
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 33:1–33:28
https://lmcs.episciences.org/

Submitted Aug. 20, 2018
Published Dec. 20, 2023

SYNCHRONIZABILITY OF COMMUNICATING

FINITE STATE MACHINES IS NOT DECIDABLE

ALAIN FINKEL a AND ETIENNE LOZES b

aUniversité Paris-Saclay, CNRS, ENS Paris-Saclay, Institut Universitaire de France, Laboratoire
Méthodes Formelles, 91190, Gif-sur-Yvette, France
URL: https://ens-paris-saclay.fr/alain-finkel/
e-mail address: alain.finkel@ens-paris-saclay.fr

bUniversité Côte d’Azur, CNRS, I3S, France
e-mail address: elozes@i3s.unice.fr

Abstract. A system of communicating finite state machines is synchronizable if its
send trace semantics, i.e. the set of sequences of sendings it can perform, is the same
when its communications are FIFO asynchronous and when they are just rendez-vous
synchronizations. This property was claimed to be decidable in several conference and
journal papers for either mailboxes or peer-to-peer communications, thanks to a form of
small model property. In this paper, we show that this small model property does not
hold neither for mailbox communications, nor for peer-to-peer communications, therefore
the decidability of synchronizability becomes an open question. We close this question for
peer-to-peer communications, and we show that synchronizability is actually undecidable.
We show that synchronizability is decidable if the topology of communications is an oriented
ring. We also show that, in this case, synchronizability implies the absence of unspecified
receptions, and the channel-recognizability of the reachability set.

1. Introduction

Asynchronous distributed systems are error prone not only because they are difficult to
program, but also because they are difficult to execute in a reproducible way. The slack
of communications, measured by the number of messages that can be buffered in a same
communication channel, is not always under the control of the programmer, and even when
it is, it may be delicate to choose the right size of the communication buffers.

The synchronizability of a system of communicating machines is a property introduced
by Basu and Bultan [FBS05, BB11] that formalizes the idea of a distributed system that is
“slack elastic”, in the sense that its behaviour is the same whatever the size of the buffers,
and in particular it is enough to detect bugs by considering executions with buffers of size
one [BBO12b, BB16]. Synchronizability can also be used for checking other properties like
choreography realizability [BBO12a].

Key words and phrases: verification, distributed system, asynchronous communications, choreographies.
∗Extended version of an article published in ICALP’17 proceedings.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:33)2023
© A. Finkel and E. Lozes
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-0702-3232
https://orcid.org/0000-0001-8505-585X
http://creativecommons.org/about/licenses


33:2 A. Finkel and E. Lozes Vol. 19:4

For instance, consider the machines

P = !a · !b and Q = ?a · ?b

where P may send two messages a and b in sequence to Q, and Q is ready to receive them.
These two machines form a synchronous system P |Q: the asynchronous trace !a · !b · ?a · ?b is
“equivalent” to the synchronous trace !a · ?a · !b · ?b. Two traces are considered “equivalent”
by Basu and Bultan if they present the same sequence of send actions, i.e. that they are
identical after erasing all receive actions. This is the case for the above example, as both
traces result in !a · !b after erasing the receive actions. A system is language synchronizable
if all of its traces are equivalent to a synchronous trace. An additional requirement is that
two “equivalent” traces lead to the same configuration; when it is the case, the system is
called synchronizable. For instance, taking

P = !a · ?b and Q = ?a · !b + !b · ?a

P |Q is language synchronizable but it is not synchronizable, because the asynchronous trace
!a · !b · ?a · ?b does not lead to the same configuration as the synchronous trace !a · ?a · !b · ?b.

For systems with more than two machines, there are at least two distinct reasonable
semantics of a system of communicating machines with FIFO queues: either each message
sent from P to Q is stored in a queue which is specific to the pair (P,Q), which we will call
the “peer-to-peer” semantics, or all messages sent to Q from several other peers are mixed
toghether in a queue that is specific to Q, which we will call the “mailbox” semantics.

Basu and Bultan claimed that synchronizability is decidable, first for the mailbox
semantics [BBO12b], and later for other semantics, including the peer-to-peer one [BB16].
Their main argument was a small model property, stating that if all 1-bounded traces are
equivalent to synchronous traces then the system is synchronizable.

