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Abstract. We introduce the notion of being Weihrauch-complete for layerwise computabil-
ity and provide several natural examples related to complex oscillations, the law of the
iterated logarithm and Birkhoff’s theorem. We also consider hitting time operators, which
share the Weihrauch degree of the former examples but fail to be layerwise computable.

1. Introduction

Layerwise computability is an effective counterpart to continuous functions that are almost-
everywhere defined. This notion was introduced by Hoyrup and Rojas [18]. A function
defined on Martin-Löf random inputs is called layerwise computable if it becomes computable
if each input is equipped with some bound on the layer where it passes a fixed universal
Martin-Löf test. Interesting examples of functions that are layerwise computable but not
computable are obtained e.g. from Birkhoff’s theorem or the study of algorithmically random
Brownian motion (more below).

Weihrauch reducibility [5, 4] is a framework to compare the extent of non-computability
of multivalued functions. It has been proposed with a meta-mathematical investigation of
the constructive content of existence theorems in mathematics in mind. However, it has
also been fruitfully employed to study (effective) function classes such as (effective) Borel
measurability [3] or piecewise continuity (computability) and (effective) ∆0

2-measurability
[33].

Our interest in this paper is in problems that are Weihrauch-complete for layerwise
computability, i.e. problems that are layerwise computable, and every layerwise computable
problem is Weihrauch reducible to it. These are, in a sense, those problems where being
layerwise computable cannot be improved to a stronger computability notion. We shall
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exhibit several natural examples of problems that are Weihrauch-complete for layerwise
computability.

The interaction of layerwise computability and Weihrauch reducibility has also been
investigated by Hölzl and Shafer [17], largely in an independent development.

2. Background

We give a very brief introduction to the required concepts from randomness theory (in
particular, layerwise computability) and Weihrauch reducibility. A standard reference for
randomness is [28]. Layerwise computability was introduced in [18]. A survey of Weihrauch
reducibility is available as [7]. This reference also provides a more detailed account of the
motivation behind Weihrauch reducibility, and a development of the basic operations on
Weihrauch degrees.

2.1. Weihrauch reducibility. We recall that a represented space X = (X, δX) is given by
a set X and a partial surjection δX :⊆ NN → X onto it. A multivalued function between
represented spaces X = (X, δX) and Y = (Y, δY) is a left-total relation between X and Y ,
relating inputs from X with correct solutions from Y. We write f : X ⇒ Y for this, and
use f :⊆ X ⇒ Y to express that f is a partial multivalued function. A partial function
F :⊆ NN → NN is a realizer of a multivalued function f : X ⇒ Y (in symbols F ` f),
if δYF (p) ∈ f(δX(p)) for all p ∈ dom(δX). A multivalued function between represented
spaces is called computable respectively continuous iff it has some computable respectively
continuous realizer. Let 〈 , 〉 : NN × NN → NN be a standard pairing function.

Given some represented spaces X, Y we obtain the represented space C(X,Y) of
continuous functions from X to Y by fixing a universal oracle Type-2 machine Φ, and letting
q be a name for f : X → Y iff p 7→ Φq(p) is a realizer of f . This makes all the usual
operations (in particular function application) computable. We introduce the Sierpiński-
space S := ({>,⊥}, δS) where δS(0

N) = ⊥ and δS(p) = > if p 6= 0N. Then we can define the
hyperspace O(X) of open sets by identifying a subset U ⊆ X with its characteristic function
χU ∈ C(X,S). For the hyperspace A(X) of closed sets, we identify a subset U ⊆ X with the
characteristic function of its complement. For details, see [32].

Two of these hyperspaces are particularly relevant for us: Regarding O({0, 1}N), we can
envision a set U ∈ O({0, 1}N) to be given by a (finite or infinite) list of finite prefixes (wi)i∈I
such that U =

⋃
i∈I wi{0, 1}N. Regarding A(N), we can consider A ∈ A(N) to be given by

some p ∈ NN such that n /∈ A⇔ ∃i p(i) = n+ 1.
Now we shall introduce Weihrauch reducibility as a preorder on multivalued functions

between represented spaces. Intuitively, f being Weihrauch reducible to g means that there
is an otherwise computable procedure to solve f by invoking an oracle for g exactly once. We
thus obtain a very fine-grained picture of the relative strength of the multivalued functions.
Consequently, a Weihrauch equivalence is a very strong result compared to other approaches
that allow more generous access to the principle being reduced to.

Definition 2.1 (Weihrauch reducibility). Let f, g be multi-valued functions on represented
spaces. Then f is said to be Weihrauch reducible to g, in symbols f ≤W g, if there are
computable functions K,H :⊆ NN → NN such that (p 7→ K〈p,GH(p)〉) ` f for all G ` g.
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The relation ≤W is reflexive and transitive. We use ≡W to denote equivalence regarding
≤W, and by <W we denote strict reducibility.

