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Abstract. There are two natural and well-studied approaches to temporal ontology and
reasoning: point-based and interval-based. Usually, interval-based temporal reasoning deals
with points as a particular case of duration-less intervals. A recent result by Balbiani,
Goranko, and Sciavicco presented an explicit two-sorted point-interval temporal framework
in which time instants (points) and time periods (intervals) are considered on a par, allowing
the perspective to shift between these within the formal discourse. We consider here two-
sorted first-order languages based on the same principle, and therefore including relations, as
first studied by Reich, among others, between points, between intervals, and inter-sort. We
give complete classifications of its sub-languages in terms of relative expressive power, thus
determining how many, and which, are the intrinsically different extensions of two-sorted
first-order logic with one or more such relations. This approach roots out the classical
problem of whether or not points should be included in a interval-based semantics.

1. Introduction

The relevance of temporal logics in many theoretical and applied areas of computer science
and AI, such as theories of action and change, natural language analysis and processing, and
constraint satisfaction problems, is widely recognized. While the predominant approach in
the study of temporal reasoning and logics has been based on the assumption that time points
(instants) are the primary temporal ontological entities, there has also been significant activity
in the study of interval-based temporal reasoning and logics over the past two decades. The
variety of binary relations between intervals in linear orders was first studied systematically
by Allen [AH87, All83, AF94], who explored their use in systems for time management and
planning. Allen’s work and much that follows from it is based on the assumption that time
can be represented as a dense line, and that points are excluded from the semantics. At
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the modal level, Halpern and Shoham [HS91] introduced the multi-modal logic HS that
comprises modal operators for all possible relations (known as Allen’s relations [All83])
between two intervals in a linear order, and it has been followed by a series of publications
studying the expressiveness and decidability/undecidability and complexity of the fragments
of HS, e.g., [BMM+14, BMG+14]. Many studies on interval logics have considered the
so-called ‘non-strict’ interval semantics, allowing point-intervals (with coinciding endpoints)
along with proper ones, and thus encompassing the instant-based approach, too; more
recent ones, instead, started to treat pure intervals only. Yet, little has been done so far
on the formal treatment of both temporal primitives, points and intervals, in a unified
two-sorted framework. A detailed philosophical study of both approaches, point-based and
interval-based, can be found in [vB91] (see also [CM00]). A similar mixed approach has
been studied in [AH89]. [MH06] contains a study of the two sorts and the relations between
them in dense linear orders. More recently, a modal logic that includes different operators
for points and interval has been presented in [BGS11].

The present paper provides a systematic treatment of point and interval relations
(including equality between points and between intervals treated on the same footing as the
other relations) at the first-order level. Our work is motivated, among other observations,
by the fact that natural languages incorporate both ontologies on a par, without assuming
the primacy of one over the other, and have the capacity to shift the perspective smoothly
from instants to intervals and vice versa within the same discourse, e.g.: when the alarm
goes on, it stays on until the code is entered, which contains two instantaneous events and a
non-instantaneous one. Moreover, there are various temporal scenarios which neither of the
two ontologies alone can grasp properly since neither the treatment of intervals as the sets
of their internal points, nor the treatment of points as ‘instantaneous’ intervals, is really
adequate. The technical identification of intervals with sets of their internal points, or of
points as instantaneous intervals leads also to conceptual problems like the confusion of
events and fluents. Instantaneous events are represented by time intervals and should be
distinguished from instantaneous holding of fluents, which are evaluated at time points:
therefore, the point a should be distinguished from the interval [a, a], and the truths in
these should not necessarily imply each other. Finally, we note that, while differences
in expressiveness have been found between the strict and non-strict semantics for some
interval logics (see [MGMS11], for example), so far, no distinction in the decidability of the
satisfiability has been found. Therefore, we believe that an attempt to systemize the role
of points, intervals, and their interaction, would make good sense not only from a purely
ontological point of view, but also from algorithmic and computational perspectives.

Previous Work and Motivations. As presented in the early work of van Benthem [vB91]
and Allen and Hayes [AH85], interval temporal reasoning can be formalized as an extension of
first-order logic with equality with one or more relations, and the properties of the resulting
language can be studied; obviously, the same applies when relations between points are
considered too. In this paper we ask the question: interpreted over linear orders, how many
and which expressively different languages can be obtained by enriching first-order logic
with relations between intervals, between points, and between intervals and points? Since,
as we shall see, there are 26 different relations (including equality of both sorts) between
points, intervals, and points and intervals, 226 is an upper bound on this number. (It is
worth noticing that in [MH06] the authors distinguish 30 relations, instead of 26; this is due
to the fact that the concepts of the point a starting the interval [a, b] and meeting it are
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considered to be different.) However, since certain relations are definable in terms of other
ones, the actual number is less and in fact, as we shall show, much less. The answer also
depends on our choices of certain semantic parameters, specifically, the class of linear orders
over which we construct our interval structures. In this paper, in Part I, we consider the
classification problem relative to:

(i) the class of all linear orders;
(ii) the class of all weakly discrete linear orders (i.e., orders in which every point with a

successor/predecessor has an immediate one).

In Part II of this paper we consider:

(iii) the class of all dense linear orders;
(iv) the class of all unbounded linear orders;

Apart from the intrinsic interest and naturalness of this classification problem, its
outcome has some important repercussions, principally in the reduction of the number of
cases that need to be considered in other problems relating to these languages. For example,
it reduces the number of representation theorems that are needed: given the dual nature of
time intervals (i.e., they can be abstract first-order individuals with specific characteristics,
or they can be defined as ordered pairs over a linear order), one of the most important
problems that arises is the existence or not of a representation theorem. Consider any class
of linear orders: given a specific extension of first-order logic with a set of interval relations
(such as, for example, meets and during), does there exist a set of axioms in this language
which would constrain (abstract) models of this signature to be isomorphic to concrete ones?
Various representation theorems exist in the literature for languages that include interval
relations only: van Benthem [vB91], over rationals and with the interval relations during and
before, Allen and Hayes [AH85], for the dense unbounded case without point intervals and
for the relation meets, Ladkin [Lad78], for point-based structures with a quaternary relation
that encodes meeting of two intervals, Venema [Ven91], for structures with the relations
starts and finishes, Goranko, Montanari, and Sciavicco [GMS03], for linear structures with
meets and met-by, Bochman [Boc90], for point-interval structures, and Coetzee [Coe09]
for dense structure with overlaps and meets. Clearly, if two sets of relations give rise to
expressively equivalent languages, two separate representations theorems for them are not
needed. In which cases are representation theorems still outstanding? Preliminary works
that provide similar classifications appeared in [CS11] for first-order languages with equality
and only interval-interval relations, and in [CDS12] for points and intervals (with equality
between intervals treated on a par with the other relations) but only over the class of all
linear orders. Finally, a complete study of first-order interval temporal logics enables a
deeper understanding of their modal counterparts based on their shared relational semantics.

Structure of the paper. This paper is structured as follows. Section 2 provides the
necessary preliminaries, along with an overview of the general methodology used in this
paper. In Section 3 we study the expressive power of the language by analyzing the
definability properties of each basic relation in the class Lin. Section 4 deals with the ‘other
half’ of the picture, that is, undefinability results, and presenting all maximally incomplete
sets in this class (i.e., those subsets of relations that do not allow one to define the remaining
ones, and are maximal in this sense with respect to the subset relation); we also deal with
completeness and incompleteness results for the class of all discrete linear orders in this
section. Section 5 presents an account of all our results in a structured way, including the
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(meets,m) [a, b] 34ii [c, d]⇔ b = c

(before,b) [a, b] 44ii [c, d]⇔ b < c

(starts,s) [c, d] 14ii [a, b]⇔ a = c, d < b

(finishes,f) [c, d] 03ii [a, b]⇔ b = d, a < c

(during,d) [c, d] 04ii [a, b]⇔ a < c, d < b

(overlaps,o) [a, b] 24ii [c, d]⇔ a < c < b < d

a b

c d

c d

c d

c d

c d

c d

Table 1: Interval-interval relations, a.k.a. Allen’s relations. The equality relation is not
depicted.

projections of these to natural sub-languages, before concluding. The classes of all dense
and the class of all unbounded linearly ordered sets will be treated in Part II (forthcoming).

2. Basics

2.1. Syntax and semantics. Given a linear order D = 〈D,<〉, we call the elements of
D points (denoted by a, b, . . .) and define an interval as an ordered pair [a, b] of points in
D, where a < b. Abstract intervals will be denoted by I, J, . . . , and so on. Now, as we
have mentioned above, there are 13 possible relations, including equality, between any two
intervals. From now on, we call these interval-interval relations. Besides equality, there are 2
different relations that may hold between any two points (before and after), called hereafter
point-point relations, and 5 different relations that may hold between a point and an interval
and vice-versa: we call those interval-point and point-interval relations, respectively, and
we use the term mixed relations to refer to them indistinctly. Interval-interval relations are
exactly Allen’s relations [All83]; point-point relations are the classical relations on a linear
order, and mixed relations will be explained below. Traditionally, interval relations are
represented by the initial letter of the description of the relation, like m for meets. However,
when one considers more relations (like point-point and point-interval relations) this notation
becomes confusing, and even more so in the presence of more relations, e.g. when one wants
to consider interval relations over a partial order1. We introduce the following notation to
resolve this issue: an interval [a, b] induces a partition of D into five regions (see [Lig91]):
region 0 which contains all points less than a, region 1 which contains a only, region 2 which
contains all the points strictly between a and b, region 3 which contains only b and region 4
which contains the points greater than b. Likewise, a point c induces a partition of D into 3
pieces: region 0 contains all the points less than c, region 2 contains only c, and region 4
contains all the points greater than c. Interval-interval relations will be denoted by Ik k ′iiJ
(where the subscript ii refers to interval-interval relations), where k, k′ ∈ {0, 1, 2, 3, 4}, and k

1This paper is focused on linear orders only; nevertheless, it is our intention to complete this study to
include the treatment of partial orders also, and, at this stage, we want to make sure that we will be able to
keep the notation consistent.
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a b

[a, b] 3ip c⇔ b = c ·c

[a, b] 4ip c⇔ b < c ·c

[a, b] 2ip c⇔ a < c < b ·c
[a, b] 1ip c⇔ a = c ·c

[a, b] 0ip c⇔ c < a ·c

Table 2: Interval-point relations.

represent the region of the partition induced by I in which the left endpoint of J falls, while
k′ is the region of the same partition in which the right endpoint of J falls; for example,
I34iiJ is exactly Allen’s relation meets. Similarly, interval-point relations will be denoted
by Ik ipa (where the subscript ip stands for interval-point relations), where k represents
the position of a with respect to I; for example, I4ipa is the relation before. Analogously,
point-point relations will be denoted by the symbol k pp, and point-interval relations by the
symbol k k ′pi. For point-point relations it is more convenient to use < instead of 4pp, and >
instead of 0pp. In Tab. 1 we show six of the interval-interval relations, along with its original
nomenclature and symbology, and in Tab. 2 we show the interval-point relations. Finally,
we consider a equality per sort, using =i to denote 13ii (equality between intervals), and =p

to denote 2pp (the equality between points). Now, given any of the mentioned relations r,
its inverse, generically denoted by r̄, can be obtained by inverting the roles of the objects in
the case of non-mixed relations; for example, the inverse of the relation 22ii (Allen’s relation
contains) is the relation 04ii (Allen’s relation during). On the other hand, mixed relations
present a different situation: the inverse of a point-interval relation is an interval-point
relation; thus, for example, the inverse of 3ip is 02pi. Finally, notice that some combinations
are forbidden: for instance, the relation 22pi makes no sense, as all intervals have a non-zero
extension.

Definition 2.1. We shall denote by: R the set of all above described relations; I ⊂ R
the subset of all 13 interval-interval relations (Allen’s relations) including the relation =i;
M ⊂ R the subset of all mixed relations; P ⊂ R the subset of all point-point relations
including the relation =p. Clearly, R = I

⋃
M
⋃
P.

Definition 2.2. In the following, we denote by:

(i) Lin the class of all linear orders;
(ii) Den the class of all dense linear orders, that is, the class of all linear orders where

there exists a point in between any two distinct points;
(iii) Dis the class of all weakly discrete linear orders, that is, the class of all linear orders

where each point, other than the least (resp., greatest) point, if there is one, has a
direct predecessor (resp., successor) – by a direct predecessor of a we of course mean a
point b such that b < a and for all points c, if c < a then c ≤ b, and the notion of a
direct successor is defined dually;

(iv) Unb the class of all unbounded linear orders, that is, the class of all linear order such
that for every point a there exists a point b > a and a point c < a.

Definition 2.3. Given a linear order D, and given the set I(D) = {[a, b] | a, b ∈ D, a < b} of
all intervals built on D:
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• a concrete interval structure of signature S is a relational structure F = 〈I(D), r1,
r2, . . . , rn〉, where S = {r1, . . . , rn} ⊆ I, and
• a concrete point-interval structure of signature S is a two-sorted relational structure
F = 〈D, I(D), r1, r2, . . . , rn〉, where S = {r1, . . . , rn} ⊆ R.

Since all relations between intervals, points, and all mixed relations are already implicit in
I(D), we shall often simply write 〈I(D)〉 for a concrete interval structure 〈I(D), r1, r2, . . . , rn〉,
and 〈D, I(D)〉 for a concrete point-interval structure 〈D, I(D), r1, r2, . . . , rn〉; this is in ac-
cordance with the standard usage in much of the literature on interval temporal logics.
Moreover, we denote by FO + S the language of first-order logic without equality and
relation symbols corresponding to the relations in S. Finally, F is further said to be of the
class C (C ∈ {Lin,Den,Dis,Unb,Fin}) when D belongs to the specific class of linear orders C.

2.2. (Un)definability and Truth Preserving Relations. We describe here the most
important tools that we use to classify the expressive power of our (sub-)languages.

Definition 2.4. Let S ⊆ R, and C a class of linear orders. We say that FO + S defines
r ∈ R over C, denoted by FO + S →C r, if there exists FO + S-formula ϕ(x, y) such that
ϕ(x, y) ↔ r(x, y) is valid on the class of concrete point-interval structures of signature
(S ∪ {r}) based on C.

By FO + S → r we denote the fact that FO + S →Lin r (and hence FO + S →C r for every
C ∈ {Lin,Den,Dis,Unb,Fin}). Obviously, FO + S → r for all r ∈ S.

Definition 2.5. Let S, S′ ⊆ R and C a class of linear orders. We say that S is:

• S′-complete over C (resp., S′-incomplete over C) if and only if FO+S →C r for all r ∈ S′
(resp., FO + S 6→C r for some r ∈ S′), and
• minimally S′-complete over C (resp., maximally S′-incomplete over C) if and only if it is
S′-complete (resp., S′-incomplete) over C, and every proper subset (resp., every proper
superset) of S is S′-incomplete (resp., S′-complete) over the same class.

The notion of (minimally) r-completeness and (maximally) r-incompleteness over C is
immediately deduced from the above one, by taking S′ = {r} and denoting the latter simply
by r. Moreover, one can project the above definitions over some interesting subsets of R,
such as I,M or P, obtaining relative completeness and incompleteness.

