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Abstract. An important endeavor in computer science is to precisely understand the
expressive power of descriptive formalisms (such as fragments of first-order logic) over
discrete structures (such as finite words, trees or graphs). Of course, the term “understanding”
is not a precise mathematical notion. Therefore, carrying out this investigation requires a
concrete objective to capture this understanding. In the literature, the standard choice for
this objective is the membership problem, whose aim is to find a procedure deciding whether
an input language can be defined in the formalism under investigation. This approach
was cemented as the “right” one by the seminal work of Schützenberger, McNaughton and
Papert on “first-order logic over finite words”, and has been in use since then.

Unfortunately, membership questions are hard: for several fundamental formalisms,
researchers have failed in this endeavor despite decades of investigation. In view of recent
results on one of the most famous open questions, namely membership for all levels in the
quantifier alternation hierarchy of first-order logic, an explanation may be that membership
is too restrictive as a setting. Indeed, these new results were obtained by considering
more general problems than membership, taking advantage of the increased flexibility of
the enriched mathematical setting. Investigating such new problems opened a promising
research avenue, which permitted to solve membership for natural fragments of first-order
logic. However, many of these problems are ad hoc: for each fragment, the solution relies
on a specific one. A unique new problem replacing membership as the right one is still
missing.

The main contribution of this paper is a suitable candidate to play this role: the
covering problem. We motivate this problem with several arguments. First, it admits
an elementary set theoretic formulation, similar to membership. Second, we are able
to reexplain or generalize all known results with this problem. Third, we develop a
mathematical framework as well as a methodology tailored to the investigation of this
problem. At last, for each class admitting a decidable membership, we are able to instantiate
our methodology to solve this more general problem. In particular, this yields constructive
solutions to membership. We illustrate our approach with algorithms solving covering
(hence also membership and generalizations thereof, such as the problem called separation)
for some classical fragments of first-order logic: level 1 in the quantifier alternation hierarchy
of first-order logic, which consists of the so called piecewise testable languages, the well-
known 2-variable fragment of first-order logic, and level 1

2
in the quantifier alternation

hierarchy of first-order logic.
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1. Introduction

One of the most successful applications of the notion of regularity in computer science is the
investigation of logics on discrete structures, such as words or trees. The story began in the
60s when Büchi [5], Elgot [11] and Trakhtenbrot [40] proved that the regular languages of
finite words are exactly those that can be defined in monadic second order logic (MSO). This
was later pushed to infinite words [6], to finite or infinite trees [36, 33], to labeled countable
linear orders [7] and even to graphs of bounded tree width [3] or linear cliquewidth [2]. Such
connections not only testify to the robustness of the notion of regularity. Indeed, in the
context of finite words, the connection was further exploited to investigate the expressive
power of important fragments of MSO, by relying on a decision problem associated to any
such fragment: the membership problem. This problem just asks whether the fragment
under investigation forms a recursive class, i.e., its statement is as follows: given a regular
language as input, decide whether it is definable by a sentence of the fragment.

Obtaining membership algorithms is difficult. An oft-told and still open example is to
decide the most natural fragment of MSO, namely first-order logic (FO), on finite binary trees.
On finite words (a much simpler structure than binary trees), Schützenberger, McNaughton
and Papert [34, 13] settled this question in the 70s. Their result was highly influential: it
was often revisited [42, 10, 8, 20], and it paved the way to a series of results of the same
nature. A famous example is Simon’s Theorem [35], which yields an algorithm for the first
level of the quantifier alternation hierarchy of FO. Other prominent examples are fragments
of FO where the linear order on positions is replaced by the successor relation [4, 12, 43, 37]
or consider the two-variable fragment of first-order logic [38]. The relevance of this approach
is nowadays validated by a wealth of results.

The reason for this success is twofold. First, these results cemented membership as
the “right” question: a solution conveys a deep intuition on the investigated logic. In
particular, most results include a generic method for building a canonical sentence witnessing
membership of an input language if it is expressible in the logic. Second, Schützenberger’s
solution established a suitable framework and a methodology for solving membership problems.
This methodology is based on a canonical, finite and computable algebraic abstraction of a
regular language: the syntactic monoid. The core of the approach is to translate the semantic
question (is the language definable in the fragment? ) into a purely syntactical, easy question
to be tested on the syntactic monoid (does the syntactic monoid satisfy some equation? ).

Unfortunately, this methodology seems to have reached its limits for the hardest questions.
An emblematic example is the quantifier alternation hierarchy of first-order logic, which
classifies sentences according to the number of alternations between ∃ and ∀ quantifiers in their
prenex normal form. A sentence is Σi if its prenex normal form has (i− 1) alternations and
starts with a block of existential quantifiers. A sentence is BΣi if it is a Boolean combination
of Σi sentences. Obtaining membership algorithms for all levels in this hierarchy is a major
open question, which has received a lot of attention (see [41, 39, 15, 16, 17, 18, 28, 19] for
details and a complete bibliography). However, progress on this question has been slow:
until recently, only the lowest levels were solved, namely Σ1 [1, 14], BΣ1 [35] and Σ2 [1, 14].

It took years to solve higher levels. Recently, membership algorithms were obtained
for the levels Σ3 [25, 31], BΣ2 [25, 31] and Σ4 [21, 22]. This was achieved by introducing
new ingredients into Schützenberger’s methodology: problems that are more general than
membership. For each of these results, the strategy is the same:
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– First, a well-chosen more general problem is solved for a lower level in the hierarchy.
– Then, this knowledge is turned into a membership algorithm for the level under investiga-
tion.

Let us illustrate what we mean by “more general problem” by presenting the simplest of
them: the C-separation problem (where C is a class of regular languages). This problem
takes two languages as input—rather than just one for membership—and asks whether there
exists a third one which:
– belongs to C,
– contains the first language, and
– is disjoint from the second.
It is easy to see why this problem generalizes membership: a language belongs to a class C
if and only if it is C-separable from its complement. Being more general, such problems
are also more difficult than membership. However, this generality also makes them more
rewarding in the insight they provide on the investigated logic. This motivated a series of
papers on the separation problem [26, 9, 23, 24, 27], which culminated in the three results
above [25, 31, 21, 22]. However, while this avenue of research is very promising, it presently
suffers three major flaws:
(1) The problems considered up until now form a jungle: each particular result relies actually

not on separation itself, but rather on a specific ad hoc generalization of this problem.
As an illustration, the results of [26, 25, 31, 21, 22] rely on three different such problems.

(2) Among the problems that were investigated, separation is the only one that admits a
simple and generic set-theoretic definition (which is why it is favored as an example).
On the other hand, for all other problems, the definition requires to introduce additional
concepts, such as semigroups and Ehrenfeucht-Fraïssé games.

(3) In contrast to membership solutions, the solutions that have been obtained for these
more general problems are non-constructive. For example, most of the solutions for
separation do not include a generic method for building a separator language, when it
exists, because the algorithms are designed around the idea of witnessing that the two
inputs are not separable.

Contributions. Our objective in this paper is to address each of these three issues. Our
first contribution is the definition of a single general problem, the “covering problem”, which
a) encompasses all variations of the separation problem introduced so far to solve member-

ship,
b) enjoys a simple, language-theoretic formulation (just as membership and separation).
This already addresses the first two issues. The second contribution is a framework and a
methodology for solving this new problem, which were lacking for the separation problem.
Finally, we illustrate this methodology with the presentation of algorithms solving the covering
problem for several important fragments of first-order logic. Naturally, these algorithms
are based on the general methodology developed as the second contribution, and they yield
constructive solutions for the separation problem as a byproduct, which addresses the third
issue.

Let us review these contributions in more details. As explained, the first one is to define
a new problem, which we call covering, satisfying Items a) and b) above, in order to gain
afterwards a methodology for solving separation in a constructive way.
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First step: Extending separation to inputs that are sets. We start with a simple
observation: we already have in hand two orthogonal generalizations of membership. The
first is separation, that we aim at extending even further. The second is the straightforward
but powerful generalization introduced by Schützenberger, with precisely a similar motivation
as ours: setting up a methodology for solving membership. In order to define covering, a
natural move is to combine both generalizations.

Before proceeding, let us recall Schützenberger’s key idea: for testing whether a lan-
guage L belongs to a fragment, one should not consider L alone. Instead, one should test
whether all languages recognized by its syntactic monoid belong to the fragment. This
seemingly more demanding problem is in fact equivalent to membership when the fragment
enjoys some mild properties: if L belongs to the fragment, then so does any language
recognized by its syntactic monoid. The motivation and the payoff for considering such input
sets is that they have a nice algebraic structure, which can be leveraged to develop inductive
arguments in order to successfully design membership algorithms. While simple, this idea is
the core of most classical membership algorithms.

The definition of the covering problem builds on this idea: it generalizes separation
to an input that is a set of languages rather than just a pair. Thus, covering is a (strict)
generalization of separation to an arbitrary number of input languages.

Second step: Separation as an approximation problem. Carrying out this idea is not
immediate, however: there is a discrepancy between the generalization for membership and
that for separation. Indeed, extending membership to a set of languages is obvious: simply
solving membership for all languages of the set is enough for developing inductive arguments.
A similar naive generalization for separation would be, given a finite set of languages, to
test whether each pair of languages from the set is separable by a language in the fragment.
Unfortunately, this turns out to be inadequate, because answering separation for all pairs of
languages from a set is too weak to provide enough information.

A solution is to think of separation as an (over-)approximation problem. Given two input
languages L1 and L2, it asks for a “good approximation” of L1 (definable in the fragment
under investigation) while L2 serves as a quality measure—good approximations are those
which do not intersect it. This point of view is amenable to generalization: in the covering
problem, our inputs are pairs (L1,L2) where L1 is a single language and L2 is a finite set
of languages. The objective is still to approximate L1 while L2 specifies what are the good
approximations. Specifically, covering asks for a finite set of languages K (all belonging to
the fragment under investigation) such that,
(1) The union of all languages in K includes L1: K is a cover of L1 (hence the name

“covering”).
(2) No language in K intersects all languages in L2.
In particular, the original separation problem is the special case of covering when the input
set L2 is a singleton.

Third step: Abstracting the quality measure. In the covering problem, the input is
made of two objects playing different roles: we have a language L1 that needs to be covered
and a set of languages L2 that serves as a quality measure specifying suitable covers. It is
cleaner to separate1 these roles. For this reason, we define rating maps, whose purpose is
exclusively to evaluate the quality of a cover. This has two advantages: first, this makes it

1No pun intended.
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easier to pinpoint the hypotheses that we need on the set of languages and on the rating
map. Second, it simplifies the notation.

Our algorithms apply to inputs and rating maps satisfying some mild assumptions. We
will show that one can always effectively reduce any input to such a special one.

Benefits of the covering problem. The main advantage of the covering problem is that
it comes with a generic framework and a generic methodology designed for solving it. This
framework is our second contribution. It generalizes the original framework of Schützenberger
for membership in a natural way and lifts all its benefits to a more general setting. In
particular, we recover constructiveness: a solution to the covering problem associated to a
particular fragment yields a generic way for building an actual optimal cover of the input set.
Furthermore, its definition is modular: the covering problem is designed so that it can easily
be generalized to accommodate future needs: while we use in this paper specific rating maps,
the definition allows much more freedom (see [21, 22]).

Finally, the relevance of our new framework is supported by the fact that we are able to
obtain covering algorithms for the fragments that were already known to enjoy a decidable
separation problem. In contrast to the previous algorithms, these more general ones are
presented within a single unified framework. This is our third contribution. We present actual
covering algorithms for five particular logics: first-order logic (FO), two-variable FO (FO2)
and three logics within the quantifier alternation hierarchy of FO (Σ1, BΣ1 and Σ2). We
also illustrate our proof techniques for three of these cases, Σ1, BΣ1 and FO2. As explained,
the payoff is that we obtain effective solutions to the covering problem. Hence, we obtain an
effective method for building separators for the weaker separation problem.

Organization. We define the covering problem in Section 3. We then devote Sections 4
and 5 to the presentation of our general framework designed for tackling the covering problem.
In Section 6, we then use them to design a general approach for handling covering in the
restricted case of classes that are Boolean algebras. We illustrate this approach with two
detailed examples. In Section 7, we investigate the fragment BΣ1 in the quantifier alternation
hierarchy of first-order logic. Then, in Section 8, we consider two-variable first-order logic:
FO2. Finally, we generalize our approach to handle covering for any lattice in Section 9. We
illustrate this generalized approach with a simple example in Section 10: the fragment Σ1 in
the quantifier alternation hierarchy of first-order logic.
This paper is the full version of [29].

2. Preliminary definitions

In this section, we present the standard terminology needed to formulate our results. Specif-
ically, we define of classes of languages and their properties. Moreover, we introduce the
standard membership and separation problems (which we shall generalize with the covering
problem in the next section).

2.1. Finite words and classes of languages. Throughout the whole paper, we fix a
finite alphabet A and work with words over A. We denote by A∗ the set of all finite words
over A. We let ε be the empty word, and A+ be the set A∗ \ {ε} of all nonempty words
over A.
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Given a word w ∈ A∗, we denote by alph(w) the set of letters appearing in w, that is,
the least set B ⊆ A such that w ∈ B∗. We say that alph(w) is the alphabet of w. Finally,
for B ⊆ A, we write B~ for the set of words whose alphabet is exactly B, that is,

B~ = {w ∈ A∗ | alph(w) = B}.
Observe that B~ ⊆ B∗, and that B~ ( B∗ when B 6= ∅.

A language (over A) is a subset of A∗. Furthermore, a class of languages C is simply a
set of languages over A.

Remark 2.1. When it is important to consider several alphabets, a class of languages is
usually defined as a function that maps a finite alphabet A to a set of languages C(A) over A.
However, we adopt a simpler terminology in this paper, since we do not need to deal with
several alphabets.

All classes that we consider in the paper satisfy robust properties. We present them
now. We say that a class C of languages is a lattice if it contains ∅ and A∗ and is closed
under union and intersection. A Boolean algebra is a lattice that is additionally closed under
complement. Finally, given a language L ⊆ A∗ and a word u ∈ A∗, the left quotient u−1L of
L by u is the language

u−1L
def
= {w ∈ A∗ | uw ∈ L}.

The right quotient Lu−1 of L by u is defined symmetrically. A class C is quotienting when it
is closed under taking (left and right) quotients by words of A∗. In the paper, all classes
that we consider are at least lattices.

Example 2.2. Let AT be the class of languages consisting of all Boolean combinations of
languages B∗, for some sub-alphabet B ⊆ A. Here, “AT” stands for “alphabet testable”: a
language is in AT when membership of a word in this language depends only on the set of
letters occurring in the word. It is straightforward to verify that AT is a finite quotienting
Boolean algebra, which will serve as an important example in the paper.

Furthermore, we are only interested in regular languages, i.e., the classes that we consider
in the paper contain regular languages only. These are the languages that can be equivalently
defined by nondeterministic finite automata, finite monoids or monadic second-order logic.
In the paper, we shall use the definitions based on automata and monoids, which we briefly
recall below.

Automata. A nondeterministic finite automaton (NFA) is a tuple A = (Q, I, F, δ), where Q
is a finite set of states, I (resp. F ) is the set of initial (resp. final) states, and δ ⊆ Q×A×Q
is a set of transitions. For such an NFA and two states q, r ∈ Q, we shall write Lq,r

def
= {w ∈

A∗ | q w−→ r} for the language of words labeling a run from state q to state r. It is well-know
that a language L is regular when it is recognized by some NFA A, i.e., L is the union of all
languages Lq,r with q ∈ I and r ∈ F .
Semigroups and monoids. A semigroup is a set S endowed with a binary associative
operation (s, t) 7→ s · t. We also write st instead of s · t. An idempotent of a semigroup S is
an element e ∈ S such that ee = e. It is folklore that for any finite semigroup S, there exists
a natural number ω(S) (denoted by ω when S is understood from the context) such that for
any s ∈ S, the element sω is idempotent.

A monoid is a semigroup having a neutral element 1S , i.e., such that 1S · s = s · 1S = s
for every element s of the monoid. In particular, A+ is a semigroup (the binary operation is
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the concatenation of words) and A∗ is a monoid, with ε as the neutral element. An ordered
monoid is a monoid M together with an order relation ≤ on M which is compatible with
the multiplication of M , that is, such that s ≤ s′ and t ≤ t′ imply ss′ ≤ tt′.

A morphism between two monoids M,M ′ is a map α : M →M ′ such that α(1M ) = 1M ′
and for all s, t ∈M , we have α(st) = α(s)α(t). It is well known that a language L is regular
if and only if there exists a morphism from A∗ into a finite monoid such that membership of
any word in L is determined by its image under this morphism.

2.2. The membership and separation problems. As announced above, in the paper,
we only work with classes of regular languages. Usually, such a class C is associated to a
syntax: the languages in C are those which can be described by at least one representation
in this syntax (see the example of first-order logic below). When we have such a class
of languages in hand, the most basic question is whether, for a regular language given as
input, one can test membership of the language in the class C. In other words, we want to
determine whether there exists an algorithm that decides when this input language admits a
description in the given syntax. The corresponding decision problem is called C-membership
(or membership for C).

Definition 2.3 (Membership problem for C).
Input: A regular language L.
Question: Does L belong to C?

Recent solutions to the membership problem actually consider a more general problem,
the C-separation problem (or separation problem for C). This is the following decision
problem:

Definition 2.4 (Separation problem for C).
Input: Two regular languages L1 and L2.
Question: Does there exist a language K from C such that L1 ⊆ K and K ∩ L2 = ∅?

We say that a language K such that L1 ⊆ K and K ∩ L2 = ∅ is a separator of (L1, L2).
Observe that since regular languages are closed under complement, there is a straightforward
reduction from membership to separation. Indeed, an input language L belongs to C when it
can be C-separated from its complement.

As we explained in the introduction, we shall not work directly with these two problems
in the paper. Instead, we consider the more general covering problem, which we define in the
next section.

2.3. First-order logic and quantifier alternation. Most examples of classes that we
shall consider in the paper are taken from logic. Here, we briefly recall the definition of
first-order logic over words and its quantifier alternation hierarchy.

One may view a finite word as a logical structure composed of a linearly ordered sequence
of positions labeled over A. In first-order logic (FO), one may use the following predicates:
(1) For each letter a ∈ A, a unary predicate Pa which selects positions labeled with an “a”,
(2) A binary predicate “<” for the (strict) linear order between the positions.
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A language L is said to be first-order definable when there exists an FO sentence ϕ such that
L = {w | w |= ϕ}. One also denotes by FO the class of all first-order definable languages. It
is folklore that FO is a quotienting Boolean algebra.

We shall also consider the quantifier alternation hierarchy of FO. It is natural to classify
first-order sentences by counting their number of quantifier alternations. Let n ∈ N. We say
that an FO sentence is Σn (resp. Πn) when its prenex normal form has either,
– exactly n− 1 quantifier alternations (i.e., exactly n blocks of quantifiers) starting with an
∃ (resp. ∀), or

– strictly less than n−1 quantifier alternations (i.e., strictly less than n blocks of quantifiers).
For example, a formula whose prenex normal form is

∀x1∃x2∀x3∀x4 ϕ(x1, x2, x3, x4) (with ϕ quantifier-free)

is Π3. In general, the negation of a Σn sentence is not a Σn sentence (it is a Πn sentence).
Hence it is relevant to define BΣn sentences as the Boolean combinations of Σn sentences.
As for FO, we use Σn, Πn and BΣn to denote the corresponding classes of languages. This
yields an infinite hierarchy of classes of languages, as presented in Figure 1.
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Π1

BΣ1

Σ2

Π2

BΣ2

Σ3

Π3

BΣ3

Σ4

Π4

(

(
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(

(

(

(

(

(

(

(

Figure 1: Quantifier Alternation Hierarchy

It is folklore that all classes Σn and Πn in the hierarchy are quotienting lattices (but not
Boolean algebras) and that all classes BΣn are quotienting Boolean algebras.

3. The covering problem

In this section, we first define the covering problem and establish the connection with
separation. Next, we outline the steps that we shall take in the next sections for devising a
general approach to this problem.