Products of represented spaces can be defined in the natural way based on 〈 , 〉, and
we obtain products of (multivalued) functions between them accordingly. The Weihrauch
degree of f ×g depends only on the Weihrauch degrees of f and g, i.e. × lifts to an operation
on Weihrauch degrees as observed in [31, 5]. While × is the most important operation on
Weihrauch degrees in this paper, in Section 3 we will mention two further operations that
also correspond to a logical and : Access to f t g means that we can chose to either make
a query to f or a query to g; while access to f ? g means we can first make a query to g,
and then (knowing the result) make a query to f . The Weihrauch degrees are a lattice,

and t is the join of that lattice. The parallelization of f , denoted by f̂ , gives access to
countably many instances of f in parallel. We refer the interested reader to [8] for a detailed
investigation of the algebraic structure of the Weihrauch degrees.

A Weihrauch degree that is very relevant for our investigation is closed choice on the
natural numbers.

Definition 2.2. Let CN :⊆ A(N) ⇒ N be defined via n ∈ CN(A) iff n ∈ A.

This degree has received significant attention, e.g. in [4, 3, 29, 25, 26, 6, 27]. In particular,
as shown in [33], a function between computable Polish spaces is Weihrauch reducible to
CN iff it is piecewise computable iff it is effectively ∆0

2-measurable. For our purposes, the
following representatives of the degree are also relevant.

Lemma 2.3. The following are Weihrauch equivalent:

(1) CN
(2) UCN, defined via UCN = (CN) |{A∈A(N)||A|=1}
(3) min :⊆ A(N)→ N
(4) max :⊆ O(N)→ N
(5) Bound :⊆ O(N) ⇒ N, where n ∈ Bound(U) iff ∀m ∈ U n ≥ m.

Proof. 1. ≡W 2.: This is from [3].
1. ≤W 3.: Trivial.
3. ≤W 4.: Given A ∈ A(N), we can compute U≤A := {n ∈ N | ∀m ∈ A n ≤ m} ∈ O(N).

Now (maxU≤A) = minA.
4. ≤W 1.: If U ∈ dom(max), then U 6= ∅. Thus, we can assume U to be given as U =
{pU (n) | n ∈ N} for some p ∈ NN. Now A := {n ∈ N | ∀m ∈ N p(m) ≤ p(n)} can
be computed as a closed set. Applying CN to A to obtain some element k, and then
computing p(k) yields maxU .

2. ≤W 5.: As before, we use U≤A, this time on some A = {n}. Any bound b for U≤A also is
a bound for n. We then simply wait until we have learned k /∈ {n} for all but one k ≤ n
– the remaining candidate is the answer to UCN.

5. ≤W 4.: Trivial.

We also require the following family of Weihrauch degrees:

Definition 2.4. Given some set A ⊆ NN, let dA : A→ {1} be the unique map of that type.

It was shown in [16] that d(·) is a lattice embedding of the dual of the Medvedev degrees
into the Weihrauch degrees. In particular, we have that dA ≤W dB iff there is a computable
function F : A→ B.
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In Section 5, we also mention the degree of LPO : NN → {0, 1} where LPO(0N) = 1 and
LPO(p) = 0 for p 6= 0N which was introduced in [39], and the Kleene star operation ∗ from
[31, 30] defined by f0 := idNN , fn+1 := fn × f and f∗(n, x) := fn(x).

2.2. Randomness. Let λ denote the standard Lebesgue measure on {0, 1}N. A Martin-Löf
test in {0, 1}N is a computable sequence (Ui)i∈N of open sets such that λ(Ui) ≤ 2−i. A Martin-
Löf test (Ui)i∈N is called universal, if for any Martin-Löf test (Vi)i∈N we find that

(⋂
i∈N Vi

)
⊆(⋂

i∈N Ui
)
. Universal Martin-Löf tests exist, and we call MLR := {0, 1}N \

(⋂
i∈N Ui

)
for

some universal Martin-Löf test the set of Martin-Löf random sequences. The set MLR is
independent of the choice of the universal test.

The informal idea behind Martin-Löf randomness is that a Martin-Löf test (Ui)i∈N
describes a very specific computable property

(⋂
i∈N Ui

)
, and that a random sequence

should not have any very specific computable properties. Note that for any Martin-Löf test

(Ui)i∈N, also
(⋂

i≤n Ui

)
n∈N

is a Martin-Löf test describing the same property. Thus, nothing

substantial would change if we would require Ui+1 ⊆ Ui to hold in any test, i.e. would require
the tests to be nested1.

Following [24], a Martin-Löf test (Ui)i∈N is called optimal, if for any Martin-Löf test
(Vi)i∈N we find that there is some n ∈ N such that ∀i ∈ N Vi+n ⊆ Ui. Note that any optimal
Martin-Löf test is necessarily universal. The existence of optimal Martin-Löf tests was
established in [24].