Let C ′ ⊆ C be two classes of linear orders. Notice that if FO+S →C r then FO+S →C′ r
and, contrapositively, that if FO + S 6→C′ r then FO + S 6→C r. So specifically, if S is
S′-complete over C, then it is also S′-complete over C′. Also, if S is S′-incomplete over C′,
then it is also S′-incomplete over C. Notice however, that minimality and maximality of
complete and incomplete sets does not necessarily transfer between super and subclasses in
a similar way. In what follows, in order to prove that FO + S 6→C r for some r and some
class C, we shall repeatedly apply the following definition and (rather standard) procedure.

Definition 2.6. Let F = 〈D, I(D), S〉 and F ′ = 〈D′, I(D′), S〉 be concrete structures where
S ⊆ R. A binary relation ζ ⊆ (D∪I(D))×(D′∪I(D′)) is called a surjective S-truth preserving
relation if and only if:

(i) ζ respects sorts, i.e., ζ = ζp ∪ ζi, where ζp ⊆ D× D′ and ζi ⊆ I(D)× I(D′);
(ii) ζ respects the relations in S, i.e., if (a, a′), (b, b′) ∈ ζp and (I, I ′), (J, J ′) ∈ ζi, then:

(a) r(a, b) if and only if r(a′, b′) for every point-point relation r ∈ S;
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(b) r(I, a) if and only if r(I ′, a′) for every interval-point relation r ∈ S;
(c) r(I, J) if and only if r(I ′, J ′) for every interval-interval relation r ∈ S;

(iii) ζ is total and surjective, i.e.:
(a) for every a ∈ D (resp., I ∈ I(D)), there exist a′ ∈ D′ (resp., I ′ ∈ I(D′)) such that

(a, a′) ∈ ζp (resp., (I, I ′) ∈ ζi);
(b) for every a′ ∈ D′ (resp., I ′ ∈ I(D′)), there exist a ∈ D (resp., I ∈ I(D)) such that

(a, a′) ∈ ζp (resp., (I, I ′) ∈ ζi).
If we add to Definition 2.6 the requirement that that ζ should be functional, we obtain
nothing but the definition of an isomorphism between two-sorted first-order structures or,
equivalently, an isomorphism between single sorted first-order structures with predicates
added for ‘point’ and ‘interval’ (see e.g. [Hod93]). As one would expect, surjective S-truth
preserving relations preserve the truth of all first-order formulas in signature S. This is
stated in Theorem 2.8, below. The reason why we consider only interval-point relations
instead of all mixed relations is that, as we shall explain, we can limit ourselves to work
without inverse relations, and point-interval relations are the inverse of interval-point ones.

Definition 2.7. If ζ is a surjective S-truth preserving relation, we say that ζ breaks r 6∈ S
if and only if there are:

(i) (a, a′), (b, b′) ∈ ζp such that r(a, b) but ¬r(a′, b′), if r is point-point, or
(ii) (a, a′) ∈ ζp and (I, I ′) ∈ ζi such that r(I, a) but ¬r(I ′, a′), if r is interval-point, or

(iii) (I, I ′), (J, J ′) ∈ ζi such that r(I, J) but ¬r(I ′, J ′), if r is interval-interval.

The following result is, as already mentioned, a straightforward generalization of the classical
result on the preservation of truth under isomorphism between first-order structures, and it
is proved by an easy induction on formulas, using clause (ii) of Definition 2.6 to establish
the base case for atomic formulas and clause (iii) for the inductive step for the quantifiers.

Theorem 2.8. If ζ = ζp ∪ ζi is a surjective S-truth preserving relation between F =
〈D, I(D), S〉 and F ′ = 〈D′, I(D′), S〉, and a1, . . . , ak ∈ D, a′1, . . . , a

′
k ∈ D, I1, . . . , Il ∈ I(D),

and I ′1, . . . , I
′
l ∈ I(D′) are such that (aj , a

′
j) ∈ ζp for 1 ≤ j ≤ k, and (Ij , I

′
j) ∈ ζi for 1 ≤ j ≤ l,

then for every FO+S formulas ϕ(x1p, . . . , x
k
p, y

1
i , . . . , y

l
i) with free variables x1p, . . . x

k
p, y

1
i , . . . y

l
i,

we have that

F |= ϕ(a1, . . . , ak, I1, . . . , Il) if and only if F ′ |= ϕ(a′1, . . . a
′
k, I
′
1, . . . , I

′
l).

Thus, to show that FO + S 6→ r for a given r ∈ R, it is sufficient to find two concrete
point-interval structures F and F ′ and a surjective S-truth preserving relation ζ between
F and F ′ which breaks r. For the readers’ convenience, let us refer to surjective S-truth
preserving relations as simply S-relations.

Although there are other constructions that could be used to show that relations are
not definable in FO+S, e.g. elementary embeddings or Ehrenfeucht-Fräıssé games, we have
found S-relations sufficient for our purposes in this paper.

2.3. Strategy. The main objective of this paper is to establish all expressively different
subsets of R (and, then, of I,M or P) over the mentioned classes of linear orders. To
this end, for each r ∈ R we compute all expressively different minimally r-complete and
all maximally r-incomplete subsets of R, from which we can easily deduce all expressively
different minimally r-complete and maximally r-incomplete subsets of I,M and P; minimally
R- (resp., I−,M−,P−) complete and maximally incomplete subsets are, then, deduced as
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a consequence of the above results. The set R contains, as we have mentioned, 26 different
relations. This means that there are 226 potentially different extensions of first-order logic to
be studied. Clearly, unless we design a precise strategy that allows us to reduce the number
of results to be proved, the task becomes cumbersome.

As a first simplification principle observe that, since we are working within first-order
logic, all inverses of relations are explicitly definable, and hence we only need to assume as
primitive a set which contains all relation up to inverses, which implies that point-interval
relations can be omitted if we consider all interval-point ones. Accordingly, let I+ be the set
of interval-interval relations given in Tab. 1 together with =i, M

+ be the set of interval-point
relations given in Tab. 2, and let P+ = {<,=p}. Lastly let R+ = I+

⋃
M+

⋃
P+.

In order to further reduce the number of results to be presented, consider what follows.
The order dual of a structure F = 〈D, I(D)〉 is the structure F∂ = 〈D∂ , I(D∂)〉 based on the
order dual D∂ (obtained by reversing the order) of the underlying linear order D. All classes
considered in this paper are closed under taking order duals.

Definition 2.9. The reversible relations are exactly the members of the set {0ip, 1ip, 3ip, 4ip,
14ii, 03ii}. The relations belonging to the complement R+ \ {0ip, 1ip, 3ip, 4ip, 14ii, 03ii} are
called symmetric; if, in addition, r = 2ip or r = 04ii, then r is said self-symmetric. If
r = 0ip (resp., r = 1ip, r = 14ii), its reverse is r = 4ip (resp., r = 3ip, r = 03ii), and the other
way around. Finally, the symmetric S′ of a subset S ⊆ R+ is obtained by replacing every
reversible relation in S with its reverse. We shall use the notation S ∼ S′ to indicate that
sets S and S′ are symmetric.

This definition is motivated by the following easily verifiable facts. Let r ∈ R+, F be a
structure, and x and y be elements of F of the appropriate sorts for r; then:

(i) if r is a reversible relation, with reverse r′, then F |= r(x, y) if and only if F∂ |= r′(x, y);
(ii) if r is self-symmetric, then F |= r(x, y) if and only if F∂ |= r(x, y);

(iii) if r is a symmetric, but not self-symmetric, relation, then F |= r(x, y) if and only if
F∂ |= r(y, x).

The following crucial lemma capitalizes on these facts.

Lemma 2.10. Let S, S′ ⊂ R+ be such that S ∼ S′. If r is a symmetric relation, then
FO + S → r if and only if FO + S′ → r. Moreover, if r is a reversible relation with reverse
r′, then FO + S → r if and only if FO + S′ → r′.

Proof. Let S, S′ ⊂ R+ such that S ∼ S′. For any FO + S formula ϕ that defines a given
relation (and, therefore, with exactly two free variables), let ϕ′ denote the formula obtained
from ϕ by replacing every occurrence of a reversible relation with its reverse, and by
swapping the arguments of every symmetric, but not self-symmetric, relation (occurrences
of every self-symmetric relation are left unchanged). Induction on formulas then shows that
F |= ϕ(x, y) (after substituting x, y with elements of the appropriate sorts) if and only if
F ∂ |= ϕ′(x, y), for any structure F . The base case of the induction is taken care of by the
three observations preceding this lemma. Now, suppose that a FO+S formula ϕ(x, y) defines
a symmetric relation r. We claim that ϕ′ also defines r. Let F be an arbitrary structure of
signature S ∪ {r}. Then F∂ |= ϕ(x, y)↔ r(x, y), and hence F |= ϕ′(x, y)↔ r(y, x) if r is
not self-symmetric, and F |= ϕ′(x, y)↔ r(x, y) otherwise. Next, suppose that the FO + S
formula ϕ(x, y) defines a reversible relation r. We claim that ϕ′ defines its reverse r′. Let F
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proc Undef
(
r ∈ R+

)
for all S ⊂ R+
S = Closure(S);

if ((r /∈ S) and (S is maximal))
then list S

proc Closure (set S, rules def rules)
while (S changes)
for all 1 ≤ i ≤ size(def rules){
if (def rules[i] applies)

then S = Apply(S, def rule[i])
return S

Figure 1: Pseudo-code to identify maximally r-incomplete sets.

be an arbitrary structure of signature S ∪ {r}. Then F∂ |= ϕ(x, y)↔ r(x, y), and, hence,
F |= ϕ′(x, y)↔ r′(x, y).

In conclusion, we can limit our attention to 14 out of 26 relations by disregarding
the inverses of relations in R+, and we do not need to explicitly analyze complete and
incomplete sets for 3ip, 4ip, and 03ii as those correspond exactly to symmetric of complete
and incomplete sets for 0ip, 1ip, and 14ii, respectively. This means that only 11 relations are
to be analyzed (which we can refer to as explicit relations).

Even under the mentioned simplifications, there is a huge number of results to be
presented and displayed. Let r be anyone of the explicit relations. In order to correctly iden-
tifying all minimally r-complete sets (mcs(r)), we need to know all maximally r-incomplete
sets (MIS(r)) over the same class, and the other way around. To this end, we proceed in the
following way:

(1) fixed a class of linearly ordered sets and an explicit relation r, we first guess the r-
complete subsets of R+, obtaining a first approximation of the definability rules for
r;

(2) then, we apply the algorithm in Fig. 1, which uses the set of r-complete subsets of R+

(the parameter def rules) to obtain a first approximation of the maximally r-incomplete
sets;

(3) after that, we prove that every R1, R2, . . . , Rk listed as a maximally r-incomplete set is
actually r-incomplete, and, if not, we repeat from step 1, using the acquired knowledge
to update the set of r-complete subsets of R+;

(4) at this point, the sets S1, S2, . . . , Sk′ listed at step 1 are, actually, all minimally r-
complete: for each i, Si is r-complete by definition, and if there was a r-complete set
S ⊂ Si, then for some Rj listed as maximally r-incomplete set we could not prove
its r-incompleteness. Therefore, S1, S2, . . . , Sk′ are all minimally r-complete, and, as a
consequence, R1, R2, . . . , Rk are all maximally r-incomplete.

Once the above process is completed for every relation, we can then easily deduce all
minimally R+-complete and all maximally R+-incomplete sets, to complete the picture. A
similar procedure works for I+,M+, and P+.

The most common notational conventions used in the paper are listed in Tab. 3.

3. Completeness Results in The Class Lin

In this section, we start analyzing the inter-definability of relations in R+, and. In particular,
we consider the case in which we do not assume any particular property of the underlying
linear order. It is convenient to begin by focusing our attention to the sub-languages
induced by M+ and I+; notice, in this respect, that while the semantic counterpart of the
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D,D′, . . . (generic) linearly ordered sets
xp, yp, . . . first-order variables for points
xi, yi, . . . first-order variables for intervals
x, y, . . . first-order variables of any sort
before,. . . relations in text are emphasized
F ,F ′, . . . (generic) concrete (point-)interval structures
S, S′, . . . (generic) subsets of R-relations
ζ (ζp, ζi) surjective relation (for points, for intervals)
Idp(Idi) ‘identity’ relation over points (intervals)
C,C′ (generic) class of linearly ordered sets
FO + S →C r S defines r (w.r.t. the class C)
S ∼ S′ S and S′ are symmetric
a ∈ D a is a point of D, where D = (D,<)
S in the text, a new proof case is underlined
r generic relation
mcs (mcs(r)) minimally complete set (minimally r-complete set)
MIS (MIS(r)) maximally incomplete set (maximally r-incomplete set)

Table 3: Notational conventions used in this paper.

sub-language FO + I+ is essentially single-sorted (it is interpreted on interval structures),
in the case of FO + M+ (interpreted on point-interval ones) both sorts are necessary. The
results for M+ and I+ can also be found in [CDS12].

Throughout our analysis we shall make extensive use of the following schema for the
definability part: for every definability equation r(x, y) ↔ ϕ(x, y), we denote by ϕ(x, y)
the right-hand part of the definition, indicating that x, y are the only free variables in it;
we then take a generic point-interval structure F = 〈D, I(D)〉, and show that F |= ϕ(x, y)
(where x, y have been instantiated with suitable constants of the right type) if and only if
r(x, y) (again, after the due instantiation). We shall therefore omit the specification of these
symbols and their meaning, as it remains the same in every proof. In order to make the
text more readable, we shall present the results for each relation r by means a table with at
most four columns under the following headings:

(1) Proved, which contains those r-complete sets for which we give an explicit proof in the
corresponding lemma;

(2) Symmetric, which contains, for each r-complete set listed in the Proved column, its
symmetric one (if r is symmetric);

(3) Implied, which contains all r-complete sets that can be deduced from those in the first
two columns plus the definability results presented earlier in the paper;

(4) Deduction Chain, which is not empty if Implied is not empty, and it makes the chain of
deductions explicit.

When all (explicit) relations have been treated, we shall present the result of applying the
algorithm in Fig. 1, and we shall prove the undefinability results, completing the process
and consequently proving the minimality of the complete sets.
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Relation Proved Symmetric Implied Deduction Chain
34ii {14ii, 24ii} {03ii, 24ii}

{14ii, 03ii} -
{14ii, 44ii} {03ii, 44ii}
{14ii, 04ii} {03ii, 04ii}

14ii 34ii - {03ii, 24ii} 34ii

{03ii, 44ii} 34ii

{03ii, 04ii} 34ii

24ii 34ii - {14ii, 03ii} 34ii

{14ii, 44ii} 34ii

{14ii, 04ii} 34ii

{03ii, 44ii} 34ii

{03ii, 04ii} 34ii

04ii 34ii - {14ii, 24ii} 34ii

{14ii, 03ii} 34ii

{14ii, 44ii} 34ii

{03ii, 24ii} 34ii

{03ii, 44ii} 34ii

44ii 34ii - {14ii, 24ii} 34ii

{14ii, 03ii} 34ii

{14ii, 04ii} 34ii

{03ii, 24ii} 34ii

{03ii, 04ii} 34ii

=i 34ii -
14ii 03ii

Table 4: The spectrum of the mcs(r), for each r ∈ I+. - Class: Lin.
(Lemma 3.1)

3.1. Definability in I+ and in M+. We now study the minimal definability of I+ relations,
first, and, then, of M+ relations.

Lemma 3.1. Tab. 4 is correct.