3.1. Preliminary definitions. Unlike the membership problem but as the separation
problem, the covering problem takes two different objects as input. The first one is a single
language L ⊆ A∗. The second one is a finite multiset of languages L = {L1, . . . , Ln}. Note
that we speak of multisets here for the sake of allowing several copies of the same language
in L.

Remark 3.1. Using multisets of languages is not mandatory but it is natural. Indeed, each
language is given by a recognizer (typically, an NFA or a monoid morphism). Since two
distinct recognizers may define the same language, our input is indeed a multiset of languages.
Another important point is that considering multisets is harmless. If L1 and L2 are distinct
multisets for the same underlying set of languages, then the covering problems for instances
L1 and L2 will be equivalent.
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Consider some class C. Given an input language L and an input finite multiset of
languages L, the C-covering problem asks whether there exists a C-cover of L which is
separating for L. Let us first define what these notions mean.

Covers. Consider some language L ⊆ A∗. A cover of L is just a finite set of languages K
such that:

L ⊆
⋃
K∈K

K.

We shall often look for covers of the universal language A∗. Indeed, this special case suffices
when the investigated class C is a Boolean algebra (we discuss this point in Section 6). Such
a cover will be called a universal cover.

Separating covers. Consider a finite multiset of languages L and a set K of languages.
We say that K is separating for L when the following property holds:

For all K ∈ K, there exists L ∈ L such that K ∩ L′ = ∅.
In other words, K is separating for L when no K ∈ K intersects each of the languages in
L. Note that while this definition makes sense for any set of languages K, we are mainly
interested in the case when K is a cover of some other language L. We illustrate this
definition in Figure 2.

K2

K1

A cover of L
which is not separating for {L1, L2}
(K1 intersects both L1 and L2)

K ′1 K ′2

L1 L2

L

L1 L2

L

A cover of L
which is separating for {L1, L2}

Figure 2: Two covers of L. The right one is separating for {L1, L2} and the left one is not

A simple observation is that for any language L and any multiset of languages L, there
exists a cover of L which is separating for L if and only if the intersection between L and all
languages in L is empty. This generalizes the fact that two languages are separable if and
only if they are disjoint.

Lemma 3.2. Let L be a language and let L be a finite multiset of languages. There exists a
cover of L which is separating for L if and only the following condition is satisfied:

L ∩
⋂
L′∈L

L′ = ∅.
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Proof. Assume first that there exists a cover K of L which is separating for L. Since K is a
cover of L, we have L ⊆

⋃
K∈KK, and therefore,

L ∩
⋂
L′∈L

L′ ⊆
⋃
K∈K

(
K ∩

⋂
L′∈L

L′

)
.

Moreover, since K is separating, for any K ∈ K, there exists L′ ∈ L such that K ∩ L′ = ∅.
It follows that

⋃
K∈K

(
K ∩

⋂
L′∈L L

′) = ∅ and we conclude that L ∩
⋂
L′∈L L

′ = ∅.
Conversely, assume that L ∩

⋂
L′∈L L

′ = ∅. Consider the following equivalence relation
defined over words of L: u, v ∈ L are equivalent when u ∈ L′ ⇔ v ∈ L′ for all L′ ∈ L. We let
K be the partition of L induced by this equivalence. Clearly, K is a cover of L. Moreover,
one may verify that it is separating for L since we have L ∩

⋂
L′∈L L

′ = ∅.

Remark 3.3. For multisets L whose size is at least 2, finding a cover of L which is separating
for L is less demanding than finding separators for all pairs of languages (L,L′) where L′ ∈ L.
For example, consider the alphabet A = {a, b, c} and let L = a+ + b+, L1 = b+ + c+ and
L2 = c+ + a+. It is impossible to separate the pairs (L,L1) and (L,L2) (as they pairwise
intersect). However, {a∗, b∗} is a cover of L which is separating for {L1, L2}.

Naturally, as for separation, the covering problem restricts the set of allowed covers with
a predefined class C: we look for separating covers which are made of languages belonging to
C.

3.2. The problem. We may now state the covering problem for regular languages. As for
separation and membership, it depends on a class C of languages that restricts the set of
possible covers. Given a language L, a C-cover of L is a cover K of L such that all languages
K ∈ K belong to C. Finally, if L is a finite multiset of languages, we say that the pair (L,L)
is C-coverable when there exists a C-cover of L which is separating for L (when L is clear
from the context, we will simply say that such a cover is separating). The covering problem
is a follows.

Definition 3.4 (Covering problem for C).
Input: A regular language L and a finite multiset of regular languages L.
Question: Is (L,L) C-coverable?

There are two stages when solving the covering problem for a given class C.
(1) Stage One: find an algorithm which decides the covering problem for C (such an algorithm

is called a covering algorithm for C).
(2) Stage Two: find an algorithm that actually computes representations for languages in a

separating C-cover when it exists (i.e., when the answer to the question of Stage 1 is
“yes”).
Let us formally connect C-covering with C-separation: it is more general (provided that

the class C is closed under union). Specifically, separation is the special case of covering when
the multiset L is a singleton. While simple, this connection is important: many separation
algorithms in the literature are actually based on covering.

Theorem 3.5. Let C be a class closed under union and let L1, L2 be two languages. The
following properties are equivalent:
(1) L1 is C-separable from L2.
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(2) (L1, {L2}) is C-coverable.

Proof. Assume first that L1 is C-separable from L2. Then there exists K ∈ C such that
L1 ⊆ K and L2 ∩K = ∅. It follows that {K} is a separating C-cover of (L1, {L2}).

Conversely, assume that (L1, {L2}) is C-coverable and let K be a separating C-cover.
We let K =

⋃
K′∈KK ′. Clearly, K ∈ C by closure under union. Since K is a cover of L1, we

have L1 ⊆ K and since K is separating for {L2}, we have K ′ ∩L2 = ∅ for all K ′ ∈ K. Thus,
K ∩ L2 = ∅, which means that K ∈ C separates L1 from L2.

3.3. A special case: universal covering. Clearly, the definition of C-covering makes
sense for any class C. However, it turns out that when C is a Boolean algebra, it suffices to
consider a special case which has one less parameter. Consequently, handling covering will
be simpler for Boolean algebras.

We call this restriction universal covering. This weaker problem corresponds to the
special case of inputs (L,L) when the language L that needs to be covered is the universal
language A∗. More precisely, given a class C restricting the set of possible covers, the
universal covering problem for C is as follows.

Definition 3.6 (Universal covering problem for C).
Input: A finite multiset of regular languages L.
Question: Is (A∗,L) C-coverable?

Therefore, the problem asks whether there exists a universal cover (i.e., a cover of A∗)
which is separating for the input multiset L. Intuitively, this restriction is simpler than
the full problem since it takes only one object as input rather than two. For the sake of
simplifying the presentation, when we consider universal covering, we shall often omit A∗
and say that L is C-coverable to indicate that (A∗,L) is C-coverable.

As announced, when C is a Boolean algebra, the full covering problem reduces to this
special case. Consequently, when working with a Boolean algebra, one should not consider
the full covering problem. Instead, working with universal covering (which has one less
parameter) is simpler. We prove this in the following proposition.

Proposition 3.7. Let L be a language and L be a finite multiset of languages. Given any
Boolean algebra C, the two following properties are equivalent:
(1) (L,L) is C-coverable.
(2) {L} ∪ L is C-coverable.

Proof. We first prove the implication 1⇒ 2. Assume that (L,L) is C-coverable and let K
be a C-cover of L which is separating for L. Our goal is to find a universal C-cover, which is
separating for {L} ∪ L. Let K ′ be the following language:

K ′ = A∗ \

( ⋃
K∈K

K

)
.

Note that since C is a Boolean algebra, we have K ′ ∈ C. Let K′ = K ∪ {K ′}. Clearly, K′ is
a universal C-cover. We show that it is separating for {L} ∪ L which concludes the proof for
this direction. Given K ∈ K′, either K ∈ K, or K = K ′. In the first case, we get H ∈ L such
that K ∩H = ∅ since K is separating for L. Otherwise, when K = K ′, we have K ′ ∩ L = ∅
by definition of K ′, since K is a cover of L. This concludes the proof for this direction.
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Conversely, assume that {L} ∪ L is C-coverable and let K be a universal C-cover which
is separating for {L} ∪ L. We define:

K′ = {K ∈ K | K ∩ L 6= ∅}.
We claim that K′ is a C-cover of L which is separating for L. Indeed, we know that
L ⊆

⋃
K∈K′ K since K is a cover of A∗ and K′ contains all languages in K that intersect L.

Moreover, since K is separating for {L} ∪L, we know that for any K ∈ K, either K ∩L = ∅
or L ∩ H = ∅ for some H ∈ L. For the languages K ∈ K′, we know by definition that
K ∩ L 6= ∅. Thus, there exists H ∈ L such that K ∩H = ∅. This concludes the proof.

3.4. A framework for the covering problem. Now that covering is defined, we need
to explain the benefits of considering this problem rather than just separation. We do so by
presenting a general framework whose purpose is to obtain covering algorithms for actual
classes of languages. This approach is designed with both stages of the problem in mind:
finding a decision algorithm and constructing separating covers when they exist. Consider
some lattice C. Our approach to C-covering is obtained by combining three independent key
ideas that we describe now.
(1) When trying to solve C-covering for some input pair (L,L), we view the multiset L as a

quality measure: it is used to evaluate the quality of C-covers of L. In other words, we are
browsing C-covers of L in search for one which is good enough with respect to L. This
point of view allows us to reformulate C-covering as a computational problem, rather
than a decision problem. One wants to build an object that always exists regardless
of whether (L,L) is C-coverable or not: a C-cover of L which is optimal for L. The
main property of this object is that for any subset H of L, this optimal C-cover of L
is separating for H if and only if (L,H) is C-coverable. Therefore, having it in hand is
enough to solve C-covering for all subsets of L (including L itself).

(2) The second key idea is to generalize this computational problem to get a generic
computational problem. This problem is parametrized by a new object that we name
“rating map”. Rating maps are algebraic objects that one may use to measure the quality
of an arbitrary C-cover, and that abstract the multiset L (which was also used in the
C-covering problem as a quality measure of a cover). The general problem asks to build
a C-cover of some language L which is as good as possible with respect to a given rating
map ρ: a ρ-optimal universal C-cover. The approach described above for C-covering
with input (L,L) is just the instance of this abstract problem for a particular rating map
that one may build from L. Generalizing the problem makes the presentation simpler,
underlines the important hypotheses and yields elegant covering algorithms.

(3) The third key idea exploits the crucial fact that our inputs for the C-covering problem are
made of regular languages. In particular, this means that in the above computational
problem, we may restrict ourselves to a class of rating maps having special properties.
We call multiplicative rating maps these enhanced rating maps. Our algorithms crucially
exploit their properties.
We detail theses two key ideas in Section 4 and 5. First, we define rating maps and

explain how they relate to the covering problem in Section 4: this is our first two key ideas.
We then define the special class of multiplicative rating maps in Section 5: this our third key
idea.
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We then summarize the notions introduced in these two sections to outline our general
methodology for tackling C-covering. We actually present two methodologies. The first one
is designed to accommodate the restricted universal C-covering problem which is simpler to
handle (and is equivalent to full covering when C is a Boolean algebra by Proposition 3.7).
We present it in Section 6 and illustrate it with two examples: level BΣ1 of the quantifier
alternation hierarchy of first-order logic in Section 7 and two-variable first-order logic in
Section 8. Then, we present a generalized methodology designed for tackling the full C-
covering problem in Section 9. We illustrate it with an example in Section 10: level Σ1 in
the quantifier alternation hierarchy of first-order logic.

Remark 3.8. Both methodologies apply to any class C which is a quotienting lattice of
regular languages. Actually, most notions involved in our framework make sense for any
lattice C. However, we need C to be a quotienting lattice of regular languages to use a crucial
result (namely Lemma 5.8).

Remark 3.9. It is important to keep in mind that the purpose of this methodology is to
provide the right framework to tackle C-covering problems. On the other hand, they do
not yield C-covering algorithms “for free”. Once a quotienting lattice C is fixed, getting a
C-covering algorithm using our methodology still requires a lot of work specific to C. This is
illustrated by the detailed examples that we present.

4. Rating maps and optimal covers

This section details the main ingredient in our approach to C-covering. Given an input pair
(L,L), we view the finite multiset L as a quality measure for evaluating C-covers of L. Our
objective is to build such a C-cover of L which is “optimal for this measure”. The main point
here is that this object always exists (regardless of whether (L,L) is C-coverable) and it is
separating for any subset of L which is C-coverable.

We shall actually work within a more general framework and consider a generic compu-
tational problem. It asks to build a C-cover of some input language L that is optimal with
respect to a parameter that we name a rating map. We shall then prove that for any finite
multiset of languages L, one may define a special rating map ρL such that the approach
outlined above for C-covering with input L corresponds to building a C-cover which is optimal
for this rating map.

Remark 4.1. Considering this more general framework has two main benefits. First, working
with abstract rating maps rather than the specific ones ρL associated to multisets L of languages
simplifies the notation. Moreover, it yields more elegant presentations for covering algorithms.

We first define rating maps. Then, we explain how to use them for measuring the quality
of an arbitrary cover. Given a rating map ρ and a some finite set of languages K, we define
the ρ-imprint of K which corresponds to this measure. We then use this new notion to define
what an optimal C-cover of a language L is for a given rating map ρ. Finally, we connect
these definitions with our original goal: solving C-covering.
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4.1. Rating maps. In order to define a rating map, we first need a rating set. A rating
set is simply a finite commutative and idempotent monoid (R,+, 0R). Recall that being
idempotent means that for all r ∈ R, we have r + r = r. The binary operation + is called
addition2. Given a rating set R, we define the relation “≤” over R as follows:

For all r, s ∈ R, r ≤ s when r + s = s.

Fact 4.2. The relation ≤ is a partial order, which makes (R,+, 0,≤) an ordered monoid.

Proof. It can be verified that “≤” is indeed a partial order (note that it is reflexive because
R is idempotent). Let us check that it is compatible with addition. Let r1 ≤ r2 and s1 ≤ s2,
we have to prove that r1 + s1 ≤ r2 + s2. By definition of “≤”, r1 ≤ r2 means that r2 = r1 + r2.
Similarly, s2 = s1 + s2. Therefore, r2 + s2 = r1 + r2 + s1 + s2 = (r2 + s2) + (r1 + s1) since
addition is commutative. This exactly means that r1 + s1 ≤ r2 + s2.

Example 4.3. An important idempotent rating set is (2A
∗
,∪, ∅). Its associated order is

inclusion.

Another useful property is that if we consider a morphism between two rating sets, then
this morphism is always increasing for the order ≤.

Fact 4.4. Let (Q,+) and (R,+) be rating sets and δ : Q→ R be a monoid morphism. Then,
δ is increasing: for any q1, q2 ∈ Q such that q1 ≤ q2, we have δ(q1) ≤ δ(q2).

Proof. If q1 ≤ q2, then q2 = q2 + q1. Since δ is a morphism, we have δ(q2) = δ(q2) + δ(q1)
which exactly says that δ(q1) ≤ δ(q2).

Once we have a rating set R, a rating map for R is a monoid morphism ρ : (2A
∗
,∪, ∅)→

(R,+, 0R), i.e., a map from 2A
∗ to R satisfying the following properties:

(1) ρ(∅) = 0R.
(2) For all K1,K2 ⊆ A∗, we have ρ(K1 ∪K2) = ρ(K1) + ρ(K2).

For the sake of improved readability, when applying a rating map ρ to a singleton set
K = {w}, we shall write ρ(w) for ρ({w}). Fact 4.4 immediately yields the following result.

Fact 4.5. Any rating map ρ : 2A
∗ → R is increasing:

For all K1,K2 ⊆ A∗ such that K1 ⊆ K2, we have ρ(K1) ≤ ρ(K2).

Recall that given a rating map ρ, our goal is to define when a C-cover is optimal for ρ,
and to obtain algorithms for specific classes C computing such optimal C-covers with respect
to ρ. In order to carry out this computation, we need some additional properties on ρ. The
first is called “niceness”.

We say a rating map ρ is nice when it satisfies the following property:

For any language K ⊆ A∗, ρ(K) =
∑
w∈K

ρ(w). (4.1)

Remark 4.6. Observe that the sum in (4.1) is defined even when K is infinite. This is
because R is finite, commutative and idempotent, hence the sum boils down to a finite one.

2It is often the case to denote by ‘+’ a monoid operation when it is commutative. This choice is
additionally motivated by the connection with “language union” in the definition of rating maps. Finally,
we shall later consider a special class of rating sets, equipped with another binary operation, which we will
denote multiplicatively.
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Remark 4.7. Not all rating maps are nice. Consider the rating set R = {0, 1, 2} whose
addition is defined by i + j = max(i, j) for i, j ∈ R. We define ρ : 2A

∗ → R by ρ(∅) = 0
and for any nonempty K ⊆ A∗, ρ(K) = 1 if K is finite and ρ(K) = 2 if K is infinite. One
may verify that ρ is a rating map which is not nice: for any infinite language K, we have
ρ(K) = 2 while

∑
w∈K ρ(w) = 1.

Remark 4.8. It should be noticed that it is not clear how to finitely represent a rating map.
However, (4.1) shows that any nice rating map is fully determined by the images of singleton
languages {w}. While this does not yield a finite representation, in our algorithms, we shall
work with rating maps having stronger properties that make them finitely representable (see
Section 5).

Canonical rating map associated to a finite multiset. While the above definition is
abstract, we are mainly interested in a particular example of rating map which connects
the framework presented here to the covering problem. Given a finite multiset of languages
L, observe that 2L is an ordered commutative idempotent monoid with union “∪” as the
addition. Since addition is union, the order is inclusion. Indeed, H1 ⊆ H2 if and only if
H1 ∪H2 = H2.

We use 2L as the rating set of a specific nice rating map ρL : 2A
∗ → 2L which we

associate to L. We define this rating map as follows:
ρL : 2A

∗ → 2L

K 7→ {L ∈ L | L ∩K 6= ∅}.

Fact 4.9. For any finite multiset of languages L, the mapping ρL is a nice rating map.

Proof. Let us first verify that ρL is a rating map. Clearly, ρL(∅) = {L ∈ L | L ∩ ∅ 6= ∅} = ∅.
Moreover given K1,K2 ⊆ A∗,

ρL(K1 ∪K2) = {L ∈ L | L ∩ (K1 ∪K2) 6= ∅}
= {L ∈ L | (L ∩K1) ∪ (L ∩K2) 6= ∅}
= {L ∈ L | (L ∩K1) 6= ∅} ∪ {L ∈ L | (L ∩K2) 6= ∅}
= ρL(K1) ∪ ρL(K2).

It remains to show that ρL is nice. Consider K ⊆ A∗. We prove that ρL(K) =
∑

w∈K ρL(w).
Since ρL is a rating map, we have ρL(w) ⊆ ρL(K) when w ∈ K by Fact 4.5, whence∑

w∈K ρL(w) ⊆ ρL(K). It remains to prove the converse inclusion. By definition, we have
ρL(K) = {L ∈ L | L ∩K 6= ∅}. Thus, for any L ∈ ρL(K), there exists a word wL ∈ L ∩K.
In particular, L ∈ ρL(wL). Therefore,

ρL(K) =
∑

L∈ρL(K)

{L} ⊆
∑

L∈ρL(K)

ρL(wL) ⊆
∑
w∈K

ρL(w).

This concludes the proof.

4.2. Imprints. Now that we have rating maps, we turn to imprints. Consider a rating map
ρ : 2A

∗ → R. Given any finite set of languages K, we define the ρ-imprint of K. Intuitively,
when K is a cover of some language L, this object measures the “quality” of K.

