two following conditions are satisfied:
• (Shuffle condition) r ∈ VP l l VQ,
• (Dual condition) for all path sκ− in pp∼r qq, if there exist paths p′ = (+, ξ, I)p′1 ∈ VP
and q ′ = (+, ξ, J)q ′1 ∈ VQ with s ∈ (+, ξ, I ∪ J)(p′1 q ′1),
then either p′κ−z ∈ VP or q ′κ−z ∈ VQ.

Proof. See annex A.2.

We are now able to state the main theorem of this section: MALL formulas are denoted
by regular and finite behaviours. A behaviour is finite when it contains only a finite number
of designs in the incarnation and these designs are finite, i.e., each such design has a finite
number of actions.

Theorem 4.17. Let E be a behaviour. E is regular and finite iff it is generated by the
following grammar:

P ::= 0 | 1 | ´N | N⊥ | P⊗P | P⊕P

N ::= >>> | ⊥⊥⊥ | ˆP | P⊥ | N`N | N & N

Proof. Let E be a regular and finite behaviour, hence the proof may be done by induction on
the number of distinct actions present in designs in the incarnation. The main ingredients
are the following. If E has a negative base, consider its dual E⊥, thus of positive base, that
has the same number of distinct actions. If E is different from 0 and 1 then E may be
decomposed as a ⊕ of connected behaviours Ei, one for each distinct first action [Gir01].
Obviously each Ei is a finite behaviour. Remark that the family (VEi/

∼
VEi) is the family of

maximal non-additive data such that VEi ⊂ VE. Thus Ei is a regular behaviour (consequence
of Lemma 4.11). A connected, regular and finite behaviour may be decomposed as a tensor
of regular and finite behaviours (Proposition 4.15), or a shift when the first ramification has
only one element. Conversely, it is immediate that 0 and 1 are regular and regularity is
stable by connectives ·⊥ and ´. Finally it follows from Lemma 4.11 and Proposition 4.15
that regularity is also stable by ⊕ and ⊗.

Note that theorem 4.17 is a full characterization of MALL behaviours amongst finite
behaviours: there exist finite behaviours that are not regular, hence not generated by the
previous grammar. For example we already mentioned that the behaviour B defined in
example 4.4, obviously finite, is not regular. Let us give some insight on the non-regularity
of B. For ease of reading, we recall here that the incarnation of B is the daimon-closure of
the set {B1,B2}:

B1 =

β0111 `
` β011

λ+1

β01 ` λ−1

β0222 `
` β022

λ+2

β02 ` λ−2

` β0
λ+0

β ` λ−0

` 〈〉 γ
+
1 B2 =

` β011
z

β01 ` λ−1 β02 `
` β0

λ+0

β ` λ−0

` 〈〉 γ
+
1
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Obviously we may begin its decomposition: B = ´ ˆC where the incarnation of C is the
daimon-closure of the set {C1,C2}:

C1 =

β0111 `
` β011

λ+1

β01 ` λ−1

β0222 `
` β022

λ+2

β02 ` λ−2

` β0
λ+0 C2 =

` β011
z

β01 ` λ−1 β02 `
` β0

λ+0

The behaviour C is not regular. By the way, as the first proper action is unique and positive
but not a shift, if C were regular, C should be a tensor of behaviours. But the tensor is
commutative. In terms of interaction paths, this means that the path λ+0 λ

−
1 λ

+
1 λ
−
2 λ

+
2 (left

then right chronicle in C1) is visitable iff the path λ+0 λ
−
2 λ

+
2 λ
−
1 λ

+
1 (right then left chronicle in

C1) is visitable. However the first path is visitable but not the second one. In other words,
interaction has to visit the left chronicle of C1 before the right one: non-commutativity
is present there. Next section is devoted to understand in which extent non-commutative
tensors may be considered in this framework.

Non-commutativity is not the only kind of non-regularity that we may observe as shown
in example 4.18.

Example 4.18. Let us consider the behaviour D = {D1,D2}⊥⊥ where designs D1 and D2

are given below.

D1 =

ξ100 `
` ξ10

α1

ξ1 `

ξ200 `
` ξ20

β1

ξ2 `
` ξ D2 =

ξ101 `
` ξ10

α2

ξ1 `

ξ201 `
` ξ20

β2

ξ2 `
` ξ

D is a finite behaviour whose incarnation is the daimon-closure of these two designs, and D
is not regular. It cannot also be interpreted in terms of non-commutativity. Indeed, during
an interaction, action α1 may be followed by action β1 (or the converse), but not by action β2
(or α2). And this situation is symmetric changing indices 1 and 2 in the previous statement.
This situation is a kind of entanglement as part of a (standard) tensor. We let the study of
such a situation to further works.

5. Beyond Regular Behaviours

In previous sections we presented examples of behaviours that are not regular, hence are
not generated by the connectives of multiplicative-additive Linear Logic. We propose in this
section a study of non-commutative connectives, as they are defined in the literature, plus a
new one.

Non-commutativity has been a subject of interest in Logic. J. Lambek [Lam58] developed
an intuitionistic non-commutative logic by omitting the exchange rule of the sequent calculus
but giving rise to two symbols of implication. With regards to Linear Logic, D. Yetter [Yet90]
(after a talk given by J.-Y. Girard in 1987) studied a cyclic version: the exchange rule is
replaced by a cyclic one over the list of formulas of a sequent. P. Ruet [Rue00], with further
works with M. Abrusci [AR99] and R. Maieli [MR03], developed a logic fully integrating
commutativity and non-commutativity. Again, this is the exchange rule that is replaced. In
all these cases, non-commutativity arises spatially: the structure over the set/list of formulas
in a sequent is non-commutative, however the choice of formula to be decomposed (in a
bottom-up reading of proofs) does not depend on this structure. In the following, we begin
with the study of a non-commutative tensor < due to J.-Y. Girard [Gir01] but stable by
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regularity, hence adding it to MALL connectives does not extend the set of behaviours. This
connective is not spatial but prioritize between operands when a choice between actions has
to be done: only one action is kept. Then we study connectives that deal with temporality:
what is at stake is to begin interaction with one operand before the other. This is the case
with the sequoid � connective proposed by M. Churchill, J. Laird and G. McCusker [CLM13].
Regularity is not stable by this connective as well as a new one we propose in a last subsection.

5.1. A not so significant non-commutative connective. If J.-Y. Girard presented non-
commutative connectives in his seminal paper of Ludics [Gir01], these are of no help for
decomposing a behaviour. It is the case for the non-commutative tensor product <. Let A
and B be two designs, in A < B priority is given to chronicles of B when a choice has to be
done. In terms of execution, i.e., visitable paths, priority is given to the strategy B again
the strategy of A. The connective < is defined when behaviours are not disjoint, i.e., the
ramification of their first actions is not necessarily disjoint:

Definition 5.1. Let A and B be two positive designs of same base ` ξ,
• If A = {z} or B = {z}, A < B = A⊗B = {z}.
• Otherwise let A = (+, ξ, I)(

⋃
j∈J,Kj

(−, ξ.j,Kj)Aj,Kj ∪
⋃
i 6∈J,Li

(−, ξ.i, Li)Ai,Li) and B =

(+, ξ, J)B′, then A < B = B⊗ (+, ξ, I \ J)
⋃
i 6∈J,Li

(−, ξ.i, Li)Ai,Li .

Let A and B be two behaviours, A < B = {A < B ; A ∈ A,B ∈ B}⊥⊥.

The tensor < is non-commutative, however, as it immediately follows from the definition,
the design A < B may always be viewed as the tensor of two designs. As the connective <
distributes over ⊕ [Gir01], we can study this connective < on connected behaviours, i.e.,
behaviours with a unique first ramification: in this case in particular internal completeness
is satisfied. We remark in the following lemma a property that relates the non-commutative
tensor of two behaviours with a commutative tensor of two behaviours. Hence augmenting
the grammar for regular behaviours with such a non-commutative tensor does not change
the language of behaviours.

Lemma 5.2. Let A and B be two connected positive behaviours of base ` ξ, let J be such
that B = {z} ∪ (+, ξ, J)B′. We consider the following function φ: let A ∈ A,

φ(A) = A\
⋃

i∈I∩J,Ki

(+, ξ, I)(−, ξ.i,Ki)Ai,Ki

Let φ(A) = {φ(A) ; A ∈ A}. Then A < B = φ(A)⊥⊥ ⊗B.

Proof. Note that φ(A) is always a design hence φ(A)⊥⊥ is a behaviour. Remark first that, as
behaviours are connected, for designs A ∈ A and B ∈ B, we have that A < B = φ(A)⊗B.
Hence A < B = (φ(A)⊗B)⊥⊥ = (φ(A)⊥⊥ ⊗B)⊥⊥ = φ(A)⊥⊥ ⊗B.

5.2. The sequoid � game [CLM13]. M. Churchill, J. Laird and G. McCusker proposed
in [CLM13] a first-order logic WS1 and a games model in which proofs denote history-sensitive
strategies. We do not consider here the full logic but only represent in terms of Ludics the
essence of their main specific non-commutative tensor connective �. Briefly speaking, the
first move in a play of A�B has to be done in A, the following moves are considered as with
the standard commutative tensor. We show how such a connective may be defined in our
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setting by considering an adequate set of visitable paths. Obviously such a set of visitable
paths should contain z and the first (positive) action of A ⊗ B. Furthermore, it should
contain visitable paths of A⊗B with the restriction that the second action “comes” from A.

Proposition 5.3. Let A and B be two connected disjoint positive behaviours of base ` ξ,
let κ+0 (resp. κ+A) be the first action of designs in A ⊗ B (resp. A), let S = {z, κ+0 } ∪
{κ+0 κ

−
0 s ; κ+Aκ

−
0 z ∈ VA, κ

+
0 κ
−
0 s ∈ VA⊗B}. Then S is ludicable.