This paper corrects some of these claims and discuss some related questions.

• We establish the undecidability of synchronizability for systems of 3-CFSMs with the
peer-to-peer semantics (Theorem 3.14). This shows that the claim on the decidability of
synchronizability for the peer-to-peer semantics [BB16] is actually wrong.

• We provide counter-examples to the small model property for systems of 3-CFSMs both
for the peer-to-peer semantics (Example 2.2) and the mailbox semantics (Example 5.1)
which illustrate that the claims in [BBO12b, BB16] are not proved correctly. The fact
that the small model property is false for the peer-to-peer semantics is a consequence of
the previous result but this is not a consequence for the mailbox semantics.

• We prove that the small model property is true for systems of 2-CFSMs and more
generally for systems of communicating machines on an oriented ring both under the
mailbox and peer-to-peer semantics (actually both are the same in that case) and therefore
synchronizability is decidable for oriented rings (Theorem 4.16).

• We show that the reachability set of synchronizable systems is channel-recognizable
(Theorem 4.14), ie the set of reachable configurations is regular.

• Finally, we show that the counter-examples we gave invalidate other claims, in particular
a result used for checking stability [ASY16, AS18].

Outline. The paper first focuses on the peer-to-peer communication model. Section 2
introduces all notions of communicating finite state machines and synchronizability. In
Section 3, we show that synchronizability is undecidable. Section 4 shows the decidability of



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:3

synchronizability on ring topologies. Section 5 concludes with various discussions, including
counter-examples about the mailbox semantics.

Related Work. The analysis of systems of communicating finite state machines has always
been a very active topic of research. Systems with channel-recognizable (aka QDD [BG99]
representable) reachability sets are known to enjoy a decidable reachability problem [Pac87].
Heussner et al developed a CEGAR approach based on regular model-checking [HGS12].
Classifications of communication topologies according to the decidability of the reachability
problems are known for FIFO, FIFO+lossy, and FIFO+bag communications [CS08, CHS14].
In [LMP08, HLMS12], the bounded context-switch reachability problem for communicating
machines extended with local stacks modeling recursive function calls is shown decidable
under various assumptions. Session types dialects have been introduced for systems of
communicating finite state machines [DY12], and were shown to enforce various desirable
properties.

Several notions similar to the one of synchronizability have also been studied in different
context. Slack elasticity seems to be the most general name given to a the property that a
given distributed system with asynchronous communications “behaves the same” whatever
the slack of communications is. This property has been studied in hardware design [MM98],
with the goal of ensuring that some code transformations are semantic-preserving, in high
performance computing, for ensuring the absence of deadlocks and other bugs in MPI
programs [Sie05, VVGK10], but also for communicating finite state machines, like in this
work, with a slightly different way of comparing the behaviours of the system at different
buffer bounds. Genest et al introduced the notion of existentially bounded systems of
communicating finite state machines, that is defined on top of Mazurkiewicz traces, aka
message sequence charts in the context of communicating finite state machines [GKM06].
Finally, a notion similar to the one of existentially bounded systems has been recently
introduced and christened “k-synchronous systems” [BEJQ18]. Existential boundedness,
k-synchronous systems, and synchronizability are further compared in Section 5.5.

2. Preliminaries

2.1. Messages and topologies. A message set M is a tuple ⟨ΣM , p, src, dst⟩ where ΣM

is a finite set of letters (more often called messages), p ≥ 1 and src, dst are functions that
associate to every letter a ∈ Σ naturals src(a) ̸= dst(a) ∈ {1, . . . , p}. We often write ai→j

for a message a such that src(a) = i and dst(a) = j; we often identify M and ΣM and write

for instance M = {ai1→j1
1 , ai2→j2

2 , . . . } instead of ΣM = . . . , or w ∈ M∗ instead of w ∈ Σ∗M .
The communication topology associated to M is the graph GM with vertices {1, . . . , p} and
with an edge from i to j if there is a message a ∈ ΣM such that src(a) = i and dst(a) = j.
GM is an oriented ring if the set of edges of GM is {(i, j) | i+ 1 = j mod p}.