Remark 4.10. We are mainly interested in the case when K is a cover. However, the
definition of ρ-imprint makes senses regardless of this hypothesis. In fact, it is often convenient
in proofs to use it when K is not necessarily a cover.
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Intuitively, we want to define the ρ-imprint of K as the set ρ(K) ⊆ R of all images ρ(K)
for K ∈ K. However, it will be convenient to use a slightly different definition which is
equivalent for our objective and simplifies the notation. Observe that since R is an ordered
set, we may apply a downset operation to subsets of R. For any E ⊆ R, we write:

↓E = {r | ∃r′ ∈ E such that r ≤ r′}.
The ρ-imprint of K, denoted by I[ρ](K), is the set,

I[ρ](K) = ↓{ρ(K) | K ∈ K} ⊆ R
= {r ∈ R | there exists K ∈ K such that r ≤ ρ(K)}.

Before we illustrate this notion with the rating maps ρL associated to finite multisets
of languages, let us make a few observations about ρ-imprints. First observe that since
any ρ-imprint is a subset of the finite rating set R associated to ρ, there are finitely many
possible ρ-imprints, even though there are infinitely many sets of languages K. Another
simple observation is that all imprints are closed under downset.

Fact 4.11. Let ρ : 2A
∗ → R be a rating map. For any finite set of languages K, the ρ-imprint

of K is closed under downset:
↓I[ρ](K) = I[ρ](K).

In other words, for any r ∈ I[ρ](K) and any r′ ≤ r, we have r′ ∈ I[ρ](K).

Observe that when K is the cover of some language L, the ρ-imprint of K always contains
some trivial elements within the evaluation set R. We define the trivial ρ-imprint on L as
follows:

Itriv [L, ρ] = ↓{ρ(w) | w ∈ L} ⊆ R.
When K is a cover of L, we know that for any w ∈ L, there exists K ∈ K such that w ∈ K.
Thus, ρ(w) ≤ ρ(K) by Fact 4.5 and it is immediate by closure under downset that all
r ≤ ρ(w) belong to I[ρ](K). Thus, we deduce the following fact.

Fact 4.12. Let ρ : 2A
∗ → R be a rating map. For any language L and any cover K of L, we

have Itriv [L, ρ] ⊆ I[ρ](K).

The special case of the rating maps ρL. We now illustrate imprints with the special
case of rating maps ρL associated to finite multisets of languages L. In particular, we present
a property which is specific to these rating maps and that we use to connect these definitions
to the covering problem.

Consider a finite multiset of languages L and the associated rating map ρL : 2A
∗ → 2L.

If we unravel the definitions for this specific case, we get,

I[ρL](K) = {H ⊆ L | there exists K ∈ K such that H ∩K 6= ∅ for all H ∈ H} ⊆ 2L.

We illustrate this special case in Figure 3 below.
We now connect ρL-imprints to the covering problem. Given a finite set of languages K,

I[ρL](K) records the subsets of L for which K is not separating.

Lemma 4.13. Let L be a finite multiset of languages and let K be a finite set of languages.
Consider a subset H of L. The following properties are equivalent:
(1) K is separating for H.
(2) H 6∈ I[ρL](K).
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K1

K2

Cover K = {K1,K2}

I[ρL](K) =

 {L1, L2, L3}, {L1, L2},
{L1, L3}, {L2, L3},
{L1}, {L2}, {L3}, ∅



K ′1

K ′2 K ′3

K ′′1

K ′′2

L1 L2

L3

L1 L2

L3

Cover K′ = {K ′1,K ′2,K ′3}

I[ρL](K′) =

 {L1, L2}, {L1, L3},
{L2, L3}, {L1}, {L2},
{L3}, ∅



L1 L2

L3

Cover K′′ = {K ′′1 ,K ′′2 }

I[ρL](K′′) =

{
{L1, L2}, {L1, L3},
{L1}, {L2}, {L3}, ∅

}

Figure 3: Examples of covers and their ρL-imprints for L = {L1, L2, L3}

Proof. By definition, H 6∈ I[ρL](K) if and only if for all K ∈ K, there exists H ∈ H such
that K ∩H = ∅. This is exactly the definition of K being separating for H.

4.3. Optimality. Given a rating map ρ : 2A
∗ → R and a language L, the main intuition

is that the “best” covers K of L are those with the least possible ρ-imprint I[ρ](K) ⊆ R
(with respect to inclusion). This is validated by the rating maps ρL associated to a finite
multiset of languages L. Indeed, in view of Lemma 4.13, given a cover K, the smaller its
ρL-imprint is, the better it is at being separating for subsets of L. For example, observe
that in Figure 3, K′′ is better than K′ which is itself better than K. Of course, if we do not
put any constraint on the covers that we may use, these notions are not very useful. There
is always a trivial cover of L that is better than any other. Indeed, partitioning the words
w ∈ L according to the value of ρL(w) ⊆ L yields a cover whose ρL-imprint is Itriv [L, ρL]
and it is impossible to do better by Fact 4.12.
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However, when we restrict ourselves to C-covers for a fixed lattice C, this “trivial best
cover” is not necessarily a C-cover, since it might contain languages that do not belong to C.
Hence, it now makes sense to define a notion of “best” C-cover.

Definition. We may now define optimality formally. Consider an arbitrary rating map
ρ : 2A

∗ → R and a lattice C. Given a language L, an optimal C-cover of L for ρ is a C-cover
K of L which satisfies the following property:

I[ρ](K) ⊆ I[ρ](K′) for any C-cover K′ of L.

Moreover, as we already announced in Section 3, an important special case is when L is the
universal language A∗. In this case, we shall speak of optimal universal C-cover for ρ.

Example 4.14. We use the alphabet A = {a, b, c}. Consider the class AT of alphabet testable
languages ( i.e., the Boolean combinations of languages of the form A∗aA∗ for some a ∈ A).
Let L = {(ab)+, b(ab)+, c(ac)+}. Consider

K = {A∗bA∗, A∗ \ (A∗bA∗)}.
One may verify that K is an optimal universal AT-cover for L. Its L-imprint is{

{(ab)+, b(ab)+}, {(ab)+}, {b(ab)+}, {c(ac)+}, ∅
}
.

Note that it contains {(ab)+, b(ab)+}. Therefore, by the necessary condition stated above,
(ab)+ and b(ab)+ cannot be separated by alphabet testable languages. This can be verified
directly, and used to prove that the cover K is indeed optimal. Note also that there are other
optimal universal AT-covers for L. For instance

{A∗cA∗, A∗ \ (A∗cA∗)}
is another universal cover with the same L-imprint as K.

Note that in general, there can be infinitely many optimal C-covers for a given rating
map ρ. We now prove that there always exists at least one. In order to prove this, we
need our hypothesis that C is a lattice (more precisely, we need C to be closed under finite
intersection).

Lemma 4.15. Let C be a lattice. Then, for any language L and any rating map ρ : 2A
∗ → R,

there exists an optimal C-cover of L for ρ.

Proof. We already know that there exists a C-cover of L since {A∗} is such a cover. We
prove that for any two C-covers K′ and K′′ of L, there exists a third C-cover K of L such
that I[ρ](K) ⊆ I[ρ](K′) and I[ρ](K) ⊆ I[ρ](K′′). Since there are only finitely possible
ρ-imprints (they are all subsets of the finite rating set R), the lemma will follow.

We define K = {K ′ ∩K ′′ | K ′ ∈ K′ and K ′′ ∈ K′′}. Since K′ and K′′ are C-covers of L,
the set K is also a cover of L. Moreover, it is a C-cover since C is closed under intersection.
Finally, it is immediate from Fact 4.5 that I[ρ](K) ⊆ I[ρ](K′) and I[ρ](K) ⊆ I[ρ](K′′).

An important remark is that the proof of Lemma 4.15 is non-constructive. Given a
rating map ρ : 2A

∗ → R, computing an actual optimal C-cover of some language L for ρ is a
difficult problem in general. As seen in Theorem 4.18 below, when we work with the rating
map ρL associated to some finite multiset of languages L, this solves C-covering for any pair
(L,H) where H is a subset of L: whenever a C-cover of L which is separating for H ⊆ L
exists, any optimal C-cover of L is one. Before we present this theorem, let us make a key
observation about optimal C-covers.



THE COVERING PROBLEM 19

Optimal imprint. By definition, given a lattice C, a language L and a rating map ρ : 2A
∗ → R,

all optimal C-covers of L for ρ have the same ρ-imprint. Hence, this unique ρ-imprint is a
canonical object for C, L and ρ. We say that it is the C-optimal ρ-imprint on L and we
denote it by IC[L, ρ]:

IC[L, ρ] = I[ρ](K) for any optimal C-cover K of L for ρ.

Let us complete this definition with a few useful results about optimal imprints. We present
two simple facts that one may use to compare optimal imprints for different classes and
languages.

Fact 4.16. Let ρ : 2A
∗ → R be a rating map and consider two lattices C and D such that

C ⊆ D. Then, for any language L, we have ID[L, ρ] ⊆ IC[L, ρ].

Proof. Consider an optimal C-cover K of L for ρ. By definition, we have IC[L, ρ] = I[ρ](K).
Moreover, since C ⊆ D, the C-cover K is also a D-cover of L and we have ID [L, ρ] ⊆ I[ρ](K).
Altogether, this yields ID[L, ρ] ⊆ IC[L, ρ] as desired.

Fact 4.17. Let ρ : 2A
∗ → R be a rating map and consider two languages H,L such that

H ⊆ L. Then, for any lattice C, we have IC[H, ρ] ⊆ IC[L, ρ].

Proof. Consider an optimal C-cover K of L for ρ. By definition, we have IC[L, ρ] = I[ρ](K).
Moreover, since H ⊆ L, we know that K is also a C-cover of H and we have IC[H, ρ] ⊆
I[ρ](K). Altogether, this yields IC[H, ρ] ⊆ IC[L, ρ] as desired.

4.4. Connection with the covering problem. We are now ready to connect optimal
C-covers to the C-covering problem: we express the notion of optimal C-cover with that of
separating C-cover. The connection is given in the following theorem, through the rating
map ρL canonically associated to a multiset of languages L.

Theorem 4.18. Let C be a lattice. Consider a language L and a finite multiset of languages
L. Given any subset H ⊆ L, the following properties are equivalent:
(1) (L,H) is C-coverable.
(2) H 6∈ IC[L, ρL].
(3) Any optimal C-cover of L for L is separating for H.

Proof. We prove that 3)⇒ 1)⇒ 2)⇒ 3). Let us first assume that 3) holds, i.e., that any
optimal C-cover of L for L, is separating for H. Since there exists at least one optimal
C-cover of L for L (see Lemma 4.15), (L,H) is C-coverable, i.e., 1) holds.

We now prove that 1)⇒ 2). Assume that 1) holds, i.e., that (L,H) is C-coverable. This
means that there exists a C-coverK of L which is separating forH. It follows from Lemma 4.13
that H 6∈ I[ρL](K). Finally, since K is a C-cover of L, we have IC[L, ρL] ⊆ I[ρL](K) by
definition and we conclude that H 6∈ IC[L, ρL]. Therefore, 2) holds.

It remains to prove that 2)⇒ 3). Assume that H 6∈ IC[L, ρL] and let K be an optimal
C-cover of L for L, so that IC[L, ρL] = I[ρL](K). Therefore, our hypothesis yields that
H 6∈ I[ρL](K), and it follows from Lemma 4.13 that K is separating for H.

In view of Theorem 4.18, both objectives in the C-covering problem can now be reformu-
lated with our new terminology. In order to decide C-covering for a particular input (L,L), it
suffices to compute IC[L, ρL], the C-optimal ρL-imprint on L (this is the second item in the
theorem). Similarly, if a C-cover of L which is separating for L exists, it suffices to compute
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an optimal C-cover of L for L to obtain one (this is the third item in the theorem). There
are several motivations for using this new formulation:
(1) The C-optimal ρL-imprint on L, IC[L, ρL], is a canonical object associated to C, L and

L which always exists, regardless of whether the answer to C-covering is “yes” or “no”.
(2) This approach yields an abstraction of C-covering which enjoys lighter terminology and

more elegant presentations for solutions. The key idea is that we do not have to consider
finite multisets of languages explicitly: we replace the goal of finding an algorithm
deciding whether an input pair (L,L) is C-coverable by the one of finding an algorithm
computing IC[L, ρ] from some input rating map ρ : 2A

∗ → R. Of course, we shall restrict
ourselves to a special class of rating maps which can be finitely represented. Otherwise,
it would not make sense to speak of algorithms taking a rating map as input.

(3) We prove that in order to obtain covering algorithms, it suffices to consider a special class
of rating maps: the nice multiplicative rating maps (defined in Section 5). This is where
where we exploit the fact that the multiset L in our input is made of regular languages.
These rating maps enjoy additional properties which are crucially exploited by our
algorithms. In particular, a key point is they can be finitely represented. Consequently,
it does make sense to speak of algorithms taking a nice multiplicative rating map as
input.

4.5. Extension. Let us finish the section by presenting a natural relation between rating
maps: extension. It is designed with the following objective in mind. Given two rating maps
ρ and τ , if τ extends ρ, we want to have the following property for any lattice C: IC[L, ρ] is
easily computed from IC[L, τ ]

Remark 4.19. We shall use extension to restrict the class of rating maps that one needs
to consider for solving covering problems. As seen in Theorem 4.18, given some lattice C,
obtaining an algorithm for C-covering reduces to getting a procedure which computes IC[L, ρL]
from an input pair (L,L) ( i.e., L is a regular language and L a finite multiset of regular
languages). Hence, we need to handle all rating maps ρL associated to some finite multiset
of regular languages L. Extension is used to show that we may restrict ourselves to smaller
classes of rating maps without loss of generality: we prove that for any finite multiset of
regular languages L, one may compute the finite representation of a rating map extending ρL
in the smaller class. We present the most important restriction that we shall consider in the
next section: we always work with multiplicative rating maps.

Consider two rating maps ρ : 2A
∗ → R and τ : 2A

∗ → Q. By definition, the two rating
sets R and Q are finite commutative and idempotent monoids. We say that τ extends ρ
when there exists a monoid morphism δ : Q→ R such that,

ρ = δ ◦ τ.
We call δ the extending morphism. Let us point out that since rating sets must be finite,
any extending morphism is clearly finitely representable. Another simple but important
observation is that extension is a transitive relation.

Fact 4.20. Let ρ1 : 2A
∗ → R1, ρ2 : 2A

∗ → R2 and ρ3 : 2A
∗ → R3 be rating maps. Assume

that ρ2 extends ρ1 and that ρ3 extends ρ2 for the extending morphisms δ1 : R2 → R1 and
δ2 : R3 → R2 respectively. Then, ρ3 extends ρ1 for the extending morphism δ1 ◦ δ2 : R3 → R1.
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We may now present the main property of extension. When τ extends ρ, given any
lattice C and any language L, IC[L, ρ] is easily computed from IC[L, τ ] (provided that we
have the corresponding extending morphism δ in hand). Moreover, any optimal C-cover of L
for τ is also optimal ρ.

Lemma 4.21. Consider two rating maps ρ : 2A
∗ → R and τ : 2A

∗ → Q, and assume that τ
extends ρ with the extending morphism δ : Q→ R. For any lattice C and any language L,
the two following properties hold:
– IC[L, ρ] = ↓δ(IC[L, τ ]).
– Any C-cover of L which is optimal for τ is also optimal for ρ.

Proof. We start with the first item: IC[L, ρ] = ↓δ(IC[L, τ ]). We first consider r ∈ IC[L, ρ]
and show that r ∈ ↓δ(IC[L, τ ]). Let K be a C-cover of L which is optimal for τ . By
definition IC[L, ρ] ⊆ I[ρ](K) and we get that r ∈ I[ρ](K). Thus, there exists K ∈ K such
that r ≤ ρ(K). Clearly τ(K) ∈ I[τ ](K) = IC[L, τ ] since K is optimal for τ . Moreover, by
definition of δ, we have ρ(K) = δ(τ(K)). Thus, since r ≤ ρ(K), we have r ∈ ↓δ(IC[L, τ ]).

Conversely, assume that r ∈ ↓δ(IC[L, τ ]). We show that r ∈ IC[L, ρ]. Let K be a C-cover
of L which is optimal for ρ. By definition, I[ρ](K) = IC[L, ρ] and it therefore suffices to
show that r ∈ I[ρ](K). By definition of r, we have q ∈ IC[L, τ ] such that r ≤ δ(q). Since
IC[L, τ ] ⊆ I[τ ](K) by definition, this implies q ∈ I[τ ](K). Hence, we get K ∈ K such that
q ≤ τ(K). Since δ is a morphism such that ρ = δ◦τ , this implies that δ(q) ≤ δ(τ(K)) = ρ(K)
(see Fact 4.4). Finally, since r ≤ δ(q), we obtain r ≤ ρ(K) which implies that r ∈ I[ρ](K),
finishing the proof.

It remains to prove the second item. Consider a C-cover K of L which is optimal for
τ . We have to show that K is also optimal for ρ as well. By hypothesis I[τ ](K) = IC[L, τ ].
Moreover, since ρ = δ◦τ , it is simple to verify from the definitions that I[ρ](K) = ↓δ(I[τ ](K)).
Thus, we get that I[ρ](K) = ↓δ(IC[L, τ ]) which yields I[ρ](K) = IC[L, ρ] by the first item.
Thus, K is an optimal C-cover of L for ρ.

5. Multiplicative rating maps

We now define a special class of rating maps: the multiplicative rating maps. This class is
important for two complementary reasons. First, the rating maps which are simultaneously
nice and multiplicative are finitely representable. Hence, we are able to speak of computational
problems in which the input is a nice multiplicative rating map. For example, given a lattice
C, the problem of computing IC[L, ρ] from a regular language L and a nice multiplicative
rating map ρ makes sense. Second, we shall prove that for any finite multiset of regular
languages L, we are able to compute a nice multiplicative rating map extending ρL.

Consequently, by Theorem 4.18 and Lemma 4.21, we are able to reduce C-covering for
any lattice C to the problem of computing IC[L, ρ] from a regular language L and a nice
multiplicative rating map ρ. In other words, considering nice multiplicative rating maps
suffices to obtain covering algorithms. This is crucial for our techniques to apply.

Remark 5.1. We shall actually consider two variants of this reduction. The first one applies
to universal C-covering only (this allows us to drop the regular language L in the input).
We state it precisely in Section 6 (see Proposition 6.4). The second one applies to the full
covering problem and involves a little extra work to handle the regular language L. We state
it precisely in Section 9 (see Proposition 9.5).
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We first define multiplicative rating maps and explain how to finitely represent the nice
ones. Then, we investigate their properties. Finally, we present a construction for building a
multiplicative rating map extending ρL from an input finite multiset of regular languages L.

5.1. Definition. We say that a rating map ρ : 2A
∗ → R is multiplicative when its rating

set R has more structure: it needs to be an idempotent semiring. Moreover, ρ has to satisfy
an additional property connecting this structure to language concatenation, namely, it has
to be a morphism of semirings. Let us first define semirings.

Semirings. A semiring is a tuple (R,+, ·) where R is a set and “+” and “·” are two binary
operations called addition and multiplication, such that the following axioms are satisfied:
– (R,+) is a commutative monoid whose neutral element is denoted by 0R.
– (R, ·) is a monoid whose neutral element is denoted by 1R.
– Multiplication distributes over addition, i.e., for all r, s, t ∈ R we have:

r · (s+ t) = (r · s) + (r · t),
(r + s) · t = (r · t) + (s · t).

– The neutral element “0R” of (R,+) is a zero for (R, ·), i.e., for any r ∈ R:
0R · r = r · 0R = 0R.

Remark 5.2. Semirings generalize the more standard notion of rings. A ring (R,+, ·) is a
semiring for which (R,+) is a group.

As usual, for the sake of simplifying the notation, when multiplying elements we shall
often write rr′ instead of r · r′. We say that a semiring R is idempotent when r + r = r for
any r ∈ R, i.e., when the additive monoid (R,+) is idempotent (on the other hand, note
that there is no additional constraint on the multiplicative monoid (R, ·)).