Proof. S is a set of legal paths as a subset of VA⊗B. S is also daimon and prefix closed.
S is pre-ludicable:
• Positive saturation: let p ∈ S, let us consider the set Cp for S. Let m ∈ Cp, nκ−κ+ ∈ Cp,

mκ−z ∈ S, note that Cp ⊂ Dp where Dp is the positively saturated maximal clique for
p in VA⊗B. Thus mκ−κ+ ∈ Dp. Hence mκ−κ+ ∈ Cp as mκ−κ+ satisfies the required
properties for being in S. Thus Cp is positively saturated.
• Negative saturation: let p ∈ S, pκ−z be a legal path, suppose that for all positively
saturated maximal clique C of S, ppCqq ⊥ pppκ−qq

c
, then for all positively saturated

maximal clique D of VA⊗B, we have also that ppDqq ⊥ pppκ−qq
c
, then pκ−z ∈ VA⊗B. Thus

pκ−z ∈ S as conditions are fulfilled.
∼
S is pre-ludicable: The proof is similar noticing that∼VA⊗B is pre-ludicable.

It is straightforward to notice that S as defined before is the set of visitable paths of
a behaviour A � B with properties as required in the logic WS1 [CLM13]. We do not go
further on the study of WS1 in our framework, we just remark the strength of our approach
to prove that a connective is well-defined when given in terms of visitable paths (or plays).
Note finally that A�B is not a regular behaviour hence this connective may really augment
the grammar of MALL.

5.3. An absolute non-commutative connective. We propose another non-commutative
connective written defined by means of visitable paths. We shall here consider an oriented
tensor such that a visitable path r of A B consists of a visitable path p of A possibly
followed by a visitable path q of B (except q ’s first action). When q is not empty, the path p
should be maximal with respect to the design pppqq it generates, otherwise it could be possible
to switch back from q to a path in A, what should be rejected. Note that if a visitable path
is maximal with respect to its generated design then it is also maximal with respect to length.
The converse is not always true as stated in example 5.4.

Example 5.4. Let us consider the behaviour A = {A}⊥⊥ where the design A is given below
on the left. Its dual A⊥ contains designs B1 and B2, drawn on the right, and z-restrictions
of these two designs. Let us consider the two following paths:
• p = κ+κ−κ+1 κ

−
1 κ

+
2 λ
−
0 λ

+
0 λ
−
1 λ

+
1 = 〈A←B1〉

• q = κ+κ−κ+1 λ
−
0 λ

+
0 κ
−
1 κ

+
2 = 〈A←B2〉

Paths p and q are maximal in length among visitable paths of A. Furthermore ppqqq (
pppqq = A, hence q is not maximal with respect to generated designs.
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A =

α22`α111
`α111,α2 κ+2

α11`α2 κ−1

`α1,α2 κ+1

α` κ−

β0000`
`β000 λ+1

β00` λ−1

`β0 λ+0

β` λ−0

`ξ κ+ B1 =

α111`
`α11
α1`

`β0000,α22 z

β000`α22
`β00,α22
β0`α22
`α22,β
α2`β

`α,β
ξ` B2 =

α111`β00
`β00,α11
β0`α11
`α11,β
α1`

`α22 z

α2`
`α,β
ξ`

To prove that such an oriented connective may be well-defined (proposition 5.5), we
consider the set of legal paths that should be visitable. We prove first that such a set of legal
paths is ludicable (lemmas 5.8, 5.11, 5.12), hence the existence of the connective follows:
The proof of proposition 5.5 is then immediate.

Proposition 5.5. Let A and B be two connected disjoint positive behaviours of base ` ξ,
let us consider the three following definitions:
• VA[B]

is the set of paths κw of VA⊗B such that w contains only actions of VA.
• V max

A[B]
= {p ; p ∈ VA[B]

, p z-free, @q ∈ VA[B]
, pppqq ( ppqqq}

• V −B = {q ; ∃κ+, κ+q ∈ VB}
Suppose moreover that the behaviour A satisfies the following constraint (C):

(C) For each p ∈ VA and q ∈ V max
A such that p and q end on the same (positive) action

and pppqq ⊂ ppqqq, then p ∈ V max
A .

Then S = VA[B]
∪ V max

A[B]
V −B is ludicable.

We note A B the behaviour such that VA B = S.

Remark that V max
A[B]

is the subset of VA[B]
such that paths generate designs that have no

extension in the incarnation |A[B]| of A[B]: such paths are maximal with respect to designs
they generate in |A[B]|. Remark also that V −B is obtained by deleting the first action of a
path of VB: this first action is already ‘taken into account’ by the first action of paths of
VA[B]

. Example 5.6 proposes such a construction. Example 5.7 shows that constraint (C) is
required otherwise unexpected visitable paths appear. However there is always a possibility
to define the ludicable closure of S (see subsection 3.4). Thus the connective may always
be defined even if the structure of visitable paths is not guaranteed when condition (C) is
not fulfilled (see next subsection for basic properties in that case).

Example 5.6. Let A be the behaviour {A}⊥⊥ and B be the behaviour {B}⊥⊥, then the
behaviour A⊗B = {A⊗B}⊥⊥ whereas A B = {A⊗B,C,D}⊥⊥ (designs A, B, C and D
are drawn below). Indeed we have that the behaviour A satisfies constraint (C) and:
• V max

A = {κ+0 κ
−
1 κ

+
1 κ
−
2 κ

+
2 , κ

+
0 κ
−
2 κ

+
2 κ
−
1 κ

+
1 } and VA = V maxz

A

• V −B = {λ−3 λ
+
3 }

The dual behaviour (A B)⊥ is given as {X1,X2}⊥⊥. Note that behaviours A, B and
A ⊗ B are regular whereas A B is not regular: the sequence (+, ξ, {1, 2, 3})λ−3 λ

+
3 is a

chronicle in a design of |A B| however this chronicle is not visitable in A B. This example
is sufficient to prove that A B cannot be generated by connectives of Linear Logic.

A =

ξ111`
`ξ11 κ+1

ξ1` κ−1

ξ222`
`ξ22 κ+2

ξ2` κ−2

`ξ κ+0 B =

ξ333`
`ξ33 λ+3

ξ3` λ−3

`ξ λ+0
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A⊗B =

ξ111`
`ξ11
ξ1`

ξ222`
`ξ22
ξ2`

ξ333`
`ξ33
ξ3`

`ξ C =

`ξ11 z

ξ1`

ξ222`
`ξ22
ξ2` ξ3`
`ξ D =

ξ111`
`ξ11
ξ1`

`ξ22 z

ξ2` ξ3`
`ξ

X1 =

`ξ111,ξ222,ξ333 z

ξ33`ξ111,ξ222
`ξ111,ξ222,ξ3
ξ22`ξ111,ξ3
`ξ111,ξ2,ξ3
ξ11`ξ2,ξ3
`ξ1,ξ2,ξ3

ξ` X2 =

`ξ111,ξ222,ξ333 z

ξ33`ξ111,ξ222
`ξ111,ξ222,ξ3
ξ11`ξ222,ξ3
`ξ1,ξ222,ξ3
ξ22`ξ1,ξ3
`ξ1,ξ2,ξ3

ξ`

Example 5.7. Let us consider the behaviour A = {E,F}⊥⊥ where designs E and F are
given below. Its dual behaviour is A⊥ = {G0,G1,G2}⊥⊥ with designs G1, G2 and G3 given
below.

E =

ξ11`ξ222
`ξ222,ξ1 κ+1

ξ22`ξ1 κ−22

`ξ1,ξ2 κ+2

ξ` κ−

σ11`
`σ1 λ+

σ` λ−

`〈〉
〈〉+

F =

ξ11`ξ2
`ξ1,ξ2 κ+1

ξ` κ−

σ11`
`σ1 λ+

σ` λ−

`〈〉
〈〉+

G0 =

`ξ11,σ11 z

σ1`ξ11
`ξ11,σ
ξ1`σ

ξ222`
`ξ22
ξ2`

`ξ,σ
〈〉` G1 =

`ξ11 z

ξ1`

ξ222`σ11
`ξ22,σ11
σ1`ξ22
`ξ22,σ
ξ2`σ

`ξ,σ
〈〉` G2 =

`ξ11 z

ξ1`

ξ222`
`ξ22
ξ2`

`σ11,ξ
σ1`ξ
`ξ,σ
〈〉`

Let us consider the three following paths:
• q = 〈〉+κ−κ+2 λ−λ+κ

−
22

• p = 〈〉+κ−
• r = 〈〉+λ−λ+κ−

We remark that:
• The three paths pκ+1 , qκ+1 , rκ+1 are visitable in A.
• ppqκ+1 qq = E ∈ |A|, pprκ+1 qq = F ∈ |A|, pp

∼
qκ+1
qq = G1 ∈ |A⊥|.

• Thus qκ+1 and rκ+1 are maximal visitable paths of A.

• Paths pκ+1 and qκ+1 end on the same action and pppκ+1
qq ( ppqκ+1

qq.
• However the path pκ+1 is not maximal as pppκ+1 qq ( pprκ

+
1
qq.

Hence the behaviour A does not satisfy the constraint (C). Why is it a problem? Because
unexpected paths may be visitable when one tries to apply an oriented tensor to it. Let us

consider the behaviour B = {B}⊥⊥ where B =

τ11`
`τ1 τ+

τ` τ−

`〈〉 . Then the set S = VA[B]
∪V max

A[B]
V −B

is not ludicable: ∼S does not satisfy positive saturation. Indeed4, by definition of S, qκ+1 τ− ∈
∼
S

4We still note 〈〉+ the action (+, 〈〉, {ξ, σ, τ}), hence p and q are unchanged even if the base is changed.
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and also pκ+1 z ∈
∼
S. As pppκ+1

qq ( ppqκ+1
qq, any maximal clique C of ∼S that includes qκ+1 τ−

includes also p. Thus, if ∼S would satisfy positive saturation, we should have pκ+1 τ− ∈
∼
S, i.e.,

pκ+1 τ−z ∈ S, in contradiction with the definition of S.

