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Abstract. Three philosophical principles are often quoted in connection with Leibniz:
“objects sharing the same properties are the same object” (Identity of indiscernibles),
“everything can possibly exist, unless it yields contradiction” (Possibility as consistency),
and “the ideal elements correctly determine the real things” (Transfer).

Here we give a precise logico-mathematical formulation of these principles within the
framework of the Functional Extensions, mathematical structures that generalize at once
compactifications, completions, and elementary extensions of models. In this context, the
above Leibnizian principles appear as topological or algebraic properties, namely: a property
of separation, a property of compactness, and a property of directeness, respectively.

Abiding by this interpretation, we obtain the somehow surprising conclusion that these
Leibnizian principles may be fulfilled in pairs, but not all three together.

Introduction

The great philosopher, mathematician and logician Gottfried Wilhelm von Leibniz, in many
of his philosophical writings, has been inspired by, and consequently has given inspiration to
several important mathematical ideas. In this article we consider, within a mathematical
framework, three philosophical principles that are often quoted in connection with Leibniz.1

We cannot discuss and articulate the philosophical aspects of these principles: we simply
give here a few quotes in order to justify and explain our mathematical interpretation of
these Leibnizian principles.

Identity of indiscernibles

“objects sharing the same properties are the same object”

There are never in nature two beings which are perfectly identical to each
other, and in which it is impossibile to find any internal difference . . .

(Monadology)

Key words and phrases: transfer principle, indiscernibles, nonstandard models, functional extensions.
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Two indiscernible individuals cannot exist. [. . . ] To put two indiscernible
things is to put the same thing under two names.

(Fourth letter to Clarke)

[. . .] dans les choses sensibles on n’en trouve jamais deux indiscernables
[. . .] (Fifth letter to Clarke)

Possibility as consistency

“everything can possibly exist, unless it yields contradiction”

- Impossible is what yields an absurdity.
- Possible is not impossible.
- Necessary is that, whose opposite is impossible.
- Contingent is what is not necessary.

(unpublished, 1680 ca.)

[. . .] nothing is absolutely necessary, when the contrary is possible. [. . .]
Absolutely necessary is [. . .] that whose opposite yields a contradiction.

(Dialogue between Theofile and Polydore)

Transfer principle

“the ideal elements correctly determine the real things”

Perhaps the infinite and infinitely small [numbers] that we conceive are
imaginary, nevertheless [they are] suitable to determine the real things, as
usually do the imaginary roots. They are situated in the ideal regions, from
where things are ruled by laws, even though they do not lie in the part of
matter. (Letter to Johann Bernoulli, 1698 )

In this paper, we try and give a precise mathematical formulation of these principles
in the context of the Functional Extensions of [11], structures which generalize at once
compactifications and completions of topological spaces, and nonstandard extensions of
models (see also [4]). Given a set M , a functional extension of M is a superset ∗M of M such
that every function f : M →M has a distinguished extension ∗f : ∗M → ∗M that preserves
compositions and equalizers. Moreover, assuming that the so called Puritz preorder of ∗M is
directed, the operator ∗ can be appropriately defined so as to provide also all properties P
and all relations R on M with distinguished extensions ∗P and ∗R on ∗M .

Following the basic idea that the elements of the [“standard”] set M are the “real objects”
of the “actual world”, whereas the [“nonstandard”] extension ∗M contains also the “ideal
elements” of all “possible worlds”, an appropriate interpretation of the Leibniz’s principles
in the context of functional extensions might be the following:

Ind: different elements of ∗M are separated by the extension ∗P of some “real” property P
of M ;

Poss: a family of “real” properties of M that are not contradictory in M has extensions to
∗M that are all simultaneously satisfied in ∗M ;

Tran: a statement involving “real” elements, properties and relations of M is true in M
if and only if the corresponding statement about their “ideal” extensions is true in ∗M .
(Clearly here one has to admit only “first order” statements, so as to avoid trivial
inconsistencies.)
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We shall see below that the “real” properties of M , when extended to ∗M , may be
taken as the clopen subsets of a topology on ∗M (the so called S-topology), and so the above
principles Ind and Poss turn out to be respectively a property of separation and a property
of compactness of the S-topology of ∗M . On the other hand, the principle Tran requires all
the conditions postulated for the ∗-extension in [11], including the order-theoretic property
of directeness, so as to take care of properties and relations of arbitrary arities.