Proof. First, we prove the I+-completeness of {34ii}, as well as the fact that every relation in
I+ is =i-complete, and, then, we prove that every other subset is 34ii-complete; completeness
for the remaining relations is a mere consequence, as it can be seen in the table. As for the
first step, we simply express every other interval-interval relation, as follows:

xi44iiyi ↔ ∃zi(xi34iizi ∧ zi34iiyi)
xi14iiyi ↔ ∃zi(xi34iizi ∧ ∀ki((zi34iiki ↔ yi34iiki) ∧ (ki34iixi ↔ ki34iiyi))
xi03iiyi ↔ ∃zi(zi34iixi ∧ ∀ki((ki34iizi ↔ ki34iiyi) ∧ (xi34iiki ↔ yi34iiki))
xi04iiyi ↔ ∃zi(xi14iizi ∧ zi03iiyi)
xi24iiyi ↔ ∃zi(zi03iixi ∧ zi14iiyi)
xi =i yi ↔ ∀zi((xi34iizi ↔ yi34iizi) ∧ (zi34iixi ↔ zi34iiyi))
xi =i yi ↔ ∀zi((xi14iizi ↔ yi14iizi) ∧ (zi14iixi ↔ zi14iiyi))

All above equations but the last two are very simple, and do not require further explanation.
Moreover, the I+-completeness of {34ii} is a known result (except for equality between
intervals): it has been formally proved in [AH85] assuming density and unboundedness of
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the structure, but a closer look shows that those additional hypothesis were not needed.
As for the fact that =i can be expressed with {34ii}, assume that F |= ϕ([a, b], [c, d]). We
wish to show that a = c and b = d. Suppose, by way of contradiction, that a 6= c. If a < c,
then the interval [a, c] meets the interval [c, d], but it does not meet [a, b], contradicting the
second conjunct of ϕ; if c < a, a similar argument shows that the second conjunct fails.
Symmetrically, we can prove that b 6= d leads to a contradiction with the first conjunct of ϕ.
Also, it is obvious that if [a, b] = [c, d], they meet and are met by exactly the same intervals.
The case of {14ii} is very similar. The remaining cases are more difficult, and require some
non-trivial definitions. First, let us observe that having the weaker relation:

34ii ∪ 44ii
is enough to get 34ii, and viceversa: in fact, [a, b] meets [b, c] if and only if [a, b]34ii ∪ 44ii[b, c]
and no other interval in between them has the same property. This is explicitly expressed by
the formula xi34yi ↔ xi(34ii ∪ 44ii)yi ∧ ¬∃zi(xi(34ii ∪ 44ii)zi ∧ zi(34ii ∪ 44ii)yi). We use this
observation in the rest of this proof, as in the remaining cases we are able to define precisely
the relation 34ii ∪ 44ii:

xi34ii ∪ 44iiyi ↔



¬(xi24iiyi ∨ yi24iixi ∨ xi14iiyi ∨ yi14iixi)∧ {14ii, 24ii}
∃zi(xi14iizi ∧ ¬(yi14iizi))∧
∀zi(yi14iizi → ¬(xi24iizi))∧
∀ziti((zi14iiyi ∧ xi14iiti)→ ¬(zi24iiti))∧
∀zi(xi14iizi → ¬(yi24iizi))∧
∀ziti((yi14iizi ∧ xi14iiti)→ ¬zi24iiti)

∃zi(xi14iizi ∧ yi03iizi)∧ {14ii, 03ii}
¬∃zi(zi03iixi ∧ zi14iiyi)

¬∃zi(ϕ1(zi, yi) ∧ ϕ2(zi, xi)) {14ii, 44ii}

where:

ϕ1(xi, yi)↔ xi14iiyi ∨ yi14iixi ∨ ∀zi((zi14iixi ↔ zi14iiyi) ∧ (xi14iizi ↔ yi14iizi))

ϕ2(xi, yi)↔ ∀zi(xi44iizi ↔ yi44iizi) ∧ (¬∃zi(xi14iizi)↔ ¬∃zi(yi14iizi))

As for the case of {14ii, 24ii}, assume F |= ϕ([a, b], [c, d]); we want to prove that b ≤ c. It
is easy to see that the requirement excludes every other possibility. First, observe that
[a, b] and [c, d] cannot overlap each other, nor can start each other, thanks to the first line.
The point b cannot be the last one of the model as there must be an interval started by
xi (second line), and since such an interval cannot be started by yi (second line), xi and yi
cannot be equal. If yi was during xi, there would be an interval that is started by yi and
overlapped by xi, which is a contradiction (third line). If xi was during yi, there would be
an interval zi that starts yi and an interval ti started by xi, and zi would overlap ti, which
is, again, a contradiction (fourth line). It is then easy to see that xi and yi cannot finish
each other (third and fifth line); finally we would have a contradiction if c ≤ a (fifth line).
Thus, the only remaining possibility is the correct one. Conversely, if we assume that b ≤ c,
it is straightforward to see that all requirements are respected. Let us now consider the
case {14ii, 44ii}, which is slightly harder. Consider, first, the definition of ϕ1: it is easy to
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Relation Proved Implied Deduction Chain
0ip {1ip, 2ip} {1ip, 4ip} 0ip ∪ 2ip, 3ip

{1ip, 3ip} {2ip, 3ip} 4ip
{2ip, 4ip} 0ip ∪ 3ip, 1ip

1ip {0ip, 3ip} {2ip, 3ip} 0ip, 4ip
2ip {0ip, 4ip} {0ip, 3ip} 1ip

{1ip, 3ip} {1ip, 4ip} 0ip

Table 5: The spectrum of the mcs(r), for each r ∈M+. - Class: Lin.
(Lemma 3.2)

see that if F is concrete interval structure, then F |= ϕ1([a, b], [c, d]) if and only if a = c.
Let us now analyze the definition of ϕ2. Consider [a, b], [c, d] ∈ F . If b = d then it is clear
that F |= ϕ2([a, b], [c, d]). Suppose that F |= ϕ2([a, b], [c, d]). We claim that b = d. Suppose,
by way of contradiction that b 6= d. As ϕ2(x, y) ↔ ϕ2(y, x) we may assume that b < d.
If d is the greatest point of the linear order D then the last conjunct of ϕ2 does not hold.
If there is a point e which is greater than d, then [a, b]44ii[d, e] and ¬[c, d]44ii[d, e], which
means that the first conjunct of ϕ2 does not hold. So we have that F |= ϕ2([a, b], [c, d]) if
and only if b = d. Finally, we want to show that F |= [a, b]34ii ∪ 44ii[c, d] if and only if
F |= ϕ([a, b], [c, d]) where ϕ denotes the right-hand part of the last equivalence considered
for this set. Assume that F |= ϕ([a, b], [c, d]). If c < b then z = [c, b] witnesses the
failure of ϕ([a, b], [c, d]). So b ≤ c and hence F |= [a, b]34ii ∨ 44ii[c, d]. Now assume that
F |= [a, b]34ii ∪ 44ii[c, d], i.e., b ≤ c. If F |= ϕ1(zi, [c, d]), then zi = [c, e] with c < e which
implies b < e. So F |= ¬ϕ2(zi, [a, b]). Therefore we have F |= ϕ([a, b], [c, d]). For the case
{14ii, 03ii}, assume that F |= ϕ([a, b], [c, d]). We wish to show that F |= [a, b]34ii ∪ 44ii[c, d],
i.e., that b ≤ c. Suppose, by way of contradiction, that c < b. By assumption, there exists
an interval zi = [e, f ] such that a = e < b < f and e < c < d = f . Then a < c < b < d,
hence [c, b]03ii[a, b] and [c, b]14ii[c, d], contradicting F |= ¬∃zi((zi03ii[a, b]) ∧ (zi14ii[c, d])).
Conversely, suppose that F |= [a, b]34ii ∪ 44ii[c, d], i.e., a < b ≤ c < d. Then the interval
zi = [a, d] witnesses the first conjunct of the definition. Moreover, for any zi, if zi03ii[a, b]
then zi = [a′, b]. Then ¬(zi14ii[c, d]), as b ≤ c, proving that the second conjunct also holds.
Finally, as for the set {14ii, 04ii}, we can easily see that it is 34ii-complete by means of an
indirect definition, that is, by defining 24ii:

xi24iiyi ↔ ∃zi(xi14iizi ∧ ¬(yi04iizi) ∧ ∃ti(ti04iizi ∧ ti14iiyi))∧
∃ti(ti14iiyi ∧ ∀wi(xi04iiwi → ti04iiwi))

whose correctness is immediate.

We now focus our attention to M+. Recall that models here are based on point-interval
structures; we are therefore allowed to define interval-interval relations whenever we need
them.

Lemma 3.2. Tab. 5 is correct.

Proof. Let us focus, first, on 0ip, and consider the following definitions:
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xi0ipyp ↔

 ∃ziwp(zi1ipyp ∧ xi1ipwp ∧ zi2ipwp) {1ip, 2ip}

∃ziwp(xi1ipwp ∧ zi3ipwp ∧ zi1ipyp) {1ip, 3ip}

The two cases above, namely {1ip, 2ip} and {1ip, 3ip} are almost immediate to see. Now,

consider the case {1ip, 4ip}. We can prove that it defines 0ip by exclusion. As a matter of

fact, we can see that:

xi0ip ∪ 2ipyp ↔ ∃zi(∀wp(zi4ipwp ↔ xi4ipwp) ∧ zi1ipzp) ∧ ¬(xi1ipyp)

In this way, we have that 3ip is definable by difference:

xi3ipyp ↔ ¬(xi1ipyp ∨ xi4ipyp ∨ xi0ip ∪ 2ipyp)

and, therefore, the set is 0ip-complete by using {1ip, 3ip}. Let us now consider the case of
{2ip, 3ip}. To deal with it, we first observe that this set is 4ip-complete, because {1ip, 2ip}
defines 0ip and we can then use Lemma 2.10. Now, we can directly define 0ip:

xi0ipyp ↔ ¬(xi2ipyp) ∧ ¬(xi3ipyp) ∧ ¬(xi4ipyp)∧ {2ip, 3ip}
∃zi(∀wp(zi4ipwp ↔ xi4ipwp) ∧ ∀wp(xi2ipwp → zi2ipwp)∧
∃wp(zi2ipwp ∧ ¬(xi2ipwp)) ∧ ¬(zi2ipyp))

As for the case {2ip, 4ip}, we reason in a similar way. By slightly modifying the above

definition, we obtain a weaker relation:

xi0ip ∪ 3ipyp ↔ ¬(xi2ipyp) ∧ ¬(xi4ipyp)∧ {2ip, 4ip}
∀zi((∀wp(zi4ipwp ↔ xi4ipwp) ∧ ∀wp(xi2ipwp → zi2ipwp)∧

∃wp(zi2ipwp ∧ ¬(xi2ipwp)))→ ¬(zi2ipyp))

Then, 1ip is defined by difference, and 0ip-completeness becomes a consequence of the 0ip-
completeness of {1ip, 2ip}, seen above. Let us consider the 1ip-completeness. First, as for
{0ip, 3ip} we have that:

xi1ipyp ↔ ¬(xi0ipyp) ∧ ¬(xi3ipyp)∧ {0ip, 3ip}
¬∃zi(zi3ipyp ∧ ∀wp(zi0ipwp ↔ xi0ipwp))

Then, for the case of {2ip, 3ip}, we already know that this set is 0ip-complete, and therefore

it must be also 1ip-complete thanks to the above argument. We end this proof by analyzing
the 2ip-complete sets:

xi2ipyp ↔



¬(xi0ipyp) ∧ ¬(xi4ipyp)∧ {0ip, 4ip}
∃zizp(¬(xi0ipzp) ∧ ¬(xi4ipzp) ∧ ¬(zi0ipyp) ∧ ¬(zi4ipyp) ∧ zi0ipzp)
∃zizp(¬(xi0ipzp) ∧ ¬(xi4ipzp) ∧ ¬(zi0ipyp) ∧ ¬(zi4ipyp) ∧ zi4ipzp)

∃zizp(xi1ipzp ∧ zi1ipzp ∧ zi3ipyp)∧ {1ip, 3ip}
∃zizp(zi1ipyp ∧ zi3ipzp ∧ xi3ipzp)
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Proved Symmetric
{<} -
{1ip} {3ip}

Proved Symmetric
{0ip, 2ip} {2ip, 4ip}
{0ip, 3ip} {1ip, 4ip}
{0ip, 4ip} -
{1ip, 2ip} {2ip, 3ip}
{1ip, 3ip} -
{14ii} {03ii}
{34ii} -

Table 6: The spectrum of the mcs(=p) (left) and of the mcs(=i) (right). - Class: Lin.
(Lemma 3.3 and Lemma 3.4)

All of the above are easy to prove. Also, the correctness of the remaining two sets is
immediate: from {0ip, 3ip} we define 1ip and, then, we use {1ip, 3ip}, and from {1ip, 4ip} we

define 0ip, and, then, we use {0ip, 4ip}.
This concludes our preliminary analysis of the expressiveness of our languages when

we limit ourselves to relation in I+ and M+. We shall use these results in the rest of this
section, dealing with the expressiveness within R+.

3.2. Definability in R+. In the rest of this section, we assume that the set of relations
is R+; unlike the previous results, we shall treat the relations one by one. We begin our
study by considering those sets that define the equality between points; then we move to
the equality between intervals, which is no more complicate than the previous one, although
there are more ways to define =i than to define =p.

Lemma 3.3. Tab. 6 (left) is correct.

Proof. Consider the following definitions

xp =p yp ↔

 ¬(xp < yp) ∧ ¬(yp < xp) {<}

∀xi(xi1ipxp ↔ xi1ipyp) {1ip}

The case of {<} is trivial. As for the case of {1ip}; suppose that F |= ϕ(a, b). Clearly, it

implies that a is the starting point of an interval if and only if b is the starting point of that
interval. Hence a = b. On the other hand it is obvious that if a = b, then F |= ϕ(a, b).

Lemma 3.4. Tab. 6 (right) is correct.

Proof. Consider the following definition:

xi =i yi ↔ ∀zp(xiripzp ↔ yiripzp) ∧ ∀zp(xir ′ipzp ↔ yir ′ipzp) {rip, r ′ip}

where {rip, r ′ip} = S, for any S in the left-hand part of the table with S ⊆M+. All such cases
are based on the same, simple observation: in order to constrain two intervals to be the same
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Proved Symmetric Implied Deduction Chain
{0ip, 1ip} {3ip, 4ip} {1ip, 14ii, 24ii} =i (Section 3.1)
{0ip, 3ip} {1ip, 4ip} {1ip, 14ii, 04ii} =i (Section 3.1)
{1ip, 2ip} {2ip, 3ip} {1ip, 14ii, 44ii} =i (Section 3.1)
{1ip, 3ip} - {3ip, 24ii, 03ii} =i (Section 3.1)
{1ip, 03ii} {3ip, 14ii} {3ip, 03ii, 04ii} =i (Section 3.1)
{1ip, 34ii} {3ip, 34ii} {3ip, 03ii, 44ii} =i (Section 3.1)
{1ip, 04ii,=i} {3ip, 04ii,=i}
{1ip, 24ii,=i} {3ip, 24ii,=i}
{1ip, 44ii,=i} {3ip, 44ii,=i}

Table 7: The spectrum of the mcs(<). - Class: Lin.
(Lemma 3.5)

interval, it suffices to fix the two endpoints. This is to say that, for each side of the intervals,
we can simply express the fact that they have the same sets of points in a given point-interval
relation with it. So, for example, consider {0ip, 2ip}. Assume that F |= ϕ([a, b], [c, d]): we

obtain a = c from the first conjunct of ϕ, and b = d from the second conjunct. On the other
hand, it is immediate to see that if [a, b] = [c, d] then F |= ϕ([a, b], [c, d]). The basic idea is
now clear: by means of 0ip we fix the left endpoints, and by means of 2ip we fix the right
endpoint (in this particular case, 2ip serves the right side, but, for example, in the case of
{2ip, 4ip}, it would serve the left one). Notice that the only pairs missing from the list (and

the list of symmetric sets) are {0ip, 1ip} and its symmetric one, for which this idea does not
apply (they are, in fact, =i-incomplete). The remaining definitions are already included in
Lemma 3.1.