In the following, we use notations p, p′, p0, . . . for paths of VA[B]
or V max

A[B]
, q , q ′, q0, . . .

for paths of V −B , and r , r ′, . . . for paths of S. It is not difficult to prove that the set S as
defined in proposition 5.5 is made of legal paths.

Lemma 5.8. S is a set of legal paths.

Proof. Paths of VA[B]
are legal: paths of VA are legal and paths of VA[B]

differ from paths of
VA only because of the ramification of the first (hence positive) action that is a larger set.
Let pq ∈ V max

A[B]
V −B (with conventions of notation given above). p is legal as p ∈ VA[B]

. Note
that an action in q is necessarily justified by the first action of p: the base contains a unique
positive address, and behaviours A and B are connected and disjoint. Let pq0 be a z-free
positive-ended prefix of pq , let κ+0 be the first action of p, then we have that ppq0q = pκ+0 q0q.
Note that κ+0 q0 ∈ VB[A]

thus κ+0 q0 is a legal path hence pq0 is a path. Let pq0 be now a
negative-ended prefix of pq . Remark first that q0 begins with a positive action and that this
positive action is necessarily justified by the first action κ+0 of p: the base contains a unique
positive address. Thus p pq0 q = p p qp q0 q. As p and κ+0 q0 are legal paths, it follows from
the previous computation that pq0 is a path.

Before we prove the two last lemmas necessary for proposition 5.5, we consider two
technical lemmas, which proofs are in the annex for ease of reading.

Lemma 5.9. C is a positively saturated maximal clique of S with first action κ+0 iff there is
a unique decomposition C = C1 ∪ C ′C ′′ such that C1 is a positively saturated maximal clique
of VA[B]

with first action κ+0 , C
′ = C1 ∩ V max

A[B]
and C ′′ is empty if C ′ is empty or κ+0 C

′′ is a
positively saturated maximal clique of VB[A]

.

Proof. See annex A.3.

Lemma 5.10. D is a positively saturated maximal clique of ∼S with first action κ−0 iff there
is a unique decomposition D = D1 ∪

⋃
κ−1 ∈K

D′
κ−1
D′′
κ−1

such that D1 is a positively saturated

maximal clique of∼VA[B]
with first action κ−0 , K is the set of (negative) actions κ−1 such that

D1κ
−
1 ∩ V max

A[B]
6= ∅, D′

κ−1
= D1κ

−
1 ∩ V max

A[B]
and each κ−0 D

′′
κ−1

is a positively saturated maximal

clique of∼VB[A]
such that the first action of paths in D′′

κ−1
is distinct of first action of paths in

D′′
κ′−1

when κ−1 6= κ′−1 .

Proof. See annex A.3.

Lemma 5.11. S is pre-ludicable.

Proof. Let κ+0 be the first action of paths of A[B]. We write C a positively saturated maximal
clique of S. By lemma 5.9, we can write C = C1 ∪ C ′C ′′ with properties as stated in this
lemma.
• By definition of S and the fact that a set of visitable paths of a behaviour is ludicable, S
is prefix-closed and daimon-closed.
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• (positive saturation) Let r be a path of S:
– Either r ∈ VA[B]

. As VA[B]
is ludicable, there exists a positively saturated maximal

clique C1 for VA[B]
such that r ∈ C1. Let C ′′ be a positively saturated maximal clique

of V −B . Let us consider C = C1 ∪ (C1 ∩ V max
A[B]

)C ′′. Then, by lemma 5.9, C is a positively
saturated maximal clique of S that contains r .

– Or r = pq ∈ V max
A[B]

V −B . Let C1 be a positively saturated maximal clique of VA[B]
that

contains p and C ′′ be a positively saturated maximal clique of V −B that contains κ+0 q .
Then, by lemma 5.9, we remark that C1 ∪ (C1 ∩ V max

A[B]
)C ′′ is a positively saturated

maximal clique of S that contains r .
• (negative saturation)
Let r ∈ S and rκ−z be a legal path such that for all positively saturated maximal clique
C of S, we have that ppCqq ⊥ pprκ−qq

c
. We have to prove that rκ−z ∈ S:

– Either r ∈ VA[B]
:

If κ− is an action appearing in V −B , note that κ− should be immediately justified by κ+0 ,
hence κ+0 κ

−z ∈ VB. Suppose that r 6∈ V max
A[B]

. Let Cr be the clique for S as defined in
proposition 3.7: in particular r ∈ Cr . We remark that there is no z-free path q such
that q ∈ V max

A[B]
and ppqqq ⊂ pprqq thus there is no path qκ− in Cr . It follows in particular

that ppCrqq 6⊥ pprκ−qq
c
, contradiction. So r ∈ V max

A[B]
. Thereby rκ−z ∈ S.

Otherwise κ− is an action appearing in VA. Let C1 (resp. κ+0 C
′′) be a positively saturated

maximal clique of VA[B]
(resp. of VB[A]

). Then C = C1 ∪ (C1 ∩ V max
A[B]

)C ′′ is a positively

saturated maximal clique of S. Note that
〈
ppCqq←pprκ−qq

c
〉

=
〈
ppC1qq←pprκ−qq

c
〉
hence,

as ppCqq ⊥ pprκ−qq
c
, we have that ppC1qq ⊥ pprκ−qq

c
. So, as VA satisfies negative saturation,

rκ−z ∈ VA[B]
, thus rκ−z ∈ S.

– Or r ∈ V max
A[B]

V −B : r = pq with p ∈ V max
A[B]

and q ∈ V −B .
If κ− is an action occurring in V −B . Let C1 be a positively saturated maximal clique of
VA[B]

that contains p. Let C ′ = C1∩V max
A[B]

. Let κ+0 C
′′ be a positively saturated maximal

clique of VB[A]
. By lemma 5.9, C = C1 ∪ C ′C ′′ is a positively saturated maximal clique

of S. Hence ppCqq ⊥ pprκ−qq
c
. Note that

〈
ppCqq←pprκ−qq

c
〉

= p
〈
ppC ′′qq←ppqκ−qq

c
〉
. Thus

ppC ′′qq ⊥ ppqκ−qq
c
. Hence qκ−z ∈ V −B as VB satisfies negative saturation. It follows that

rκ−z ∈ S.
Otherwise κ− is an action appearing in VA[B]

. Let C1 be a positively saturated maximal
clique of VA[B]

that contains p. Let C ′ = C1 ∩ V max
A[B]

. Let κ+0 C
′′ be a positively

saturated maximal clique of VB[A]
that contains κ+0 q . By lemma 5.9, C = C1 ∪ C ′C ′′

is a positively saturated maximal clique of S. Hence ppCqq ⊥ pprκ−qq
c
. Note that〈

ppCqq←pprκ−qq
c
〉

=
〈
ppC1qq←pppκ−qq

c
〉
. Thus ppC1qq ⊥ pppκ−qq

c
. Hence pκ−z ∈ VA[B]

,
contradiction with the fact that p ∈ V max

A[B]
.

Lemma 5.12. ∼S is pre-ludicable.

Proof. Let κ−0 be the first action of paths of A[B]
⊥.
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• By definition of ∼S and the fact that a set of visitable paths of a behaviour is ludicable, ∼S
is prefix-closed and daimon-closed.
• (positive saturation) Let r be a path of ∼S, we prove that Dr is a positively saturated
maximal clique for ∼S (where Dr for ∼S is as defined in proposition 3.7). It follows from the
definition of Dr that Dr is a maximal clique for ∼S. Let m ∈ Dr , nκ−κ+ ∈ Dr , mκ−z ∈ ∼S,
we have to prove that mκ−κ+ ∈ ∼S. Clearly we can suppose that κ+ 6= z, otherwise the
result is trivial.
– Either m ∈∼VA[B]

and nκ−κ+ ∈∼VA[B]
. As∼VA[B]

satisfies positive saturation, there exists
a positively saturated maximal clique D′ for∼VA[B]

such that nκ−κ+ ∈ D′.
If r ∈∼VA[B]

: Let D′r for∼VA[B]
be as defined in proposition 3.7. Note that we have

m ∈ D′r , nκ−κ+ ∈ D′r . Furthermore mκ−z ∈∼VA[B]
. Then, as∼VA[B]

satisfies positive
saturation, mκ−κ+ ∈∼VA[B]

, thus mκ−κ+ ∈ ∼S.
Otherwise r = st with s ∈ V max

A[B]
and t ∈
∼
V −B . Then sz ∈∼VA[B]

: Let D′′sz for∼VA[B]
be

as defined in proposition 3.7. Note that we have m ∈ D′′sz, nκ−κ+ ∈ D′′sz. Furthermore
mκ−z ∈ ∼VA[B]

. Then, as∼VA[B]
satisfies positive saturation, mκ−κ+ ∈ ∼VA[B]

, thus
mκ−κ+ ∈ ∼S.

– Or m ∈ V max
A[B]

∼
V −B and nκ−κ+ ∈∼VA[B]

. But we have mκ−z ∈ ∼S thus, by definition of ∼S,

the action κ− should be an action in
∼
V −B : contradiction with the fact that nκ−κ+ ∈∼VA[B]

.

– Or m ∈ V max
A[B]

∼
V −B and nκ−κ+ ∈ V max

A[B]

∼
V −B . As we have mκ−z ∈ ∼S thus, by definition of

∼
S, κ− is an action in

∼
V −B . Hence as nκ−κ+ ∈ V max

A[B]

∼
V −B , the action κ+ is also an action

in
∼
V −B . Let us write m = m0m1 and n = n0n1 where m0 and n0 are elements of V max

A[B]
and

m1 and n1 are elements of
∼
V −B .

Remark that r ∈ V max
A[B]

∼
V −B , hence is of the form st where s ∈ V max

A[B]
and t ∈

∼
V −B .

