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Abstract. In the final chain of the countable powerset functor, we show that the set at
index ω1, regarded as a transition system, is not strongly extensional because it contains a
“ghost” element that has no successor even though its component at each successor index is
inhabited. The method, adapted from a construction of Forti and Honsell, also gives ghosts
at larger ordinals in the final chain of other subfunctors of the powerset functor. This leads
to a precise description of which sets in these final chains are strongly extensional.

For Jirka Adámek on his 70th birthday, with thanks for his many contributions and the
inspiration he has given to our community.

1. Introduction

Initial algebras and final coalgebras of endofunctors are important in many areas of mathe-
matics and computer science. One versatile way of constructing an initial algebra of F is
to form the initial chain [Adá74], a transfinite sequence of objects (µ(i)F )i∈Ord where Ord
denotes the class of ordinals. We form the initial chain by applying F at each successor
ordinal and taking a colimit at each limit ordinal. If it stabilizes, it yields an initial algebra
µF . Dually [Bar93], we form the final chain (ν(i)F )i∈Ord, by applying F at each successor
ordinal and taking a limit at each limit ordinal. If it stabilizes, it yields a final coalgebra νF .

These constructions make sense for any endofunctor on any category, provided the
relevant colimits or limits exist. But certain endofunctors on Set have received particular
attention: the powerset functor (P) and its subfunctors, notably finite powerset (Pf) and
countable powerset (Pc), which send a set to its set of finite or countable subsets respectively.
That is because these functors have many applications, e.g. nondeterministic automata, the
semantics of nondeterministic programs and the foundations of set theory. For cardinality
reasons, the powerset functor has no initial algebra or final coalgebra; when we refer to µP
or νP, these are proper classes. By contrast, Pf and Pc do have a (small) initial algebra
and final coalgebra.

Now the initial chains of Pf and Pc are easy to understand: each is an increasing
sequence of subsets of the initial algebra. But the final chains are more subtle. Their form
was established in [ALM+15, Wor05].

• ν(ω)Pf consists of the final coalgebra and some extra elements. The next ω steps in the
final chain of Pf remove these extra elements, and the chain stabilizes at ω + ω.
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• ν(ω1)Pc consists of the final coalgebra and some extra elements. The next ω steps in the
final chain of Pc remove these extra elements, and the chain stabilizes at ω1 + ω.

These descriptions may give the impression that the final chains of Pf and Pc are essentially
similar. However, they tell only part of the story. For ν(ω)Pf , as well as being a superset of νPf ,
is also a subset of νP. This is because it can be endowed with a transition relation, setting
x  y when yn ∈ xn+1 for all n ∈ N, that makes it into a strongly extensional transition
system, i.e. one where bisimilarity is equality. Specifically, Worrell [Wor05] characterized

ν(ω)Pf as the set of compactly branching elements1 of νP, also studied in [Abr05, KKV04].
While all these elements are compactly branching, they are not all finitely (or even countably)
branching, and the extra ω steps are required to remove those that are not, so that only the
finitely branching elements remain.

Is there a similar story for ν(ω1)Pc? The question is asked in [ALM+15]. This set too
can be endowed with a transition relation, setting x y when yi ∈ xi+1 for all i < ω1. But
the resulting transition system is not strongly extensional. We demonstrate this by giving
two distinct elements that are “dead” in the sense of having no successor. One of these
is the expected dead element: each component at a successor index is empty. The other’s
components at successor index are all inhabited. Since the latter “appears to be alive”, yet
is dead, we call it a ghost.

Thus we see a significant difference between ν(ω)Pf and ν(ω1)Pc. An element of ν(ω)Pf
may lie outside the final coalgebra of Pf , but only because it is not finitely branching. By
contrast, an element of ν(ω1)Pc may lie outside the final coalgebra of Pc despite having no
successors at all.

Structure of Paper. Before introducing the final chain, Section 2 gives preliminaries on
transitions systems, cardinals, and the sequence of approximants to bisimilarity. Section 3
introduces the final chain of a general functor, and in particular of the powerset and
restricted powerset functors. It also introduces the notions of channel and range that help
us to understand these final chains.

The main narrative begins in Section 4, which endows the final chain of P with the
structure of a transition system and describe its basic properties. The rest of the paper is
devoted to studying this system.

In Section 5 our focus is on those properties that hold specifically at countable ordinals.
This leads us in Section 6 to the question of whether these properties—most importantly,
strong extensionality—hold at ω1. We prove that there is a ghost and deduce that these
properties do not hold.

The ghost is obtained by adapting a method in [FH89]. The next two sections give
further results that showcase the power of this method.

• Section 7 answers the question: how many successors may an element of the final chain of
Pc have?
• Section 8 looks at larger subfunctors of P corresponding to subsets of larger cardinality,

and their final chain beyond ω1. Remarkably, we see a sharp division: at each limit ordinal
i, either the ith set is strongly extensional or there is a ghost. We thus revisit each of the
properties we initially proved at countable ordinals, including surjectivity of connecting
maps, and completely characterize the ordinals at which they hold.

1Elements of νP are represented in [ALM+15, Sch10, Wor05] as strongly extensional trees modulo
isomorphism. Those trees are unrelated to the trees used in this paper.
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We end with a discussion of related work in Section 9 and conclusions in Section 10.

Acknowledgements. I thank David Fernandez-Breton and Benedikt Löwe for supplying
the information in footnotes 4–5.

2. Preliminaries

2.1. Pointed Systems. A transition system consists of a set X and relation  ⊆ X ×X.
When x y we say that y is a successor of x. A subset U ⊆ X is a subsystem when, for all
x ∈ U , every successor of x is in U . An embedding of transition systems e : M → N is an
isomorphism from M to a subsystem of N .

A pointed system consists of a transition system M = (X, ) and an element x ∈ X.
Given a family of pointed systems ((Mi, xi))i∈I , a parent of the family is a pointed system
(N, y) equipped with embeddings (ei : Mi → N)i∈I such that the successors of y are listed
without repetition as (ei(xi))i∈I . A parent may be constructed as follows: if each Mi is
(Xi, i), define

N
def
= (1 +

∑
i∈I

Xi, ) with  given in the evident way

y
def
= inl ∗

ei : z 7→ inr (i, z)

We generalize transition systems to coalgebras. Let F be an endofunctor on Set,
e.g. the powerset functor P, which sends a set X to PX and a function f : A → B to
U 7→ {f(a) | a ∈ U}. An F -coalgebra consists of a set X and map X → FX. Thus a
transition system corresponds to a P-coalgebra. An F -coalgebra morphism (X, ζ)→ (Y, ξ)

is a map f : X → Y such that X

ζ

��

f
// Y

ξ
��

FX
Ff // FY

commutes. For example, an embedding of

transition systems corresponds to an injective P-coalgebra morphism. A pointed F -coalgebra
consists of an F -coalgebra M = (X, ζ) together with an element x ∈ X.

We often write a pointed system or pointed coalgebra (M,x) as just x, leaving M
implicit.

2.2. Cardinals. As usual, we identify a cardinal with the least ordinal of that cardinality.
Thus we identify ℵ0 with ω and ℵ1 with ω1—the least uncountable ordinal. The special
symbol ∞∞ is treated as greater than every cardinal and ordinal.

Let κ be either a cardinal or ∞∞. For a set X, we write P<κX for the set of its <κ-sized
subsets. This gives a subfunctor P<κ of P. In particular:

Pf = P<ℵ0
Pc = P<ℵ1
P = P<∞∞

We also refer to the functor P+
<κ, that sends a set X to the set of <κ-sized subsets that are

inhabited.
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A pointed system (M,x) is <κ-branching when x  ∗ y implies that y has <κ-many
successors. This is equivalent to (M ′, x) being a pointed P<κ-coalgebra, for some subsystem
M ′ of M .

Henceforth we assume that κ is infinite and regular. (In particular ℵ0 is regular, as
are infinite successor cardinals such as ℵ1. But ℵω, for example, is not. We deem ∞∞ to be
regular.) This makes P<κ a submonad of P, and it also gives the following.

Proposition 2.1. For a <κ-sized set A, any decreasing sequence of subsets (Xi)i<κ is
eventually constant. In particular, if each Xi is inhabited then so is

⋂
i<κXi.

2.3. Approximants to bisimilarity. The class of pointed systems is equipped with a
decreasing sequence (∼i)i∈Ord of equivalence relations, defined as follows [Mal76, Mil89].

• x ∼i+1 x
′ when for every x y there is x′  y′ such that y ∼i y′, and vice versa.

• If i is a limit, then x ∼i x′ when for all j < i we have x ∼j x′.
• We deem 0 a limit, so x ∼0 x

′ always.

We say that x and x′ are bisimilar, written x ∼ x′, when for all i ∈ Ord we have x ∼i x′. In
particular, for any embedding e : M → N we have (N, e(x)) ∼ (M,x). The following is a
key tool for analyzing these relations.

Definition 2.2. Pointed systems (vi)i∈Ord are defined as follows: vi is a parent of (vj)j<i.

Essentially Definition 2.2 is the von Neumann encoding of the ordinals. It is useful
because of the following facts.

Proposition 2.3. Let i and j be ordinals.

