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Abstract. The syntactic monoid of a language is generalized to the level of a symmetric
monoidal closed category D. This allows for a uniform treatment of several notions of
syntactic algebras known in the literature, including the syntactic monoids of Rabin and
Scott (D “ sets), the syntactic ordered monoids of Pin (D “ posets), the syntactic semirings
of Polák (D “ semilattices), and the syntactic associative algebras of Reutenauer (D =
vector spaces). Assuming that D is a commutative variety of algebras or ordered algebras,
we prove that the syntactic D-monoid of a language L can be constructed as a quotient
of a free D-monoid modulo the syntactic congruence of L, and that it is isomorphic to
the transition D-monoid of the minimal automaton for L in D. Furthermore, in the case
where the variety D is locally finite, we characterize the regular languages as precisely the
languages with finite syntactic D-monoids.

1. Introduction

One of the successes of the theory of coalgebras is that ideas from automata theory can be
developed at a level of abstraction where they apply uniformly to many different types of
systems. In fact, classical deterministic automata are a standard example of coalgebras for
an endofunctor. And that automata theory can be studied with coalgebraic methods rests
on the observation that formal languages form the final coalgebra.

The present paper contributes to a new category-theoretic view of algebraic automata
theory. In this theory one starts with an elegant machine-independent notion of language
recognition: a language L Ď X˚ is recognized by a monoid morphism e : X˚ Ñ M if it
is the preimage under e of some subset of M . Regular languages are then characterized
as precisely the languages recognized by finite monoids. A key concept, introduced by
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Rabin and Scott [19] (and earlier in unpublished work of Myhill), is the syntactic monoid
of a language L. It serves as a canonical algebraic recognizer of L, namely the smallest
X-generated monoid recognizing L. Two standard methods to construct the syntactic
monoid are:

(1) as a quotient of the free monoid X˚ modulo the syntactic congruence of L, which is a
two-sided version of the well-known Myhill-Nerode equivalence, and

(2) as the transition monoid of the minimal automaton for L.

In addition to syntactic monoids there are several related notions of syntactic algebras for
(weighted) languages in the literature, most prominently the syntactic ordered monoids
of Pin [16], the syntactic idempotent semirings of Polák [18] and the syntactic associative
algebras of Reutenauer [20], all of which admit constructions similar to (1) and (2). A
crucial observation is that monoids, ordered monoids, idempotent semirings and associative
algebras are precisely the monoid objects in the categories of sets, posets, semilattices and
vector spaces, respectively. Moreover, all these categories are symmetric monoidal closed
w.r.t. their usual tensor product.

The main goal of our paper is to develop a theory of algebraic recognition in a general
symmetric monoidal closed category D “ pD,b, Iq, covering all the above syntactic algebras
uniformly. Following Goguen [12], a language in D is a morphism L : Xf Ñ Y where X is a
fixed object of inputs, Y is a fixed object of outputs, and Xf denotes the free D-monoid on
X. And a D-automaton is given by the picture below: it consists of an object of states Q, a
morphism i representing the initial state, an output morphism f , and a transition morphism
δ which may be presented in its curried form λδ.

X bQ

δ
��

I
i // Q

f
//

λδ
��

Y

rX,Qs

(1.1)

As observed by Rutten [21], this means that an automaton is at the same time an algebra

I `X bQ
ri,δs
ÝÝÑ Q for the functor FQ “ I `X bQ, and a coalgebra Q

xf,λδy
ÝÝÝÝÑ Y ˆrX,Qs for

the functor TQ “ Y ˆ rX,Qs. It turns out that much of the classical (co-)algebraic theory
of automata in the category of sets extends to this level of generality. Thus Goguen [12]
demonstrated that the initial algebra for F coincides with the free D-monoid Xf, and that
every language is accepted by a unique minimal D-automaton. We will add to this picture
the observation that the final coalgebra for T is carried by the object of languages rXf, Y s,
see Proposition 2.26.

In Section 3 we introduce the central concept of our paper, the syntactic D-monoid of a
language L : Xf Ñ Y , which by definition is the smallest X-generated D-monoid recognizing
L. In Corollary 3.10 we give a natural condition on a monoidal category that ensures the
existence of a syntactic D-monoid for every language L. Furthermore, assuming that D is a
commutative variety of algebras or ordered algebras, we will show that the above constructions
(1) and (2) for the classical syntactic monoid adapt to our general setting: the syntactic
D-monoid is (1) the quotient of Xf modulo the syntactic congruence of L (Theorem 3.14),
and (2) the transition D-monoid of the minimal D-automaton for L (Theorem 4.7). As
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special instances we recover syntactic monoids (D “ sets), syntactic ordered monoids (D “

posets), syntactic semirings (D “ semilattices) and syntactic associative algebras (D “ vector
spaces). In addition, our categorical setting yields new types of syntactic algebras “for free”.
For example, we will identify monoids with zero as the algebraic structures representing
partial automata (the case D “ pointed sets) and obtain the syntactic monoid with zero for
a given language. Similarly, by taking as D the variety of algebras with an involutive unary
operation we obtain syntactic involution monoids.

Most of the results of our paper apply to arbitrary languages. In Section 5 we will
investigate D-regular languages, that is, languages accepted by D-automata with a finitely
presentable object of states. Under suitable assumptions on D, we will prove that a language
is D-regular iff its syntactic D-monoid is carried by a finitely presentable object (Theorem 5.6).
We will also derive a dual characterization of the syntactic D-monoid which is new even
in the “classical” case D “ sets: if D is a locally finite variety, i.e. all finitely generated
algebras are finite, and if moreover some other locally finite variety C is dual to D on the
level of finite objects, the syntactic D-monoid of L dualizes to the local variety of languages
in C generated by the reversed language of L.

Related work. This paper is a reworked full version of the conference paper [2].
Apart from including full proofs, it has two new contributions. First, we present in Section
3.1 a purely categorical existence criterion for syntactic monoids in an abstract symmetric
monoidal closed category, whereas in [2] only a set-theoretic construction was given. Secondly,
we treat the case of ordered algebras explicitly, covering new examples such as the syntactic
ordered monoids of Pin [16].

Another categorical approach to (classical) syntactic monoids appears in the work of
Ballester-Bolinches, Cosme-Llopez and Rutten [4]. These authors consider automata in the
category of sets specified by equations or dually by coequations, which leads to a construction
of the automaton underlying the syntactic monoid of a language. The fact that it forms
the transition monoid of a minimal automaton is also interpreted in that setting. In the
present paper we take a more general approach by studying algebraic recognition in an
arbitrary symmetric monoidal closed category D. One important source of inspiration for
our categorical setting was the work of Goguen [12].

In the recent papers [1, 3] we presented a categorical view of varieties of languages,
another central topic of algebraic automata theory. Building on the duality-based approach
of Gehrke, Grigorieff and Pin [11], we generalized Eilenberg’s variety theorem and its local
version to the level of an abstract (pre-)duality between algebraic categories. The idea to
replace monoids by monoid objects in a commutative variety D originates in this work.

Another categorical setting for algebraic language theory can be found in Bojánczyk
[8]. He considers, in lieu of monoids in commutative varieties, Eilenberg-Moore algebras for
an arbitrary monad on sorted sets, and defines syntactic congruences in this more general
setting. Our Theorem 3.14 is a special case of [8, Theorem 3.1].

2. Preliminaries

Throughout this paper we investigate deterministic automata in a symmetric monoidal
closed category. In all concrete applications, this category will be a commutative variety of
algebras or ordered algebras. Recall that for a finitary signature Σ a variety of Σ-algebras
is a class of Σ-algebras specified by equations s “ t between Σ-terms. Equivalently, by
Birkhoff’s HSP theorem, it is a class of Σ-algebras closed under products, subalgebras and
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quotients (= homomorphic images). Similarly, ordered Σ-algebras are posets equipped with
order-preserving Σ-operations, and their morphisms are order-preserving Σ-homomorphisms.
A quotient of an ordered algebra B is represented by a surjective morphism e : B � A, and
a subalgebra of B is represented by an order-reflecting morphism m : A� B, i.e. mx ď my
iff x ď y. A variety of ordered Σ-algebras is a class of ordered Σ-algebras specified by
inequations s ď t between Σ-terms. Equivalently, by Bloom’s HSP theorem [7], it is a class
of ordered Σ-algebras closed under products, subalgebras and quotients.

A variety D of algebras or ordered algebras is called commutative (a.k.a. entropic) if, for
any two algebras A and B in D, the set rA,Bs of all homomorphisms from A to B forms a

subalgebra rA,Bs� B|A| of the product of |A| copies of B. Equivalently, the corresponding
monad over Set (resp. Pos, the category of posets) is commutative in the sense of Kock
[13].

Example 2.1. In our applications, we shall work with the following commutative varieties:

(1) Set is a commutative variety (over the empty signature) with rA,Bs “ BA.
(2) Pos is a commutative variety of ordered algebras (over the empty signature). Here

rA,Bs is the poset of monotone functions from A to B, ordered pointwise.
(3) A pointed set pA,Kq is a set A together with a chosen point K P A. The category SetK

of pointed sets and point-preserving functions is a commutative variety. The point of
rpA,KAq, pB,KBqs is the constant function with value KB.

(4) An involution algebra is a set with an involutive unary operation x ÞÑ rx, i.e. rrx “ x. We
call rx the complement of x. Morphisms are functions f preserving complements, i.e.

fprxq “ Ćfpxq. The variety Inv of involution algebras is commutative. Indeed, the set
rA,Bs of all homomorphisms is an involution algebra with pointwise complementation.

(5) All other examples we treat in our paper are varieties of modules over a semiring. Recall
that a semiring S “ pS,`, ¨, 0, 1q consists of a commutative monoid pS,`, 0q and a
monoid pS, ¨, 1q subject the following equational laws:

0s “ s0 “ 0, rps` tq “ rs` rt and pr ` sqt “ rt` st.

A module over a semiring S is a commutative monoid pM,`, 0q together with a scalar
multiplication ¨ : S ˆM Ñ M (written simply as juxtaposition ps, xq ÞÑ sx, as usual)
such that the following laws hold:

pr ` sqx “ rx` sx, rpx` yq “ rx` ry, prsqx “ rpsxq,
0x “ 0, 1x “ 1, r0 “ 0.

We denote by ModpSq the category of S-modules and module homomorphisms (i.e. S-
linear maps). This is a commutative variety; here rA,Bs is the set of all module
homomorphisms with pointwise module structure. Three interesting special cases of
ModpSq are:
(a) S “ t0, 1u, the boolean semiring with 1 ` 1 “ 1: the category JSL0 of join-

semilattices with the least element 0, and homomorphisms preserving joins and
0;

(b) S “ Z: the category Ab of abelian groups and group homomorphisms;
(c) S “ K (a field): the category VecpKq of vector spaces over K and linear maps.

Notation 2.2. For any variety D of algebras or ordered algebras, we denote by Ψ : Set Ñ D

the left adjoint to the forgetful functor |´| : DÑ Set. Thus ΨX0 is the free object of D on
the set X0.
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Example 2.3. (1) For D “ Set or Pos we have ΨX0 “ X0 (discretely ordered).
(2) For D “ SetK the free pointed set on X0 is ΨX0 “ X0 ` tKu.

(3) For D “ Inv the free involution algebra on X0 is ΨX0 “ X0 ` ĂX0 where ĂX0 is a copy
of X0 (whose elements are denoted rx for x P X0). The involution swaps the copies of

X0, and the universal arrow X0 Ñ X0 ` ĂX0 is the left coproduct injection.
(4) For D “ ModpSq the free module ΨX0 is the submodule of SX0 on all functions X0 Ñ S

with finite support. Equivalently, ΨX0 consists of formal linear combinations
řn
i“1 sixi

with si P S and xi P X0. In particular, ΨX0 “ PfX0 (finite subsets of X0) for D “ JSL0,
and ΨX0 is the vector space with basis X0 for D “ VecpKq.