Remark then that t begins with a positive action, furthermore pptqq is a slice, i.e., it has
a unique first action. Then m0 and n0 ends on the same (negative) action (otherwise
their next action should be distinct). Let us consider the clique D′

κ−0 t for∼VB[A]
as

defined in proposition 3.7. Remark that κ−0 m1 ∈ D′κ−0 t , κ
−
0 n1κ−κ+ ∈ D′κ−0 t and that

κ−0 m1κ
−z ∈∼VB[A]

hence as∼VB[A]
satisfies positive saturation, κ−0 m1κ

−κ+ ∈∼VB[A]
. Thus

m0m1κ
−κ+ ∈ V max

A[B]

∼
VB[A]

.

– Or m ∈∼VA[B]
and nκ−κ+ ∈ V max

A[B]

∼
V −B . Remark that κ− cannot be an action present in

∼
V −B as mκ−z is legal: in such a case κ− should be justified by κ−0 , contradiction. Hence
κ− ∈ VA[B]

and κ+ ∈
∼
V −B . As mκ−z ∈ ∼S then mκ− ∈ VA[B]

, furthermore nκ− ∈ V max
A[B]

,

and paths mκ− and nκ− end on the same positive action.
As nκ−κ+ is a path in Dr , and being given the structure of Dr , the path r is in V max

A[B]

∼
V −B .

Let r = st with s ∈ V max
A[B]

and t ∈
∼
V −B . We notice that κ+ is necessarily the first action

of t as all actions of t are actions occurring in
∼
V −B and t is a legal path. Hence κ− is

necessarily the last action of s . Finally, being given the structure of Dr , ppmκ−qq ⊂ ppsqq.
So constraint (C) may be applied: we have that mκ− ∈ V max

A[B]
. So mκ−κ+ ∈ V max

A[B]

∼
VB[A]

.
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• (negative saturation)
Let r ∈ ∼S and rκ−z be a legal path such that for all positively saturated maximal clique D
of ∼S, we have that ppDqq ⊥ pprκ−qq

c
. We have to prove that rκ−z ∈ ∼S. We use lemma 5.10

for decomposing such a saturated maximal clique D of ∼S: D = D1 ∪
⋃
κ−1 ∈K

D′
κ−1
D′′
κ−1

.

– Either r ∈∼VA[B]
then r ∈ D1 that is a positively saturated maximal clique of∼VA[B]

.

Remark that κ− cannot be an action appearing in
∼
V −B : as r ∈∼VA[B]

, κ− should be the

first action in rκ−z from
∼
V −B but by construction such an action should be positive.

Hence κ− is an action appearing in∼VA. Note that
〈
ppDqq←pprκ−qq

c
〉

=
〈
ppD1qq←pprκ−qq

c
〉

hence, as ppDqq ⊥ pprκ−qq
c
, we have that ppD1qq ⊥ pprκ−qq

c
. So, as∼VA satisfies negative

saturation, rκ−z ∈∼VA[B]
, thus rκ−z ∈ ∼S.

– Or r ∈ V max
A[B]

∼
V −B : r = pq with p ∈ V max

A[B]
and q ∈
∼
V −B .

If κ− is an action occurring in
∼
V −B . We prove that κ−0 qκ−z ∈ ∼VB, hence pqκ−z ∈ ∼S.

Note that p ends with a negative action: p = p′κ′−. Let E1 be a positively saturated
maximal clique of∼VA[B]

that contains p′. Let us define the cliques E′
κ−1

as in lemma 5.10.
Remark that there should exist a clique E′

κ−2
among these E′

κ−1
that contains the path

p. Let κ−0 E′′κ−1
be positively saturated maximal cliques of∼VB[A]

satisfying constraints of
lemma 5.10, then E = E1 ∪

⋃
κ−1 ∈K

E′
κ−1
E′′
κ−1

is a positively saturated maximal clique

of ∼S. Hence ppEqq ⊥ pprκ−qq
c
. Note that

〈
ppEqq←pprκ−qq

c
〉

= p
〈
ppE′′

κ−2
qq←ppqκ−qq

c
〉
. Thus

ppE′′
κ−2
qq ⊥ ppqκ−qq

c
. Hence qκ−z ∈

∼
V −B . It follows that rκ−z ∈ ∼S.

Otherwise κ− is an action appearing in VA[B]
. Note that q begins and ends with a

positive action. Hence q is not empty otherwise pκ−z is not a path. Remark also that
the only justifier of an action of q that is not in q is κ−0 , then ppqκ−q should be of
the form κ−0 q ′κ− where q ′ is a subsequence of q . As κ− cannot be justified by κ−0 , the
sequence pqκ− cannot be a path, contradiction.

Proposition 5.13. Let A and B be two connected disjoint positive behaviours of base ` ξ,
let us consider the three following definitions:
• VA[B]

is the set of paths κw of VA⊗B such that w contains only actions of VA.
• V max

A[B]
= {p ; p ∈ VA[B]

, p z-free, @q ∈ VA[B]
, pppqq ( ppqqq}

• V −B = {q ; ∃κ+, κ+q ∈ VB}
Suppose moreover that the behaviour A satisfies the following constraint (C):

(C) For each p ∈ VA and q ∈ V max
A such that p and q end on the same (positive) action

and pppqq ⊂ ppqqq, then p ∈ V max
A .

Then S = VA[B]
∪ V max

A[B]
V −B is ludicable.

We note A B the behaviour such that VA B = S.

Proof. The proposition follows from lemmas 5.8, 5.11 and 5.12.
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5.4. An absolute non-commutative connective: first algebraic properties. In this
subsection we consider that condition (C) may not be fulfilled, in that case the connective

may be defined as the ludicable closure of the set of oriented visitable paths as given in
the previous subsection. We can then characterize the set of designs in A B, and more
precisely we have internal completeness for this connective (proposition 5.15). For ease of
reading, we use the following notations:

Definition 5.14. Let A and B be behaviours,
• A+ = {D[ppqz/ppκ+qd ; pκ+ ∈ V max

A ] ; D ∈ A}: A+ is obtained from A by replacing
in each design of A all chronicles of the form ppκ+qd by the chronicle ppqz when pκ+ is
in V max

A . |A|+ is obtained in a similar way from the incarnation |A|.
• |A|max is the set of designs of the incarnation |A| which includes at least one path of
V max
A .

• >>>+
[B] = {{κ+} ; κ+ is the first action of designs of B}⊥⊥: the behaviour >>>+

[B] contains all
designs that may be built beginning with a first action of a design of B, hence its unique
visitable paths are z and actions κ+.

Remark that A+ and >>>+
[B] are positive behaviours. Note also that, when V max

A = ∅,
cliques of visitable paths of A B are in fact cliques of visitable paths of A[B]: there is no
way to “visit” by interaction a design of B.

Proposition 5.15. A B = A⊗B ∪ A+⊗>>>+
[B] and |A B| = |A|max⊗|B| ∪ |A|+⊗>>>+

[B]

Proof. We consider the non-additive case, the additive case follows easily. Note that if
VA = {z} then A B = {{z}} hence equalities hold. Suppose that VA 6= {z}. Let us note
CA the set of paths p of VA for which there exists q ∈ V max

A such that p and q end on the
same (positive) action and pppqq ⊂ ppqqq. I.e., CA is the set of paths of VA that invalidate
condition (C) for A. Remark then that the ludicable closure of S = VA[B]

∪ V max
A[B]

V −B is the
set T = VA[B]

∪
⋃

p1∈CA,p1p2∈VA p1(V −B l l p2). The incarnation |A B| is the set of designs
ppDqq where D is a maximal clique of T such that ∼D is finite-stable and saturated. The result
follows as a clique that contains a path in V max

A contains also extensions of paths in V −B , the
ludicable closure does not add new designs in the incarnation. The full behaviour A B is
obtained by adding extensions to designs in the incarnation |A B|.

Proposition 5.16. The connective is associative: (A B) C = A (B C)
The behaviour 1 is a neutral element: 1 A = A 1 = A.

Proof. Remark first that V max
A B = V max

A[B]
V −maxB . Thus (A B)+ = A⊗B+ ∪ A+ ⊗>>>+

[B].
Note also that C+ ⊂ C ⊂ >>>+

[C].

(A B) C = (A⊗B ∪ A+ ⊗>>>+
[B]) C

= (A⊗B ∪ A+ ⊗>>>+
[B])⊗C ∪ A⊗B+ ⊗>>>+

[C] ∪ A+ ⊗>>>+
[B] ⊗>>>

+
[C]

= A⊗B⊗C ∪ A+ ⊗>>>+
[B] ⊗C ∪ A⊗B+ ⊗>>>+

[C] ∪ A+ ⊗>>>+
[B] ⊗>>>

+
[C]

= A⊗B⊗C ∪ A⊗B+ ⊗>>>+
[C] ∪ A+ ⊗>>>+

[B] ⊗>>>
+
[C]
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and

A (B C) = A (B⊗C ∪ B+ ⊗>>>+
[C])

= A⊗B⊗C ∪ A⊗B+ ⊗>>>+
[C] ∪ A+ ⊗>>>+

[B] ⊗>>>
+
[C]

Hence the result.
Remind that 1 is neutral for ⊗. Hence A ⊗ 1 = 1 ⊗ A = A. Furthermore 1+ = {z}
thus 1+ ⊗ >>>+

[A] = {z}. It follows that 1 A = A. Finally >>>+
[1] = 1 and A+ ⊂ A thus

A 1 = A.