The case of ‘less then’ between point is the first non-trivial case, as there are already
many possible different definitions.

Lemma 3.5. Tab. 7 is correct.

Proof. Consider, first, the following definitions:

xp < yp ↔



∃xi(xi1ipxp ∧ xi3ipyp) {1ip, 3ip}

(¬∃zi(zi1ipyp) ∧ ∃zi(zi1ipxp)) ∨ ∃zi(zi0ipxp ∧ zi1ipyp) {0ip, 1ip}

(∃xi(xi1ipxp) ∧ ¬∃xi(xi1ipyp)) ∨ ∃xi(xi1ipxp ∧ xi2ipyp) {1ip, 2ip}

∃zi(zi3ipyp ∧ ∀ki(ki3ipxp → ¬∀zp(zi0ipzp ↔ ki0ipzp)) ∧ ¬(zi3ipxp)) {0ip, 3ip}

(∃xi(xi1ipxp) ∧ ¬∃xi(xi1ipyp))∨ {1ip, 03ii}
∃xiyi(xi1ipxp ∧ yi1ipyp ∧ yi03iixi)

The case of {1ip, 3ip} is straightforward. Consider the case of {0ip, 1ip}. Assume that

F |= ϕ(a, b). If the first disjunct of ϕ is satisfied then b is the largest point of the linear order
D and a is not the largest point of D which implies a < b as required. If the second disjunct
of ϕ holds, witnessed by the interval [c, d], then a < c and b = c, again leading to a < b. On
the other hand assume a < b. If b is the largest point of D then a is not, and hence the first
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disjunct of ϕ holds. If b is not the largest point of the the linear order D then we can pick
c ∈ D with b < c and the interval [b, c] witnesses the second disjunct of ϕ. Now consider
the case {0ip, 3ip}, and assume, first, that F |= ϕ(a, b). So, some interval zi ends at b; if, by

contradiction, a = b, then zi also ends at a, contradicting the last conjunct, and if b < a,
then the interval ki that starts at the beginning point of zi and ends at a contradicts the
second conjunct. If, on the other hand, we assume a < b, we can take the interval zi = [a, b]
to satisfy ϕ(a, b), and we make sure that zi does not end at xp, nor any interval ending
at xp may possibly start together with zi. Next, consider the case {1ip, 2ip}. Assume that

F |= ϕ(a, b). If the first disjunct of ϕ holds then, b is the largest point of D and a is not
which leads to a < b. If the second disjunct of ϕ holds, witnessed by the interval xi = [c, d],
then a = c and c < b < d which again leads to a < b. On the other hand, assume a < b, and
let us prove that F |= ϕ(a, b). If b is the greatest point of D, then the first disjunct of ϕ
holds. If it is not, then, there is a c ∈ D such that c > b > a and the second disjunct of ϕ
holds, witnessed by the interval xi = [a, c]. Let us prove the <-completeness of {1ip, 03ii}.
Assume that F |= ϕ(a, b). If the first disjunct of ϕ holds then b is the largest point of D and
a is not, which implies that a < b. Suppose that the second disjunct of ϕ holds, witnessed
by the intervals xi = [c, d] and yi = [e, f ]. Then a = c, b = e and c < e < f = d, hence
a < b. Now assume that a < b. If b is the largest point of D then the first disjunct of ϕ
holds. Otherwise the second disjunct of ϕ holds witnessed by the intervals xi = [a, c] and
yi = [b, c] where b < c. Now, let us focus on the following group of definitions:

xp < yp ↔



(∃xi(xi1ipxp) ∧ ¬∃xi(xi1ipyp))∨ {1ip, 34ii}
∃xiyizi(xi1ipxp ∧ yi1ipyp ∧ zi34iiyi ∧ ∀ti(ti34iixi ↔ ti34iizi))

∃xiyi(xi1ipxp ∧ yi1ipyp ∧ yi04iixi)∨ {1ip, 04ii,=i}
(∃xi(xi1ipxp) ∧ ¬∃xi(xi1ipyp))∨
(∃xiyi(xi1ipxp ∧ yi1ipxp ∧ xi 6= yi)∧
¬∃xiyi(xi1ipyp ∧ yi1ipyp ∧ xi 6= yi))

∃xiyi(xi1ipxp ∧ yi1ipyp ∧ xi24iiyi)∨ {1ip, 24ii,=i}
(∃xi(xi1ipxp) ∧ ¬∃xi(xi1ipyp))∨
(∃xiyi(xi1ipxp ∧ yi1ipxp ∧ xi 6= yi)∧
¬∃xiyi(xi1ipyp ∧ yi1ipyp ∧ xi 6= yi))

∃xi(xi1ipxp ∧ ∀yi(yi1ipyp → ∃zi(xi44iizi ∧ ¬(yi44iizi))))∨ {1ip, 44ii,=i}
(∃xi(xi1ipxp) ∧ ¬∃xi(xi1ipyp))∨
(∃xiyi(xi1ipxp ∧ yi1ipxp ∧ xi 6= yi)∧
¬∃xiyi(xi1ipyp ∧ yi1ipyp ∧ xi 6= yi))

The case of {1ip, 34ii} is very similar to the previous one. Indeed, if we assume that

F |= ϕ(a, b), and that the second conjunct of ϕ holds (if the first conjunct holds, then we
reason as in the previous case), then, if xi = [c, d] and yi = [e, f ], we have that a = c, b = e,
and the interval zi = [a, b] must exist, so that it is met by exactly the same intervals that meet
xi. Now, assume that a < b, where b is not the largest point of D (otherwise, the first disjunct
of ϕ holds). Then, the second disjunct of ϕ holds witnessed by the intervals xi = [a, c],
yi = [b, c], and zi = [a, b] where b < c. Now consider the case of {1ip, 04ii,=i}. Suppose

that F |= ϕ(a, b). If the first disjunct of ϕ holds, witnessed by the intervals xi = [c, d] and
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yi = [e, f ], then a = c, b = e and c < e < f < d and we get a < b. If the second disjunct of
ϕ holds, then b is the largest point of D and a is not, so a < b. If the third disjunct of ϕ
holds, then there are at least two points in D which are greater than a and there is at most
one point in D greater than b which again leads to a < b. Now, assume a < b; we want to
show that F |= ϕ(a, b). If b is the largest point of D, then a is not and therefore the second
disjunct of ϕ holds. If there is exactly one point in D which is greater than b, then there are
at least two points in D greater than a and therefore the third disjunct of ϕ holds. Now
we may assume that there are points c, d ∈ D with a < b < c < d. Then the first disjunct
of ϕ holds witnessed by the intervals xi = [a, d] and yi = [b, c]. The case of {1ip, 24ii,=i}
is similar to the previous one. Lastly, we consider the case of {1ip, 44ii,=i}. Suppose that

F |= ϕ(a, b) and that the first disjunct of ϕ holds, witnessed by the interval xi = [a, c].
Suppose, towards a contradiction, that b < c. Then the interval yi = [b, c] satisfies yi1ipb and
therefore there is an interval zi such that [a, c]44iizi and ¬([b, c]44iizi) which is impossible.
Therefore c ≤ b and we obtain a < b. If the second or the third disjunct of ϕ holds then we
again obtain a < b precisely as in the previous case. Now assume a < b; we want to show
that F |= ϕ(a, b). If b is the greatest point of D then the second disjunct of ϕ holds and if
there is exactly one point in D which is greater than b then the third disjunct of ϕ holds. So
we may assume there are two points c, d ∈ D such that b < c < d. We claim that the first
disjunct of ϕ holds, witnessed by the interval xi = [a, b]. Let yi = [b, e]. We want to find an
interval zi such that [a, b]44iizi and ¬[b, e]44iizi. Let f be the minimum of c and e. Then
the interval zi = [f, d] has the desired property, from which we see that the first disjunct of
ϕ holds.

We are now moving to mixed relations, starting with 0ip. Recall that 0ip and 1ip are
reversible relations: symmetric sets of complete ones are complete for their (respective)
reverse, and, thus, they do not appear in their tables.

Lemma 3.6. Tab. 8 is correct.

Proof. Consider the following definitions:

xi0ipyp ↔


∃zp(xi1ipzp ∧ yp < zp) {1ip, <}

∃zp(¬(xi2ipzp) ∧ ¬(xi3ipzp)∧ {2ip, 3ip}
∀zi∀kp((zi3ipzp ∧ xi3ipkp)→ ¬(zi2ipkp)) ∧ yp < zp)

The case of {1ip, <} is straightforward, and needs no explanation. Consider, now, the

case {2ip, 3ip}. The fact that this set is <-complete is proved above. So, assume first

F |= ϕ([a, b], c); there must be some d which, thanks to the first two conjuncts, can only be
placed in such a way that d ≤ a or b < d, and, thanks to the third conjunct, the possibility
b < d is eliminated: in fact, if we had b < d, we could take zi = [a, d] and kp = b to
contradict the third conjunct. So, since d ≤ a and c < d, it must be that c < a as we wanted.
Conversely, suppose that c < a: we take zp = a, which is not during xi nor does it end xi,
and it is such that no interval ending at zp may possibly contain b. Moreover, yp = c < a,
and so ϕ([a, b], c). Now, focus on the following definitions:



A THEORY OF POINTS AND INTERVALS (I) 19

Proved Implied Deduction Chain
{1ip, <} {1ip, 2ip} <
{2ip, 3ip} {1ip, 3ip} <
{2ip, 4ip} {1ip, 4ip} <
{2ip, 14ii, <} {1ip, 14ii, 24ii} <
{2ip, 03ii, <} {1ip, 14ii, 04ii} <
{3ip, 14ii} {1ip, 14ii, 44ii} <
{4ip, 14ii, <} {1ip, 24ii,=i} <

{1ip, 04ii,=i} <
{1ip, 44ii,=i} <
{1ip, 03ii} <
{1ip, 34ii} <
{2ip, 34ii, <} 03ii (Section 3.1)
{3ip, 34ii} 14ii (Section 3.1)
{3ip, 24ii, 03ii} 34ii (Section 3.1)
{3ip, 03ii, 04ii} 34ii (Section 3.1)
{3ip, 03ii, 44ii} 34ii (Section 3.1)
{4ip, 34ii, <} 14ii (Section 3.1)
{4ip, 24ii, 03ii, <} 34ii (Section 3.1)
{4ip, 03ii, 04ii, <} 34ii (Section 3.1)
{4ip, 03ii, 44ii, <} 34ii (Section 3.1)

Table 8: The spectrum of the mcs(0ip). - Class: Lin.
(Lemma 3.6)

xi0ipyp ↔



¬(xi2ipyp) ∧ ¬(xi4ipyp)∧ {2ip, 4ip}
∃zi(∀kp(xi4ipkp ↔ zi4ipkp)∧
∃kp(zi2ipkp ∧ ¬(xi2ipkp)) ∧ ¬(zi2ipyp))∧
¬∀zi(∃kp(zi4ipkp ∧ ¬(xi4ipkp))→ zi4ipyp)

∃zpkp(yp < zp ∧ zp < kp ∧ ¬(xi2ipyp)∧ {2ip, 14ii, <}
¬(xi2ipzp) ∧ ¬(xi2ipkp)∧
∀zi(zi2ipzp → ¬(xi14iizi)))

Let us focus on the the case of {2ip, 14ii, <}. Suppose F |= ϕ([a, b], c). So, there are two

points d, e such that c < d < e. Now d = zp cannot be after a, for if it was we could find an
interval zi = [a, e], where e > b (since e and d cannot be during xi) and such that xi starts
zi, which contradicts the last conjunct. Then, d ≤ a, which implies c < a as we wanted.
Suppose, on the other hand, that c < a: to satisfy the requirements, it suffices to take zp = a
and kp = b. The correctness of the case {2ip, 4ip} is based on the fact that we can, first,

eliminate the possibility that yp is during or after xi; then, we eliminate the possibility that
yp starts xi by stating that there must be an interval finished by xi that does not have yp
during it; finally, we eliminate the possibility that yp ends xi by stipulating the existence of
an interval (the one that starts at yp) which ends before the right endpoint of xi that does
not have yp after it. Finally, consider the following definitions:
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Proved Implied Deduction Chain
{0ip, <} {0ip, 3ip} <

{2ip, 3ip} <, 0ip
{2ip, 4ip, <} 0ip
{2ip, 14ii, <} 0ip
{2ip, 03ii, <} 0ip
{2ip, 34ii, <} 0ip
{3ip, 14ii} <, 0ip
{3ip, 24ii, 03ii} <, 0ip
{3ip, 03ii, 04ii} <, 0ip
{3ip, 03ii, 44ii} <, 0ip
{3ip, 34ii} <, 0ip
{4ip, 14ii, <} 0ip
{4ip, 24ii, 03ii, <} 0ip
{4ip, 03ii, 04ii, <} 0ip
{4ip, 03ii, 44ii, <} 0ip
{4ip, 34ii, <} 0ip

Table 9: The spectrum of the mcs(1ip). - Class: Lin.
(Lemma 3.7)

xi0ipyp ↔



∃zpzi(xi03iizi ∧ zi2ipzp ∧ ¬(xi2ipzp) ∧ yp < zp) {2ip, 03ii, <}

∃zp(¬(xi3ipzp) ∧ ¬∃zi((zi14iixi ∨ xi14iizi) ∧ zi3ipzp)∧ {3ip, 14ii}
yp < zp)

∃zp(¬∀kp(zp < kp ↔ xi4ipkp)∧ {4ip, 14ii, <}
¬∃zi((zi14iixi ∨ xi14iizi) ∧ ∀kp(zp < kp ↔ zi4ipkp))∧
yp < zp)

For the sake of the case {2ip, 03ii, <}, suppose that F |= ϕ([a, b], c). So, there is a point zp
such that it is not during xi, and since it must be during an interval zi = [e, b], it can only
be d ≤ a. Since c < d we have c < a. Suppose, on the other hand, that c < a: to satisfy the
requirements, it suffices to take zi = [c, b] and zp = a. As for the set {3ip, 14ii}, first, recall

its <-completeness; then, we state the existence of a point for which we can eliminate the
possibility that zp ends xi by means of the first conjunct, and, after that, we can eliminate
the possibility that zp is during or after xi: if that were the case, there would be an interval
zi starting or started by xi such that zp is its right endpoint. The only possibility left is
therefore that zp is less than or equal to the beginning point of xi, and therefore the last
conjunct guarantees that xi0ipyp. Finally, the case {4ip, 14ii, <} is identical to the previous

one, with the only difference that xi3ipyp can be expressed by asserting that yp < kp and
xi4ipkp are equivalent. As for the implied definitions, notice that in some cases we exploit
the I+-completeness results from Section 3.1.

