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Université Paris 13, Laboratoire LIPN, CNRS UMR 7030, France
e-mail address: {flavien.breuvart,giulio.manzonetto,domenico.ruoppolo}@lipn.univ-paris13.fr

Abstract. We study the relational graph models that constitute a natural subclass of
relational models of λ-calculus. We prove that among the λ-theories induced by such
models there exists a minimal one, and that the corresponding relational graph model is
very natural and easy to construct. We then study relational graph models that are fully
abstract, in the sense that they capture some observational equivalence between λ-terms.
We focus on the two main observational equivalences in the λ-calculus, the λ-theory H+

generated by taking as observables the β-normal forms, and H∗ generated by considering
as observables the head normal forms. On the one hand we introduce a notion of λ-König
model and prove that a relational graph model is fully abstract for H+ if and only if it is
extensional and λ-König. On the other hand we show that the dual notion of hyperimmune
model, together with extensionality, captures the full abstraction for H∗.

Introduction

The untyped λ-calculus is a paradigmatic programming language introduced by Church
in [25]. It has a prominent role in theoretical computer science [7] and, despite its very
simple syntax, it is Turing-complete [53, 87]. Its denotational models have been fruitfully
used for proving the consistency of extensions of β-convertibility, called λ-theories, and for
exposing operational features of λ-terms. The first model of λ-calculus, D∞, was defined by
Scott in the pioneering article [81]. Subsequently, a wealth of models have been introduced
in various categories of domains and classified into semantics according to the nature of
their representable functions. Scott’s continuous semantics [82] corresponds to the category
whose objects are complete partial orders and morphisms are continuous functions. The
stable semantics [12] and the strongly stable semantics [19] are refinements of the continuous
semantics, introduced to capture the notion of “sequential” continuous function. In each of
these semantics all the models come equipped with a partial order, and some of them, called
webbed models, are built from lower level structures called “webs” [10]. The simplest class
of webbed models is the class of graph models [62], which was isolated in the seventies by
Plotkin, Scott and Engeler within the continuous semantics [39, 73, 82].

In each of the aforementioned semantics there exists a continuum of models inducing
pairwise distinct λ-theories. Nevertheless, certain models are particularly important because
they allow to capture operational properties of the λ-terms. For instance, two λ-terms have
the same interpretation in Engeler’s graph model E exactly when they are equal in the
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λ-theory B, which equates all λ-terms having the same Böhm tree. The main technical tool
for proving such a result is the Approximation Theorem [45], stating that the interpretation
of a λ-term is given by the supremum of the interpretations of the finite approximants of
its Böhm tree. Other models are significant because they are fully abstract, which means
that the induced λ-theory captures some observational equivalence between λ-terms. A
celebrated result by Hyland [47] and Wadsworth [89] shows that Scott’s D∞ is fully abstract
for the λ-theory H∗, that corresponds to the observational equivalence where the observables
are the head normal forms. In [26], Coppo, Dezani-Ciancaglini and Zacchi constructed a
filter model Dcdz and proved that it is fully abstract for H+, the observational equivalence
where the observables are the β-normal forms. The λ-theory H+ is the original extensional
observational theory defined by Morris in his thesis [69]. It is maybe less ubiquitously studied
in the literature than H∗ but we believe is equally important. For instance, its notion of
observables is central in the Böhm Theorem [14] and in other separability results [28].

Graph Models in the Relational Semantics. In the present paper we focus on the
relational semantics of λ-calculus, that has been introduced by Girard as a quantitative
model of linear logic in [43]. The first concrete examples of relational models of λ-calculus
were built in [20, 49]. Recently, Manzonetto and Ruoppolo individuated the subclass of
relational graph models encompassing all previous examples [67]. The definition of a relational
graph model (Definition 3.4) really is the relational analogue of the definition of a graph
model living in the continuous semantics. In particular, relational graph models can be built
by free completion and by forcing like the continuous ones. However, from the point of view
of the induced λ-theories, they share more similarities with filter models. For instance, the
relational graph model Dω built in [20] has the same theory as Scott’s D∞, namely it is fully
abstract for H∗ [65]. Similarly, the model D? from [67] is fully abstract for H+, like the filter
model Dcdz. On the other hand, no graph model living in the continuous semantics can
represent such λ-theories because no graph model is extensional. When comparing relational
graph models with filter models inducing the same λ-theory, one can see that the former are
in general simpler because their elements are not partially ordered. Moreover, an element σ
in the relational interpretation of a λ-term M carries information concerning intensional
properties of M . In particular, from σ it is possible to compute a bound to the number of
head-reduction steps towards its normal form and infer the amount of resources consumed
by M during such a reduction sequence [30, 31].

Relational Graph Models as Type Systems. The Stone duality between filter models
and intersection type systems has been widely studied in the literature, e.g., [2, 27, 45, 9, 80].
(We refer to Ronchi Della Rocca and Paolini’s book for a thoughtful discussion [77, Ch. 13].)
Such a correspondence shows that some interesting classes of domain-based models can be
described in logical form. The intuition is that a functional intersection type α1∧· · ·∧αn → β
can be seen as a continuous step function sending the set {α1, . . . , αn} to the element β.
Types come equipped with inference rules reflecting the structure of the underlying domain.
In [72], Paolini et al. introduce the strongly linear relational models (a class encompassing
relational graph models, but included in the linear relational models of [66]) and show that
they can be represented as relevant (i.e., without weakening) intersection type systems where
the intersection is a non-idempotent operation (it is actually a linear logic tensor ⊗). The
idea, already present in [30], is that in the absence of idempotency and partial orders the
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type α1 ∧ · · · ∧ αn → β can be seen as a relation associating the multiset [α1, . . . , αn] with
the element β. As a consequence of the work in [72], all relational graph models can be
presented in logical form, that is, as non-idempotent intersection type systems. We use this
kind of representation to expose and exploit their quantitative features.

The Approximation Theorem. Besides soundness (Theorem 3.15), one of the main
properties enjoyed by relational graph models is the Approximation Theorem (Theorem 4.16).
Typically such a theorem is proved by exploiting Wadsworth’s stratified refinements of the β-
reduction [89], that also work in the relational framework as shown in [65]. Other techniques
are based on Tait and Girard’s reducibility candidates [85, 42], that are widespread in logic
and the theory of programming languages [75, 56, 57, 9], but notoriously give rise to proofs
based on impredicative principles. Thanks to its quantitative nature, in the context of
the relational semantics it is possible to get rid of the traditional methods and provide a
combinatorial proof. This is the case of the proof given in [67] by relying on these facts:

• Relational graph models are also models of Ehrhard’s differential λ-calculus [37] and
Tranquilli’s resource calculus [86]. This follows from the fact that they all are linear
reflexive objects in the Cartesian closed differential category MRel [66].
• An easy induction shows that the interpretation of a λ-term M in a relational graph model

is equal to the interpretation of its Taylor expansion [37], which is a representation of M
as a power series of resource approximants (replacing in a way the finite approximants of
its Böhm tree).
• The usual Approximation Theorem follows from the above result by applying a theorem

due to Ehrhard and Regnier [38] stating that the normal form of the Taylor expansion of
M coincides with the Taylor expansion of its Böhm tree.

In Section 4.5 we provide a new combinatorial proof of the Approximation Theorem by
exploiting the logical presentation discussed above. We are going to associate a measure with
the derivation tree π of Γ `M : α and show that when M β-reduces to N by contracting
a redex R two cases are possible: either there exists a derivation of Γ ` N : α having a
strictly smaller measure, or π is a derivation of Γ `M{⊥/R} : α, where M{⊥/R} denotes
the approximant obtained by substituting a constant ⊥ for the redex R in M . In both cases,
either the measure of the derivation or the number of redexes in M has decreased. Therefore
the Approximation Theorem follows by a simple induction over the ordinal ω2.

The Minimal Relational Graph Theory. Every relational graph model induces a λ-
theory through the kernel of its interpretation function. We call relational graph theories those
λ-theories induced by some relational graph models. A natural question that arises is what
λ-theories are in addition relational graph theories. We do not provide a characterization,
but we show that the λ-theories B, H+ and H∗ are. Another question is whether there
exists a minimal relational graph theory: for instance, in [22] Bucciarelli and Salibra proved
that the minimal λ-theory among the ones represented by usual graph models exists, but
their construction of the minimal model is complicated and what λ-terms are actually
equated in the minimal theory remains a mystery. In Section 5 we show not only that a
minimal relational graph theory exists, but also that such a λ-theory is actually B. Also,
the corresponding model E is very simple to define (its construction is actually analogous to
the one of Engeler’s graph model). Moreover, we prove that even the preorder induced by E
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on λ-terms is minimal among representable inequational theories. Our model E shares many
properties with Ronchi Della Rocca’s filter model defined in [76].

Characterizing Fully Abstract Models. In the literature there are many full abstraction
theorems, namely results showing that some observational equivalence arises as the theory of
a suitable denotational model. However, until recently, researchers were only able to prove
full abstraction results for individual models [47, 89, 26], or at best to provide sufficient
conditions for models living in some class to be fully abstract [65, 67, 44]. For instance,
Manzonetto showed in [65] that a model of λ-calculus living in a cpo-enriched Cartesian
closed category is fully abstract for H∗ whenever it is a “well stratified ⊥-model1”. More
recently, he proved in collaboration with Ruoppolo that every extensional relational graph
model preserving the polarities of the empty multiset (in a technical sense) is fully abstract
for H+ [67]. A substantial advance in the study of full abstraction was made in [16],
where Breuvart proposed a notion of hyperimmune model of λ-calculus, and showed that
a K-model2 living in the continuous semantics is fully abstract for H∗ if and only if it is
extensional and hyperimmune, thus providing a characterization. In Section 6 we define
the dual notion of λ-König model and prove that a relational graph model is fully abstract
for H+ exactly when it is extensional and λ-König. In Section 7 we show that the notion
of hyperimmune continuous model has a natural counterpart in the relational semantics
and that, also in the latter case, together with extensionality gives a characterization of all
relational graph models fully abstract for H∗.

Related Works. The primary goal of this article is to provide a uniform and self-contained
treatment of relational graph models and their properties. In particular, we present some
semantical results recently appeared in the conference papers [67, 18]. (The syntactic
results in [18] will be the subject of a different paper [50] in connection with the ω-rule.)
Besides giving more detailed proofs and examples, we provide several original results, like
a quantitative proof of the Approximation Theorem, the characterization of the minimal
representable theory, and the characterization of all relational graph models that are fully
abstract for H∗. A natural comparison is with the article [72], where Paolini et al. introduce
the notion of strongly linear relational model and show that such models correspond to their
notion of essential type systems. We remark that their work rather focuses on the properties
enjoyed by those systems, like (weighted) subject reduction/expansion and adequacy, while
we focus on the representable λ-theories and provide general full abstraction results.

The relational semantics, being very versatile, can also be used to model the call-by-
value and the call-by-push-value λ-calculus [61], as well as non-deterministic [32, 33, 4] and
resource sensitive extensions [37, 38] of λ-calculus. We refer the reader to [35, 24] for a
relational semantics of the call-by-value λ-calculus and to [36] for the call-by-push-value. For
non-deterministic calculi, see [21] in the call-by-name setting and [34] in the call-by-value one.
Relational models of differential and resource calculi have been studied in [70, 66, 15]. The
relational semantics has been generalized by considering multisets with infinite multiplicities
to build models that are not sensible [23], and by replacing relations with matrices of
scalars to provide quantitative models of non-deterministic PCF [58]. An even more abstract

1Using the terminology of [65].
2The class of K-models, which contains all graph models, was isolated by Krivine in [56].
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perspective, where the categorical notion of profunctors takes the role of relations, was
contemplated in [40, 48].

Outline. In Section 1 we present some notions and notations, mainly concerning λ-calculus,
that are useful in the rest of the article. In Section 2 we review some literature concerning
the observational equivalences corresponding to H+ and H∗, and their characterizations
in terms of extensional equivalences on Böhm trees. In Section 3 we define the class of
relational graph models, show how to build them via free completion of a partial pair, and
prove the soundness. In Section 4 we provide the presentation of relational graph models
in logical form, exhibit their quantitative features and prove the Approximation Theorem.
Section 5 is devoted to present the Engeler-style relational graph model and prove that
the induced (inequational) theory is minimal. In Section 6 and Section 7 we provide the
characterizations of all relational graph models that are fully abstract for H+ and H∗.

1. Preliminaries

1.1. Coinduction. In this article we will often use coinductive structures and coinductive
reasoning. We recall here some basic facts about coinduction and discuss some terminology,
but we mainly take them for granted. Nice tutorials on the subject are [52, 55]; see also [1].

A coinductive structure, corresponding to a coinductive datatype, is just the greatest
fixed point over a grammar, or equivalently the terminal coalgebra over the corresponding
functor. We also consider coinductive propositions (and relations), that are the greatest
propositions over such coinductive structures respecting the structural constraints. Coinduc-
tive propositions are proven by infinite derivation trees that are coinductive structures.

As opposed to the inductive principle, the coinductive one is unable to destruct a
coinductive object, it is only able to construct one. More precisely, we can prove by
coinduction a statement of the form ∀x∈X ∃y∈Y ϕ(x, y) where Y and ϕ are coinductively
defined. Consider for now the simpler case where we want to prove ∀x∈X ϕ(x) for some
coinductive proposition ϕ. In order to apply the coinduction principle, it is sufficient to show

∀x ∈ X ∃n ∈ N ∃ ~x ∈ Xn
(∧

i≤n ϕ(xi)
p⇒ ϕ(x)

)
where the “p” in

p⇒ refers to the productivity of the implication. In this case “productive”
means that in the proof of the implication some patterns of the grammar coinductively
defining ϕ are actually applied to the various ϕ(xi). Usually x is a certain (inductive or
coinductive) structure and ~x can be seen as an “unfolding” of x.

In the general case, namely ∀x∈X ∃y∈Y ϕ(x, y), it is sufficient to show that

∀x ∈ X ∃n ∈ N ∃ ~x ∈ Xn ∀~y ∈ Y n ∃ py ∈ Y
(∧

i≤n ϕ(xi, yi)
p⇒ ϕ(x, y)

)
.

The “productivity” of the existential ∃ p simply requires that y = p(y1, . . . , yn) for some
pattern p of the grammar coinductively generating Y . Notice that the negation of a
coinductive statement is inductive and vice versa, a fact that we use in the proof of
Lemma 5.5.

Since structural coinduction has been around for decades and many efforts have been
made in the community to explain why it should be used as innocently as structural induction,
in our proofs we will not reassert the coinduction principle every time it is used. Borrowing
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the terminology from [55], we say that we apply the “coinductive hypothesis” whenever the
coinduction principle is applied. We believe that this mathematical writing greatly improves
the readability of our proofs without compromising their correctness: the suspicious reader
can study [55] where it is explained how this informal terminology actually corresponds to a
formal application of the coinduction principle.

1.2. Sets, Functions and Multisets. We denote by N the set of natural numbers and by
N+ the set of strictly positive natural numbers.

Let A,B be two sets. We write P(A) for the powerset of A, and Pf(A) for the set of all
finite subsets of A. Given a function f : A→ B we write dom(f) for its domain.

A multiset over A is a partial function a : A→ N+. Given α ∈ A and a multiset a over
A, the multiplicity of α in a is given by a(α). A multiset a is called finite if dom(a), which
is called its support, is finite. A finite multiset a will be represented as an unordered list of
its elements [α1, . . . , αn], possibly with repetitions. The empty multiset is denoted by ω. We
write Mf(A) for the set of all finite multisets over A. Given a1, a2 ∈Mf(A), their multiset
union is denoted by a1 + a2 and defined as a pointwise sum.

1.3. Sequences and Trees. We denote by N<ω the set of all finite sequences over N. An
arbitrary sequence is of the form σ = 〈n1, . . . , nk〉. The empty sequence is denoted by ε.

Let σ = 〈n1, . . . , nk〉 and τ = 〈m1, . . . ,mk′〉 be two sequences and let n ∈ N. We write:

• σ.n for the sequence 〈n1, . . . , nk, n〉,
• σ · τ for the concatenation of σ and τ , that is for the sequence 〈n1, . . . , nk,m1, . . . ,mk′〉.
Given a function f : N→ N, its prefix of length n is the sequence 〈f |n〉 = 〈f(0), . . . , f(n− 1)〉.

Definition 1.1 (Trees and subtrees).