A function f : MLR→ X is called layerwise computable (w.r.t. the universal test (Ui)i∈N),
if there is a computable function g :⊆ MLR×N→ X such that p /∈ Uk ⇒ g(p, k) = f(p). As
shown in [17], the notion of layerwise computability does depend on the choice of universal test.
If a function is layerwise computable for some universal test, then it is layerwise computable
for any optimal test. We extend the notion of layerwise computability to multivalued
functions f : MLR ⇒ X, by considering computable multivalued g :⊆ MLR× N⇒ X such
that p /∈ Uk ⇒ ∅ 6= g(p, k) ⊆ f(p).

An alternate (but equivalent) approach to randomness is expressed in terms of Kol-
mogorov complexity. We fix a prefix-free universal Turing machine, and then let K(w) be
the length of the shortest programme computing the string w ∈ {0, 1}∗. For p ∈ {0, 1}N and
n ∈ N, let p≤n be the prefix of p of length n. Then for c ∈ N we set Kd = {p ∈ {0, 1}N |
∀n ∈ N K(p≤n) ≥ n− d}, and find that MLR =

⋃
d∈N Kd. Based on counting the number

of prefix-free programs of a certain length, we find that λ((Kd)C) ≤ 2−d; moreover, each set
(Kd)C is computably open. It is know that

(
(Kd)C

)
d∈N is a universal Martin-Löf test. For

more details, see [28] for example.

3. The Weihrauch degree

Definition 3.1. Fix some universal Martin-Löf test U = (Un)n∈N. Let LAYU : MLR ⇒ N
be defined via n ∈ LAYU(p) iff p /∈ Un. Let RDU : MLR → N be defined via RDU(p) =
min{n ∈ N | p /∈ Un}.
Observation 3.2. If f : MLR ⇒ X is layerwise computable (w.r.t. U), then f ≤W LAYU .

Theorem 3.3. LAYU ≡W RDU ≡W CN × dMLR

1Which in fact was part of the original definition by Martin-Löf [23]. Considering also non-nested tests
though adds potential expressivity to the concept of layerwise computability, below.
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Proof. LAYU ≤W RDU : Trivial.
RDU ≤W CN × dMLR: As dom(RDU) = MLR, we have a random sequence available as

input for dMLR, and the presence of this degree does not matter further. To see that CN
suffices to obtain the answer, note that given p we can compute {n | p /∈ Un} ∈ A(N).
By Lemma 2.3, CN lets us compute the minimum of a closed set.

CN × dMLR ≤W LAYU : By Lemma 2.3, we may show Bound×dMLR instead. This works
as follows:

The input is an enumeration of some finite set I ⊂ N (which we may safely assume
to be an interval) and a random sequence p. Let w be the current prefix of the output
(i.e. the input to LAYU ). If we learn that n ∈ I, we consider w0N. As this is not random
and U is universal, we know that w0N ∈ Un. As Un is open, there is some – effectively
findable – k ∈ N such that w0k{0, 1}N ⊆ Un. We proceed to amend the current output
to w0k, and then start outputting p (until we potentially learn n+ 1 ∈ I).

As I is finite, the output q will have some tail identical to p, and thus is Martin
Löf random. By construction, whenever n ∈ I, then q ∈ Un, thus if b ∈ LAYU(q) then
b ∈ Bound(p).

There are a number of important consequences of this result. First, as the right hand side
does not depend on the choice of the universal Martin Löf test, we see that the Weihrauch
degree of LAYU and RDU is independent of the test, too. Thus, in the following we suppress
the subscript U . Further consequences are:

Corollary 3.4. LAY × LAY ≡W LAY and LAY ? LAY ≡W LAY.

Proof. The former statement follows from the latter. For any A ⊆ NN and Weihrauch degrees
f, g, we find that (dA×f)? (dA× g) ≡W dA× (f ?g). This is because dA produces no output
useful for producing the input of f , and the second instance of dA can be fed the same
input as we use for the first. In particular, we have that (dMLR × CN) ? (dMLR × CN) ≡W

dMLR × (CN ? CN). The independent choice theorem from [3] implies that CN ? CN ≡W CN.
The latter claim now follows from Theorem 3.3.

Corollary 3.5. LAY <W CN.

Proof. As dMLR is computable, we find dMLR×CN ≤W CN. That CN �W dMLR×CN follows
from the fact that CN has computable inputs, whereas dMLR × CN does not.

Corollary 3.6. LAY ? CN ≡W CN ? LAY ≡W LAY.

Proof. Same reasoning as for Corollary 3.4.

Let lim :⊆ (NN)N → NN map a converging sequence to its limit.

Corollary 3.7. LAY <W L̂AY ≡W lim×dMLR.