Lemma 3.7. Tab. 9 is correct.

Proof. Only one new definition is needed:
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Proved Symmetric Implied Deduction Chain
{0ip, 4ip} - {0ip, 3ip} 1ip
{1ip, 3ip} - {0ip, 14ii, 24ii, <} 4ip
{1ip, 03ii} {3ip, 14ii} {0ip, 14ii, 04ii, <} 4ip

{0ip, 14ii, 44ii, <} 4ip
{0ip, 03ii, <} 1ip
{0ip, 34ii, <} 03ii (Section 3.1)
{1ip, 4ip} 3ip
{1ip, 14ii, 24ii} 3ip
{1ip, 14ii, 04ii} 3ip
{1ip, 14ii, 44ii} 3ip
{1ip, 34ii} 03ii (Section 3.1)
{3ip, 24ii, 03ii} 1ip
{3ip, 03ii, 04ii} 1ip
{3ip, 03ii, 44ii} 1ip
{3ip, 34ii} 14ii (Section 3.1)
{4ip, 14ii, <} 3ip
{4ip, 24ii, 03ii, <} 1ip
{4ip, 03ii, 04ii, <} 1ip
{4ip, 03ii, 44ii, <} 1ip

Table 10: The spectrum of the mcs(2ip). - Class: Lin.
(Lemma 3.8)

xi1ipyp ↔ ∀zp(xi0ipzp ↔ zp < yp) {0ip, <}

This definition is quite straightforward: [a, b]1ipa if, and only if, the points c less than a are
exactly the same points c such that [a, b]0ipc.

We complete this part by analyzing the definability for 2ip. Notice that here we also
take advantage of the results of Section 3.1.

Lemma 3.8. Tab. 10 is correct.

Proof. In this case, three new definitions are needed:

xi2ipyp ↔



∃zikizpkp(zi1ipzp ∧ ki3ipkp ∧ zi3ipyp ∧ ki1ipyp ∧ xi1ipzp ∧ xi3ipkp) {1ip, 3ip}

∃ziki(∀zp(zi0ipzp ↔ xi0ipzp) ∧ ∀kp(ki4ipkp ↔ xi4ipkp)∧ {0ip, 4ip}
¬∃ti(∀tp(ti0iptp ↔ ki0iptp) ∧ ∀tp(ti4iptp ↔ zi4iptp))∧
¬(zi4ipyp) ∧ ¬(ki0ipyp))

∃zi(zi03iixi ∧ zi1ipyp) {1ip, 03ii}

For the 2ip-completeness of {1ip, 3ip}, we begin by assuming that F |= ϕ([a, b], c). So, there

must be two intervals zi, ki, the former starting at a, and the latter ending at b; the point c
must, at the same time, end zi (meaning that a < c) and start ki (implying that c < b), and
we deduce a < c < b. If we assume a < c < b, it is enough to take zi = [a, c] and ki = [c, b]
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Proved Symmetric Implied Deduction Chain
{1ip, 3ip} - {24ii, 14ii} Section 3.1
{2ip, 14ii} {2ip, 03ii} {14ii, 44ii} Section 3.1
{4ip, 14ii} {0ip, 03ii} {14ii, 03ii} Section 3.1
{0ip, 2ip} {2ip, 4ip} {14ii, 04ii} Section 3.1

{24ii, 03ii} Section 3.1
{03ii, 04ii} Section 3.1
{03ii, 44ii} Section 3.1
{0ip, 3ip} 1ip
{0ip, 4ip} 2ip
{1ip, 2ip} 0ip
{1ip, 4ip} 3ip
{1ip, 03ii} 2ip
{2ip, 3ip} 4ip
{3ip, 14ii} 2ip

Table 11: The spectrum of the mcs(34ii). - Class: Lin.
(Lemma 3.9)

to satisfy the conditions. We move now to the 2ip-completeness of {0ip, 4ip}, and let us

assume, again, that F |= ϕ([a, b], c). The interval zi must start at a, and the interval ki must
end at b. Moreover, the ending point of ki cannot be after the beginning point of zi (third
conjunct). Now, in this situation, yp cannot be a or before it (because of the fifth conjunct),
and it cannot be b or after it (because of the fourth conjunct), and the only possibility left
out is a < c < b. If, conversely, we assume a < c < b, it is enough to take zi = [a, c] and
ki = [c, b] to satisfy the entire set of conditions. Finally, the 2ip-completeness of {1ip, 03ii} is

very easy. If F |= ϕ([a, b], c), then there exists an interval zi that finishes [a, b], and for its
starting point, that is, yp = c, it must hold that a < c < b. On the other hand, if a < c < b,
we just take zi = [c, b] to satisfy ϕ.

We now focus on interval-interval relations other than equality, starting with 34ii, which,
being I+-complete on its own, plays a very special role. Most of the work has already been
taken care of in Section 3.1. As a matter of fact, we already know some subsets of I+

that are 34ii-complete, and we certainly have to define those subsets of R+ \ I+ which are.
It remains to establish whether other subsets of I+, other than those seen in Section 3.1,
become 34ii-complete within the language of FO + R+: the fact that this is not the case
will be a consequence of the results shown in Section 4.

Lemma 3.9. Tab. 11 is correct.

Proof. The fact that the set {1ip, 3ip} is 34ii-complete depends on the following easy definition:

xi34iiyi ↔ ∃zp(xi3ipzp ∧ yi1ipzp) {1ip, 3ip}

The second two sets in the leftmost column can be proven 34ii-complete by means of defining,
as in Section 3.1, the weaker relation 34ii ∪ 44ii:
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Proved Implied Deduction Chain
{0ip, 2ip} {0ip, 3ip} 2ip
{0ip, 4ip} {0ip, 03ii, <} 2ip

{1ip, 2ip} 0ip
{1ip, 3ip} 0ip, 4ip
{1ip, 4ip} 0ip
{1ip, 03ii} 34ii

{2ip, 3ip} 0ip
{2ip, 4ip} 0ip
{34ii} Section 3.1
{2ip, 03ii} 34ii

{24ii, 03ii} Section 3.1
{03ii, 04ii} Section 3.1
{03ii, 44ii} Section 3.1

Table 12: The spectrum of the mcs(14ii). - Class: Lin.
(Lemma 3.10.)

xi34ii ∪ 44iiyi ↔



∃zi(xi14iizi ∧ ∀kp(zi4ipkp ↔ yi4ipkp))∧ {4ip, 14ii}
¬∃zi(zi14iiyi ∧ ∀kp(zi4ipkp ↔ xi4ipkp))

∃zpzi(xi14iizi ∧ zi2ipzp ∧ ¬(xi2ipzp)∧ {2ip, 14ii}
∀ki(xi14iiki → ki2ipzp)∧
∀ki(yi14iiki → ¬(ki2ipzp))∧
¬(yi2ipzp)),

As for {4ip, 14ii}, assume, first, that F |= ϕ([a, b], [c, d]). We wish to show that F |=
[a, b]34ii ∪ 44ii[c, d], i.e., that b ≤ c. Suppose, by way of contradiction, that c < b. The only
possible interval which satisfies the first conjunct is [a, d]. Specifically we have b < d. Now the
interval [c, b] falsifies the second conjunct. Conversely assume that F |= [a, b]34ii ∪ 44ii[c, d],
i.e., a < b ≤ c < d. Then the interval zi = [a, d] witnesses the first conjunct of the definition,
and, for any zi, if zi starts yi, then it cannot end at b, proving that the second conjunct
also holds. As for {2ip, 14ii} assume, first, that F |= ϕ([a, b], [c, d]). We wish to show that

F |= [a, b]34ii ∪ 44ii[c, d], i.e., that b ≤ c. Because of the first four conjuncts, there must be
an interval started by xi, and zp must be placed as the ending point of [a, b], that is, zp = b;
then, yi must start at zp or after it, otherwise it would happen that either yi2ipzp or some ki
started by yi is such that ki2ipzp. On the other hand, assume that F |= [a, b]34ii ∪ 44ii[c, d],
i.e., that b ≤ c < d. In this case, it suffices to take zp = b and zi = [a, d] to satisfy all
conjuncts. Finally, the 34ii-completeness of {0ip, 2ip} can be seen as follows:

xi14iiyi ↔ ∀kp(xi0ipkp ↔ yi0ipkp) ∧ ∃kp(yi2ipkp ∧ ¬(xi2ipkp)) {0ip, 2ip}

which is immediate to prove, as we stipulate that xi starts yi if and only if xi and yi have the
same points before them and there exists a point (the ending point of xi) that it is during yi
and not during xi, and which allows us to obtain the result via the set {2ip, 14ii}.
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Proved Symmetric Implied Deduction Chain
{2ip, <} - {0ip, 2ip} 34ii

{0ip, 44ii, 04ii} {4ip, 44ii, 04ii} {0ip, 3ip} 34ii

{1ip, 44ii, 04ii} {3ip, 44ii, 04ii} {0ip, 4ip} 34ii

{0ip, 03ii} 34ii

{1ip, 2ip} 34ii

{1ip, 3ip} 34ii

{1ip, 4ip} 34ii

{1ip, 03ii} 34ii

{2ip, 3ip} 34ii

{2ip, 4ip} 34ii

{2ip, 14ii} 34ii

{2ip, 03ii} 34ii

{3ip, 14ii} 34ii

{4ip, 14ii} 34ii

{14ii, 03ii} 34ii

{14ii, 04ii} 34ii

{14ii, 44ii} 34ii

{03ii, 44ii} 34ii

{04ii, 03ii} 34ii

{34ii} Section 3.1

Table 13: The spectrum of the mcs(24ii). - Class: Lin.
(Lemma 3.11.)

The only non-symmetric interval-interval relation, 14ii, does not present particularly
difficult problems.

Lemma 3.10. Tab. 12 is correct.

Proof. The fact that the set {0ip, 2ip} is 14ii-complete has already been proved as a necessary

step to delineate the mcs(34ii). As for the set {0ip, 4ip}, it is easily verified that:

xi14iiyi ↔ ∀zp(xi0ipzp ↔ yi0ipzp) ∧ ∃zp(xi4ipzp ∧ ¬(yi4ipzp)), {0ip, 4ip}

Lemma 3.11. Tab. 13 is correct.

Proof. Consider the following definitions:
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xi24iiyi ↔



∃zpkp(xi2ipzp ∧ ∀tp(xi2iptp → tp < kp) {2ip, <}
∧ ∀sp(∀tp(xi2iptp → tp < sp)→ ¬(sp < kp))
∧ yi2ipkp ∧ ¬(yi2ipzp))

∃zitiwi(∀kp(xi0ipkp ↔ zi0ipkp) ∧ ∀kp(yi0ipkp ↔ wi0ipkp) ∧ {0ip, 44ii, 04ii}
zi44iiti ∧ ∃si(wi04iisi ∧ ¬(yi04iisi)) ∧
¬∀kp(xi0ipkp ↔ yi0ipkp) ∧∧
ui,vi∈{wi,xi,yi,zi,ti}

{ui,vi}6={zi,ti}

(¬(ui04iivi) ∧ ¬(ui44iivi)))

∃zitiwi(∃kp(xi1ipkp ∧ zi1ipkp) ∧ ∃kp(yi1ipkp ∧ wi1ipkp) ∧ {1ip, 44ii, 04ii}
zi44iiti ∧ ∃si(wi04iisi ∧ ¬(yi04iisi)) ∧
¬∃kp(xi1ipkp ∧ yi1ipkp) ∧∧
ui,vi∈{wi,xi,yi,zi,ti}

{ui,vi}6={zi,ti}

(¬(ui04iivi) ∧ ¬(ui44iivi)))

Let us start proving the correctness of the case {2ip, <}. Suppose that F |= [a, b]24ii[c, d].

Then, by definition, a < c < b < d; by setting zp = c and kp = b we satisfy all requirements.
Conversely, suppose that F |= ϕ([a, b], [c, d]). First, observe that xi = [a, b] must have and
internal point zp. Then, the only way to place kp is by having that kp is the smallest point
which is greater than every internal point of xi, that is, kp must end xi. Now, yi must
contain kp (so, it must end after it), but not zp (so, it must start after zp or on it). Consider,
now, {1ip, 44ii, 04ii}. Suppose that F |= [a, b]24ii[c, d]. Then, by definition, a < c < b < d;

by setting zi = [a, c], wi = [c, b], ti = [b, d], and si = [a, d], we satisfy all requirements.
Suppose, now, that F |= ϕ([a, b], [c, d]). We prove that [a, b]24ii[c, d] by eliminating every
other possibility. First, observe that they cannot have their starting point in common (third
line), and they cannot contain each other nor can one of them be after the other (fourth
line). Thus, we eliminated =i, 14ii, 04ii, 44ii among the possible relation between xi and yi.
Assume, by way of contradiction, that yi34iixi. The second and fourth conjuncts together
imply that wi14iiyi, and since wi (resp., zi) has the same starting point as yi (resp., xi),
and since zi44iiti, obviously wi44iiti, which is in contradiction with the fourth line. Assume
now that xi34iiyi. First, observe that zi cannot be shorter than xi, otherwise it would be
zi44iiwi (contradicting the fourth line); but then, zi cannot be equal to xi or longer than
it, as in that case xi44iiti (contradicting, once again, the requirement in the fourth line).
Now, suppose that xi03iiyi. Let wi = [e, f ], where e = c. Clearly, to comply with the fourth
line, it cannot be that f < a or that f > b(= d). If, on the other hand, a ≤ f ≤ b, then it
is impossible to place zi = [g, h] (g = a), as it must be that h < f (since wi44iiti leads to
a contradiction), but, then, zi04iiyi, in contradiction with the fourth line. Therefore, we
cannot place wi, which means that we have a contradiction. Next suppose that yi03iixi. Let
wi = [e, f ], where e = c; clearly, f ≥ d, as, otherwise, we would have that xi contains wi

(forbidden by the fourth line); but, then, it is impossible to find any si that contains wi and
not yi (second line), leading to a contradiction. Finally, if yi24iixi, it is impossible to place
wi, zi and ti in such a way that zi44iiti, ¬(zi04iiwi), and ¬(wi04iiti). Having eliminated
every other possibility, it must be that xi24iiyi. Finally, observe that he case {0ip, 44ii, 04ii}
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can be dealt with the very same argument, only having 0ip playing the same role as 1ip. The
corresponding definition is therefore almost identical to the one of the previous case.

Lemma 3.12. Tab. 14 is correct.