• A tree is a partial function T : N<ω → N such that dom(T ) is closed under prefixes and
for all σ ∈ dom(T ) and n ∈ N we have σ.n ∈ dom(T ) if and only if n < T (σ).
• We write T for the set of all trees.
• The subtree of T at σ is the tree T �σ defined by T �σ(τ) = T (σ · τ) for all τ ∈ N<ω.

The elements of dom(T ) are called positions. For all σ ∈ dom(T ), T (σ) gives the number
of children of the node in position σ. Hence T (σ) = 0 when σ corresponds to a leaf.

Definition 1.2. A tree T is called:

• recursive if the function T is partial recursive (after coding);
• finite if dom(T ) is finite;
• infinite if it is not finite.

We denote by T∞ (resp. T∞rec) the set of all infinite (resp. recursive infinite) trees.

Definition 1.3 (Infinite paths). A function f : N→ N is an infinite path of T if 〈f |n〉 ∈
dom(T ) for all n ∈ N. We denote by Π(T ) the set of all infinite paths of T .

By König’s lemma, a tree T is infinite if and only if Π(T ) 6= ∅.
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1.4. Category Theory. Concerning category theory we mainly use the notations from [5].
Let C be a category and A,B,C be arbitrary objects of C. We write C(A,B) for the

homset of morphisms from A to B. When there is no chance of confusion we simply write
f : A→ B instead of f ∈ C(A,B). Given two morphisms f : A→ B and g : B → C, their
composition is indicated by g ◦f : A→ C.

When the category C is Cartesian, we denote by > the terminal object, by A × B
the categorical product of A and B, by π1 : A × B → A, π2 : A × B → B the associated
projections and, given a pair of arrows f : C → A and g : C → B, by 〈f, g〉 : C → A× B
the unique arrow such that π1◦〈f, g〉 = f and π2◦〈f, g〉 = g. We write f × g for the product
map of f and g which is defined by f × g = 〈f ◦π1, g ◦π2〉.

When C is in addition Cartesian closed we write A⇒B for the exponential object and
evAB : (A⇒B) × A → B for the evaluation morphism. Moreover, for any object C and
arrow f : C × A → B, Λ(f) : C → (A⇒B) stands for the (unique) morphism such that
evAB ◦ (Λ(f)× IdA) = f .

A Cartesian closed category C is well-pointed if, for all objects A,B and morphisms
f, g : A→ B, whenever f 6= g, there exists a morphism h : > → A such that f ◦h 6= g ◦h.
Similarly, an object A is well-pointed if the property above holds for all f, g : A→ A.

We say that D = (D,App, λ) is a reflexive object (living in C) if D is an object of C
and App : D → (D ⇒ D), λ : (D ⇒ D)→ D are morphisms such that App◦λ = IdD⇒D. A
reflexive object D is called extensional whenever λ◦App = IdD.

1.5. The Lambda Calculus. We generally use the notation of Barendregt’s book [7] for
λ-calculus. The set Λ of λ-terms over a denumerable set Var of variables is defined by:

Λ : M,N,P,Q ::= x | λx.M | MN for all x ∈ Var.

We assume that the application associates to the left and has a higher precedence than λ-
abstraction. For instance, we write λxyz.xyz for the λ-term λx.(λy.(λz.((xy)z))). Moreover,
we often write ~x for the sequence 〈x1, . . . , xn〉 and λ~x.M for λx1 . . . λxn.M .

The set FV(M) of free variables of M and the α-conversion are defined as in [7, Ch. 1§2].
Hereafter, we consider λ-terms up to α-conversion.

Definition 1.4. A λ-term M is closed whenever FV(M) = ∅ and in this case it is also
called a combinator. The set of all combinators is denoted by Λo.

We often consider relations on λ-terms that have the property of being “context closed”.
Intuitively a context C[−] is a λ-term with a hole denoted by [−]. Formally, the hole is an
algebraic variable and contexts are defined as follows.

Definition 1.5.

• A context C[−] is generated by the grammar (for x ∈ Var):

C[−] ::= [−] | x | λx.C[−] | (C1[−])(C2[−])

• A context C ′[−] is called single hole if it has a unique occurrence of the algebraic vari-
able [−]. Single hole contexts are generated by (for M ∈ Λ):

C ′[−] ::= [−] | λx.C ′[−] | M(C ′[−]) | (C ′[−])M

• A context H[−] is a head context if it has the shape (λx1 . . . xn.[−])M1 · · ·Mk for some
n, k ≥ 0 and M1, . . . ,Mk ∈ Λ.
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Given a context C[−], we write C[M ] for the λ-term obtained from C[−] by substituting M
for the hole [−] possibly with capture of free variables in M .

A relation R ⊆ Λ × Λ is context closed whenever M R N entails C[M ] R C[N ] for all
single hole contexts C[−]. The context closure of a relation R ⊆ Λ×Λ is the smallest context
closed relation R′ containing R.

Reductions. The λ-calculus is a higher-order term rewriting system and several notions
of reduction can be considered. As a matter of notation, given a reduction R, we write →R

for its context closure, �R for the transitive and reflexive closure of →R, finally =R for the
corresponding R-conversion, that is the transitive, reflexive and symmetric closure of →R.
We denote by nfR(M) the R-normal form (R-nf, for short) of M (if it exists) and by NFR

the set of all R-normal forms. Given two reductions R1, R2 we denote their union by simple
juxtaposition, i.e. →R1R2 represents the relation →R1 ∪ →R2 .

The main notion of reduction is the β-reduction, which is the context closure of:

(λx.M)N → M{N/x} (β)

where M{N/x} denotes the capture-free simultaneous substitution of N for all free occur-
rences of x in M . The term on the left hand-side of the arrow is called β-redex, while the
term on the right hand-side is its β-contractum.

A λ-term M is in β-normal form if and only if M = λ~x.xiM1 · · ·Mk and each Mi is in
β-normal form. We say that M has a β-normal form whenever nfβ(M) exists.

It is well known that the λ-calculus is an intensional language — there are β-different
λ-terms that are extensionally equal. This justifies the definition of the η-reduction:

λx.Mx→ M provided x /∈ FV(M). (η)

Notice however that, when M is a λ-abstraction, the η-reduction is actually a β-step.

Useful combinators and encodings. Concerning specific combinators, we fix the
following notations:

I = 10 = λx.x K = λxy.x 1n+1 = λxy.x(1ny)

F = λxy.y ∆ = λx.xx Y = λf.(λx.f(xx))(λx.f(xx))

Ω = ∆∆ cn = λfz.fn(z) J = Y(λjxy.x(jy))

where fn(z) = f(· · · f(f(z)) · · · ), n times. We will simply denote by 1 the combinator
11 =β λxy.xy. It is easy to check that I is the identity, 1n is a βη-expansion of the identity,
K and F are respectively the first and second projection, Ω is the paradigmatic looping
combinator, Y is Curry’s fixed point combinator, cn is the n-th Church’s numeral and J is
Wadsworth’s “infinite η-expansion of the identity” (see Section 2).

Given two λ-terms M and N their composition is defined by M ◦N = λx.M(Nx) and
their pairing by [M,N ] = λx.xMN (for x /∈ FV(MN)). Moreover, it is possible to λ-define
a given enumeration (Mn)n∈N of closed λ-terms whenever such an enumeration is effective.

Definition 1.6. An enumeration of closed λ-terms (Mn)n∈N is called effective (or uniform
in [7, §8.2]) if there is a combinator F ∈ Λo such that Fcn =β Mn for all n ∈ N.

As shown in [7, Def. 8.2.3], when the enumeration is effective, the sequence [M ]n∈N can
be expressed (using the fixed point combinator Y) as a single λ-term satisfying

[Mn]n∈N =β [M0, [Mn+1]n∈N] =β [M0, [M1, [Mn+2]n∈N]]] =β · · ·
Such infinite sequences will be mainly used in the following sections to build examples.
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BT(λx.yΩ)
q

λx.y

⊥

BT(13)q
λxz0.x

λz1.z0

λz2.z1

z2

BT(J)
q

λxz0.x

λz1.z0

λz2.z1

λz3.z2...

BT(Y)
q

λf.f

f

f

f
...

BT([M ]n∈N)
q

λy.y

BT(M0) λy.y

BT(M1) λy.y

BT(M2)

BT(Ω) = ⊥

Figure 1: Some examples of Böhm trees.

Solvability. Lambda terms are classified into solvable and unsolvable, depending on
their capability of interaction with the environment, represented here by a context.

Definition 1.7.

• A λ-term M is solvable if there exists a head context H[−] such that H[M ] =β I. Otherwise
M is called unsolvable.
• Two λ-terms M,N are called separable if there exists a context C[−] such that C[M ] =β x

and C[N ] =β y for some variables x 6= y.
• Two λ-terms M,N are called semi-separable if there exists a context C[−] such that C[M ]

is solvable while C[N ] is unsolvable or vice versa.

Solvability has been characterized by Wadsworth in terms of head normalization in [88].
We recall that a λ-term M is in head normal form (hnf, for short) if it is of the form
M = λx1 . . . xn.xiM1 · · ·Mk for n, k ≥ 0. Remark that in our notation the head variable
xi can be either bound or free. A λ-term M has a hnf if it is β-convertible to a hnf.
The principal hnf of a λ-term M , denoted phnf(M), is the hnf obtained from M by head

reduction →h, that is by repeatedly contracting the head redex λ~y.(λx.M)N ~P in M . We

refer to [7, Def. 8.3.10] for a formal definition.

Theorem 1.8 (Wadsworth [88]).
A λ-term M is solvable if and only if M has a head normal form.

We say thatM,N have similar hnf’s if phnf(M) = λx1 · · ·xn.xiM1 · · ·Mk and phnf(N) =
λx1 · · ·xn′ .xiN1 · · ·Nk′ with k − n = k′ − n′ and either xi is free or i ≤ min{n, n′}.

1.6. Böhm Trees. The Böhm trees, introduced by Barendregt in 1977 [6] and named after
Corrado Böhm, are possibly infinite labelled trees representing the execution of a λ-term.
The following coinductive definition is taken from [59] (see also [52]).

Definition 1.9. The Böhm tree BT(M) of a λ-term M is defined coinductively as follows:

• if M is unsolvable then BT(M) = ⊥;
• if M is solvable and phnf(M) = λx1 . . . xn.xiM1 · · ·Mk then:

BT(M) = λx1 . . . xn.xi

BT(M1) BT(Mk)· · ·
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In Figure 1 we provide some notable examples of Böhm trees. Notice that in general
FV(BT(M)) ⊆ FV(M) but the converse might not hold. Indeed, given a λ-term M satisfying
M �β λzx.x(Mz), we have that z /∈ FV(BT(Mz)) because z is “pushed to infinity”.

We also present, as an auxiliary notion, the “Böhm-like trees”, which are labelled trees
that look like Böhm trees but may not arise as a Böhm tree of a λ-term.

Definition 1.10. A Böhm-like tree is a labelled tree over L = {⊥} ∪ {λ~x.y | ~x, y ∈ Var},
that is a function U : N<ω → L × N such that π2 ◦U is a tree and (π1 ◦U)(σ) = ⊥ entails
(π2 ◦U)(σ) = 0. The tree π2 ◦U is called the underlying tree of U and is denoted by bUc.

A Böhm-like tree U is λ-definable if U = BT(M) for some M ∈ Λ. In [7, Thm. 10.1.23],
Barendregt gives the following characterization of λ-definable Böhm-like trees.

Theorem 1.11. Given a Böhm-like tree U , there exists a λ-term M such that BT(M) = U
if and only if the restriction U�dom⊥(U) where dom⊥(U) = {σ ∈ dom(U) | (π1 ◦U)(σ) 6= ⊥}
is computable (after coding) and FV(U) is finite.

The Böhm-like tree ⊥ represents the absolute lack of information, therefore it makes
sense to say that ⊥ is “less defined” than any Böhm-like tree U . This is the consideration
behind the order ≤⊥ on Böhm-like trees defined below.

Definition 1.12. Given two Böhm-like trees U, V we say that U is an approximant of V ,
written U ≤⊥V , whenever U results from V by replacing some subtrees by ⊥.

Approximations of Böhm trees. A Böhm tree can be also seen as the least upper
bound of its finite approximants, and finite approximants can be seen as the normal forms
of a λ-calculus extended with a constant ⊥ and an additional reduction →⊥.

A λ⊥-term M is a λ-term possibly containing occurrences of the constant ⊥. The set
Λ⊥ of all λ⊥-terms is generated by the grammar:

Λ⊥ : M,N ::= x | λx.M | MN | ⊥
Similarly a (single hole) λ⊥-context is a (single hole) context C[−] possibly containing
occurrences of ⊥. The ⊥-reduction →⊥ is defined as the λ⊥-contextual closure of the rules:

x.⊥ → ⊥ ⊥M → ⊥ (⊥)

The β- and η- reductions are extended to λ⊥-terms in the obvious way. We write NFβ⊥ for
the set of λ⊥-terms in β⊥-normal forms and we denote its elements by s, t, u, . . .

The following characterization of β⊥-normal forms is well known.

Lemma 1.13. Let M ∈ Λ⊥. We have M ∈ NFβ⊥ if and only if either M = ⊥ or M has
shape λx1 . . . xn.xiM1 · · ·Mk (for some n, k ≥ 0) and each Mj is β⊥-normal.

Definition 1.14. The size of t ∈ NFβ⊥, written #t, is defined by induction:

#⊥ = 0, #(λx.t) = 1 + #t, #(xt1 · · · tk) = 1 +
∑k

i=1 #ti.

The preorder ≤⊥ is defined on λ⊥-terms as the λ⊥-contextual closure of ⊥ ≤M . It is
easy to check that, for all t ∈ NFβ⊥, this definition and Definition 1.12 coincide.

The set of all finite approximants of the Böhm tree of M can be obtained by calculating
the direct approximants of all λ-terms β-convertible with M .

Definition 1.15. Let M ∈ Λ⊥.

(1) The direct approximant of M , written da(M), is the λ⊥-term defined as:
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• da(M) = ⊥ if M = λx1 . . . xk.⊥M1 · · ·Mk,
• da(M) = ⊥ if M = λx1 . . . xk.(λy.M

′)NM1 · · ·Mk,
• da(M) = λx1 . . . xn.xida(M1) · · · da(Mk) if M = λx1 . . . xn.xiM1 · · ·Mk,

(2) The set of finite approximants of M is defined by:

BT∗(M) =
{
da(M ′) | M =β M

′}.
As shown in [3, §2.3], the set BT∗(M) is directed with respect to ≤⊥. For M ∈ Λ,

a finite approximant t ∈ NFβ⊥ belongs to BT∗(M) exactly when t ≤⊥BT(M), therefore
BT(M) =

∨
BT∗(M). Moreover, the following syntactic continuity property holds.

Lemma 1.16. Let M ∈ Λ⊥ and let C[−] be a λ⊥-context. If M = C[(λx.P )Q] then
BT∗(C[⊥]) ⊆ BT∗(M).

Proof. Assume that t ∈ BT∗(C[⊥]). By definition, there exists C ′[−] such that C[y] =β C
′[y],

for some fresh variable y, and t = da(C ′[⊥]). Then C[(λx.P )Q] =β C ′[(λx.P )Q] and
t = da(C ′[(λx.P )Q]), which implies that t ∈ BT∗(M).

1.7. Inequational and Lambda Theories. Inequational theories and λ-theories become
the main object of study when considering the computational equivalence more important
than the process of computation.

Definition 1.17. An inequational theory is any context closed preorder on Λ containing the
β-conversion. A λ-theory is any context closed equivalence on Λ containing the β-conversion.

Given an inequational theory T we write M vT N or T ` M v N for (M,N) ∈ T .
Similarly, given a λ-theory T , we write M =T N or T `M = N whenever (M,N) ∈ T .

The set of all λ-theories, ordered by set theoretical inclusion, forms a complete lattice
λT that has a rich mathematical structure, as shown by Salibra and his coauthors in their
works [79, 63, 68].

Definition 1.18. A λ-theory (or an inequational theory) is called:

• consistent if it does not equate all λ-terms;
• extensional if it contains the η-conversion;
• sensible if it equates all unsolvables.

We denote by λ the least λ-theory, by λη the least extensional λ-theory, by H the least
sensible λ-theory, and by B the (sensible) λ-theory equating all λ-terms having the same
Böhm tree. Given a λ-theory T , we write T η for the least λ-theory containing T ∪ λη.

Inequational theories are less ubiquitously studied in the literature, except when they
capture some observational preorder as explained in the next section. However, they have
been studied in full generality in connection with denotational models (see, e.g., [11]).