Proof. That L̂AY ≡W lim×dMLR follows from â× b ≡W â × b̂ as shown in [8] together

with d̂MLR ≡W dMLR and ĈN ≡W lim as shown in [5]. That lim×dMLR �W LAY follows
from LAY produces only computable outputs whereas lim×dMLR can produce the Halting
problem from arbitrary random degrees, and there are Martin-Löf random sequences that
do not compute the Halting problem.
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Corollary 3.8. LAY <W LAY∗ ≡W idNN t LAY <W CN.

Proof. By iterating Corollary 3.4 we see that (LAY)n ≡W LAY for n > 0. As the proof is
completely uniform, this implies LAY∗ ≡W idNN t LAY. As this degree has a computable
point in its domain, we conclude LAY∗ �W LAY.

Let maxc be the restriction of max :⊆ O(N)→ N. The proof of Lemma 2.3 shows that
maxc ≡W CN. If CN ≤W LAY∗ would hold, then we would also have maxc ≤W (idNN tLAY).
However, as maxc has only computable inputs, we can never produce a valid input for LAY
in that putative reduction, and hence see that maxc ≤W idNN would follow, i.e. that maxc
were computable. This is false, hence CN �W LAY∗ holds.

Corollary 3.9. If f ≤W CN for f :⊆ MLR ⇒ Y, then f ≤W LAY.

Corollary 3.10. The following are equivalent for f :⊆ MLR→ Y for a computable metric
space Y:

(1) f is effectively ∆0
2-measurable.

(2) f is Π0
1-piecewise computable.

(3) f ≤W LAY.

Proof. This is obtained by combining the computable Jayne-Rogers theorem from [33] with
Corollary 3.9.

Most results in this section were independently obtained by Hölzl and Shafer in [17],
Corollaries 3.9 and 3.10 are inspired by their corresponding results though. The proofs in
[17] differ significantly from ours, in particular, they give direct proofs of the claims listed as
corollaries here.

In a very similar fashion to Theorem 3.3, we can also characterize the degree of
Kolmogorov randomness. While this technically is just a special case of Theorem 3.3, we
provide a direct proof in the hope to illuminate the underlying phenomena. Let Kol :
MLR→ N be defined via Kol(p) := min{c ∈ N | ∀n ∈ N K(p≤n) ≥ n− c}. Then:

Proposition 3.11. Kol ≡W CN × dMLR

Proof. Note that {c ∈ N | ∀n ∈ N K(p≤n) ≥ n− c} can be computed as a closed set from p
– if some c is not in that set, we can find some n and some short program (of length less
than n− c) producing the prefix p≤n. The reduction Kol ≤W CN × dMLR then follows from
Lemma 2.3.

For the other direction, we show Bound×dMLR ≤W Kol and again invoke Lemma 2.3.
Given some w ∈ {0, 1}n and k ∈ N, there will be some programme for our fixed universal
machine printing w0k of size O(n log k). Based on the constant involved, n and c we can
choose k sufficiently large such that K(w0k) + c < n+ k.

Now our reduction works as follows: Copy the random sequence serving as the input to
dMLR over to the input for Kol. Whenever we learn that some c is in the input to Bound, we
pick a k based on the current prefix of the input to Kol and c and write the corresponding
number of zeros. Then we continue to copy the random sequence. Eventually the input to
Bound stabilizes, so our input for Kol will actually be random. Moreover, by constructing,
the output of Kol will exceed all numbers in the input to Bound.
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4. Examples of Weihrauch-complete layerwise computable operations

4.1. Complex oscillations. Let C0([0, 1],R) denote the space of continuous functions
f : [0, 1] → R where f(0) = 0. The complex oscillations CO (introduced in [1]) are the
Martin-Löf random elements (in the sense of [20]) of C0([0, 1],R) equipped with the Wiener
measure. They are of great interest as generic representatives of Brownian motion [12]. We
shall consider a specific bijection Φ : MLR→ OC studied in [12].

The definition of Φ is as follows:

Φ(α)(t) = g(α0)∆0(t) + g(α1)∆1(t) +
∑
j≥1

∑
n<2j

g(αjn)∆jn(t). (4)

The ∆0(t),∆1(t),∆jn(t) are the sawtooth functions obtained by integrating from 0 to t the
elements of the Haar system of functions,

e0 = 1,

e1 = χ([0,
1

2
))− χ([

1

2
, 1)),

ejn = {χ([n2−j , n2−j + 2−(j+1)))− χ([n2−j + 2−(j+1), (n+ 1)2−j))}2j/2,

0 ≤ n < 2j and j ≥ 1.

The function g is implicitly defined to satisfy α =
∫ g(α)
−∞

e−t2/2
√

2π
dt for α ∈ (0, 1). The

numbers α0,α1,αjn are obtained by partitioning the sequence α appropriately into disjoint
subsequences, and interpreting these as binary expansions of real numbers from [0, 1]. The
details of the partitioning do not matter for our purposes, only that it is done in a computable
fashion. See [12] for details. We now set η0 = g(α0), η1 = g(α1) and ηjn = g(αjn). By
construction, these are independent N (0, 1) random variables w.r.t. the Lebesgue measure.