Proof. Consider the following definitions:

xi04iiyi ↔



∃zitizptpx′ix′′i (yi2ipzp ∧ yi2iptp ∧ zi24iiti ∧ x′i44iix
′′
i ∧ zi2ipzp ∧ ti2iptp∧ {2ip, 24ii, 44ii}

¬(zi2iptp) ∧ ¬(ti2ipzp)∧∧
si∈{xi,x′

i,x
′′
i }

(¬(si2ipzp) ∧ ¬(si2iptp))∧∧
si∈{yi,xi,zi,ti},r∈{44ii,24ii}

(¬(x′i r si) ∧ ¬(si r x
′
i))∧∧

si∈{yi,x′
i,x

′′
i ,zi,ti},r∈{44ii,24ii}

(¬(xi r si) ∧ ¬(si r xi))∧∧
si∈{yi,xi,zi,ti},r∈{44ii,24ii}

(¬(x′′i r si) ∧ ¬(si r x
′′
i )))

∃ziti(∀kp(xi0ipkp ↔ zi0ipkp) ∧ ∀kp(yi0ipkp ↔ ti0ipkp) ∧ {0ip, 24ii, 44ii}
∀wi(yi44iiwi ↔ zi44iiwi) ∧ ti24iizi ∧
¬∀kp(xi0ipkp ↔ yi0ipkp)∧∧
si,wi∈{xi,yi,zi,ti}
{si,wi}6={ti,zi}

(¬(si24iiwi) ∧ ¬(si44iiwi)))

∃ziti(∀kp(xi1ipkp ↔ zi1ipkp) ∧ ∀kp(yi1ipkp ↔ ti1ipkp) ∧ {1ip, 24ii, 44ii}
∀wi(yi44iiwi ↔ zi44iiwi) ∧ ti24iizi ∧
¬∃kp(xi1ipkp ∧ yi1ipkp)∧∧
si,wi∈{xi,yi,zi,ti}
{si,wi}6={ti,zi}

(¬(si24iiwi) ∧ ¬(si44iiwi)))

Let us start by {2ip, 24ii, 44ii}. Suppose that F |= [c, d]04ii[a, b]. Then, by definition,

a < c < d < b; to satisfy ϕ we set: x′i = [a, c], x′′i = [d, b], zi = [a, d], ti = [c, b], zp = c, and
tp = d. Suppose, now, that F |= ϕ([c, d], [a, b]) and that zi = [bz, ez], ti = [bt, et], x

′ = [b′, e′]
and x′′ = [b′′, e′′]. First, observe that yi = [a, b] must have two internal points zp and tp,
and that zp (tp) must be contained in zi (ti) and not in ti (zi). Since zi overlaps ti we
must have zp < tp. We deduce that a < zp ≤ bt < ez ≤ tp < b. The constraints on x′

and x′′ in lines 1, 3, 4 and 6 of the definition imply that we must have e′ = bt = zp and
b′′ = ez = tp. This gives a < zp = bt = e′ < b′′ = ez = tp < b. Now, the only way to place
xi = [c, d] without violating the third and fifth line of the definition is that e′ = c < d = b′′.
Consequently a < c < b < d, as desired. Consider, now, {1ip, 24ii, 44ii}. Suppose that

F |= [c, d]04ii[a, b]. Then, by definition, a < c < d < b; by setting zi = [c, b] and ti = [a, d],
we satisfy all requirements. Suppose, now, that F |= ϕ([c, d], [a, b]). Once more, we eliminate
every possible relation between xi and yi, except for xi04iiyi. As before, 14ii, 24ii, and
44ii are immediately eliminated (third and fourth line). If xi34iiyi, then, since zi (resp.,
ti) and xi (resp., yi) have the same starting point (first line), it is not possible to have
ti24iizi, contradicting the second line. Suppose, now, that yi34iixi. First, observe that zi
(which starts at the same point as xi) cannot start or be equal to xi, since in that case
ti24iixi (contradicting the fourth line). But then, if zi is started by xi, there will be some
interval that is after yi which is not after zi itself, contradicting the second line. Thus, 34ii is
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Proved Symmetric Implied Deduction Chain
{0ip, 24ii, 44ii} {4ip, 24ii, 44ii} {0ip, 2ip} 34ii

{1ip, 24ii, 44ii} {3ip, 24ii, 44ii} {0ip, 3ip} 34ii

{2ip, 24ii, 44ii} - {0ip, 4ip} 34ii

{0ip, 03ii} 34ii

{1ip, 2ip} 34ii

{1ip, 3ip} 34ii

{1ip, 4ip} 34ii

{1ip, 03ii} 34ii

{2ip, 3ip} 34ii

{2ip, 4ip} 34ii

{2ip, 14ii} 34ii

{2ip, 03ii} 34ii

{2ip, 44ii, <} 24ii

{3ip, 14ii} 34ii

{4ip, 14ii} 34ii

{14ii, 24ii} 34ii

{14ii, 03ii} 34ii

{14ii, 44ii} 34ii

{24ii, 03ii} 34ii

{03ii, 44ii} 34ii

{34ii} Section 3.1

Table 14: The spectrum of the mcs(04ii). - Class: Lin.
(Lemma 3.12.)

eliminated. Assume that xi03iiyi. As before, zi cannot start or be equal to xi, since in that
case ti24iixi (contradicting the fourth line). Moreover, if zi is started by xi, it would imply
that yi24iizi, again, a contradiction with the fourth line. If yi03iixi, yi =i xi, or yi04iixi, then
it is impossible to correctly place zi and ti in such a way that ti24iizi. Having eliminated
in this case all other possibilities, we conclude that xi04iiyi. Once again, we can deal with
{0ip, 24ii, 44ii} with the exact same argument, where 0ip plays the role of 1ip.

Lemma 3.13. Tab. 15 is correct.

Proof. As always, we start with the definition:

xi44iiyi ↔ ∃ziti
(
∃kp(xi1ipkp ∧ zi1ipkp) ∧ ¬∃kp(xi1ipkp ∧ yi1ipkp)∧ {1ip, 24ii, 04ii}
∀wi(∀kp(yi1ipkp → wi1ipkp)→ ¬(zi04iiwi)) ∧
∀wi(∀kp(ti1ipkp → wi1ipkp)→ ¬(wi04iixi)) ∧
∀wi(∀kp(yi1ipkp → wi1ipkp)→ ¬(zi24iiwi)) ∧
∀wi(∀kp(yi1ipkp → wi1ipkp)→ ¬(xi04iiwi)) ∧
∀wi(∀kp(yi1ipkp → wi1ipkp)→ ¬(wi24iizi)) ∧
zi24iiti ∧

∧
si,wi∈{xi,yi,zi,ti}
{si,wi}6={zi,ti}

(¬(si24iiwi) ∧ ¬(si04iiwi)))

Following the same schema of the previous two relations, consider the case of {1ip, 24ii, 04ii},
and suppose that F |= [a, b]44ii[c, d]. Then, by definition, a < b < c < d; by setting zi = [a, c]
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Proved Symmetric Implied Deduction Chain
{0ip, 24ii, 04ii} {4ip, 24ii, 04ii} {0ip, 2ip} 34ii

{1ip, 24ii, 04ii} {3ip, 24ii, 04ii} {0ip, 3ip} 34ii

{0ip, 4ip} 34ii

{0ip, 03ii} 34ii

{1ip, 2ip} 34ii

{1ip, 3ip} 34ii

{1ip, 4ip} 34ii

{1ip, 03ii} 34ii

{2ip, 3ip} 34ii

{2ip, 4ip} 34ii

{2ip, 14ii} 34ii

{2ip, 03ii} 34ii

{3ip, 14ii} 34ii

{4ip, 14ii} 34ii

{14ii, 24ii} 34ii

{14ii, 03ii} 34ii

{14ii, 04ii} 34ii

{24ii, 03ii} 34ii

{03ii, 04ii} 34ii

{34ii} Section 3.1

Table 15: The spectrum of the mcs(44ii). - Class: Lin.
(Lemma 3.13.)

and ti = [b, d], all requirements are satisfied. Suppose, now, that F |= ϕ([a, b], [c, d]). We
prove that [a, b]44ii[c, d] by eliminating every other possible relation that may hold between
xi and yi. The relations =i, 14ii, 24ii and 04ii are eliminated immediately thanks to the first
and last lines of the definition. Suppose, by way of contradiction, that xi34iiyi. The interval
zi, which must start at a (first line), cannot end between c and d in order to comply with
the fact that it cannot overlap yi (last line). If zi ends at d then, since zi24iiti, we must
have (i) ti beginning between a and b which causes it to contain yi contradicting the last
line, or (ii) ti beginning at b = c which causes a contradiction with the fourth line, or (iii)
ti beginning between at c and d causing yi to overlap ti, contradicting the last line. If zi
ends after d, then yi is contained in zi contradicting the last line. If zi ends at c then ti
overlaps xi contradicting the last line. If zi ends between a and b the overlap between zi
and ti begins with ti and is contained in xi, contradicting the third line. This eliminates all
possibilities for the placement of zi and hence the case xi34iiyi. Suppose, now, that yi34iixi.
Then there exists an interval starting with yi which overlaps zi, contradicting the sixth line.
Thus, 34ii is eliminated. Similarly, if xi03iiyi, then there exists an interval starting with yi
which overlaps zi, contradicting the sixth line. Suppose next that yi03iixi. Note that zi
must end after xi as the overlap between zi and ti cannot be contained in xi (third line) and
xi cannot overlap ti (last line). This means that zi contains yi, contradicting once more the
last line. Thus, 03ii is eliminated as well. Finally, if yi44iixi, it is impossible to correctly
place zi and ti. Having eliminated every other possibility, we conclude that xi44iiyi. As in
the proofs of the previous two relations, the same argument solves the case of {0ip, 24ii, 04ii}:
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xi44iiyi ↔ ∃ziti
(
∀kp(xi0ipkp ↔ zi0ipkp) ∧ ¬∀kp(xi0ipkp ↔ yi0ipkp)∧ {0ip, 24ii, 04ii}
∀wi(∀kp(yi0ipkp → wi0ipkp)→ ¬(zi04iiwi)) ∧
∀wi(∀kp(ti0ipkp → wi0ipkp)→ ¬(wi04iixi)) ∧
∀wi(∀kp(yi0ipkp → wi0ipkp)→ ¬(zi24iiwi)) ∧
∀wi(∀kp(yi0ipkp → wi0ipkp)→ ¬(xi04iiwi)) ∧
∀wi(∀kp(yi0ipkp → wi0ipkp)→ ¬(wi24iizi)) ∧
zi24iiti ∧

∧
si,wi∈{xi,yi,zi,ti}
{si,wi}6={zi,ti}

(¬(si24iiwi) ∧ ¬(si04iiwi)))

4. Incompleteness Results in The Class Lin and The Class Dis

We now describe and prove the ‘other half’ of the picture, by identifying all maximally
incomplete sets for each relation r ∈ R+. To treat incompleteness, since most incomplete
set appears as MIS for more than one relation, we present these results as follows. In the
table we list, in the leftmost column the maximal incomplete sets, and in the topmost row
all R+-relations. Whenever the crossing point of a column and a row is marked, the set
corresponding to its row is a MIS for the relation corresponding to its column, and that
fact will be justified in the proof. The section at the top contains those sets for which we
give an explicit construction, while the section at the bottom contains all symmetric results.
Finally, the sets in the topmost part which are symmetric to themselves will be proved
r-incomplete up to reverse of relations (i.e., their r′-incompleteness relative to the reverse of
a given r is implied, but not mentioned). The results for the sub-languages induced by I+

and M+, which turn out to be much simpler than those for R+, are included in the next
section. As already mentioned, we shall prove specific undefinability results via surjective
truth-preserving relations between models, and we shall be therefore forced to choose a
specific class of linearly ordered sets. At the end of this analysis, it shall turn out that
the expressive power in the classes Lin and Dis is identical (every counterexample for the
class Lin is based on a discrete structure) while Den and Unb are different from the former
two, and (slightly) different from each other. The class Fin (treated in Part II, along with
Den and Unb), shall require, as we shall see, a deeper analysis. Throughout the following
proofs, let F and F ′ be two concrete structures, and, for every given case, let S be a set
of relations that we claim to be r-incomplete for a given r. Case-by-case, we shall define
two domains D,D′ and a surjective S-relation between F and F ′ that breaks r. Notation-
and terminology-wise, most of the constructions are based on the same domain (in terms of
their elements and relative ordering): we distinguish them by means of the superscript ′,
and, with an abuse of terminology, we use the term identity relation (over points or over
intervals), denoted by Idp or Idi to indicate the relation that respects the element’s name
(i.e., it relates a with a′, [a, b] with [a′, b′], and so on). Notice that, all together, the results
presented here imply those reported in Section 5, which will therefore require no formal
proof. Notice also that each set S listed as r-incomplete for some r in this section has been
obtained by means of the technique shown in Fig. 1. This means that it must be maximal
by definition: if that was not the case, then S ∪ {r′} would be r-incomplete for some r′ /∈ S,
but S ∪ {r′} contains some r-complete set, which is a contradiction.



30 WILLEM CONRADIE ET AL.

Proved =i 34ii 14ii 03ii 24ii 04ii 44ii

{44ii, 04ii, 24ii} •
{44ii, 04ii, 24ii,=i} • • •
{03ii,=i} • • • • •

Symmetric =i 34ii 14ii 03ii 24ii 04ii 44ii

{14ii,=i} • • • • •

Table 16: MIS(r), for each r ∈ I+; upper part: sets for which we give an explicit construction;
lower part: symmetric ones. - Classes: Lin, Dis.

(Lemma 4.2.)

In what follows, two cases are particularly difficult, and they require an additional
concept defined here.

Definition 4.1. We say that the structure 〈D∗,≺〉 is iterated discrete if and only if:

(i) D∗ = Z×Q;
(ii) ≺ is defined as follow: (n, q) ≺ (m, r) if and only if (1) q < r, or (2) q = r and n < m,

that is, it defines a linear order as the reverse lexicographic order between pairs.

Notice that an iterated discrete structure is, in fact, discrete: the direct predecessor (resp.,
successor) or (n, q) is (n− 1, q) (resp., (n+ 1, q)). The two cases that require a construction
based on an iterated discrete structure (one in the sub-language induced by I+, the other
one in the general case of R+) could be sorted out by a similar (and simpler) construction
based on Q; however, basing it on a discrete structure yields the stronger incompleteness
result we want, that applies to both Dis and Lin.

4.1. (Maximal) I+- and M+-Incompleteness. As we have done while analyzing the
definability of relations, we focus our attention, first, on the sub-languages induced by I+

and by M+.

Lemma 4.2. Tab. 16 is correct and complete.

Proof. The fact that {44ii, 04ii, 24ii} is maximally incomplete for =i is justified as follows.

Let D = D′ = {a < b < c}, and ζ = ζi = {([a, c], [a, b])} ∪ Idi. We have that ζ is total
and the interval-interval relations in S are trivially respected. But [a, b] is the image of
both [a, b] and [a, c], proving that =i is broken. Now, we prove that {44ii, 04ii, 24ii,=i}
is 34ii-,14ii-, and 03ii-incomplete. To this end, we take D = D′ = {a < b < c} and
ζ = ζi = {([a, c], [a′, c′]), ([a, b], [b′, c′]), ([b, c], [a′, b′])}. The relation ζ : F → F ′ is clearly
surjective (actually, it is a bijection, so equality between intervals is preserved) with respect
to interval, and every relations in S is trivially respected. However, it clearly brakes all
intended relations. Consider, now, the case of {03ii,=i}, which we have to prove that it is
34ii-,14ii-,24ii-,04ii-,44ii-incomplete. We proceed as follows: first, we give a construction that
proves this set to be 34ii-,14ii-,24ii-, and 44ii-incomplete, and, then, give a second construction
that proves it to be 04ii-incomplete. As for the first step, define F and F ′ both based on
an iterated discrete structure D∗ (see Def. 4.1). Define a relation ζ = ζi between them
as follows: ζi is the union of {([(n, q), (m, r)], [(n′, q′), (m′, r′)]) | q = r and n,m ∈ Z} and
{([(n, q), (m, r)], [(n′, q′−|r′−q′|), (m′, r′)]) | q < r and n,m ∈ Z}. In this way, finite intervals
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Proved 0ip 1ip 2ip 3ip 4ip
{3ip, 4ip} • • •
{0ip, 2ip, 4ip} • •

Symmetric 0ip 1ip 2ip 3ip 4ip
{0ip, 1ip} • • •

Table 17: MIS(r), for each r ∈M+; upper part: sets for which we give an explicit construc-
tion; lower part: symmetric ones. - Classes: Lin, Dis.