(1) For an ordinal k, we have vi ∼k vj iff either i = j or k 6 i, j.
(2) We have vi ∼ vj iff i = j.

Proof. Part (1) is by induction on k and part (2) follows.

The approximants to bisimilarity have the following properties.

Proposition 2.4.

(1) Let x be an <κ-branching pointed system and y a pointed system. Then x ∼ y iff, for
all i < κ, we have x ∼i y.

(2) For i < κ, there are <κ-branching pointed systems x and y such that x ∼i y but x 6∼i+1 y.

Proof.

(1) See [BM96][Lemma 11.13] following [vG87], and also [AILS12][Theorem B.1(3)].
(2) Take vi and vi+1.

Proposition 2.5. Let x be an <κ-branching pointed system and y a pointed system. Then
x has a successor z such that z ∼ y iff, for all i < κ, it has a successor z such that z ∼i y.

Proof. (⇒) is obvious. For (⇐), by Proposition 2.1, x has a successor z such that z ∼j y
for all j < κ, i.e. z ∼k y. Since z is <κ-branching, Proposition 2.4 (1) gives z ∼ y.
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3. The Final Chain

3.1. Constructing the Final Chain. Our treatment of the final chain relies on the
following. Let I be a well-ordered set.

Definition 3.1. An inverse I-chain is a functor D : I
op → Set. Explicitly, it consists of

• for all i ∈ I, a set Di, called the i-th level
• for all j 6 i ∈ I, a connecting map Di>j : Dj → Di

such that Di>i = idDi for all i ∈ I, and Di

Di>j //

Di>k   

Dj

Dj>k
��
Dk

commutes for all k 6 j 6 i ∈ I.

An inverse I-chain is a kind of tree [Jec03, BMSS12, BBM14]. It may be represented as
a poset A in which, for every x ∈ A, the set {y ∈ A | x < y} is well-ordered with order-type
less than that of I. This intuitive picture gives rise to the following notions.

Definition 3.2. Let D be an inverse I-chain.

(1) If I has a least element 0, then an element of D0 is a root.
(2) For j 6 i ∈ I and x ∈ Dj , an i-development of x is an element y ∈ Di such that

Di>jy = x.
(3) A full branch of D is an indexed tuple (xi)i∈I with xi ∈ Di for all i ∈ I and Di>jxi = xj

for all j 6 i ∈ I. (If I is empty, the empty tuple () is the sole full branch.)

We now proceed to define the final chain of an endofunctor F on Set.
Definition 3.3. [Adá74, Bar93] The final chain of F is an inverse Ord-chain, with ith level

written ν(i)F and connecting map written ν(i>j)F : ν(i)F −→ ν(j)F or ν(i>j) for short.
These sets and maps are given as follows.

• ν(i+1)F = Fν(i)F .
• ν(i+1>j+1) = Fν(i>j) for j 6 i.
• If i is a limit then ν(i)F is the limit of (ν(j)F )j<i, i.e. the set of full branches. For j < i,

the map ν(i>j) is πj : (xj)j<i 7→ xj .

• Since we deem 0 a limit ordinal, we have ν(0)F = {()}.
Thus

ν(i+1>j+1)P<κ : a 7→ {ν(i>j)b | b ∈ a}
We define a full branch (0i)i∈Ord through the final chain of P<κ, as follows:

• 0i+1
def
= ∅.

• If i is a limit then 0i
def
= (0j)j<i.

For i > 0, note that 0i is the unique i-development of 01.

3.2. Coalgebra projections. Again let F be an endofunctor on Set.

Definition 3.4. For an F -coalgebra (X, ζ) and ordinal i, the ith coalgebra projection,

written p
(X,ζ)
i or just pi, is the map X → ν(i)F given as follows2.

2In the language of [CUV09], the pair (ν(i)F, ν(i+1>i)) is a corecursive F -algebra, and p
(X,ζ)
i is the unique

map from (X, ζ) to it. The connecting maps are F -algebra morphisms.
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• The map pi+1 is X
ζ // FX

Fpi // Fν(i)F
• For a limit i, the map pi is (pj)j<i.

We may summarize as follows.

• Each pointed F -coalgebra x gives rise to a full branch (pix)i∈Ord through the final chain
of F .
• For any F -coalgebra morphism f : (X, ζ)→ (Y, ξ) and x ∈ X, the full branches (pix)i∈Ord

and (pif(x))i∈Ord are equal.

For a pointed system x, we have pi+1x = {piy | x y}. The coalgebra projections are
related to bisimilarity and its approximants as follows.

Proposition 3.5. Let x and y be pointed systems.

(1) For any ordinal i, we have x ∼i y iff pix = piy.
(2) We have x ∼ y iff the full branches (pix)i∈Ord and (piy)i∈Ord are equal.

Proof. Part (1) is by induction on i and part (2) follows.

Definition 3.6. An element a ∈ ν(i)Pf is said to be F -coalgebraic when it is of the form pix

for a pointed F -coalgebra x. We write ν
(i)
coalgF for the set of F -coalgebraic elements of ν(i)F .

Thus ν
(i)
coalgP<κ corresponds to the class of <κ-branching pointed systems modulo ∼i.

Note that a ∈ ν(i+1)P<κ is P<κ-coalgebraic iff all its elements are, by the parent construction.

Definition 3.7. Let i be a limit. An element of ν(i)F is F -Cauchy when all of its components
are F -coalgebraic.

Thus the set of F -Cauchy elements is limj<i ν
(j)
coalgF . Note that F -coalgebraic implies

F -Cauchy, but the converse need not be the case. (For example, for F : X 7→ 0, the element

() ∈ ν(0)F is F -Cauchy but not F -coalgebraic.) As explained in Section 9.3, the “Cauchy”
terminology comes from the notion of Cauchy sequence.

3.3. Channels and Ranges. The following notions are key to understanding the final
chain of P<κ.

Definition 3.8. Let I be a well-ordered set, and D an inverse I-chain.

(1) A channel through D consists of a subset Ci ⊆ Di for all i ∈ I, such that for all j 6 i ∈ I
• if x ∈ Ci then Di>jx ∈ Cj
• every y ∈ Cj has an i-development in Ci.

(2) For any set U of full branches of D, the range of U is the channel whose ith level is
{xi | x ∈ U}.

Note the following:

• Any channel through D with a root has all levels inhabited.
• limi∈I P<κDi is the set of channels through D with all levels <κ-sized.
• The function (P<κπi)i∈I : P<κ limi∈I Di → limi∈I P<κDi sends a <κ-sized set of full

branches to its range.

For general F , we have the following.

Proposition 3.9. Let i be an ordinal.
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(1) The map Ψi
def
= (ν(i>j))j<i : ν

(i)F ∼= limj<i Fν
(j)F is an isomorphism (bijection).

(2) If i is a limit, the following commutes:

ν(i)F = limj<i ν
(j)F

Ψi ∼=
��

F limj<i ν
(j)F

ν(i+1>i)
oo

(Fπj)j<iuu

= ν(i+1)F

limj<i Fν
(j)F

Consider the case F = P<κ. For a limit i, the elements of ν(i)P<κ are, by definition, the
full branches of the inverse chain (ν(j)P<κ)j<i. But they correspond via Ψi to the channels
through the same inverse chain. We repeatedly move between these two viewpoints—full
branches and channels—in this paper. For example, the map ν(i+1>i) is hard to grasp
directly, but by Proposition 3.9(2) it corresponds to (P<κπj)j<i, which sends a set of full
branches to its range.

3.4. Injectivity of Connecting Maps. A key question in the study of final chains (as
with initial chains) is stabilization [TAKR75, AK95, AT11, Wor05, ALM+15, AP15].

Proposition 3.10. Suppose the final chain of F is stable at i, i.e. ν(i+1>i) is bijective.

• ν(k>j) is bijective for all k > j > i.
• The F -coalgebra (ν(i)F, (ν(i+1>i))−1) is final, with the unique coalgebra map from any

coalgebra M given by pMi .

• The jth projection from this final coalgebra is given by ν(i>j) for j 6 i, and by (ν(j>i))−1

for j > i.

By Proposition 3.9(2), for any limit i, if F preserves limits of inverse i-chains then its
final chain is stable at i. This fact is useful for a polynomial functor F , i.e. one of the form
X 7→

∑
i∈I X

Ai . Since it preserves limits of connected diagrams, its final chain is stable at
ω [Bar93]. However, P<κ requires a more subtle analysis, given in [Wor05], that we now
reprise.

Proposition 3.11. Let F be an endofunctor on Set that preserves injections and intersec-
tions (such as P<κ or P+

<κ). Suppose ν(i+1>i)F is an injection. Then ν(k>j)F is an injection
for all k > j > i, and the final chain is stable at i+ ω.

A functor F is said to preserve the limit of an inverse I-chain D up to an injection
(surjection) when the map

(Fπi)i∈I : F lim
i∈I

Di → lim
i∈I

FDi

is injective (surjective).
Proposition 3.12. [Wor05] Let κ <∞∞. Then P<κ and P+

<κ preserve, up to an injection,
the limits of any inverse κ-chain D. Explicitly: if U and V are <κ-sized sets of full branches
through D and have the same range, then U = V .