2. The Lambda Theories H+ and H∗

Several interesting λ-theories are obtained via suitable observational preorders defined with
respect to a set O of observables. This has been first done by Morris’s in his PhD thesis [69].

Definition 2.1. Let O be a non-empty subset of Λ.
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• The O-observational preorder is given by:

M vO N ⇐⇒ ∀C[−] . C[M ] ∈β O entails C[N ] ∈β O.
where M ∈β O means that there exists a λ-term M ′ such that M �β M

′ ∈ O.

• The O-observational equivalence M ≡O N is defined as M vO N and N vO M .

In the rest of the section we will discuss the λ-theories H∗ and H+ generated as
observational equivalences by considering as observables the head normal forms and the
β-normal forms, respectively, and the corresponding preorders3. In both cases we also recall
the characterizations given in terms of extensional equivalences on Böhm-trees.

2.1. H∗: Böhm Trees and Infinite η-Expansions. The λ-theory H∗ has been defined
by Wadsworth and Hyland as an observational equivalence in [88, 47], where they proved
that it corresponds to the equational theory induced by Scott’s model D∞. In the years, H∗
has become the most well studied λ-theory [7, 44, 41, 77, 65, 16].

Definition 2.2. We let vH∗ be the O-observational preorder obtained by taking as O the
set of head normal forms and H∗ be the corresponding equivalence.

Notice that M =H∗ N is equivalent to say that M,N are not semi-separable. It is easy
to check that H∗ is an extensional λ-theory. A first characterization of H∗ can be given in
terms of maximal consistent extension (also known as Post-completion) of H, and such a
maximality property extends to the corresponding inequational theory.

The following lemma is a generalization of [7, Thm. 16.2.6] that encompasses the
inequational case.

Lemma 2.3. The preorder vH∗ and the equivalence H∗ are maximal among consistent
sensible inequational theories and λ-theories, respectively.

Proof. Let vT be an inequational theory such that vH∗( vT . This means that there exist
M,N such that M vT N while M 6vH∗ N . By Definition 2.2, there is a context C[−]
such that C[M ] has an hnf while C[N ] does not. By Theorem 1.8, there is a head context

H[−] = (λ~x.[−])~P such that H[C[M ]] =β I and H[C[N ]] is unsolvable. As M vT N we get:

I =β H[C[M ]] vT H[C[N ]] =T Ω3 for Ω3 = ∆3∆3 and ∆3 = λx.xxx .

The rightmost equality =T holds because Ω3 is unsolvable and the inequational theory vT
is sensible. Since Ω3 vH∗ I and vH∗⊆ vT , we obtain Ω3 =T I which leads to:

I =T Ω3 =β Ω3∆3 =T I∆3 =β ∆3 .

Since I and ∆3 are βη-distinct normal form, this contradicts the Böhm Theorem [14].

The characterization of H∗ in terms of trees requires the notion of “infinite η-expansion”
of a Böhm-like tree. Intuitively, the Böhm-like tree V is an infinite η-expansion of U , if it is
obtained from U by performing countably many possibly infinite η-expansions.

The classic definition is given in terms of tree extensions [7, Def. 10.2.10]; here we rather
follow the coinductive approach introduced in [59].

3When considering these particular sets O of observables it is not difficult to check that the relations vO
and ≡O are actually inequational and λ-theories (cf. [7, Prop. 16.4.6]). The general case is treated in [71].
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λxy.x

BT(M)
q

x ⊥ λz0.x

λz1.z0

λz2.z1

...

≤η∞ λxy.x

λz0w0.x ⊥ λz0.x

λz1.z0 λz1.z0

λz2.z1 λz2.z1

...

λw1.w0

λw2.w1

...
...

≤⊥ λxy.x

λz0w0.x y λz0.x

λz1.z0 λz1.z0

λz2.z1 λz2.z1

...

λw1.w0

λw2.w1

...
...

≥η∞ λxy.x

BT(N)
q

λz0w0.x y x

λz1.z0

λz2.z1

...

λw1.w0

λw2.w1

...

Figure 2: A situation witnessing the fact that M vH∗ N holds.

Definition 2.4. Given two Böhm-like trees U and V , we define coinductively the relation
U ≤η∞ V expressing the fact that V is a (possibly) infinite η-expansion of U . We let ≤η∞ be
the greatest relation between Böhm-like trees such that U ≤η∞ V entails that

• either U = V = ⊥,
• or (for some i, k,m, n ≥ 0):

U = λx1 . . . xn.xiU1 · · ·Uk and V = λx1 . . . xnz1 . . . zm.xiV1 · · ·VkV ′1 · · ·V ′m
where ~z ∩ FV(xiU1 · · ·Uk) = ∅, Uj ≤η∞ Vj for all j ≤ k and z` ≤η∞ V ′` for all ` ≤ m.

Notice that in Barendregt’s book [7, Def. 10.2.10(iii)], the relation above is denoted
by ≤η. We prefer to use a different notation because we want to emphasize the possibly
infinitary nature of such η-expansions.

Theorem 2.5 [7, Thm. 19.2.9]. Let M,N ∈ Λ.

(i) M vH∗ N if and only if there are Böhm-like trees U, V such that BT(M) ≤η∞ U ≤⊥
V ≥η∞ BT(N).

(ii) M =H∗ N if and only if there is a Böhm-like tree U such that BT(M) ≤η∞ U ≥η∞
BT(N).

In other words, H∗ equates all λ-terms whose Böhm trees are equal up to countably
many (possibly) infinite η-expansions. From Theorem 1.11, it follows that the trees U, V
appearing in the statements above can always be chosen λ-definable (see [7, Ex. 10.6.7]).

Example 2.6.

(1) The typical example is I =H∗ J, since clearly BT(J) is an infinite η-expansion of I, so
BT(I) ≤η∞ BT(J) holds.

(2) As a consequence, we get that BT([I]n∈N) ≤η∞ BT([J]n∈N) for [I]n∈N = [I, [I, [I, . . . ]]]
and [J]n∈N = [J, [J, [J, . . . ]]].

(3) For M = λxy.xxΩ(Jx) and N = λxy.x(λz0w0.x(Jz0)(Jw0))yx, we have M vH∗ N
(as shown in Figure 2) but M 6=H∗ N . As we will see in Section 2.2, it is possible to
represent the subterm λz0w0.x(Jz0)(Jw0) as JTx, where JT is an infinite η-expansion
of I following a suitable tree T .

The point (2) shows that for proving BT(M) ≤η∞ BT(N) one may need to perform
denumerably many infinite η-expansions. Point (3) shows that for proving M vH∗ N , it
may not be enough to infinitely η-expand BT(M) to match the structure of BT(N): one
may need to perform infinite η-expansions on both sides and cut some subtrees of BT(N).
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λxy1 . . . yTε.x

λz1 . . . zT 〈0〉.y1 · · · λz1 . . . zT 〈Tε-1〉.yTε

λ~wT 〈0,0〉.z1 · · · λ~wT 〈0,T 〈0〉-1〉.zT 〈0〉 λ~wT 〈Tε-1,0〉.z1 · · · λ~wT 〈Tε-1,T 〈Tε-1〉-1〉.zT 〈Tε-1〉

· · · · · · · · · · · ·

Figure 3: The Böhm-like tree of an infinite η-expansion of I following T ∈ T∞rec. To lighten
the notations we write Tσ rather than T (σ) and we let ~wn := w1, . . . , wn.

Remark 2.7. From Theorem 2.5 and Definition 2.4 it follows that if M vH∗ N and M is
solvable then also N is solvable and M,N have similar hnf’s.

2.2. The Infinite η-Expansion JT . Wadsworth’s combinator J is the typical example of
an infinite η-expansion of the identity. However, there are many λ-terms M that satisfy the
property of being infinite η-expansions of the identity, namely BT(I) ≤η∞ BT(M).

Recall from Section 1.6 that bBT(M)c denotes the underlying tree of BT(M).

Definition 2.8. Let M ∈ Λo and T ∈ T∞. We say that M is an infinite η-expansion of the
identity following T whenever x ≤η∞ BT(Mx) and bBT(Mx)c = T for any x ∈ Var.

For instance, J follows the infinite unary tree T corresponding to the map T (σ) = 1 for
all σ = 〈0, . . . , 0〉. We now provide a characterization of all such infinite η-expansions.

Proposition 2.9. For all T ∈ T∞, there exists a λ-term JT which is an infinite η-expansion
of the identity following T if and only if T is recursive.

Proof. (⇒) By Theorem 1.11, BT(JTx) is partial recursive and so is its underlying tree T .
Since x ≤η∞ BT(JTx), BT(JTx) cannot have any occurrences of ⊥ so dom(T ) is decidable.

(⇐) We fix a bijective encoding of all finite sequences of natural numbers # : N<ω → N
which is effective in the sense that the code #(σ.n) is computable from #σ and n. We write
dσe for the corresponding Church numeral c#σ. Using a fixed point combinator Y, we define
a λ-term X ∈ Λo satisfying the following recursive equation (for all σ ∈ dom(T )):

Xdσex =β λz1 . . . zm.x(Xdσ.0ez1) · · · (Xdσ.m− 1ezm) where m = T (σ). (2.1)

(The existence of such a λ-term follows from the fact that T is recursive, the effectiveness of
the encoding # and Church’s Thesis.) We prove by coinduction that for all σ ∈ dom(T ),
Xdσe is an infinite η-expansion of the identity following T �σ. Indeed, Xdσex is β-convertible
to the λ-term of Equation 2.1. By coinductive hypothesis we get for all i < T (σ) that zi ≤η∞
BT(Xdσ.iezi) and bBT(Xdσ.iezi)c = T �σ.i. From this, we conclude that x ≤η∞ BT(Xdσex)
and bBT(Xdσex)c = T . Therefore, the λ-term JT we are looking for is Xdεe.
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2.3. H+: Böhm Trees and Their Finitary η-Expansions. Perhaps surprisingly, it
turns out that H∗ is not the first λ-theory that has been defined in terms of contextual
equivalence. Indeed, Morris’s original extensional observational equivalence is the following.

Definition 2.10. Morris’s inequational theory vH+ is the O-observational preorder obtained
by taking as O the set NFβ of β-normal forms. We denote by H+ the corresponding

equivalence, which we call Morris’s λ-theory4.

Notice that it is equivalent to take as observables the βη-normal forms, since M �β

nfβ(M) exactly when M �βη nfβη(M). From this, it follows that H+ is an extensional
λ-theory. It is easy to show that M vH+ N entails M vH∗ N , therefore we have H+ ( H∗.
In [26], Coppo, Dezani-Ciancaglini and Zacchi defined a filter model having H+ as equational
theory. Also H+ can be characterized via a suitable extensional equivalence between Böhm
trees. Intuitively, the Böhm-like tree U is a finitary η-expansion of V , if it is obtained from
V by performing countably many finite η-expansions.

Definition 2.11. Given two Böhm-like trees U and V , we define coinductively the relation
U ≤η V expressing the fact that V is a finitary η-expansion of U . We let ≤η be the greatest
relation between Böhm-like trees such that U ≤η V entails that

• either U = V = ⊥,
• or (for some i, k,m, n ≥ 0):

U = λx1 . . . xn.xiU1 · · ·Uk and V = λx1 . . . xnz1 . . . zm.xiV1 · · ·VkQ1 · · ·Qm
where ~z∩FV(xiU1 · · ·Uk) = ∅, Uj ≤η Vj for all j ≤ k and ~Q ∈ NFβ are such that Q` �η z`
for all ` ≤ m.

Two λ-terms M,N are equivalent in H+ exactly when their Böhm trees are equal up to
countably many η-expansions of finite depth.

Theorem 2.12 [46, Thm. 2.6]. For M,N ∈ Λ, we have that M =H+ N if and only if there
exists a Böhm-like tree U such that BT(M) ≤η U ≥η BT(N).

Example 2.13. Recall from Example 2.6(2) that [I]n∈N = [I, [I, [I, . . . ]]] and define the
sequence [1n]n∈N = [I, [11, [12, . . . ]]] where 1n is defined on Page 8. From Definition 2.11 it
follows BT([I]n∈N) ≤η BT([1n]n∈N) while, for instance, BT([I]n∈N) 6≤η BT([J]n∈N).

As a brief digression, notice that the λ-terms [I]n∈N and [1n]n∈N can be used to show
that Bη ( H+. Indeed, for M,N ∈ Λ, M →η N entails that BT(M) can be obtained from
BT(N) by performing at most one η-expansion at every position (see [7, Lemma 16.4.3]).
However, to equate the Böhm trees of [I]n∈N and [1n]n∈N, at every level one needs to perform
η-expansions of increasing depth and this is impossible in Bη (as shown in [51]).

As proved in [18] by exploiting a revised Böhm-out technique, the following weak
separation result holds. (For the interested reader a fully detailed proof will appear in [50].)

Theorem 2.14 (Morris Separation). Let M,N ∈ Λ such that M vH∗ N while M 6vH+ N .
There exists a context C[−] such that C[M ] =βη I and C[N ] =B JT for some T ∈ T∞rec.

This allows to Morris-separate also λ-terms like I and J that are not semi-separable.

4 The notation H+ for Morris’s λ-theory has been used in [67, 18, 51]. The same λ-theory is denoted TNF

in Barendregt’s book [7] and N in Paolini and Ronchi della Rocca’s one [77].
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2.4. Extensional Approximants. As far as we know, in the literature there is no char-
acterization of vH+ in terms of extensional equality between Böhm trees. However, Lévy
in [60] provides a characterization in terms of “extensional approximants” of Böhm trees.
Recall from Definition 1.15(2) that BT∗(M) is the set of all finite approximants of M .

Definition 2.15. For M ∈ Λ, the set BTe(M) of all extensional (finite) approximants of
M is defined as follows:

BTe(M) = {nfη(t) | t ∈ BT∗(M ′),M ′ �η M}.

Example 2.16. The sets of extensional approximants of some notable λ-terms:

• BTe(I) = {⊥, I, λxz0.x⊥, λxz0.x(λz1.z0⊥), λxz0.x(λz1.z0(λz2.z1⊥)), . . . },
• BTe(J) = BTe(I)− {I}.
(Here we decided to display those approximants having a regular shape, but also λ⊥-terms
like λxz0z1z2.x(λw0w1.z0w0⊥)z1⊥ belong to these sets).

The following result is taken from [60] (see also Theorem 11.2.20 in [77]) and will be
used in the proof of Corollary 4.18.

Theorem 2.17. For M,N ∈ Λ we have M vH+ N if and only if BTe(M) ⊆ BTe(N).

3. The Relational Graph Models

In this section we recall the definition of a relational graph model (rgm, for short). Individual
examples of rgm’s have been previously studied in the literature as models of the λ-
calculus [20, 65, 29, 49], of nondeterministic λ-calculi [21] and of resource calculi [66, 70].
However, the class of relational graph models was formally introduced in [67].

3.1. The Relational Semantics. Relational graph models are called relational since
they are reflexive objects in the Cartesian closed category MRel [20], which is the Kleisli
category of the finite multisets comonadMf(−) on Rel. Since we do not use the underlying
symmetric monoidal category, we present directly its Cartesian closed structure. Recall that
the definitions and notations concerning multisets have been introduced in Subsection 1.2.

Definition 3.1. The category MRel is defined as follows:

• The objects of MRel are all the sets.
• A morphism from A to B is a relation from Mf(A) to B; in other words, MRel(A,B) =
P(Mf(A)×B).
• The identity of A is the relation IdA = {([α], α) | α ∈ A} ∈MRel(A,A).
• The composition of f ∈MRel(A,B) and g ∈MRel(B,C) is defined by:

g ◦f =
{

(a, γ) | ∃k ∈ N, ∃(a1, β1), . . . , (ak, βk) ∈ f such that
a = a1 + · · ·+ ak and ([β1, . . . , βk], γ) ∈ g

}
.

Given two sets A1, A2, we denote by A1&A2 their disjoint union ({1}×A1)∪ ({2}×A2).
Hereafter we adopt the following convention.

Convention. We consider the canonical bijection (also known as Seely isomorphism [13])
between Mf(A1) ×Mf(A2) and Mf(A1 &A2) as an equality. As a consequence, we still
denote by (a1, a2) the corresponding element of Mf(A1&A2).
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Theorem 3.2. The category MRel is a Cartesian closed category.

Proof. The terminal object > is the empty set ∅, and the unique element of MRel(A, ∅) is
the empty relation.