We shall require the basic:

Fact 4.1. There is a computable function η : MLR→ R inducing the normal distribution
N (0, 1) on R, in the sense that for any Borel set A ⊆ R the measure assigned to A according
to N (0, 1) is equal to λ(η−1(A)). 2

Observation 4.2. max : C([0, 1],R)→ R and GreaterNat : R⇒ N where n ∈ GreaterNat(x)
if x ≤ n are computable.

Proof. For the former, see e.g. [32, Corollary 10.9]. The latter is trivial.

Lemma 4.3. [12] The function Φ : MLR→ CO can be recursively defined from the values
Φ(α) takes on the dyadic rationals, and then extending it continuously to the interval. To
wit:

(1) Φ(α)(1) := η(α0)
(2) Φ(α)(1

2) := 1
2 (η(α0) + η(α1))

(3) Φ(α)(2n+1
2j+1 ) := 1

2

(
2−j/2η(αjn) + Φ(α)(n+1

2j
) + Φ(α)( n

2j
)
)

Lemma 4.4. Given k ∈ N and v ∈ {0, 1}∗ we can compute some w ∈ {0, 1}∗ such that for
all α ∈ MLR we find that k < supt∈[0,1] Φ(vwα)(t).

2As shown in [36], this is just saying that N (0, 1) is a computable probability measure.
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Proof. Pick some j, n ∈ N such that αjn in α = 〈α0, α1, . . . , αjn, . . .〉 does not depend on
the prefix of length |v| at all. We can then choose a prefix of αjn (and prefixes of the αj′n′)

to enforce that η(αjn) is large enough to ensure that Φ(β)(2n+1
2j+1 ) > k for all β sharing these

prefixes. From these prefixes, we obtain w.

Theorem 4.5. Φ ≡W LAY.

Proof. It was shown in [11] that Φ is layerwise computable. We sketch the argument: From
the definition of Φ(α) we learn how to compute the values taken by Φ(α) on a dense subset.
To obtain Φ(α) as an element in C([0, 1],R), we also need a modulus of continuity. In [13],
it is shown that the following holds for sufficiently small h:

sup
t∈[0,1]

|Φ(α)(t+ h)− Φ(α)(t)| <
√

3h log(h−1)

By inspecting the proof we see that knowing a bound for the layer of α suffices to determine
what small enough means for h – and then we have a modulus of continuity.

That Φ ≤W LAY then follows immediately by Observation 3.2, so it only remains for us
to show LAY ≤W Φ. By Theorem 3.3 and Lemma 2.3, we can show dMLR × Bound ≤W Φ
instead. For that, we describe how we compute an input to Φ from inputs to dMLR and
Bound by an algorithm that reads in more and more information about its input, and
provides more and more information about its output. We start to copy the Martin-Löf
random α obtained as input to dMLR as input to Φ. Whenever we find some k in the input
to Bound while the current prefix of the input to Φ is v, we extend by w as in Lemma 4.4,
and then continue to write α. As the input to Bound will stabilize, this procedure produces
some β ∈ MLR. Moreover, we find that if K ∈ GreaterNat(max(Φ(β))), then K is a valid
output for Bound.

4.2. Law of the iterated logarithm. The law of the iterated logarithm states that a
one-dimensional random walk will eventually remain within a given sublinear (in time)
bound around the origin. We consider its effective version:

Definition 4.6. Let LIL : MLR ⇒ N be defined via N ∈ LIL(α) iff:

∀n ≥ N |
n−1∑
i=0

(2α(i)− 1)| <
√

2n log log n

It was shown by Vovk [37] that LIL is well-defined, and it is shown in [10] that LIL is
layerwise computable.

Lemma 4.7. Given N ∈ N and u ∈ {0, 1}∗, we can compute some v ∈ {0, 1}∗ such that

|uv| > N and |
∑|uv|−1

i=0 (2(uv)(i)− 1)| >
√

2|uv| log log |uv|.

Proof. Let |u| = k, and assume v is of the form v = 1k+l for some l ∈ N. Then

|
∑|uv|−1

i=0 (2(uv)(i)−1)| ≥ l. Thus choosing l > N−k satisfying l >
√

2(2k + l) log log(2k + l)
suffices for our purpose. This in turn can be achieved by l ≥ max{20, 2k}.
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Theorem 4.8. LIL ≡W LAY.

Proof. The direction LIL ≤W LAY follows from Observation 3.2 and the layerwise com-
putability of LIL [10, Theorem 7]. For the other direction, we show dMLR × Bound ≤W LIL
instead and employ Theorem 3.3 and Lemma 2.3.

The random input to dMLR is copied to the input to LIL. If a new number N appears
in the input to Bound while the current prefix to the input for LIL is v, we extend the input
to LIL according to Lemma 4.7. Then we continue to copy over the random input. As the
input to Bound will stabilize eventually, this procedure results in a random input to LIL,
and by constructing, any output from LIL will be a valid output for Bound.