Example 5.3. A simple example of infinite idempotent semiring is the set 2A
∗ of all languages

over A. Indeed, it suffices to choose union as the addition (with the empty language as neutral
element) and concatenation as the multiplication (with the singleton {ε} as neutral element).
The ordering is then simply language inclusion. More generally, any class of languages which
is closed under union, concatenation and contains the singleton {ε} is a semiring as well.

Observe that any finite idempotent semiring R is in particular a rating set by definition
(i.e., (R,+) is an idempotent and commutative monoid). We know from Fact 4.2 that in an
idempotent semiring, the canonical partial order “≤”, defined by r ≤ s when r + s = s, is
compatible with addition. Actually, it is also compatible with multiplication.

Fact 5.4. Let R be an idempotent semiring and let “≤” be its induced ordering relation.
For all r1, r2, s1, s2 ∈ R such that r1 ≤ r2 and s1 ≤ s2, we have r1s1 ≤ r2s2.

Proof. Assume that r1 ≤ r2 and s1 ≤ s2. Then by definition of “≤”, we have r2 = r1 + r2

and s2 = s1 + s2. Therefore, r2s2 = (r1 + r2)(s1 + s2) = r1s1 + r2s1 + r1s2 + r2s2, whence
r1s1 + r2s2 = r2s2 since addition is idempotent. This shows that r1s1 ≤ r2s2.

Multiplicative rating maps. Now that we have idempotent semirings, we may define
multiplicative rating maps: as expected they are semiring morphisms. Let ρ : 2A

∗ → R
be a rating map. By definition, this means that the rating set (R,+) is an idempotent
commutative monoid and that ρ is a monoid morphism from (2A

∗
,∪) to (R,+). In other

words, we have,
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(1) ρ(∅) = 0R.
(2) For all K1,K2 ⊆ A∗, we have ρ(K1 ∪K2) = ρ(K1) + ρ(K2).
We say that ρ is multiplicative when the rating set R is equipped with a second binary
operation “·” such that (R,+, ·) is an idempotent semiring and ρ is also a monoid morphism
from (2A

∗
, ·) to (R, ·). In other words, the two following additional axioms have to be

satisfied:
(3) ρ(ε) = 1R.
(4) For all K1,K2 ⊆ A∗, we have ρ(K1K2) = ρ(K1) · ρ(K2).
Altogether, this exactly says that ρ must be a semiring morphism from (2A

∗
,∪, ·) to (R,+, ·).

A finite representation of nice multiplicative rating maps. It turns out that multi-
plicative rating maps are finitely representable when they are nice. This is a crucial property:
this allows us to speak of algorithms taking a nice multiplicative rating map as input.

Given any multiplicative rating map ρ : 2A
∗ → R (nice or not), one may associate a

morphism ρ∗ : A∗ → R between the monoids (A∗, ·) and (R, ·). The definition is natural: ρ∗
is simply the restriction of ρ to A∗:

ρ∗ : A∗ → R
w 7→ ρ(w).

Clearly, ρ∗ is a monoid morphism by Items (3) and (4) in the definition of multiplicative
rating maps.

The main point here is that when a multiplicative rating map ρ : 2A
∗ → R is nice, it

is fully determined by the rating set R and by its associated word morphism ρ∗. Indeed,
as we already noted in Remark 4.8, when ρ is a nice rating map, it is fully defined by the
images of singleton languages {w} and the addition of the rating set R: for any K ⊆ A∗,
ρ(K) is the sum of all elements ρ(w) for w ∈ K. Moreover, when ρ is multiplicative, the
images of any singleton language {w} is exactly what ρ∗ : A∗ → R computes. Both objects
are clearly finitely representable: ρ∗ is determined by the images ρ∗(a) for a ∈ A and R is a
finite semiring. Hence, we get a finite representation for nice multiplicative rating maps.

Remark 5.5. From now on, when we speak of a procedure taking a nice multiplicative
rating map ρ as input, we shall implicitly assume that it is given in this form. That is, the
procedure takes a finite semiring R and a monoid morphism β : A∗ → R as input. The
nice multiplicative rating map ρ is the one whose rating set is R and whose associated word
morphism is ρ∗ = β.

Let us complete this definition with an important remark: computing information about
an input nice multiplicative rating map ρ : 2A

∗ → R is simple. First, given any regular
language L, one may compute Itriv [L, ρ] = {r ∈ R | r ≤ ρ(w) for some w ∈ L}. Indeed,
testing whether r ∈ Itriv [L, ρ] amounts to checking if the (regular) language {w | r ≤ ρ(w)}∩L
is nonempty. Hence, one may compute Itriv [L, ρ] in polynomial time with respect to a
recognizer for L and the size |R| of R.

Lemma 5.6. Given as input a nice multiplicative rating map ρ : 2A
∗ → R and a regular

language L ⊆ A∗, one may compute the set Itriv [L, ρ] in polynomial time with respect to |R|
and the size of some recognizer for L ( i.e., an NFA or a monoid morphism).

Furthermore, since ρ : 2A
∗ → R is nice, we are able to evaluate ρ(K) for any regular

language K. This amounts to checking whether K intersects regular languages recognized
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by the canonical word morphism associated to ρ. Indeed, since ρ is nice, we have ρ(K) =∑
w∈K ρ(w). Therefore, ρ(K) is the sum of all r ∈ R such that K ∩{w ∈ A∗ | ρ(w) = r} 6= ∅.

We get the following lemma.

Lemma 5.7. Given as input a nice multiplicative rating map ρ : 2A
∗ → R and a regular

language K ⊆ A∗, one may compute the element ρ(K) of R in polynomial time with respect
to |R| and the size of some recognizer for K ( i.e., an NFA or a monoid morphism).

5.2. Multiplicative rating maps and optimal imprints. We now present a crucial
property of (not necessarily nice) multiplicative rating maps. It turns out that when the
investigated class C is a quotienting lattice of regular languages, given a multiplicative rating
map ρ : 2A

∗ → R, the structure of the multiplicative semigroup (R, ·) is transferred to
C-optimal ρ-imprints. This result is why our framework is meant to be used for classes that
are quotienting lattices of regular languages: it does not hold for arbitrary lattices.

Lemma 5.8. Let C be a quotienting lattice of regular languages and let ρ : 2A
∗ → R be a

multiplicative rating map. Consider two languages L1, L2. Then, for any r1 ∈ IC[L1, ρ] and
any r2 ∈ IC[L2, ρ], we have r1r2 ∈ IC[L1L2, ρ].

Before proving Lemma 5.8, let us explain why it is important. Let C be a quotienting
lattice and let ρ : 2A

∗ → R be a multiplicative rating map. Since ρ is multiplicative, it
satisfies by definition the following property:

For any K1,K2 ∈ C, ρ(K1) · ρ(K2) = ρ(K1K2). (5.1)

A natural method for building an optimal C-cover K of some language L for ρ is to start
from K = ∅ and to add new languages K in C to K, until K covers L. By definition
of ρ-imprints, for K to be optimal, we need all languages K that we add in K to satisfy
ρ(K) ∈ IC[L, ρ]. It follows from Lemma 5.8 and (5.1) that when C is a quotienting
lattice, we may use concatenation to build new languages K. Assume that we have two
languages L1, L2 such that L1L2 ⊆ L. If we have already built K1 and K2 in C such that
ρ(K1) ∈ IC[L1, ρ] and ρ(K2) ∈ IC[L2, ρ], then we may add K1K2 to our C-cover of L,
provided this language belongs to C, since by Lemma 5.8, Equation (5.1) and Fact 4.17, we
have ρ(K1K2) = ρ(K1) · ρ(K2) ∈ IC[L1L2, ρ] ⊆ IC[L, ρ].

This is central for classes of languages defined through logic (such as first-order logic),
where language concatenation often plays a central role for building new languages. This
means that for such classes, if K1 and K2 belong to C, then so does K1K2. Let us now prove
Lemma 5.8.

Proof of Lemma 5.8. Let r1 ∈ IC[L1, ρ] and r2 ∈ IC[L2, ρ], our objective is to prove that
r1r2 ∈ IC[L1L2, ρ]. By definition, it suffices to prove that for any C-cover K of L1L2, we
have r1r2 ∈ I[ρ](K). Let K be a C-cover of L1L2. Our objective is to find some language
K ∈ K such that r1r2 ≤ ρ(K). The argument is based on the following claim, which relies
on the Myhill-Nerode theorem.

Claim. There exists a language H ∈ C which satisfies the following two properties:
(1) For any u ∈ L1, there exists K ∈ K such that H ⊆ u−1K.
(2) r2 ≤ ρ(H)
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Proof. For any u ∈ L1, consider the set Qu = {u−1K | K ∈ K}. Clearly, Qu is a C-cover
of L2 since K is a cover of L1L2 and C is closed under quotients. Moreover, we know
by hypothesis on C that all languages in K are regular. Therefore, it follows from the
Myhill-Nerode theorem that they have finitely many left quotients. Thus, while there may
be infinitely many u ∈ L1, there are only finitely many distinct sets Qu. It follows that we
may use finitely many intersections to build a C-cover Q of L2 such that for any Q ∈ Q and
any u ∈ L1, there exists K ∈ K satisfying Q ⊆ u−1K. This means that all Q ∈ Q satisfy
the first item in the claim, we now pick one which satisfies the second one as well.

Since r2 ∈ IC[L2, ρ], and Q is a C-cover of L2, we have r2 ∈ I[ρ](Q). Thus, we get
H ∈ Q such that r2 ≤ ρ(H) by definition. This concludes the proof of the claim.

We may now finish the proof of Lemma 5.8. Let H ∈ C be defined as in the claim and
consider the following set:

G =

{⋂
v∈H

Kv−1 | K ∈ K

}
.

Observe that all languages in G belong to C. Indeed, by hypothesis on C, any K ∈ K
is regular. Thus, it has finitely many right quotients by the Myhill-Nerode theorem and
the language

⋂
v∈H Kv

−1 is the intersection of finitely many quotients of languages in C.
By closure under intersection and quotients, it follows that

⋂
v∈H Kv

−1 ∈ C. Moreover, G
is a C-cover of L1. Indeed, given u ∈ L1, we have K ∈ K such that H ⊆ u−1K by the
first item in the claim. Hence, given any v ∈ H, we have u ∈ Kv−1 and we obtain that
u ∈

⋂
v∈H Kv

−1, which is an element of G.
Therefore, since r1 ∈ IC[L1, ρ] by hypothesis, we have r1 ∈ I[ρ](G) and we obtain

G ∈ G such that r1 ≤ ρ(G). Hence, since r2 ≤ ρ(H) by the second item in the claim,
we have r1r2 ≤ ρ(G) · ρ(H). Moreover, since ρ is a multiplicative rating map, it satisfies
ρ(G) · ρ(H) = ρ(GH) by definition, which yields,

r1r2 ≤ ρ(GH).

Finally, by definition, G =
⋂
v∈H Kv

−1 for some K ∈ K. We show that GH ⊆ K. Since ρ is
increasing by Fact 4.5, this will yield r1r2 ≤ ρ(GH) ≤ ρ(K) which concludes the proof of
the lemma. Given w ∈ GH , we have w = uv with u ∈ G and v ∈ H. Moreover, since v ∈ H,
we have u ∈ Kv−1 by definition of H. This exactly says that w = uv ∈ K.

5.3. Computing nice multiplicative rating maps. We now explain why we may
replace the finite multiset of regular languages L used in the input pair (L,L) for the covering
problem by a nice multiplicative rating map. As we already proved in Theorem 4.18, we may
replace L by the associated canonical rating map ρL: (L,L) is C-coverable if and only if
L 6∈ IC[L, ρL]. However, while ρL is nice, it need not be multiplicative. However, we show
that from recognizers of the languages in L, we may compute a nice multiplicative rating
map ρ : 2A

∗ → R which extends ρL. By Lemma 4.21, IC[L, ρL] may be computed from
IC[L, ρ]. Thus, we may replace ρL by ρ. We shall outline this reduction precisely later when
we formulate our general approach to covering. For now, let us explain how the extending
nice multiplicative rating map ρ is built.

Proposition 5.9. Given as input a finite multiset of regular languages L, one may compute
a nice multiplicative rating map ρ : 2A

∗ → R and a morphism δ : R→ 2L such that ρ extends
ρL for the extending morphism δ. Moreover, one can also compute the set δ−1(L). Finally,
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the computation may be achieved in polynomial space with respect to the size of NFAs or
monoid morphisms recognizing the languages in L.

The remainder of this section is devoted to presenting the construction announced in
Proposition 5.9. We show that given as input some finite multiset of regular languages
L, one may compute a nice multiplicative rating map ρ extending L, together with the
corresponding extending morphism. We only describe the construction. That is may be
achieved in polynomial space is easily verified. It involves two steps:
(1) We first show that for any regular language L, one may compute a nice multiplicative

rating map extending ρ{L}. Let us point out that we actually present two constructions:
the first one starts from a monoid morphism recognizing L while the other starts from
an NFA.

(2) By the first step, we are able to compute a nice multiplicative rating map extending ρ{L}
for each L ∈ L. The second step combines all these nice multiplicative rating maps into
a single one extending the rating map ρL.

Canonical nice multiplicative rating map associated to a morphism. Consider a
finite monoid M and a morphism α : A∗ →M . We associate a canonical nice multiplicative
rating map ρα to α.

Observe that since M is a monoid, the powerset 2M is a semiring: the addition is union,
which makes 2M an idempotent commutative monoid (in particular, the canonical order is
inclusion). Moreover, the multiplication is obtained by lifting the one of M : given S, T ∈ 2M ,
we define S · T = {st | s ∈ S and t ∈ T}. One may verify that this is indeed a monoid
multiplication (its neutral element is {1M}) which distributes over union and that ∅ (the
neutral element for union) is a zero for this multiplication. We may now define the canonical
nice multiplicative rating map ρα associated to α as follows:

ρα : 2A
∗ → 2M

K 7→ {α(w) | w ∈ K}.
One may verify that ρα is indeed a nice multiplicative rating map. Moreover, for any language
L which is recognized by α, the rating map ρα extends ρ{L}. We prove this in the following
lemma.

Lemma 5.10. Let α : A∗ → M be a morphism into a finite monoid. Then, the map
ρα : 2A

∗ → 2M is a nice multiplicative rating map. Moreover, if L ⊆ A∗ is a language
recognized by α for the accepting set F ⊆ M ( i.e., L = α−1(F )), then ρα extends ρ{L} for
the following extending morphism δ:

δ : 2M → 2{L}

S 7→
{
{L} if S ∩ F 6= ∅
∅ if S ∩ F = ∅

Proof. That ρα satisfies the axioms of nice multiplicative rating maps can be verified from the
definition. Let us prove that it extends ρ{L}, i.e., that ρ{L} = δ◦ρα. LetK ⊆ A∗, we show that
ρ{L}(K) = δ(ρα(K)). Observe that since we have L = α−1(F ) and ρα(K) = {α(w) | w ∈ K},
it is immediate that,

K ∩ L 6= ∅ if and only if ρα(K) ∩ F 6= ∅
By definition of ρ{L} and δ, we get as desired that ρ{L}(K) = δ(ρα(K)) which concludes the
proof.
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Canonical nice multiplicative rating map associated to an NFA. Consider an arbi-
trary NFA A = (A,Q, I, F, δ). We associate a canonical nice multiplicative rating map ρA
to A.

Observe that the set 2Q
2 (which consists of sets of pairs of states) is a semiring. As usual,

the addition is union which makes 2Q
2 and idempotent commutative monoid (in particular,

the canonical order is inclusion). Moreover, the multiplication is defined as follows. Given
S, T ∈ 2Q

2 ,

S · T = {(q, s) ∈ Q2 | there exists r ∈ Q such that (q, r) ∈ S and (r, s) ∈ T}.
One may verify that this is indeed a monoid multiplication (its neutral element the set
{(q, q) | q ∈ Q}) which distributes over union and that ∅ (the neutral element for union) is a
zero for this multiplication. We may now define the canonical nice multiplicative rating map
ρA associated to A as follows. Recall that given two states q, r ∈ Q and w ∈ A∗, we write
q
w−→ r to denote the fact that there exists a run labeled by w from q to r in A. We define

ρA as follows:

ρA : 2A
∗ → 2Q

2

K 7→ {(q, r) ∈ Q2 | there exists w ∈ K such that q w−→ r}
Note that the definition is independent from the sets I and F of initial and final states of A.
One may verify that ρA is indeed a nice multiplicative rating map. Moreover, the rating
map ρ{L(A)} (where L(A) is the language recognized by A) is extended by ρA . We prove
this in the following lemma.

Lemma 5.11. Let A = (A,Q, I, F, δ) be an NFA. Then the map ρA : 2A
∗ → 2Q

2 is a nice
multiplicative rating map which extends ρ{L(A)} for the following extending morphism γ:

γ : 2Q
2 → 2{L(A)}

S 7→
{
{L(A)} if S ∩ (I × F ) 6= ∅
∅ if S ∩ (I × F ) = ∅

Proof. That ρA is a nice multiplicative rating map can be verified from the definition. Let
us prove that it extends ρ{L(A)}, i.e., ρ{L(A)} = γ ◦ ρA . Let K ⊆ A∗, we prove that
ρ{L(A)}(K) = δ(ρA(K)). By definition, L(A) is the set of all words labeling a run between
a state q ∈ I and astate r ∈ F . Hence, by definition of ρA(K), it is immediate that:

K ∩ L(A) 6= ∅ if and only if ρA(K) ∩ (I × F ) 6= ∅.
By definition of ρ{L(A)} and γ, we get as desired that ρ{L(A)}(K) = δ(ρA(K)) which
concludes the proof.

Extending a finite multiset of regular languages. We may now present the general
construction. Let us consider an input multiset of regular languages L = {L1, . . . , Ln}.
We want to compute a nice multiplicative rating map ρ extending ρL. Using the above
constructions, we know that for all i ≤ n, we are able to build a nice multiplicative rating
map ρi : 2A

∗ → Ri extending ρ{Li} and some extending morphism δi : Ri → 2{Li}.
One may verify that the Cartesian product R = R1 × · · · × Rn is also an idempotent

semiring for the componentwise addition and multiplication. Consider the following map ρ:
ρ : 2A

∗ → R
K 7→ (ρ1(K), . . . , ρn(K)).
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It is straightforward to check that ρ is a nice multiplicative rating map as well. Moreover,
it is clear that ρ may be computed from ρ1, . . . , ρn. Finally, ρ extends ρL for the following
extending morphism:

δ : R → 2L

(r1, . . . , rn) 7→ δ1(r1) ∪ · · · ∪ δn(rn).

Clearly, one may compute δ from δ1, . . . , δn. This concludes the presentation of our construc-
tion. Observe that by construction, we end up with a rating set whose size is as described in
Figure 4 (where we write |A| for the number of states in the NFA A).

L is given by n
NFAs A1, . . . ,An

L is given by n
monoids M1, . . . ,Mn

Size of the rating set 2|A1|2+···+|An|2 2|M1|+···+|Mn|

Figure 4: Size of the rating set for a nice multiplicative rating map extending the canonical
rating map ρL associated to a multiset L = {L1, . . . , Ln} of regular languages.

6. General approach for universal covering

We may now start outlining our general methodology for tackling C-covering. In this section,
we start with the special case of universal C-covering, where the language that needs to be
covered is A∗ (i.e., the input is of the form (A∗,L)). Recall that by Proposition 3.7, this
restricted problem is equivalent to full C-covering when the investigated class C is a Boolean
algebra.

Of course, this methodology will later be subsumed by the one that we shall present for
the full C-covering problem in Section 9. However, it makes sense to introduce a specialized
approach for universal C-covering: this is simpler and Boolean algebras account for most of
the relevant classes.

Remark 6.1. Since universal and full C-covering are only equivalent when C is a Boolean
algebra, the methodology that we outline here is only meant to be used for such classes.
However, it makes sense for any class C that is a quotienting lattice of regular languages.

We first recall the notions introduced in the two previous sections and use them to
formally reduce universal C-covering to another decision problem whose input is a nice
multiplicative rating map. Since the language that needs to be covered in universal covering
is always A∗, we are able to slightly simplify our terminology. Then, we describe our
methodology for solving this new decision problem.