2.2. Traces. An action λ over M is either a send action !a or a receive action ?a, with
a ∈ ΣM . The peer peer(λ) of action λ is defined as peer(!a) = src(a) and peer(?a) = dst(a).
We write Acti,M for the set of actions of peer i and ActM for the set of all actions over
M . An M -trace τ is a finite (possibly empty) sequence of actions. We write Act∗M for
the set of M -traces, ϵ for the empty M -trace, and τ1 · τ2 for the concatenation of two
M -traces. We sometimes write !?a for !a · ?a. An M -trace τ is a prefix of υ, τ ≤pref υ



33:4 A. Finkel and E. Lozes Vol. 19:4

if there is θ such that υ = τ · θ. The prefix closure ↓ S of a set of M -traces S is the set
{τ ∈ Act∗M | there is υ ∈ S such that τ ≤pref υ}.

For an M -trace τ and peer ids i, j ∈ {1, . . . , p} we write

• send(τ) (resp. recv(τ)) for the sequence of messages sent (resp. received) during τ , i.e.
send(!a) = a, send(?a) = ϵ, and send(τ1 · τ2) = send(τ1) · send(τ2) (resp. recv(!a) = ϵ,
recv(?a) = a, and recv(τ1 · τ2) = recv(τ1) · recv(τ2)).

• onPeeri(τ) for the M -trace of actions λ in τ such that peer(λ) = i.
• onChanneli→j(τ) for the M -trace of actions λ in τ such that λ ∈ {!a, ?a} for some a ∈ M
with src(a) = i and dst(a) = j.

• bufferi→j(τ) for the word w ∈ M∗, if it exists, such that send(onChanneli→j(τ)) =
recv(onChanneli→j(τ)) · w.

Example 2.1. Consider M = ⟨{a, b}, 2, src, dst⟩ with src(a) = dst(b) = 1 and src(b) =
dst(a) = 2, and let τ =!a?b. Then send(τ) = a, onPeer1(τ) = τ , and buffer1→2(τ) = a.

An M -trace τ is FIFO (resp. a k-bounded FIFO, for k ≥ 1) if for all i, j ∈ {1, . . . , p}, for
all prefixes τ ′ of τ , bufferi→j(τ

′) is defined (resp. defined and of length at most k); in other
words, τ is FIFO if for every prefix τ ′ of τ , for all i ̸= j, the sequence of messages received
from i by j in τ ′ is a prefix of the sequence of message sent from i to j in τ ′. Intuitively, an
M -trace is FIFO if it is an execution of a machine that manipulates FIFO queues, with one
queue per pair of peers.

An M -trace is synchronous if it is of the form !?a1 · !?a2 · · · !?aℓ for some ℓ ≥ 0 and
a1, . . . , aℓ ∈ M . In particular, a synchronous M -trace is a 1-bounded FIFO M -trace (but
the converse is false). An M -trace τ is stable if bufferi→j(τ) = ϵ for all i ̸= j ∈ {1, . . . , p}.

Two M -traces τ, υ are causal-equivalent τ
causal∼ υ if

• τ, υ are FIFO, and
• for all i ∈ {1, . . . , p}, onPeeri(τ) = onPeeri(υ).

Intuitively, τ
causal∼ υ if τ is obtained from υ by iteratively commuting adjacent actions that

are not from the same peer and do not form a “matching send/receive pair” (this is why τ, υ

are deemed to be FIFO). The relation
causal∼ is a congruence with respect to concatenation.

2.3. Peers, systems, configurations. A system (of communicating machines) over a
message set M is a tuple S = ⟨P1, . . . ,Pp⟩ where for all i ∈ {1, . . . , p}, the peer Pi is a finite
state automaton ⟨Qi, q0,i,∆i⟩ over the alphabet Acti,M and with (implicitly) Qi as the set
of accepting states. We write L(Pi) for the set of M -traces that label a path in Pi starting
at the initial state q0,i.

Let the system S be fixed. A configuration γ of S is a tuple (q1, . . . , qp, w1,2, . . . , wp−1,p)
where qi is a state of Pi and for all i ≠ j, wi,j ∈ M∗ is the content of channel i → j. A
configuration is stable if wi,j = ϵ for all i, j ∈ {1, . . . , p} with i ̸= j.