On the basis of results similar to those of [8, 4], we obtain the somehow surprising
consequence that these Leibnizian principles can be fulfilled in pairs, but not all three together.
Grounding on the mathematical results of this paper, and, chiefly, on the philosophical
writings of Leibniz himself, e.g.

Les parties du temps ou du lieu [...] sont des choses ideales, ainsi elles se
rassemblent parfaitement comme deux unités abstraites. Mais il n’est pas de
même de deux Uns concrets [...] c’est à dire veritablement actuels.2 (Fifth
letter to Clarke)

we decide to call Leibnizian those functional extensions that satisfy Poss together with Tran,
letting hold the principle Ind only inside the “standard” universe.

The paper is organized as follows:

• In Section 1, we recall the precise definition of functional extension together with the
main properties stated in [11]. In particular, we establish the fundamental result that the
functional extensions are all and only the complete elementary (=nonstandard) extensions
of any model M .
• In Section 2 we introduce the S-topology on functional extensions, and we determine

which functional extensions satisfy the transfer principle Tran together with either Poss,
or Ind, according to the properties of the S-topology. Consequently, in Subsection 2.1 we
see how to obtain functional extensions where the principles Poss and Tran hold together,
whereas in Subsection 2.2 we examine the structure of the extensions verifying Ind and
Tran together. The impossibility of satisfying simultaneously the three Leibnizian principles
follows immediately.
• In Section 3 we consider which set theoretic hypotheses are needed in order to get functional

extensions satisfying the principle Ind. Leaving apart these conditions, in Subsection 3.1
we motivate by his own quotes the (supposed) preference of Leibniz himself for dropping
off Ind while maintaining the remaining principles Poss and Tran.
• In Section 4 we suggest how a slight weakening of the notion of functional extension allows

for admitting the simultaneous holding of the principles Ind and Poss, still preserving
a large amount of Tran, (by dropping off only the incompatible“analytic” part of the
condition (equ) that forces everywhere different functions on X to have everywhere different
extensions to ∗X).
• A few concluding remarks and three connected set theoretic open questions can be found

in the final Section 5.

In general, we refer to [10] for all the topological notions and facts used in this paper, and
to [6] for definitions and facts concerning ultrapowers, ultrafilters, and nonstandard models.
General references for nonstandard Analysis could be [13, 1]; specific for our “elementary”
approach is [4].

2 The parts of time or place . . . are ideal things, so they perfectly resemble like two abstract unities. But
it is not so with two concrete Ones, . . . that is truly actual [things].
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1. Functional Extensions and the transfer principle

The Transfer Principle Tran is the very ground of the usefulness of the nonstandard methods
in mathematics. It allows for obtaining correct results about, say, the real numbers by using
ideal elements, like actual infinitesimal or infinite numbers. In this section we review the
main features of the functional extensions introduced in the paper [11] (see also [4]), with
the goal of characterizing all nonstandard (= complete elementary) extensions by means of
a few simple properties of an operation ∗ that assigns an appropriate extension ∗f : ∗X → ∗X
to each function f : X → X.

These structures are a sort of compactifications or completions of discrete spaces that
turn out to comprehend all and only the nonstandard extensions of models.

Recall that the Puritz (pre)ordering .P of ∗X is defined by η .P ξ if there exists
f : X → X such that ∗f(ξ) = η (see [16, 15]). Then we set our fundamental definition as
follows:

Definition 1.1. A functional extension of X is a proper superset ∗X of X where a distin-
guished extension ∗f : ∗X → ∗X is assigned to each function f : X → X, so as to satisfy the
following conditions for all f, g : X → X.

(comp): Preservation of compositions: ∗(g ◦ f) = ∗g ◦ ∗f
i.e. ∗g(∗f(ξ)) = ∗(g ◦ f)(ξ) for all ξ ∈ ∗X;

(equ): Preservation of equalizers:3 ∗(χfg) = χ∗f∗g

where χφψ is the characteristic function of the equalizer Eq(φ, ψ)

of the functions φ and ψ, i.e. χφψ(z) =

{
1 if φ(z) = ψ(z),

0 otherwise;

(dir): Directness of the Puritz order: for all ξ, η ∈ ∗X there exist
p1, p2 : X → X and ζ ∈ ∗X such that ξ = ∗p1(ζ) and η = ∗p2(ζ),
so that ξ, η .P ζ.