Proof. Let a ∈ U . For i < κ, let V (i) be the set of b ∈ V such that bi = ai. Since V is
<κ-sized,

⋂
i<κ V (i) is inhabited by Proposition 2.1, so a ∈ V .

Thus ν(κ+1>κ)(P<κ) is injective and the final chain of P<κ is stable at κ+ ω. As proved
in [ALM+15] and reprised below (Proposition 4.13), it is not stable at any smaller ordinal.

We can now say precisely which connecting maps are injective.
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Proposition 3.13. For ordinals j 6 i, the following are equivalent.

(1) The connecting map ν(i>j)P<κ is an injection.
(2) Either j = i or j > κ (for κ <∞∞).

Proof. (2)⇒(1) follows from Propositions 3.12 and 3.11. For the converse, if j < κ, then

Proposition 2.4(2) shows that ν(j+1>j)P<κ is not injective.

3.5. Surjectivity of connecting maps.

Proposition 3.14. For any ordinal i, the following are equivalent.

(1) The map ν(i+1>i)F is surjective.

(2) For all h > i, the map ν(h>i)F is surjective.

(3) All elements of ν(i)F are F -coalgebraic.

Proof. (3) ⇒ (2) ⇒ (1): Trivial.

(1) ⇒ (3): By the Axiom of Choice, ν(i+1>i) has a section ζ : ν(i)F → ν(i+1)F . Put

M = (ν(i)F, ζ). For all j 6 i, we show pMj = ν(i>j) by induction on j. The limit case

is trivial. For the successor case, pMj = ν(i>j) implies FpMj = Fν(i>j) = ν(i+1>j+1) and
hence

ν(i)F pMj+1

%%ζ $$
id

��

ν(i+1)F
FpMj //

ν(i+1>i)

zz

ν(j+1)F

ν(i)F ν(i>j+1)

::

commutes. We conclude that pMi is the identity.

Proposition 3.15. Let κ > ℵ0. Then P<κ and P+
<κ preserve, up to a surjection, the limit

of any inverse ω-chain D. Explicitly: any channel C through D with all levels <κ-sized is
the range of some <κ-sized set of full branches.

Proof. For n ∈ N, each x ∈ Cn extends by dependent choice to a full branch through D. For
each n ∈ N and x ∈ Cn, choose such a branch θn(x), by the Axiom of Choice. Then the set
{θn(x) | n ∈ N, x ∈ Cn} is <κ-sized because <κ is uncountable and regular, and has range
C.

Corollary 3.16. Let κ > ℵ0.

(1) For i < ω1 and h > i, the connecting map ν(h>i)P<κ is surjective.

(2) For i < ω1, every element of ν(i)P<κ is P<κ-coalgebraic.

(3) Every element of ν(ω1)P<κ is P<κ-Cauchy.

Proof. We just need to prove ν(i+1>i) : ν(i)P<κ → ν(i+1)P<κ surjective, for i < ω1. The case
i = 0 is evident. If i is a positive limit, take a strictly increasing sequence (in)n∈N with
supremum i, then apply Proposition 3.15. The successor case follows from the fact that P<κ
preserves surjections.
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4. The Final Chain as a Transition System

4.1. Full powerset. We shall now explain how the final chain of P constitutes a transition
system.

Definition 4.1. The predecessor of an ordinal is defined as follows:

• pred(i+ 1)
def
= i.

• If i is a limit, pred(i)
def
= i.

• Since we deem 0 a limit, pred(0) = 0.

In general, pred(i) is the supremum of all ordinals less than i.

Note, by the way, that pred is the left adjoint of the successor function. We come to the
main definition:

Definition 4.2. The transition relation  i from ν(i)P to ν(pred(i))P is defined as follows.

• For a ∈ ν(i+1)P and b ∈ ν(i)P, we set a i+1 b when b ∈ a.
• If i is a limit, then for a, b ∈ ν(i)P, we set a i b when bj ∈ aj+1 for all j < i.
• Since we deem 0 a limit, () 0 ().

In general, a i b when for all j < i we have ν(pred(i)>j)b ∈ ν(i>j+1)a.

Note that connecting maps and coalgebra projections preserve transition:

Proposition 4.3.

(1) For j 6 i and a ∈ ν(i)P, if a i b then ν(i>j)a j ν
(pred(i)>pred(j))b.

(2) For a pointed system x and ordinal i, if x y then pix i ppred(i)x.

Let us translate Definition 4.2 into the language of Section 3.3. For general F , the map

Φi
def
= (ν(pred(i)>j))j<i : ν

(pred(i))F → lim
j<i

ν(j)F

is an isomorphism (bijection)—indeed the identity if i is a limit. For a ∈ ν(i)P and

b ∈ ν(pred(i))P we note that Ψi(a) is a channel, and Φi(b) a full branch, through (ν(j)P)j<i.
We have a i b when Φi(b) is a full branch through Ψi(a).

4.2. Restricted powerset. The final chain of P<κ forms a subsystem of the final chain of
P, in the following sense.

Proposition 4.4. Let a ∈ ν(i)P<κ and a i b then b ∈ ν(pred(i))P<κ.

Proof. Since Ψi(a) is a channel through (ν(j)P<κ)j<i (with all levels <κ-sized), every full

branch through it is a full branch through (ν(j)P<κ)j<i.

As we shall see, the subsystem (ν(i)P<κ)i∈Ord is not <κ-branching (Proposition 4.12
below). Furthermore, the P<κ-coalgebraic elements need not form a subsystem (Proposi-
tion 8.22 below). However, the P<κ-Cauchy elements do form a subsystem.

Suppose now that κ < ∞∞. Beyond κ, we recall that connecting maps are injections
(Proposition 3.13). They are moreover transition system embeddings in the following sense.

Proposition 4.5. For i > j > κ and a ∈ ν(i)P<κ, the map ν(pred(i)>pred(j)) is a bijection
from the  i-successors of a to the  j-successors of ν(i>j)a.
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Proof. This says that, if C is a channel through (ν(k)P<κ)k<i with all levels <κ-sized, then
each full branch b of C �j extends uniquely to a full branch a of C. For k < i we define ak
as follows.

• If k > κ, then for each l < κ the set Rl of a ∈ Ck such that al = bl is inhabited, so
⋂
l∈κRl

has an element by Proposition 2.1, unique since ν(k>κ) is injective. Let ak be this element.

• If k < κ, set ak
def
= bk.

Hence, beyond κ+ ω, the transition system agrees with the final coalgebra structure
given by Proposition 3.10:

Corollary 4.6. For i > κ+ ω and a ∈ ν(i)P<κ, the map ν(i>pred(i)) is a bijection from the
elements of (ν(i+1>i))−1a to the  i-successors of a.

4.3. Examples. The following result is adapted from [FH89].

Proposition 4.7. Let x and y be pointed systems and i ∈ Ord. We have pix i ppred(i)y iff,
for every j < i, the pointed system x has a successor z such that z ∼j y. (Cf. Proposition 2.5.)

Proof. Because pix  i ppred(i)y iff for every j < i we have pjy ∈ pj+1y, and the latter is
{pjz | x z}.

In several cases we shall precisely describe the  i-successors of an element.

Proposition 4.8. For any i > 0, the element 0i has no successors.

Proof. If 0i  i b then b0 ∈ 01 = ∅.

Proposition 4.9. Let κ <∞∞ and let x be an <κ-branching pointed system. For i > κ, the
set of successors of pix is {ppred(i)y | x y}.

Proof. Let j be the maximum of i and κ+ ω. If pix b, then, by Proposition 4.5, pj+1x

has a unique element c such that ν(j>pred(i))c = b. By the final coalgebra property, x has a
successor y such that pjy = c and hence ppred(i)y = b.

Proposition 4.10. Let x be a pointed system with a unique successor y. For any ordinal i,
the element pix has unique successor ppred(i)y.

Proof. If pix  b then for all j < i we have bj ∈ pj+1x = {pjy} so bj = pjy. Thus
b = ppred(i)y.

We next consider the von Neumann ordinals.

Proposition 4.11. For ordinals j 6 i, the successors of pivj are listed without repetition

• as (ppred(i)vk)k<j, if j < i
• as (ppred(i)vk)k6pred(i), if j = i.

Proof. Proposition 4.7 tells us that these are indeed successors. Uniqueness is by Proposi-
tion 2.3.

Let j 6 i and pivj  x. For every k < i, we have xk ∈ pk+1vj , which is {pky | vj  y}.
Thus xk is expressible as pky for some successor y of vj , i.e y = vl for some l < j. There is a
unique such l that is 6 k; we call it g(k).

Let C be the set of k < i such that g(k) = k and D its complement, i.e. the set of k < i
such that g(k) < k.
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For any k 6 l < i we have pkvg(k) = pkvg(l) i.e. tg(k) ∼k tg(l). This can be unpacked as
follows.

(1) If k ∈ C then g(l) > k.
(2) if k ∈ D then g(l) = g(k).