4.3. Birkhoff’s theorem. The convergence speed in a special case of Birkhoff’s theorem
was one of the first examples of a layerwise-computable map, already given as such in [19,
Theorem 5.2.4] by Hoyrup and in [14] Rojas and by Galatolo, Hoyrup and Rojas.
Here we shall only consider a toy version – essentially, the strong law of large numbers in
disguise. This toy version already is Weihrauch-complete for layerwise computability, which
then of course is inherited by any more general but still layerwise computable versions.

Let S : {0, 1}N → {0, 1}N be the usual shift-operator, and π1 : {0, 1}N → {0, 1} be the
projection to the first bit. Let Birkhoff : MLR× N⇒ N be defined via N ∈ Birkhoff(p, k)
iff ∀n ≥ N we find that: ∣∣∣∣∣

(
1

n+ 1

n∑
i=0

π1(Si(p))

)
− 1

2

∣∣∣∣∣ < 2−k

Lemma 4.9. Given u ∈ {0, 1}∗ and k,N ∈ N, k > 0, we can compute some v ∈ {0, 1}∗
such that |uv| ≥ N and: ∣∣∣∣∣∣

 1

|uv|

|uv|−1∑
i=0

π1(Si(uv))

− 1

2

∣∣∣∣∣∣ > 2−k

Proof. Choosing v := 0l for sufficiently large l makes the statement true, and we can decide
for any value of l whether it is already large enough.

Theorem 4.10. Birkhoff ≡W LAY

Proof. The reduction Birkhoff ≤W LAY follows from [10, Theorem 6] establishing layerwise
computability of Birkhoff and Observation 3.2.

For the reverse direction, we show dMLR×Bound ≤W Birkhoff instead, invoking Theorem
3.3 and Lemma 2.3. We copy the random sequence provided as input to dMLR over to the
input for Birkhoff. If some number N is listed in the input to Bound, we extend the current
input to Birkhoff as in Lemma 4.9 with w as the current prefix of the input to Birkhoff and
k = 1. After that, we proceed to copy the random sequence.

Eventually, the input to Bound stabilizes, so the input p to Birkhoff has a random tail
and thus is random itself. By construction, if N ∈ Birkhoff(p, 1), then N is a valid output
for Bound.
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In [2, 21] it is shown that every element of MLR satisfies the convergence condition in
Birkhoff’s ergodic theorem for effectively open respectively effectively closed sets. In general
however, the rate of convergence is not layerwise computable3. The lower bound for the
Weihrauch degree of finding such a rate of convergence provided in Theorem 4.10 of course
still applies, but finding upper bounds and a precise classification seems to be an interesting
open area.

4.4. Random harmonic series. The harmonic series
∑

n∈N
1
n might be the most famous

example of a diverging series. If, however, the signs of the summands are chosen by
independent coin flips, the resulting series will almost-surely converge. Some observations on
the resulting distribution can be found in [35]. The effective counterpart was found by Dai:

Theorem 4.11 ([9, Theorem 2], Special case). The map p 7→
∑

n∈N
(−1)p(n)

n : MLR→ R is
well-defined and layerwise computable.

Theorem 4.12.
(
p 7→

∑
n∈N

(−1)p(n)

n : MLR→ R
)
≡W LAY

Proof. The reduction from left to right follows from [9, Theorem 2] and Observation 3.2. By
Theorem 3.3 and Lemma 2.3 we can show

dMLR × Bound ≤W

(
p 7→

∑
n∈N

(−1)p(n)

n
: MLR→ R

)
for the other direction.

Given some p ∈ MLR and an non-decreasing bounded sequence (ai)i∈N, we will obtain
some q ∈ MLR by almost copying p, but changing finitely many 1’s to 0’s such that we can

guarantee
∑

n∈N
(−1)q(n)

n ≥ maxn∈N an. For this, we inspect both the sequence (an)n∈N and

compute the partial sums
∑N

n=0
(−1)q(n)

n for the output written so far. If for some N ∈ N
we find that

∑N
n=0

(−1)q(n)

n < aN , then we identify finitely many jk > . . . > j0 > N with

p(ji) = 1 and
∑N

n=0
(−1)q(n)

n + 2
∑k

l=0
1
jl
> aN + 1. Such jl must exist as the harmonic

series diverges. We then let q(m) for N < m ≤ jk by q(m) = 0 if m = jl for some l and
q(m) = p(m) else.

Let c =
∑

n∈N
(−1)p(n)

n , let t be such that ∀T > t |
∑T

n=t
(−1)p(n)

n | < 1 and N ≥ maxn∈N an.