THE COVERING PROBLEM 29

6.1. Optimal universal imprints. We start by simplifying our terminology on rating
maps to accommodate universal C-covering. Specifically, since the language that we want to
cover will always be A∗, we may omit this parameter when speaking of imprints.

Given a rating map ρ : 2A
∗ → R and a lattice C, we shall say C-optimal universal

ρ-imprint, to mean the set IC[A∗, ρ] (i.e., the C-optimal ρ-imprint on A∗). Moreover, we
simply write IC[ρ] for this set, omitting the parameter A∗ (i.e., IC[ρ] = IC[A∗, ρ]). Recall
that by definition, IC[ρ] is the ρ-imprint of any optimal universal C-cover for ρ.

We first present a few properties of this new object and then formally reduce universal
C-covering to the problem of computing IC[ρ] from an input nice multiplicative rating map.

Properties. It turns out that IC[ρ] = IC[A∗, ρ] has stronger properties than IC[L, ρ] when
L is arbitrary. We present them now. First, the set of trivial elements of IC[ρ] is simpler to
describe. Given any rating map ρ : 2A

∗ → R, we define,

Itriv [ρ] = Itriv [A∗, ρ] = ↓{ρ(w) | w ∈ A∗} ⊆ R.
Since IC[ρ] is the ρ-imprint of some universal C-cover (an optimal one for ρ), the following
result is immediate from Fact 4.12.

Fact 6.2. Let ρ : 2A
∗ → R be a rating map and let C be a lattice. Then, Itriv [ρ] ⊆ IC[ρ].

More importantly, we have the following corollary of Lemma 5.8. When C is a quotienting
lattice of regular languages and ρ : 2A

∗ → R is a multiplicative rating map, IC[ρ] is a
submonoid of R for multiplication. This property is crucial: all algorithms for universal
C-covering which are based on our methodology exploit it.

Lemma 6.3. Let C be a quotienting lattice of regular languages and let ρ : 2A
∗ → R be a

multiplicative rating map. Then IC[ρ] is a submonoid of R for multiplication:
– 1R ∈ IC[ρ].
– For any s, t ∈ IC[ρ], we have st ∈ IC[ρ].

Proof. That 1R ∈ IC[ρ] is immediate from Fact 6.2. Indeed, the fact yields that Itriv [ρ] ⊆
IC[ρ]. Moreover, since ρ is a multiplicative rating map, we have 1R = ρ(ε) and ρ(ε) ∈ Itriv [ρ]
by definition. Closure under multiplication is immediate from Lemma 5.8. Indeed, assume
that s, t ∈ IC[ρ]. Since IC[ρ] = IC[A∗, ρ] by definition, we get from Lemma 5.8 that
st ∈ IC[A∗A∗, ρ]. Finally, since A∗A∗ = A∗, this yields st ∈ IC[ρ].

Reduction. We may now reduce universal C-covering to another decision problem whose
input is a nice multiplicative rating map. We do so in the following proposition.

Proposition 6.4. Let C be a lattice. There is a polynomial space reduction from universal
C-covering (for input languages given by NFAs or monoid morphisms) to the following
decision problem:

Input: A nice multiplicative rating map ρ : 2A
∗ → R and a subset F ⊆ R.

Question: Do we have F ∩ IC[ρ] = ∅?

Proof. The input of universal C-covering is a finite multiset of regular languages L: we
want to know whether L is C-coverable (i.e., whether the pair (A∗,L) is C-coverable). By
Proposition 5.9, we may compute in polynomial space a nice multiplicative rating map
ρ : 2A

∗ → R and an extending morphism δ : R → 2L such that ρ extends the canonical
rating map ρL associated to L, for the extending morphism δ. Moreover, one can compute,
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also in polynomial space, the set F = δ−1(L). We show that L is C-coverable if and only if
F ∩ IC[ρ] = ∅, which will prove Proposition 6.4.

By Theorem 4.18, L is C-coverable if and only if L 6∈ IC[ρL]. Moreover, by Lemma 4.21,
we know that IC[ρL] = ↓δ(IC[ρ]). Consequently, since F = δ−1(L) and L is the maximal
element of 2L, we have L 6∈ IC[ρL] if and only if F ∩IC[ρ] = ∅, which concludes the proof.

Remark 6.5. The reduction of Proposition 6.4 applies to the first stage of universal C-
covering: designing an algorithm that decides it. However, we also obtain a reduction for the
second stage: computing separating universal C-covers, when they exist. Indeed, given some
input multiset of regular languages L, we know from Theorem 4.18 that if L is C-coverable,
then any optimal universal C-cover for ρL is separating for L. We may compute a nice
multiplicative rating map ρ extending ρL and Lemma 4.21 states that any optimal universal
C-cover for ρ is also optimal for ρL (and thus, separating for L).

This of particular interest. Indeed, it turns out that in most cases, the correction proofs
for algorithms solving the problem presented in Proposition 6.4 involve describing a generic
construction for building optimal universal C-covers. This is the case for all examples that
we present.

Our methodology is designed for handling the decision problem of Proposition 6.4. Given
a quotienting lattice of regular languages C, we look for an algorithm computing IC[ρ] from
an input nice multiplicative rating map ρ. This clearly yields a procedure for problem of
Proposition 6.4.

Remark 6.6. While Proposition 6.4 holds for any lattice, the methodology requires at least
a quotienting lattice of regular languages (this is necessary for applying Lemma 6.3).

6.2. Methodology. Given a quotienting lattice of regular languages C, our main objective
is to compute the C-optimal universal ρ-imprint IC[ρ] from an input nice multiplicative
rating map ρ : 2A

∗ → R. A key design principle behind our framework is that our algorithms
for computing optimal universal imprints are formulated as elegant characterization theorems.
More precisely, we characterize the set IC[ρ] ⊆ R as the least subset of R such that:
(1) it includes the trivial elements from the set Itriv [ρ], and
(2) it is closed under a list of operations.
We speak of a characterization of C-optimal universal imprints. In practice, such a charac-
terization yields a least fixpoint procedure for computing IC[ρ] from ρ: one starts from the
set of trivial elements and saturates it with the closure operations in the list (of course, this
depends on our ability to implement these operations, but this is straightforward in practice).

Let us present a few examples. All of them are fragments of FO. The first fragment
is first-order logic itself. The characterization that we present is directly adapted from the
separation algorithm of [26, 30] and the proof uses essentially the same arguments (see
Proposition 4.7 in [30]).

Example 6.7 (Characterization of FO-optimal imprints). Consider a nice multiplicative
rating map ρ : 2A

∗ → R (note the requirement of being nice). One may show that IFO[ρ] is
the least subset of R containing Itriv [ρ] and satisfying the following properties:
(1) Downset: For any r ∈ IFO[ρ] and any r ≤ r, we have r′ ∈ IFO[ρ].
(2) Multiplication: For any s, t ∈ IFO[ρ], we have st ∈ IFO[ρ].
(3) FO-closure: For any s ∈ IFO[ρ], we have sω + sω+1 ∈ IFO[ρ].
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Remark 6.8. Let us point out that [30] predates the current paper. Consequently, the
formulation of Example 6.7 differs from the one of Proposition 4.7 in [30]. The latter does
not use the abstract notion of multiplicative rating map. Instead, it considers a “concrete”
object built from a monoid morphism recognizing the two input languages in the separation
problem. With respect to the new terminology introduced here, this object corresponds to a
multiplicative rating map whose rating set is the powerset of some finite monoid.
Remark 6.9. The characterization of Example 6.7 is restricted to nice multiplicative rating
maps. Of course, this suffices get an algorithm for (universal) FO(<)-covering. In fact,
algorithms only make sense for this special case as we are not able to finitely represent arbitrary
rating maps. However, it turns out that in most cases, the characterizations themselves are
independent from the hypothesis of being nice (the above one is among the few exceptions).
This is the case for our other examples.

Our second example is BΣ1, level 1 in the quantifier alternation hierarchy of FO. The
characterization is loosely inspired from the separation algorithm of [23]. We detail it in
Section 7.
Example 6.10 (Characterization of BΣ1-optimal imprints). Recall that for any B ⊆ A, we
denote by B~ the language of words whose alphabet is B. Consider a multiplicative rating
map ρ : 2A

∗ → R. Then, IBΣ1 [ρ] is the least subset of R containing Itriv [ρ] and satisfying
the following properties:
(1) Downset: For any r ∈ IBΣ1 [ρ] and any r′ ≤ r, we have r′ ∈ IBΣ1 [ρ].
(2) Multiplication: For any s, t ∈ IBΣ1 [ρ], we have st ∈ IBΣ1 [ρ].
(3) BΣ1-operation: For any B ⊆ A, we have (ρ(B~))ω ∈ IBΣ1 [ρ].

We shall detail a third example in Section 8: the two-variable restriction of first-order
logic, FO2. It is apparent in the two above examples that the characterization of C-optimal
universal imprints involves two kinds of properties: those generic to all quotienting lattices
and those specific to the one under investigation. Let us conclude the section by listing
the generic properties, those satisfied by all C-optimal universal imprints regardless of the
quotienting lattice of regular languages C.
Lemma 6.11. Consider a multiplicative rating map ρ : 2A

∗ → R and some quotienting
lattice of regular languages C. Then, the C-optimal universal ρ-imprint IC[ρ] ⊆ R contains
Itriv [ρ] and satisfies the following closure properties:
(1) Downset: For any r ∈ IC[ρ] and any r′ ≤ r, we have r′ ∈ IC[ρ].
(2) Multiplication: For any s, t ∈ IC[ρ], we have st ∈ IC[ρ].
Proof. That IC[ρ] contains Itriv [ρ] is immediate from Fact 6.2. That IC[ρ] is closed under
downset follows from Fact 4.11. Finally closure under multiplication is stated in Lemma 6.3
(this is where we need the hypothesis that C is a quotienting lattice of regular languages).

7. Example for universal covering: the logic BΣ1

In this section, we illustrate our framework by presenting a detailed proof for Example 6.10:
we present an algorithm for (universal) BΣ1-covering using the methodology outlined in the
previous section. We actually work with an alternate definition of the class corresponding to
BΣ1 which will be simpler to manipulate: the class of piecewise testable languages. We first
recall the definition.
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7.1. Piecewise testable languages. Given two words u, v ∈ A∗, we say that u is a piece
(or scattered subword) of v if there exist n ∈ N, a1, . . . , an ∈ A and v0, . . . , vn ∈ A∗ such
that,

u = a1 · · · an and v = v0a1v1 · · · anvn.
We use pieces to define equivalence relations over A∗. Given k ∈ N and w,w′ ∈ A∗, we write
w ∼k w′ if and only if w and w′ contain the same pieces of length at most k. Clearly, ∼k is
an equivalence relation of finite index over A∗. Given a language L and some integer k ∈ N,
we say that L is k-piecewise testable and we write L ∈ k-PT if L is a union of ∼k-classes.
Finally, L is piecewise testable if L ∈ k-PT for some k. The following theorem is folklore and
simple to establish.

Theorem 7.1. Let L ⊆ A∗ be a language. Then, L can be defined by a BΣ1 sentence if and
only if L is piecewise testable.

7.2. Characterization of optimal imprints. Let us now recall the characterization of
BΣ1-optimal universal imprints from of Example 6.10: given a multiplicative rating map ρ,
we describe IBΣ1 [ρ].

Remark 7.2. The statement does not require ρ to be nice: it holds for any multiplicative
rating map.

Recall that for any B ⊆ A, we denote by B~ ⊆ B∗ the set B~ = {w ∈ A∗ | alph(w) =
B}. Consider a multiplicative rating map ρ : 2A

∗ → R and a subset S ⊆ R. Let ω denote the
idempotent power for the multiplication of the semiring R. We say that S is BΣ1-saturated
for ρ if it contains Itriv [ρ] and is closed under the following operations:
(1) Downset: for any r ∈ S and any r′ ∈ R such that r′ ≤ r, we have r′ ∈ r.
(2) Multiplication: For any s, t ∈ S, we have st ∈ S.
(3) BΣ1-operation: For all B ⊆ A, we have (ρ(B~))ω ∈ S.
Note that the operation specific to BΣ1 is not a closure operator, contrary to the cases of
FO and FO2.
We now state the main theorem of the section: for any multiplicative rating map ρ : 2A

∗ → R,
the BΣ1-optimal universal ρ-imprint IBΣ1 [ρ] is the least BΣ1-saturated subset of R (for
inclusion).

Theorem 7.3 (Characterization of BΣ1-optimal imprints). Let ρ : 2A
∗ → R be a multiplica-

tive rating map. Then, IBΣ1 [ρ] ⊆ R is the least BΣ1-saturated subset of R.

Clearly, Theorem 7.3 yields an algorithm for computing IBΣ1 [ρ] from an input nice
multiplicative rating map ρ : 2A

∗ → R. Indeed, by definition, one may compute the least
BΣ1-saturated subset of R with a least fixpoint procedure: one starts from the set Itriv [ρ] and
saturates it with the three operations in the definition (it is clear that one may implement all
of them). Hence, Proposition 6.4 yields that universal BΣ1-covering is decidable. Since BΣ1

is a Boolean algebra, this is also true for full BΣ1-covering by Proposition 3.7. Altogether,
we obtain the following corollary.

Corollary 7.4. The BΣ1-covering problem is decidable.
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This concludes the presentation of our characterization. We now turn to its proof. We
fix an arbitrary multiplicative rating map ρ : 2A

∗ → R for the remainder of the section. Our
objective is to show that IBΣ1 [ρ] is the least BΣ1-saturated subset of R. Our proof argument
follows two steps that we shall use for all examples presented in the paper:
(1) First, we show that IBΣ1 [ρ] is BΣ1-saturated. This corresponds to soundness of the least

fixpoint algorithm: all elements it computes belong to IBΣ1 [ρ].
(2) Then, we show that IBΣ1 [ρ] is smaller than all BΣ1-saturated sets. This corresponds to

completeness of the least fixpoint algorithm: it computes all elements of IBΣ1 [ρ].

7.3. Soundness. We prove that IBΣ1 [ρ] is BΣ1-saturated. Since BΣ1 is a quotienting
Boolean algebra of regular languages, we already know from Lemma 6.11 that IBΣ1 [ρ]
contains Itriv [ρ] and is closed under downset and multiplication. Thus, we may focus on
BΣ1-operation. Given B ⊆ A, we have to show that (ρ(B~))ω ∈ IBΣ1 [ρ].

By definition, this amounts to proving that for any universal BΣ1-cover K, we have
(ρ(B~))ω ∈ I[ρ](K). Since K is a BΣ1-cover, it is immediate from Theorem 7.3 that there
exists k ∈ N such that all K ∈ K belong to k-PT. Consider the following language H:

H = (B~)kω where ω ≥ 1 is the idempotent power for the multiplication of R

Clearly, we have ρ(H) = (ρ(B~))ω. Moreover, sinceK is a universal cover, there existsK ∈ K
such that K ∩H 6= ∅. We show that H ⊆ K. It will follow that (ρ(B~))ω = ρ(H) ≤ ρ(K)
which implies that (ρ(B~))ω ∈ I[ρ](K) by definition. By hypothesis, K ∈ k-PT which means
that K is a union of ∼k-classes. Hence, since H ∩K 6= ∅, it suffices to show that all words
in H are ∼k equivalent to obtain H ⊆ K. This is what we do.

Let w,w′ ∈ H, we prove that w ∼k w′, i.e., w and w′ contain the same pieces of length
at most k. By symmetry, we consider v ∈ A∗ of length |v| ≤ k which is a piece of w and show
that v is a piece of w′. By definition H ⊆ B∗ which yields w ∈ B∗ and v ∈ B∗. Moreover,
by definition of H, w′ ∈ H implies that w′ admits a decomposition w′ = w′1 · · ·w′k such that
alph(w′i) = B for all i ≤ k. Since |v| ≤ k and v ∈ B∗, this implies that v is a piece of w′,
finishing the proof.

7.4. Completeness. We turn to the difficult direction. Recall that a multiplicative rating
map ρ : 2A

∗ → R is fixed. We fix an arbitrary BΣ1-saturated set S ⊆ R, and show that
IBΣ1 [ρ] ⊆ S. The proof is a generic construction, which builds a universal BΣ1-cover K
such that I[ρ](K) ⊆ S. Since IBΣ1 [ρ] ⊆ I[ρ](K) for any universal BΣ1-cover K, this proves
IBΣ1 [ρ] ⊆ I[ρ](K) ⊆ S as desired.

Remark 7.5. Since we showed that IBΣ1 [ρ] is BΣ1-saturated, one may apply our construction
in the special case when S = IBΣ1 [ρ]. This builds a universal BΣ1-cover K such that
I[ρ](K) = IBΣ1 [ρ], i.e., one that is optimal for ρ.

The languages contained in the universal BΣ1-coverK that we build are defined according
to a new notion called template, which we first define.

Templates. We call unit an element t which either a single letter a ∈ A or a triple (b, B, c)
where B ⊆ A is a sub-alphabet and b, c ∈ B. Given ` ∈ N, a template of length ` is a tuple
T = (t1, . . . , t`) (empty when ` = 0) where every ti is a unit.

Moreover, we say that a template T = (t1, . . . , t`) is unambiguous if all pairs of consecutive
units ti, ti+1 in the template are either:
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(1) Two single letters or,
(2) A single letter a and a triple (b, B, c) such that a 6∈ B or,
(3) Two triples (bi, Bi, ci) and (bi+1, Bi+1, ci+1) such that ci 6∈ Bi+1 and bi+1 6∈ Bi.

Example 7.6. T = (a, (b, {b, c}, c), d, (a, {a}, a)) is an unambiguous template of length 4.
T ′ = (b, (c, {b, c}, b), d, a) and T ′′ = (a, (b, {b, c}, b), (c, {c}, c), a) are ambiguous templates
of length 4.

To any template T and any natural number n ≥ 1, we associate a language Kn,T

(definable in BΣ1 when T is unambiguous). These are the languages that we shall use in our
universal BΣ1-cover. When T is empty, we let Kn,T = {ε} (the definition does not depend
on n in this case). Otherwise, we first consider units. Let t be a unit. There are two cases:
– If t = a ∈ A, then Kn,t = {a} (again, the definition does not depend on n).
– If t = (b, B, c) with B ⊆ A and b, c ∈ B, then Kn,t = B∗b(B~)ncB∗.
Finally, if T = (t1, . . . , t`) is a template of length ` ≥ 1 we define,

Kn,T = Kn,t1 · · ·Kn,t`

We now show that when T is unambiguous, the language Kn,T may be defined in BΣ1.
Hence, we may use it in our universal BΣ1-cover K.

Lemma 7.7. For any n ≥ 1 and any unambiguous template T , Kn,T is definable in BΣ1.

Proof. When T is empty, Kn,T = {ε} is clearly definable in BΣ1. Otherwise, let ` ≥ 1 be
the length of T . Using induction on `, we show that the following implication holds for
k = n|A|+ 2`:

For any w,w′ ∈ A∗, w ∼k w′ ⇒ w ∈ Kn,T if and only if w′ ∈ Kn,T . (7.1)

This exactly says that Kn,T is a union of ∼k-classes. Consequently, we get Kn,T ∈ k-PT
which yields that Kn,T is definable in BΣ1 by Theorem 7.1. It remains to prove (7.1) by
induction on `.

In the base case, ` = 1. Hence, T is a single unit t and k = n|A| + 2. Consider
w,w′ ∈ A∗ such that w ∼k w′. Assuming that w ∈ Kn,t, we show that w′ ∈ Kn,t (the
converse implication is symmetrical). There are two subcases depending on t. If t = a ∈ A,
then Kn,t = {a} and w = a. Since k ≥ 2, w ∼k w′ implies w′ = a ∈ Kn,T . Otherwise,
t = (b, B, c) with B ⊆ A and b, c ∈ B. In that case, Kn,t = B∗b(B~)ncB∗. Since w ∈ Kn,t,
it is simple to verify that w ∈ B∗ and there exists v ∈ (B~)n of length n|B| such that bvc is
a piece of w. Hence, since k ≥ n|B|+ 2 and w ∼k w′, we get that w′ ∈ B∗ and bvc is a piece
of w′ as well. This implies w′ ∈ Kn,T , as desired.