(2) implies that g(l) = g(k) < k 6 l, so l ∈ D. Thus D is upper and C is lower.
Let k be the supremum of C. Since pred(i) is an upper bound for C we have k 6 pred(i).
We show that x = ppred(i)vk, i.e. that for any l < i we have g(l) = l u k. If l < k this

holds because l ∈ C. If l > k, we must show g(l) = k. Firstly, (1) says that g(l) is an
upper bound for C, hence g(l) > k. If l = k we are done. If l > k then k + 1 6 l < i, and
k 6 g(k + 1) 6 k + 1. Since k + 1 6∈ C, we have g(k + 1) = k and hence by (2), g(l) = k.

Since j is an upper bound for C, we have k 6 j. If j < i, then j ∈ D but k ∈ C so
k < j.

Proposition 4.12. For κ <∞∞, the set ν(κ)P<κ has a P<κ-Cauchy element with precisely
κ successors.

Proof. Put e
def
= pκvκ. For i < κ, the component ei is pivκ = pivi, hence P<κ-coalgebraic.

By Proposition 4.11, the successors of e are listed without repetition as (pκvi)i6κ, so e has
κ-many successors.

Thus we may characterize which connecting maps are bijective.
Proposition 4.13. [ALM+15] For ordinals j 6 i, the following are equivalent:

(1) The connecting map ν(i>j)P<κ is bijective.
(2) Either j = i or j > κ+ ω (for κ <∞∞).

Proof. For (2)⇒(1), we saw in Section 3.4 that the final chain is stable at κ+ ω. For the
converse, assuming j < i, Proposition 3.13 covers the case where j < κ. For j = κ+n, where
n ∈ N, take a ∈ ν(κ)P<κ with κ successors. Then {−}na is not in the range of ν(κ+n+1>κ+n),

because for every b ∈ ν(κ+n+1)P<κ, each n-step descendant of b has <κ-successors.

5. Before ω1

This section reprises from [ALM+15] several properties that the final chain enjoys at countable
ordinals. (We have already seen one such property—surjectivity of connecting maps.) We
first mention some properties enjoyed at finite ordinals:

Proposition 5.1. Let n ∈ N.

(1) For a, b ∈ ν(n)P, if a ∼n b then a = b.

(2) For any pointed system x, we can characterize pnx as the unique b ∈ ν(n)P such that
b ∼n x.

(3) For any ordinal i and a ∈ ν(i+n)P, we have pna = ν(i+n>n)a, and it can be characterized

as the unique b ∈ ν(n)P such that b ∼n a.

Proof. By induction on n.

The properties enjoyed at countable ordinals derive from the following fact.

Proposition 5.2. For j < i < ω1 and all a ∈ ν(i)P we have

ν(i>j+1)a = {ν(i>j)b | a i b}
.
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Proof. Trivial if i is a successor or 0. If i is a positive limit, take a strictly increasing sequence
(in)n∈N with supremum i. Any b ∈ ν(i>j+1)a, is an element of the jth level of the channel

Ψi(a) through (ν(k)P<κ)k<i, and it extends by dependent choice to a full branch.

Lemma 5.3. Let j 6 i < ω1. For a ∈ ν(i)P we have pja = ν(i>j)a.

Proof. By induction on j, using Proposition 5.2 for the successor case.

Proposition 5.4. Let i < ω1.

(1) For a ∈ ν(i)P we have pia = a.

(2) Every element of ν(i)P is P-coalgebraic.

(3) For a, b ∈ ν(i)P, if a ∼i b then a = b.

(4) For a, b ∈ ν(i)P, if a ∼ b then a = b.

Proof.

(1) By Lemma 5.3.
(2) Follows from part (1).
(3) a = pia = pib = b.
(4) Follows from part (3).

Corollary 5.5.

(1) Let i < ω1. For any pointed system x, we may characterize pix as the unique b ∈ ν(i)P
such that b ∼i x.

(2) Let j 6 i < ω1. For any a ∈ ν(i)P we may characterize ν(i>j)a as the unique b ∈ ν(j)P
such that b ∼j a.

Proof.

(1) pipix = pix, by Proposition 5.4(1), so pix ∼i x. Uniqueness is by Proposition 5.4(3).

(2) pjν
(i>j)a = ν(i>j)a = ν(i>j)pia = pja, so ν(i>j)a ∼j a. Uniqueness is by Proposi-

tion 5.4(3).

A pointed system a is <κ-branching at depth < i when every b such that a m b, for a
natural number m < i, has <κ successors. If i > ω, this just says that a is <κ-branching.

Proposition 5.6. Assume κ <∞∞.

(1) Let j be an ordinal. Every element of ν(κ+j)P<κ that is P<κ-coalgebraic is <κ-branching,
and conversely if κ = ℵ0.

(2) Let j 6 i be ordinals. Every element of ν(κ+j)P<κ that is in the range of ν(κ+i>κ+j) is
<κ-branching at depth < i, and conversely if κ = ℵ0.

Proof.

(1) (⇒) follows from Proposition 4.9. For (⇐), if a ∈ ν(ω+j)Pf is finitely branching, then it
is Pf-coalgebraic since pω+ja = a.

(2) (⇒) follows from Proposition 4.5, since every element of ν(κ+i)P<κ is <κ-branching at

depth < i. For (⇐), let a ∈ ν(κ+j)P<κ be <κ-branching at depth < i. Since b
def
= pω+ia

is sent by ν(ω+i>ω+j) to a, it suffices to show that b ∈ ν(ω+i)Pf . If i > ω this holds
because a is finitely branching; we prove the case i < ω by induction on i. For i = 0 we
have j = i and b = a ∈ ν(κ)Pf . For i = i′ + 1 we have b = {pω+i′c | a c}, which is in

ν(ω+i)Pf because a has finitely many successors and each of them is finitely branching
at depth < i′.
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6. A Ghost at ω1

The previous section has established properties of ν(i)P<κ for i < ω1. But for i = ω1, many
questions remain unresolved.

• For i < ω1, every element of ν(i)P<κ is P<κ-coalgebraic (for κ > ℵ0). Is every element of

ν(ω1)Pc at least P-coalgebraic?
• For i < ω1, the set ν(i)P is strongly extensional, i.e. bisimilar elements are equal. What

about ν(ω1)Pc?
• For j < i < ω1 we saw (Proposition 5.2) that ν(i>j+1)P sends a to {ν(pred(i)>j)b | a b}.

Is this true for ν(ω1>j+1)Pc, where j < ω1?
• The finitely branching elements of ν(ω)Pf are the Pf -coalgebraic ones. Are the countably

branching elements of ν(ω1)Pc all Pc-coalgebraic?

The following result will provide a negative answer to all the above questions.

Proposition 6.1. The set ν(ω1)Pc has an element a, distinct from 0(ω1), that has no
successor.

Such an element a is called a ghost because it “appears to be alive” (for all j < ω1, the
component aj+1 is inhabited) yet is “dead” (has no successors). The negative answers are
deduced as follows.

• For a pointed system x, if a = pω1x, then () ∈ a1 = p1x = {p0y | x y}. So x has a
successor y, so a = pω1x pω1y, contradiction.

• a and 0ω1 are bisimilar (having no successors) yet distinct. So ν(ω1)Pc is not strongly
extensional.
• For j < ω1, the set ν(i>j+1)a = aj+1 has an element b, but b is not of the form ν(i>j)c for

a successor c of a.
• The element a is countably branching but not Pc-coalgebraic.

A ghost corresponds via Ψω1 to a channel through (ν(i)Pc)i<ω1 , with all levels countable,
that has a root but no full branch. The rest of the section is devoted to proving that such a
channel exists. Our proof involves three steps:

(1) obtaining an “Aronszajn tree”
(2) embedding it into the complete binary tree
(3) embedding the complete binary tree into the final chain.

We begin with the following notions.

Definition 6.2. Let I be a well-ordered set with least element. A tidy I-tree3 is an inverse
I-chain D with the following properties.

• For any j 6 i ∈ I, the connecting map Di>j is surjective, i.e. every a ∈ Dj has an
i-development.
• For any limit i ∈ I, every full branch through (Dj)j<i has at most one extension to a full

branch through (Dj)j6i.
• D has a (necessarily unique) root.

Note that a tidy I-tree is a channel through itself.
It is important to know whether a tidy tree is guaranteed to have a full branch. The

following two results [HS54, Kur36] show that this is not always the case. Our presentation
follows [Ber].

3The set-theoretic literature commonly uses a more general notion of tree. See Section 9.1 for a comparison.
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Proposition 6.3. For regular λ > ℵ0, there is a tidy λ-tree that has all levels 6λ-sized and
has no full branch.

Proof. For each i < λ, let Di be the set of strictly increasing sequences 0 = x0 < · · · < xn < λ
of ordinals, where xn > i but xm < i for all m < n. Clearly Di is 6λ-sized. For j 6 i < λ,
let Di>j : Di → Dj send x ∈ Di to its unique prefix in Dj . Then (Di)i<λ is a tidy λ-tree,
and any full branch would give a cofinal ω-sequence in λ, contradicting regularity.

Theorem 6.4. There is a tidy ω1-tree that has all levels countable and no full branch. (Such
a tree is said to be Aronszajn.)