Let γ = (q1, . . . , qp, w1,2, . . . , wp−1,p), γ
′ = (q′1, . . . , q

′
p, w

′
1,2, . . . , w

′
p−1,p) and m ∈ M with

src(m) = i and dst(m) = j. We write γ
!m−→S γ′ (resp. γ

?m−−→S γ′) if (qi, !m, q′i) ∈ ∆i (resp.
(qj , ?m, q′j) ∈ ∆j), w

′
i,j = wi,j ·m (resp. wi,j = m ·w′i,j) and for all k, ℓ with k ̸= i (resp. with

k ̸= j), qk = q′k and w′k,ℓ = wk,ℓ (resp. w′ℓ,k = wℓ,k). If τ = λ1 · λ2 · · ·λn, we write
τ−→S for

λ1−→S
λ2−→S . . .

λn−→S . We often write
τ−→ instead of

τ−→S when S is clear from the context. The



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:5

q0,1 q1,1 q2,1 q3,1P1
!a1→2 !a1→2 !b1→3

q0,2

q1,2 q2,2 q3,2

q4,2 q5,2P2

?a1→2

?a1→2 ?c3→2

?c3→2 !d2→1
q0,3 q1,3 q2,3P3

?b1→3 !c3→2

Figure 1: System of Example 2.2 and Theorem 2.4.

initial configuration of S is the stable configuration γ0 = (q0,1, . . . , q0,p, ϵ, . . . , ϵ). An M -trace

τ is a trace of system S if there is γ such that γ0
τ−→ γ. Equivalently, τ is a trace of S if

• it is a FIFO trace, and
• for all i ∈ {1, . . . , p}, onPeeri(τ) ∈ L(Pi).

For k ≥ 1, we write Tracesk(S) for the set of k-bounded traces of S, Traces0(S) for the set
of synchronous traces of S, and Traces(S) for

⋃
k≥0 Tracesk(S).

Example 2.2. Consider the message set M = {a1→2, b1→3, c3→2, d2→1} and the system
S = ⟨P1,P2,P3⟩ where P1,P2,P3 are as depicted in Fig. 1.

L(P1) = ↓ {!a1→2 · !a1→2 · !b1→3}
L(P2) = ↓ {?a1→2 · ?a1→2 · ?c3→2 , ?c3→2 · !d2→1}
L(P3) = ↓ {?b1→3 · !c3→2}.

An example of a stable trace is !a1→2 · !a1→2 · !?b1→3 · !c3→2 · ?a1→2 · ?a1→2 · ?c3→2. Let
τ =!a1→2 · !a1→2 · !?b1→3 · !?c3→2 · !d2→1. Then τ ∈ Traces2(S) is a 2-bounded trace of the

system S, and γ0
τ−→ (q3,1, q5,2, q2,3, a

1→2a1→2, ϵ, d2→1, ϵ, ϵ, ϵ).

Two traces τ1, τ2 are S-equivalent, denoted with τ1
S∼ τ2, if τ1, τ2 ∈ Traces(S) and there

is γ such that γ0
τi−→ γ for both i = 1, 2. It follows from the definition of

causal∼ that if

τ1
causal∼ τ2 and τ1, τ2 ∈ Traces(S), then τ1

S∼ τ2.

2.4. Synchronizability. Following [BBO12b], we define the observable behaviour of a
system as its set of send traces enriched with their final configurations when they are stable.
Formally, for any k ≥ 0, we write Jk(S) and Ik(S) for the sets

Jk(S) = {send(τ) | τ ∈ Tracesk(S)}
Ik(S) = Jk(S) ∪ {(send(τ), γ) | γ0

τ−→ γ, γ stable, τ ∈ Tracesk(S)}.
Synchronizability is then defined as the slack elasticity of these observable behaviours.

Definition 2.3 (Synchronizability [BB11, BBO12b]). A system S is synchronizable if
I0(S) = I(S). S is called language synchronizable if J0(S) = J(S).