Given two sets A1 and A2, their categorical product in MRel is their disjoint union
A1&A2 and the projections π1, π2 are given by:

πi =
{

([(i, a)], a) | a ∈ Ai
}
∈MRel(A1&A2, Ai), for i = 1, 2.

It is easy to check that this is actually the categorical product of A1 and A2 in MRel;
given f ∈ MRel(B,A1) and g ∈ MRel(B,A2), the corresponding morphism 〈f, g〉 ∈
MRel(B,A1&A2) is given by:

〈f, g〉 =
{

(b, (1, α)) | (b, α) ∈ f} ∪ {(b, (2, α)) | (b, α) ∈ g
}
.

Given two objects A and B, the exponential object A⇒B isMf(A)×B and the evaluation
morphism is given by:

evAB =
{(

([(a, β)], a), β
)
| a ∈Mf(A) and β ∈ B

}
∈MRel((A⇒ B)&A,B) .

Again, it is easy to check that in this way we defined an exponentiation. Indeed, given
any set C and any morphism f ∈MRel(C&A,B), there is exactly one morphism Λ(f) ∈
MRel(C,A⇒ B) such that:

evAB ◦ (Λ(f)× IdS) = f.

which is Λ(f) =
{

(c, (a, β)) | ((c, a), β) ∈ f
}

.

The category MRel provides a simple example of a non-well-pointed category.

Theorem 3.3. No object A 6= > is well-pointed, so neither is MRel.

Proof. For every A 6= ∅, we can always find f, g : A → A such that f 6= g and, for all
h : > → A, f ◦h = g◦h. Indeed, by definition of composition, f ◦h = {(ω, α) | ∃β1, . . . , βk ∈
A, (ω, βi) ∈ h, ([β1, . . . , βk], α) ∈ f}, and similarly for g ◦h. Hence it is sufficient to choose
f = {(a1, α)} and g = {(a2, α)} for a1, a2 different multisets with the same support.

3.2. The Class of Relational Graph Models. The class of graph models constitutes a
subclass of the continuous semantics [81] and is the simplest generalization of the Engeler
and Plotkin’s construction [39, 74]. This class has been widely studied in the literature and
has been used to prove several interesting results [10]. We recall that a graph models is
given by a set A and a total injection i : Pf(A)×A→ A, and induces P(A) as a reflexive
object in the category of Scott’s domains and continuous functions. Therefore, a bijective i
does not induce automatically an isomorphism between P(A) and P(A)⇒P(A). As shown
in [10, §5.5], no graph model G can be extensional because G |= 1 v I is never satisfied.

The definition of a relational graph model mimics the one of a graph model while
replacing finite sets with finite multisets. As we will see, relational graph models capture a
particular subclass of reflexive objects living in MRel.

Definition 3.4. A relational graph model D = (D, i) is given by an infinite set D and a
total injection i :Mf(D)×D → D. We say that D is extensional when i is bijective.

The equality i(a, α) = β indicates that the “arrow type” a → α is equivalent to the
type β. In particular, in an extensional relational graph model, every element of the model
can be seen as an arrow. Keeping this intuition in mind, we adopt the notation below.
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Notation 3.5. Given an rgm D = (D, i), a ∈ Mf(D) and α ∈ D, we write a →i α (or
simply a→ α, when i is clear) as an alternative notation for i(a, α).

As shown in the next proposition, the reflexive object induced by a relational graph
model (D, i) is not some powerset of D as in the case of regular graph models, but rather D
itself. This opens the way to define extensional reflexive objects.

Proposition 3.6. Given an rgm D = (D, i) we have that:

(i) D induces a reflexive object (D,App, λ) where

λ =
{

([(a, α)], a→i α) | a ∈Mf(D), α ∈ D
}
∈MRel(D⇒D,D),

App =
{

([a→i α], (a, α)) | a ∈Mf(D), α ∈ D
}
∈MRel(D,D⇒D),

(ii) If moreover D is extensional, then also the induced reflexive object is.

Proof. ((i)) App ◦ λ =
{(

[(a, α)], (a, α)
)
| ([(a, α)], a → α) ∈ λ, ([a → α], (a, α)) ∈ App

}
={(

[(a, α)], (a, α)
)
| a ∈Mf(D), α ∈ D

}
= IdMf(D)×D = IdD⇒D.

((ii)) If i is bijective for every β ∈ D we have β = a →i α for some a ∈ Mf(D) and
α ∈ D. So λ ◦ App =

{(
[a→ α], a→ α

)
| ([a→ α], (a, α)) ∈ App, ([(a, α)], a→ α) ∈ λ

}
={(

[a→ α], a→ α
)
| a ∈Mf(D), α ∈ D

}
=
{(

[β], β
)
| β ∈ D

}
= IdD.

Note that, when i is just injective, there are in principle different morphisms that could
be chosen as inverses of λ. Therefore, there exist reflexive objects in MRel that are not
relational graph models. However, all inverses of λ induce relational models that are strongly
linear in the sense of [72]. Finally, since every isomorphism f ∈MRel(A,A) is of the form
f = {([α], i(α)) | α ∈ A} for some bijective map i, the class of extensional relational graph
models coincides with the one of extensional reflexive objects living in this category.

3.3. Building Relational Graph Models by Completion. Relational graph models –
just like the regular ones – can be built by performing the free completion of a partial pair.

Definition 3.7.

(1) A partial pair A is a pair (A, j) where A is a non-empty set of elements (called atoms)
and j :Mf(A)×A→ A is a partial injection.

(2) A partial pair A is called extensional when j is a bijection between dom(j) and A.
(3) A partial pair A is called total when j is a total function, and in this case A is a

relational graph model.

Hereafter, we consider without loss of generality partial pairs A whose underlying set A
does not contain any pair of elements. In other words, we assume (Mf(A) × A) ∩ A = ∅.
This is not restrictive because partial pairs can be considered up to isomorphism.

Definition 3.8. The free completion A of a partial pair A is the pair (A, j) defined as:
A =

⋃
n∈NAn, where A0 = A and An+1 = ((Mf(An)×An)− dom(j)) ∪A ; moreover

j(a, α) =

{
j(a, α) if (a, α) ∈ dom(j),

(a, α) otherwise.

It is well known for graph models, and easy to check for relational graph models, that
every D is isomorphic to its own free completion D ∼= D. In particular, given a partial pair

A, we have that A ∼= A.
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Proposition 3.9. If A is an (extensional) partial pair, then A is an (extensional) rgm.

Proof. The proof of the fact that A is an rgm is analogous to the one for regular graph
models [10]. It is easy to check that when j is bijective, also its completion j is.

The following relational graph models are built by free completion and will be running
examples in the next sections.

Example 3.10. Some examples of relational graph model:

• E = (N, ∅) was introduced in [49],

• Dω = ({?}, {(ω, ?) 7→ ?}) was first defined (up to isomorphism) in [20],

• D? = ({?}, {([?], ?) 7→ ?}) was introduced in [67].

Notice that Dω and D? are extensional, while E is not.

3.4. Categorical Interpretation. We now show how λ-terms and Böhm trees can be
interpreted in a relational graph model, and we review their main properties.

Recall that notions and notations concerning multisets have been introduced in Sec-

tion 1.2. Given two n-uples ~a,~b ∈Mf(A)n we write ~a+~b for (a1 +b1, . . . , an+bn) ∈Mf(A)n.

Definition 3.11. Let D be an rgm, M ∈ Λ and FV(M) ⊆ {x1, . . . , xn}. The categorical
interpretation of M in D w.r.t. ~x is the relation |M |D~x ⊆Mf(D)n ×D defined by:

i. |xi|D~x =
{

((ω, . . . , ω, [α], ω, . . . , ω), α
)
| α ∈ D

}
, where [α] stands in i-th position.

ii. |λy.N |D~x =
{

(~a, a→i α) | ((~a, a), α) ∈ |N |D~x,y
}

where we take y /∈ ~x by α-conversion.

iii. |PQ|D~x =
{

((~a0 + · · ·+ ~ak), α) | ∃α1, . . . , αk ∈ D such that

(~a0, [α1, . . . , αk]→i α) ∈ |P |D~x and (~aj , αj) ∈ |Q|D~x for all 1 ≤ j ≤ k
}

.

This definition extends to λ⊥-terms M by setting |⊥|D~x = ∅ and to Böhm trees of λ-terms by

interpreting all their finite approximants, namely by setting |BT(M)|D~x =
⋃
t∈BT∗(M) |t|D~x .

It is easy to check that the definition above is an inductive characterization of the usual
categorical interpretation of λ-terms as morphisms of a Cartesian closed category.

Convention. From now on, whenever we write |M |D~x we always assume that FV(M) ⊆ ~x.

When M is a closed λ-term we consider |M |D simply as a subset of D. In all our notations
we omit the model D when it is clear from the context.

Example 3.12. Let D be any rgm. Then we have:

(1) |I|D = {[α]→ α | α ∈ D} and
(2) |1|D = {[a→ α]→ a→ α | α ∈ D, a ∈Mf(D)}, thus:
(3) |J|D = {[α]→ α | α ∈ D′} ⊆ |1|D ⊆ |I|D, where D′ is the smallest subset of D satisfying:

if α ∈ D then ω → α ∈ D′; if α ∈ D and a ∈Mf(D
′) then a→ α ∈ D′,

(4) |∆|D = {(a+ [a→ α])→ α | α ∈ D, a ∈Mf(D)} therefore:
(5) |Ω|D = |⊥|D = ∅,
(6) |λx.xΩ|D = {[ω → α]→ α | α ∈ D}.
Consider the relational graph models Dω and D? from Example 3.10. From the calculations
above it follows that |I| = |1| in both Dω and D?, but |I|Dω = |J|Dω , while ? ∈ |I|D? − |J|D?.
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3.5. Soundness. Relational graph models satisfy the following substitution property and
are sound models of λ-calculus in the sense that they equate all β-convertible λ-terms.

Lemma 3.13 (Substitution). Let M,N ∈ Λ and D be an rgm. For ~a ∈Mf(D)n and α ∈ D
we have that (~a, α) ∈ |M{N/y}|D~x if and only if there exist b = [β1, . . . , βk] ∈ Mf(D) and

~a0, . . . ,~ak ∈ Mf(D)n such that (~a`, β`) ∈ |N |D~x , for 1 ≤ ` ≤ k, ((~a0, b), α) ∈ |M |D~x,y and

~a =
∑k

`=0~a`.

Proof. We proceed by induction on M , the only interesting case being M = PQ.
(⇒) We know that (~a, α) ∈ |M{N/y}|~x if and only if there are γ1, . . . , γk and a decompo-

sition ~a =
∑k

`=0~a
` such that (~a 0, [γ1, . . . , γk] → α) ∈ |P{N/y}|~x and (~a`, γ`) ∈ |Q{N/y}|~x

for 1 ≤ ` ≤ k. By applying the induction hypothesis to the former assumption, we get
b0 = [β01 , . . . , β

0
m] and a decomposition ~a 0 =

∑m
j=0~a

0
j such that ((~a 0

0 , b
0), [γ1, . . . , γk]→ α) ∈

|P |~x,y and (~a 0
i , β

0
i ) ∈ |N |~x for 1 ≤ i ≤ m. From the latter, for each ` = 1, . . . , k we get

b` = [β`1, . . . , β
`
k`

] and a decomposition ~a` =
∑k`

j=0~a
`
j such that ((~a`0, b

`), γ`) ∈ |Q|~x,y and

(~a`j , β
`
j) ∈ |N |~x for 1 ≤ j ≤ k`. We conclude that ((

∑k
`=0~a

`
0,
∑k

`=0 b
`), α) ∈ |PQ|~x,y.

(⇐) By analogue calculations.

Lemma 3.14 (Monotonicity). Let D be an rgm, and M,N ∈ Λ. If |M |D~x ⊆ |N |
D
~x then for

all contexts C[−] we have |C[M ]|D~x ⊆ |C[N ]|D~x .

Proof. Notice that, by the Convention above, we assume FV(M) ∪ FV(N) ∪ FV(C[−]) ⊆ ~x.
The result follows by a straightforward induction on C[−].

Theorem 3.15 (Soundness). Let M,N ∈ Λ and D be a relational graph model. If M =β N

then |M |D~x = |N |D~x .

Proof. From the substitution lemma and Lemma 3.14 we have that M →β M ′ entails
|M |~x = |M ′|~x. By Church Rosser M =β N if and only if they have a common reduct P such
that M �β P and N �β P . Summing up, we have |M |~x = |P |~x = |N |~x.

Definition 3.16.

• The λ-theory induced by a relational graph model D is defined by

Th(D) = {(M,N) ∈ Λ× Λ | |M |~x = |N |~x} .
We write D |= M = N for (M,N) ∈ Th(D).
• Similarly, the inequational theory induced by D is given by

Thv(D) = {(M,N) ∈ Λ× Λ | |M |~x ⊆ |N |~x} .
We write D |= M v N for (M,N) ∈ Thv(D).
• An rgm D is called O-fully abstract when D |= M = N if and only if M ≡O N .
• D is inequationally O-fully abstract when D |= M v N if and only if M vO N .
• We say that a λ-theory (resp. inequational theory) T is representable by a relational graph

model if there exists an rgm D such that Th(D) = T (resp. Thv(D) = T ).
• We say that a λ-theory (resp. inequational theory) is a (resp. inequational) relational

graph theory if it is represented by some relational graph model.

Lemma 3.17. Let D be an rgm.

(i) If M →η N then |N |D~x ⊆ |M |
D
~x ,

(ii) D is extensional if and only if λη ⊆ Th(D).
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var
x : [α] `D x : α

Γ, x : a `D M : α
lam

Γ `D λx.M : a→ α

Γ `D M : [β1, . . . , βn]→ α ∆i `D N : βi 1 ≤ i ≤ n
app

Γ + (
∑n

i=1 ∆i) `D MN : α

Figure 4: The typing rules of the type system associated with a relational graph model D.

Proof. (i) By inspecting their interpretations (Example 3.12(1-2)) it is clear that |1| ⊆ |I|.
For all N ∈ Λ, D |= 1N v IN (monotonicity) which entails D |= λx.Nx v N (soundness).

(ii) By monotonicity λη ⊆ Th(D) if and only if D |= 1 = I. As above, we know that
D |= 1 v I holds. The other inclusion holds if and only if for all α ∈ D there exist a, β such
that i(a, β) = α if and only if i is bijective.

As a consequence, the λ-theories induced by relational graph models and by ordinary
graph models are different, since no graph model is extensional.

4. Quantitative Properties and Approximation Theorem

Every relational graph model can be presented as a type system. The interpretation of a
λ-term M is given by the set of all pairs (Γ, α) such that Γ `M : α is derivable in the system.
Such a logical interpretation turns out to be equivalent to the categorical one (Theorem 4.8).
This presentation exposes the quantitative nature of the relational semantics and allows to
provide a combinatorial proof of the Approximation Theorem (Theorem 4.16).

4.1. Relational Graph Models as Type Systems. The types of the system associated
to a relational graph model D = (D, i) are the elements of the underlying set D themselves.
We recall from Notation 3.5 that a→ α denotes the element i(a, α) which belongs to D.

Definition 4.1. An environment for D is a map Γ : Var →Mf(D) such that supp(Γ) =
{x ∈ Var | Γ(x) 6= ω } is finite. The set of all environments for D is denoted by EnvD.

We write x1 : a1, . . . , xn : an for the environment Γ such that Γ(xi) = ai if 1 ≤ i ≤ n
and Γ(y) = ω otherwise. When supp(Γ) = ∅ the environment Γ is just omitted.

Definition 4.2. Given Γ,∆ ∈ EnvD we define the environment Γ+∆ by setting (Γ+∆)(x) =
Γ(x) + ∆(x) for all x ∈ Var.

A (type) judgment is a triple (Γ,M, α) ∈ EnvD × Λ⊥ × D that will be denoted as
Γ `D M : α, or simply Γ `M : α whenever D is clear from the context.

Definition 4.3. Let D be a relational graph model. The inference rules of the type system
`D for Λ⊥ associated with D are given in Figure 4.

We remark that these type systems are relevant since the weakening is not available.
Indeed, the rule var does not allow a generic environment Γ, x : [α] and the sum of contexts
in app takes multiplicities into account. The types are strict in the sense that multisets may
only appear at the left hand-side of an arrow. In particular, no λ⊥-term can have type ω.