If the procedure above is triggered k times, then
∑

n∈N
(−1)q(n)

n ≥ c+ k is ensured, as each
time the limit is increased by at least 1. Once c+ k ≥ N + 1, and we have processed p up
to at least position t, it follows that the procedure cannot be triggered again. Thus, the
Hamming distance of p and q is finite, and hence q ∈ MLR follows. That the limit satisfies
the criterion is immediate.

3A counterexample had already been presented in [38, Theorem 1]. While the result is formulated in
turms of non-effectiveness of convergence in probability, it is easily seen that layerwise computability of the
(pointwise) rate of convergence implies effective convergence in probability.
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In [9], a general result was established regarding when some limit of the form∑
n∈N

(−1)p(n)an

is guaranteed to exist for p ∈ MLR, and moreover, to be layerwise computable. We point
out that the proof of Theorem 4.12 is not referring to specific properties of the harmonic
series beyond its divergence, and hence extends in a straight-forward manner to a more
general case.

As a consequence of Theorem 4.12, we can find an example for a problem that is layerwise
computable, not computable and not Weihrauch complete for layerwise computability. This
example was suggested as a promising candidate to the authors by Mathieu Hoyrup and
Laurent Bienvenu at CCR 2015.

Corollary 4.13. The map SumApr : MLR × Q × N ⇒ {0, 1} with 0 ∈ SumApr(p, q, k) if∑
n∈N

(−1)p(n)

n < q + 2−k and 1 ∈ SumApr(p, q, k) if
∑

n∈N
(−1)p(n)

n > q is

(1) layerwise computable,
(2) not computable,
(3) not Weihrauch complete for layerwise computability.

Proof. (1) As a consequence of Theorem 4.11.
(2) If SumApr were computable, then we could compute the map from Theorem 4.12 by

exhaustive search, contradicting that theorem.
(3) It was shown in [29] that CN is not reducible to any map with finite range even relative

to some oracle (i.e. with continuous instead of computable witness functions H,K in
Definition 2.1). As dMLR × CN is equivalent to CN relative to any ML-random oracle
p ∈ MLR, the claim follows from Theorem 3.3.

The generalization from random harmonic series to random Fourier series was explored
by Potgieter [34], and might provide for further examples of problems that are Weihrauch-
complete for layerwise computability.

5. Hitting time

Natural counterexamples4 to the converse of Observation 3.2 (i.e. problems that are
Weihrauch reducible to LAY but not layerwise computable) are found in hitting time
operators. These take an additional input besides the random sequence though, and we need
to clarify what layerwise computability means here: A function f : MLR×X→ Y shall be
called layerwise computable relative to the universal test (Un)n∈N, if there is a computable

function F :⊆ MLR× N×X → Y such that if p ∈
⋃k
i=1 U

C
i , then F (p, k, x) = f(p, x) for

all x ∈ X.
Let T : {0, 1}N → {0, 1}N be the usual shift-operator. For some space P({0, 1}N) of sub-

sets of {0, 1}N, we define HittingTimeP :⊆ MLR×P({0, 1}N)→ N via HittingTime(p, U) =
min{n ∈ N | Tn(p) ∈ U}. The two cases we consider is P = O and P = A. It is easy to see
that HittingTimeO(p, U) is defined for all U 6= ∅. It was shown by Kučera [22] that if p
is ML random relative to some name of A ∈ A({0, 1}N) and A has positive measure, then
(p,A) ∈ dom(HittingTimeA).

4The existence of counterexamples, albeit of a more technical nature, is also shown in [17].
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Theorem 5.1. HittingTimeO ≡W dMLR × LPO∗ <W LAY, but HittingTimeO is not layer-
wise computable.

Proof. (1) HittingTimeO ≤W dMLR × LPO∗

Note that (min :⊆ O(N)→ N) ≡W LPO∗ as shown in [25]. Given p ∈ {0, 1}N,
U ∈ O({0, 1}N) we can compute {n | Tn(p) ∈ U} ∈ O(N). The claim follows.

(2) dMLR × LPO∗ ≤W HittingTimeO Again, we use (min :⊆ O(N)→ N) ≡W LPO∗ and
show dMLR ×min ≤W HittingTimeO instead. Our input is some p ∈ MLR and some
non-empty U ∈ O(N). We inspect U until we find some element b ∈ U (which provides
an upper bound for minU).

We proceed to construct the random sequence q used as the first input to HittingTimeO.
For i ≤ b, let wi ∈ {0, 1}2+2dlog be be the sequence that starts with 11 and then intersperses
zeros and the digits in a binary code for i of length dlog be, ending with 0. Then we let
q := w0w1 . . . wbp.

Next, we construct the open set V ∈ O({0, 1}N) used as the second input to
HittingTimeO. We let V =

⋃
{i≤b|i∈U}wi{0, 1}N. Then we find that for j ≤ (2+2dlog be)b

we have T j(q) ∈ V iff j = l(2 + 2dlog be) and l ∈ U . As we can compute l from j and b,
the reduction works.