Proof. For i < ω1, let Ei be the set of strictly increasing i-sequences x = (xj)j<i of
nonnegative rationals. The supremum of x ∈ Ei—taken to be 0 if x is empty—is a
nonnegative real or ∞, and written sup(x).

We shall define a countable subset Di ⊆ Ei for all i < ω1, with the following properties.

(1) If x ∈ Di then its supremum is (finite and) rational.
(2) If j 6 i < ω1 and x ∈ Di then the j-sequence prefix of x is in Dj .
(3) If j < i < ω1, then for any x ∈ Dj and rational r > sup(x), x has an extension in Di

with supremum r.

Suppose that we have Dj for all j < i, with these properties. We define Di as follows;
properties (1)–(3) are easily verified in each case.

• For i = 0, let Di consist of the empty sequence.
• Suppose i = j+ 1. Let Di consist of all the extended sequences xr for x ∈ Dj and rational
r > sup(x).
• Suppose i > 0 is a limit. By the Axiom of Choice, choose, for each j < i and x ∈ Dj

and rational r > sup(x), a strictly increasing sequence of ordinals (kn)n∈N, where k0 = j,
with supremum i; and a strictly increasing sequence of rationals (sn)n∈N, where s0 =
sup(x), with supremum r. (For example, take sn = 2−nsup(x) + (1− 2−n)r.) We define
Pn(j, x, r) ∈ Dkn with supremum sn by induction on n ∈ N.
– Let x0 be x.
– Let xn+1 be an extension of xn in Dkn with supremum sn+1.
Then the i-sequence

⊔
n∈N Pn(j, x, r) has supremum r and extends x. Let Di be the set of

all these.

We take the inverse chain (Di)i<ω1 , with connecting map Di>j sending x ∈ Di to its j-
sequence prefix. The limit property is clear. The connecting map Di>j is surjective because,
in the nontrivial case j < i, every x ∈ Dj has an extension in Di with supremum sup(x) + 1.
The levels are countable by construction. Finally, any full branch of (Di)i<ω1 would give a
strictly increasing ω1-sequence of nonnegative rationals, which does not exist.

This completes our first step. Before describing the second, we must give a suitable
notion of embedding.

Definition 6.5. A cofinal embedding of inverse chains α : (Di)i∈I → (Ej)j∈J consists of the
following.

• A monotone map f : I → J (the index map) that is cofinal, i.e. for any j ∈ J there is
i ∈ I such that fi > j.
• For each i ∈ I, an injection αi : Di → Efi (the i-th level map) that is natural in i, i.e. for
j 6 i in I, if y ∈ Di is an i-development of x ∈ Dj then αiy must be an fi-development
of αix.
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For any channel B through D, its α-image is the unique channel C through E such that,
for all i ∈ I, the set Cfi is {αix | x ∈ Bi}.
Proposition 6.6. Let α : (Di)i∈I → (Ej)j∈J be a cofinal embedding of inverse chains. Let
B be a channel through D, with α-image C.

(1) (Assuming I has a least element.) If B has a root, then C does too.
(2) If B has all levels <κ-sized, then so does C.
(3) The map (yj)j∈J 7→ (xαi)i∈I is a bijection from the full branches of C to those of B.

By part (3), if B has no full branch, then neither does C. Our second step involves the
following tidy tree.

Definition 6.7.

(1) Let {0, 1}i be the set of i-sequences (dj)j<i of bits.
(2) For j 6 i and x ∈ {0, 1}i we write x �j for the restriction of x to j.
(3) For a positive limit i, the complete binary i-tree is ({0, 1}j)j<i, with connecting maps

given by restriction.

Proposition 6.8. Let D be a tidy ω1-tree with all levels countable. Then there is a cofinal
embedding α of D into the complete binary ω1-tree.

Proof. The index map is i 7→ ω × i, which is well-defined and cofinal because i < ω1 implies
i 6 ω × i < ω1. The injection αi : Di → {0, 1}ω×i is defined by induction on i, ensuring
naturality wrt all j 6 i. For the successor case, we choose an injection from the countably
many i + 1-developments of each x ∈ Di to the 2ℵ0-many ω × (i + 1) developments of
αix ∈ {0, 1}ω×i. The case where i is a limit is uniquely defined: each x ∈ Di is mapped to
the unique i-sequence that, for all j < i, extends αiDi>jx. This is injective because x is
determined by (Di>j)j<i.

Corollary 6.9. There is a channel through the complete binary ω1-tree, with all levels
countable, that has a root but no full branch.

Proof. Proposition 6.4 gives an Aronszajn tidy tree. Embed it into the complete binary
ω1-tree and take its image.

It remains to cofinally embed the complete binary ω1-tree into (ν(i)Pc)i<ω1 . For this we
encode a sequence of bits as a set of ordinals, following [FH89][Lemmas 2.2 and 2.3].

Definition 6.10. For any ordinal i, and c ∈ {0, 1}i we define

c = {j < i | cj = 1} ∪ {i}
For each set of ordinals R, let uR be a parent of (vi)i∈R.

Lemma 6.11. Let j 6 i and c ∈ {0, 1}j and d ∈ {0, 1}i. Then c = d �j iff uc ∼j+1 ud.

Corollary 6.12. There is a cofinal embedding β from the complete binary ω1-tree into
(ν(i)Pc)i<ω1, with index map i 7→ i+ 1.

Proof. The injection βj : {0, 1}j → ν(j+1)P<κ sends c to pj+1uc. Injectivity and naturality
follow from Lemma 6.11.

We now complete our proof. Corollary 6.9 gives a channel E through the complete
binary ω1-tree, with all levels countable, that has a root but no full branch. Its β-image is a
channel through (ν(i)Pc)i<ω1 with the same properties.
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7. The Number of Successors

We further consider the final chain of Pc. Proposition 4.12 tells us that some element
of ν(ω)Pc has ℵ0 successors (since ν(ω)Pc = ν(ω)Pf), and some element of ν(ω1)Pc has ℵ1

successors. Are there elements with more successors than this? Although this question is a
digression from our main narrative, it provides an application of the infrastructure we have
assembled.

Proposition 7.1. The size of ν(i)Pc is

• finite and positive, if i is finite
• 2ℵ0, if ω 6 i < ω1

• 2ℵ1, if i > ω1.

Proof. Induction on i gives the upper bound, since Pc and countable limit preserves 62ℵ0-
sizedness, and ω1-limit preserves 6 2ℵ1-sizedness. From ω1 onwards the sets cannot get
bigger. The lower bound is proved as follows. For a set of ordinals R, we write uR for a
parent of (vi)i∈R.

• For i > ω we have a family (piuR)R⊆ω of 2ℵ0 distinct elements of Pci. For distinctness,
let R,S ⊆ ω with n ∈ R \ S. Then uR 6∼n+2 uS because there is no m ∈ S such that
vn ∼n+1 vm.
• For i > ω1 we have a family (piuJ)J⊆ω1 of 2ℵ1 distinct elements of Pci, by the same

argument.

Proposition 7.2. For every positive limit i < ω1, some element of ν(i)Pc has 2ℵ0 successors.

Proof. Let (in)n∈N be a strictly increasing sequence with supremum i. We define a cofinal
embedding α of the complete binary ω-tree into the complete binary i-tree with index map
n 7→ in as follows: the injection αn sends (cm)m<n to (dj)j<in , where dj is cm if j = im for
some (unique) m < n and 0 otherwise. Corollary 6.12 gives a cofinal embedding β of the

complete binary i-tree into (ν(j)Pc)j<i. The βα-image of the complete binary ω-tree is a

channel through (ν(j)Pc)j<i with 2ℵ0 full branches, corresponding across Ψi to an element

of ν(i)Pc with 2ℵ0 successors.

At ω1 the question is harder to answer.

Proposition 7.3. For any cardinal λ, the following are equivalent.

(1) Some element of ν(ω1)Pc has precisely λ successors.
(2) There is a tidy ω1-tree, with all levels countable, that has precisely λ full branches.

Proof. For (1)⇒(2), any such element corresponds across Ψω1 to the desired tree—unless it
is 0ω1 , but in that case λ = 0 and Theorem 6.4 gives (2).

For (2)⇒(1), let D be such a tree. We embed it cofinally into the complete binary

ω1-tree (Proposition 6.8), and embed this in turn into (ν(i)Pc)i<ω1 (Corollary 6.12), and the
image corresponds via Ψω1 to the desired element.

Thus the existence of an element of ν(ω1)Pc with more than ℵ1 successors is equivalent
to the existence of a tidy ω1-tree, with all levels countable, that has more than ℵ1 full
branches. Such a tree is said to be Kurepa and its existence is independent of ZFC, under
certain assumptions4.

4ZFC cannot prove that a Kurepa tree exists, if ZFC + an inaccessible is consistent [Sil71]. ZFC cannot
prove that a Kurepa tree does not exist, if ZFC is consistent (Solovay).
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8. Beyond ω1

8.1. Properties of Ordinals and Cardinals. We have now completed our study of the
final chain of the countable powerset functor. But for P<κ we can continue, by asking
what happens in the final chain beyond ω1. We shall see that, surprisingly, there is a sharp
division between those limit ordinals where strong extensionality holds and those where
there is a ghost. This is our main result, Theorem 8.13 below. The same method of [FH89]
is adapted to construct all these ghosts.