The number n appearing in the rule app can be 0. So we have the inference rule

Γ `D M : ω → α
Γ `D MN : α (4.1)
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for every N ∈ Λ⊥. For example, even if Ω is not typable in the system associated with any
relational graph model, the following derivation is always possible for every α ∈ D:

x : [ω → α] `D x : ω → α

x : [ω → α] `D xΩ : α

`D λx.xΩ : [ω → α]→ α

Hereafter, when writing Γ `D M : α, we intend that such a judgment is derivable. We
write π I Γ `D M : α to indicate that π is a derivation tree of the judgment Γ `D M : α.

Definition 4.4. Let π, π′ be two derivation trees. We set π ' π′ if and only if the trees
obtained from π and π′ by removing the λ⊥-terms from each of their nodes coincide.

Example 4.5. Let π and π′ be the following derivation trees:

x : [α] `D x : α

x : [α] `D λy.x : ω → α

x : [α] `D (λy.x) z : α

x : [α] `D x : α

x : [α] `D λy.x : ω → α

x : [α] `D (λy.x) K : α

We have π ' π′ because once all λ⊥-terms are erased they both become like this:

x : [α] `D : α

x : [α] `D : ω → α

x : [α] `D : α

From an intuitive perspective, the equivalence π ' π′ says that π and π′ are roughly
the same derivation tree (but it can possibly be used to type distinct λ⊥-terms).

Lemma 4.6. Let D be an rgm. If Γ `D M : α then supp(Γ) ⊆ FV(M).

Proof. By a straightforward induction on the derivation of the judgment.

As shown by the first derivation of Example 4.5, the inclusion in Lemma 4.6 can be
strict, indeed we have x : [α] ` (λy.x)z : α and supp(x : [α]) = {x} ( FV((λy.x)z). In
general, one should realize that whenever π I Γ `M : α and supp(Γ) ( FV(M) then along
π some subterm N of M comes in argument position and is not actually typed, as in (4.1).

We could formalize the type systems `D in a style more similar to traditional intersection
type systems (as in [72]), in order to expose clearly the intuition of relational graph models
as resource-sensitive versions of filter models [9, Part III], not only of graph models. We
followed that approach in [67] and [78], where the multisets occurring in the types were
actually denoted as non-idempotent intersections and an explicit conversion rule

Γ `D M : β β ' α
Γ `D M : α

eq

was available in the system. Since such a presentation does not change the expressive power
of the systems, but complicates the technical proofs (as it obliges to consider the possible
commutations of the rule eq along a given derivation π) we decided to avoid it here.



RELATIONAL GRAPH MODELS AT WORK 23

4.2. Logical Interpretation. The type system associated to a relational graph model D
provides an alternative way to define the interpretation of a λ⊥-term. This logical/type-
theoretical approach is rather common and fits in the tradition of filter models [9, Part III].

Definition 4.7. Let D be an rgm and M ∈ Λ⊥. The logical interpretation of M in D is:

JMKD =
{

(Γ, α) ∈ EnvD ×D | Γ `D M : α
}
.

When D is clear from the context we write JMK, and when M is closed we consider JMK ⊆ D.
This definition extends to Böhm trees of λ-terms like Definition 3.11.

The interpretation of a λ⊥-term cannot be just the set of its types as in the case of
filter models. This is related with the fact that MRel is not well-pointed (see Section 4.3).

We now show that the logical interpretation J−KD is equivalent to the categorical one
| − |D− in the sense that they induce the same (in)equalities between λ-terms.

Theorem 4.8 (Semantic Equivalence). Let M ∈ Λ and FV(M) ⊆ {x1, . . . , xn}. Then

(i) JMKD =
{(

(x1 : a1, . . . , xn : an), α
)
∈ EnvD ×D |

(
(a1, . . . , an), α

)
∈ |M |D~x

}
,

(ii) |M |D~x =
{(

(Γ(x1), . . . ,Γ(xn)), α
)
∈Mf(D)n ×D | (Γ, α) ∈ JMKD

}
.

Proof. (i) It is enough to prove that Γ `M : α if and only if
(
(Γ(x1), . . . ,Γ(xn), α)

)
∈ |M |~x

and supp(Γ) ⊆ {x1, . . . , xn}. We proceed by induction on M .
Case M = xi. By Definition 4.3 we have Γ ` xi : α if and only if Γ = xi : [α]. Thus, we
have

(
(Γ(x1), . . . ,Γ(xn)), α

)
=
(
(ω, . . . , ω, [α], ω, . . . , ω), α

)
∈ |xi|~x by Definition 3.11(i.).

Case M = λy.P . By Definition 4.3 we have that Γ ` λy.P : α holds exactly when
Γ, y : a ` P : α. By induction hypothesis this is equivalent to ask that supp(Γ) ⊆ {x1, . . . , xn}
and

(
(Γ(x1), . . . ,Γ(xn), a), α

)
∈ |P |~x,y which holds whenever

(
(Γ(x1), . . . ,Γ(xn)), a→ α

)
∈

|λy.P |~x, by Definition 3.11(ii.).
Case M = PQ. By Definition 4.3 we have Γ ` PQ : α if and only if Γ0 ` P : [β1, . . . , βk]→ α
and Γi ` Q : βi for all 1 ≤ i ≤ k where Γ =

∑n
i=0 Γi and β1, . . . , βk ∈ D. By induction

hypothesis this is equivalent to require that supp(Γi) ⊆ {x1, . . . , xn} for all 0 ≤ i ≤ k,(
(Γ0(x1), . . . ,Γ0(xn)), [β1, . . . , βk]→ α

)
∈ |P |~x and

(
(Γj(x1), . . . ,Γj(xn)), βj

)
∈ |Q|~x for all

1 ≤ j ≤ k. By Definition 3.11(iii.), this is equivalent to
(
(Γ(x1), . . . ,Γ(xn)), α

)
∈ |PQ|~x.

(ii) This point follows since every element ((a1, . . . , an), α) ∈Mf(D)n ×D has the form(
(Γ(x1), . . . ,Γ(xn)), α

)
for Γ = x1 : a1, . . . , xn : an.

Corollary 4.9. Let D be an rgm. Let M,N ∈ Λ such that FV(MN) ⊆ {x1, . . . , xn}. Then

D |= M v N ⇐⇒ |M |D~x ⊆ |N |
D
~x ⇐⇒ JMKD ⊆ JNKD.

4.3. On the choice of the interpretation. The categorical interpretation of a λ-term M
in a reflexive object D gives a morphism |M |~x : D~x → D such that Th(D) is a λ-theory.
If the category is well-pointed, like Scott’s continuous semantics, then it is equivalent to
interpret M as a point of D through a valuation ρ : Var→ D, namely |M |ρ : > → D [7, §5.5].
For this reason, in the context of graph and filter models, it became standard to consider the
interpretation of M as an element of the domain and, when presented like a type system, as
the set of its types [10, 26, 76, 77]. As shown by Koymans in [54], when the category is not
well-pointed, points are no more suitable for interpreting λ-terms since the induced equality
is not a λ-theory because of the failure of the ξ-rule [83]. In the algebraic terminology, the
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set of points gives a λ-algebra which is not a λ-model [7, §5.2]. In [20], Bucciarelli et al.
show that a λ-model can however be constructed from a reflexive object D of a non-well
pointed category, by considering the set Cf(D

Var, D) of “finitary” morphisms from DVar to
D and valuations ρ : Var→ Cf(D

Var, D). For instance, this is the approach followed in [72].
However, in [64], the author remarks that the use of valuations in this context becomes
redundant since ∀ρ.|M |ρ = |N |ρ holds exactly when they are equal under the valuation

x 7→ πVarx sending x to the corresponding projection. By applying this fact to the logical
interpretation given in [72], we recover Definition 4.7 and this justifies Theorem 4.8 from a
broader perspective. See [20, 83, 64] for more detailed discussions on well-pointedness.

4.4. Quantitative Properties. We show some quantitative properties satisfied by the
type systems issued from a relational graph model. This quantitative behavior was first
noticed by de Carvalho while studying the relational model E and linear head reduction [30].
Our statements are rather a more refined version5 of the ones appearing in [72].

Until the end of the section, the symbol ` refers to any fixed relational graph model.
We introduce some auxiliary notions that will be useful in the subsequent proofs.

Definition 4.10. Let M,N ∈ Λ⊥ and D be an rgm.

• Given π0 I Γ ` M : [β1, . . . , βn] → α and πi I ∆i ` N : βi for all 1 ≤ i ≤ n, we let
App
(
π0, {πi}ni=0

)
be the derivation tree of Γ + (

∑n
i=1 ∆i) `MN : α obtained by applying

the rule app to those premises.
• Similarly, given π I Γ, x : a ` M : β we define Lam

(
x, π

)
as the derivation obtained by

applying the rule lam to the derivation π.

Let #app(π) be the number of instances of the rule app that occur in the derivation π.

Lemma 4.11 (Weighted Substitution Lemma). Let M,N ∈ Λ⊥. Consider some derivations
π0 I Γ0, x : [β1, . . . , βn] ` M : α for n ∈ N and πi I Γi ` N : βi for all 1 ≤ i ≤ n. Then
there exists π I

∑n
i=0 Γi `M{N/x} : α such that #app(π) =

∑n
i=0 #app(πi).

Proof. We proceed by structural induction on M .

Case M = ⊥. This case is vacuous, as ⊥ cannot be typed.

Case M = y 6= x. Then π0 I Γ0, x : [β1, . . . , βn] ` y : α entails n = 0 and Γ0 = y : α.
Hence the judgment

∑n
i=0 Γi ` M{N/x} : α is nothing but y : α ` y : α and we can take

π = π0. Clearly we have that #app(π) = 0 = #app(π0) =
∑n

i=0 #app(πi).

Case M = x. Then Γ0, x : [β1, . . . , βn] ` x : α implies that n = 1, β1 = α and Γ0 is
empty. Hence the judgment

∑n
i=0 Γi ` M{N/x} : α is just Γ1 ` N : α and we can take

π = π1. Therefore we have #app(π) = #app(π1) =
∑n

i=0 #app(πi).

Case M = λy.P . Then there is a derivation π′0 such that π0 has the form

π′0 I Γ0, y : [α1, . . . , αn], x : [β1, . . . , βn] `M : α′

Γ0, x : [β1, . . . , βn] ` λy.M : [α1, . . . , αn]→ α′

5 Indeed, the authors of [72] just consider the head reduction strategy and take as measure the size of the
whole derivation tree. We show that it is the number of application rules that actually decreases along head
reduction and we provide a measure that decreases whenever any occurrence of a β-reduction is contracted.
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for α = [α1, . . . , αn] → α′. Notice that #app(π′0) = #app(π0). By induction hypothesis,
there exists a derivation π′ such that

π′ I
(
Γ0, y : [α1, . . . , αn]

)
+

n∑
i=1

Γi `M{N/x} : α′ (4.2)

with #app(π′) = #app(π′0) +
∑n

i=1 #app(π) =
∑n

i=0 #app(π). By Lemma 4.6 we have
supp(Γi) ⊆ FV(N) for all 1 ≤ i ≤ n. By α-convertion we assume y /∈ FV(N), thus y /∈
supp(Γi) for all i. So the judgment in (4.2) is in fact

∑n
i=0 Γi, y : [α1, . . . , αn] `M{N/x} : α′.

We can then take π = Lam
(
y, π′

)
I
∑n

i=0 Γi ` λy.M{N/x} : [α1, . . . , αn]→ α′. The thesis
is proved since λy.M{N/x} = (λy.M){N/x} and #app(π) = #app(π′) =

∑n
i=0 #app(π).

Case M = PQ. Then there are derivations π00, π0i such that π0 has the form

π00 I Γ00, x : [βj ]j∈I0 ` P : [γ1, . . . , γk]→ α π0i I Γ0i, x : [βj ]j∈Ii ` Q : γi for all 1 ≤ i ≤ k∑k
i=0 Γ0i, x : [β1, . . . , βn] ` P Q : α

where k ∈ N, Γ0 =
∑k

i=0 Γ0i and {Ii}ki=0 is a partition of the set {1, . . . , n}. By induction
hypothesis we get a derivation π′0 I Γ00 +

∑
j∈I0 Γj ` P {N/x} : [γ1, . . . , γk] → α such

that #app(π′0) = #app(π00) +
∑

j∈I0 #app(πj). Also, for all 1 ≤ i ≤ k the induction

hypothesis provides a derivation π′i I Γ0i +
∑

j∈Ii Γj ` Q {N/x} : γi such that #app(π′i) =

#app(π0i) +
∑

j∈Ii #app(πj).

We take π = App
(
π′0, {π′i}1≤i≤k

)
I
∑k

i=0

(
Γ0i +

∑
j∈Ii Γj

)
` (P{N/x})(Q{N/x}) : α.

Clearly
∑k

i=0

(
Γ0i +

∑
j∈Ii Γj

)
=
∑k

i=0 Γ0i +
∑k

i=0

∑
j∈Ii Γj = Γ0 +

∑n
i=1 Γi =

∑n
i=0 Γi and

(P{N/x})(Q{N/x}) = (PQ){N/x}. Moreover we get that #app(π) = 1+
∑k

i=0 #app(π′i) =

1+
∑k

i=0

(
#app(π0i)+

∑
j∈Ii #app(πj)

)
=
(
1+
∑k

i=0 #app(π0i)
)

+
∑k

i=0

∑
j∈Ii #app(πj) =

#app(π0) +
∑n

i=1 #app(πi) =
∑n

i=0 #app(πi), which concludes the proof.

From this, it follows that the number of rules app in the derivation of a β-redex,
decrements in a derivation of its contractum.

Corollary 4.12. Let M,N ∈ Λ⊥. If π I Γ ` (λx.M)N : α there exists a derivation π′ such
that π′ I Γ `M{N/x} : α with #app(π′) = #app(π)− 1.

Proof. The derivation π has the form

π0 I Γ0, x : [β1, . . . , βn] `M : α

Γ0 ` λx.M : [β1, . . . , βn]→ α
lam

πi I Γi ` N : βi for 1 ≤ i ≤ n∑n
i=0 Γi ` (λx.M)N : α

app

where n ∈ N and Γ =
∑n

i=0 Γi. By Lemma 4.11 there exists π′ I
∑n

i=0 Γi ` M{N/x} : α
such that #app(π′) =

∑n
i=0 #app(πi) = #app(π)− 1.

From Corollary 4.12 it follows that the number of app decreases exactly by 1 at each
step of head reduction. So #app(−) provides an upper bound for the number of steps
necessary to get the principal hnf of a solvable term, as observed by de Carvalho in [30].

Lemma 4.13. If π I Γ `M : α then the head reduction of M has length at most #app(π).

Unfortunately, the measure #app(−) is not enough for proving the approximation
theorem. The reason is that, in order to compute the Böhm tree of a λ-term M , one needs to
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reduce also redexes that are not in head-position. E.g., consider the following derivation π:

x : [ω → α] ` x : ω → α

x : [ω → α] ` x (I y) : α
app

When reducing x(I y)→β xy, the only possible derivation π′ of x : [ω → α] ` xy : α is:

x : [ω → α] ` x : ω → α

x : [ω → α] ` xy : α
app

The number of app has not decreased in this case, so we cannot use #app(−) as a decreasing
measure in the proof of the left-to-right implication of Theorem 4.16. We can however find
an approximant t ∈ BT∗(x (I y)) with that typing by realizing that in π the subterm I y is
basically used as the approximant ⊥. This is the key idea behind the next lemma.

Given M ∈ Λ⊥ and a redex occurrence R = (λx.P )Q in M , say M = C[R] for some
single hole λ⊥-context C[−], we denote by M{⊥/R} the λ⊥-term C[⊥]. Moreover, we write

M
R→β M

′ to indicate that the contracted β-redex is R, namely that M ′ = C[P{Q/x}].

Lemma 4.14 (Weighted Subject Reduction). Let M,M ′ ∈ Λ⊥ be such that M
R→β M

′. If
π I Γ `M : α, then there is π′ I Γ `M ′ : α such that one of the following cases holds:

(i) #app(π′) < #app(π),
(ii) π′ ' π and there exists π′′ I Γ `M{⊥/R} : α such that π′′ ' π.