Definition 2.4. Given objects A, B and C of a variety D, a bimorphism from A, B to C is
a function f : |A|ˆ|B| Ñ |C| such that the maps fpa,´q : |B| Ñ |C| and fp´, bq : |A| Ñ |C|
carry morphisms of D for every a P |A| and b P |B|. A tensor product of A and B is a
universal bimorphism ηA,B : |A| ˆ |B| Ñ |AbB|, which means that for every bimorphism
f : |A| ˆ |B| Ñ |C| there is a unique morphism f 1 : AbB Ñ C in D with f 1 ¨ ηA,B “ f .

Theorem 2.5 (Banaschewski and Nelson [5]). Every commutative variety D of algebras or
ordered algebras has tensor products, making pD,b, Iq with I “ Ψ1 a symmetric monoidal
closed category. That is, we have the following bijective correspondence of morphisms, natural
in A,B,C P D:

f : AbB Ñ C
λf : AÑ rB,Cs

Remark 2.6. We will use the following properties of the tensor product, see [5]:

(1) ´bB and Ab´ are left-adjoints and hence preserve all colimits.
(2) The morphism λf is obtained by currying the bimorphism f 1 “ f ¨ηA,B : |A|ˆ |B| Ñ |C|

corresponding to f , that is, λfpaqpbq “ f 1pa, bq for a P |A| and b P |B|.
(3) The evaluation morphism ev “ evA,B : rA,Bs bAÑ B, i.e. the counit of the adjunction

´bA % rA,´s, is the morphism in D corresponding to the bimorphism

ev1 : |rA,Bs| ˆ |A| Ñ |B|, ph, aq ÞÑ hpaq.

(4) The right unit isomorphism i : A – Ab I is given by

i “ p|A|
xA,c1y
ÝÝÝÝÑ |A| ˆ |I|

η
ÝÑ |Ab I|q

where c1 : |A| Ñ |I| is the constant map that sends a P A to the generator of I “ Ψ1.

Assumptions 2.7. For the rest of this paper let D be a commutative variety of algebras
or ordered algebras, equipped with the monoidal structure pD,b, Iq of the above theorem.
Furthermore, we fix an object X (of inputs) and an object Y (of outputs) in D.

Remark 2.8. Despite the above algebraic assumptions we will state many of our definitions,
theorems and proofs for an arbitrary symmetric monoidal closed category pD,b, Iq subject
to additional properties.

Remark 2.9. Recall that a monoid pM,m, iq in a monoidal category pD,b, Iq (with tensor
product b : DˆDÑ D and tensor unit I P D) is an object M equipped with a multiplication
m : M bM ÑM and unit i : I ÑM satisfying the usual associative and unit laws. Due
to b and I “ Ψ1 representing bimorphisms, this categorical definition is equivalent to the
following algebraic one in our setting: a D-monoid is a triple pM, ‚, iq where M is an object
of D and p|M |, ‚, iq is a monoid (in the usual sense) with ‚ : |M | ˆ |M | Ñ |M | a bimorphism
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of D. A morphism h : pM, ‚, iq Ñ pM 1, ‚1, i1q of D-monoids is a morphism h : M ÑM 1 of D
such that |h| : |M | Ñ |M 1| is a monoid morphism. We denote by MonpDq the category of
D-monoids and their homomorphisms. In the following we will freely work with D-monoids
in both categorical and algebraic disguise.

Example 2.10. (1) In Set the tensor product is the cartesian product, I “ t˚u, and
Set-monoids are ordinary monoids.

(2) In Pos the tensor product is the cartesian product, I “ t˚u, and Pos-monoids are
ordered monoids, that is, posets equipped with a monoid structure whose multiplication
‚ is monotone.

(3) In SetK we have I “ tK, ˚u, and the tensor product of pointed sets pA,KAq and pB,KBq
is AbB “ pAztKAuqˆ pBztKBuq` tKu. SetK-monoids are precisely monoids with zero.
Indeed, given a SetK-monoid structure on pA,Kq we have x ‚ K “ K “ K ‚ x for all
x because ‚ is a bimorphism, i.e. K is a zero element. Morphisms of MonpSetKq are
zero-preserving monoid morphisms.

(4) An Inv-monoid (also called an involution monoid) is a monoid equipped with an
involution x ÞÑ rx such that x ‚ ry “ rx ‚ y “ Ćx ‚ y. For example, for any set A the
power set PA naturally carries the structure of an involution monoid: the involution

takes complements, rS “ AzS, and the monoid multiplication is the symmetric difference
S ‘ T “ pSzT q Y pT zSq.

(5) JSL0-monoids are precisely idempotent semirings (with 0 and 1). Indeed, a JSL0-
monoid on a semilattice (i.e. a commutative idempotent monoid) pD,`, 0q is given by a
unit 1 and a monoid multiplication that, being a bimorphism, distributes over ` and 0.

(6) More generally, a ModpSq-monoid is precisely an associative algebra over S: it consists
of an S-module together with a unit 1 and a monoid multiplication that distributes over
` and 0 and moreover preserves scalar multiplication in both components.

Notation 2.11. We denote by Xbn (n ă ω) the n-fold tensor power of X, recursively

defined by Xb0 “ I and Xbpn`1q “ X bXbn.

Proposition 2.12 (see Mac Lane [14]). Let D be a symmetric monoidal closed category with
countable coproducts. Then the forgetful functor MonpDq Ñ D has a left adjoint assigning
to every object X the free D-monoid Xf “

š

năωX
bn. The monoid structure pXf,mX , iXq

is given by the coproduct injection iX : I “ Xb0 Ñ Xf and mX : Xf bXf Ñ Xf, where
XfbXf –

š

n,kăωX
bnbXbk and mX has as its pn, kq-component the pn`kq-th coproduct

injection. The universal arrow ηX : X Ñ Xf is the first coproduct injection.

Remark 2.13. For any D-monoid pM,m, iq and any morphism f : X ÑM the extension
to the unique D-monoid morphism f` : Xf ÑM with f` ¨ ηX “ f is defined inductively
on the components of the coproduct

š

năωX
bn as follows: f` “ rf`n snăω, where f`0 “ i :

Xb0 “ I ÑM and

f`n`1 “ pX
bpn`1q “ X bXbn

fbf`n
//M bM

m //M q.

In our setting where D is commutative variety we have the following construction of
free D-monoids on free D-objects:

Proposition 2.14. The free D-monoid on X “ ΨX0 is Xf “ ΨX˚0 . Its monoid multipli-
cation extends the concatenation of words in X˚0 , and its unit is the empty word ε.
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Proof. A constructive proof can be found in [1]. Here we sketch a more conceptual argument,
using the universal property of the tensor product. Observe that the free-algebra functor
Ψ : Set Ñ D is strongly monoidal, i.e. it preserves the unit and tensor product up to natural
isomorphism. Indeed, we have Ψ1 “ I by definition. To see that ΨpAˆBq – ΨAbΨB for
all sets A and B, consider the following bijections (natural in D P D):

DpΨpAˆBq, Dq – SetpAˆB, |D|q

– SetpA, |D|Bq

– SetpA, |rΨB,Ds|q

– DpΨA, rΨB,Dsq

– DpΨAbΨB,Dq.

This implies ΨpAˆBq – ΨAbΨB by the Yoneda lemma. Using the fact that Ψ preserves
coproducts, being a left adjoint, we conclude

Xf –
ž

năω

Xbn –
ž

năω

ΨXn
0 – Ψp

ž

năω

Xn
0 q “ ΨX˚0 .

Example 2.15. (1) In Set and Pos we have Xf “ X˚ (discretely ordered).
(2) In SetK with X “ ΨX0 “ X0 ` tKu we get Xf “ X˚0 ` tKu. The product x ‚ y is

concatenation for x, y P X˚0 , and otherwise K.

(3) In Inv with X “ ΨX0 “ X0`ĂX0 we have Xf “ X˚0 `
ĂX˚0 . The multiplication restricted

to X˚0 is concatenation, and is otherwise determined by ru ‚ v “ Ăuv “ u ‚ rv for u, v P X˚0 .
(4) In JSL0 with X “ ΨX0 “ PfX0 we have Xf “ PfX˚0 , the semiring of all finite

languages over X0. Its addition is union and its multiplication is the concatentation of
languages.

(5) More generally, in ModpSq with X “ ΨX0 we get Xf “ ΨX˚0 “ SrX0s, the module
of all polynomials over S in finitely many variables from X0, i.e.,

řn
i“1 cpwiqwi with

wi P X
˚
0 and cpwiq P S. Hence the elements of SrX0s are functions c : X˚0 Ñ S with

finite support, i.e. finite weighted languages. The S-algebraic structure of SrX0s is given
by the usual addition, scalar multiplication and product of polynomials.

Definition 2.16 (Goguen [12]). A D-automaton pQ, δ, i, fq consists of an object Q (of
states) and morphisms δ : X bQÑ Q, i : I Ñ Q and f : QÑ Y ; see Diagram (1.1). An
automata homomorphism h : pQ, δ, i, fq Ñ pQ1, δ1, i1, f 1q is a morphism h : QÑ Q1 preserving
transitions as well as initial states and outputs, i.e. making the following diagrams commute:

X bQ

Xbh
��

δ // Q

h
��

X bQ1
δ1

// Q1

I

i1
&&

i // Q

h
��

f
// Y

Q1
f 1

88

The above definition makes sense in any monoidal category D. In our algebraic setting,
since I “ Ψ1, the morphism i chooses an initial state in |Q|. Moreover, if X “ ΨX0 for
some set X0 (of inputs), the morphism δ amounts to a choice of endomorphisms δa : QÑ Q
for a P X0, representing transitions. This follows from the bijections

ΨX0 bQÑ Q in D

ΨX0 Ñ rQ,Qs in D

X0 Ñ DpQ,Qq in Set
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We will occasionally write q
a
ÝÑ q1 for δapqq “ q1 if δ is clear from the context.

Example 2.17. (1) The classical deterministic automata are the case D “ Set and Y “
t0, 1u. Here f : QÑ t0, 1u defines the set F “ f´1r1s Ď Q of final states. For a general
set Y we get deterministic Moore automata with outputs in Y .

(2) For D “ Pos and Y “ t0 ă 1u we get ordered deterministic automata. That is,
automata with a partially ordered set Q of states, monotone transition maps δa, and an
upper set F “ f´1r1s Ď Q of final states.

(3) The setting D “ SetK with X “ X0 ` tKu and Y “ tK, 1u gives partial deterministic
automata. Indeed, the state object pQ,Kq has transitions δa : pQ,Kq Ñ pQ,Kq for
a P X0 preserving K, that is, K is a sink state. Equivalently, we may consider δa as
a partial transition map on the state set QztKu. The morphism f : pQ,Kq Ñ tK, 1u
again determines a set of final states F “ f´1r1s (in particular, K is non-final). And
the morphism i : tK, ˚u Ñ pQ,Kq determines a partial initial state: either ip˚q lies in
QztKu, or no initial state is defined.

(4) In D “ Inv let us choose X “ X0 ` ĂX0 and Y “ t0, 1u with r0 “ 1. An Inv-automaton
is a deterministic automaton with complementary states x ÞÑ rx such that (i) for every

transition p
a
ÝÑ q there is a complementary transition rp

a
ÝÑ rq and (ii) a state q is final iff

rq is non-final.
(5) For D “ JSL0 with X “ PfX0 and Y “ t0, 1u (the two-chain) an automaton consists

of a semilattice Q of states, transitions δa : Q Ñ Q for a P X0 preserving finite joins
(including 0), an initial state i P Q and a homomorphism f : QÑ t0, 1u which defines a
prime upset F “ f´1r1s Ď Q of final states. Primality means that a finite join of states
is final iff one of the states is. In particular, 0 is non-final. For example, the classical
determinization of a nondeterministic automaton in Set via the powerset construction
yields a JSL0-automaton, where the semilattice structure is given by finite union.