Our classification relies on the following properties.

Definition 8.1. An ordinal is ω-cofinal when it is the supremum of a strictly increasing
sequence (in)n∈N.

Thus every countable limit is either 0 or ω-cofinal.

Definition 8.2. Let λ be a regular infinite cardinal.

(1) λ has the tree property when every tidy λ-tree with all levels <λ-sized has a full branch.
(2) λ is strongly inaccessible when, for every <λ-sized set A, the set PA is also <λ-sized.
(3) λ is weakly compact when it is strongly inaccessible and has the tree property.

Note that in Definition 8.2(1), it is essential for the levels to be <λ-sized, because
of Proposition 6.3. Only in the case λ = ℵ0 is a full branch guaranteed to exist without
this condition. By Theorem 6.4, ℵ1 does not have the tree property. Whether ℵ2 has it is
independent of ZFC under certain assumptions5.

We deem ℵ0 to be strongly inaccessible (and hence weakly compact). Successor cardinals
such as ℵ1 are not inaccessible. The importance of strong inaccessibility in our story comes
from the following fact.

Proposition 8.3. If λ is strongly inaccessible, then for all i < λ the set ν(i)P is <λ-sized.

Proof. By induction on i. The successor case is by the definition of strong inaccessibility.
For a limit i < λ, we use the fact that if (Aj)j<i is an inverse chain of <λ-sized sets then its
limit is <λ-sized.

8.2. Connecting map to a successor. In Section 5 we derived several properties of
countable ordinals from Proposition 5.2. Accordingly, we shall begin by analyzing at which
ordinals the property described there holds.

Definition 8.4. The following limit ordinals are said to be κ-extensible:

• 0.
• Any ω-cofinal ordinal.
• Any weakly compact cardinal.
• Any limit ordinal > κ+ ω, if κ <∞∞.
• κ, if κ <∞∞ and κ has the tree property.

We complete Proposition 5.2 as follows.

Proposition 8.5. For ordinals j < i the following are equivalent.

5ZFC cannot prove that ℵ2 has the tree property, if ZFC is consistent [Spe49]. ZFC cannot prove that ℵ2

lacks the tree property, if ZFC + a weakly compact cardinal is consistent [Mit72].
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(1) For all a ∈ ν(i)P<κ we have ν(i>j+1)a = {ν(i>j)b | a i b}.
(2) i is either a successor or a κ-extensible limit.

Proof. of (2) ⇒ (1). The successor and zero cases are trivial, and the case i > κ+ ω follows

from Corollary 4.6. Let us consider the other cases. For b ∈ ν(i>j+1), we know that b is an
element of the jth level of the channel Ψi(a) through (ν(k)P<κ)k<i, and we want to extend it
to a full branch. We may reformulate this problem by expressing i as j + i′, and defining the
tidy i′-tree (Ak)k<i′ where Ak is the set of j + k-developments of b. We want a full branch
for this tree.

• Suppose that i is ω-cofinal, so i′ is too. Let (in)n∈N be a strictly increasing sequence with
supremum i′. We obtain a full branch by dependent choice. (The size of the sets Ak is
immaterial in this case.)
• Suppose that κ has the tree property and i = κ, so i′ = κ. For k < κ the set Ak, being a

subset of ν(j+k)P<κ, is <κ-sized. So the tree property gives a full branch through (Ak)k<κ.
• Suppose that i, and therefore i′, is a weakly compact cardinal λ < κ. For k < λ, we have

also j + k < λ, and so Ak, being a subset of ν(j+k)P<κ, is <λ-sized by Proposition 8.3. So
the tree property gives a full branch through (Ak)k<λ.

To prove the converse, we use the following notion of ghost.

Definition 8.6. Let i be a limit. A P<κ-ghost at i is a P<κ-Cauchy element of ν(i)P<κ,
distinct from 0(i), that has no successor.

The Cauchy condition was omitted in Proposition 6.1 because every element of ν(ω1)P<κ
is P<κ-Cauchy (Corollary 3.16(3).)

Any P<κ-ghost a at i does not satisfy the equation in (1), because the LHS is aj+1,
which is inhabited, but the RHS is empty. So there cannot be a P<κ-ghost at a κ-extensible
ordinals. The following two results establish that, at all other limits, a P<κ-ghost does exist,
giving (1) ⇒ (2) as required.

Again we use channels: a P<κ-ghost at i corresponds via Ψi to a channel through

(ν
(j)
coalgP<κ)j<i, with all levels <κ-sized, that has a root but no full branch.

Proposition 8.7. Let κ <∞∞ not have the tree property. Then there is a P<κ-ghost at κ.

Proof. Since κ does not have the tree property, there is a tidy κ-tree D with no full branch.
(Such a tree is said to be κ-Aronszajn.)

We give a cofinal embedding α of D into the complete binary κ-tree as follows. The index
map is f : i 7→

∑
j<i |Dj |. This is well-defined and cofinal because i < κ implies i 6 fi < κ,

since 1 6 |Dj | < κ and κ is regular. We give the i-th level map αi : Di → {0, 1}fi
by induction on i, ensuring naturality wrt all j 6 i. For the successor case, we have
f(i+ 1) = fi + |Di|, so we take an injection from the 6 |Di|-many i + 1-developments of

each x ∈ Di to the 2|Di|-many f(i+ 1)-developments of αix ∈ {0, 1}fi. The case where i is
a limit is uniquely defined, as in the proof of Proposition 6.8.

The image E of D is a channel through the complete binary κ-tree with a root but no
full branch. As in Corollary 6.12, we define a cofinal embedding β of the complete binary

κ-tree into (ν
(j)
coalgP<κ)j<κ, with index map j 7→ j + 1. The β-image of E is the desired

channel.

Proposition 8.8. Let i < κ be a positive limit that is neither ω-cofinal nor weakly compact.
Then there is a P<κ-ghost at i.
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Proof. Let λ be the cofinality of i. Then λ is a regular cardinal > ℵ0. There are three
possibilities:

(1) i is not a regular cardinal, i.e. i > λ.
(2) i = λ and λ is not strongly inaccessible.
(3) i = λ and λ does not have the tree property.

For case (1), Proposition 6.3 gives a tidy λ-tree D, with every level 6λ-sized, that has no
full branch. Evidently there is a cofinal embedding α of D into the complete λ-ary λ-tree
(λj)j<λ, with index map j 7→ j. We shall give a cofinal embedding β of the complete λ-ary

λ-tree into (ν
(j)
coalgP<κ)j<i. Then the βα-image of D is a channel through (ν

(j)
coalgP<κ)j<i,

with every level 6λ-sized, that has a root but no full branch. Whereas we previously encoded
a sequence of bits as a set of ordinals, we shall now encode a sequence of elements of λ as a
set of sets of ordinals.

Since i > λ, express i as the supremum of a strictly increasing λ-sequence (ηj)j<λ in η,
with η0 > λ. The idea is to encode an ordered pair (k, l), where k, l < λ, as {ηk, l}. Clearly,
for k, k′ < j < λ and l, l′ < λ, we have

u{ηk,l} ∼ηj+1 u{ηk′ ,l′} ⇐⇒ k = k′ and l = l′ (8.1)

For j < λ and c ∈ λj , we set

c
def
= {{ηk, ck} | k < j} ∪ {{ηj , l} | l < λ}

For a set of ordinals R we write uR for a parent of (vj)j∈R, and for a set of sets of ordinals

S we write tS for a parent of (uR)R∈S . For k 6 j < λ and c ∈ λk and d ∈ λj , we deduce
from (8.1) that

c = d �k ⇐⇒ tc ∼ηk+2 td (8.2)

The cofinal embedding β of the complete λ-ary λ-tree into (ν
(j)
coalgP<κ)j<i has index map

j 7→ ηj + 2. The j-th level map βiλ
j → ν(ηj+2)P<κ sends c to pηj+2tc. Injectivity and

naturality follow from 8.2.
For case (2), Proposition 6.3 gives a tidy λ-tree D, with all levels 6λ-sized, that has no

full branch. We give a cofinal embedding α of D in the complete binary λ-tree as follows.
Since λ is not strongly inaccessible, there is a cardinal µ < λ such that 2µ > λ. The index
map is j 7→ µ× j. This is well-defined and cofinal because j < λ implies j 6 µ× j < λ, since
1 6 µ < λ and λ is regular. We give the j-th level map αi : Dj → {0, 1}µ×j by induction
on j, ensuring naturality wrt all k 6 j. For the successor case, we take an injection from
the 6λ-many j + 1-developments of each x ∈ Dj to the 2µ-many µ× (j + 1) developments
of αix ∈ {0, 1}µ×j . The case where j is a limit is uniquely defined, as in the proof of
Proposition 6.8.

Next we obtain an embedding β of the complete binary λ-tree into (ν
(j)
coalgP<κ)j<λ,

with index map j 7→ j + 1, as in Corollary 6.12. The βα-image of D is a channel through

(ν
(j)
coalgP<κ)j<λ, with all levels 6λ-sized, that has a root but no full branch.