(Lemma 4.3.)

(i.e., those containing a finite number of points) are related to themselves, while infinite ones
are related to intervals with the same ending point but twice the length (with respect the
rational coordinate). We want to prove that ζ is an S-relation. Obviously, the only interesting
cases are those that involve at least one infinite interval. Consider two intervals [(n, q), (m, r)]
and [(l, s), (m, r)] with (l, s) ≺ (n, q); they are 03ii-related, so either both are infinite or
[(n, q), (m, r)] is finite and [(l, s), (m, r)] is infinite, so under ζ the endpoints are kept constant
and either both are doubled in length or [(n, q), (m, r)] is kept fixed and only [(l, s), (m, r)] is
doubled. Either way, 03ii is respected. Since ζ is a bijection by definition, equality between
intervals is respected too, and therefore ζ is a proper S-relation. It is clear, on the other hand,
that 34ii, 14,ii24ii and 44ii are broken. Now, as for the second step, consider once again F and
F ′ both based on an iterated discrete structure D∗ and define a new S-relation ζ = ζi between
them as follows: ζi is the union of {([(n, q), (m, r)], [(n′, q′), (m′, r′)]) | q = r and n,m ∈ Z}
and {([(n, q), (m, r)], [(n′, q′ + (|r′ − q′|/2)), (m′, r′)]) | q < r and n,m ∈ Z}. In this way,
finite intervals are related to themselves, while infinite ones are related to intervals with
the same ending point but half the length (with respect to the rational coordinate). It is
straightforward to check that this is a bijective S-relation which breaks 04ii and respects
both equality between intervals and the relation 03ii. The fact that the table is complete is a
consequence of the following observation: every set not listed is either contained in some of
the listed ones (and, thus, it is not maximal with respect to incompleteness) or I+-complete
(from the results of Section 3).

Lemma 4.3. Tab. 17 is correct and complete.

Proof. Let us start by proving that {3ip, 4ip} is 0ip-,1ip-, and 2ip-incomplete. Take D =

D′ = {a < b < c}, ζp = Idp, and ζi = {([b, c], [a′, c′]), ([a, c], [b′, c′]), ([a, b], [a′, b′])}. It is
easy to verify that 3ip, 4ip are respected, but none of the other mixed relations are. Then,
to prove that {0ip, 2ip, 4ip} is 1ip- and 3ip-incomplete, we simply take D = D′ = {a < b},
ζp = {(a, b′), (b, a′)}, and ζi = Idi.

4.2. (Maximal) R+-Incompleteness. To conclude this section, we analyze the results
shown in Tab. 18. Notice that some of the constructions presented here can be actually
considered as generalizations of those seen above.

Lemma 4.4. Tab. 18 is correct and complete.
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Proved =p =i < 0ip 1ip 2ip 3ip 4ip 34ii 14ii 03ii 24ii 04ii 44ii

{0ip, 2ip, 4ip} ∪ I+ •
{=p, <, 0ip, 1ip, 44ii, 04ii, 24ii} •
{=p, <, 2ip, 44ii, 04ii, 24ii} •
{=p,=i, 1ip, 14ii} • •
{=p, 1ip, 44ii, 04ii, 24ii} • •
{=p, 0ip, 2ip, 4ip} ∪ I+ • • •
{=p, 2ip} ∪ I+ • •
{=p,=i, <, 2ip, 44ii, 04ii, 24ii} • • • • • • •
{=p,=i, <, 3ip, 4ip, 44ii, 04ii, 24ii} • • • • • •
{=p,=i, <, 3ip, 4ip, 03ii} • • • • • • • •
{=p, 4ip} ∪ I+ • •
{=p, <} ∪ I+ • • • • •
{=p,=i, <, 0ip, 1ip, 04ii} • •
{=p,=i, <, 0ip, 1ip, 44ii} • •
{=p,=i, 2ip, 04ii, 44ii} •
{=p,=i, <, 04ii, 44ii} •
{=p,=i, <, 2ip, 24ii, 44ii} •
{=p,=i, <, 0ip, 1ip, 24ii} • •

Symmetric =p =i < 0ip 1ip 2ip 3ip 4ip 34ii 14ii 03ii 24ii 04ii 44ii

{=p, <, 3ip, 4ip, 44ii, 04ii, 24ii} •
{=p,=i, 3ip, 03ii} • •
{=p, 3ip, 44ii, 04ii, 24ii} • •
{=p,=i, <, 0ip, 1ip, 44ii, 04ii, 24ii} • • • • • •
{=p,=i, <, 0ip, 1ip, 14ii} • • • • • • • •
{=p, 0ip} ∪ I+ • •
{=p,=i, <, 3ip, 4ip, 04ii} • •
{=p,=i, <, 3ip, 4ip, 44ii} • •
{=p,=i, <, 3ip, 4ip, 24ii} • •

Table 18: MIS(r), for each r ∈ R+; upper part: sets for which we give an explicit construction;
lower part: symmetric ones. - Classes: Lin, Dis.

(Lemma 4.4.)

Proof. We need to give a construction for 18 different sets. Most of these constructions
are similar to each other, but no part of any of them can be actually be re-used. Notice
that every construction is based on a discrete set: this is why definability results over the
classes Dis and Lin coincide. Observe, also, that most of the constructions are actually based
on finite sets, which suggests that the behaviour of these languages on Fin is very similar
to that of Lin and Dis; nevertheless, as we have mentioned, in Part II a deeper analysis is
required to complete the case Fin.

Let S be {0ip, 2ip, 4ip, } ∪ I+; we have to prove that it is =p-incomplete. To this end, we

simply take D = D′ = {a < b} and ζ = (ζp, ζi), where ζi = Idi, ζp = {(a, a′), (a, b′), (b, a′)}.
The relation ζ : F → F ′ is clearly total and surjective with respect to both interval and points,
and every relations in S is trivially respected. However, the pairs (a, a′) and (a, b′) show
that equality between points is not respected. Let S be {=p, <, 0ip, 1ip, 44ii, 04ii, 24ii}. We
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have to prove here that it is =i-incomplete. In this case, let D = D′ = {a < b < c}, ζp = Idp
and ζi = {([a, c], [a, b])} ∪ Idi. Again, S is total and surjective. Moreover, interval-interval
relations are trivially respected, and point-interval relations are respected thanks to the fact
that the beginning points of intervals are maintained through ζ. But [a, b] is the image of
both [a, b] and [a, c], proving that =i is broken. A very similar construction, based on the
same structures, with ζp = Idp and ζi = {([b, c], [a, b])} ∪ Idi, covers the =i-incompleteness
of {=p, <, 2ip, 44ii, 04ii, 24ii}. Let S be {=p,=i, 1ip, 14ii}; we shall prove that it is 0ip- and

<-incomplete. In this case, let D = D′ = Z, and define ζ = (ζp, ζi) as follows: (a,−a) ∈ ζp
for every a ∈ Z, and ([a, b], [−a,−a+ |b− a|]) ∈ ζi for every [a, b] ∈ I(D), so that the length
of every interval is preserved. Now, the interval-interval relation 14ii must be respected by
ζ, as intervals are mapped along with their beginning point, while the ending point does not
move relative to the beginning point; for the same reason, 1ip is also respected. Finally, ζ is
a bijection, so =i and =p are respected too; as it breaks both < and 0ip, these cannot be
expressed in this language. Let S be {=p, 1ip, 44ii, 04ii, 24ii}; we will prove that it is <- and

0ip-incomplete. We take D = D′ = {a < b < c} and define ζp = {(a, b′), (b, a′), (c, c′)} and
ζi = {([a, b], [b′, c′]), ([b, c], [a′, b′]), ([b, c], [a′, c′]), ([a, c], [b′, c′])}. All interval-interval relations
are (vacuously) respected, 1ip is respected as well (as beginning points of intervals are
preserved), and equality between points is respected too (as ζp is a bijection), but < and 0ip
are broken. If S be {=p, 0ip, 2ip, 4ip} ∪ I+, then take D = D′ = {a < b}, ζi = {([a, b], [a′, b′])}
and ζp = {(a, b′), (b, a′)}, which respects S and breaks <, 1ip, and 3ip, as it can be immediately
verified. Now, let S be {=p, 2ip} ∪ I+. To prove that S is 0ip- and 4ip-incomplete we take

D = D′ = {a < b < c}, and ζ = (ζp, ζi), where ζi = Idi, ζp = {(a, c′), (c, a′), (b, b′)}. The
relation ζ : F → F ′ is clearly surjective respectively to both interval and points, and
every relations in S is trivially preserved; on the other hand, both 0ip and 4ip are broken.
Let S be {=p,=i, <, 2ip, 44ii, 04ii, 24ii}; we prove that it is 0ip-,1ip-,3ip-,4ip-,14ii-,0ip3-, and

34ii-incomplete. It is enough to take D = D′ = {a < b < c}, with ζ = (ζp, ζi) defined as
ζp = Idp and ζi = {([a, c], [a′, c′]), ([a, b], [b′, c′]), ([b, c], [a′, b′])}, to have a relation ζ which is
surjective respectively to both intervals and points, preserves every relations in S, and breaks
all the indicated relations. If S is {=p,=i, <, 3ip, 4ip, 44ii, 04ii, 24ii}, we have to prove that

it is 0ip-,1ip-,2ip-,14ii-,03ii-, and 34ii-incomplete. Take D = D′ = {a < b < c}, ζp = Idp, and
ζi = {([b, c], [a′, c′]), ([a, c], [b′, c′]), ([a, b], [a′, b′])}. It is easy to verify that all 9 relations in S
are respected, but none of the indicated ones are. Now, let S be {=p,=i, <, 3ip, 4ip, 03ii}; we

prove that it is 0ip-,1ip-, and 2ip-incomplete, and, also, r-incomplete for every r ∈ I+\{03ii,=i

}. As in Lemma 4.2, we proceed in two steps, first proving the incompleteness for all indicated
relations but 04ii, and, then, dealing with 04ii on its own. As for the first step, define F
and F ′ both based on the iterated discrete structure D∗, as in Def. 4.1. Define a relation ζ
between them as follows:

(i) ζp = Idp;
(ii) ζi is the union of

{([(n, q), (m, r)], [(n′, q′), (m′, r′)]) | q = r and n,m ∈ Z}
and

{([(n, q), (m, r)], [(n′, q′ − |r′ − q′|), (m′, r′)]) | q < r and n,m ∈ Z}.
In this construction, which generalizes to the case of R+ the one already seen in Lemma 4.2
by adding the ζp component, finite intervals (i.e., those containing a finite number of points)
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are related to themselves, while infinite ones are related to intervals with the same ending
point but twice the length (w.r.t. the rational coordinate). We want to prove that ζ is an
S-relation. Obviously, the only interesting cases are those that involve at least one infinite
interval. Suppose, first, that [(n, q), (m, r)] is 3ip- or 4ip-related to some point; under ζ, these
relations are clearly respected. So, consider two intervals [(n, q), (m, r)] and [(l, s), (m, r)]
with (l, s) ≺ (n, q); they are 03ii-related, so either both are infinite or [(n, q), (m, r)] is finite
and [(l, s), (m, r)] is infinite, so under ζ the endpoints are kept constant and either both
are ‘doubled’ in length or [(n, q), (m, r)] is kept fixed and only [(l, s), (m, r)] is ‘doubled’.
Either way, 03ii is respected. Since ζ is a bijection, equalities of both sort is respected
too, and therefore ζ is a proper S-relation. It is clear, on the other hand, that 0ip, 1ip, 2ip
and 34ii, 14,ii24ii and 44ii are broken. As for the second step, define, again, F and F ′
both based on an iterated discrete structure D∗, and define a new relation ζ as follows:
(i) ζp = Idp; (ii) ζi is the union of {([(n, q), (m, r)], [(n′, q′), (m′, r′)]) | q = r and n,m ∈ Z}
and {([(n, q), (m, r)], [(n′, q′ + (|r′ − q′|/2)), (m′, r′)]) | q < r and n,m ∈ Z}. In this way,
finite intervals are related to themselves, while infinite ones are related to intervals with
the same ending point but half the length (with respect to the rational coordinate). It is
straightforward to check that this relation preserves both equalities and 03ii, and that it
breaks 04ii as we wanted. Let S be {=p, 4ip} ∪ I+; we prove that it is 0ip- and 2ip-incomplete.

For this, we take D = D′ = {a < b < c}; we define ζp = {(a, b′), (b, a′), (c, c′)} and ζi = Idi,
and we have that all interval-interval relations are respected, 4ip is respected as well (ζp(c, c′)
holds, and c and c′ are the only points in relation 4ip with some interval), and equality
between points is respected too (as ζp is a bijection), but 0ip and 2ip are broken. Let S be
{=p, <} ∪ I+; we prove here that this set is M+-incomplete. To this aim we can simply take

two copies of the integers, ζp = {(n, n′+ 1)} for every n ∈ Z, and ζi = Idi; clearly, ζ respects
S, as the only broken relations are the mixed ones. If S is {=p,=i, <, 0ip, 1ip, 04ii}, for which

we have to prove its 44ii- and 24ii-incompleteness, we take D = D′ = {a < b < c < d},
ζp = Idp, and ζi = {([a, b], [a′, c′]), ([a, c], [a′, b′]) plus the identity relation on every other
interval; relations 0ip and 1ip are preserved, since the starting point of every interval does not
change, the relation 04ii is preserved as well, as the only intervals that are not identically
related have no contained intervals (neither they are contained by any other), and since
ζ is a bijection, equalities are preserved too. Nevertheless, the two indicated relations
are broken. Let S be {=p,=i, <, 0ip, 1ip, 44ii}; we have to prove that it is 04ii- and 24ii-
incomplete. We proceed as before, by taking D = D = {a < b < c < d}, ζp = Idp, and
ζi = {([a, c], [a′, d′]), ([a, d], [a′, c′])} plus the identity relation on every other interval, and, as
it is immediate to check, all interval-interval and point-interval relations in S are respected,
but 04ii and 24ii are not respected. When S is {=i,=p, 2ip, 04ii, 44ii}, we need to prove that

it is 24ii-incomplete. To this end, we take D = D′ = {a < b < c < d}, ζp(b) = c′, ζp(c) = b′

plus the identity relation over the other points, and ζi = {([a, c], [b′, d′]), ([b, d], [a′, c′]) plus
the identity relation on every other interval. The relation 2ip is preserved, since the internal
points of every interval involved in ζ are moved along the interval that contains them, the
relations 04ii and 44ii are respected, as the only intervals that are not identically related via
ζ are not contained in, or before any other interval, and since ζ is a bijection, equalities are
respected as well. Conversely, 24ii is broken. An identical construction, where we simply take
ζp = Idp, proves the 24ii-incompleteness of {=i,=p, <, 04ii, 44ii}. When we have to prove

that {=i,=p, <, 2ip, 24ii, 44ii} is 04ii-incomplete, we simply take D = D′ = {a < b < c < d},
ζp = Idp, and ζi = {([b, c], [c′, d′]), ([c, d], [b′, c′]) plus the identity relation on every other
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proc MinDef MaxUndef ()

for all S ⊆ R+
if ∀r ∈ R+(r ∈ Closure(S)) and

S is minimal, list S as mcs(R+)
if ∃r ∈ R+(r /∈ Closure(S)) and

S is maximal, list S as MIS(R+)

return;

proc IsExpressiveAs (set S, S′ )
S = Closure(S);

S′ = Closure(S′);
if S = S′return Y es;

return No;

Figure 2: Pseudo-code to compare the expressive power of subsets of R+.

interval, and, finally, to prove that {=p,=i, <, 0ip, 1ip, 24ii} is 44ii- and 04ii-incomplete, we

take D = D′ = {a < b < c < d}, ζp = Idp, and ζi = {([a, b], [a′, d′]), ([a, d], [a′, b′]) plus the
identity relation on every other interval.