(6) More generally, automata in D “ ModpSq with X “ ΨX0 and Y “ S are S-weighted
automata. Such an automaton consists of an S-module Q of states, linear transitions
δa : QÑ Q for a P X0, an initial state i P Q and a linear output map f : QÑ S.

Remark 2.18. (1) An algebra for an endofunctor F of D is a pair pQ,αq consisting of an
object Q and a morphism α : FQ Ñ Q. A homomorphism h : pQ,αq Ñ pQ1, α1q of
F -algebras is a morphism h : QÑ Q1 with h ¨ α “ α1 ¨ Fh. Throughout this paper we
work with the endofunctor

FQ “ I `X bQ.

Its algebras are denoted as triples pQ, δ, iq with δ : X bQÑ Q and i : I Ñ Q. Hence
D-automata are precisely F -algebras equipped with an output morphism f : Q Ñ Y .
Moreover, automata homomorphisms are precisely F -algebra homomorphisms preserving
outputs.

(2) Analogously, a coalgebra for an endofunctor T of D is a pair pQ, γq consisting of an
object Q and a morphism γ : Q Ñ TQ. A homomorphism h : pQ, γq Ñ pQ1, γ1q of
T -coalgebras is a morphism h : QÑ Q1 with Th ¨ γ “ γ1 ¨ h. Throughout this paper we
work with the endofunctor

TQ “ Y ˆ rX,Qs.

Its coalgebras are denoted as triples pQ, τ, fq with τ : Q Ñ rX,Qs and f : Q Ñ Y .
Hence D-automata are precisely pointed T -coalgebras, i.e. T -coalgebras equipped with a

morphism i : I Ñ Q. Indeed, given a pointed coalgebra I
i
ÝÑ Q

xf,τy
ÝÝÝÑ Y ˆ rX,Qs, the
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morphism Q
τ
ÝÑ rX,Qs is the curried form of a morphism QbX

–
ÝÑ X bQ

δ
ÝÑ Q. Hence

automata homomorphisms are precisely the T -coalgebra homomorphisms preserving
initial states.

Definition 2.19. Given a D-monoid pM,m, iq and a morphism e : X Ñ M of D, the
F -algebra associated to M and e has carrier M and structure

δ ” pX bM
ebM
ÝÝÝÑM bM

m
ÝÑMq and i : I ÑM.

In particular, the F -algebra associated to the free monoid Xf (and its universal arrow
ηX) is

δX ” pX bXf ηXbX
f

ÝÝÝÝÝÑ Xf bXf mX
ÝÝÑ Xfq and iX : I Ñ Xf.

Example 2.20. In Set every monoid M together with an “input” map e : X Ñ M
determines an F -algebra with initial state i and transitions δa “ epaq ‚ ´ for all a P X.
The F -algebra associated to X˚ is the automaton of words: its initial state is ε and the
transitions are given by w

a
ÝÑ aw for a P X.

Proposition 2.21 (Goguen [12]). For any symmetric monoidal closed category D with
countable coproducts, Xf is the initial algebra for F .

Remark 2.22. (1) For any F -algebra pQ, δ, iq the unique F -algebra homomorphism eQ :
Xf Ñ Q is constructed as follows: extend the morphism λδ : X Ñ rQ,Qs to a D-monoid
morphism pλδq` : Xf Ñ rQ,Qs. Then

eQ “ pX
f – Xf b I

pλδq`bi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Qq, (2.1)

where ev is the ‘evaluation morphism’, i.e. the counit of the adjunction ´bQ % rQ,´s.
To see this, recall that in any symmetric monoidal closed category D the object rQ,Qs

can be equipped with a D-monoid structure: the unit j : I Ñ rQ,Qs and multiplication
m : rQ,Qs b rQ,Qs Ñ rQ,Qs are the unique morphisms making the following diagrams
commutative (where ι1Q : QÑ I bQ is the left unit isomorphism):

rQ,Qs bQ
ev // Q

I bQ

jbQ

OO

ι1Q

:: rQ,Qs bQ
ev // Q

rQ,Qs b rQ,Qs bQ

mbQ

OO

rQ,Qsbev
// rQ,Qs bQ

ev

OO
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Then the following commutative diagram shows that eQ is an F -algebra homomorphism,
as claimed:

X bXf
ηXbX

f

//

XbιXf
��

Xf bXf
mX //

XfbιXf
��

Xf

ιXf
��

I
iXoo

ιI
��

i
oo

X bXf b I
ηXbX

fbI
//

Xbpλδq`bi
��

Xf bXf b I
mXbI //

pλδq`bpλδq`bi
��

Xf b I

pλδq`bi
��

I b I
iXbIoo

Ibi
��

X b rQ,Qs bQ
λδbrQ,QsbQ

//

Xbev

��

rQ,Qs b rQ,Qs bQ
mbQ

//

rQ,Qsbev
��

rQ,Qs bQ

ev

��

I bQ
jbQ

oo

pι1Qq
´1

vv
X bQ

λδbQ
// rQ,Qs bQ

ev // Q
OO

δ

(2) If D is a commutative variety of algebras or ordered algebras, the monoid structure on
rQ,Qs is given by composition and the identity map. Let δx : QÑ Q denote the image
of x P Xf under pλδq` : Xf Ñ rQ,Qs. Then the initial F -algebra homomorphism eQ in
(2.1) sends x to the state δx ¨ i : I Ñ Q. This follows from the commutative diagram
below, see Remark 2.6:

|Xf|
–
//

xXf,c1y %%

|Xf b I|
pλδq`bi

// |rQ,Qs bQ|
ev // |Q|

��

eQ

|Xf| ˆ |I|
pλδq`ˆi

//

η

OO

|rQ,Qs| ˆ |Q|

ev1

99

η

OO

Notation 2.23. δf : Xf bQÑ Q denotes the uncurried form of pλδq` : Xf Ñ rQ,Qs.

Remark 2.24. (1) One can also define δf explicitly (using that ´ b Q preserves the

coproduct Xf “
š

năωX
bn) as δf “ rδfn snăω where δf0 “ pI bQ

–
//Qq and

δfn`1 “ pX
bpn`1q bQ “ X bXbn bQ

Xbδfn //X bQ
δ //Qq.

From this definition we clearly have the equation

δ “ pX bQ
ηXbQ

//Xf bQ
δf //Qq.

(2) By [12, Theorem 3.3] the morphism δf : Xf bQÑ Q defines an action of the monoid
Xf on Q, i.e. the following diagrams commute:

I bQ
iXbQ

//

–

&&

Xf bQ

δf

��

Q

and Xf bXf bQ
mXbQ

//

Xfbδf

��

Xf bQ

δf

��

Xf bQ
δf

// Q
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Moreover, every F -algebra homomorphism h from pQ, δ, iq to pQ1, δ1, i1q is a morphism
of the corresponding monoid actions, i.e. the following diagram commutes:

Xf bQ
δf //

Xfbh
��

Q

h
��

I
ioo

i1��

Xf bQ1
pδ1qf

// Q1

(3) Furthermore, it is not difficult to prove that for δX : X bXf Ñ Xf coming from the
F -algebra associated to Xf we have that δfX is the monoid multiplication:

δfX “ mX : Xf bXf Ñ Xf.

Remark 2.25. Recall from Rutten [21] that the final coalgebra for the functor TQ “

t0, 1u ˆQX on Set is carried by the set PX˚ – rX˚, t0, 1us of all languages over X. The
transitions are given by taking left derivatives,

L
a
ÝÑ a´1L “ tw P X˚ : aw P Lu for L P PX˚ and a P X,

and the output map PX˚ Ñ t0, 1u sends L to 1 iff L contains the empty word. Given any
coalgebra Q, the unique coalgebra homomorphism from Q to PΣ˚ assigns to every state q
the language accepted by q (as an initial state).

These observations generalize to arbitrary symmetric monoidal closed categories. The
object rXf, Y s of D carries the following T -coalgebra structure: its transition morphism
τrXf,Y s : rXf, Y s Ñ rX, rXf, Y ss is the two-fold curryfication of

rXf, Y s bX bXf rXf,Y sbηXbX
f

ÝÝÝÝÝÝÝÝÝÝÝÑ rXf, Y s bXf bXf rXf,Y sbmX
ÝÝÝÝÝÝÝÝÑ rXf, Y s bXf ev

ÝÑ Y,

and its output morphism frXf,Y s : rXf, Y s Ñ Y is

frXf,Y s “ prX
f, Y s – rXf, Y s b I

rXf,Y sbiX
ÝÝÝÝÝÝÝÑ rXf, Y s bXf ev

ÝÑ Y q.

Proposition 2.26. For any symmetric monoidal closed category D, the coalgebra rXf, Y s
is the final coalgebra for T .

Proof. Given a T -coalgebra pQ, τ, fq, consider the morphism δ “ pX bQ
–
ÝÑ QbX

β
ÝÑ Qq

where β is the uncurried form of τ : Q Ñ rX,Qs, and denote by δf : Xf b Q Ñ Q its
extension, see Notation 2.23. We claim that the unique coalgebra homomorphism into
rXf, Y s is λh : QÑ rXf, Y s, where

h “ pQbXf – Xf bQ
δf
ÝÑ Q

f
ÝÑ Y q. (2.2)
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Let us first prove that h is indeed a coalgebra homomorphism. Preservation of outputs
is shown by the following commutative diagram (for the upper left-hand part use Re-
mark 2.24(2)):

Q

–

""

–

))

λh

��

Q
f

// Y

I bQ
iXbQ

// Xf bQ

δf

OO

Qb I
QbiX

//

λhbI
��

–

OO

QbXf

λhbXf

))

h

;;

–

OO

rXf, Y s
–

// rXf, Y s b I
rXf,Y sbiX

// rXf, Y s bXf

ev

OO

For preservation of transitions it suffices to show that the following diagram commutes,
where τ : rXf, Y s bX Ñ rXf, Y s is the uncurried coalgebra structure of rXf, Y s:

QbX

λhbX
��

β
// Q

λh
��

rXf, Y s bX
τ

// rXf, Y s

But the above diagram is precisely the curried version of the following one, which commutes
by the properties listed in Remark 2.24. (We omit writing b for space reasons.)

QXXf
βXf

//

QηXX
f

""
λhXXf

��

–

((

QXf

–

{{

h

��

XQXf

δXf

11

ηXQX
f

// XfQXf

–
vv

–
//

δfXf

22

XfXfQ
Xfδf

// XfQ

δf

��

QXfXf

λhXfXf

��

QmX
// QXf

h

,,

λhXf

��

–
// XfQ

δf // Q
f

##
rXf, Y sXXf rX

f
,Y
sη

X
X
f

// rXf, Y sXfXf
rX
f ,Y
sm

X

// rXf, Y sXf

ev
// Y

For the uniqueness, suppose that any coalgebra homomorphism λh : QÑ rXf, Y s is given.

We show that h : QbXf Ñ Y is determined by the composites pQbXbn
Qbin
ÝÝÝÑ QbXf h

ÝÑ Y q,
n ă ω, where in : Xbn Ñ Xf is the n-th coproduct injection. This proves the uniqueness
of λh: since b preserves coproducts, the morphisms pQb inqnăω form a coproduct cocone.
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For n “ 0, the claim is proved by the following diagram:

Qb I

Qbi0

��

–
//

λhbI

''

Q

f

��

λh

{{

rXf, Y s b I
–
//

rXf,Y sbi0
��

rXf, Y s
–

oo

f
rXf,Y s

��

rXf, Y s bXf

ev

**QbXf

h
//

λhbXf
77

Y

And the following diagram shows that h ¨ pQb in`1q is determined by h ¨ pQb inq (again we
omit b, in particular we write Xn for Xbn):

QXXn

βXn

��

Qin`1
//

λhXXn

''

QXf h //

λhXf

��

Y

rXf, Y sXXn

τXn

��

rXf,Y sin`1
//

rXf,Y sXin

((

rXf, Y sXf

ev

55

rXf, Y sXXf
rX
f ,Y s

ηX
X
f

//

τXf ((

rXf, Y sXfXf

rXf,Y smX

OO

p˚q

rXf, Y sXn

rXf,Y sin

// rXf, Y sXf

ev

AA

QXn

λhXn

77

Qin
// QXf

λhXf
ii

h

OO

Note that part marked with p˚q commutes by the definition of the coalgebra structure on
rXf, Y s and all other parts are easy to see.