For case (3), Proposition 8.7 gives a P<λ-ghost at λ, which is also a P<κ-ghost at λ.
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8.3. Consequences of the ghosts. Our aim is to revisit each of the properties listed in
Section 5, to see at which ordinals it holds. So we want to obtain many negative results
from a ghost. We begin with some methods for doing so.

Lemma 8.9. A P-ghost at limit i is not in the image of ν(i+1>i)P.

Proof. Let ν(i+1>i)b, for b ∈ ν(i+1)P, be a P-ghost at i. It corresponds across Ψi to the
range of b. Any element of b would be a full branch of the range of b, which does not exist,
so b is empty. But then its range is empty, contradiction.

We shall use the singleton operation {−} applied n times to a ghost.

Lemma 8.10. Let a a P-ghost at positive limit i, and n ∈ N. Then {−}na ∈ ν(i+n)P has
the following properties.

(1) pn+1{−}na 6= ν(i+n>n+1){−}na.

(2) {−}na is not in the image of ν(i+n+1>i+n)P.
(3) {−}na is not P-coalgebraic.
(4) {−}na ∼ {−}n0(i) but {−}na 6= {−}n0(i).

(5) {−}na 6∼n+1 ν
(i+n>j){−}na for any j < i such that j > n.

Proof.

(1) Induction on n gives pn+1{−}na) = {−}n∅ and ν(i+n>n+1){−}na = {−}n{()}.
(2) Induction on n. The case n = 0 is Lemma 8.9. The inductive step follows from

ν(i+n+2>i+n+1)b = {ν(i+n+1>i+n)c | c ∈ b}.
(3) Follows from part (2).
(4) Each part is by induction on n.

(5) We have ν(i+n>j){−}na n ν(i>predn(j))a. Since n < j < i we have 0 < predn(j) < i, so

ν(i>predn(j))a has a successor. But if {−}na n b, then b = a, which has no successor.

For our results, we use the following terminology.

Definition 8.11. For an ordinal i, let i = i′ +m where i′ is a limit and m ∈ N. Then we
write

LP(i)
def
= i′, the limit part of i.

FP(i)
def
= m, the finite part of i.

The following completes Lemma 5.3.

Theorem 8.12. For j 6 i, the following are equivalent.

(1) For all a ∈ ν(i)P<κ we have pia = ν(i>j)a.
(2) Either j 6 FP(i) or LP(i) is κ-extensible.

Proof. For (2)⇒(1), the case (j 6 FP(i)) is Proposition 5.1(3), and the case of κ-extensible
LP(i) is proved the same way as Lemma 5.3.

For the converse, let a be a P<κ-ghost a at LP(i). If pj{−}FP(i)a = ν(i>j){−}FP(i)a

then (since FP(i) + 1 6 j) we have pFP(i)+1{−}FP(i)a = ν(i>FP(i)+1){−}FP(i)a, contradicting
Lemma 8.10(1).

We come to the main result of the paper, which completes Proposition 5.4.

Theorem 8.13. For any ordinal i, the following are equivalent.
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(1) For all a ∈ ν(i)P<κ we have pia = a.

(2) Every a ∈ ν(i)P<κ is P-coalgebraic.

(3) For a, b ∈ ν(i)P<κ, if a ∼i b then a = b.

(4) For a, b ∈ ν(i)P<κ, if a ∼ b then a = b.
(5) LP(i) is κ-extensible.

Proof. Proposition 8.12 gives (5)⇔(1). Parts (2)–(4) follow just as in Proposition 5.4.

If LP(i) is not κ-extensible, let a be a P<κ-ghost at LP(i). By Lemma 8.10(3), {−}FP(i)a
is not P-coalgebraic, and is bisimilar to but distinct from 0(i).

Another way of obtaining negative results from a ghost is the following.

Lemma 8.14. Let i < κ be a positive limit, and let a be a P<κ-ghost at i. There is a
sequence (xm)m∈N of <κ-branching pointed systems such that

• pix0  a
• every successor of x0 has a successor
• xm+1 is a parent of just xm.

Proof. The only difficulty is to obtain x0, for we can then obtain xm by induction on m.
Since a is P<κ-Cauchy, we may choose, for each positive j < i, a <κ-branching pointed
system yj such that aj+1 = pj+1yj (and hence aj = pjyj). Let x0 be a parent of (yj)j<i.
Then for j < i, we have (pix0)j+1 = pj+1x0 = {pjy | x0  y} 3 aj , so pix0  a. Any
successor y of x0 is, for some j < i, an embedding applied to yj . Since pj+1yj is inhabited,
yj and hence y must have a successor.

We shall complete Corollary 5.5, which characterizes pix and ν(i>j)a, in two parts: firstly
considering when these elements have the required property (Proposition 8.15), and secondly
considering when no other element has it (Proposition 8.16).

Proposition 8.15.

(1) For an ordinal j, the following are equivalent.
(a) For any <κ-branching pointed system x we have x ∼j pjx.
(b) Either j > κ (for κ <∞∞) or LP(j) is κ-extensible.

(2) For ordinals j 6 i, the following are equivalent.

(a) For any a ∈ ν(i)P<κ, we have ν(i>j)a ∼j a.
(b) Either j = i or j 6 FP(i) or j > κ (for κ < ∞∞) or both LP(j) and LP(i) are

κ-extensible.

Proof. For (1b)⇒(1a), the κ-extensible case is proved as in Corollary 5.5(1 and the case
j > κ holds by Proposition 4.9. For (2b)⇒(2a), the κ-extensible case is proved as in
Corollary 5.5(2, the case j > κ is by Proposition 4.5 and the case j 6 FP(i) follows from
Proposition 5.1(3).

For the converse we proceed as follows.

(1) If j < κ and LP(j) is not κ-extensible, let a be a P<κ-ghost at LP(j) and form the

sequence (xm)m∈N as in Lemma 8.14. Put n
def
= FP(j). Then pjxn  n pjx0  a and a

has no successor, whereas if xn  n+1 y then y has a successor. So pjxn 6∼n+2 xn.
(2) Suppose FP(i) < j < i, κ, and LP(j) and LP(i) are not both κ-extensible. We consider

three cases.
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• If LP(j) = LP(i), put L = LP(j) and j = L+ n and i = L+m+ n+ 1. Let a be a

P<κ-ghost at L and form the sequence (xm)m∈N as in Lemma 8.14. Put b
def
= pixn.

Then ν(i>j)b = pL+nxn  n+1 a, which has no successor. On the other hand, if
b n+1 c then c = pL+my, for some successor y of x0, and since y has a successor, c
does too. So b 6∼n+2 ν

(i>j)b.
• If LP(i) is not κ-extensible and j < LP(i), let a be a P<κ-ghost at LP(i). Put

n
def
= FP(i) and apply Lemma 8.10(5).

• If LP(i) is κ-extensible then LP(j) is not, so let a be a P<κ-ghost at LP(j) and form

the sequence (xm)m∈N as in Lemma 8.14. Put n
def
= FP(j) and b

def
= pixn. Then b ∼i xn

but ν(i>j)b = pjxn 6∼n+2 xn, as we saw in the proof of part 1. So b 6∼n+1 ν
(i>j)b.

Proposition 8.16.

(1) For any ordinal j, the following are equivalent.

(a) For any <κ-branching pointed system x, any b ∈ ν(j)P<κ such that b ∼j x is pjx.
(b) For any <κ-branching pointed system x, we can characterize pjx as the unique

b ∈ ν(j)P<κ such that b ∼j x.
(c) LP(j) is κ-extensible.

(2) For any ordinals j 6 i, the following are equivalent.

(a) For any a ∈ ν(i)P<κ, any b ∈ ν(j)P<κ such that b ∼j a is ν(i>j)a.

(b) For any a ∈ ν(i)P<κ, we can characterize ν(i>j)a as the unique b ∈ ν(j)P<κ such
that b ∼j a.

(c) Either j 6 FP(i) or both LP(j) and LP(i) are κ-extensible.

Proof. The proof of (1c)⇒(1b) and (2c)⇒(2b) is proved the same way as Corollary 5.5.
For the converse parts, we form a sequence (zm)m∈N where z0 is a parent of nothing, i.e. a
pointed system with no successor, and zm+1 a parent of just zm. (Essentially this is the
Zermelo encoding of the natural numbers.)

In both parts, if LP(j) is not κ-extensible, let a be a P<κ-ghost at LP(j) and put

n
def
= FP(j). Then pjzn = {−}n0LP(j) (lemma: pk+nzn = {−}n0k, by induction on n), which

is bisimilar to but distinct from {−}na, so (1a) is false. And, in part 2, this is also ν(i>j)pizn,
so (2a) is false.

In part (2), if LP(i) is not κ-extensible and j > m
def
= FP(i), let a be a P<κ-ghost at

LP(i). Then pjzm is bisimilar to zm (this is a lemma for all j > m, by induction on m)

and hence to {−}ma. But pjzm = ν(i>j){−}ma would imply, by applying ν(j>m+1), that

pm+1zm = ν(i>m+1){−}ma i.e. {−}m = {−}m(), contradiction. So (2a) is false.

We complete Proposition 5.6 as follows.

Proposition 8.17. Assume κ <∞∞.