Proof. Let M = C[R] for a single hole λ⊥-context C[−]. We proceed by induction on C[−].
Case [−]. We have M = R = (λx.P )Q and M ′ = P{Q/x}. The thesis is then given by

Corollary 4.12. More precisely, we are in case (i).
Case P (C[−]). We have M = P (C[R]) and M ′ = P (C[R′]) where R →β R

′. Then,
the derivation π has the form

π0 I Γ0 ` P : [β1, . . . , βn]→ α πi I Γi ` C[R] : βi for 1 ≤ i ≤ n∑n
i=0 Γi ` P (C[R]) : α

where n ∈ N and Γ =
∑n

i=0 Γi.
For all 1 ≤ i ≤ n by induction hypothesis there is π′i I Γi ` C[R′] : βi such that either

#app(π′i) < #app(πi), (4.3)

or
π′i ' πi ' π′′i for a derivation π′′i I Γi ` C[⊥] : βi. (4.4)

In this case we take π′ = App
(
π0, {π′i}ni=1

)
.

If every i satisfies (4.4) then π′ ' π. By taking π′′ = App
(
π0, {

)
π′′i }ni=1 we obtain the

case (ii) of the thesis. Notice that the eventuality n = 0 falls in this case.
If there is an i that satisfies (4.3) then #app(π′) < #app(π), so the case (i) is proved.

Case (C[−])P . We have M = (C[R])P and M ′ = (C[R′])P where R→β R
′. Then, the

derivation π has the form

π0 I Γ0 ` C[R] : [β1, . . . , βn]→ α πi I Γi ` P : βi for all 1 ≤ i ≤ n∑n
i=0 Γi ` (C[R])P : α

where n ∈ N and Γ =
∑n

i=0 Γi. By induction hypothesis there exists a derivation π′0 I
Γ0 ` C[R′] : [β1, . . . , βn] → α such that either #app(π′0) < #app(π0), or π′0 ' π0 ' π′′0 for
some π′′0 I Γ0 ` C[⊥] : [β1, . . . , βn] → α. In the former case, the thesis is proved taking
π′ = App

(
π′0, {πi}ni=1

)
and in the latter also π′′= App

(
π′′0 , {πi}ni=1

)
.
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Case λx.C[−]. We have M = λx.C[R] and M ′ = λx.C[R′], where R →β R
′. Then π

has the form
π0 I Γ, x : [β1, . . . , βn] ` C[R] : β

Γ ` λx.C[R] : [β1, . . . , βn]→ β

for [β1, . . . , βn]→ β = α. By induction hypothesis there is π′0 I Γ, x : [β1, . . . , βn] ` C[R′] : β
such that either #app(π′0) < #app(π0), or π′0 ' π0 ' π′′0 for some π′′0 I Γ, x : [β1, . . . , βn] `
C[⊥] : β. In the former case, the thesis is proved by taking π′ = Lam

(
x, π′0

)
, and in the latter

also π′′ = Lam
(
x, π′′0

)
.

As a note aside, Lemma 4.14 gives in particular the subject reduction property. The
subject expansion can be proved equally easily, as done in [78, §2.4]. These two properties
provide yet another soundness proof for relational graph models.

4.5. The Approximation Theorem. We show that all relational graph models satisfy
the Approximation Theorem stating that the interpretation of a λ-term is given by the
union of the interpretations of its finite approximants (Theorem 4.16). As mentioned in
the introduction, we provide a new combinatorial proof that does not exploits reducibility
candidates nor Ehrhard’s notion of Taylor expansion. Actually, it is an easy consequence of
our Weighted Subject Reduction (Lemma 4.14).

From the Approximation Theorem, we get that the λ-theory induced by any relational
graph model D includes B (Corollary 4.17) and, if D is extensional, also H+ (Corollary 4.18).

Lemma 4.15. Let M ∈ Λ⊥. If M is in β-normal form and Γ `M : α then Γ ` da(M) : α.

Proof. By a straightforward induction on M .

Notice that the hypothesis that M is in β-normal form is necessary to prove Lemma 4.15.
Indeed, for M = Ix we have x : [α] `M : α, whereas da(M) = ⊥ cannot be typed.

Given M ∈ Λ⊥ we denote by #redβ(M) the number of occurrences of β-redexes in M .

Theorem 4.16 (Approximation Theorem). Let M ∈ Λ⊥. Then (Γ, α) ∈ JMK if and only if
there exists t ∈ BT∗(M) such that (Γ, α) ∈ JtK. Therefore JMK =

⋃
t∈BT∗(M)JtK.

Proof. (⇒) Let π I Γ `M : α. We proceed by induction on the pair
(
#app(π),#redβ(M)

)
lexicographically ordered.

Case #redβ(M) = 0. By Lemma 4.15 Γ ` da(M) : α and clearly da(M) ∈ BT∗(M).

Case #redβ(M) > 0. Let R be any occurrence of a β-redex in M and M
R→β M

′. By
Lemma 4.14 there is a derivation π′ I Γ `M ′ : α such that either (i) #app(π′) < #app(π),
or (ii) there exists π′′ I Γ `M{⊥/R} : α such that π′′ ' π.

In Case (i) we apply the induction hypothesis to π′ and get t ∈ BT∗(M ′) = BT∗(M)
such that Γ ` t : α.

In Case (ii) we can apply the induction hypothesis to π′′, as π′′ ' π implies #app(π′′) =
#app(π), and moreover #redβ(M{⊥/R}) < #redβ(M). We get t ∈ BT∗(M{⊥/R}) such
that Γ ` t : α. Since moreover BT∗(M{⊥/R}) ⊆ BT∗(M) by Lemma 1.16, we are done.

(⇐) We proceed by induction on t. The case t = ⊥ is vacuous, as ⊥ is not typable. So
let t = λx1 . . . xn.xt1 · · · tm where n,m ∈ N. We suppose that the variable x is bound, the
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other case being analogous. The given derivation tree of Γ ` t : α must have the form6

∆ ` x : b1 → · · · → bm → β Γij , x1 : aij1 , . . . , xn : aijn ` ti : βij for all i, j

∆ +
∑m

i=1

∑ki
j=1 Γij , x1 :

∑m
i=1

∑ki
j=1 a

ij
1 , . . . , xn :

∑m
i=1

∑ki
j=1 a

ij
n ` xt1 · · · tm : β

Γ ` λx1 . . . xn.x t1 · · · tm : a1 → · · · → an → β

where for all i ≤ m we have bi = [βi1, . . . , βiki ] for some ki ∈ N; ∆ = x : b1 → · · · → bm → β;

Γ = ∆ +
∑m

i=1

∑ki
j=1 Γij ; a` =

∑m
i=1

∑ki
j=1 a

ij
` for all ` ≤ n; finally, α = a1 → · · · → an → β.

As t ∈ BT∗(M) we have that t = da(N) for some N =β M . By Definition 1.15, we have
N = λx1 . . . xn.xN1 · · ·Nm with ti = da(Ni) for all i ≤ m. By induction hypothesis we get

Γij , x1 : aij1 , . . . , xn : aijn ` Ni : βij for all i, j. By replacing each ti by Ni in the proof tree
above, we get a derivation of Γ ` N : α. Since N =β M , by soundness we get Γ `M : α.

The following result first appeared in print in [67], but was already known in the folklore
(see the discussion in [23]). Notice that it is stronger than Theorem 6 in [72] which only
shows that the λ-theories induced by strongly linear relational models are sensible.

Corollary 4.17. For all rgm’s D we have that B ⊆ Th(D). In particular Th(D) is sensible
and JMKD = ∅ for all unsolvable λ-terms M .

Proof. From Theorem 4.16 we get JMK = JBT(M)K =
⋃
t∈BT∗(M)JtK. Therefore, whenever

BT(M) = BT(N) we have JMK = JBT(M)K = JBT(N)K = JNK. Thus B ⊆ Th(D).

In the next corollary we are going to use the Lévy’s characterization of Morris’s inequa-
tional theory vH+ in terms of extensional approximants (Theorem 2.17). The extensional
approximants of a λ-term M are interpreted as usual by setting JBTe(M)K =

⋃
t∈BTe(M)JtK.

Corollary 4.18. For an rgm D, the following are equivalent:

(i) D is extensional,
(ii) vH+⊆ Thv(D),
(iii) H+ ⊆ Th(D).

Proof. (i ⇒ ii) From Theorem 4.16 we obtain JMK =
⋃
t∈BT∗(M)JtK. From the extension-

ality of D, we get JMK =
⋃
M ′�ηM, t∈BT∗(M ′)JtK =

⋃
M ′�ηM, t∈BT∗(M ′)Jnfη(t)K = JBTe(M)K.

So, we have that BTe(M) ⊆ BTe(N) entails JMK = JBTe(M)K ⊆ JBTe(N)K = JNK.
(ii⇒ iii) Trivial.
(iii⇒ i) By Lemma 3.17.

5. The Minimal Relational Graph Theory

In this section we show that a minimal inequational graph theory exists, and that it is
exactly the inequational theory induced by the model E defined in Example 3.10.

6The “double line” in the derivation tree is a shortcut to indicate the simultaneous application of zero,
one, or many rules of the same kind.
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5.1. The Minimal Inequational Graph Theory. We start by defining an inequational
theory vr and prove that it is included in Thv(D) for every relational graph model D.

Definition 5.1. Given M,N ∈ Λ, we let M vr N whenever there exists a Böhm-like tree
U such that BT(M) ≤⊥U ≥η∞ BT(N).

The fact that this definition involves η-expansions and that vr⊆ Thv(D) holds also for
non-extensional relational graph models should not be surprising. Indeed, when considering
the original graph model Pω defined by Plotkin [74] and Scott [82] the situation is actually
analogous (but symmetrical7), and no graph model is extensional.

Example 5.2.

(1) J vr I while I 6vr J,
(2) Let (M)n∈N be the effective sequence defined by Mn = J if n is even and Mn = Ω

otherwise. Then we have [Mn]n∈N vr [I]n∈N.

It follows from [76] that M vr N vr M if and only if B ` M = N . The inequational
theory vr admits the following characterization in terms of Böhm tree approximants.

Lemma 5.3. Let M,N ∈ Λ. We have M vr N if and only if for all t ∈ BT∗(M) there
exists s ∈ BT∗(N) such that t ≤⊥u�η s for some u ∈ NFβ⊥.

Proof. (⇒) By structural induction on t. If t = ⊥, then we can take s = u = da(M).
Otherwise t 6= ⊥ entails that M has a hnf M =β λ~xz1 . . . zm.xiM1 · · ·MkP1 · · ·Pm.

By Definition 5.1, there is a Böhm-like tree U = λ~xz1 . . . zm.xiU1 · · ·UkV1 · · ·Vm such that
BT(Mj) ≤⊥Uj and BT(P`) ≤⊥ V` ≥η∞ z`, and N =β λ~x.xiN1 · · ·Nk with Uj ≥η∞ BT(Nj).
Thus, we have t = λ~xz1 . . . zm.xit1 · · · tkt′1 · · · t′m for tj ∈ BT∗(Mj) and t′` ∈ BT∗(P`). Since
for all j ≤ k we have Mj vr Nj and for all ` ≤ m we have P` vr z` we can apply the
induction hypothesis and get tj ≤⊥uj �η sj for some sj ∈ BT∗(Nj) and t′` ≤⊥u′` �η z`. As
a consequence t ≤⊥λ~xz1 . . . zm.xiu1 · · ·uku′1 · · ·u′m �η λ~x.xis1 · · · sk ∈ BT∗(N).

(⇐) We prove M vr N coinductively. If M is unsolvable, then we are done.
Otherwise there is t ∈ BT∗(M) of the form t = λ~xz1 . . . zm.xit1 · · · tkt′1 · · · t′m and

s = λ~x.xis1 · · · sk ∈ BT∗(N) such that t ≤⊥ λ~xz1 . . . zm.xiu1 · · ·uku′1 · · ·u′m �η s. This
entails that M =β λ~xz1 . . . zm.xiM1 · · ·MkP1 · · ·Pm and N =β λ~x.xiN1 · · ·Nk with tj ∈
BT∗(Mj), sj ∈ BT∗(Nj) for all j ≤ k, z` /∈ FV(BT(xi ~M ~N)), and t′` ∈ BT∗(P`) for all
` ≤ m. By coinductive hypothesis Mj vr Nj , i.e., there are Böhm-like trees Uj such that
BT(Mj) ≤⊥Uj ≥η∞ BT(Nj). Since for all t′` ∈ BT∗(P`) there is an η-expansion u′` of z` such
that t′` ≤⊥ u′`, then there exists a Böhm-like tree V` such that BT(P`) ≤⊥ V` ≥η∞ z`. As a
consequence BT(M) ≤⊥λ~x~z.xiU1 · · ·UkV1 · · ·Vm ≥η∞ BT(N), which shows M vr N .

Proposition 5.4. Let M,N ∈ Λ. If M vr N then D |= M v N for every rgm D.

Proof. By Lemma 5.3 for all t ∈ BT∗(M) there are s ∈ BT∗(N) and u ∈ NFβ⊥ such that
t ≤⊥ u �η s. Since t ≤⊥ u we get t ∈ BT∗(u) and, by Theorem 4.16, we obtain JtK ⊆ JuK.
From Lemma 3.17(i) and Corollary 4.9 we have that JuK ⊆ JsK holds. It follows that
JBT(M)K ⊆ JBT(N)K, so we conclude by applying Theorem 4.16.

We now show that vr is representable by some relational graph model.

7 I.e. Pω |= M v N exactly when there is a Böhm-like tree U such that BT(M) ≤η∞ U ≤⊥BT(N) [47].
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5.2. The Model E Induces Minimal Theories. Let E = (E, ι) = (N, ∅) be the relational
graph model defined in Example 3.10. This model has infinitely many atoms, that we denote
by (ξn)n∈N, and as injection ι :Mf(E)× E → E simply the inclusion, therefore no atom ξn
can be equal to an arrow a→ι α. In other words, the elements α ∈ E are generated by:

α ::= ξn | a→ α a ::= [α1, . . . , αk] (for n, k ≥ 0).

Recall that we provided the type inference rules in Figure 4. We are going to show that the
interpretations of two λ-terms M and N are different whenever M 6vr N .

Notice that every element α ∈ E can be written uniquely as α = a1 → · · · → an → ξi.
In this case, the atom ξi is called the range of α and denoted by rg(α). We use the compact
notation ωk → α to denote the element ω → · · · → ω → α (with k occurrences of ω).

Recall that the size #t of t ∈ NFβ⊥ has been introduced in Definition 1.14.

Lemma 5.5. Let M,N ∈ Λ. If M vH∗ N but M 6vr N , then there are Γ, α such that:

(i) Γ `E t : α for some t ∈ BT∗(M),
(ii) for all u ∈ BT∗(N) we have Γ 6`E u : α,
(iii) rg(α) = ξ#t,
(iv) for all β ∈ Γ, rg(β) = ξj for some j ≤ #t.

Proof. Since M 6vr N , we have that M must be solvable. As moreover M vH∗ N , by
Remark 2.7 we get that M,N have similar hnf’s. Therefore, only two cases are possible.

1) M =β λx1 . . . xn.xiM1 · · ·Mk and N =β λ~xz1 . . . zm.xiN1 · · ·NkP1 · · ·Pm for m > 0.
We suppose that xi is free, the other case being analogue. This case follows easily by taking
t = λ~x.xi⊥ · · ·⊥ ∈ BT∗(M) whose size is n+ 1, Γ = xi : [ωk → ξn+1] and α = ωn → ξn+1.
The fact that Γ 6` u : α for all u = λ~x~z.xiu1 · · ·uk+m ∈ BT∗(N) follows from m > 0 and the
fact that ξn+1 is an atom, hence different from any arrow type by definition of E .

2) M =β λx1 . . . xnz1 . . . zm.xiM1 · · ·MkP1 · · ·Pm and N =β λ~x.xiN1 · · ·Nk where, for
every ` ≤ m there is a Böhm-like tree V such that BT(P`) ≤⊥ V ≥η∞ z`, for every j ≤ k
we have Mj vH∗ Nj but Mq 6vr Nq for some q. We suppose that xi is free, the other case
being analogue. By induction hypothesis, there is tq ∈ BT∗(Mq) such that Γ ` tq : α with
rg(α) = ξ#tq , for all β ∈ Γ we have rg(β) = ξj for some j ≤ #tq and for all uq ∈ BT∗(Nq)
we have Γ 6` uq : α. On the one side, we construct the derivation:

Γ0 ` xi : ωq−1 → [α]→ ωk+m−q → ξ#t Γ ` tq : α

Γ0 + Γ ` xit1 · · · tks1 · · · sm : ξ#t

Γ0 + Γ1 ` t = λ~x~z.xit1 · · · tks1 · · · sm : a1 → · · · → an → ωm → ξ#t

where Γ0 = xi : [ωq−1 → [α] → ωm+k−q → ξ#t], Γ = Γ1 + (x1 : a1, . . . , xn : an), for all
j ≤ k we have tj ∈ BT∗(Mj), and for all ` ≤ m we have s` ∈ BT∗(P`). On the other side,
each u ∈ BT∗(N) − {⊥} must have the shape u = λ~x.xiu1 · · ·uk and each derivation of
Γ0 + Γ1 ` u : ξ#t requires to derive Γ ` uq : α.