For convenience, we also introduce a notion of k-synchronizability: for k ≥ 1, a system
S is k-synchronizable if I0(S) = Ik(S), and language k-synchronizable if J0(S) = Jk(S). A
system is therefore (language) synchronizable if and only if it is (language) k-synchronizable
for all k ≥ 1.

Theorem 2.4. There is a system S that is 1-synchronizable, but not synchronizable.



33:6 A. Finkel and E. Lozes Vol. 19:4

Proof. Consider again the system S of Example 2.2. Let γijk := (qi,1, qj,2, qk,3, ϵ, . . . , ϵ). If
the buffers are 1-bounded, P1 must wait that the first a message has been received before
sending the b message. Therefore

J0(S) = ↓ {a1→2 · a1→2 · b1→3 · c3→2}
J1(S) = J0(S)

On the other hands, if the buffers can host two transiting messages, it becomes possible for
P1 to send b before the first a is received by P2, so it becomes possible for P3 to receive b and
send c, and finally P2 may decide to receive c before receiving any a message. Consequently,

J2(S) = ↓ {a1→2 · a1→2 · b1→3 · c3→2 · d2→1}
Ik(S) = Jk(S) ∪ Stab for all k ≥ 0

where Stab = {(ϵ, γ0), (a1→2, γ110), (a
1→2 ·a1→2, γ220), (a

1→2 ·a1→2 · b1→3, γ321), (a
1→2 ·a1→2 ·

b1→3 · c3→2, γ332)}.

This example contradicts1 Theorem 4 in [BB16], which stated that J0(S) = J1(S)
implies J0(S) = J(S). This also shows that the decidability of synchronizability for peer-
to-peer communications is open despite the claim in [BB16]. The next section closes this
question.

Remark 2.5. In Section 5, we give a counter-example that addresses communications with
mailboxes, i.e. the first communication model considered in all works about synchronizability,
and we list several other published theorems that our counter-example contradicts.

3. Undecidability of Synchronizability

In this section, we show the undecidability of synchronizability for systems with at least three
peers. Although the reachability problem is undecidable for two peers, we cannot establish
the undecidability of the synchronizability of a system with two peers. The reasons for that
are twofolds.

First, synchronizability only deals with messages that are sent and received, which is
orthogonal to reachability. We therefore rely on the undecidability of the message reception
problem: given a FIFO automaton A (i.e. an automaton that can both enqueue and dequeue
messages in a unique channel) and a special message m, decide whether there exists a trace
of A that contains ?m.

Second, synchronizability constrains a lot the communications. In particular, when
an automaton must be in a mixed state (ready to send and receive), it imposes some
commutativity of the two actions (see next section), and as a consequence, a synchronizable
system with two peers cannot simulate a FIFO automaton. A third peer is necessary to get
rid of all the constraints imposed by synchronizability.

To sum up, we reduce the message reception problem on a FIFO automaton A to the
synchronizability of a system with three peers: we construct a system S ′′A,m such that the

synchronizability of S ′′A,m is equivalent to the non-reception of the special message m in A.

1see also the discussion in Section 5.2



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:7

3.1. An Undecidable Problem on FIFO automata. A FIFO automaton is a finite
state automaton A = ⟨Q,ActΣ,∆, q0⟩ over an alphabet of the form ActΣ for some finite set
of letters Σ with all states being accepting states. A FIFO automaton can be thought as a
system with only one peer, with the difference that, according to our definition of systems,
a peer can only send messages to peers different from itself, whereas a FIFO automaton
enqueues and dequeues letters in a unique FIFO queue, and thus, in a sense, “communicates
with itself”. All notions we introduced for systems are obviously extended to FIFO automata.
In particular, a configuration of A is a tuple γ = (q, w) ∈ Q× Σ∗, it is stable if w = ϵ, and

the transition relation γ
τ−→ γ′ is defined exactly the same way as for systems.Let us now

state the problem that we will consider

Definition 3.1 (Message reception problem). The message reception problem is the following
decision problem

Input: a FIFO automaton A = ⟨Q,ActΣ,∆, q0⟩ and a distinguished message m ∈ Σ.
Question: is there a trace τ such that τ · ?m ∈ Traces(A) ?