6. Conclusion

At first sight, Ludics objects seem to be easy to study: designs are nothing else but abstraction
of proofs or counter-proofs of multiplicative-additive Linear Logic (MALL). However, this is
not the case when one tries to identify among behaviours, i.e., closures of sets of designs,
those that are interpretation of MALL formulas. This paper is a first step toward a full
algebraic study of behaviours. First, we make explicit the equivalence between the two
presentations of a design, as set of paths versus set of chronicles. We give a few properties
concerning orthogonality in terms of path traversal, introducing visitable paths, i.e., paths
that are visited by orthogonality. Our main result is a characterization of finite MALL
formulas, i.e., formulas built from the linear constants by means of additive and multiplicative
connectives. In particular, we show that such behaviours should be regular. Regularity is in
fact a global property of visitable paths: roughly speaking, legal paths built from actions in
the incarnation should be visitable. Such a study should help understanding the structure
of MALL proofs. By contrast, many behaviours are not regular. We analyse one case of
non-regularity: in short, a proof of A B is a proof of A followed by a proof of B. We show
that such a situation may be fully defined. This should be considered as a first step towards
a full study of orientation in Ludics.

Let us remark finally that properties of Ludics that serve for proving that Ludics is
a fully abstract model of (slightly modified polarized second-order) MALL, are satisfied
for the entire Ludics and not only for behaviours interpreting MALL formulas: interaction
between objects, that is cut-elimination, is at the heart of Ludics, thus it allows to consider
the Ludics framework as a semantics for computation beyond what is given with MALL:
a behaviour may model a type and (open) interaction between behaviours corresponds to
composition of types. For future work, we plan to extend our analysis to the whole set of
behaviours, defining a grammar for it in such a way that connectives of the grammar may be
computationally (or logically) interpreted.

We thank anonymous referees for their thorough reviews and highly appreciate the
comments and suggestions.
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Appendix A.

A.1. Ludics: Basic Definitions.

Definition A.1 (Base). A base is a non-empty finite set of sequents: Γ1 ` ∆1, . . . ,Γn ` ∆n

such that each ∆j is a finite set of addresses, at most one Γi may be empty and the other
Γi contain each exactly one address. Furthermore if an address appears twice then one
occurrence is in one of Γi of a sequent and the other in one of ∆j of another sequent, otherwise
an address appears only once.

Definition A.2 (Action). An action κ is
• either a positive proper action (+, ξ, I) or a negative proper action (−, ξ, I) where the
address ξ is said the focus of the action, and the finite set of integers I is said its ramification,
• or the positive action daimon written z.
The notation κ may be extended to sequences of actions5 by ε = ε and wκ = wκ. An address
ξ.i is justified by an action (+, ξ, I) when i ∈ I. By extension an action κ = (π, ξ.i, J) is
justified by an action κ = (π, ξ, I) when i ∈ I, π ∈ {+,−}, + = − and − = +. When w is a
z-free sequence of actions, we write also ∼w = wz and∼wz = w.

Definition A.3 (Chronicle). A chronicle c based on Γ ` ∆ is a non-empty and finite
alternate sequence of actions such that
• Positive proper action: A positive proper action is either justified, i.e., its focus is built by
one of the previous actions in the sequence, or it is called initial.
• Negative action: A negative action may be initial, in such a case it is the first action of the
chronicle and its focus is in Γ. Otherwise it is justified by the immediate previous positive
action.
• Linearity: Actions have distinct foci.
• Daimon: If present, a daimon ends the chronicle.
• Polarity: If Γ is empty, the first action of c is positive, otherwise it is negative.

Definition A.4 (Coherence on Chronicles). Two chronicles c1 and c2 are coherent, noted
c1 ¨ c2, when the two following conditions are satisfied:
• Comparability: Either one extends the other or they first differ on negative actions, i.e., if
wκ1 ¨ wκ2 then either κ1 = κ2 or κ1 and κ2 are negative actions.

5The empty sequence is noted ε.
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• Propagation: When they first differ on negative actions and these negative actions have
distinct foci then the foci of following actions in c1 and c2 are pairwise distinct, i.e., if
w(−, ξ1, I1)w1κ1 ¨ w(−, ξ2, I2)w2κ2 with ξ1 6= ξ2 then κ1 and κ2 have distinct foci.

Definition A.5 (Designs, Slices, Nets). A design D, based on Γ ` ∆, is a set of chronicles
based on Γ ` ∆, such that the following conditions are satisfied:
• Forest: The set of chronicles is prefix closed.
• Coherence: The set is a clique of chronicles with respect to ¨.
• Positivity: A chronicle without extension in D ends with a positive action.
• Totality: D is non-empty when the base is positive, in that case all the chronicles begin
with a (unique) positive action.

A slice is a design S such that if w(−, ξ, I1), w(−, ξ, I2) ∈ S then I1 = I2.
A net is a finite set of designs on disjoint bases.

A design is then a set of chronicles or a forest of actions (when one cares of justification
between actions) that satisfies several constraints. It can also be presented as a sequent tree,
however with ambiguity due to the possible weakening of addresses created by actions. We
describe in example A.6 a design based on ` ξ as a set of chronicles (on the left) and as a
sequent tree (on the right):

Example A.6.

{ (+, ξ, {1, 3});
(+, ξ, {1, 3})(−, ξ.1, {0});
(+, ξ, {1, 3})(−, ξ.1, {0})(+, ξ.1.0, {0});
(+, ξ, {1, 3})(−, ξ.1, {1});
(+, ξ, {1, 3})(−, ξ.1, {1})(+, ξ.1.1, {0});
(+, ξ, {1, 3})(−, ξ.3, {0});
(+, ξ, {1, 3})(−, ξ.3, {0})(+, ξ.3.0, ∅) }

ξ.1.0.0 `
` ξ.1.0

ξ.1.1.0 `
` ξ.1.1

ξ.1 `

`
` ξ.3.0
ξ.3 `

` ξ

Definition A.7 (Closed cut-net). A net of designs R is a closed cut-net if
• addresses in bases are either distinct or present twice, once in a left part of a base and
once in a right part of another base,
• the net of designs is acyclic and connected with respect to the graph of bases and cuts.
An address present in a left part and in a right part defines a cut. In a closed cut-net, the
(unique) design whose base is positive is called the main design of the cut-net.

Definition A.8 (Interaction on closed cut-nets). Let R be a closed cut-net. The design
resulting from the interaction, denoted by [[R]], is defined in the following way: let D be the
main design of R, with first action κ,
• if κ is a daimon, then [[R]] = {z},
• otherwise κ is a proper positive action (+, σ, I) such that σ is part of a cut with another
design with last rule (−, σ,N ) (aggregating ramifications of actions with the same focus
σ):
– If I 6∈ N , then interaction fails.
– Otherwise, interaction follows with the connected part of subdesigns obtained from I
with the rest of R.

Following this definition, either interaction fails, or it does not end, or it results in the
design Dai = {z}. The definition of orthogonality follows:
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Definition A.9 (Orthogonal, Behaviour).
• Let D be a design of base ξ ` σ1, . . . , σn (resp. ` σ1, . . . , σn), let R be the net of designs

(A,B1, . . . ,Bn) (resp. R = (B1, . . . ,Bn)), where A has base ` ξ and Bi has base σi `,
then R belongs to D⊥ if [[D,R]] = Dai.
• Let E be a set of designs of the same base, E⊥ =

⋂
D∈ED⊥.

• E is a behaviour if E = E⊥⊥. A behaviour is positive (resp. negative) if the base of its
designs is positive (resp. negative).

Definition A.10 (Interaction path). Let (D,R) be a convergent, i.e., orthogonal, closed
cut-net such that all the cut loci belong to the base of D. The interaction path of D with
R, denoted 〈D←R〉, is the sequence of actions of D visited during the normalization. The
construction goes as follows where n is the number of normalization steps so far obtained:
Let κ1 . . . κn be the prefix of 〈D←R〉 already defined (or the empty sequence if n = 0).
• Either the interaction stops: if the main design is a subdesign of R then 〈D←R〉 = κ1 . . . κn,
otherwise the main design is a subdesign of D then 〈D←R〉 = κ1 . . . κnz.
• Or, let κ+ be the first proper action of the closed cut-net obtained after step n, 〈D←R〉
begins with κ1 . . . κnκ+ if the main design is a subdesign of R, or it begins with κ1 . . . κnκ+
if the main design is a subdesign of D.

We note 〈R←D〉 the sequence of actions visited in R during the normalization with D.

It follows from the definition that 〈D←R〉 =
∼〈R←D〉.

Definition A.11 (Incarnation). Let B be a behaviour, D be a design in B.
• The incarnation |D|B of D with respect to the behaviour B is

⋃
R∈B⊥ pp〈D←R〉qq.

• The incarnation |B| of a behaviour B is the set {|D|B ; D ∈ B}.
|D|B is simply noted |D| when B is clear from the context.

Definition A.12 (Daimon closure). Let D be a design, the daimon closure of D, written
Dz, is the set of designs obtained from D by substituting, for some set of negative-ended
chronicles c ∈ D, all the chronicles cκ+w ∈ D by the chronicles cz.
Let E be a set of designs of the same base, the daimon closure of E noted Ez is the set⋃

D∈EDz.

A.2. Proofs of Subsection 4.2. We prove first the inversion property of legality with
respect to shuffle: a legal shuffle of paths is a shuffle of legal paths.

Lemma A.13. Let p and q be two positive-ended paths and r ∈ p q be a path, if r is legal
then also p and q are legal.