(3) HittingTimeO is not layerwise computable.
If HittingTimeO were layerwise computable, then for any p ∈ MLR the map U 7→

HittingTimeO(p, U) would need to be computable. Fix some p ∈ MLR. We construct
some non-empty Uq ∈ O({0, 1}N) from p and q ∈ {0, 1}N by letting Uq accept r ∈ {0, 1}N
with r(0) 6= p(0) straight-away, and if some n ∈ N with q(n) = 1 has been found, then
all r ∈ {0, 1}N are accepted. We thus find that HittingTimeO(p, Uq) = 0 iff q = 0N

(i.e. we have exhibited a reduction LPO ≤W (U 7→ HittingTimeO(p, U))). This shows
that U 7→ HittingTimeO(p, U) is not computable. (5)

(4) dMLR × LPO∗ <W LAY
It was shown in [29] that LPO∗ <W CN relative to an arbitrary oracle (i.e. with

continuous rather than just computable reduction witnesses) using Hertling’s level [15].
Essentially, the separation follows from observing that by iteratively removing the points
of continuity of LPO∗ from its domain, after ω-many steps the empty set is reached.
On the other hand, CN is discontinuous everywhere. This in particular implies that
dMLR × LPO∗ <W dMLR × CN, which yields the claim via Theorem 3.3.

Theorem 5.2. HittingTimeA ≡W LAY, but HittingTimeA is not layerwise computable.

Proof. (1) HittingTimeA ≤W LAY
By Theorem 3.3, we can show HittingTimeA ≤W dMLR × CN instead. By definition,

every instance (p,A) to HittingTimeA computes a Martin-Löf random p. It only remains
to prove that HittingTimeA ≤W CN. Let B ∈ O(N) be defined as B = {N ∈ N | ∀n <
N Tnp /∈ A}. We can compute B from p and A (using standard properties of the
constructions of A(−) and O(−)), and B is guaranteed to be non-empty and finite. We
then apply max :⊆ O(N→ N (which is equivalent to CN by Lemma 2.3) and to obtain
the correct answer to HittingTimeA(p,A).

(2) LAY ≤W HittingTimeA

5An alternative proof could be obtained by adjusting the argument used to establish the failure of layerwise
computability in Theorem 5.2 below.
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Instead, we show dMLR × Bound ≤W HittingTimeA and use Lemma 2.3. Starting
with p ∈ MLR and some q ∈ NN s.t. ∃N ∈ N {0, . . . , N} = {q(i) | i ∈ N}, we wish to

compute some A ∈ A({0, 1}N) s.t. ∀i ∈ N T q(i)p /∈ A but (p,A) ∈ dom(HittingTimeA).
Given p ∈ {0, 1}N and i < j ∈ N, let p[i≤j] ∈ {0, 1}j−i denote the subword of p from

position i to position j. Now, simply set A =
(⋃

i∈N p[q(i)≤2q(i)+1]{0, 1}N
)C

. This is a
closed set computable from p and q, and by construction satisfies our first criterion.
For the second criterion, we note that

∑
i∈I 2−i−1 < 1 for any finite set I ⊂ N. Thus,

there is some w ∈ {0, 1}∗ with w{0, 1}N ⊆ A, and as p ∈ MLR, we know that w appears
somewhere as a subword in p.

(3) HittingTimeA is not layerwise computable.
For k ∈ N, let Ak ∈ A({0, 1}N) be the set of all sequences whose prefix of length k is

not 1-compressible. We note that Ak is computable uniformly in k, and further note
that (p,Ak) ∈ dom(HittingTimeA) for any p ∈ MLR, as any ML random p contains
every possible subword of length k, including some incompressible ones.

Now assume that HittingTimeA were layerwise computable, witnessed by some com-
putable F :⊆ MLR×N×A({0, 1}N)→ N. We consider the computable (uniformly in k)
maps Fk :⊆ MLR→ N defined by Fk(p) = F (p, 2k,Ak). Using Fk as a subroutine, we
will search for some w ∈ {0, 1}k such that for some set B of measure at least 1

2 we can

confirm that ∀p ∈ B Fk(wp) = 0. Since there must be some p ∈ B with wp ∈
⋃2k
i=1 U

C
i ,

this implies that wp ∈ Ak, i.e. that w is not 1-compressible.
Putting together the pieces, we would have an algorithm that reads some k ∈ N and

outputs a 1-incompressible word of length k. This is clearly a contradiction, hence
HittingTimeA cannot be layerwise computable.

Complementing the results above, the map HittingTimeA∧O where the set-input is
demanded to be clopen (by providing both a name for it as a closed set, and a name for it
as an open set) is easily seen to be computable.
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theory. In Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang Merkle, editors, Mathematical Theory and
Computational Practice, volume 5635 of Lecture Notes in Computer Science, pages 260–269. Springer,
2009. doi:10.1007/978-3-642-03073-4\_27.
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