The importance of the property (dir), called coherence in [8], is due to the fact that,
by providing an “internal coding of pairs”, it allows for extending multivariate functions
“parametrically”: this possibility is essential in order to get the full principle Tran, which
involves properties, relations, and functions of any arities. More precisely, the following facts
that hold in every functional extension ∗X of X allow for considering only unary functions
(see Subsection 3.2 of [11]):
- For all ξ1, . . . , ξn ∈ ∗X there exist p1, . . . , pn : X → X and ζ ∈ ∗X such that ∗pi(ζ) = ξi.
- If p1, . . . , pn, q1, . . . , qn : X → X and ξ, η ∈ ∗X satisfy ∗pi(ξ) = ∗qi(η), then
∗(F ◦ (p1, . . . , pn))(ξ) = ∗(F ◦ (q1, . . . , qn))(η) for all F : Xn → X.

It follows that there is a unique way of assigning an extension ∗F to every function F : Xn →
X in such a way that all compositions are preserved. Then, by using the characteristic
functions in n variables, one can assign an extension ∗R also to all n-ary relations R on X.

Several important cases of the transfer principle are easy to deduce: e.g., if f is constant,
or injective, or surjective, or characteristic, then so is ∗f . In particular the extension ∗χA of
the characteristic function χA of a subset A ⊆ X, can be taken as the characteristic function
of the ∗-extension ∗A of A in ∗X, thus obtaining a Boolean isomorphism between the field
P(X) of all subsets of X and a field C`(∗X) of subsets of ∗X (see Theorem 1.2 of [11]).

3 In [11], this property is denoted by (diag), and called preservation of the diagonal, in view of the fact
that χfg(x) = χ∆(f(x), g(x)), where χ∆ is the characteristic function of the diagonal ∆ ⊆ X × X. (For
convenience we always assume that 0, 1 ∈ X.)
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While both properties (comp) and (equ) of Definition 1.1 are clear instances of the
transfer principle, as they correspond to the statements

∀x ∈ X . f(g(x)) = (f ◦ g)(x) and ∀x ∈ X . f(x) = g(x) ⇐⇒ χfg(x) = 1,

respectively, the same is not apparent for the third property (dir), which is given in a second
order formulation. On the contrary, an even stronger uniform version of (dir) can be obtained
by Tran: simply take p1, p2 to be the compositions of a fixed bijection δ : X → X ×X with
the ordinary projections π1, π2 : X ×X → X, and apply Tran to the statement

∀x, y ∈ X . ∃z ∈ X . p1(z) = x, p2(z) = y.

Hence, when ∗X is a nonstandard extension of X, the three defining properties (comp),
(equ), and (dir) of functional extensions are fulfilled by hypothesis. Conversely, we devoted
[11] to prove the fact (partly anticipated in [4]) that the combination of three natural, simple
instances of the transfer principle, namely (comp), (equ), and (dir), makes any functional
extension ∗X a limit ultrapower of X, thus providing the full Transfer Principle Tran. So the
functional extensions are exactly the hyper-extensions in the sense of [4] (i.e. all nonstandard
models).

We state without proof the corresponding theorem, and we direct the reader to [11],
where a purely algebraic proof is given in all details, and two more (a topological and a
purely logical one) are outlined.

Theorem 1.2 (Thm. 2.2 and Cor. 2.3 of [11]). Any nonstandard extension ∗X of X is a
functional extension of X, and conversely any functional extension ∗X of X satisfies the
transfer principle Tran. 2

2. The S-topology and the principles IND and POSS.

In order to study our formalizations of the Leibnizian principles Ind and Poss within the
functional extensions, it is natural to consider on ∗X a topology that corresponds to the
classical S-topology of Nonstandard Analysis, already considered since [17] (S stands for
Standard). In this topology, the closure in ∗X of a subset A ⊆ X is given by its extension ∗A,
so the field of subsets C`(∗X) = {∗A ⊆ ∗X | A ⊆ X} is both an open basis of the S-topology
and the field of all its clopen (=closed and open) subsets (since ∗(X \A) = ∗X \ ∗A).

Remark that all functions ∗f are continuous with respect to the S-topology, because
∗f−1(∗A) = ∗(f−1(A)) for all A ⊆ X, so the inverse images of clopen sets are clopen. Hence
for ∗X being a topological extension in the sense of [8] it needs only that the S-topology be
T1 (and so, according to the next theorem, Hausdorff).