Proof. We prove the result by contradiction: let us suppose that p and q are two paths,
r ∈ p q is a path such that its dual ∼r is a path, and at least one of the duals ∼p and ∼q is not
a path. Without loss of generality, we can suppose that ∼p is not a path.
• Remark the following: Let p, q , r defined as above then there exist p′, q ′, r ′ satisfying the
same requirements as for p, q , r and such that r ′ = wz where w is a prefix of r . Indeed,
as ∼p is not a path, there exists an action κ− justified by κ+ such that p = w1κ

+w2κ
−w3

and κ+ does not appear in pw1κ+w2κ− q. Hence p′ := w1κ
+w2κ

−z is a path such that ∼p′
is not a path. Let r = x1κ

−x2 and note that w1κ
+w2 is a subsequence of x1. Let q ′ be

the subsequence of x1κ− with actions in q , then q ′ is a positive-ended prefix of q , hence a
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path. Finally let r ′ := x1κ
−z then r ′ and ∼r ′ are paths such that r ′ ∈ p′ q ′ (by following

the same construction steps as for r ).
• Hence for proving the lemma, it suffices to consider triples (p′, q ′, r ′) satisfying the following:

r ′ ∈ p′ q ′ is such that ∼r ′ is a path, p′ = w1κ
+w2κ

−z, r ′ = wκ−z and ∼p′ is not a path:
κ+ does not appear in pw1κ+w2κ− q.
• Remark also that if lengths of p′ and q ′ are less or equal to 2 then ∼p′ and ∼q ′ are paths.
• Let (p0, q0, r0) be such a triple with length of r0 minimal with respect to all such triples

(p′, q ′, r ′). Notice that κ− is not initial, otherwise ∼p0 would be a path. As ∼r0 is a path,
let us write p∼r0 q = w0α

+
nα
−
n . . . α

+
0 α
−
0 where α+

n = κ+ and α−0 = κ−. If n = 0 then κ+
precedes immediately κ− in r0, hence κ+ precedes immediately κ− in p0, contradicting the
fact that κ+ does not occur in p∼p0 q. So n > 0. Let us write r0 = w′α−1 w

′′α+
0 κ
−z.

– Suppose α+
0 is an action of p0, then it is also the case for its justifier α−1 . Define

r1 = w′κ−z. Remark that r1 is a path and its dual is also a path. Furthermore, we
can define q1 (resp. p1) as the subsequence of q0 (resp. p0) present in r1. Remark that
r1 ∈ p1 q1 and ∼p1 is not a path. This contradicts the fact that r0 is minimal.

– Otherwise α+
0 is an action of q0, then it is also the case for its justifier α−1 . If actions in

w′′ are actions of q0, we define r1, q1, p1 as before and this yields a contradiction. Else
let β+ be the last action of p0 in w′′. There is also an action γ− of p0 which immediately
precedes β+ in w′′. One can delete from r0 the actions γ− and β+. Then we get a
shorter sequence r1 together with paths p1 and q1 such that ∼p1 is not a path. Hence a
contradiction with the hypothesis of minimality.

We prove now proposition 4.16 that characterizes, in the general case, the visitable paths
of a tensor. This is a generalization of what was at stake for proving that the tensor is stable
for regularity (proposition 4.15). We decompose the proof in two lemmas as each of them is
quite long and technical (lemmas A.16 and A.17). In each lemma, we need associativity of
interaction in terms of paths (lemma A.15). Associativity of interaction in terms of designs
is proved in [Gir01]. This initial lemma uses a notion of projection:

Definition A.14 (Projection). Let p be a path, the projection of p on X, written p�X, is
the subsequence of p made of actions of X, X being a set of actions, a path, a design or a
net.

Lemma A.15. Let R, S, T be three nets of designs such that S and T have distinct bases
and [[R,S,T]] = z, then 〈T←[[R,S]]〉 = 〈ST←R〉�T.

Proof. The proof is done by induction on the length of 〈ST←R〉. Note first that each proper
step of normalization occurs between a subnet of R and either a subnet of S or a subnet of
T as S and T have distinct bases.
If 〈ST←R〉 = ε then R = z thus [[R,S]] = z hence 〈T←[[R,S]]〉 = ε. The result follows.
Suppose the property satisfied for lengths less or equal to n and 〈ST←R〉 has length n+ 1.
We consider the various cases:
• If S is positive: S = (+, σ, I)S′.
Then R = (−, σ, I)R′ ∪

⋃
J 6=I(−, σ, J)RJ ∪

⋃
ξ 6=σ,K(−, ξ,K)Rξ,K .

Let R′′ = R′ ∪
⋃
ξ 6=σ,K(−, ξ,K)Rξ,K :

– [[R,S]] = [[R′′,S′]] then 〈T←[[R,S]]〉 = 〈T←[[R′′,S′]]〉
– 〈ST←R〉 = (+, σ, I) 〈S′T←R′′〉 then 〈ST←R〉�T = 〈S′T←R′′〉�T
thus the result by induction hypothesis.
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• If R is positive:
– If R = (+, σ, I)R′ and S = (−, σ, I)S′ ∪

⋃
J 6=I(−, σ, J)SJ ∪

⋃
ξ 6=σ,K(−, ξ,K)Sξ,K . Let

S′′ = S′ ∪
⋃
ξ 6=σ,K(−, ξ,K)Sξ,K :

∗ [[R,S]] = [[R′,S′′]] then 〈T←[[R,S]]〉 = 〈T←[[R′,S′′]]〉
∗ 〈ST←R〉 = (−, σ, I) 〈S′′T←R′〉 then 〈ST←R〉�T = 〈S′′T←R′〉�T
thus the result by induction hypothesis.

– If R = (+, σ, I)R′ and T = (−, σ, I)T′ ∪
⋃
J 6=I(−, σ, J)TJ ∪

⋃
ξ 6=σ,K(−, ξ,K)Tξ,K . Let

T′′ = T′ ∪
⋃
ξ 6=σ,K(−, ξ,K)Tξ,K :

∗ [[R,S]] = (+, σ, I)[[R′,S]]
then 〈T←[[R,S]]〉 = 〈T←(+, σ, I)[[R′,S]]〉 = (−, σ, I) 〈T′′←[[R′,S]]〉
∗ 〈ST←R〉 = (−, σ, I) 〈ST′′←R′〉
then 〈ST←R〉�T = 〈ST′′←R′〉�T = 〈ST′′←R′〉�T′′

thus the result by induction hypothesis.
• If R and S are negative, hence T is positive: let T = (+, σ, I)T′ and R = (−, σ, I)R′ ∪⋃

J 6=I(−, σ, J)RJ ∪
⋃
ξ 6=σ,K(−, ξ,K)Rξ,K .

Let R′′ = R′ ∪
⋃
ξ 6=σ,K(−, ξ,K)Rξ,K :

– [[R,S]] = (−, σ, I)[[R′,S]] ∪
⋃
J 6=I(−, σ, J)[[RJ ,S]] ∪

⋃
ξ 6=σ,K(−, ξ,K)[[Rξ,K ,S]] then

〈T←[[R,S]]〉 = (−, σ, I) 〈T′′←[[R′,S]]〉
– 〈ST←R〉 = (−, σ, I) 〈ST′′←R′〉

then 〈ST←R〉�T = 〈ST′′←R′〉�T = 〈ST′′←R′〉�T′′
thus the result by induction hypothesis.

Lemma A.16. Let P and Q be alien positive behaviours,
If r ∈ VP⊗Q then:
• (Shuffle condition) r ∈ VP l l VQ,
• (Dual condition) for all path sκ− in pp∼r qq, if there exist paths p′ = (+, ξ, I)p′1 ∈ VP
and q ′ = (+, ξ, J)q ′1 ∈ VQ with s ∈ (+, ξ, I ∪ J)(p′1 q ′1),
then either p′κ−z ∈ VP or q ′κ−z ∈ VQ.

Proof. Let P and Q be alien positive behaviours with base ` ξ. Let r ∈ VP⊗Q.
(Shuffle condition):
• As r is a visitable path, ∼r is a path. Furthermore there exist designs D ∈ P ⊗Q and
E ∈ (P⊗Q)⊥ such that r = 〈D←E〉.
• Using the independence property ([Gir01], Th. 20), there exist designs D1 ∈ P and D2 ∈ Q
such that D = D1 ⊗D2.
• If r = z, remark that r ∈ VP (and also r ∈ VQ). So let us consider the other cases, i.e.,
designs D1 and D2 are distinct from the design {z}. We write D1 = (+, ξ, I)D′1 and D2 =
(+, ξ, J)D′2. Behaviours being alien, we have that I ∩J = ∅. Let E = (−, ξ, I ∪J)(E′ ∪E′′).
• We have 〈D1 ⊗D2←E〉 = (+, ξ, I ∪ J) 〈D′1 D′2←E′〉. Moreover, [[D′1,D

′
2,E
′]] = z and D′1

and D′2 have distinct bases. Hence lemma A.15 applies: 〈D′1←[[E′,D′2]]〉 = 〈D′1D′2←E′〉�D′1
and 〈D′2←[[E′,D′1]]〉 = 〈D′1D′2←E′〉�D′2.
• Let r1 := 〈D′1D′2←E′〉�D′1 and r2 := 〈D′1D′2←E′〉�D′2, then we have that r ∈ (+, ξ, I ∪
J)r1 (+, ξ, I ∪ J)r2. Indeed, for each negative action that occurs in 〈D′1D′2←E′〉 and is
an address in D′1 (resp. D′2), then the next action in 〈D′1D′2←E′〉 is positive and should
also be an address in D′1 (resp. D′2) as in a path a positive action is in the same chronicle
as the negative action that precedes it, hence also in an interaction path.
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• Furthermore following the adjunction theorem ([Gir01], Th. 14), we have that

(−, ξ, I)[[E′,D′2]] ∪ E′′ ∈ P⊥.

Remark finally that 〈D1←(−, ξ, I)[[E′,D2]] ∪ E′′〉 = (+, ξ, I) 〈D′1←[[E′,D2]]〉 = (+, ξ, I)r1.
Thus (+, ξ, I)r1 ∈ VP. Similarly, (+, ξ, J)r2 ∈ VQ.
• So r ∈ VP VQ.
(Dual condition). Let sκ− in pp∼r qq such that there exist p′ = (+, ξ, I)p′1 ∈ VP and q ′ =
(+, ξ, J)q ′1 ∈ VQ with s ∈ (+, ξ, I ∪ J)(p′1 q ′1). Without loss of generality, we can suppose
that κ− is an action occurring in P. Then we have to prove that p′κ−z ∈ VP:
• The justifier of κ− is in s , hence the justifier of κ− is in p′. So p′κ−z is a path. Remark
that sκ−z is a legal path and sκ−z ∈ (+, ξ, I ∪ J)(p′1κ−z q ′1), thus by lemma A.13 the
path p′κ−z is legal.
• We prove now that ppp′κ−zqqc ∈ P. Remark that ppp′κ−zqqc = ppp′qqc. Finally, as p′ ∈ VP
we have that ppp′qqc ∈ P. Hence the result.
• We prove now by contradiction that ppp′κ−qq

c
∈ P⊥. Let D ∈ P such that D 6⊥ ppp′κ−qq

c
.