Remark 3.2. A similar but different problem to the message reception problem is the
executable reception problem in [BZ83] which consists to decide for a given control-state q

and a message m such that q
?m−−→, whether there exists a reachable configuration (q,mw)

with w ∈ Σ∗ : this problem is proved undecidable for systems of 2-CFSMs in the (non
available) associated technical report [BZ81]. The proof reduces the halting problem to the
executable reception problem by using the two unidirectional FIFO channels to simulate the
tape of a Turing machine. We present another proof technique (using the undecidability of
the existence of a tiling [LP98]) for another model, the FIFO automata model and another
property. Then we will simulate any FIFO automaton A by an associated particular system
of 3-CFSMs SA that will have the property to be synchronizable iff a message m never
appears in a trace of A. We dont try to simulate A by a system of 2-CFSMs since for systems
of 2-CFSMs, synchronizability is decidable and message reception problem is undecidable.

Lemma 3.3. The message reception problem is undecidable.

Proof. We consider the problem of the existence of a finite, but arbitrarily large, tiling for a
given set of Wang tiles and a pair of initial and final tiles. More precisely, consider a tuple
T = ⟨T, t0, tF , H, V ⟩ where
• T is a finite set of tiles,
• t0, tF ∈ T are respectively the initial tile and the final tile, and
• H,V ⊆ T × T are horizontal and vertical compatibility relations.

Without loss of generality, we assume that there is a “padding tile” □ such that (t,□) ∈ H∩V
for all t ∈ T . For a natural n ≥ 1, a n-tiling is a function f : N× {1, . . . , n} → T such that

• f(0, 1) = t0,
• there are (iF , jF ) ∈ N× {1, . . . , n} such that f(iF , jF ) = tF ,
• (f(i, j), f(i, j + 1)) ∈ H for all (i, j) ∈ N× {1, . . . , n− 1}, and
• (f(i, j), f(i+ 1, j)) ∈ V for all (i, j) ∈ N× {1, . . . , n}.
The problem of deciding, given a tuple T = ⟨T, t0, tF , H, V ⟩, whether there is some n ≥ 1
for which there exists a n-tiling, is undecidable [LP98], intuitively because it is equivalent to
the halting problem for a Turing machine working with a half-infinite ribbon.

In the remainder, we explain how this tiling problem can be reduced to the message
reception problem. Intuitively, we construct a FIFO automaton that outputs the first row of



33:8 A. Finkel and E. Lozes Vol. 19:4

the tiling, storing it into the queue, and guessing at the same time the width n of the tiling.
Then, for all next row i+ 1, the automaton outputs the row tile after tile, popping a tile of
row i in the queue in between so as to check that each tile of row i+ 1 vertically coincides
with the corresponding tile of row i.

More precisely, let T = ⟨T, t0, tF , H, V ⟩ be fixed. We define the FIFO automaton
AT = ⟨Q,Σ,∆, q0⟩ with Q = {qt,0, q↓=t, q←=t, q←=t,↓=t′ | t ∈ T, t′ ∈ T ∪ {$}} ∪ {q0, q1},
Σ = T ∪ {$}, and ∆ ⊆ Q× ActΣ ×Q, with

∆ = {(q0, !t0, qt0,0)} ∪ {(qt,0, !t′, qt′,0) | (t, t′) ∈ H} ∪ {(qt,0, !$, q1) | t ∈ T}
∪ {(q1, ?t, q↓=t) | t ∈ T )} ∪ {(q↓=t, !t

′, q←=t′) | (t, t′) ∈ V }
∪ {(q←=t, ?t

′, q←=t,↓=t′) | t ∈ T, t′ ∈ T ∪ {$}}
∪ {(q←=t,↓=t′ , !t

′′, q←=t′′) | (t, t′′) ∈ H and (t′, t′′) ∈ V }
∪ {(q←=t,↓=$, !$, q1) | t ∈ T}

Note that the automaton moves to state q↓=t after it has popped the first tile t of row i (it
needs to remember it), then moves to state q←=t′ after it has decided to put a tile t′ on row
i+ 1 above tile t (it only needs to remember t′), then moves to state q←=t′,↓=t′′ after it has
popped the second tile t′′ of row i, and so on. Therefore, any execution of AT is of the form

!t1,1 · !t1,2 · · ·!t1,n · !$ · ?t1,1 · !t2,1 · ?t1,2 · !t2,2 · · ·!t2,n · ?$ · !$ · ?t2,1 · !t3,1 · · ·

where t1,1 = t0, (ti,j , ti+1,j) ∈ V and (ti,j , ti,j+1) ∈ H. The following two are thus equivalent:

• there is n ≥ 1 such that T admits a n-tiling
• there is a trace τ ∈ Traces(A) that contains ?tF .