We begin by characterizing the separation properties of the S-topology in the same way
as in Theorem 1.4 of [8]:

Theorem 2.1. Let ∗X be a functional extension of X, and put on ∗X the S-topology. Then,
as a topological space, ∗X is 0-dimensional, and either totally disconnected or not T0. It
follows that ∗X with the S-topology is Hausdorff if and only if it is T0.

Proof. The S-topology has a clopen basis by definition. In this topology the closure
of the point ξ is Mξ =

⋂
ξ∈A

∗A, an intersection of clopen sets. If Mξ = {ξ} for all ξ ∈ ∗X,
then different points have disjoint clopen neighborhoods, hence the S-topology is regular
(and totally disconnected).
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Assume instead that there exist points η 6= ξ such that η ∈Mξ. Then the S-topology is
not T0, because η belongs to the same basic open (clopen) sets as ξ. In fact, given A ⊆ X,
ξ ∈ ∗A implies η ∈ ∗A, by the choice of η. Similarly ξ /∈ ∗A implies ξ ∈ ∗(X \ A), hence
η ∈∗(X \A) and so η /∈ ∗A.

In particular the S-topology is Hausdorff (in fact regular and totally disconnected)
whenever it is T0. 2

Now the principle Ind simply means that, given ξ 6= η ∈ ∗X there exist disjoint subsets
A,B ⊆ X such that ξ ∈ ∗A and η ∈ ∗B, i.e. that the S-topology of ∗X is Hausdorff.

On the other hand, the principle Poss states that all the ∗-extensions of a family of
finitely compatible properties of X are simultaneously satisfied in ∗X. So the corresponding
family F of subsets of X has the finite intersection property, hence the intersection

⋂
A∈F

∗A
of the corresponding ∗-extensions has to be nonempty. But requiring this is equivalent to
require that every proper filter of clopen sets in ∗X has nonempty intersection, i.e. that the
S-topology of ∗X is quasi-compact. (Following [10], we call compact only Hausdorff spaces.)

So we can completely determine, from the S-topology, when the principles Ind and Poss
hold in a functional extension:

Corollary 2.2. Let ∗X be a functional extension of X with the S-topology. Then

(1) the principle Ind holds if and only if ∗X is Hausdorff;
(2) the principle Poss holds if and only if ∗X is quasi-compact; hence
(3) the principles Ind and Poss hold simultaneously in ∗X if and only if it is compact. 2

2.1. Combining Tran with Poss. In order to combine the principle Tran with Poss, we
recall that a nonstandard model whose S-topology is quasi-compact is commonly called
an enlargement. It is well known that every structure has arbitrarily saturated elementary
extensions (see e.g. [6]), and any (2|X|)+-saturated elementary extension of X is easily seen
to be a nonstandard enlargement (see e.g. [1] or [4]). Therefore Corollary 2.2 yields

Theorem 2.3. The nonstandard enlargements of X are exactly those functional extension
of X that satisfy both principles Tran and Poss. 2

Thus we get a lot of functional extensions satisfying simultaneously Tran and Poss.

2.2. Combining Tran with Ind. We pass now to characterize all those functional extensions
of X that satisfy simultaneously the principles Tran and Ind.

The S-topology of these extensions is Hausdorff, according to Corollary 2.2, so we know
that the intersection Mξ =

⋂
ξ∈A

∗A is the singleton {ξ}, hence the filter Uξ of the subsets A
of X such that ∗A contains ξ uniquely determines the point ξ ∈ ∗X. Moreover, the filter Uξ
is actually an ultrafilter on X such that

U∗f(ξ) = f(Uξ) = {A ⊆ X | f−1(A) ∈ Uξ} for all f : X → X.

So, when ∗X is Hausdorff, we must have that

f(Uξ) = g(Uξ) ⇐⇒ ∗f(ξ) = ∗g(ξ)

for all ξ ∈ ∗X and all f, g : X → X.
Now ∗f(ξ) = ∗g(ξ) holds if and only if χ∗f∗g(ξ) = ∗(χfg)(ξ) = 1, or equivalently if and

only if the equalizer E(f, g) of f and g belongs to Uξ.
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Recall that an ultrafilter U on X is called Hausdorff 4 if the condition

(H) f(U) = g(U) ⇐⇒ {x ∈ X | f(x) = g(x)} ∈ U .
holds for all f, g : X → X.