(1) Let j be an ordinal. Every element of ν(κ+j)P<κ that is P<κ-coalgebraic is <κ-branching,
and conversely iff either j > ω or κ has the tree property .

(2) Let j 6 i be ordinals. Every element of ν(κ+j)P<κ that is in the range of ν(κ+i>κ+j) is
<κ-branching at depth < i, and conversely iff either j = i or j > ω or κ has the tree
property.

Proof. We only need to prove the converse parts. If j > ω then every element of ν(κ+j)P<κ
is <κ-branching. If κ has the tree property, we proceed as for ℵ0. Otherwise, let a be a
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P<κ-ghost at κ. The element {−}ja is <κ-branching but not P<κ-coalegebraic and not in

the image of ν(κ+j+1>κ+j), by Lemma 8.10(2)–(3).

8.4. Surjectivity and P<κ-coalgebraicity. We next consider which connecting maps are
surjective.

Proposition 8.18. Let λ be a regular infinite cardinal with the tree property that is less
than κ. Then P<κ and P+

<κ preserve, up to a surjection, the limit of any inverse λ-chain D
with all levels <λ-sized. Explicitly, any channel C through D is the range of a <κ-sized set
of full branches.

Proof. It suffices to prove the case where Di = limj<iDj for each limit i < λ. For i < λ,
each x ∈ Ci extends by the tree property to a full branch through D, because all levels are
<λ-sized. For each i < λ and x ∈ Ci, choose such a branch θi(x), by the Axiom of Choice.
The set {θi(x) | i < λ, x ∈ Ci} has size 6 λ× λ = λ < κ and has range C.

Proposition 8.19. For ordinals j 6 i, the following are equivalent.

(1) The connecting map ν(i>j)P<κ is an surjection.
(2) Either j = i or LP(j) is either 0 or ω-cofinal or weakly compact or > κ+ω (for κ <∞∞).

Proof. By Proposition 3.14 we may assume i = j + 1. The case j > κ has been treated
(Proposition 3.13 and 4.13), so we assume j < κ. Since P<κ preserves and reflects surjectivity,
we may assume j is a limit.

For (2)⇒(1), it suffices by Proposition 3.9 for P<κ to preserve the limit of any inverse
j-chain up to a surjection. The j = 0 case is trivial, the ω-cofinal case is by Proposition 3.15,
and the weakly compact case is by Proposition 8.18. For the converse, if j < κ and j is not
κ-extensible then there is a P<κ-ghost at j, which is not even P-coalgebraic.

Corollary 8.20. For an ordinal i, the following are equivalent.

• Every element of ν(i)P<κ is P<κ-coalgebraic.
• LP(i) is either 0 or ω-cofinal or weakly compact or > κ+ ω (for κ <∞∞).

Proof. Follows from Proposition 8.19 by Proposition 3.14.

We next see that P<κ-Cauchy is weaker than P<κ-coalgebraic.

Proposition 8.21. For a limit ordinal i, the following are equivalent.

(1) Every P<κ-Cauchy element of ν(i)P<κ is P<κ-coalgebraic.
(2) i is either 0 or ω-cofinal or weakly compact or > κ+ ω (for κ <∞∞).

Proof. For (2)⇒(1), every element of ν(i)P<κ is P<κ-coalgebraic. For the converse: if i < κ
and is neither 0 nor ω-cofinal nor weakly compact, let a be a P<κ-ghost at i. It is P<κ-Cauchy
but not P-coalgebraic. For i = κ, Proposition 4.12 gives a P<κ-Cauchy element of ν(κ)P<κ
that has κ successors and so is not P<κ-coalgebraic.

We substantiate our claim in Section 4.2 that the coalgebraic elements need not form a
subsystem of the final chain.

Proposition 8.22. For a limit ordinal i, the following are equivalent.

(1) The P<κ-coalgebraic elements form a subsystem of ν(i)P<κ.
(2) i is either 0 or ω-cofinal or weakly compact or > κ (for κ <∞∞).
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Proof. For (2)⇐(1), if i > κ, we apply Proposition 4.9. In the other cases, all elements are
P<κ-coalgebraic. For the converse, if the conclusion is false let a be a P<κ-ghost at i. It is
not P-coalgebraic, and by Lemma 8.14 it is a successor of a P<κ-coalgebraic element.

9. Related Work

9.1. Trees vs tidy trees. Our formulation of the Aronszajn and Kurepa properties used
the notion of tidy tree. This suited our purposes, but to avoid confusion it must be compared
with the following more general notion that commonly appears in the set-theoretic literature.

Definition 9.1. Let I be a well-ordered set. An I-tree is an inverse I-chain where every
level is inhabited.

If I has a least element, then clearly every tidy I-tree is an I-tree; but there is also a
kind of converse, as follows. (Cf. [Jec03][Lemma 9.13].)

Proposition 9.2. Let λ be a regular infinite cardinal. For any λ-tree D with all levels
<λ-sized, there is a tidy λ-tree E with all levels <λ-sized and a bijection from the full
branches of E to those of D.

Proof. We first construct a channel through D, with all levels inhabited, that contains all
the full branches. For each i < λ, let Ci be the set of all x ∈ Di that have a k-development
for all k < λ such that k > i. To see that C is a channel, let j 6 i < λ and x ∈ Cj . For each
k < λ such that k > i, let R(k) be the set of i-developments of x that has an k-development
in C. Since Ci is <λ-sized the subset

⋂
i6k<λR(k) has an element, which is an i-development

of x in Ci. We likewise prove for all i < λ that Ci is inhabited. Evidently every full branch
of D is a full branch of C.

Next we form the inverse chain E, whose ith level, for i < λ, is limj<iDj , and whose
connecting maps are given by restriction. Let α : D → E be the cofinal embedding with
index map i 7→ i+ 1 and i-th level map sending x ∈ Di to (Di>jx)j6i ∈ Ei+1. The α-image
of C is a tidy tree, and by Proposition 6.6 has the required properties.

Corollary 9.3.

(1) There is a Kurepa tree (an ω1-tree with all levels countable that has more than ℵ1 full
branches) iff there is a tidy one.

(2) Let λ be a regular infinite cardinal. There is a λ-Aronszajn tree (a λ-tree with all levels
<λ-sized that has no full branch) iff there is a tidy one.

So our use of tidy trees is not a significant change from the usual formulation.

9.2. Saturation. In [ALM+15], an account is given of the final chain of P at countable
ordinals. Elements of the final chain are observed to be saturated. At limit ordinals, this
property may be expressed as follows.

Proposition 9.4. Let i be a κ-extensible (e.g. countable) limit. For any a ∈ ν(i)P and
pointed system x, if for all j < i, a has a  i-successor y such that y ∼j x, then a has a
 i-successor y such that y ∼i x.

Proof. By Theorem 8.13, a = pia, and transitions to pix by Proposition 4.7 since pred(i) = i.
Lastly, pix ∼i x by Proposition 8.15(1).
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It is not known whether this property holds in the case i = ω1. We conjecture that it
does not, even in the case where a ∈ ν(ω1)Pc and x is countably branching.

9.3. Cauchy completeness. To enable comparison with [FH89, LR96], let us formulate
Proposition 8.21 in terms of Cauchy sequences.

• An i-sequence of pointed systems (xj)j<i is Cauchy when for all j 6 k < i we have
xj ∼j xk.
• A limit for a Cauchy i-sequence (xj)j<i is a pointed system y such that for all j < i we

have xj ∼i y.

We then have the following.

Proposition 9.5. For an ordinal i, the following are equivalent.

(1) Every Cauchy i-sequence of <κ-branching pointed systems has a <κ-branching limit.
(2) i is either a successor or 0 or ω-cofinal or weakly compact or > κ+ ω (for κ <∞∞).

Proof. The successor case is evident. For the limit case, (1) corresponds to Proposition 8.21(1).
To see this, note that a Cauchy sequence (xj)j<i gives a P<κ-Cauchy element a = (pjx)j<i ∈
ν(i)P<κ, and every P<κ-Cauchy element arises in this way. Moreover, y is a limit for (xj)j<i
iff a = piy, so (xj)j<i has a limit iff a is P<κ-coalgebraic.

9.4. Comparison. As stated, the work of [FH89] provides the basis of the method we have
used to obtain ghosts. Because that paper is concerned with models of set theories, it treats
primarily the full powerset functor. It studies systems that resemble the final chain system
in satisfying Proposition 4.7, but differ from it by including only coalgebraic elements. As
we have seen—Proposition 8.22—these do not form a subsystem of the final chain, so the
difference is considerable.

The work of [LR96] treats not only systems of coalgebraic elements but also systems of
Cauchy elements (and the latter do form a subsystem of the final chain), specifically for the
full powerset functor. A more elaborate proof of Cauchy incompleteness is given in order to
obtain additional negative results. Relating that work to the present paper is a matter for
future research.

10. Conclusions

We have investigated several properties that the final chain of P<κ, viewed as a transition
system, enjoys at countable ordinals. In particular, the strong extensionality property:
bisimilar elements are equal. We have seen that these properties do not hold at ω1, because
of an element distinct from 0ω1 that has no successor—a “ghost”. Using the same method,
we have precisely identified those ordinals at which each of these properties does hold.
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