Remark 2.27. If D is a commutative variety of algebras or ordered algebras, the final
homomorphism λh : QÑ rXf, Y s sends a state q P |Q| to the morphism x ÞÑ f ¨ δxpqq, with
δx : QÑ Q defined as in Remark 2.22(2). To see this, consider the commutative diagram
below, where pδfq1 is the bimorphism corresponding to δf:

|QbXf|
–
// |Xf bQ|

δf // |Q|
f
// |Y |
��

h

|Q| ˆ |Xf|

η

OO

–
// |Xf| ˆ |Q|

η

OO

pδfq1

::

By the definition of δx and Remark 2.6, the bimorphism pδfq1 maps px, qq to δxpqq. Thus
h ¨ η maps pq, xq to f ¨ δxpqq. This implies the claim since λh is the curried form of h ¨ η.

Proposition 2.26 motivates the following definition:
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Definition 2.28 (Goguen [12]). A language in D is a morphism L : Xf Ñ Y .

Note that if X “ ΨX0 (and hence Xf “ ΨX˚0 ) for some set X0, one can identify a

language L : Xf Ñ Y in D with its adjoint transpose rL : X˚0 Ñ |Y |, using the adjunction

Ψ % |´| : D Ñ Set. In the case where |Y | is a two-element set, rL is the characteristic
function of a “classical” language L0 Ď X˚0 .

Example 2.29. (1) In D “ Set (with Xf “ X˚ and Y “ t0, 1u) one represents L0 Ď X˚ by
its characteristic function L : X˚ Ñ t0, 1u. Analogously for D “ Pos with Y “ t0 ă 1u.

(2) In D “ SetK (with X “ X0 ` tKu, X
f “ X˚0 ` tKu and Y “ tK, 1u) one represents

L0 Ď X˚0 by its extended characteristic function L : X˚0 `tKu Ñ tK, 1u where LpKq “ K.

(3) In D “ Inv (with X “ X0 ` ĂX0, Xf “ X˚0 `
ĂX˚0 and Y “ t0, 1u) one represents

L0 Ď X˚0 by L : X˚0 `
ĂX˚0 Ñ t0, 1u where Lpwq “ 1 iff w P L0 and Lp rwq “ 1 iff w R L0

for all words w P X˚0 .
(4) In D “ JSL0 (with X “ PfX0, Xf “ PfX˚0 and Y “ t0, 1u) one represents L0 Ď X˚0

by L : PfX˚0 Ñ t0, 1u where LpUq “ 1 iff U X L0 ‰ H.
(5) In D “ ModpSq (with X “ ΨX0, Xf “ SrX0s and Y “ S) an S-weighted language

L0 : X˚0 Ñ S is represented by its free extension to a module homomorphism

L : SrX0s Ñ S, L

˜

n
ÿ

i“1

cpwiqwi

¸

“

n
ÿ

i“1

cpwiqL0pwiq.

Definition 2.30 (Goguen [12]). The language accepted by a D-automaton pQ, δ, i, fq is

LQ “ pX
f

eQ
ÝÑ Q

f
ÝÑ Y q, where eQ is the F -algebra homomorphism of Remark 2.22.

Example 2.31. (1) In D “ Set or Pos with Y “ t0, 1u, the homomorphism eQ : X˚ Ñ Q
assigns to every word w the state it computes in Q, i.e. the state the automaton reaches
on input w. Thus LQpwq “ 1 iff Q terminates in a final state on input w, which is
precisely the standard definition of the accepted language of an (ordered) automaton.
For general Y , the function LQ : X˚ Ñ Y is the behavior of the (ordered) Moore
automaton Q, i.e. LQpwq is the output of the last state in the computation of w.

(2) For D “ SetK with X “ X0 ` tKu and Y “ tK, 1u, we have eQ : X˚0 ` tKu Ñ pQ,Kq
sending K to K, and sending a word in X˚0 to the state it computes (if any), and to
K otherwise. Hence LQ : X˚0 ` tKu Ñ tK, 1u defines (via the preimage of 1) the usual
language accepted by a partial automaton.

(3) In D “ Inv with X “ X0 ` ĂX0 and Y “ t0, 1u, the map LQ : X˚0 `
ĂX˚0 Ñ t0, 1u sends

w P X˚0 to 1 iff w computes a final state, and it sends rw P ĂX˚0 to 1 iff w computes a
non-final state.

(4) In D “ JSL0 with X “ PfX0 and Y “ t0, 1u, the map LQ : PX˚0 Ñ t0, 1u assigns to
U P PfX˚0 the value 1 iff the computation of at least one word in U ends in a final state.

(5) In D “ ModpSq with X “ ΨX0 and Y “ S, the map LQ : SrX0s Ñ S assigns to
řn
i“1 cpwiqwi the value

řn
i“1 cpwiqyi, where yi is the output of the state the automaton

computes on input wi. Taking Q “ Sn for some natural number n yields a classical
n-state weighted automaton; indeed, i P Sn is an initial vector, the linear map f : Sn Ñ S

corresponds to an output vector o P Sn and the linear transition map δ : X b Sn Ñ Sn is
given by a family of linear maps pδa : Sn Ñ SnqaPX0 , which can represented by a family
pMaqaPX0 of nˆ n matrices over S. It then follows that the restriction of LQ to a map

X˚0 Ñ S is is the usual weighted language assigning to a word w the element o ¨Mw ¨ i
T

of S, where Mw is the obvious product of the matrices Ma.
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Remark 2.32. By Remark 2.18 every D-automaton pQ, δ, i, fq defines an F -algebra as well
as a T -coalgebra. Our above definition of LQ was purely algebraic. The corresponding
coalgebraic definition uses the unique coalgebra homomorphism cQ : QÑ rXf, Y s into the
final T -coalgebra and precomposes with i : I Ñ Q to get a morphism cQ ¨ i : I Ñ rXf, Y s
(choosing a language, i.e. an element of rXf, Y s). Unsurprisingly, the results are equal:

Proposition 2.33. The language LQ : Xf Ñ Y of an automaton pQ, δ, i, fq is the uncurried
form of the morphism cQ ¨ i : I Ñ rXf, Y s.

Proof. Recall from the proof of Proposition 2.26 that the uncurried version of cQ is the
morphism

QbXf – Xf bQ
δf
ÝÑ Q

f
ÝÑ Y.

Hence cQ ¨ i : I Ñ rXf, Y s determines the language

Xf – Xf b I
Xfbi
ÝÝÝÝÑ Xf bQ

δf
ÝÑ Q

f
ÝÑ Y,

and this is precisely LQ, as shown by the diagram below (where δX is given by the F -algebra
structure associated to Xf and ηX , see Remark 2.19):

Xf –
// Xf b I

XfbiX //

Xfbi ((

Xf bXf

XfbeQ
��

δfX // Xf

eQ

��

LQ
//

��

id

Y

Xf bQ
δf

// Q

f

99

Indeed, the right-hand triangle commutes by the definition of LQ and the left-hand one and
the inner square commute since eQ is an F -algebra homomorphism (see Remark 2.24(2)).
The upper part commutes since δfX is the monoid multiplication mX , see Remark 2.24(3).

3. Algebraic Recognition and Syntactic D-Monoids

In classical algebraic automata theory one considers recognition of languages by (ordinary)
monoids in lieu of automata. The key concept is the syntactic monoid which is characterized
as the smallest monoid recognizing a given language. There are also related concepts of
canonical algebraic recognizers in the literature, e.g. the syntactic ordered monoid, the
syntactic idempotent semiring and the syntactic associative algebra. In this section we will
give a uniform account of algebraic language recognition in our categorical setting. Our
main result is the definition and construction of a minimal algebraic recognizer, the syntactic
D-monoid of a language.

Assumptions 3.1. Throughout this section pD,b, Iq is an arbitrary symmetric monoidal
closed category, and E is a class of epimorphisms in D that contains all isomorphisms and is
closed under composition. In the case where D is a variety of algebras or ordered algebras,
we always choose

E “ surjective homomorphisms.

Definition 3.2. A D-monoid morphism e : Xf ÑM recognizes the language L : Xf Ñ Y
if there exists a morphism f : M Ñ Y of D with L “ f ¨ e.

Example 3.3. We use the notation of Example 2.29.



16 J. ADÁMEK, S. MILIUS, AND H. URBAT

(1) D “ Set with Xf “ X˚ and Y “ t0, 1u: given a monoid M , a function f : M Ñ t0, 1u
defines a subset F “ f´1r1s ĎM . Hence a monoid morphism e : X˚ ÑM recognizes
L via f (i.e. L “ f ¨ e) iff L0 “ e´1rF s. This is the classical notion of recognition of a
language L0 Ď X˚ by a monoid, see e.g. [15].

(2) D “ Pos with Xf “ X˚ and Y “ t0 ă 1u: given an ordered monoid M , a monotone
map f : M Ñ t0, 1u defines an upper set F “ f´1r1s ĎM . Hence a monoid morphism
e : X˚ ÑM recognizes L iff L0 is the preimage of some upper set of M . This notion of
recognition is due to Pin [16].

(3) D “ SetK with X “ X0 ` tKu, X
f “ X˚0 ` tKu and Y “ tK, 1u: given a monoid with

zero M , a SetK-morphism f : M Ñ tK, 1u defines a subset F “ f´1r1s of Mzt0u. A
zero-preserving monoid morphism e : X˚0 `tKu ÑM recognizes L via f iff L0 “ e´1rF s.

(4) D “ Inv with X “ X0 ` ĂX0, Xf “ X˚0 `
ĂX˚0 and Y “ t0, 1u: for an involution monoid

M to give a morphism f : M Ñ t0, 1u means to give a subset F “ f´1r1s ĎM satisfying

m P F iff rm R F . Then L is recognized by e : X˚0 `
ĂX˚0 ÑM via f iff L0 “ X˚0 X e

´1rF s.
(5) D “ JSL0 with X “ PfX0, Xf “ PfX˚0 and Y “ t0, 1u: for an idempotent semiring M

a morphism f : M Ñ Y defines a prime upset F “ f´1r1s, see Example 2.17. Hence L
is recognized by a semiring homomorphism e : PfX˚0 ÑM via f iff L0 “ X˚0 X e

´1rF s.
Here we identify X˚0 with the set of all singleton languages twu, w P X˚0 . This is
the concept of language recognition introduced by Polák [18] (except that he puts
F “ f´1r0s, so 0 and 1 must be swapped, as well as F and MzF ).

(6) D “ ModpSq with X “ ΨX0, Xf “ SrX0s and Y “ S: given an associative algebra M ,
a language L is recognized by e : SrX0s ÑM via f : M Ñ S iff L “ f ¨ e. For the case
where the semiring S is a ring, this notion of recognition is due to Reutenauer [20].

Remark 3.4. (1) By an X-generated D-monoid we mean a morphism e : Xf � M in
MonpDq with e P E . Given two X-generated D-monoids ei : Xf �Mi, i “ 1, 2, we say,
as usual, that e1 is smaller or equal to e2 (notation: e1 ď e2) if e1 factorizes through
e2. Note that if D is a variety and X “ ΨX0, the free D-monoid Xf “ ΨX˚0 on X is
also the free D-monoid on the set X0 (w.r.t. the forgetful functor MonpDq Ñ Set), see
Proposition 2.14. In this case, to give a quotient e : Xf �M is equivalent to giving an
X0-indexed family pmxqxPX0 of generators for the D-monoid M – which is why M may
also be called an X0-generated D-monoid.