So the condition (H) has to be verified by all ultrafilters Uξ in order that ∗X be Hausdorff.
We have thus proved the following

Theorem 2.4. A functional extension ∗X of X satisfies simultaneously the principles Ind
and Tran if and only if all the ultrafilters Uξ on X associated to the points ξ ∈ ∗X are
Hausdorff. 2

We shall deal in the next section with the set theoretic strength of the combination of
Ind with Tran. By now we simply recall that there are plenty of non-Hausdorff ultrafilters on
X: e.g. all tensor products V = U ⊗ U of an ultrafilter U with itself contradict (H), because
the “projections” p1, p2 of the property (dir) give p1(V) = U = p2(V).

Thus we can easily state what we announced in the introduction, namely

Theorem 2.5. No extension satisfies at once the three Leibnizian principles Ind, Poss, and
Tran. 2

3. Set theoretic problems in combining IND with TRAN.

As shown by Theorem 2.4, combining Ind with Tran requires special ultrafilters, named
Hausdorff in Subsection 2.2. Despite the apparent weakness of their defining property (H),
which is actually true whenever any of the involved functions is injective (or constant), not
much is known about Hausdorff ultrafilters.

On countable sets, the property (H) is satisfied by selective ultrafilters as well as by
products of pairwise non-isomorphic selective ultrafilters (see [9]), but their existence in pure
ZFC is still unproved. However any hypothesis providing infinitely many non-isomorphic
selective ultrafilters over N, like the Continuum Hypothesis CH or Martin’s Axiom MA,
provides any countable set with infinitely many non-isomorphic functional extensions that
satisfy Ind.

On uncountable sets the situation is highly problematic: it is proved in [9] that Hausdorff
ultrafilters on sets of size greater than or equal to u (the least size of an ultrafilter basis on
N) cannot be regular. All what is provable in ZFC about the size of u is that ℵ1 ≤ u ≤ 2ℵ0

(see e.g. [5]). In particular, the existence of functional extensions satisfying Ind with uniform
ultrafilters, even on R, would imply that of inner models with measurable cardinals. (Such
ultrafilters have been obtained by forcing only assuming much stronger hypotheses, see [12]).

Be it as it may, as far as we do not abide ZFC as our foundational theory, the existence
of functional extensions without indiscernibles, although consistent, cannot be proved.

4 The property (H) has been introduced in [7] under the name (C). Hausdorff ultrafilters are studied in
[12, 9, 2].
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3.1. The choice of Gottfried Wilhelm von Leibniz. We have seen that (at least) one
of the three Leibnizian principles that we have investigated has to be left out. The most
reasonable choice seems to be that of dropping Ind. In fact, even if one neglects the set
theoretic problems that have been outlined above, one should pay attention to what Leibniz,
whose logico-mathematical insight into philosophical questions cannot be overestimated,
wrote about it.

[...] cette supposition de deux indiscernables [...] paroist possible en termes
abstraits, mais elle n’est point compatible avec l’ordre des choses [. . . ]

Quand je nie qu’il y ait [. . . ] deux corps indiscernables, je ne dis point qu’il
soit impossible absolument d’en poser, mais que c’est une chose contraire a
la sagesse divine [. . . ]

Les parties du temps ou du lieu [...] sont des choses ideales, ainsi elles se
rassemblent parfaitement comme deux unités abstraites. Mais il n’est pas de
même de deux Uns concrets [...] c’est à dire veritablement actuels.

Je ne dis pas que deux points de l’Espace sont un meme point, ny que deux
instans du temps sont un meme instant comme il semble qu’on m’impute
[. . . ]5 (Fifth letter to Clarke, [14], pp. 131-135)

From these quotes, it appears that Leibniz himself considered the identity of indiscernibles
as a “physical” rather than a “logical” principle: it may be actually true, but its negation
is non-contradictory in principle, so it could fail in some possible world. Moreover only
“properties of the real world” M are considered in this principle: so it seems natural, and not
absurd, to assume that objects indiscernible by these “real” properties may be separated by
some abstract, “ideal” property of ∗M .

On this ground we finally decide to call Leibnizian a functional extension that satisfies
both Poss and Tran, and so necessarily not Ind. Topologically, this choice means that the
S-topologies of the Leibnizian extensions ∗M are quasi-compact, but only their restrictions
to the “standard’ model M are obviously Hausdorff (actually discrete). Thus the existence
of plenty of Leibnizian extensions is granted by the final results of Section 2, without any
need of supplementary set theoretic hypotheses.