Indeed, since all β ∈ Γ satisfy rg(β) ≤ #tq < #t, they cannot be used to produce a ξ#t
so the decomposition Γ0 + Γ is in fact unique:

Γ0 ` xi : ωq−1 → [α]→ ωm+k−q → ξ#t Γ ` uq : α

Γ0 + Γ ` xiu1 · · ·uk : ωm → ξ#t

Γ0 + Γ1 ` u = λ~x.xiu1 · · ·uk : a1 → · · · → an → ωm → ξ#t

By induction hypothesis Γ ` uq : α is impossible, which entails Γ0 + Γ1 6` u : a1 → · · · →
an → ωm → ξ#t.
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We are now able to show that E induces the same λ-theory as Engeler’s model [39] and
the same inequational theory as the filter model defined by Ronchi Della Rocca in [76].

Theorem 5.6. For M,N ∈ Λ we have

M vr N ⇐⇒ E |= M v N
Therefore Thv(E) = vr and Th(E) = B.

Proof. (⇒) It follows immediately by Proposition 5.4.
(⇐) Suppose, by the way of contradiction, that M 6vr N but E |= M v N . Since Thv(E)

is sensible, Lemma 2.3 entails M vH∗ N . By Lemma 5.5, there exists t ∈ BT∗(M) and Γ, α
such that Γ ` t : α while Γ 6` u : α for all u ∈ BT∗(N). By the Approximation Theorem, we
have (Γ, α) ∈ JMK − JNK, which is impossible.

The above proof-technique could be suitably generalized to prove that all non-extensional
relational graph models induce the same inequational theory, namely vr.

Theorem 5.7. The relation vr is the minimal inequational graph theory. Similarly, B is
the minimal relational graph theory.

5.3. A Semantic Characterization of Normalizability. We now show that in the
model E β-normalizable λ-terms have a simple semantic characterization. Indeed, since
there are no equations between atoms and arrow types, it makes sense to define whether ω
occurs in a type α with a certain polarity p ∈ {+,−}.
Definition 5.8. For all elements α of E the relations ω ∈+ α and ω ∈− α are defined by
mutual induction as follows (where p is a polarity and ¬p denotes the opposite polarity):

(i) ω ∈− a→ β if a = ω;
(ii) if ω ∈p β then ω ∈p a→ β;
(iii) if ω ∈¬p β then ω ∈p ([β] + a)→ γ.

When ω ∈+ α (resp. ω ∈− α) holds we say that ω occurs positively (resp. negatively) in α.
We write ω /∈p α whenever ω does not occur in α with polarity p.

These notions extend to multisets in the obvious way, that is, ω ∈p [α1, . . . , αn] whenever
ω ∈p αi for some index i. Similarly, ω ∈p Γ whenever there is x ∈ Var such that ω ∈p Γ(x).

Theorem 5.9. Let M ∈ Λ. The following are equivalent:

(1) M has a β-normal form,
(2) Γ `E M : α for some environment Γ and type α such that ω /∈+ α and ω /∈− Γ.

Proof. (1 ⇒ 2) Straightforward induction on the derivation of Γ ` nfβ(M) : α.
(2 ⇒ 1) We proceed by structural induction on the pair (Γ, α). By Lemma 4.13, M has

a head normal form λx1 . . . xn.xiM1 · · ·Mk having type α in the context Γ, which entails
α = a1 → · · · → an → α′. So, there exists a derivation of the form:

Γ0 ` xi : b1 → · · · → bk → α′
var

Γj` `Mj : βj` 1 ≤ j ≤ k 1 ≤ ` ≤ kj
Γ, x1 : a1, . . . , xn : an ` xiM1 · · ·Mk : α′

app

Γ ` λx1 . . . xn.xiM1 · · ·Mk : α = a1 → · · · → an → α′
lam

where Γ0 = [xi : b1 → · · · → bk → α′], for all j ≤ k we have bj = [βj1, . . . , βjkj ] and

Γ, x1 : a1, . . . , xn : an = Γ0 + (
∑k

j=1

∑kj
`=1 Γj`). Since ω /∈+ α and ω /∈− Γ we get for each
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j ≤ k that bj is non-empty, and moreover that ω /∈+ βj` and ω /∈− Γj` for all ` ≤ kj . From
the induction hypothesis, we get that all the Mi’s have a β-normal form.

As proved in [67], Theorem 5.9 holds for every relational graph model D preserving
ω-polarities (in a technical sense). An analogue of this theorem also holds for the usual
intersection type systems [8]. However, for an extensional relational graph model D this
lemma is enough to conclude Thv(D) =vH+ , while this is not the case for filter models.
In other words, being extensional and preserving ω-polarities are sufficient conditions for a
relational graph model to be fully abstract for H+. We will now provide conditions that are
both necessary and sufficient.

6. Characterizing Fully Abstract Relational Models of H+

In this section we provide a characterization of those relational graph models that are
(inequationally) fully abstract for H+. We first introduce the notion of λ-König relational
graph model (Definition 6.5), and show that a relational graph model D is extensional and
λ-König exactly when the induced inequational theory is the preorder vH+ (Theorem 6.8).

Since our proof technique does not rely on the quantitative properties of relational graph
models, hereafter we rather prefer to use the categorical interpretation.

6.1. Lambda König Relational Graph Models. Before entering into the technicalities
we try to give the intuition behind our condition. The main issue is to find suitable conditions
for assuring that if M,N have the same interpretation in a relational graph model D then
M =H+ N , equivalently that M 6=H+ N implies |M |D 6= |N |D. Now, the idea behind
Theorem 2.14 is that two λ-terms M,N are equal in H∗, but different in H+, when there
is a (possibly virtual8) position σ ∈ N<ω such that, say, BT(M)σ = x while BT(N)σ is an
infinite η-expansion of x following some T ∈ T∞rec. As a consequence of this fact, our models
need to separate x from any JTx for T ∈ T∞rec in order to be fully abstract for H+.

Notice now that in any extensional relational graph model D, every element α0 is equal
to an arrow, so one can always try to unfold α following a function f , starting with:

α0 = a0 → · · · → af(0) → β

If there is an α1 ∈ af(0), then one can keep unfolding:

α1 = a′0 → · · · → a′f(1) → β′

and so on. More generally, at level ` we have α` = b0 → · · · → bf(`) → α′ for some
bi ∈Mf(D) and α′ ∈ D and as long as there exist an α`+1 ∈ af(`), we can keep unfolding it
at level `+ 1. There are now two possibilities.

(1) If this process continues indefinitely, then we consider that α can actually be unfolded
following f .

(2) Otherwise, if at some level ` we have af(`) = ω, then the process is forced to stop and
we consider that α cannot be unfolded following f .

8Intuitively, a position σ is virtual if it does not belong to BT(M), but rather to one of its η-expansions.
For more details we refer to [7, §10.3].
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Now, as T ∈ T∞rec is a finitely branching infinite tree, by König’s lemma there exists
an infinite path f in BT(JT ). Since the interpretation of JT is inductively defined (rather
than coinductively), we will then have that [α]→ α /∈ |JT | for any α whose unfolding can
actually follow f .

In some sense such an α is witnessing within the model the existence of an infinite path
f in T , and therefore in JT . The following is a formal definition of such a witness.

Recall from Definition 1.3, that Π(T ) denotes the set of infinite paths of a tree T ∈ T∞.

Definition 6.1. Let D be an rgm, T ∈ T∞rec and f ∈ Π(T ).

• We coinductively define the set WD,f (T ) of all witnesses for T (in D) following f . An
element α ∈ D belongs to WD,f (T ) whenever there exist a0, . . . , af(0) ∈Mf(D) and α′ ∈ D
such that

α = a0 → · · · → af(0) → α′

and there is a β ∈ af(0) belonging to WD,f≥1(T �〈f(0)〉) where f≥1 maps k 7→ f(k + 1).
• We say that α is a witness for T in D when there exists an f ∈ Π(T ) such that α is a

witness for T in D following f .
• We let WD(T ) be the set of all witnesses for T in D.

We formalize the intuition given above by showing that WD(T ) is constituted by those
α ∈ D such that [α]→ α /∈ |JT |. We first prove the following technical lemmas.

Lemma 6.2. Let D be an rgm. For all T ∈ T∞rec and x ∈ Var we have |JTx|Dx ⊆ |x|Dx .

Proof. Let (a, α) ∈ |JTx|x. By Theorem 4.16 there is t ∈ BT∗(JTx) such that (a, α) ∈ |t|x.
Proceeding by induction on t, we show that a = [α]. The case t = ⊥ is vacuous.

Consider t = λz0 . . . zT (ε)−1.xt0 · · · tT (ε)−1 where ti ∈ BT∗(JT �〈i〉zi). By Definition 3.11(ii.)

we have (a, α) ∈ |t|x if and only if α = a0 → · · · → aT (ε)−1 → α′ for some ai ∈ Mf(D)
and α′ ∈ D such that ((a, a0, . . . , aT (ε)−1), α

′) ∈ |xt0 · · · tT (ε)−1|x,z0,...,zT (ε)−1
. By Defini-

tion 3.11(i.) and (iii.), we get a = [b0 → · · · → bT (ε)−1 → α′] where bi = [βi,1, . . . , βi,ki ]

and there is a decomposition ai =
∑ki

j=1 ai,j such that (ai,j , βi,j) ∈ |ti|zi . By the inductive

hypothesis we have ai,j = [βi,j ]. Therefore ai = [βi,1, . . . , βi,ki ] = bi which in its turn entails
a = [b0 → · · · → bT (ε)−1 → α′] = [a0 → · · · → aT (ε)−1 → α′] = [α].

Lemma 6.3. Let D be an rgm. For all T ∈ T∞rec, α ∈ WD(T ) and t ∈ BT∗(JTx) we have
([α], α) /∈ |t|Dx .

Proof. We proceed by induction on the size #t of t.
Case #t = 0. This case is trivial since t = ⊥ and |⊥|x = ∅.
Case #t > 0. Then t = λz0 . . . zT (ε)−1.xt0 · · · tT (ε)−1 where each ti ∈ BT∗(JT �〈i〉zi)

is such that #ti < #t. By Definition 3.11(ii.) we have ([α], α) ∈ |t|x if and only if
α = a0 → · · · → aT (ε)−1 → α′ for some ai = [αi,1, . . . , αi,ki ] and (([α], a0, . . . , aT (ε)−1), α

′) ∈
|xt0 · · · tT (ε)−1|x,z0,...,zT (ε)−1

. As |ti|zi ⊆ |zi|zi by Lemma 6.2, we obtain ([αi,j ], αi,j) ∈ |ti|zi
for all i ≤ T (ε) − 1 and j ≤ ki. Since α ∈ WD,f (T ) for some f , there exists a witness
αf(0),j ∈ af(0) for T �〈f(0)〉 following f≥1. By αf(0),j ∈ WD(T �〈f(0)〉) and the induction
hypothesis we get ([αf(0),j ], αf(0),j) /∈ |tf(0)|zf(0) , which is a contradiction.

By applying the Approximation Theorem we get the following characterization of WD(T ).

Proposition 6.4. For any extensional rgm D and any tree T ∈ T∞rec:

WD(T ) = {α ∈ D | ([α], α) 6∈ |JTx|x}.
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Proof. (⊆) Follows immediately from the Approximation Theorem 4.16 and from Lemma 6.3.
(⊇) Let α ∈ D such that ([α], α) 6∈ |JTx|x. We coinductively construct a path f such

that α ∈ Wf (T ). As T is infinite we have JTx =β λz0 . . . zn.x(JT �〈0〉z0) · · · (JT �〈n〉zn) and

since D is extensional α = a0 → · · · → an → α′. From ([α], α) 6∈ |JTx|x and the soundness
we get ([α], α) /∈ |λz0 . . . zn.x(JT �〈0〉z0) · · · (JT �〈n〉zn)|x. Therefore there exist an index k ≤ n
such that ak 6= ω and an element β ∈ ak such that ([β], β) 6∈ |JT �〈k〉zk|zk . In particular, this

entails that the subtree T �〈k〉 is infinite because ([β], β) belongs to the interpretation of any
finite η-expansion of zk. Therefore we set f(0) = k and, for all n ∈ N, f(n+ 1) = g(n) where
g is the function given by the coinductive hypothesis and satisfying β ∈ WD,g(T �〈k〉). By
construction of f , we conclude that α ∈WD,f (T ).

It should be now clear that a relational graph model D, to be fully abstract for H+,
needs for every λ-definable infinite η-expansion of the identity an element in D witnessing
its infinite path, which exists by König’s lemma. This justifies the definition below.

Definition 6.5 (λ-König models). An rgm D is λ-König if for every T ∈ T∞rec, WD(T ) 6= ∅.

We will mainly focus on the λ-König condition, since the extensionality is clearly
necessary, as λη ⊆ H+.

We start by showing that, if D is an extensional λ-König relational graph model, then
Thv(D) = vH+ . Indeed, since every T ∈ T∞rec has a non-empty set of witnesses WD(T ), by
Proposition 6.4, there is an element α ∈ WD(T ) such that [α] → α /∈ |I| − |JT |. Thus, D
separates I from all the JT ’s for T ∈ T∞rec.

Theorem 6.6 (Inequational Full Abstraction). Let D be an extensional λ-König rgm, then:

M vH+ N ⇐⇒ D |= M v N

Proof. (⇒) This follows directly from Corollary 4.18.
(⇐) We assume, by the way of contradiction, that D |= M v N but M 6vH+ N . By

the maximality of vH∗ shown in Lemma 2.3 and the fact that |M |~x ⊆ |N |~x we must have
M vH∗ N . By Theorem 2.14 there exists a context C[−] such that C[M ] =βη I and
C[N ] =B JT for some T ∈ T∞rec. By monotonicity of the interpretation | − | and since
Bη ⊆ H+ ⊆ Th(D) by Corollary 4.18, we have |I| = |C[M ]| ⊆ |C[N ]| = |JT |. We derive a
contradiction by applying Proposition 6.4.

We now show the converse, namely that if a relational graph model is (inequationally)
fully abstract for H+, then it is extensional and λ-König.

Theorem 6.7. Let D be an rgm. If Thv(D) = vH+ or Th(D) = H+ then D is extensional
and λ-König.

Proof. Obviously D must be extensional since H+ is an extensional λ-theory. By contradic-
tion, we suppose that it is not λ-König. Then there is T ∈ T∞rec such that WD(T ) = ∅ and,
by Proposition 6.4, we get |I| = |JT |. This is impossible since I 6vH+ JT .

From Theorem 6.6 and Theorem 6.7 we get the main result of this section.

Theorem 6.8. For an rgm D, the following are equivalent:

(i) D is extensional and λ-König,
(ii) D is inequationally fully abstract for vH+,
(iii) D is fully abstract for H+.
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In particular, the model D? induces the same inequational and λ-theories as Coppo,
Dezani-Ciancaglini and Zacchi’s filter model [26], a result first appeared in [67].

Corollary 6.9. The model D? of Example 3.10 is inequationally fully abstract for Morris’s
preorder vH+. In particular Th(D?) = H+.

7. Characterizing Fully Abstract Relational Models of H∗

In this section we provide a characterization of those relational graph models that are (in-
equationally) fully abstract for H∗. At this purpose, we introduce the notion of hyperimmune
relational graph model (Definition 7.10), which is in some sense dual to the notion of λ-König.
We prove that a relational graph model D is extensional and hyperimmune exactly when
the induced inequational theory is the preorder vH∗ (Theorem 7.15).

The technique in this section is Böhm-like tree oriented, therefore it is convenient to fix
some notations concerning Böhm-like trees and their interpretation.

Notation 7.1. We simply denote by JxT the tree BT(JTx), where x is a fresh variable. Given
a Böhm-like tree V , we write V ∗ for the set {t ∈ NFβ⊥ | t ≤⊥V } of its finite approximants

and we set JV KD =
⋃
t∈V ∗JtK

D.

7.1. Decomposing Infinite η-Expansions. When considering Böhm trees of λ-terms,
the infinite η-expansion ≤η∞ can be decomposed into the finitary one ≤η followed by a more
restricted infinite η-expansion ≤η! that only allows to η-expand variables (Lemma 7.6).