We now assume that ` ≥ 1 and let T = (t1, . . . , t`). Recall that k = n|A|+ 2`. Consider
w,w′ ∈ A∗ such that w ∼k w′. Assuming that w ∈ Kn,T , we show that w′ ∈ Kn,T (again,
the converse implication is symmetrical). We distinguish two subcases depending on the first
unit t1 of T . Since both subcases are similar, we treat the one when t1 is a triple (b, B, c)
with B ⊆ A and b, c ∈ B (the case when t1 = a ∈ A is simpler and left to the reader). We
need to prove that

w′ ∈ Kn,T = Kn,t1 · · ·Kn,t` .

We first show that w′ has a prefix in Kn,t1 = B∗b(B~)ncB∗ using the hypothesis that T is
unambiguous.

For all i ≤ `, we define ui ∈ A∗ as the following word. If ti = ai ∈ A, then ui = ai and if
ti = (bi, Bi, ci), then ui ∈ bici. Recall that w ∈ Kn,T = Kn,t1 · · ·Kn,t` . It is simple to verify
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from this hypothesis that there exists v ∈ (B~)n of length |v| = n|B| such that bvcu2 · · ·u`
is a piece of w. Since bvcu2 · · ·u` has length at most n|B|+ 2 + 2(`− 1) ≤ k by definition
of k, and since w ∼k w′, it follows that bvcu2 · · ·u` is a piece of w′ as well. Consequently
w′ admits a decomposition w′ = x′cy′ such that bv is a piece of x′ and u2 · · ·u` is a piece
of y′. We show that x′c ∈ B∗ which proves as desired that the prefix x′c of w′ belongs to
B∗b(B~)ncB∗. By contradiction assume that x′c contains some letter d 6∈ B. Since c ∈ B, it
follows that dcu2 · · ·u` is a piece of w′. Hence, using again the hypothesis that w ∼k w′, this
implies that dcu2 · · ·u` is a piece of w as well. Since T is unambiguous, one may verify that
this contradicts the hypothesis that w ∈ Kn,T : we have shown that w′ has a prefix in Kn,t1 .

We now finish the proof that w′ ∈ Kn,T . Let x′ be the largest prefix of w′ belonging
to B∗. Since we just showed that w′ has a prefix in B∗b(B~)ncB∗ ⊆ B∗, it is immediate
that x′ ∈ B∗b(B~)ncB∗ = Kn,t1 . Moreover, w′ = x′d′y′ with d′ ∈ A \ B and y′ ∈ A∗. It
remains to show that d′y′ ∈ Kn,t2 · · ·Kn,t` . We use induction. Since w ∼k w′, w also contains
letters outside B and it follows that w = xdy with x ∈ B∗, d ∈ A \ B and y ∈ A∗. By
hypothesis, w ∈ Kn,T = Kn,t1 · · ·Kn,t` . Since, T is unambiguous x ∈ B∗ and d ∈ A \ B,
one may verify that this implies dy ∈ Kn,t2 · · ·Kn,t` . Moreover, since w ∼k w′, w = xdy
and w′ = x′d′y′ with x, x′ ∈ B∗ and d, d′ 6∈ B, it is simple to verify that dy ∼k−1 d

′y′. In
particular, dy ∼k−2 d

′y′, and k − 2 = n|A|+ 2(`− 1). As the template (t2, . . . , t`) is clearly
unambiguous, the induction yields that d′y′ ∈ Kn,t2 · · ·Kn,t` . Altogether, this shows that
w′ ∈ Kn,T .

Main construction. We now are ready to build a universal BΣ1-cover K satisfying
I[ρ](K) ⊆ S (where S is any fixed BΣ1-saturated set) to finish the proof of Theorem 7.3. As
announced, K consists only of languages chosen with the two following propositions. Recall
that R is the rating set of ρ.

Proposition 7.8. Let n ≥ |R| and T a template. Then, ρ(Kn,T ) ∈ S.
Proposition 7.9. Let n ≥ 1. Then, for any word w ∈ A∗ there exists an unambiguous
template T of length at most (n+ 2)|A| − 1 such that w ∈ Kn,T .

Before proving these propositions, let us use them to build K and finish the completeness
proof. We fix n = |R| and ` = (n+ 2)|A| − 1. We then define K as the set of all languages
Kn,T where T is an unambiguous template of length at most `. By definition, K is finite
since there are only finitely many unambiguous templates of length at most `. Moreover, any
K ∈ K is definable in BΣ1 by Lemma 7.7. It remains to show that K is a universal cover
and that I[ρ](K) ⊆ S.

We first show that K is a universal cover: given w ∈ A∗, we exhibit a language in K
containing w. By Proposition 7.9, w ∈ Kn,T where T is an unambiguous template of length
at most ` = (n+ 2)|A|− 1. It is then immediate that Kn,T ∈ K by definition. It only remains
to show that I[ρ](K) ⊆ S. Let r ∈ I[ρ](K). By definition of K, we have r ≤ ρ(Kn,T ) where
T is some template. Since n = |R|, Proposition 7.8 yields that ρ(Kn,T ) ∈ S. Since S is
BΣ1-saturated, it is closed under downset, which yields r ∈ S. This concludes the main
argument. It remains to prove the two propositions.

Proof of Proposition 7.8. Let n = |R|. Consider a template T . We show that ρ(Kn,T ) ∈
S. If T is empty, then Kn,T = {ε} by definition. Consequently, ρ(Kn,T ) = ρ(ε) ∈ Itriv [ρ]
and we get ρ(Kn,T ) ∈ S since S is BΣ1-saturated. Otherwise, T = (t1, . . . , t`) for ` ≥ 1 and,

Kn,T = Kn,t1 · · ·Kn,t`
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Hence, ρ(Kn,T ) = ρ(Kn,t1) · · · ρ(Kn,t`). Since S is closed under multiplication by definition
of BΣ1-saturated subsets, it suffices to prove the following lemma.

Lemma 7.10. For any unit t, we have ρ(Kn,t) ∈ S.

Proof. If t = a ∈ A, then ρ(Kn,t) = ρ(a) ∈ Itriv [ρ] ⊆ S by definition of BΣ1-saturated subsets.
Otherwise t = (b, B, c) with B ⊆ A and b, c ∈ B. In that case, Kn,t = B∗b(B~)ncB∗. Since
n = |R| by definition, a standard fact on finite monoids yields a number p ≤ n (which depends
on B) such that (ρ(B~))p = (ρ(B~))ω. Clearly, Kn,T ⊆ (B~)p. Since ρ is a multiplicative
rating map, we get

ρ(Kn,t) ⊆ ρ((B~)p) = (ρ(B~))p = (ρ(B~))ω.

Since S is BΣ1-saturated, we have (ρ(B~))ω ∈ S. Finally, since BΣ1-saturated subsets are
closed under downset, the above inclusions yield ρ(Kn,t) ∈ S, as desired.

Proof of Proposition 7.9. Let n ≥ 1. We have to show that for any word w ∈ A∗ there
exists an unambiguous template T of length at most (n+ 2)|A|− 1 such that w ∈ Kn,T . This
requires a few additional definitions. For any unit t, we define Pn,t ⊆ Kn,t as the following
language:
– If t = a ∈ A, then Pn,t = Kn,T = {a}.
– If t = (b, B, c) with B ⊆ A and b, c ∈ B, then Pn,t = (B~)n+2 ⊆ Kn,t = B∗b(B~)ncB∗.
Finally, given a template T , we define Pn,T = {ε} when T is empty and if T = (t1, . . . , t`)
has length ` ≥ 1 we define,

Pn,T = Pn,t1 · · ·Pn,t`
Clearly, we have Pn,T ⊆ Kn,T for any template T . Therefore, it suffices to show the following
lemma.

Lemma 7.11. For any word w ∈ A∗ there exists an unambiguous template T of length at
most (n+ 2)|A| − 1 such that w ∈ Pn,T .

We now focus on proving Lemma 7.11. We first get rid of the unambiguity condition.

Fact 7.12. Let T be a (possibly ambiguous) template and let ` be its length. Then, there
exists an unambiguous template T ′ of length `′ ≤ ` and such that Pn,T ⊆ Pn,T ′ .

Proof. If T is already unambiguous, then it suffices to choose T = T ′. Otherwise, one
may easily construct another (possibly ambiguous) template T ′′ of length `′′ < ` such that
Pn,T ⊆ Pn,T ′′ . The key idea is that two consecutive units witnessing ambiguity of T are
merged into a single one in T ′′. Since any template of length 0 or 1 is unambiguous, repeating
this construction eventually yields the desired template T ′.

By Fact 7.12, it suffices to prove that for any word w ∈ A∗, there exists a template
T of length at most (n + 2)|A| − 1 such that w ∈ Pn,T (the fact then yields the desired
unambiguous template).

The proof is by induction on the alphabet of w. Let B = alph(w). We prove by
induction on |B| that there exists a template T of length at most (n+ 2)|B| − 1 such that
w ∈ Pn,T . If |B| = 0, then w = ε and we choose T as the empty template.

Assume now that |B| ≥ 1. We use induction to prove that if there exists a template
U of length ` ≥ (n+ 2)|B| such that w ∈ Pn,U , then there exists another template T with
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strictly smaller length and such that w ∈ Pn,T . Since w ∈ Pn,U where U is the template of
length |w| whose elements are the letters of w, it suffices to apply this argument repeatedly
to get the desired template T of length at most than (n+ 2)|B| − 1.

Assume therefore that we have ` ≥ (n+ 2)|B| and a template U = (t1, . . . , t`) such that
w ∈ Pn,U . This means that w admits a decomposition w = w1 · · ·w` such that for all i, one
of the two following properties is satisfied:
(1) ti = ai ∈ A and wi = ai or,
(2) ti = (bi, Bi, ci) and wi ∈ (Bi

~)n+2.
Let `′ = (n + 2)|B|−1. We consider two distinct cases. First, we assume that there ex-
ists i ≤ ` − `′ such that alph(wi+1wi+2 · · ·wi+`′) = C ( B. By induction hypothesis,
wi+1wi+2 · · ·wi+`′ ∈ Pn,V where V is a template of length at most (n+ 2)|C| − 1 < `′. We
may now replace the units ti+1, ti+2 · · · ti+`′ in U with those of V which yields the desired
template T of length strictly smaller than ` (we replaced `′ units with (n + 2)|C| − 1 < `′

units).
Otherwise, we know that for all i, alph(wi+1wi+2 . . . wi+`′) = B. Since ` = (n + 2)`′,

it follows that w can be redecomposed into n + 2 factors w = w′1 · · ·w′n+2 such that for
all i, alph(w′i) = B. We conclude that w ∈ (B~)n+2. In other words, w ∈ Pn,T where T
is a template of length 1 whose unique unit is a triple (b, B, c) where b, c are arbitrarily
chosen letters in B. This concludes the proof of Lemma 7.11 and of the completeness part of
Theorem 7.3.

8. Example for universal covering: two-variable first-order logic

In this section, we present a second example illustrating our framework. We detail and
prove a characterization of FO2-optimal universal imprints which yields an algorithm for
FO2-covering. Here, FO2 denotes two-variable first-order logic. We first briefly recall the
definition of FO2 and then present the characterization.

8.1. Definition. The two-variable fragment of first-order logic (denoted FO2) is obtained
by restricting the number of allowed variables within a single sentence to at most two. That is,
we define FO2 sentences as the first-order sentences containing at most two distinct variable
names. Let us point out that while one is restricted to two variables only, it is possible to
reuse them. For example, consider the following sentence:

∃x∃y a(x) ∧ a(y) ∧ (x < y) ∧ ∃x (a(x) ∧ y < x)

This sentence defines the language A∗aA∗aA∗aA∗. Observe that in order to quantify the
third position whose label is “a”, we reused the variable x: this is allowed in FO2. It is
folklore that the class of languages defined by FO2 is a quotienting Boolean algebra.

We shall need the following classification of languages in FO2 when proving our charac-
terization. It is standard to classify first-order sentences (and therefore those in FO2) using
the notion of quantifier rank. Consider a sentence ϕ. We define the rank of ϕ as the longest
sequence of nested quantifiers within its parse tree. It is well-known and simple to verify
that for any k ∈ N, there are only finitely many non-equivalent FO2 sentences of rank k.

We now consider the canonical equivalences over A∗ associated to each possible quantifier
rank and state standard properties. Given k ∈ N, the canonical equivalence ∼=k is defined as
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follows. For any two words w,w′ ∈ A∗,
w ∼=k w

′ if for any FO2 sentence ϕ of rank at most k, w |= ϕ⇐⇒ w′ |= ϕ.

It is classical and simple to verify that for any k ∈ N, the equivalence relation ∼=k has finite
index and that all equivalence classes are definable by FO2 sentences of rank k. We now
present two classical properties of the equivalences ∼=k, which we shall need when proving
our characterization. Since they are folklore, the proof is left to the reader (they are proved
using Ehrenfeucht-Fraïssé arguments). The first property states that ∼=k is a congruence for
word concatenation.

Lemma 8.1. For all k ∈ N, ∼=k is a congruence for concatenation. That is, given
w1, w2, w

′
1, w

′
2 ∈ A∗ such that w1

∼=k w
′
1 and w2

∼=k w
′
2, we have w1w2

∼=k w
′
1w
′
2.

The second lemma states the characteristic property of two-variable first-order logic. In
fact, our characterization of FO2-optimal imprints is based on this property.

Lemma 8.2. Let B ⊆ A and let u, v ∈ A∗ be words such that alph(u) = alph(v) = B. Let
k, ` ∈ N be integers such that ` ≥ k. Then for any w,w′ ∈ B∗, we have,

u`wv` ∼=k u
`w′v`.

8.2. Alphabet compatible rating maps. Our characterization of FO2-optimal universal
imprints applies to a class of multiplicative rating maps fulfilling additional properties. Let
us define this class and then explain why we may further restrict ourselves to it without loss
of generality.

Observe that the set 22A of all sets of sub-alphabets of A is an idempotent commutative
monoid when equipped with union. Consider a rating map ρ : 2A

∗ → R. We say that ρ
is alphabet compatible when there exists a monoid morphism r 7→ alph(r) from (R,+) to
(22A ,∪) such that:

For every K ⊆ A∗, we have alph(ρ(K)) = {alph(w) | w ∈ K}. (8.1)

The key idea behind this definition is that for every language K, the image ρ(K) of K in R
records all sub-alphabets B ⊆ A such that K ∩ B~ 6= ∅ (recall that for any sub-alphabet
B ⊆ A, we write B~ = {w ∈ A∗ | alph(w) = B} for the set of words whose alphabet is
exactly B).

When dealing with an alphabet compatible rating map, we shall implicitly assume that
the morphism r 7→ alph(r) is fixed and that we have it in hand. We now use extension to
show that we may restrict ourselves to nice alphabet compatible multiplicative rating maps
without loss of generality.

Lemma 8.3. Given as input a nice multiplicative rating map ρ : 2A
∗ → R, one may compute

a nice alphabet compatible multiplicative rating map τ : 2A
∗ → Q extends ρ together with the

associated extending morphism δ : Q→ R.

Proof. The set 22A is clearly an idempotent semiring for the following addition and multipli-
cation:
– The addition is union and its neutral element is ∅.
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– The multiplication is as follows. Given S, T ∈ 22A (i.e., S and T are sets of sub-alphabets):

S · T = {B ∪ C | B ∈ S and C ∈ T}.
The neutral element of the multiplication is {∅}.

Consequently, the Cartesian product R× 22A is also an idempotent semiring for the compo-
nentwise addition and multiplication. We define τ : 2A

∗ → R× 22A as follows:

τ : 2A
∗ → R× 22A

K 7→ (ρ(K), {alph(w) | w ∈ K}).
Clearly, τ is a nice multiplicative rating map extending ρ: the extending morphism δ :

R× 22A → R is simply the projection on the first component. Moreover, it is simple to verify
that τ is alphabet compatible: for every (r, S) ∈ R×22A , it suffices to define alph((r, S)) = S.
This concludes the proof.

Remark 8.4. For a multiplicative rating map ρ : 2A
∗ → R to be alphabet compatible, its

rating set R needs to have at least 22|A| elements, i.e., at least as many elements as there
are sets of sub-alphabets. This can be observed in the proof of Lemma 8.3: when building an
alphabet compatible rating map out of an arbitrary one, the new rating set is the Cartesian
product of the old one with 22A.

However, when computing IFO2 [ρ] (which is our objective in this section) from a possibly
non alphabet compatible multiplicative rating map ρ, the blowup is only singly exponential
with respect to |A|. Indeed, one may verify that in the least fixpoint algorithm given in the
next subsection, the second component of the will always be a singleton.

8.3. Characterization of optimal imprints. We are now ready to present our char-
acterization of FO2-optimal universal imprints. That is, given an alphabet compatible
multiplicative rating map ρ, we describe the set IFO2 [ρ].

Remark 8.5. In this case as well, our characterization does not require ρ to be nice: it holds
for any alphabet compatible multiplicative rating map.

Consider an alphabet compatible multiplicative rating map ρ : 2A
∗ → R and a subset

S ⊆ R. We say that S is FO2-saturated (for ρ) if it contains Itriv [ρ] and is closed under the
following operations:
(1) Downset: For any r ∈ S and any r′ ≤ r, we have r′ ∈ S.
(2) Multiplication: For any s, t ∈ S, we have st ∈ S.
(3) FO2-closure: For any B ⊆ A and any (multiplicative) idempotents e, f ∈ S such that

alph(e) = alph(f) = {B}, we have:

e · ρ(B∗) · f ∈ S.
We now state the main theorem of this section: for any alphabet compatible multiplicative

rating map ρ : 2A
∗ → R, the set IFO2 [ρ] is the least FO2-saturated subset of R (for inclusion).

Theorem 8.6 (Characterization of FO2-optimal imprints). Let ρ : 2A
∗ → R be an alphabet

compatible multiplicative rating map. Then, IFO2 [ρ] is the least FO2-saturated subset of R.
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Clearly, Theorem 8.6 yields an algorithm for computing IFO2 [ρ] from any input nice
multiplicative rating map ρ : 2A

∗ → R. Indeed, by Lemma 8.3, we may compute a nice
alphabet compatible multiplicative rating map τ : 2A

∗ → Q which extends ρ together with
the associated extending morphism δ : Q → R. It is then simple to compute the least
FO2-saturated subset of Q (for τ) with a least fixpoint algorithm, as it is immediate that
FO2-closure may be implemented. By Theorem 8.6, this set is exactly IFO2 [τ ]. Finally, we
use Lemma 4.21 to obtain IFO2 [ρ] = ↓δ(IFO2 [τ ]).

Consequently, Proposition 6.4 yields an algorithm for universal FO2-covering. Moreover,
we obtain an algorithm for full FO2-covering as well by Proposition 3.7 since FO2 is a Boolean
algebra. Thus, we get the following corollary.

Corollary 8.7. The FO2-covering problem is decidable.

We now turn to the proof of Theorem 8.6. Consider an alphabet compatible multiplicative
rating map ρ : 2A

∗ → R. Our objective is to show that IFO2 [ρ] is the least FO2-saturated
subset of R. As before, we follow two independent steps corresponding respectively to
soundness and completeness of the least fixpoint procedure.

8.4. Soundness. We show that IFO2 [ρ] is FO2-saturated. Since FO2 is a quotienting
Boolean algebra of regular languages, we already know from Lemma 6.11 that IFO2 [ρ] contains
Itriv [ρ] and is closed under downset and multiplication. Thus, we may focus on FO2-closure.
Given B ⊆ A and any idempotents e, f ∈ IFO2 [ρ] such that alph(e) = alph(f) = {B}, we
have to show that:

e · ρ(B∗) · f ∈ IFO2 [ρ].

By definition, we have to prove that for any universal FO2-cover K, we have e · ρ(B∗) · f ∈
I[ρ](K).