4. Combining IND with POSS.

By Theorems 1.2 and 2.5, the principles Ind and Poss cannot hold simultaneously in a
functional extension, where Tran always holds. So, if we want to justify our initial assertion
that the three Leibnizian principles may be verified in pairs, we have to relax the properties
of the ∗-extension given in Definition 1.1, so as to allow the S-topology to be compact.

Of course, such a weakening should maintain most preservation properties of the
functional extensions, although necessarily losing part of the transfer principle. In particular,
by compactness, all ultrafilters on X have to be realized as associated to a unique point

5 . . . this supposition of two indiscernibles . . . seems abstractly possible, but it is incompatible with the
order of things. . .
When I deny that there are . . . two indiscernible bodies, I do not say that [this existence] is absolutely
impossible to assume, but that it is a thing contrary to divine wisdom . . .
The parts of time or place . . . are ideal things, so they perfectly resemble like two abstract unities. But it is
not so with two concrete Ones,. . . that is truly actual [things].
I don’t say that two points of Space are one same point, neither that two instants of time are one same
instant as it seems that one imputes to me . . .
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ξ ∈ ∗X. It follows that the typical “analytic” property of the nonstandard extension of
functions, namely that

everywhere different functions have everywhere different extensions,

has to fail in the presence of non-Hausdorff ultrafilters.
Fortunately, such a weakening may be realized still maintaining all the typical preserva-

tion properties of the continuous extensions of functions, which are allowed to reach equality
only at limit points. In fact the crucial property of Subsection 2.2
(H) f(U) = g(U) ⇐⇒ {x ∈ X | f(x) = g(x)} ∈ U .
holds for arbitrary ultrafilters whenever at least one of the functions f, g : X → X either
is injective or has finite range. So we may maintain the conditions (comp) and (dir), and
weaken (equ) by postulating it only in those cases.

Therefore we define a weak functional extension as follows:

Definition 4.1. A weak functional extension of X is a superset ∗X of X where a distinguished
extension ∗f : ∗X → ∗X is assigned to each function f : X → X, so as to satisfy the following
conditions

(comp): Preservation of compositions: ∗(g ◦ f) = ∗g ◦∗f for all f, g : X → X;
(wequ): Weak preservation of equalizers: ∗(χfg) = χ∗f∗g if at least one of the functions

f, g : X → X either is injective or has finite range;
(dir): Directness of the Puritz order: for all ξ, η ∈ ∗X there exists ζ ∈ ∗X such that

ξ, η .P ζ.

Also in this weaker context, the extension ∗χA of the characteristic function χA of a
subset A ⊆ X can be taken as the characteristic function of the ∗-extension ∗A of A in ∗X,
thus obtaining again a Boolean isomorphism between the field P(X) of all subsets of X and
a field C`(∗X) of subsets of ∗X. So the latter can again generate the S-topology, with all the
properties stated in Section 2; in particular the ∗-extended functions are continuous (and
unique when Ind holds), and many important instances of Tran can be deduced.

A detailed study of the weak functional extensions lies outside the scope of this article.
We simply recall that Ind and Poss together imply that the S-topology is compact, and that
the map ξ 7→ Uξ establishes a biunique correspondence between the points of the compact
extension ∗X and the set of all ultrafilters over X. The latter set can be naturally identified
with the Stone-Čech compactification βX of the discrete space X, with its usual topology
having as basis {OA | A ∈ P(X)}, where OA is the set of all ultrafilters containing A. (The
embedding e : X → βX being given by the principal ultrafilters.)

In fact it turns out that the Stone-Čech compactification is essentially the unique weak
functional extension of X that satisfies both principles Ind and Poss, according to the
following theorem, whose proof specializes that of Theorem 2.1 of [8].

Theorem 4.2. Let ∗X be a weak functional extension of X satisfying both principles Ind
and Poss, endowed with the S-topology, and identify the Stone-Čech compactification βX
of the discrete space X with the set of all ultrafilters on X. Then the map υ : ∗X → βX
defined by

υ(ξ) = Uξ = {A ⊆ X | ξ ∈ ∗A}
establishes a homeomorphism between ∗X with the S-topology and βX with its compact
topology. Moreover, for all f : X → X, one has

f ◦ υ = υ ◦ ∗f,
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where f is the unique continuous extension of f to βX.