(2) Let e : Xf �M be an X-generated D-monoid with unit i : I ÑM and multiplication
m : M bM ÑM . Recall that ηX : X Ñ Xf denotes the universal morphism of the free

D-monoid on X and consider the F -algebra associated to M and X
ηX
ÝÝÑ Xf e

ÝÑM (see
Definition 2.19). Thus, together with a given f : M Ñ Y an X-generated D-monoid
induces an automaton pM, δ, i, fq called the derived automaton.

Lemma 3.5. The language recognized by an X-generated D-monoid e : Xf � M via
f : M Ñ Y is the language accepted by its derived automaton.

Proof. By definition e recognizes via f the language L “ f ¨ e. We are done once we prove
that e is the unique F -algebra homomorphism from Xf to the F -algebra associated to M
and e ¨ ηX (cf. Remark 3.4). Recall from Proposition 2.21 that the initial F -algebra is the
F -algebra associated to the free D-monoid Xf and ηX . Then the following diagram clearly
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commutes, since e is a D-monoid morphism:

FXf “ I `X bXf
I`ηXbX

f

//

Fe“I`Xbe
��

I `Xf bXf
riX ,mX s

//

I`ebe
��

Xf

e
��

FM “ I `X bM
I`pe¨ηXqbM

// I `M bM
ri,ms

// M

This completes the proof.

We are now ready to give an abstract account of syntactic monoids in our setting. In
classical algebraic automata theory the syntactic monoid of a language is characterized as
the smallest monoid recognizing that language. We will use this property as our definition
of the syntactic D-monoid.

Definition 3.6. The syntactic D-monoid of a language L : Xf Ñ Y , denoted by SynpLq,
is the smallest X-generated monoid recognizing L.

In more detail, the syntactic D-monoid of L is an X-generated D-monoid eL : Xf �
SynpLq together with a morphism fL : SynpLq Ñ Y of D such that (i) eL recognizes L via
fL, and (ii) for every X-generated D-monoid e : Xf �M recognizing L via f : M Ñ Y we
have eL ď e, that is, the left-hand triangle below commutes for some D-monoid morphism h:

Xf e // //

eL
(( ((

M

h
����

f
// Y

SynpLq

fL

77

Note that the right-hand triangle also commutes since e is epimorphic and f ¨e “ L “ fL ¨eL.
The universal property determines SynpLq, eL and fL uniquely up to isomorphism.

The above definition leaves open the question whether the syntactic D-monoid of a
language actually exists. In Section 3.1 we investigate the existence of syntactic D-monoids
in an abstract symmetric monoidal closed category D. In Section 3.2 we show how to
construct them in our algebraic setting, using the syntactic congruence of a language.

3.1. Existence of syntactic D-monoids.

Definition 3.7. The category D is stable w.r.t. E if the following square is a pushout for
all morphisms a : A� A1 and b : B � B1 in E :

AbB
Abb

%%

abB

yy

abb

��

A1 bB

A1bb %%

AbB1

abByy

A1 bB1

Example 3.8. (1) Set is stable w.r.t. E “ surjective maps. The pushout of the surjections
aˆB and Aˆ b is given by AˆB{„ where „ is the least equivalence relation such that

apxq “ apx1q implies px, yq „ px1, yq for all y P B
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as well as
bpyq “ bpy1q implies px, yq „ px, y1q for all x P A.

Obviously, „ is the kernel equivalence of aˆ b.
(2) More generally, every variety D of algebras is stable w.r.t. E “ surjective homomorphisms.

To see this, recall from Definition 2.4 that the forgetful functor from D to Set yields
the tensor product A b B via the universal bimorphism ηA,B : |A| ˆ |B| Ñ |AbB|.
Suppose that u : A1bB Ñ C and v : AbB1 Ñ C are given with u ¨ pabBq “ v ¨ pAb bq.
Consider the following diagram:

|AbB|

abB

xx

Abb

&&

|A| ˆ |B|

aˆB

xx

aˆb

��

η

OO

Aˆb

&&

|A1 bB|

A1bb

&&u

&&

|A1| ˆ |B|
η

oo

A1ˆb &&

|A| ˆ |B1|
η
//

aˆB1xx

|AbB1|

abB1

xx v

xx

|A1| ˆ |B1|

w0

{{

η

��

|A1 bB1|

w

��

|C|

By Example 3.8(1) above the inner square is a pushout in Set, so there is a unique
function w0 : |A1| ˆ |B1| Ñ |C| with u ¨ ηA1,B “ w0 ¨ pA

1 ˆ bq and v ¨ ηA,B1 “ w0 ¨ paˆB
1q.

We claim that w0 is a bimorphism of D. Indeed, for each x P |A1| the map w0px,´q
carries a morphism of D: choosing x P |A| with apxq “ x, we have

w0px,´q “ w0 ¨ paˆB
1qpx,´q “ v ¨ ηA,B1px,´q

and the last map is a morphism in D because ηA,B1 is a bimorphism. Symmetrically,
w0p´, yq is a morphism of D for all y P |B1|.

Consequently, the bimorphism w0 induces a unique morphism w : A1 bB1 Ñ C in D

with w ¨ ηA1,B1 “ w0. We have

w ¨ pA1 b bq “ u

because, by definition of w0, this holds when precomposed with ηA1,B. Analogously,

w ¨ pabB1q “ v.

The uniqueness of w follows from the uniqueness of w0.
(3) Pos is stable w.r.t. E “ surjective monotone maps. The pushout of aˆB and Aˆ b is

obtained from the pushout in Set, i.e. |A1| ˆ |B1|, by taking the smallest preorder ď
such that px, yq ď px1, yq for x ď x1 in A1 as well as px, yq ď px, y1q for all y ď y1 in B1

(and forming the corresponding quotient poset of the preordered set A1ˆB1, cf. Remark
3.16 below). But this is just the product order; thus the pushout is the product A1 ˆB1

in Pos with the cocone A1 ˆ b and aˆB1.
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(4) More generally, every variety D of ordered algebras is stable w.r.t. E “ surjective
homomorphisms. The argument is completely analogous to Example 3.8(2).

Theorem 3.9. Let D be stable w.r.t. E, and suppose moreover that E is closed under wide
pushouts and tensor products. Then the forgetful functor from MonpDq to D creates wide
pushouts of E-carried morphisms.

Proof. (1) Given ei : D Ñ Di (i P I) in E with wide pushout e “ ei ¨ ei : D Ñ D in D, we
prove that the morphisms ei b ei have the wide pushout eb e “ pei b eiq ¨ pei b eiq in D.
Indeed, given a compatible family

c : D bD Ñ C and ci : Di bDi Ñ C with c “ ci ¨ pei b eiq,

the morphisms ei bD, i P I, have the compatible family formed by c and ci ¨ pDi b eiq.
Since ´bD is a left adjoint and thus preserves colimits, the wide pushout of ei bD is
formed by ebD and ei bD. Consequently there is unique morphism

c̃ : D bD Ñ D

such that the following squares commute for all i P I:

Di bD
eibD //

Dibei
��

D bD

rc
��

Di bDi ci
// C

Since by assumption ei P E , the stability of D gives a unique morphism rci making the
following diagram commutative:

Di bD
Dibei

yy

eibD

%%

Di bDi

eibDi

%%

ci

��

D bD

Dbei

yy

rc

��

D bDi

rci
��

C

Thus rc and rci form a cocone of the family D b ei. Since the latter family has the
wide pushout formed by D b e and D b ei (using that the left adjoint D b´ preserves
colimits), we obtain a unique morphism c : D bD Ñ C for which the following triangle
commutes:

D bDi
Dbei //

c̃i
%%

D bD

c
��

C

Combined with the definition of c̃i, we get

ci “ c̃i ¨ pei bDiq “ c ¨ pD b eiq ¨ pei bDiq “ c ¨ pei b eiq
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for all i P I, as desired.
The uniqueness of c follows from the fact that the morphisms eibei are epimorphisms

(using that D b´ and ´bDi are left-adjoints and hence preserve epimorphisms).
(2) Suppose that D-monoid structures are given such that the above morphisms ei are

D-monoid morphisms
ei : pD,µ, ηq Ñ pDi, µi, ηiq

for all i P I. We define a D-monoid structure pD,µ, ηq such that all ei are D-monoid
morphisms. For the unit η put

η ” I
η
ÝÑ D

e
ÝÑ D.

Next, observe that the morphisms ei b ei have a compatible cocone consisting of e ¨ µ
and ei ¨ µi (i P I). Hence by (1) there exists a unique µ : D bD Ñ D for which the
following squares commute:

D bD
µ

//

ebe
��

D

e
��

Di bDi
µi

//

eibei
��

Di

ei
��

D bD
µ

// D D bD
µ

// D

We only need to prove that pD,µ, ηq is a D-monoid. Then the definitions of µ and η
immediately imply that e and ei are D-monoid morphisms, and the verification that
they form the wide pushout in MonpDq is trivial.

Unit laws. Due to symmetry we only verify the left unit law µ ¨ pη bDq “ λD, where

λD : I bD – D is the left unit isomorphism. Consider the following diagram:

I bD
ηbD

//

Ibe

$$

λD

��

D bD
ebe

yy

µ

��

I bD
ηbD

//

λD
$$

D bD

µ
��

D

D

e

OO

The outside triangle is the unit law of pD,µ, ηq. The upper part commutes due to
η “ e ¨ η, the left-hand one is the naturality of λ, and the right-hand one is the definition
of µ. Thus the inner triangle commutes when precomposed with I b e. Since the latter
is an epimorphism, the proof is complete.
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Associative law. Consider the following diagram, where α denotes the associativity
isomorphism:

pD bDq bD
α //

µbI

��

pebeqbe

((

D b pD bDq
Dbµ

//

ebpebeq
��

D bD

ebe

zz

µ

��

pD bDq bD
α //

µbD
��

D b pD bDq
Dbµ

// D bD

µ
��

D bD
µ

// D

D bD

ebe

66

µ
// D

e

ee

The outside is the associativity of pD,µ, ηq. All the inner parts except for the (desired)
inner square commute: for the upper left-hand one use the naturality of α, and all other
parts follow from the definition of µ. Consequently the inner square commutes, as it
commutes when precomposed with the epimorphism peb eq b e.

Corollary 3.10. Let D satisfy the assumptions of the previous theorem, and suppose
moreover that D has wide pushouts of E-morphisms. Then every language L : Xf Ñ Y has
a syntactic D-monoid.

Proof. Let ei : Xf �Mi (i P I) be the family of all X-generated D-monoids recognizing L.
Note that I ‰ H since the identity morphism of Xf trivially recognizes L. Form the wide
pushout e : Xf �M and ei : Mi �M of all ei’s in D. By Theorem 3.9 there is a unique
D-monoid structure on M making e and ei a wide pushout in MonpDq. We claim that
e : Xf �M is the syntactic D-monoid of L. To this end we verify the universal property of
Definition 3.6:

(a) Since ei recognizes L, there exists a morphism fi : Mi Ñ Y in D with L “ fi ¨ ei for
each i P I. Hence the morphisms L and fi form a compatible family, so there is a unique
morphism f : M Ñ Y in D with fi “ f ¨ ei for all i. Choosing an arbitrary i P I, it follows
that

f ¨ e “ f ¨ ei ¨ ei “ fi ¨ ei “ L,

i.e. e recognizes L via f .
(b) By construction, for every X-generated D-monoid ei : Xf �Mi recognizing L we

have the D-monoid morphism ei : Mi �M with ei ¨ ei “ e.

Corollary 3.11. Every language L : Xf Ñ Y in a variety D of algebras or ordered algebras
admits a syntactic D-monoid.

We shall now show that in the situation of the above corollary the syntactic D-monoid
of a language L admits a more concrete construction via the syntactic congruence of L. We
first consider the case of varieties of algebras (Section 3.2) and then turn to varieties of
ordered algebras (Section 3.3).
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3.2. Syntactic congruences for varieties of algebras. In this subsection, let D be a
variety of algebras.