We use the equivalences ∼=k associated to FO2. Since K is a finite set, there exists k ≥ 1
such that any K ∈ K is defined by an FO2 sentence of rank at most k. We let H be the
partition of A∗ into ∼=k-classes. By definition, H is a universal FO2-cover. Consequently,
since e, f ∈ IFO2 [ρ], we have e, f ∈ I[ρ](H), which yields two ∼=k-classes He, Hf ∈ H such
that e ≤ ρ(He) and f ≤ ρ(Hf ). Let us define L as the following language:

L = (He)
kB∗(Hf )k.

Observe that since e, f are idempotents, we have e · ρ(B∗) · f ≤ ρ(L). Moreover, since K is a
universal cover and L is nonempty (as He, Hf cannot be empty since they are ∼=k-classes),
there exists a language K ∈ K such that L ∩ K 6= ∅. Using our choice of k ∈ N, we
prove that L ⊆ K. This will imply that e · ρ(B∗) · f ≤ ρ(L) ≤ ρ(K), which will yield
e · ρ(B∗) · f ∈ I[ρ](K), finishing the soundness proof.

We now concentrate on proving that L ⊆ K. Recall that by hypothesis, K ∈ K is
defined by an FO2 sentence of rank at most k. Moreover, we have L ∩K 6= ∅. Hence, by
definition of ∼=k, it suffices to show that all words in L are ∼=k-equivalent to conclude as
desired that L ⊆ K. We use the following fact, which is based on the definition of alphabet
compatible rating maps.

Fact 8.8. For any u ∈ He and v ∈ Hf , we have alph(u) = alph(v) = B.

Proof. We present a proof for u ∈ He. The argument is symmetrical for v ∈ Hf . It simple to
verify that (alph(u))~ may be defined by an FO2 sentence of rank 1. Hence, since k ≥ 1 and
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He is a ∼=k-class containing u ∈ (alph(u))~, it follows that He ⊆ (alph(u))~ by definition
of ∼=k. By definition of alphabet compatible rating maps, this implies that alph(ρ(He)) =
{alph(u)}. Finally, since e ≤ ρ(He) and r 7→ alph(r) is a monoid morphism from R to
22A , we obtain {B} = alph(e) ⊆ alph(ρ(He)) = {alph(u)}. Therefore, alph(u) = B, as
desired.

We now consider u ∈ He and v ∈ Hf . By Fact 8.8, alph(u) = alph(v) = B. We show
that all words in L are ∼=k-equivalent to the word ukvk, which concludes the proof.

Recall that by definition, He, Hf are ∼=k-classes. Thus, all words in He (resp. Hf ) are
equivalent to u ∈ He (resp v ∈ Hf ). Moreover, we have L = (He)

kB∗(Hf )k by definition.
Since ∼=k is compatible with concatenation (this is Lemma 8.1), we get that for any word
w ∈ L, there exists x ∈ B∗ such that,

w ∼=k u
kxvk

Moreover, since alph(u) = alph(v) = B and x ∈ B∗, we obtain from Lemma 8.2 that
ukxvk ∼=k u

kvk. Therefore, transitivity yields that all w ∈ L are ∼=k-equivalent to ukvk.

8.5. Completeness. We turn to the difficult direction in Theorem 8.6. Recall that an
alphabet compatible multiplicative rating map ρ : 2A

∗ → R is fixed. Given an FO2-saturated
subset S ⊆ R, we show IFO2 [ρ] ⊆ S. Our proof is a generic construction which builds an
FO2-cover K of A∗ such that I[ρ](K) ⊆ S. Since IFO2 [ρ] ⊆ I[ρ](K) for any FO2-cover K of
A∗, this proves the desired result.

Remark 8.9. As before, since we showed that IFO2 [ρ] is FO2-saturated, one may apply our
construction in the special case when S = IFO2 [ρ]. This builds a universal FO2-cover K such
that I[ρ](K) = IFO2 [ρ], i.e., one that is optimal for ρ.

The construction of K is achieved by induction on three parameters. The most important
one is some sub-alphabet B ⊆ A∗: we reduce the construction of K to that of FO2-covers of
B∗ for some B ( A. The induction is stated in Proposition 8.10.

Proposition 8.10. Consider an FO2-saturated set S ⊆ R. For any B ⊆ A and any
t`, tr ∈ S, there exists an FO2-cover K of B∗ such that for all K ∈ K:

K ⊆ B∗ and t` · ρ(K) · tr ∈ S. (8.2)

Before proving Proposition 8.10, let us use it to finish the proof of Theorem 8.6. Consider
an arbitrary FO2-saturated set S ⊆ R. We apply Proposition 8.10 in the case when B = A
and t`, tr = 1R = ρ(ε) (which belongs to Itriv [ρ] and therefore to S since S is FO2-saturated).
We obtain a universal FO2-cover K such that ρ(K) ∈ S for any K ∈ K. Since S is closed
under downset, this implies I[ρ](K) ⊆ S by definition, which concludes the completeness
proof.

It remains to prove Proposition 8.10. We let B ⊆ A and t`, tr ∈ S be as in the statement
of the proposition. Our objective is to construct an FO2-cover K of B∗ such that for all
K ∈ K, we have K ⊆ B∗ and t` ·ρ(K) ·tr ⊆ S. The proof is by induction on three parameters.
To present them, we need an additional definition. We define SB ⊆ S as the following subset
of S:

SB = {s ∈ S | s = ρ(K) for some nonempty language K ⊆ B∗}.
The following fact is a direct consequence of S being FO2-saturated.
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Fact 8.11. SB is a submonoid of R for multiplication.

Proof. Clearly, 1R ∈ SB since 1R = ρ(ε) ∈ Itriv [ρ] ⊆ S and {ε} ⊆ B∗. For closure under
multiplication, consider q, r ∈ SB . By definition, q, r ∈ S and we have nonemptyKq,Kr ⊆ B∗
such that q = ρ(Kq) and r = ρ(Kr). Since S is closed under multiplication, we get qr ∈ S
and clearly, qr = ρ(KqKr) with KqKr ⊆ B∗. Thus, qr ∈ SB.

We may now define our three induction parameters. The first and most important one
is simply the size of the sub-alphabet B. The other two depend on t` and tr respectively.
Given s1, s2 ∈ S, we say that,
– s2 is left B-reachable from s1 when there exists x ∈ SB such that s2 = x · s1.
– s2 is right B-reachable from s1 when there exists x ∈ SB such that s2 = s1 · x.
Since SB is a monoid for multiplication by Fact 8.11, it is immediate that left and right
B-reachability are both preorder relations on the set S. For each s ∈ S, we define the left
B-index of s (resp. the right B-index of s) as the number of elements that are left B-reachable
(resp. right B-reachable) from s. We proceed by induction on the following parameters listed
by order of importance:
(1) The size of B.
(2) The right B-index of t`.
(3) The left B-index of tr.

We consider three cases depending on properties of B, t` and tr that we define below.
First observe that since S contains Itriv [ρ] by definition of FO2-saturated sets, it is immediate
that for all b ∈ B, we have ρ(b) ∈ SB . We may now present the three cases of our construction.
They depend on the two following properties of t` and tr respectively.
– We say that t` is right saturated (by B) if for all b ∈ B, there exists x ∈ SB and t` is right
B-reachable from t` · x · ρ(b).

– We say that tr is left saturated (by B) if for all b ∈ B, there exists x ∈ SB and tr is left
B-reachable from ρ(b) · x · tr.
The base case happens when t` and tr are respectively right and left saturated by B.

When t` is not right saturated, we use induction on |B| and the right B-index of t`. Finally,
when tr is not left saturated, we use induction on |B| and the left B-index of tr. Let us start
with the base case.

Base case: t` is right saturated by B and tr is left saturated by B. In that case, we simply
choose K = {B∗}, which is clearly an FO2-cover of B∗. We have to use our hypothesis to
show that this choice satisfies the conditions of Proposition 8.10. Clearly, K ⊆ B∗ for all
K ∈ K. It remains to prove that (8.2) holds:

t` · ρ(B∗) · tr ∈ S.
This is what we do now using the following lemma.

Lemma 8.12. There exist idempotents e, f ∈ S such that alph(e) = alph(f) = {B},
t` = t`e and tr = ftr.

Before proving the lemma, let us use it to conclude this case. Let e, f be as defined in
the lemma. This yields,

t` · ρ(B∗) · tr = t` · e · ρ(B∗) · f · tr.
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Moreover, since e, f ∈ S are idempotents such that alph(e) = alph(f) = B, we know from
FO2-closure in the definition of FO2-saturated sets that,

e · ρ(B∗) · f ∈ S.
Since t`, tr ∈ S, one may now use closure under multiplication in the definition of FO2-
saturated sets to obtain that t` · ρ(B∗) · tr ∈ S as desired. This concludes the proof of the
base case. It remains to show Lemma 8.12 in order to finish this case.

Proof of Lemma 8.12. We only prove the existence of e using the fact that t` is right saturated
(the existence of f is proved symmetrically using the fact that tr is left saturated). By
definition of right saturation, we know that for each b ∈ B, there exists xb, yb ∈ SB such
that,

t` = t`xb · ρ(b) · yb.
Let B = {b1, . . . , bn}. We define e as the following element (where ω ∈ N denotes the
idempotent power for the multiplication of R):

e = (xb1 · ρ(b1) · yb1xb2 · ρ(b2) · yb2 · · ·xbn · ρ(bn) · ybn)ω.

By definition, e is idempotent and we have t` = t`e. Moreover, we have e ∈ S since it is a
multiplication of elements in S and FO2-saturated sets are closed under multiplication. It
remains to prove that alph(e) is equal to {B}.

By hypothesis, for every b ∈ B, we have xb, yb ∈ SB which yields nonempty languages
Hb,Kb ⊆ B∗ such that xb = ρ(Hb) and yb = ρ(Kb). Consequently,

e = ρ((Hb1b1Kb1Hb2b2Kb2 · · ·HbnbnKbn)ω).

Clearly, the language (Hb1b1Kb1Hb2b2Kb2 · · ·HbnbnKbn)ω is nonempty and included in B~

since b1, . . . , bn account for all letters in B. By definition of alphabet compatible rating maps,
this yields alph(e) = {B}.

It remains to treat the inductive case, when either t` is not right saturated or tr is not
left saturated. Since these two cases are symmetrical, we only consider the one when t` is
not right saturated.

Inductive case: t` is not right saturated. the fact that t` is not right saturated means that
there exists some b ∈ B such that for all q ∈ SB, the element t` is not right B-reachable
from t`q · ρ(b). Let us fix such a letter b. We use it to construct our FO2-cover K of B∗.

Let C = B \ {b}. Using induction on the size of the alphabet we may apply Proposi-
tion 8.10 in the case t` = tr = 1R (recall that the alphabet is the most important induction
parameter), to get an FO2-cover H of C∗ such that for all H ∈ H:

H ⊆ C∗ and ρ(H) ∈ S. (8.3)

For all H ∈ H, we define tH = t` · ρ(H) · ρ(b). By definition, we have the following fact.

Fact 8.13. For all H ∈ H, we have tH ∈ S.

Proof. Immediate by closure under multiplication since t`, ρ(H) and ρ(b) all belong to S.

Moreover, for any H ∈ H, we have H ⊆ C∗ ⊆ B∗ and ρ(H) ∈ S, which yields ρ(H) ∈ SB .
By choice of the letter b, we know that t` is not right B-reachable from tH . In particular, it
follows that the right B-index of tH is strictly smaller than the right B-index of t`. Hence,
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for any H ∈ H, we may use induction in Proposition 8.10 to construct an FO2-cover KH of
B∗ such that for any K ∈ KH ,

K ⊆ B∗ and tH · ρ(K) · tr ∈ S. (8.4)

We are now ready to construct our FO2-cover K of B∗ which satisfies the properties described
in Proposition 8.10. We define,

K = H ∪
⋃
H∈H
{HbK | K ∈ KH}.

It remains to prove that K is an FO2-cover of B∗ and that (8.2) holds. We begin by proving
that all languages K ∈ K are FO2-definable. This is immediate if K ∈ H (by construction of
H). Otherwise, K = HbK ′ with H ∈ H and K ′ ∈ KH . Observe that by definition, H ⊆ C∗,
b ∈ B \ C. Thus, a word w is in K = HbK ′ if and only if it satisfies the following three
properties:
(1) w contains the letter “b”.
(2) The prefix of w obtained by keeping all positions that come strictly before the leftmost

“b” belongs to H.
(3) The suffix of w obtained by keeping all positions that come strictly after the leftmost “b”

belongs to K ′.
Hence, it suffices to show that these three properties can be expressed in FO2. The first one
is defined by “∃x Pb(x)”. For the second and third properties, observe that one can select
the position carrying the leftmost “b” with the following FO2 formula:

ϕ(x) := Pb(x) ∧ ¬∃y (Pb(y) ∧ y < x).

Therefore a sentence for the second property above can be obtained from a sentence ΨH that
defines H (which exists by hypothesis on H) by restricting all quantifications to positions x
that satisfy the formula ∃y x < y ∧ ϕ(y). Similarly, a sentence for the third property can
be obtained from a sentence ΨK′ that defines K ′ (which exists by hypothesis on K ′) by
restricting all quantifications to positions x that satisfy the formula ∃y y < x ∧ ϕ(y).

We now prove that K is a cover of B∗. Let w ∈ B∗, we exhibit K ∈ K such that w ∈ K.
If w ∈ C∗, it belongs to some H ∈ H ⊆ K since H is a cover of C∗. Otherwise, b ∈ alph(w)
and w can be decomposed as w = ubv with u ∈ C∗ and v ∈ B∗ (the highlighted “b” is the
leftmost one in w). Since H is a cover of C∗, there exists H ∈ H such that u ∈ H. Moreover,
since KH is a cover of B∗, we get K ∈ KH such that v ∈ K. It follows that w ∈ HbK, and
the language HbK belongs to K by definition.

It remains to prove that (8.2) holds: for any K ∈ K, K ⊆ B∗ and t` · ρ(K) · tr ∈ S.
Let K ∈ K. That K ⊆ B∗ is immediate: it is a concatenation of languages included in B∗
by definition. We show that t` · ρ(K) · tr ∈ S. If K ∈ H, then ρ(K) ∈ S by (8.3). Since
t`, tr ∈ S it then follows from closure under multiplication that t` · ρ(K) · tr ∈ S. Assume
now that K = HbK ′ for H ∈ H and K ′ ∈ KH . Since ρ is a multiplicative rating map, we
have,

ρ(K) = ρ(H) · ρ(b) · ρ(K ′).

Recall that tH = t` · ρ(H) · ρ(b). Therefore, t` · ρ(K) · tr = tH · ρ(K ′) · tr. Finally, since
K ′ ∈ KH , we have tH · ρ(K ′) · tr ∈ S by (8.4). This concludes the proof of Proposition 8.10.
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9. General approach for full covering

We now turn to the full C-covering problem. We generalize the methodology presented in
Section 6.

Remark 9.1. This generalized methodology applies to any quotienting lattice of regular
languages C. However, it is more involved than the one which we already presented for
universal C-covering in Section 6. Hence, it is only meant to be used for lattices that are
not closed under complement. When dealing with a quotienting Boolean algebra of regular
languages, universal and full covering are equivalent by Proposition 3.7. Hence, one may just
use the simple methodology of Section 6.

We begin by presenting a formal reduction from full C-covering to a problem whose
input is a nice multiplicative rating map. For technical reasons, this requires to slightly
generalize our terminology on rating maps.

9.1. Optimal pointed imprints. As expected, the key idea behind our approach is to
reduce C-covering to the problem of computing IC[L, ρ] from a regular language L and a
nice multiplicative rating map ρ (this is exactly what we did for the special case L = A∗ in
Section 6). However, the situation is slightly more complicated here. While getting such a
reduction is fairly simple (given the results that we already have), we shall need to consider
an object that is more involved than IC[L, ρ].

More precisely, our approach does not work directly with IC[L, ρ] as this set does not
have strong enough properties. Recall that in the case L = A∗, what made IC[ρ] = IC[A∗, ρ]
the “right object” is Lemma 6.3: IC[ρ] is a submonoid of R. This is not the case for IC[L, ρ]
in general. We cope with this problem by considering a monoid morphism α : A∗ → M
recognizing the language L. Our approach considers all sets IC[α−1(s), ρ] for s ∈ M
simultaneously. As we show in the following proposition, this is enough information to recover
IC[L, ρ].

Proposition 9.2. Let C be a lattice of regular languages and let L be a language recognized
by a morphism α : A∗ →M for the accepting set F ( i.e., L = α−1(F )). Let ρ : 2A

∗ → R be
a rating map. Then, the following properties hold:
– We have IC[L, ρ] =

⋃
s∈F IC[α−1(s), ρ].

– If for any s ∈M , we have an optimal C-cover Ks of α−1(s) for ρ, then K =
⋃
s∈F Ks is

an optimal C-cover of L for ρ.

Proof. We start with the second item. For any s ∈M , we let Ks be an optimal C-cover of
α−1(s) for ρ. Since L = α−1(F ) and Ks is a C-cover of α−1(s) for any s ∈M , we know that
K =

⋃
s∈F Ks is a C-cover of L. We need to show that it is optimal. By definition, this

amounts to proving that for any arbitrary C-cover K′ of L, we have I[ρ](K) ⊆ I[ρ](K′). Let
r ∈ I[ρ](K). By definition, r ≤ ρ(K) for some K ∈ K. Moreover, K ∈ Ks for some s ∈ F .
Since Ks is an optimal C-cover of α−1(s) for ρ, it follows that r ∈ IC[α−1(s), ρ]. Finally,
since K′ is a C-cover of L, it is also a C-cover of α−1(s) ⊆ L. Hence, IC[α−1(s), ρ] ⊆ I[ρ](K′)
which yields r ∈ I[ρ](K′), as desired.

We finish with the first item. We just proved that K =
⋃
s∈F Ks is an optimal C-cover

of L. Therefore, IC[L, ρ] = I[ρ](K). Moreover, it is immediate from the definition of imprints
that I[ρ](K) =

⋃
s∈F I[ρ](Ks). Since Ks is an optimal C-cover of α−1(s) for ρ, which means

that I[ρ](Ks) = IC[α−1(s), ρ], we obtain IC[L, ρ] =
⋃
s∈F IC[α−1(s), ρ].
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Altogether, this means that we shall be looking for algorithms which take a morphism
α : A∗ → M and a nice multiplicative rating map ρ : 2A

∗ → R as input and compute all
C-optimal ρ-imprints IC[α−1(s), ρ] for s ∈M . It will be convenient to have a single notation
recording all these objects. This leads to the notion of optimal pointed imprints.

Given a lattice C, a morphism α : A∗ → M and a rating map ρ : 2A
∗ → R, we define

the following subset of M ×R:
PC[α, ρ] = {(s, r) ∈M ×R | r ∈ IC[α−1(s), ρ]}

We call PC[α, ρ] the C-optimal α-pointed ρ-imprint. Clearly, the single set PC[α, ρ] encodes
all the sets IC[α−1(s), ρ] for s ∈M . We first present a few properties of this new object and
then formally reduce full C-covering to the problem of computing PC[α, ρ].

Properties. As expected, a first property is that PC[α, ρ] always contains trivial elements.
Recall that given any language L and any rating map ρ : 2A

∗ → R, we defined Itriv [L, ρ] ⊆ R
as the set,

Itriv [L, ρ] = {r ∈ R | ∃w ∈ L such that r ≤ ρ(w)}.
We may extend this notation to make it match our new terminology, “pointed imprints”.
Given a morphism α : A∗ →M and a rating map ρ : 2A

∗ → R, we define,
Ptriv [α, ρ] = {(s, r) ∈M ×R | r ∈ Itriv [α−1(s), ρ]}

= {(s, r) ∈M ×R | ∃w ∈ α−1(s) such that r ≤ ρ(w)}.
Clearly, when ρ is a nice multiplicative rating map, one may compute Ptriv [α, ρ] from α and
ρ by Lemma 5.6. Moreover, the next fact is immediate from the definition of PC[α, ρ] and
Fact 4.12.