Remember that the difference between ≤η∞ and ≤η lies in the fact that the former allows
countably many possibly infinite η-expansions, whereas the latter only countably many
finite ones. As first noticed by Severi and de Vries in their recent work on the infinitary
λ-calculus [84], in a way this difference only concerns η-expansions of variables. Consider for
instance yy 6≤η λx.yJyJx and yy ≤η∞ λx.yJyJx. The tree λx.yJyJx is an infinite η-expansion
of yy, which is not a variable. Nevertheless, one can narrow down to infinite η-expansions of
the variables x and y, by noticing that yy ≤η λx.yyx ≤η∞ λx.yJyJx.

Definition 7.2. Let ≤η! be the greatest relation between Böhm-like trees such that U ≤η! V
entails that:

• U = V = ⊥,
• or U = x and V = JxT for T ∈ T∞rec,
• or U = λx1 . . . xn.xiU1 · · ·Uk and V = λx1 . . . xn.xiV1 · · ·Vk (for some i, k, n ∈ N) where
Uj ≤η! Vj for all j ≤ k.

Example 7.3. We have λx.yyx ≤η! λx.yJ
yJx, whereas yy 6≤η! λx.yJ

yJx.

Clearly ≤η! is a subrelation of ≤η∞, as it is the case for ≤η. Also notice that ≤η! and ≤η
are completely orthogonal relations, in the sense that U≤η V and U≤η! V imply U = V .

For technical reasons we also need an inductive version of the relation ≤η! , that we
denote by η!�. Intuitively U η!� V means that V is obtained from U by performing finitely
many infinite η-expansions of variables. (The notation η!� is borrowed from [84], although
Severi and de Vrijes use the symbol for a more general notion of η!-rule.)

As we will see, actually hyperimmune relational graph models cannot distinguish between
the relation U η!� V and its coinductive version U ≤η! V, in the sense expressed by the
equivalence (iii⇐⇒ iv) in Proposition 7.12.
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U
q

λxy.x

x

x

x
...

y

y

y

≤η! V
q

λxy.x

x

x

x
...

λz0.y

λz1.z0

λz2.z1...

λz0.y

λz1.z0...

λz0.y...

Figure 5: An example of infinitely many η!-reductions.

Definition 7.4. Let η!� be the smallest relation between Böhm-like trees closed under the
following rules:

• U η!� U for U ∈ BT,
• x η!� JxT for T ∈ T∞rec,
• λx1 . . . xn.xiU1 · · ·Uk η!� λx1 . . . xn.xiV1 · · ·Vk (for some i, k, n ∈ N) and Uj η!� Vj for

all j ≤ k.

Notice that this can be seen as the inductive version of the coinductive Definition 7.2.
Alternatively, one can define �η! as the transitive-reflexive and contextual closure of

(η!) JxT →η! x for all T ∈ T∞rec.

Example 7.5. Let U = BT(λxy.Y(λu.xyu)) and V = BT(λxy.Y(λu.x(Jy)u)). These two
trees are depicted in Figure 5. We have that U ≤η! V while U η!�6 V, because V is obtained
from U by performing an infinite amount of η!-expansions of variables.

Lemma 7.6. (Decomposition of ≤η∞) Let M,N ∈ Λ. We have BT(M) ≤η∞ BT(N) if and
only if there exists a Böhm-like tree W such that BT(M) ≤η W ≤η! BT(N).

Proof. (⇐) By transitivity of ≤η∞, using the fact that both ≤η and ≤η! are contained in ≤η∞.
(⇒) We construct W coinductively.
In case M and N are unsolvable we just take W = ⊥.
Otherwise, M =β λ~x.xiM1 · · ·Mk and N =β λ~xz1 . . . zm.xiN1 · · ·NkP1 · · ·Pm where

BT(Mj) ≤η∞ BT(Nj) for all j ≤ k and z` ≤η∞ BT(P`) for all ` ≤ m. By the coinductive
hypothesis, for all j there exists Wj such that BT(Mj) ≤η Wj ≤η! BT(Nj). We then
set W = λ~xz1 . . . zm.xiW1 · · ·Wnz1 · · · zm. Clearly BT(M) ≤η W . In order to show that
W ≤η! BT(N) holds we have to prove, for all ` ≤ m, that BT(P`) = Jz`T` for some T` ∈ T∞rec.

Since z` ≤η∞ BT(P`), we conclude by Proposition 2.9.

As shown in [84], the decomposition of ≤η∞ could be extended to all Böhm-like trees
using possibly non-recursive infinite η-expansions of x in the definition of ≤η! . Since here
we use ≤η! in connection with hyperimmune relational graph models (Proposition 7.12), a
semantic notion only concerning recursive trees, it is crucial to use our restricted version.

Lemma 7.7. Let U, V be two Böhm-like trees such that U ≤η! V and let t ∈ U∗. Then there
exists a Böhm-like tree W such that U ≤η! W η!� V and t ∈W ∗.

Proof. We proceed by induction on t.

• If t = ⊥ it suffices to take W = V .
• If t = U = x and V = JxT we get the thesis by taking W = U .
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• If t = λ~x.xit1 · · · tk, then U = λ~x.xiU1 · · ·Uk and V = λ~x.xiV1 · · ·Vk where tj ∈ U∗j and

Uj ≤η! Vj for all j ≤ k. By induction hypothesis for each j we get some Wj such that
Uj ≤η! Wj η!� Vj and tj ≤⊥Wj . We conclude by setting W = λ~x.xiW1 · · ·Wk.

Example 7.8. Let U,V be the trees from Example 7.5 (and Figure 5) and let t = λxy.xy⊥ ∈
U∗. A possible Böhm-like tree W given by Lemma 7.7 is the following:

W
q

λxy.x

x

x

x
...

y

λz1.y

λz2.z1...

λz1.y...

Lemma 7.9. Let U, V be two Böhm-like trees such that U ≤η∞ V and let t ∈ V ∗. Then
there exists a Böhm-like tree W such that U ≤η W ≤η∞ V and t ∈W ∗.

Proof. We proceed by induction on t.
If t = ⊥ we take W = U .
Let t = λ~xz1 . . . zm.xit1 · · · tkt′1 . . . t′m ≤⊥ V = λ~xz1 . . . zm.xiV1 · · ·VkV ′1 · · ·V ′m and let

U = λ~x.xiU1 · · ·Uk be such that Uj ≤η∞ Vj for all j ≤ k and z` ≤η∞ V ′` for all ` ≤ m. For each
j ≤ k, since tj ∈ V ∗j , the induction hypothesis gives some Wj satisfying Uj ≤η Wj ≤η∞ Vj
and tj ∈W ∗j . We conclude by setting W = λ~xz1 . . . zm.xiW1 · · ·Wkz1 . . . zm.

7.2. Hyperimmune Relational Graph Models. In Section 6 we exploited the Morris
Separation (Theorem 2.14) to reduce the problem of being fully abstract for H+ to the
property JxK 6= JJTxK, namely WD(T ) = JxK − JJTxK 6= ∅, for every tree T ∈ T∞rec. The
notion of λ-König relational graph model provided that. Here there is a similar phenomenon:
we exploit the decomposition seen above (Lemma 7.6) to reduce the full abstraction for H∗
to the property JxK = JJTxK, namely WD(T ) = JxK − JJTxK = ∅, for every T ∈ T∞rec. This is
the intuition behind the following definition, which is some kind of dual of λ-König.

Definition 7.10 (Hyperimmune models). An rgm D is hyperimmune if for every T ∈ T∞rec
WD(T ) = ∅.

The name refers to a standard concept in computability theory: a function f : N→ N
is called hyperimmune if it is not bounded (upwardly) by any recursive function. One can
prove that a relational graph model D is hyperimmune exactly when it only admits witnesses
that follow hyperimmune functions. This observation justifies the choice of the terminology.
The notion of hyperimmunity first appeared in these terms in [16] for Krivine’s models.

Example 7.11. The model Dω of Example 3.10 is hyperimmune. As a matter of fact, since
the model is freely generated by the equation ? = ω → ?, it is easy to verify that no element
of Dω can be a witness for any T ∈ T∞rec following any infinite path f .

In the hypothesis of extensionality, this notion admits some additional characterizations.

Proposition 7.12. Let D be an extensional rgm. The following statements are equivalent:

(i) D is hyperimmune,
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(ii) JxK ⊆ JJTxK for all T ∈ T∞rec,
(iii) U η!� V implies JUK ⊆ JV K for all Böhm-like trees U, V,
(iv) U ≤η! V implies JUK ⊆ JV K for all Böhm-like trees U, V.

Proof. (i⇐⇒ ii) By Proposition 6.4 and Corollary 4.9 an extensional rgm D is hyperimmune
if and only if, for all T ∈ T∞rec, we have that JxK − JJTxK = {α ∈ D | x : [α] 6` JTx : α} =
WD(T ) = ∅. This is equivalent to requiring that JxK ⊆ JJTxK for all T ∈ T∞rec.

(ii ⇒ iii) By a straightforward induction on the derivation of U η!� V .
(iii ⇒ ii) Trivial, as x η!� JTx.
(iii ⇒ iv) Suppose that there exist two Böhm-like trees U, V such that U ≤η! V and

JUK 6⊆ JV K. Since JUK =
⋃
t∈U∗JtK, there is a t ∈ U∗ such that JtK 6⊆ JV K. By Lemma 7.7

there exists W η!� V such that t ∈W ∗. Since JW K =
⋃
t∈W ∗JtK, we get JW K 6⊆ JV K, whereas

JW K ⊆ JV K by (iii).
(iv ⇒ iii) Trivial, since the relation η!� is included in ≤η! .

Lemma 7.13. Let D be an extensional rgm and let U, V be two Böhm-like trees. We have
that U ≤η∞ V implies JV K ⊆ JUK.

Proof. By Lemma 7.9, if t ∈ V ∗ then t ∈W ∗ for some U ≤η W . So JtK ⊆ JW K = JUK, where
the equality holds by extensionality. Since JV K =

⋃
t∈V ∗JtK, we get JV K ⊆ JUK.

In general, the hypothesis U ≤η∞ V does not imply JUK ⊆ JV K, even in presence of
extensionality. This implication only holds when the model is in addition hyperimmune.

Lemma 7.14. Let D be an extensional and hyperimmune rgm and let M,N ∈ Λ. Then
BT(M) ≤η∞ BT(N) implies JMK ⊆ JNK.

Proof. By Lemma 7.6 there exists a Böhm-like tree W such that BT(M) ≤η W ≤η! BT(N).
Then we have JBT(M)K ⊆ JW K by extensionality and JW K ⊆ JBT(N)K by the character-
ization (iv) of hyperimmunity provided by Proposition 7.12. By transitivity we obtain
JBT(M)K ⊆ JBT(N)K, so we conclude JMK ⊆ JNK by Theorem 4.16.

The following theorem constitutes the main result of the section. It is actually an
adaptation to relational graph models of the characterization of fully abstract Krivine’s
models provided in [16, 17].

Theorem 7.15. Let D be an rgm. The following statements are equivalent:

(i) D is extensional and hyperimmune,
(ii) D is inequationally fully abstract for vH∗,
(iii) D is fully abstract for H∗.

Proof. (i ⇒ ii) We must prove that M vH∗N if and only if JMK ⊆ JNK. The right-to-left
implication is true for all rgm’s, since they are sensible (Corollary 4.17) and vH∗ is the
maximal sensible inequational theory. Let us prove the left-to-right implication.

By Theorem 2.5 the hypothesis M vH∗N means that BT(M) ≤η∞ U ≤⊥V ≥η∞ BT(N)
for some Böhm-like trees U and V . In particular U can be taken of the form U = BT(P )
for some P ∈ Λ (see [7, Ex. 10.6.7]). Then we have

JMK ⊆ JP K by Lemma 7.14
= JUK by Theorem 4.16
⊆ JV K by def. of J−K for Böhm-like trees
⊆ JBT(N)K by Lemma 7.13
= JNK by Theorem 4.16.
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(ii ⇒ iii) Trivial.
(iii ⇒ i) The theory H∗ is extensional, so that is the case for any fully abstract rgm.

Moreover, the theory H∗ satisfies x vH∗ JTx for all T ∈ T∞rec . So the model is hyperimmune
by the characterization (ii) of hyperimmunity provided by Proposition 7.12.

As a consequence, we get that the model Dω has the same inequational and λ-theories
as Scott’s D∞ [81], namely it is fully abstract for H∗. Such a result first appeared in [65].

Corollary 7.16. The model Dω of Example 3.10 is inequationally fully abstract for vH∗.
In particular Th(Dω) = H∗.

8. Conclusions

We have studied the class of the relational graph models living inside the relational semantics
of λ-calculus, and proved that they all enjoy the Approximation Theorem. We exhibited a
model inducing the minimum relational (in)equational graph theory, and provided sufficient
and necessary conditions for a relational graph model to be fully abstract for H+ (resp.
H∗). Actually such characterizations of full abstraction hold more generally for all relational
models, since these theories are extensional and the class of extensional relational graph
models coincide with the class of extensional reflexive objects in MRel.

We conclude presenting some open problems that we consider interesting.

Problem 1. It is well known that the λ-theory H∗ satisfies the ω-rule [7, Def. 4.1.10], and
the analogous result was recently proved for H+ in [18]. Does every extensional graph model
satisfy the ω-rule?

Problem 2. Are all λ-theories in the interval [H+,H∗] relational graph theories? If it is
not the case, is it possible to provide a characterization of the representable ones?
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[38] T. Ehrhard and L. Regnier. Böhm trees, Krivine’s machine and the Taylor expansion of lambda-terms.

In CiE, volume 3988 of Lecture Notes in Computer Science, pages 186–197, 2006.
[39] E. Engeler. Algebras and combinators. Algebra Universalis, 13(3):389–392, 1981.
[40] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. The cartesian closed bicategory of generalised

species of structures. Journal of the London Mathematical Society, 77(1):203, 2008.
[41] P. Di Gianantonio, G. Franco, and F. Honsell. Game semantics for untyped λβη-calculus. In TLCA’99,

volume 1581 of Lecture Notes in Computer Science, pages 114–128. Springer, 1999.

[42] J.-Y. Girard. Interprétation Fonctionnelle et Élimination des Coupures de l’Arithmétique d’Ordre
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Tre/Université Paris Diderot (Paris 7), April 2009.
[87] A. M. Turing. Computability and λ-definability. J. Symb. Log., 2(4):153–163, 1937.
[88] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-models

of the lambda-calculus. SIAM J. Comput., 5(3):488–521, 1976.
[89] C.P. Wadsworth. Approximate reduction and lambda calculus models. SIAM J. Comput., 7(3):337–356,

1978.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany


	Introduction
	Graph Models in the Relational Semantics.
	Relational Graph Models as Type Systems
	The Approximation Theorem.
	The Minimal Relational Graph Theory.
	Characterizing Fully Abstract Models
	Related Works
	Outline

	1. Preliminaries
	1.1. Coinduction.
	1.2. Sets, Functions and Multisets
	1.3. Sequences and Trees
	1.4. Category Theory
	1.5. The Lambda Calculus
	1.6. Böhm Trees
	1.7. Inequational and Lambda Theories

	2. The Lambda Theories H+ and H*
	2.1. H*: Böhm Trees and Infinite -Expansions
	2.2. The Infinite -Expansion JT.
	2.3. H+: Böhm Trees and Their Finitary -Expansions
	2.4. Extensional Approximants

	3. The Relational Graph Models
	3.1. The Relational Semantics
	3.2. The Class of Relational Graph Models
	3.3. Building Relational Graph Models by Completion
	3.4. Categorical Interpretation
	3.5. Soundness

	4. Quantitative Properties and Approximation Theorem
	4.1. Relational Graph Models as Type Systems
	4.2. Logical Interpretation
	4.3. On the choice of the interpretation.
	4.4. Quantitative Properties
	4.5. The Approximation Theorem

	5. The Minimal Relational Graph Theory
	5.1. The Minimal Inequational Graph Theory
	5.2. The Model E Induces Minimal Theories
	5.3. A Semantic Characterization of Normalizability

	6. Characterizing Fully Abstract Relational Models of H+
	6.1. Lambda König Relational Graph Models

	7. Characterizing Fully Abstract Relational Models of H*
	7.1. Decomposing Infinite -Expansions
	7.2. Hyperimmune Relational Graph Models

	8. Conclusions
	References