5. Harvest: The Complete Picture for Lin and Dis

We are now capable to identify all expressively different subsets of R+, I+, and M+. One
can easily establish the expressive power of a particular subset S with respect to another
subset S′ by simply comparing, containment-wise, the closure (by definability) of S with the
closure of S′ (see Fig. 2). Clearly, it is very difficult to display the resulting Hasse-diagram;
we then limit ourselves to list all maximally incomplete sets for each case. The following
theorem is a consequence of all results seen so far.

Theorem 5.1. If a set of relations is listed:
• as mcs(R+) (resp., mcs(I+), mcs(M+)) in Tab. 19 left (resp., right-top, right-bottom) side,

left column, then it is minimally R+-complete (resp., minimally I+-complete, minimally
M+-complete) in the class of all linearly ordered sets and in the class of all discrete linearly
ordered sets.
• as MIS(R+) (resp., MIS(I+), MIS(M+)) in Tab. 19 left (resp., right-top, right-bottom)

side, right column, then it is maximally R+-incomplete (resp., maximally I+-incomplete,
maximally M+-incomplete) in the class of all linearly ordered sets and in the class of all
discrete linearly ordered sets.

6. Conclusions

We considered here the two-sorted first-order temporal language that includes relations
between intervals, points, and inter-sort, and we treated equality between points and between
intervals as any other relation, with no special role. Under four different assumptions on the
underlying structure, namely, linearity only, linearity+discreteness, linearity+density, and
linearity+unboundedness, we asked the question: which relation can be first-order defined by
which subset of all relations? As a result, we identified all possible inter-definability between
relations, all minimally complete, and all maximally incomplete subsets of relations. These
inter-definability results allow one to effectively compute all expressively different subsets of
relations, and, with minimal effort, also all expressively different subsets of relations for the
interesting sub-languages of interval relations only or mixed relations only. Two out of four
interesting classes of linearly ordered sets are treated in this Part I, and the remaining two
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R+

mcs MIS
{0ip, 2ip, <} {=i,=p, <, 0ip, 1ip, 14ii}
{0ip, 3ip} {=i,=p, <, 0ip, 1ip, 24ii, 04ii, 44ii}
{0ip, 4ip, <} {=p, 0ip, 2ip, 4ip} ∪ I+

{0ip, 14ii, 24ii, <} {=i,=p, <, 2ip, 24ii, 04ii, 44ii}
{0ip, 14ii, 04ii, <} {=p, <} ∪ I+

{0ip, 14ii, 44ii, <} {=i,=p, <, 3ip, 4ip, 03ii}
{0ip, 03ii, <} {=i,=p, <, 3ip, 4ip, 24ii, 04ii, 44ii}
{0ip, 34ii, <}
{1ip, 2ip}
{1ip, 3ip}
{1ip, 4ip}
{1ip, 14ii, 24ii}
{1ip, 14ii, 04ii}
{1ip, 14ii, 44ii}
{1ip, 03ii}
{1ip, 34ii}
{2ip, 3ip}
{2ip, 4ip, <}
{2ip, 14ii, <}
{2ip, 03ii, <}
{2ip, 34ii, <}
{3ip, 14ii}
{3ip, 24ii, 03ii}
{3ip, 03ii, 04ii}
{3ip, 03ii, 44ii}
{3ip, 34ii}
{4ip, 14ii, <}
{4ip, 24ii, 03ii, <}
{4ip, 03ii, 04ii, <}
{4ip, 03ii, 44ii, <}
{4ip, 34ii, <}

I+

mcs MIS
{34ii} {=i, 14ii}
{14ii, 24ii} {=i, 24ii, 04ii, 44ii}
{14ii, 04ii} {=i, 03ii}
{14ii, 03ii}
{14ii, 44ii}
{03ii, 24ii}
{03ii, 04ii}
{03ii, 44ii}

M+

mcs MIS
{0ip, 3ip} {0ip, 1ip}
{1ip, 2ip} {0ip, 2ip, 4ip}
{1ip, 3ip} {3ip, 4ip}
{1ip, 4ip}
{2ip, 3ip}

Table 19: Left: minimally R+-complete and maximally R+-incomplete sets. Right, top: min-
imally I+-complete and maximally I+-incomplete sets. Right, bottom: minimally
M+-complete and maximally M+-incomplete sets. - Classes: Lin, Dis.

are dealt with in Part II (forthcoming). There are several aspects of temporal reasoning in
computer science to which this extensive study can be related:
• first-order logic over linear orders extended with temporal relations between points,

intervals and mixed, are the very foundation of modal logics for temporal reasoning, and
it is necessary to have a complete understanding of the former in order to deal with the
latter;
• automated reasoning techniques for interval-based modal logics are at their first stages; an

uncommon, but promising approach is to treat them as pure modal logics over particular
Kripke-frames, whose first-order properties are, in fact, representation theorems such as
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those (indirectly) treated in this paper. As a future work, we also plan to systematically
study the area of representation theorems;
• the decidability of pure first-order theories extended with interval relations is well-known

[Lad]; nevertheless, these results hinge on the decidability of MFO[<], while we believe
that they could be refined both algorithmically and computationally;
• the study of other related languages, important in artificial intelligence, can benefit from

our results, such as first-order and modal logics for spatial reasoning where basic objects
are, for example, rectangles.
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M+

{0ip, 1ip} {3ip, 4ip}{0ip, 2ip, 4ip}

{0ip}{1ip} {3ip}{4ip}{2ip}

∅

Figure 3: The lattice of expressively different fragments of FO + M+

I+

{14ii,=i} {03ii,=i}{44ii, 04ii, 24ii,=i}

{44ii, 04ii, 24ii} {44ii, 04ii,=i}{44ii, 24ii,=i}{04ii, 24ii,=i}

{44ii, 04ii}{44ii, 24ii}{44ii,=i}{04ii, 24ii}{04ii,=i} {24ii,=i}

{44ii} {04ii} {24ii} {=i}

∅

Figure 4: The lattice of expressively different fragments of FO + I+

Appendix: Hasse Diagrams

A pictorial representation of the results of this paper, in terms of relative expressive power
of subsets of relations is shown here.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany
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{=p, 1ip, 24ii}

{=i,=p, 0ip}

{=i,=p, <, 3ip, 4ip, 04ii, 24ii}

{=i,=p, <, 2ip, 04ii, 24ii}

{=i,=p, 1ip, 14ii}

{=p, <, 0ip, 1ip, 24ii}

{4ip, 04ii}

{=i,=p, <, 0ip, 1ip, 04ii, 24ii}

{=i,=p, 04ii, 44ii}

{24ii}

{=i,=p, 03ii}

{=i,=p, <, 3ip, 4ip, 04ii}

{=p, <, 3ip, 4ip}

{=i,=p, <, 24ii, 44ii}

{=i,=p, 24ii, 44ii}

{=p, 2ip, 44ii}

{=i, 0ip, 04ii, 24ii}

{=p, 3ip, 04ii, 24ii, 44ii}

{04ii, 24ii}

{=i,=p, <, 04ii, 24ii, 44ii}

{=i,=p, 4ip, 24ii}

{2ip}

{=i, 04ii}

{=i, 04ii, 44ii}

{04ii, 44ii}

{=p, <, 3ip, 4ip, 24ii}

{=p, 04ii, 44ii}

{=p, <, 24ii, 44ii}

{0ip, 04ii, 24ii, 44ii}

{=p, <, 04ii}

{=i,=p, 2ip}

{=i, 0ip, 14ii}

{=p, 04ii}

{0ip, 2ip, 4ip} ∪ I+

{=p, <, 04ii, 24ii}

{=p, 3ip, 44ii}

{04ii}

{=i, 2ip, 04ii, 44ii}

{=p, 1ip, 44ii}

{=i,=p, 0ip, 24ii}

{=p, <, 3ip, 4ip, 04ii}

{=p}

{=i,=p, 4ip, 03ii}

{=p, <, 24ii}

{=i,=p, 04ii}

{=i,=p, 4ip}

{=i,=p, 2ip, 44ii}

{=p, 2ip, 04ii, 44ii}

{=i,=p, <, 3ip, 4ip, 24ii}

{=p, <, 0ip, 1ip, 04ii, 24ii}

{=i, 2ip, 04ii, 24ii}

{=i,=p, <, 04ii, 44ii}

{=p, 3ip, 04ii, 24ii}

{=i, 0ip, 24ii}

{=p, 2ip, 04ii}

{=p, <, 04ii, 44ii}

{=p, 0ip, 24ii}

{=i, 2ip, 04ii}

{2ip, 04ii, 24ii}

{2ip, 04ii, 44ii}

{=p, 1ip, 04ii, 24ii, 44ii}

{=i,=p, 1ip}

{=i,=p, <, 14ii}

{=i,=p, 2ip, 04ii, 24ii}

{=p, 3ip, 04ii}

{=p, <} ∪ I+

{=i, 2ip, 04ii, 24ii, 44ii}

{=p, 1ip}

{=i,=p, <, 0ip, 1ip, 24ii}

{=p, <, 0ip, 1ip, 04ii, 24ii, 44ii}

{=i, 4ip, 03ii}

{=p, 0ip} ∪ I+

{=p, 2ip, 04ii, 24ii, 44ii}

{=i,=p, <, 2ip, 24ii}

{=i,=p, <, 24ii}

{4ip}

{0ip, 24ii}

{=i, 0ip}

{=i, 24ii}

{=i, 0ip, 44ii}

{0ip, 04ii}

{=i,=p, 4ip, 44ii}

{=i,=p, <, 03ii}

{=i,=p, 0ip, 04ii, 24ii, 44ii}

{0ip, 44ii}

{=i,=p, 0ip, 14ii}

{=i,=p, 4ip, 04ii}

{=p, <, 3ip, 4ip, 04ii, 24ii, 44ii}

{4ip} ∪ I+{=i, 4ip, 04ii, 24ii, 44ii}{=p, 0ip}

{=p, 0ip, 44ii}

{=p, 24ii}

{=p, 0ip, 04ii, 24ii, 44ii}

{=p, 3ip, 24ii}

{=i,=p, 3ip, 03ii}

{=i, 2ip, 44ii}

{=p, <, 04ii, 24ii, 44ii}

{=i,=p, 0ip, 44ii}

{=i, 0ip, 04ii, 24ii, 44ii}

{=i, 4ip, 04ii}

{=p, <}

{=p, 1ip, 04ii}

R+

{4ip, 04ii, 24ii}

{0ip} ∪ I+

{=i,=p, <}

{=i,=p, 2ip, 24ii}

{=p, 4ip, 04ii}

{=p, <, 44ii}

{=i,=p, <, 04ii, 24ii}

{=p, <, 2ip, 04ii, 24ii, 44ii}

∅

{2ip, 04ii, 24ii, 44ii}

{=p} ∪ I+

{=p, 0ip, 04ii}

{=p, <, 3ip, 4ip, 44ii}

{0ip, 04ii, 24ii}

{=i, 0ip, 04ii}

{=p, <, 2ip, 04ii, 24ii}

{=p, <, 0ip, 1ip, 04ii}

{0ip}

{=i,=p, <, 3ip, 4ip, 04ii, 24ii, 44ii}

{=p, 1ip, 04ii, 24ii}

{=p, 4ip, 24ii}

{=i,=p, 44ii}{=i}

{=i,=p, <, 04ii}

{=p, 4ip, 04ii, 24ii, 44ii}

{=p, <, 2ip, 24ii}

{=i,=p, <, 44ii}

{=p, 4ip, 44ii}

{=i,=p, 2ip, 04ii}

{=i, 44ii}

{=i,=p}

{=p, 4ip, 04ii, 24ii}

{=i,=p, 3ip}

{=p, 4ip} ∪ I+

{=p, 3ip}

{=p, 44ii}

{=i, 4ip, 04ii, 24ii}

{24ii, 44ii}

{=i,=p, <, 0ip, 1ip, 44ii}

{4ip, 04ii, 24ii, 44ii}

{=i, 4ip, 44ii}

{=i,=p, <, 0ip, 1ip, 04ii, 24ii, 44ii}

{2ip, 24ii}

{=i,=p, <, 3ip, 4ip, 03ii}

{=i,=p, 14ii}

{=i,=p, <, 3ip, 4ip}

{=i, 2ip}

{=i,=p, <, 3ip, 4ip, 44ii}

{2ip, 04ii}

{=p, 0ip, 04ii, 24ii}

{=p, <, 3ip, 4ip, 04ii, 24ii}

{=i, 24ii, 44ii}

{2ip, 44ii}

{=i,=p, 0ip, 04ii}
{=p, 24ii, 44ii}

{=i,=p, <, 0ip, 1ip, 04ii}

{=p, 2ip}

{=i,=p, <, 0ip, 1ip}

{=p, 4ip}

{=i, 2ip, 24ii}

{=p, 2ip} ∪ I+

{=p, 0ip, 2ip, 4ip} ∪ I+

{=i,=p, 04ii, 24ii, 44ii}

{=i,=p, <, 2ip, 04ii, 24ii, 44ii}

{=p, 04ii, 24ii, 44ii}

{4ip, 44ii}

{=i,=p, 2ip, 04ii, 44ii}

{=i,=p, 04ii, 24ii}

{=i, 04ii, 24ii, 44ii}

{=i, 4ip}

{=i, 03ii}

{=p, 2ip, 24ii}

{=i,=p, <, 0ip, 1ip, 14ii}

{=i,=p, 4ip, 04ii, 24ii}

{4ip, 24ii}

{=i,=p, 24ii}

{44ii}

{=i, 04ii, 24ii}

{=p, <, 0ip, 1ip, 44ii}

{=p, <, 0ip, 1ip}

{04ii, 24ii, 44ii}

{=p, 2ip, 04ii, 24ii}

{=i, 14ii}

I+

{=i, 4ip, 24ii}

{2ip} ∪ I+

{=i,=p, 2ip, 04ii, 24ii, 44ii}

{=p, 04ii, 24ii}

{=i,=p, 0ip, 04ii, 24ii}

{=i,=p, 4ip, 04ii, 24ii, 44ii}

Figure 5: The lattice of expressively different fragments of FO + R+
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