Remark that D 6= z and D should begin with the action (+, ξ, I) otherwise D ⊥ ppp′κ−qq
c
.

We write D = (+, ξ, I)D1.
Note that, as p′ ∈ VP, we have that D ⊥ ppp′qq

c
. Furthermore paths in ppp′qq

c
are

necessarily of finite length. Then the only possibility for the normalization to diverge is
that there exists a legal path v = (+, ξ, I)v1 such that
– v is a path of D
– vκ− is a path of ppp′κ−qq

c

– vκ− is not a path of D.
Let pp∼r qqc = (−, ξ, I ∪ J)R1. Note that R1 is also complete with respect to negative

actions: R1 = R1
c.

We detail the steps we need to conclude:
– As q ′ ∈ VQ then ppq ′qqc ∈ Q. Thus D⊗ ppq ′qqc ∈ P⊗Q.
As r ∈ VP⊗Q then pp∼r qqc ∈ (P⊗Q)⊥.
It follows thatD⊗ppq ′qqc ⊥ pp∼r qqc, thus also [[D1, ppq ′1qq

c
,R1]] = z. Hence

〈
D1←[[R1, ppq ′1qq

c
]]
〉

is well defined.
– Let us consider ppp′qq ⊗ ppq ′qq. We define s1 such that s = (+, ξ, I ∪ J)s1. As s ∈

(+, ξ, I ∪ J)(p′1 q ′1), we have that ppp′qq⊗ ppq ′qq ⊥ ppszqq. Thus [[ppp′1qq, ppq ′1qq, pps1zqq]] = z.
Hence by lemma A.15,

〈
ppp′1qq←[[pps1zqq, ppq ′1qq]]

〉
=
〈
ppp′1qq⊗ ppq ′1qq←pps1zqq

〉
�ppp′1qq = p′1.

Thus ppp′1zqq ⊂ [[pps1zqq, ppq ′1qq]]. Hence, as there are no other actions with subaddresses
of ξ.i for i ∈ I in [[pps1zqq, ppq ′1qq]], we have that ppp′1zqq = [[pps1zqq, ppq ′1qq]].

– Furthermore, as s is a path of pp∼r qqc, we have that s is a path of R1, hence also
pps1qq ⊂ R1.
Normalization being deterministic, we have then that ppp′1qq ⊂ [[R1, ppq ′1qq]].

– Recall that [[D1, ppp′1qq
c
]] = z, more precisely that v1 =

〈
D1←ppp′1qq

c〉
. And that

[[D1,R1, ppq ′1qq
c
]] = z.

With the previous item, it follows that the path v1 is a prefix of
〈
D1←[[R1, ppq ′1qq

c
]]
〉
.
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– Finally, v1κ− is a path of [[R1, ppq ′1qq
c
]]. Hence, for the normalization between D1 and

[[R1, ppq ′1qq
c
]] to converge, we should also have v1κ− to be a path of D1, i.e., vκ− to be a

path of D.
– Contradiction with the hypothesis D 6⊥ ppp′κ−qq

c
. Thus ppp′κ−qq

c
∈ P⊥.

As ppp′κ−zqqc ∈ P and ppp′κ−qq
c
∈ P⊥, we have that p′κ−z ∈ VP.

Lemma A.17. Let P and Q be alien positive behaviours,
r ∈ VP⊗Q if:
• (Shuffle condition) r ∈ VP l l VQ,
• (Dual condition) for all path sκ− in pp∼r qq, if there exist paths p′ = (+, ξ, I)p′1 ∈ VP
and q ′ = (+, ξ, J)q ′1 ∈ VQ with s ∈ (+, ξ, I ∪ J)(p′1 q ′1),
then either p′κ−z ∈ VP or q ′κ−z ∈ VQ.

Proof. Let r satisfy (Shuffle) and (Dual) conditions. Suppose that r ∈ p q where p ∈ VP
and q ∈ VQ.
• We first show that pprqqc ∈ P ⊗Q. As p ∈ VP and q ∈ VQ, we have that pppqqc ∈ P and
ppqqqc ∈ Q. Hence pppqqc ⊗ ppqqqc ∈ P⊗Q. Finally remark that pprqqc = pppqqc ⊗ ppqqqc.
• We show now by contradiction that pp∼r qqc ∈ (P⊗Q)⊥. Let D ∈ P and E ∈ Q such that
D⊗ E 6⊥ pp∼r qqc. As pp∼r qqc is complete with respect to negative actions and paths of pp∼r qqc

have a finite length, divergence occurs if there exists a path s such that
– s is a path of D⊗ E,
– sκ− is a path of pp∼r qqc hence of pp∼r qq,
– sκ− is not a path of D⊗ E.
Obviously, neither D nor E is the daimon, otherwise D⊗ E ⊥ pp∼r qqc.

We can choose D and E such that s is of minimal length with respect to such pairs
of designs non orthogonal to pp∼r qqc. The path s defines a path p′ = (+, ξ, I)p′1 (resp.
q ′ = (+, ξ, J)q ′1) in D (resp. in E) such that s ∈ (+, ξ, I ∪ J)(p′1 q ′1).
– Remark that ppp′qq ⊂ D ∈ P, thus ppp′qqc ∈ P. Similarly, ppq ′qqc ∈ Q.
– As s is a path in pp∼r qqc, we have that ppsqq ⊂ pp∼r qqc.
– We show by contradiction that pp∼sqqc ∈ (P ⊗Q)⊥. Let D′ ∈ P and E′ ∈ Q such that

D′ ⊗ E′ 6⊥ pp∼sqqc. Divergence occurs necessarily because there exists a path v such that
– v is a path of D′ ⊗ E′,
– vκ′− is a path of pp∼sqqc hence of pp∼sqq,
– vκ′− is not a path of D′ ⊗ E′.
As ppsqq ⊂ pp∼r qqc, we have that vκ′− is a path of pp∼r qqc. Thus D′ ⊗E′ 6⊥ pp∼r qqc. Moreover
v is strictly shorter than s . This contradicts the fact that s is of minimum length. So
pp∼sqqc ∈ (P⊗Q)⊥.

– We show now that p′ ∈ VP. Let D′ ∈ P. We use the following notations:
– D = (+, ξ, I)D1

– D′ = (+, ξ, I)D′1
– E = (+, ξ, I)E1

– pp∼sqqc = (+, ξ, I)S1

As pp∼sqqc ∈ (P⊗Q)⊥, we have that [[D⊗ E, pp∼sqqc]] = z, hence also [[D1,E1,S1]] = z.
By lemma A.15, we have that 〈D1←[[S1,E1]]〉 = 〈D1E1←S1〉�D1 = p′1. Thus pp∼p′1qq ⊂
[[S1,E1]].
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Furthermore pp∼sqqc ⊥ D′ ⊗ E. Thus [[D′,E, pp∼sqqc]] = z, hence by associativity

[[D′, [[E, pp∼sqqc]]]] = z.

Thus [[D′1, [[E1,S1]]]] = z.
Hence as pp∼p′1qq ⊂ [[S1,E1]], we have [[D′1,

pp∼p′1qq
c
]] = z. It follows that [[D′, pp

∼p′qq
c
]] = z,

i.e., D′ ⊥ pp∼p′qq
c
.

So pp∼p′qq
c
∈ P⊥. Thus, as p′ is a path of D ∈ P, it follows that p′ ∈ VP.

– Similarly, we can prove that q ′ ∈ VQ.
– Using the constraint, we should have p′κ−z ∈ VP. As D ∈ P and p′ is a path of D, we

should also have p′κ− a path of D (necessary condition for visitable paths). Hence a
contradiction. So pp∼r qqc ∈ (P⊗Q)⊥.

• As pprqqc ∈ P⊗Q and pp∼r qqc ∈ (P⊗Q)⊥, we have that r ∈ VP⊗Q.

Proposition A.18. Let P and Q be alien positive behaviours,
r ∈ VP⊗Q iff the two following conditions are satisfied:
• (Shuffle condition) r ∈ VP l l VQ,
• (Dual condition) for all path sκ− in pp∼r qq, if there exist paths p′ = (+, ξ, I)p′1 ∈ VP
and q ′ = (+, ξ, J)q ′1 ∈ VQ with s ∈ (+, ξ, I ∪ J)(p′1 q ′1),
then either p′κ−z ∈ VP or q ′κ−z ∈ VQ.

Proof. Follows from lemmas A.16 and A.17.

A.3. Proofs of Subsection 5.

Lemma A.19. C is a positively saturated maximal clique of S with first action κ+0 iff there
is a unique decomposition C = C1 ∪ C ′C ′′ such that C1 is a positively saturated maximal
clique of VA[B]

with first action κ+0 , C
′ = C1∩V max

A[B]
and C ′′ is empty if C ′ is empty or κ+0 C

′′

is a positively saturated maximal clique of VB[A]
.

Proof. (⇐) Let C = C1 ∪ C ′C ′′ with C1, C ′, C ′′ as defined in the lemma.
• C is a clique: Note that pppqqq = pppqq ∪ ppκ+0 qqq as A and B are disjoint. Hence the fact
that C is a clique follows from the fact that C1 and C ′′ are cliques.
• C is a maximal clique: Let r ∈ S and r ¨ r ′ for all r ′ ∈ C. Either r ∈ VA[B]

hence
r ∈ C1 ⊂ C as C1 is a maximal clique of VA[B]

. Or r = pq where p ∈ V max
A[B]

and q ∈ V −B .
Thus p ∈ C1 and q ∈ C ′′ as C1 and C ′′ are maximal. Thus r ∈ C.
• C is positively saturated: Let m ∈ C, nκ−κ+ ∈ C, mκ−z ∈ S:
– If m ∈ C1 and nκ−κ+ ∈ C1. The result follows from the fact that C1 is positively

saturated for VA[B]
: the path mκ−κ+ ∈ C1 thus mκ−κ+ ∈ S.