Remark 3.12. (1) Recall that a congruence on a Σ-algebra A is an equivalence relation
” on A that forms a subalgebra of A ˆ A. We denote by A{” the quotient algebra
modulo ”.

(2) For any homomorphism h : A Ñ B of Σ-algebras, the kernel congruence of h is the
congruence on A defined by

a ”h a
1 iff hpaq “ hpa1q.

(3) We will frequently use the following homomorphism theorem: given homomorphisms of
Σ-algebras e : A� B and h : AÑ C, where e is surjective, there exists a homomorphism
h1 : B Ñ C with h “ h1 ¨ e iff, for all a, a1 P A,

epaq “ epa1q implies hpaq “ hpa1q.

Definition 3.13. Let D be a variety of algebras. The syntactic congruence of a language
L : Xf Ñ Y is the relation ”L on |Xf| defined by

u ”L v iff @x, y P |Xf| : Lpx ‚ u ‚ yq “ Lpx ‚ v ‚ yq. (3.1)

Theorem 3.14. ”L is a congruence on the free D-monoid Xf, and

SynpLq “ Xf{”L.

Proof. (a) Clearly ”L forms an equivalence relation on Xf. To show that it is congruence,
first observe that ”L is a subobject of XfˆXf in D. Indeed, we have ”L “

Ş

Kx,y, where for

fixed x, y P Xf the object Kx,y is the kernel of the D-morphism Xf
x‚´
//Xf

´‚y
//Xf L //Y .

Moreover, ”L is closed under the monoid multiplication of Xf ˆXf: given u ”L v and
u1 ”L v

1 we have for all x, y P Xf that

Lpx ‚ u ‚ u1 ‚ yq “ Lpx ‚ v ‚ u1 ‚ yq py :“ u1 ‚ y in (3.1)q

“ Lpx ‚ v ‚ v1 ‚ yq px :“ x ‚ v in (3.1)q.

Hence u ‚ u1 ”L v ‚ v
1 and therefore ”L is a D-submonoid of Xf ˆXf, i.e. a congruence of

Xf.
(b) Denote by eL : Xf � Xf{”L the projection. Then eLpuq “ eLpvq (i.e. u ”L v)

implies Lpuq “ Lpvq by putting x “ y “ 1 in (3.1), where 1 is the unit of the monoid
Xf. Hence the homomorphism theorem yields a morphism fL : Xf{”L Ñ Y in D with
fL ¨ eL “ L, i.e. eL recognizes L via fL.

(c) In remains to verify the universal property of Definition 3.5. Let e : Xf �M be a
surjective D-monoid morphism recognizing L via f : M Ñ Y . To construct the morphism
h : M Ñ Xf{”L, we again use the homomorphism theorem. Thus let u, v P Xf with
epuq “ epvq. Then, for all x, y P Xf,

Lpx ‚ u ‚ yq “ fpepx ‚ u ‚ yqq (L “ f ¨ e)

“ fpepxqepuqepyqq (e preserves ‚)

“ fpepxqepvqepyqq (epuq “ epvq)

“ fpepx ‚ v ‚ yqq (e preserves ‚)

“ Lpx ‚ v ‚ yq (L “ f ¨ e)
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Hence u ”L v, i.e. eLpuq “ eLpvq. Thus the homomorphism theorem yields the desired
D-monoid morphism h : M Ñ Xf{”L with h ¨ e “ eL.

Example 3.15. Using the notation of Example 2.29 we obtain the following syntactic
algebras:

(1) In Set with Y “ t0, 1u, the syntactic monoid of a language L Ď X˚ is the quotient
monoid X˚{”L, where for u, v P X˚,

u ”L v iff for all x, y P X˚ : xuy P L ðñ xvy P L.

This construction is due to Rabin and Scott [19].
(2) In SetK with X “ X0`tKu and Y “ tK, 1u the syntactic monoid with zero of a language

L0 Ď X˚0 is pX˚0 ` tKuq{”L where for u, v P X˚0 ` tKu,

u ”L v iff for all x, y P X˚0 : xuy P L0 ðñ xvy P L0.

The zero element is the congruence class of K.

(3) In Inv with X “ X0` ĂX0 and Y “ t0, 1u the syntactic involution monoid of a language

L0 Ď X˚0 is the quotient of X0 `
ĂX˚0 modulo the congruence ”L defined for words

u, v P X˚0 as follows:
(i) u ”L v iff ru ”L rv iff for all x, y P X˚0 : xuy P L0 ðñ xvy P L0;
(ii) u ”L rv iff ru ”L v iff for all x, y P X˚0 : xuy P L0 ðñ xvy R L0.

(4) In ModpSq with X “ ΨX0 and Y “ S the syntactic associative S-algebra of a weighted
language L0 : X˚0 Ñ S is the quotient of SrX0s modulo the congruence defined for
U, V P SrX0s as follows:

U ”L V iff for all x, y P X˚0 : LpxUyq “ LpxV yq (3.2)

Indeed, since L : SrX0s Ñ S is linear, (3.2) implies LpPUQq “ LpPV Qq for all P,Q P
SrX0s, which is the syntactic congruence of Definition 3.13.

(5) In particular, for D “ JSL0 with X “ PfX0 and Y “ t0, 1u, we get the syntactic
(idempotent) semiring of a language L0 Ď X˚0 introduced by Polák [18]: it is the quotient
PfX˚0 {”L where for U, V P PfX˚0 we have

U ”L V iff for all x, y P X˚0 : pxUyq X L0 ‰ H ðñ xV y X L0 ‰ H.

(6) For D “ VecpKq with X “ ΨX0 and Y “ K, the syntactic K-algebra of a K-weighted
language L0 : X˚0 Ñ K is the quotient KrX0s{I of the K-algebra of finite weighted
languages modulo the ideal

I “ tV P KrX0s | for all x, y P X˚0 : LpxV yq “ 0u.

Indeed, the congruence this ideal I generates (U ”L V iff U ´ V P I) is precisely (3.2).
Syntactic K-algebras were studied by Reutenauer [20].

(7) Analogously, for D “ Ab with X “ ΨX0 and Y “ Z, the syntactic ring of a Z-weighted
language L0 : X˚0 Ñ Z is the quotient ZrX0s{I, where I is the ideal of all V P ZrX0s

with LpxV yq “ 0 for all x, y P X˚0 .
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3.3. Syntactic congruences for ordered algebras. Next, we consider the case where D

is a variety of ordered algebras.

Remark 3.16. (1) A congruence on an ordered Σ-algebra pA,ďq is a preorder ď on A such
that a ď a1 implies a ď a1, and all Σ-operations of A are monotone w.r.t. ď (equivalently,
ď forms a subalgebra of AˆA). Then ď X ě is a congruence in the unordered sense,
and the quotient algebra e : A � A{pď X ěq forms an ordered algebra with partial
order induced by e:

epuq ď1 epvq iff u ď v.

This ordered algebra is called the quotient of A modulo ď, and is denoted by A{ď.
(2) For any homomorphism h : AÑ B between ordered Σ-algebras, the kernel congruence

of h is the congruence on A defined by

a ďh a
1 iff hpaq ď hpa1q.

(3) The homomorphism theorem has the following version for ordered algebras, see e.g. [17,
Proposition 1.1]: given homomorphisms of ordered Σ-algebras e : A� B and h : AÑ C,
where e is surjective, there exists a homomorphism h1 : B Ñ C with h “ h1 ¨ e iff, for all
a, a1 P A,

epaq ď epa1q implies hpaq ď hpa1q.

Definition 3.17. Let D be a variety of ordered algebras. The syntactic congruence of a
language L : Xf Ñ Y is the relation ďL on |Xf| defined by

u ďL v iff @x, y P |Xf| : Lpx ‚ u ‚ yq ď Lpx ‚ v ‚ yq (3.3)

Theorem 3.18. ďL is a congruence of the free D-monoid Xf, and

SynpLq “ Xf{ďL.

Proof. Clearly ďL is a preorder. Let us verify the conditions of Remark 3.16(1). First, if
u ď v in Xf, then x‚u‚y ď x‚v ‚y for all x, y P Xf because ‚ is monotone. Since also L is
monotone, we conclude Lpx ‚u ‚ yq ď Lpx ‚ v ‚ yq in Y for all x, y, i.e. u ďL v. Next, observe
that ďL is a subobject of Xf ˆXf in D, namely ďL “

Ş

ďx,y, where for fixed x, y P Xf

the object ďx,y is the kernel congruence of the D-morphism Xf
x‚´
//Xf

´‚y
//Xf L //Y .

Moreover, the monoid multiplication ‚ is monotone w.r.t. ďL: given u ďL v and u1 ďL v
1

we have for all x, y P Xf that

Lpx ‚ u ‚ u1 ‚ yq ď Lpx ‚ v ‚ u1 ‚ yq ď Lpx ‚ v ‚ v1 ‚ yq.

Hence u ‚ u1 ďL v ‚ v
1, and therefore ďL is a D-submonoid of Xf ˆXf, as required.

The proof that SynpLq “ Xf{ďL is completely analogous to that of Proposition 3.14:
replace equations by inequations, and use the homomorphism theorem for ordered algebras
to construct the morphisms fL and h.

Example 3.19. In D “ Pos with Y “ t0 ă 1u, the syntactic ordered monoid of a language
L Ď X˚ is the ordered quotient monoid X˚{ďL where for u, v P X˚,

u ďL v iff for all x, y P X˚: xuy P Lñ xvy P L.

This construction is due to Pin [16].
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4. Transition D-Monoids

In this section we present another construction of the syntactic D-monoid of a language: it
is the transition D-monoid of the minimal D-automaton for this language. We continue to
work under the Assumptions 2.7. Recall from Remark 2.22 the D-monoid rQ,Qs and the
D-monoid morphism pλδq` : Xf Ñ rQ,Qs.

Definition 4.1. The transition D-monoid TpQq of an F -algebra pQ, δ, iq is the image of
the D-monoid morphism pλδq` : Xf Ñ rQ,Qs:

Xf

eTpQq "" ""

pλδq`
// rQ,Qs

TpQq
;;

mTpQq

;;

Example 4.2. (1) In Set or Pos the (ordered) transition monoid of an F -algebra Q,
i.e. an (ordered) automaton without final states, is the (ordered) monoid of all extended
transition maps δw “ δan ¨ . . . ¨ δa1 : QÑ Q for w “ a1 ¨ ¨ ¨ an P X

˚. The unit is idQ “ δε
and the monoid multiplication is composition.

(2) In SetK with X “ X0 ` tKu (the setting for partial automata) this is completely
analogous, except that we add the constant endomap of Q with value K.

(3) In Inv with X “ X0 ` ĂX0 we get the involution monoid of all δw and Ăδw. Again
the unit is δε, and the multiplication is determined by composition plus the equations
xry “ Ăxy “ rxy.

(4) In JSL0 with X “ PfX0 the transition semiring consists of all finite joins of ex-
tended transitions, i.e. all semilattice homomorphisms of the form δw1 _ ¨ ¨ ¨ _ δwn for
tw1, . . . , wnu P PfX˚0 . The transition semiring was introduced by Polák [18].

(5) In ModpSq with X “ ΨX0 the associative transition algebra consists of all linear maps
of the form

řn
i“1 siδwi with si P S and wi P X

˚
0 .

Recall from Definition 2.16 that a D-automaton is an F -algebra Q together with an
output morphism f : Q Ñ Y . Hence we can speak of the transition D-monoid of a
D-automaton.

Proposition 4.3. The language accepted by a D-automaton pQ, δ, f, iq is recognized by the
D-monoid morphism eTpQq : Xf � TpQq.

Proof. Let pQ, δ, i, fq be a D-automaton. By definition it accepts the language LQ “

pXf
eQ
ÝÑ Q

f
ÝÑ Y q where eQ is the unique F -algebra homomorphism. Consider the morphism

that evaluates any endomorphism of Q at the initial state:

evi “ prQ,Qs – rQ,Qs b I
rQ,Qsbi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Qq.