Fact 9.3. Let C be a lattice. Consider a morphism α : A∗ → M and a rating map
ρ : 2A

∗ → R. Then, we have Ptriv [α, ρ] ⊆ PC[α, ρ].

More importantly, we recover the key property of optimal universal imprints: when C is
a quotienting lattice of regular languages and ρ : 2A

∗ → R is a multiplicative rating map,
PC[α, ρ] is a submonoid of M ×R for the componentwise multiplication. This is a simple
corollary of Lemma 5.8.

Lemma 9.4. Let C be a quotienting lattice of regular languages. Consider a morphism
α : A∗ →M and a multiplicative rating map ρ : 2A

∗ → R. Then PC[α, ρ] is a submonoid of
M ×R:
– We have (1M , 1R) ∈ PC[α, ρ].
– For any (s, q), (t, r) ∈ PC[α, ρ], we have (st, qr) ∈ PC[α, ρ].

Proof. That (1M , 1R) ∈ PC[α, ρ] is immediate from Fact 9.3: Ptriv [α, ρ] ⊆ PC[α, ρ]. Indeed,
by definition of multiplicative rating maps, we have (1M , 1R) = (α(ε), ρ(ε)). Moreover, it is
immediate by definition that (α(ε), ρ(ε)) ∈ Ptriv [α, ρ].

Closure under multiplication follows from Lemma 5.8. Assume that (s, q), (t, r) ∈ PC[α, ρ].
By definition, this means that q ∈ IC[α−1(s), ρ] and r ∈ IC[α−1(t), ρ]. Thus, we get from
Lemma 5.8 that qr ∈ IC[α−1(s)α−1(t), ρ]. Moreover, since α is a morphism, we have
α−1(s)α−1(t) ⊆ α−1(st). Thus, Fact 4.17 yields qr ∈ IC[α−1(st), ρ] which exactly says that
(st, qr) ∈ PC[α, ρ].
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Reduction. Let us finally connect optimal pointed imprints with the full covering problem.
We do so with the following proposition, which states a reduction generalizing the one of
Proposition 6.4.

Proposition 9.5. Consider a lattice C. There exists a polynomial space reduction from
C-covering (for input languages given by NFAs or monoid morphisms) to the following
decision problem:

Input: A morphism α : A∗ →M and a subset FM ⊆M .
A nice multiplicative rating map ρ : 2A

∗ → R and a subset FR ⊆ R.
Question: Do we have (FM × FR) ∩PC[α, ρ] = ∅?

Proof. The input of C-covering is a pair (L,L) where L is a regular language and L is a
finite multiset of regular languages: we want to know whether (L,L) is C-coverable. One
may compute in polynomial space a morphism α : A∗ →M recognizing L (this is trivial is L
if already given by a morphism and standard if L is given by an NFA). We let FM ⊆M as
the corresponding accepting set: L = α−1(FM ). Moreover, by Proposition 5.9, we are able
to compute in polynomial space a nice multiplicative rating map ρ : 2A

∗ → R, a morphism
δ : R→ 2L and a subset FR of R such that:
– ρ extends ρL (the canonical rating map associated to L) for the extending morphism δ.
– FR = δ−1(L).
The reduction outputs α, FM , ρ and FR. It remains to show that this is indeed a reduction
from C-covering to the problem described in the proposition. That is, (L,L) is C-coverable
if and only if (FM × FR) ∩PC[α, ρ] = ∅.

By Theorem 4.18 (L,L) being C-coverable is equivalent to L 6∈ IC[L, ρL]. Moreover, by
Lemma 4.21, we know that IC[L, ρL] = ↓δ(IC[L, ρ]). Consequently, since FR = δ−1(L) and
L is the maximal element of 2L, (L,L) is C-coverable if and only if FR∩IC[L, ρ] = ∅. Finally,
by Proposition 9.2, we have IC[L, ρ] =

⋃
s∈FM

IC[α−1(s), ρ]. Hence, (L,L) is C-coverable if
and only if for any s ∈ FM , we have FR ∩ IC[α−1(s), ρ] = ∅. By definition of PC[α, ρ], this
last condition is equivalent to (FM × FR) ∩PC[α, ρ] = ∅, finishing the proof.

Remark 9.6. Similarly to what happened for universal covering in Section 6, we also get
a reduction for the second stage in C-covering: computing separating C-covers when they
exist. Indeed, given some input pair (L,L), we know from Theorem 4.18 that if (L,L) is
C-coverable, then any optimal C-cover of L for ρL is separating for L. We may compute a
nice multiplicative rating map ρ extending ρL. By Lemma 4.21, any optimal C-cover of L for
ρ is also optimal for ρL. Moreover, we may compute a morphism α : A∗ →M recognizing L
( i.e., L = α−1(F ) for some F ⊆M). By Proposition 9.2, we know that K =

⋃
s∈F Ks is an

optimal C-cover of L for ρ when the Ks are optimal C-covers of α−1(s) for ρ.

In view of Proposition 9.5, we may now focus on the problem of computing optimal
pointed imprints. We explain how to tackle this new problem now.

Remark 9.7. While Proposition 9.5 holds for any lattice, using the methodology that we
present now requires at least a quotienting lattice of regular languages. This is mandatory for
applying Lemma 9.4, which is crucial in our approach.
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9.2. Methodology. In this generalized setting as well, a key design principle behind the
framework is that our algorithms for computing optimal pointed imprints are formulated as
elegant characterization theorems. Given a quotienting lattice C, a morphism α : A∗ →M
and a nice multiplicative rating map ρ : 2A

∗ → R, we characterize the C-optimal α-pointed
ρ-imprint PC[α, ρ] as the least subset of M ×R which:
(1) includes the trivial elements from Ptriv [α, ρ], and
(2) is closed under a list of operations.
We speak of a characterization of C-optimal pointed imprints. As before, the key idea is
that such a result yields a least fixpoint procedure for computing PC[α, ρ], thus solving the
C-covering problem by Proposition 9.5. Indeed, one starts from the set of trivial elements
and saturates it with the operations in the list.

Remark 9.8. As before, while we have to restrict ourselves to nice multiplicative rating
maps for the computation, the characterizations themselves often hold for all multiplicative
rating maps. This is the case for our two examples.

Let us present two examples. Both of them come from the quantifier alternation hierarchy
of first-order logic over words: the levels Σ1 and Σ2. We start with a characterization for Σ1,
which we shall detail and prove in the next section.

Example 9.9 (Characterization of Σ1-optimal pointed imprints). Consider a morphism
α : A∗ →M and a multiplicative rating map ρ : 2A

∗ → R. Then, PΣ1 [α, ρ] is the least subset
of M ×R containing Ptriv [α, ρ] and satisfying the following properties:
(1) Downset: For any (s, r) ∈ PΣ1 [α, ρ] and any r′ ≤ r, we have (s, r′) ∈ PΣ1 [α, ρ].
(2) Multiplication: For any (s, q), (t, r) ∈ PΣ1 [α, ρ], we have (st, qr) ∈ PΣ1 [α, ρ].
(3) Σ1-operation: We have (1M , ρ(A∗)) ∈ PΣ1 [α, ρ].

Our second example is the level Σ2. Note that we shall not prove this result in the paper.
It is essentially adapted from the original separation algorithm of [25]. A (difficult) proof for
the formulation that we use below is available in [22, Theorem 6.5], which solves covering for
a family of classes that includes Σ2.

Example 9.10 (Characterization of Σ2-optimal pointed imprints). Let α : A∗ → M be a
morphism and let ρ : 2A

∗ → R be an alphabet compatible multiplicative rating map. Then,
PΣ2 [α, ρ] is the least subset of M ×R containing Ptriv [α, ρ] and closed under the following
operations:
(1) Downset: For any (s, r) ∈ PΣ2 [α, ρ] and any r′ ≤ r, we have (s, r′) ∈ PΣ2 [α, ρ].
(2) Multiplication: For any (s, q), (t, r) ∈ PΣ2 [α, ρ], we have (st, qr) ∈ PΣ2 [α, ρ].
(3) Σ2-closure: For any idempotent (e, f) ∈ PΣ2 [α, ρ] ( i.e., e is an idempotent of M and f

is a multiplicative idempotent of R) and for each B ∈ alph(f), we have (e, f ·ρ(B∗) ·f) ∈
PΣ2 [α, ρ].

As expected, most of the properties used in the above example of characterizations are
generic: they are satisfied by all C-optimal pointed imprints PC[α, ρ] (provided that C is a
quotienting lattice of regular languages). Let us present these generic properties properly in
the following lemma.

Lemma 9.11. Let C be a quotienting lattice of regular languages C. Consider a morphism
α : A∗ → M and a multiplicative rating map ρ : 2A

∗ → R. Then, the C-optimal α-pointed
ρ-imprint PC[α, ρ] ⊆M ×R contains Ptriv [α, ρ] and satisfies the following closure properties:
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(1) Downset: For any (s, r) ∈ PC[α, ρ] and any r′ ≤ r, we have (s, r′) ∈ PC[α, ρ].
(2) Multiplication: For any (s, q), (t, r) ∈ PC[α, ρ], we have (st, qr) ∈ PC[α, ρ].

Proof. That PC[L, ρ] contains Ptriv [L, ρ] is immediate from Fact 4.12. Closure under downset
follows from Fact 4.11. Finally, closure under multiplication is a consequence of Lemma 5.8.

10. Example for full covering: the logic Σ1

In this section, we illustrate the general approach outlined in Section 9 with a simple example
taken from logic. Specifically, we use it to obtain a covering algorithm for the level Σ1 within
the quantifier alternation hierarchy of first-order logic. As expected, this algorithm is based
on a characterization of Σ1-optimal pointed imprints.

Remark 10.1. Since this section is about illustrating our framework, we need a simple
example and Σ1 is an ideal candidate for this. However, it is known that covering is decidable
for the levels Σ1,BΣ1,Σ2,BΣ2 and Σ3 in the alternation hierarchy of FO and all the algorithms
may be formulated within our framework. The cases of Σ1 and BΣ1 are detailed in the paper.
We refer the reader to [22] for Σ2 and Σ3 and to [32] for BΣ2.

We shall actually work with an alternate definition of the class corresponding to Σ1. It
is folklore and simple to verify that we have the following theorem.

Theorem 10.2. Consider a language L ⊆ A∗. Then L can be defined by a Σ1 sentence
if and only if it is a finite union of languages of the form A∗a1A

∗a2A
∗ · · ·A∗anA∗ with

a1, . . . , an ∈ A.

10.1. Characterization of Σ1-optimal imprints. We start by describing the property
characterizing Σ1-optimal pointed imprints. Consider a morphism α : A∗ →M into a finite
monoid M and a multiplicative rating map ρ : 2A

∗ → R.

Remark 10.3. There is no additional constraint on α and ρ. In particular, there is no need
for ρ to be nice for the characterization to hold.

We say that a subset S ⊆ M × R is Σ1-saturated for ρ if it contains Ptriv [α, ρ] and is
closed under the following operations:
(1) Downset: For any (s, r) ∈ S and any r′ ≤ r, we have (s, r′) ∈ S.
(2) Multiplication: For any (s, q), (t, r) ∈ S, we have (st, qr) ∈ S.
(3) Σ1-operation: We have (1M , ρ(A∗)) ∈ S.
We are now ready to state the main theorem of this section.

Theorem 10.4 (Characterization of Σ1-optimal imprints). Let α : A∗ →M be a morphism
into a finite monoid M and let ρ : 2A

∗ → R a multiplicative rating map. Then, PΣ1 [α, ρ] is
the least Σ1-saturated subset of M ×R.

Clearly, Theorem 10.4 yields a least fixpoint procedure for computing PΣ1 [α, ρ] from
any morphism α and any nice multiplicative rating map ρ given as input. Indeed, we are
able to compute Ptriv [α, ρ] and all operations in the definition of Σ1-saturated subsets are
clearly implementable (for Σ1-operation, this is immediate since ρ(A∗) may be computed by
Lemma 5.7). Altogether, we get the desired corollary from Proposition 9.5: Σ1-covering is
decidable.
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Corollary 10.5. The Σ1-covering problem is decidable.

We now turn to the proof of Theorem 10.4. The argument is organized around the
approach outlined in Section 9. Let α : A∗ →M be a morphism into a finite monoid M and
let ρ : 2A

∗ → R be a multiplicative rating map. We start by proving that the set PΣ1 [α, ρ] is
Σ1-saturated (from an algorithmic point of view, this corresponds to soundness of the least
fixpoint procedure: it only computes elements of PΣ1 [α, ρ]).

10.2. Soundness. We show that PΣ1 [α, ρ] ⊆ M × R is Σ1-saturated. Since Σ1 is a
quotienting lattice, we already know from Lemma 9.11 that PΣ1 [α, ρ] contains Ptriv [α, ρ]
and is closed under downset and multiplication. Therefore, we may concentrate on the
Σ1-operation.

We need to show that (1M , ρ(A∗)) ∈ PΣ1 [α, ρ]. By definition, this amounts to proving
that ρ(A∗) ∈ IΣ1 [α−1(1M ), ρ]. Let K be a ρ-optimal Σ1-cover K of α−1(1M ). It suffices to
prove that ρ(A∗) ∈ I[ρ](K) (by definition of IΣ1 [α−1(1M ), ρ]). This follows from the next
fact.

Fact 10.6. The only language K ∈ Σ1 containing ε is A∗.

Proof. By Theorem 10.2, every language in Σ1 is a finite union of languages which are of
the form A∗a1A

∗a2 · · ·A∗anA∗ with n ∈ N and a1, . . . , an ∈ A. The only such language
containing ε is A∗.

We may now finish the proof. Since ε ∈ α−1(1M ) and K is a cover of L, there exists
K ∈ K containing ε. Moreover, since K ∈ Σ1, it follows from Fact 10.6 that K = A∗. Thus,
A∗ ∈ K, which means that ρ(A∗) ∈ I[ρ](K), as desired.

10.3. Completeness. We now know that the set PΣ1 [α, ρ] is Σ1-saturated. It remains to
prove that it is the least such set. Consider an arbitrary Σ1-saturated subset S ⊆M ×R.
We show that PΣ1 [α, ρ] ⊆ S. Note that from an algorithmic point of view, this direction
of the proof corresponds to completeness of the least fixpoint procedure: we show that it
computes all elements of PΣ1 [α, ρ].

We proceed as follows. For each s ∈M , we build a Σ1-cover Ks of α−1(s) such that for
any r ∈ I[ρ](Ks), we have (s, r) ∈ S. By definition of PΣ1 [α, ρ], it will then follow that,

PΣ1 [α, ρ] ⊆ {(s, r) ∈M ×R | r ∈ I[ρ](Ks)} ⊆ S.

Remark 10.7. Since we already showed that PΣ1 [α, ρ] itself is Σ1-saturated, the special case
when S = PΣ1 [α, ρ] yields, for any s ∈M , a Σ1-cover Ks of α−1(s) satisfying:

I[ρ](Ks) = IΣ1 [α−1(s), ρ].

In other words, we are able to build optimal Σ1-covers.

We may now start the construction. We first associate to any word w ∈ A∗ a language
Kw ∈ Σ1 and then use these languages to construct our covers Ks. For a word w = a1 · · · an ∈
A∗, define:

Kw = A∗a1A
∗a2A

∗ · · ·A∗anA∗.
Clearly, all languages Kw belong to Σ1 by Theorem 10.2. We may now define our Σ1-covers
Ks. For s ∈M , define:

Ks = {Kw | w ∈ α−1(s) and |w| ≤ |M |}.
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Clearly, all sets Ks are finite. It now remains to prove that they satisfy the desired properties:
for all s ∈M , Ks is a Σ1-cover of α−1(s) such that for any r ∈ I[ρ](Ks), we have (s, r) ∈ S.

We begin by proving that Ks is a Σ1-cover of α−1(s) for all s ∈ M . Since we already
know that all languages Kw belong to Σ1, it suffices to prove that Ks is a cover of α−1(s).
Let w ∈ α−1(s). We need to find K ∈ Ks such that w ∈ K, which is what we prove in the
following lemma.

Lemma 10.8. For any w ∈ α−1(s), there exists K ∈ Ks such that w ∈ K.

Proof. We proceed by induction on |w|. When |w| ≤ |M |, we have Kw ∈ Ks and it is
immediate by definition that w ∈ Kw. We now assume that |w| > |M |. We prove that
there exists w1, w2 ∈ A∗ and v ∈ A+ such that w = w1vw2 and w1w2 ∈ α−1(s). Since
|w1w2| < w, this yields K ∈ Ks such that w1w2 ∈ K. Moreover, since K is of the form
A∗a1A

∗a2A
∗ · · ·A∗anA∗ by definition, it will follow that w = w1vw2 belongs to K as well,

finishing the proof.
Let w = b1 · · · b|w|. Since w ∈ α−1(s), we have α(b1) · · ·α(b|w|) = α(w) = s. Since

|w| > |M |, it follows from the pigeonhole principle that there exist i, j with i < j such that
α(b1) · · ·α(bi) = α(b1) · · ·α(bj). We let w1 = b1 · · · bi, v = bi+1 · · · bj and w2 = bj+1 · · · b|w|.
By definition, we have w = w1vw2 and v is nonempty since i < j. Moreover,

α(w1) = α(b1) · · ·α(bi) = α(b1) · · ·α(bj),
α(w2) = α(bj+1) · · ·α(b|w|)

Therefore, α(w1w2) = α(b1) · · ·α(b|w|) = α(w) = s, which concludes the proof.

It remains to prove that for any s ∈ M and r ∈ I[ρ](Ks), we have (s, r) ∈ S. Recall
that S is an arbitrary Σ1-saturated set. Since r ∈ I[ρ](Ks), we have K ∈ Ks such that
r ≤ ρ(K). Since S is Σ1-saturated, it is closed under downset, so that it suffices to show
that (s, ρ(K)) ∈ S.

By definition of Ks, there exists w ∈ α−1(s) such that K = Kw. Therefore, K =
A∗a1A

∗ · · ·A∗anA∗ with w = a1 · · · an. By definition, we have (α(ai), ρ(ai)) ∈ Ptriv [α, ρ] for
all i ≤ n. Consequently, we obtain (α(ai), ρ(ai)) ∈ S for all i ≤ n since S is Σ1-saturated.
Moreover, we know from the Σ1-specific operation that (1M , ρ(A

∗)) ∈ S. It then follows
from closure under multiplication that,1M ·

∏
1≤i≤n

(α(ai) · 1M ), ρ(A∗) ·
∏

1≤i≤n
(ρ(ai) · ρ(A∗))

 ∈ S
Since α is a morphism and ρ is a multiplicative rating map (and therefore a morphism for
multiplication), this exactly says that (α(w), ρ(K)) ∈ S. Finally, α(w) = s by definition,
and we obtain as desired that (s, ρ(K)) ∈ S, finishing the proof.

11. Conclusion

In this paper, we introduced the covering problem, which we designed as a replacement of the
two problems that are commonly used to investigate classes of languages: membership and
separation. With covering, we get the best of both worlds: like for separation, the problem
is flexible enough, so that we are able to obtain covering algorithms for classes that seem to
be beyond reach when dealing with membership alone. Like for membership, we have a solid
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methodology and we recover what was missing in the case of separation: constructiveness.
Moreover, the framework is adapted not only to Boolean algebras, but also to lattices.

As an application, we have presented covering algorithms for five fragments of first-
order logic: FO itself, its two-variable fragment FO2, as well as levels 1

2 , 1 and 3
2 in the

Straubing-Thérien hierarchy (denoted Σ1, BΣ1 and Σ2, respectively), and we have proved
these algorithms for Σ1, BΣ1 and FO2.

There are many natural questions in this line of research. One is to push further the
investigation of this problem to other classes of languages, in particular for those of the
quantifier alternation hierarchy. It would also be interesting to get precise complexity bounds
for this problem, starting from automata as inputs, or from monoids. Finally, whether such
problems are meaningful for other structures than words remains to be explored.
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