Proof. For all x ∈ X, Ux is the principal ultrafilter generated by x, hence υ induces the
canonical embedding of X into βX.

Moreover, for all A ⊆ X, the map υ induces a mapping of the clopen subset ∗A of ∗X
onto the basic open set OA of βX. Therefore υ is continuous and open with respect to
the S-topology of ∗X, i.e. υ is bicontinuous between the S-topology of ∗X and the compact
topology of βX.

On the other hand, the map υ is injective because the S-topology is Hausdorff, and sur-
jective because it is quasi-compact. So, being bicontinuous, the map υ is a homeomorphism.

Finally, we have ξ ∈ ∗A ⇔ ∗f(ξ) ∈ ?(f(A)), for all ξ ∈ ∗X, or equivalently A ∈ Uξ ⇔
f(A) ∈ U∗f(ξ). It follows that f ◦ υ = υ ◦ ∗f , and the last assertion of the theorem is proved.

2

5. Final Remarks and Open Questions

Remark that we have proved that all Hausdorff (weak) functional extensions use the same
“function-extending mechanism”, namely that arising from the Stone-Čech compactification.
Therefore, in the Hausdorff case, the choice of the ∗-extensions of functions is forced by the
unique topological compactification of X.

Also remark that the conditions (equ) and (dir) are independent, even when Ind holds,
provided that Hausdorff ultrafilters exist. Call invariant a subspace Y of ∗X (or of the
Stone-Čech compactification βX of X) if

∗f(ξ) ∈ Y (respectively f(Uξ) ∈ Y ) for all f : X → X and all ξ ∈ Y.
It is easily seen that any invariant subspace Y of a (weak) functional extension ∗X is

itself a (weak) functional extension of X, by taking the restrictions to Y of the functions
∗f for all f : X → X; and clearly the corresponding ultrafilters Uξ, ξ ∈ Y constitute an
invariant subspace of βX.

Now there are invariant subspaces of βX where (equ) holds whereas (dir) fails and
vice versa, as well as invariant subspaces where both fail or hold. In fact, for U ∈ βX let
YU = {f(U) | f : X → X } be the invariant subspace generated by U . Clearly YU is directed,
so (dir) holds in YU for all ultrafilters U , whereas (equ) holds if and only if U is Hausdorff.
On the other hand, let U and V be ultrafilters such that neither of them belongs to the
invariant subspace generated by the other one: then YU ∪ YV is an invariant subspace where
(dir) fails, while (equ) holds if and only if both U and V are Hausdorff.

5.1. Some open questions. We conclude the paper with three open questions that involve
special ultrafilters, and so should be of independent set theoretic interest.

(1) Is the existence of functional extensions of N without indiscernibles provable in ZFC, or
at least derivable from set-theoretic hypotheses weaker than those providing selective
ultrafilters? E.g. from x = c, where x is a cardinal invariant of the continuum not
dominated by cov(B) (see [5])?

(2) Is it consistent with ZFC that there exist nonstandard real lines ∗R without indiscernibles
where all points correspond to uniform ultrafilters?



LEIBNIZ’S PRINCIPLES WITHIN FUNCTIONAL EXTENSIONS 11

(3) Is the existence of countably compact functional extensions consistent with ZFC? (These
extensions would be of great interest, because they would verify Ind, Tran, and the
weakened version of Poss that considers only sequences of properties.)
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[15] S.-A. Ng, H. Render - The Puritz order and its relationship to the Rudin-Keisler order, in Reuniting

the antipodes - Constructive and nonstandard views of the continuum (P. Schuster, U. Berger, H. Oswald,
eds.), Kluwer, Dordrecht 2001, 157–166.

[16] C. Puritz - Ultrafilters and standard functions in nonstandard arithmetic, Proc. London Math. Soc (3)
22 (1971), 705–733

[17] A. Robinson - Non-standard Analysis. North Holland, Amsterdam 1966.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany


	Introduction
	1. Functional Extensions and the transfer principle
	2. The S-topology and the principles Ind and Poss.
	2.1. Combining Tran with Poss.
	2.2. Combining Tran with Ind.

	3. Set theoretic problems in combining Ind with Tran.
	3.1. The choice of Gottfried Wilhelm von Leibniz

	4. Combining Ind with Poss.
	5. Final Remarks and Open Questions
	5.1. Some open questions

	Acknowledgment
	References