Now let

fTpQq “ pTpQq
mTpQq
ÝÝÝÝÑ rQ,Qs

evi
ÝÝÑ Q

f
ÝÑ Y q.
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With this morphism TpQq recognizes L; indeed, using the right unit isomorphism ιZ : Z Ñ
Z b I we compute:

LQ “ f ¨ eQ

“ f ¨ ev ¨ ppλδq` b iq ¨ ιXf (Remark 2.22)

“ f ¨ evi ¨ ι
´1
rQ,Qs ¨ ppλδq

` b Iq ¨ ιXf (def. of evi)

“ f ¨ evi ¨ pλδq
` (naturality of ι)

“ f ¨ evi ¨mTpQq ¨ eTpQq (Definition 4.1)

“ fTpQq ¨ eTpQq (def. of fTpQq)

This completes the proof.

Definition 4.4. A D-automaton pQ, δ, i, fq is called minimal iff it is

(a) reachable: the unique F -algebra homomorphism Xf Ñ Q is surjective;
(b) simple: the unique T -coalgebra homomorphism QÑ rXf, Y s is injective.

Theorem 4.5 (Goguen [12]). Every language L : Xf Ñ Y is accepted by a minimal D-
automaton MinpLq, unique up to isomorphism. Given any reachable automaton Q accepting
L, there is a unique surjective automata homomorphism from Q into MinpLq.

This leads to the announced construction of syntactic D-monoids via transition D-
monoids. The case D “ Set and Pos are standard results of algebraic automata theory
(see e.g. Pin [15]), and the case D “ JSL0 is due to Polák [18]. For the other instances in
Example 4.2 this appears to be new.

Remark 4.6. Recall that in our algebraic setting the tensor unit I is Ψ1. Hence elements
a P A of a D-object are in 1-1-correspondence with morphisms a : I Ñ A; we shall henceforth
not distinguish these.

Theorem 4.7. The syntactic D-monoid of a language L : Xf Ñ Y is isomorphic to the
transition D-monoid of its minimal D-automaton:

SynpLq – TpMinpLqq.

Proof. Let MinpLq “ pQ, δ, i, fq, and write δx : Q Ñ Q for eTpQqpxq (x P Xf). Note that
δx‚y “ δy ¨ δx for all x, y P Xf since eTpQq is a D-monoid morphism. Recall also that the
unique F -algebra homomorphism eQ : Xf Ñ Q assigns to x P Xf the element δx ¨ i : I Ñ Q
(see Remark 2.22(2)), and the unique T -coalgebra homomorphism mQ : QÑ rXf, Y s assigns
to a state q : I Ñ Q the language x ÞÑ f ¨ δx ¨ q (see Remark 2.27). It suffices to show that
the kernel congruence of eTpQq coincides with the syntactic congruence of L. If D is a variety
of algebras, this requires to prove that for all u, v P |Xf| one has

δu “ δv iff @x, y P Xf : Lpx ‚ u ‚ yq “ Lpx ‚ v ‚ yq.
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To see this, we compute

δu “ δv ô @x : δu ¨ eQpxq “ δv ¨ eQpxq (eQ surjective)

ô @x : δu ¨ δx ¨ i “ δv ¨ δx ¨ i (def. eQ)

ô @x : mQ ¨ δu ¨ δx ¨ i “ mQ ¨ δv ¨ δx ¨ i (mQ injective)

ô @x, y : f ¨ δy ¨ δu ¨ δx ¨ i “ f ¨ δy ¨ δv ¨ δx ¨ i (def. mQ)

ô @x, y : f ¨ δx‚u‚y ¨ i “ f ¨ δx‚v‚y ¨ i (def. δp´q)

ô @x, y : f ¨ eQpx ‚ u ‚ yq “ f ¨ eQpx ‚ v ‚ yq (def. eQ)

ô @x, y : Lpx ‚ u ‚ yq “ Lpx ‚ v ‚ yq (L “ LQ)

The case where D is a variety of ordered algebras is completely analogous: just replace
equations by inequations.

5. D-Regular Languages

Our results so far apply to arbitrary languages in D. In the present section we focus on
regular languages, which in D “ Set are the languages accepted by finite automata, or
equivalently the languages recognized by finite monoids. For arbitrary D the role of finite
sets is taken over by finitely presentable objects. Recall that an object D of D is finitely
presentable if the hom-functor DpD,´q : DÑ Set preserves filtered colimits. Equivalently,
D can be presented with finitely many generators and relations. For example, the tensor
unit I “ Ψ1 is finitely presentable, since it is presented with one generator and no relations.

Definition 5.1. A language L : Xf Ñ Y is called D-regular if it is accepted by some
D-automaton with a finitely presentable object of states.

To work with this definition, we need the following

Assumptions 5.2. We assume that the full subcategory Df of finitely presentable objects
of D is closed under subobjects, quotients and finite products.

Example 5.3. (1) Recall that a variety is locally finite if all finitely presentable algebras
(equivalently all finitely generated free algebras) are finite. Every locally finite variety
satisfies the above assumptions. This includes our examples Set, SetK, Inv and JSL0.

(2) A semiring S is called Noetherian if all submodules of finitely generated S-modules are
finitely generated. In this case, as shown in [10], the category ModpSq satisfies our
assumptions. Every field is Noetherian, as is every finitely generated commutative ring,
so VecpKq and Ab “ ModpZq are special instances.

Example 5.4. As we have mentioned already, for D “ Set the D-regular languages are
precisely the classical regular languages. The same is true for SetK, Pos, Inv and JSL0.
For D “ ModpSq for a Noetherian semiring S it is known that the D-regular languages are
precisely the rational weighted languages, see e.g. [10].

Remark 5.5. (1) The functor FQ “ I ` X b Q preserves surjective homomorphisms.
Therefore the factorization system of D lifts to the category of F -algebras, that
is, every F -algebra homomorphism factorizes into a surjective homomorphism fol-
lowed by an injective (resp. order-reflecting) one. By the reachable part Qr of a
D-automaton pQ, δ, f, iq we mean the image of the initial F -algebra homomorphism,
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i.e. eQ “ pX
f

er // // Qr //
mr // Qq. Putting fr :“ f ¨mr : Qr Ñ Y , the F -algebra Qr

becomes an automaton, and mr an automata homomorphism.

(2) In the following automata, (co-)algebras and monoids with finitely presentable carrier
are referred to as fp-automata, fp-(co-)algebras and fp-monoids, respectively.

Theorem 5.6. For any language L : Xf Ñ Y the following statements are equivalent:

(a) L is D-regular.
(b) The minimal D-automaton MinpLq has a finitely presentable carrier.
(c) L is recognized by some D-monoid with a finitely presentable carrier.
(d) The syntactic D-monoid SynpLq has a finitely presentable carrier.

Proof. (a)ô(b) follows from Theorem 4.5 and our assumption that Df is closed under
subobjects and quotients. Similarly, pcq ô pdq follows from the universal property of the
syntactic monoid (see Definition 3.6) and again closure of Df under subobjects and quotients.
(c)ñ(a) is a consequence of Lemma 3.5. To prove (a)ñ(c), let Q be any fp-automaton
accepting L. Then by Proposition 4.3 the transition monoid TpQq� rQ,Qs recognizes L, so
by closedness of Df under subobjects it suffices to show that rQ,Qs is a finitely presentable
object of D. Assuming that Q has n generators as an algebra of D, the map rQ,Qs Ñ Qn

defined by restriction to the set of generators is an injective (resp. order-reflecting) morphism
of D. Since Df is closed under subobjects and finite products, it follows that rQ,Qs is
finitely presentable.

Just as the collection of all languages is internalized by the final coalgebra rXf, Y s, see
Proposition 2.26, we can internalize the regular languages by means of the rational coalgebra.

Definition 5.7. The rational coalgebra %T for T is the colimit (taken in the category of
T -coalgebras and homomorphisms) of all T -coalgebras with finitely presentable carrier.

Example 5.8. In D “ Set, the rational coalgebra is the subcoalgebra of the final coalgebra
PX˚0 given by the set of all regular languages. Analogously for D “ Pos where the order is
given by inclusion of languages. In general, %T always has the D-regular languages as states:

Proposition 5.9. There is a one-to-one correspondence between D-regular languages and
elements I Ñ %T of the rational coalgebra.

Proof. We describe mutually inverse maps

pI
x
ÝÑ %T q ÞÑ pXf Lx

ÝÝÑ Y q and pXf L
ÝÑ Y q ÞÑ pI

xL
ÝÑ %T q

between the elements of %T and the D-regular languages. Let hQ : QÑ %T be the injections
of the colimit %T , where Q “ pQ, δQ, fQq ranges over all fp-coalgebras. Note that this
colimit is filtered because Df is closed under finite colimits in D. Moreover, since colimits
of coalgebras are formed in the underlying category, the morphisms hQ also form a colimit

cocone in D. Given an element I
x
ÝÑ %T of the rational coalgebra we define a D-regular

language Lx : Xf Ñ Y as follows: since I “ Ψ1 is finitely presentable, there exists an fp-
coalgebra Q and a morphism iQ : I Ñ Q such that x “ hQ ¨ iQ. For the F -algebra pQ, δQ, iQq
we have the unique F -algebra homomorphism eQ : Xf Ñ Q, and we put Lx :“ fQ ¨ eQ.

We need to show that Lx is well-defined, that is, for any other factorization x “ hQ1 ¨ iQ1
we have fQ ¨ eQ “ fQ1 ¨ eQ1 . Given such a factorization, since the morphisms hQ form
a filtered colimit cocone, there exists an fp-coalgebra Q2 “ pQ2, δQ2 , fQ2q and coalgebra
homomorphisms hQQ2 : Q Ñ Q2 and hQ1Q2 : Q1 Ñ Q2 with hQQ2 ¨ iQ “ hQ1Q2 ¨ iQ1 “: iQ2 .
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Then for the F -algebra pQ2, δQ2 , iQ2q we have the unique homomorphism eQ2 : Xf Ñ Q2.
Moreover, hQQ2 and hQ1Q2 are also homomorphisms of F -algebras. If follows that

fQ ¨ eQ “ fQ2 ¨ hQQ2 ¨ eQ (hQQ2 coalgebra homomorphism)

“ fQ2 ¨ eQ2 (hQQ2 F -algebra hom., Xf initial)

and analogously fQ1 ¨ eQ1 “ fQ2 ¨ eQ2 . Hence fQ ¨ eQ “ fQ1 ¨ eQ1 , as claimed.
Conversely, let L : Xf Ñ Y be a D-regular language. Then there exists an fp-automaton

pQ, δQ, iQ, fQq with L “ fQ ¨ eQ. Put xL :“ hQ ¨ iQ : I Ñ %T . To prove the well-definedness
of xL, consider the automata homomorphisms

Q Qroo
moo e // // MinpLq

of Theorem 4.5. Then

hQ ¨ iQ “ hQ ¨m ¨ iQr (m algebra hom.)

“ hQr ¨ iQr (phQq cocone and m coalgebra hom.)

“ hMinpLq ¨ e ¨ iQr (phQq cocone and e coalgebra hom.)

“ hMinpLq ¨ iMinpLq (e algebra hom.)

Hence xL “ hQ ¨ iQ is independent of the choice of Q. It now follows immediately from
the definitions that x ÞÑ Lx and L ÞÑ xL are mutually inverse and hence define the desired
bijective correspondence.

6. Dual Characterization of Syntactic D-Monoids

We conclude this paper with a dual approach to syntactic monoids. This section is largely
based on results from our papers [1, 3] where a categorical generalization of Eilenberg’s
variety theorem was proved. We work with the following

Assumptions 6.1. From now on D is a locally finite commutative variety of algebras or
ordered algebras (cf. Example 5.3) whose epimorphisms are surjective. Moreover, we assume
that there is another locally finite variety C of algebras such that the full subcategories Cf
and Df of finite algebras are dually equivalent. (Two such varieties C and D are called
predual.)