– If m ∈ C1 and nκ−κ+ ∈ C ′C ′′, i.e., nκ−κ+ = pqκ−κ+ with p ∈ C ′ and qκ−κ+ ∈ C ′′.
As mκ−z ∈ S, we have that κ+0 κ

−z ∈ VB[A]
. Note also that κ+0 qκ−κ+ ∈ κ+0 C ′′. Thus

κ+0 κ
−κ+ ∈ κ+0 C ′′ as κ

+
0 C
′′ is a positively saturated maximal clique for VB[A]

. It follows
that mκ−κ+ ∈ S.

– If m ∈ C ′C ′′ and nκ−κ+ ∈ C1: as mκ−z ∈ S then m ∈ C ′ ⊂ C1. The result follows
from the fact that C1 is positively saturated for VA[B]

.
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– If m ∈ C ′C ′′ and nκ−κ+ ∈ C ′C ′′, i.e., m = pq with p ∈ C ′ and q ∈ C ′′, and nκ−κ+ =

p′q ′κ−κ+ with p′ ∈ C ′ and q ′κ−κ+ ∈ C ′′. As mκ−z ∈ S then κ+0 qκ−z ∈ VB[A]
. Thus

κ+0 qκ−κ+ ∈ κ+0 C ′′ as κ
+
0 C
′′ is a positively saturated maximal clique for VB[A]

. It follows
that mκ−κ+ ∈ S.

(⇒) Let C be a positively saturated maximal clique of S.
• C may be factorized: Let C = C1 ∪ C2 with C1 ⊂ VA[B]

and C2 ⊂ V max
A[B]

V −B . We remark
the following points: let p1 ∈ C1, p′2q ′2 ∈ C2 and p′′2q ′′2 ∈ C2. Then p′2q ′2 ¨ p′′2q ′′2 and foci of
p′2 and p′′2 are disjoint from foci of q ′2 and q ′′2 . Thus q ′2 ¨ q ′′2 hence p′2q ′′2 ∈ C2 and p′′2q ′2 ∈ C2.
It follows that the set C2 may be factorized: We can write C2 = C ′C ′′ with C ′ ⊂ V max

A[B]

and C ′′ ⊂ V −B .
• As C is a clique, C1, C ′ and C ′′ are cliques.
• By construction if C ′ is empty, C ′′ is also empty. Suppose C ′ not empty, let q ∈ V −B such
that q ¨ C ′′ then C ′q ¨ C ′C ′′ and also C ′q ¨ C1: C ′′ is a maximal clique or is empty.
• Furthermore p1 ¨ p′2 ¨ p′′2 hence p′2 ∈ C1 and p′′2 ∈ C1. It follows that C ′ ⊂ C1. Hence by
construction, C ′ = C1 ∩ V max

A[B]
.

• Let p ∈ VA[B]
such that p ¨ C1 then p ¨ C ′ as C ′ ⊂ C1, thus p ¨ C ′C ′′, so p ∈ C, thus

p ∈ C1: C1 is a maximal clique or is empty.
• As C is positively saturated, C1 and κ+0 C

′′ are also positively saturated.

Lemma A.20. D is a positively saturated maximal clique of ∼S with first action κ−0 iff there
is a unique decomposition D = D1 ∪

⋃
κ−1 ∈K

D′
κ−1
D′′
κ−1

such that D1 is a positively saturated

maximal clique of∼VA[B]
with first action κ−0 , K is the set of (negative) actions κ−1 such that

D1κ
−
1 ∩ V max

A[B]
6= ∅, D′

κ−1
= D1κ

−
1 ∩ V max

A[B]
and each κ−0 D

′′
κ−1

is a positively saturated maximal

clique of∼VB[A]
such that the first action of paths in D′′

κ−1
is distinct of first action of paths in

D′′
κ′−1

when κ−1 6= κ′−1 .

Proof. There is a unique κ−0 as behaviours are connected. Note that elements of V max
A[B]

are
z-free then paths of D′

κ−1
end with a negative action. Note also each D′′

κ−1
has a unique

first action as the first action of paths of D′′
κ−1

should be positive. Finally it follows that

D′
κ−1
D′′
κ−1

¨ D′
κ′−1
D′′
κ′−1

for κ−1 6= κ′−1 , and that if there is an action in common between D′′
κ−1

and D′′
κ′−1

then κ−1 = κ′−1 .
(⇐) Let D = D1 ∪

⋃
κ−1 ∈K

D′
κ−1
D′′
κ−1

with D1, D′κ−1
, D′′

κ−1
as defined in the lemma.

• D is a clique: This follows by construction of D and the fact that D1, D′κ−1
, D′′

κ−1
are

cliques.
• D is a maximal clique: Let r ∈ ∼S and r ¨ r ′ for all r ′ ∈ D. Either r ∈∼VA[B]

hence

r ∈ D1 ⊂ D as D1 is a maximal clique of∼VA[B]
. Or r = pq where p ∈ V max

A[B]
and q ∈
∼
V −B .

Remark that p ¨ r ′ for all r ′ ∈ D, thus p ∈ D1 hence p ∈ D′
κ−1

for some action κ−1 . Now
remark that pq ¨ pq ′ for all q ′ ∈ D′′

κ−1
. Thus q ∈ D′′

κ−1
as D′′

κ−1
is a maximal clique. Thus

r ∈ D.
• D is positively saturated: Let m ∈ D, nκ−κ+ ∈ D, mκ−z ∈ ∼S:



LUDICS BEHAVIOURS 47

– If m ∈ D1 and nκ−κ+ ∈ D1: the result follows from the fact that D1 is positively
saturated.

– If m ∈ D1 and nκ−κ+ ∈ D′
κ−1
D′′
κ−1

. As mκ−z ∈ ∼S, we have that κ− is an action occurring

in VA[B]
. Hence κ+ occurs in VA[B]

. It follows that κ+0 κ
+ ∈∼VB[A]

. Thus mκ−κ+ ∈ ∼S.
– If m ∈ D′

κ−1
D′′
κ−1

and nκ−κ+ ∈ D1: as mκ−z ∈ ∼S then m ∈ D1. The result follows from
the fact that D1 is positively saturated.

– If m ∈ D′
κ−1
D′′
κ−1

and nκ−κ+ ∈ D′
κ′−1
D′′
κ′−1

, i.e., m = m0m1 with m0 ∈ D′κ−1
and m1 ∈ D′′κ−1

,

and nκ−κ+ = n0n1κ−κ+ with n0 ∈ D′κ′−1
and n1κ−κ+ ∈ D′′κ′−1

. Furthermore mκ−z ∈ ∼S
thus κ−1 = κ′−1 : let κ′+ be the justifier of κ−, then this action κ′+ occurs in m1 and also
in n1, thus there is a common view between ppm1qq and ppn1qq, it follows that κ−1 = κ′−1 .
Note now that κ−0 m1 ∈ D′′κ−1

and κ−0 n1κ−κ+ ∈ D′′κ−1
and that κ−0 m1κ

−z ∈∼VB[A]
. Hence

as D′′
κ−1

is positively saturated for∼VB[A]
, we have that κ−0 m1κ

−κ+ ∈∼VB[A]
. It follows

that mκ−κ+ ∈ ∼S.
(⇒) Let D be a positively saturated maximal clique of ∼S.
• D may be factorized: Let D = D1 ∪D2 with D1 ⊂

∼
VA[B]

and D2 ⊂ V max
A[B]

∼
V −B . We remark

the following points: let p1 ∈ D1, p′2q ′2 ∈ D2 and p′′2q ′′2 ∈ D2 (with p′2, p′′2 ∈ V max
A[B]

and

q ′2, q ′′2 ∈
∼
V −B ). We have that p′2q ′2 ¨ p′′2q ′′2 . Thus p′2 ¨ p′′2 . If p′2 and p′′2 end on the same

action then q ′2 ¨ q ′′2 . In such a case, p′2q ′′2 ∈ D2 and p′′2q ′2 ∈ D2: the set D2 may be
factorized. Let K be the set of last actions of such z-free paths p′2 and D′

κ−1
be the set of

paths p′2 ending with the same last action κ−1 . We define D′′
κ−1

to be the set of q ′2 such that

p′2q ′2 ∈ D2 and p′2 ends on action κ−1 . We can write D2 =
⋃
κ−1 ∈K

D′
κ−1
D′′
κ−1

with for all κ−1 ,

D′
κ−1
⊂ V max

A[B]
and D′′

κ−1
⊂
∼
V −B .

• As D is a clique, D1, D′κ−1
and D′′

κ−1
are cliques.

• By construction if D′
κ−1

is empty, D′′
κ−1

is also empty. Suppose D′
κ−1

not empty, let q ∈
∼
V −B

such that q ¨ D′′
κ−1

then D′
κ−1

q ¨ D′
κ−1
D′′
κ−1

and also D′
κ−1

q ¨ D1: D′′κ−1
is a maximal clique

or is empty.
• With notations as before, we have that p1 ¨ p′2 ¨ p′′2 hence p′2 ∈ D1 and p′′2 ∈ D1. It
follows that D′

κ−1
⊂ D1. Hence by construction, D′

κ−1
=
∼
D1 κ

+
1 ∩ V max

A[B]
.

• Let p ∈∼VA[B]
such that p ¨ D1 then p ¨ D′

κ−1
as D′

κ−1
⊂ D1, thus p ¨ D′

κ−1
D′′
κ−1

, so p ∈ D,
thus p ∈ D1: D1 is a maximal clique or is empty.
• As D is positively saturated, then D1 and κ−0 D

′′
κ−1

are also all positively saturated.
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