The action of the equivalence functor C
op
f

»
ÝÑ Df on objects and morphisms is denoted

by Q ÞÑ pQ and f ÞÑ pf . Letting I P Cf denote the free one-generated object of C, we choose

the output object Y P Df to be the dual object of I. Moreover, let Y P Cf be the dual
object of I “ Ψ1 P Df , the free one-generated object of D. Finally, we put X “ ΨX0 for a

finite alphabet X0. Note that the underlying sets of Y and Y are canonically isomorphic:

|Y | – CpI, Y q – DpI, Y q – |Y |. (6.1)

To simplify the presentation, we will assume in the following that Y and Y have a two-
element underlying set t0, 1u. This is, however, inessential; see Remark 6.13 at the end of
this section.

Example 6.2. The categories C and D in the table below satisfy our assumptions.
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C D

BA Set
DL01 Pos
BR SetK
JSL0 JSL0

VecpZ2q VecpZ2q

Here BA, DL01 and BR are the categories of boolean algebras, distributive lattices with 0
and 1, and non-unital boolean rings (i.e. rings without 1 satisfying the equation x ¨ x “ x).
The preduality of BA and Set is a restriction of the well-known Stone duality: the dual

equivalence functor BAop
f

»
ÝÑ Setf assigns to a finite boolean algebra B the set AtpBq of

its atoms, and to a homomorphism h : A Ñ B the map Atphq : AtpBq Ñ AtpAq sending
b P AtpBq to the unique atom a P AtpAq with ha ě b. Using a similar Stone-type duality,
we proved in [3] that the the category BR of non-unital boolean rings is predual to SetK.
The preduality between DL01 and Pos is due to Birkhoff. The last two examples above
correspond to the well-known self-duality of finite semilattices and finite-dimensional vector
spaces, respectively. We refer to [3] for details.

On C we consider the endofunctor TQ “ Y ˆ QX0 , where QX0 denotes the |X0|-fold
power of Q in C. Its coalgebras are precisely deterministic automata in C without an initial
state, represented as triples pQ, γa, fq with transition morphisms γa : QÑ Q (a P X0) and
an output morphism f : QÑ Y .

In the following we use the case C “ BA and D “ Set as our only running example.
For details on the other examples see [1, 3]

Example 6.3. In C “ BA a T -coalgebra is a deterministic automaton with a boolean
algebra Q of states, transition maps γa which are boolean homomorphisms, and an output
map f : QÑ t0, 1u that specifies (via the preimage of 1) an ultrafilter F Ď Q of final states.

The rational coalgebra %T of T (i.e. the colimit of all finite T -coalgebras) has as states the
regular languages over X0. The final state predicate f : %T Ñ Y “ t0, 1u sends a language
to 1 iff it contains the empty word ε, and the transitions γa : %T Ñ %T for a P X0 are given
by γapLq “ a´1L. Here a´1L “ tw P X˚0 : aw P Lu denotes the left derivative of L w.r.t.
the letter a. Similarly, the right derivatives of L are defined by La´1 “ tw P X˚0 : wa P Lu
for a P X0.

The coalgebra %T is characterized by a universal property: every finite T -coalgebra has
a unique coalgebra homomorphism into it (which sends a state to the language it accepts in
the classical sense of automata theory). A finite T -coalgebra is called a subcoalgebra of %T if
this unique morphism is injective, i.e. distinct states accept distinct languages. In [1] we
related finite T -coalgebras in C to finite F -algebras in the predual category D. Recall that

X “ ΨX0 implies FA “ I`XbA – I`
š

X0
A, so F -algebras FA

δ
ÝÑ A can be represented

as triples pA, δa, iq with δa : AÑ A (a P X0) and i : I Ñ A. They correspond to automata
in D with inputs from the alphabet X0 and without final states.

Proposition 6.4 (see [1]). (a) The categories of finite T -coalgebras and finite F -algebras
are dually equivalent. The equivalence maps a finite T -coalgebra Q “ pQ, γa, fq to its

dual F -algebra pQ “ p pQ, pγa, pfq:

pY
f
ÐÝ Q

γa
ÝÑ Qq ÞÑ pI

pf
ÝÑ pQ

xγa
ÐÝ pQq.
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(b) A finite T -coalgebra Q is a subcoalgebra of %T iff its dual F -algebra pQ is a quotient of
the initial F -algebra Xf.

Example 6.5. For a finite T -coalgebra pQ, γa, fq in BA the dual F -algebra pQ has as states
the atoms of Q, and the initial state is the unique atomic final state of Q. Moreover, there

is a transition z
a
ÝÑ z1 for a P X0 in pQ iff z1 is the unique atom with γapz

1q ě z in Q.

By a local variety of languages over X0 in C we mean a subcoalgebra V of %T closed
under right derivatives (i.e. L P |V | implies La´1 P |V | for all a P X0). Note that a local
variety is also closed under the C-algebraic operations of %T , being a subalgebra of %T in C,
and under left derivatives, being a subcoalgebra of %T .

Example 6.6. A local variety of languages in BA is a set of regular languages over X0

closed under the boolean operations (union, intersection and complement) as well as left
and right derivatives. This concept was introduced by Gehrke, Grigorieff and Pin [11].

For the following proposition recall that from every X0-generated D-monoid one can
derive an F -algebra, see Definition 2.19.

Proposition 6.7 (see [1]). A finite subcoalgebra V of %T is a local variety iff its dual

F -algebra pV is derived from an X0-generated D-monoid.

In other words, given a finite local variety V � %T in C, there exists a unique D-

monoid structure on pV making the unique (surjective) F -algebra homomorphism e
pV

: Xf �
pV a D-monoid morphism. Hence the monoid multiplication on pV is (well-)defined by
e
pV
pxq ‚ e

pV
pyq :“ e

pV
px ‚ yq for all x, y P Xf, and the unit is the initial state of the F -algebra

pV .

Remark 6.8. A pointed T -coalgebra is a T -coalgebra pQ, γa, fq equipped with an initial
state i : I Ñ Q. Observe that every finite pointed T -coalgebra pQ, γa, f, iq dualizes to a

finite D-automaton p pQ, pγa, pf,piq. The language of pQ, δa, f, iq is the function

LQ : X˚0 Ñ |Y |, a1 ¨ ¨ ¨ an ÞÑ f ¨ δan ¨ . . . ¨ δa1 ¨ i,

where |Y | is identified with |Y | as in (6.1). Letting mQ : Q Ñ %T denote the unique

coalgebra homomorphism, LQ is precisely the element of %T determined by I
i
ÝÑ Q

mQ
ÝÝÑ %T .

Since |Y | “ |Y | and Xf “ ΨX˚0 , the function LQ : X˚0 Ñ |Y | can be identified with its

adjoint transpose L@
Q : Xf Ñ Y , i.e. with a language in D. The reversal of a language

L : Xf Ñ Y in D is Lrev “ L ¨ rev : Xf Ñ Y , where rev : Xf Ñ Xf denotes the unique
morphism of D extending the function X˚0 Ñ X˚0 that reverses words.

Proposition 6.9 (see [3]). The language accepted by a finite pointed T -coalgebra is the
reversal of the language accepted by its dual D-automaton.

If a finite X0-generated D-monoid e : Xf ÑM recognizes a language L : Xf Ñ Y via f :

M Ñ Y , i.e. L “ p Xf e // // M
f
// Y q, we dually get the morphism I

i // V //
m // %T

(where V is the local variety dual to M , i is the dual morphism of f and m is the unique
coalgebra homomorphism) choosing the element Lrev of %T . Now suppose that L is a regular
language, and let VL be the finite local variety of languages dual to the syntactic D-monoid
SynpLq, see Proposition 6.7. The universal property of SynpLq in Definition 3.6 then dualizes
as follows: (i) VL is a local variety containing Lrev, and (ii) for every local variety V � %T
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containing Lrev, the local variety VL is contained in V . In other words, VL is the smallest
local variety containing Lrev.

%T Voooo Ioo

��

VL
``

``

OO

OO

In summary, we have proved the following dual characterization of syntactic D-monoids:

Theorem 6.10. For every regular language L the syntactic D-monoid SynpLq is dual to the
smallest local variety of languages over X0 in C containing Lrev.

Example 6.11. For C “ BA and D “ Set the previous theorem gives the following
construction of the syntactic monoid of a regular language L Ď X˚:

(1) Form the smallest local variety of languages VL Ď %T containing Lrev. Hence VL is the
closure of the (finite) set of all both-sided derivatives u´1Lrevv´1 “ tw P X˚ : uwv P
Lrevu (u, v P X˚) under union, intersection and complement.

(2) Compute the F -algebra xVL dual to the coalgebra VL, which is a quotient e
xVL

: Xf Ñ xVL.

The states of xVL are the atoms of VL, and the initial state is the unique atom i P VL
containing the empty word. Given atoms z, z1 P VL and a P X, there is a transition

z
a
ÝÑ z1 in xVL iff z1 is the (unique) atom with z Ď a´1z1.

(3) Define a monoid multiplication on xVL as follows: given states z, z1 P xVL, choose words

w,w1 P X˚ with e
xVL
pwq “ z and e

xVL
pw1q “ z1 (i.e. i

w
ÝÑ z and i

w1
ÝÑ z1 in xVL). Then put

z ‚ z1 “ e
xVL
pww1q; this is the state reached on input ww1, i.e. i

ww1
ÝÝÑ z ‚ z1. The resulting

monoid (with multiplication ‚ and unit i) is SynpLq.

By dropping right derivatives and using the correspondence between finite subcoalgebras
of %T and finite quotient algebras of Xf, one also gets the following dual characterization of
minimal D-automata; cf. also [6] for a closely related dual prespective on minimal automata.

Theorem 6.12. For every regular language L the minimal D-automaton for L is dual to
the smallest subcoalgebra of %T containing Lrev

Remark 6.13. Our assumption that Y and Y have two elements is inessential. Without
this assumption, the rational coalgebra %T is not carried by the set of regular languages,
but more generally by the set of regular behaviors, i.e, functions b : X˚0 Ñ |Y | realized by
finite Moore automata with output set |Y |. The coalgebra structure is given by the output

map b ÞÑ bpεq, and transitions b
a
ÝÑ a´1b for a P X0, where a´1b is the (generalized) left

derivative of b defined by a´1bpwq “ bpawq. (Right derivatives are defined analogously.) A
local variety of behaviors over X0 in C is again a subcoalgebra of %T closed under right
derivatives. All results of this section hold for this more general setting, see Section 5 of [3]
for details. In particular, this allows us to cover the case C “ D “ VecpKq for an arbitrary
finite field K. In this case Theorem 6.10 states that the syntactic associative algebra of a
rational weighted language L : X˚0 Ñ K dualizes to the smallest set of rational weighted
languages that contains Lrev and is closed under scalar multiplication, addition and left and
right derivatives.
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7. Conclusions and Future Work

We proposed the first steps of a categorical theory of algebraic language recognition. Despite
our assumption that D be a commutative variety, we have seen that a number of our
definitions, constructions and proofs work in any symmetric monoidal closed category with
enough structure. The next step should be the treatment of algebraic recognition beyond
languages of finite words, including such examples as Wilke algebras [22] (representing
ω-languages) or forest algebras [9] (representing tree languages). A first categorical approach
to such structures appears in the work of Bojánczyk [8] who works with monads on sorted
sets rather than monoids in a variety D. We expect that a unification of these two directions
is possible.

One of the leading themes of algebraic automata theory is the classification of languages
in terms of their syntactic algebras. For instance, by Schützenberger’s theorem a language
is star-free iff its syntactic monoid is aperiodic. We hope that our conceptual view of
syntactic monoids (notably their dual characterization in Theorem 6.10) can contribute to a
duality-based approach to such results.
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[9] Miko laj Bojánczyk and Igor Walukiewicz. Forest algebras. In Automata and Logic: History and Perspec-

tives, pages 107–132, 2006.
[10] Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axiomatizations of

coalgebraic language equivalence. ACM Trans. Comput. Log., 14(1:7), 2013.
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