Note that, from this result, we can easily deduce the undecidability of the reachability
problem for a system consisting of two machines, a sender and a receiver, a FIFO channel
between them, and an extra channel with rendez-vous synchronization. Indeed, such a
system may simulate a FIFO automaton: the sender does exactly the same as the FIFO
automaton, except that for reception it uses a rendez-vous synchronization to ask the receiver
for performing a reception, and waits for an acknowledgment that this reception has indeed
been done. In the following, we will exploit this idea, although not with two machines and a
rendez-vous channel, but with three machines and FIFO channels only.

3.2. A System that Simulates a FIFO Automaton. We are now going to define a
communicating system that simulates a FIFO automaton A. This system, that we will write
SA, will later be completed so as to reduce the message reception problem to synchronizability.
The system SA consists of three peers P1, P2 and P3 that are connected through the following
topology.

P1 P2

P3

Intuitively, we want P1 to mimick A’s decisions and the channel 1 → 2 to mimick A’s queue.
When A would enqueue a letter a , peer 1 sends a1→2 to peer 2, and when A would dequeue
a letter a, peer P1 sends to peer P2 via peer P3 the order to dequeue a, and waits for the
acknowledgement that the order has been correcly executed. So the only role of P3 is to
enable a second channel between P1 and P2 for “rendez-vous communications”.



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:9

Let us now define these peers and SA more formaly. Let A = ⟨QA,ActΣ,∆A, q0⟩ a FIFO
automaton be fixed. Let M be such that all messages of Σ can be exchanged among all
peers in all directions but 2 → 1, i.e.

M = {a1→2, a1→3, a2→3, a3→1, a3→2 | a ∈ Σ}
Peer P1 is obtained by replacing every !a transition of A with a !a1→2 transition, and every
?a transition with the sequence of transitions !a1→3?a3→1. Formally, P1 = ⟨Q1, q0,1,∆1⟩ is
defined by Q1 = QA ⊎ {qδ | δ ∈ ∆A} and

∆1 = {(q, !a1→2, q′) | (q, !a, q′) ∈ ∆A}
∪ {(q, !a1→3, qδ), (qδ, ?a

3→1, q′) | δ = (q, ?a, q′) ∈ ∆A}.
The modus operandi of P2 and P3 is rather simple: P3 propagates all messages it receives,
and P2 executes all orders it receives and sends back an acknowledgement when this is
done. So both P2 and P3 operate with an “infinite loop”. For some technical reason that
will be later explained, we need to make sure that P2 never comes back to its initial state.
To do so, we simply “unroll the loop” once in P2. Formally, let P2 = ⟨Q2, q0,2,∆2⟩ and
P3 = ⟨Q3, q0,3,∆3⟩ be defined by

Q2 = {q0,2, q1,2} ∪ {qa,1, qa,2 | a ∈ Σ} Q3 = {q0,3} ∪ {qa,1, qa,2, qa,3 | a ∈ Σ}
∆2 = {(q0,2, ?a3→2, qa,1), (q1,2, ?a

3→2, qa,1), (qa,1, ?a
1→2, qa,2), (qa,2, !a

2→3, q1,2) | a ∈ Σ}
∆3 = {(q0,3, ?a1→3, qa,1), (qa,1, !a

3→2, qa,2), (qa,2, ?a
2→3, qa,3), (qa,3, !a

3→1, q0,3) | a ∈ Σ}

Example 3.4. Consider Σ = {a,m} and the FIFO automaton A = ⟨{q0, q1},ActΣ,∆, q0⟩
with transition relation ∆A = {(q0, !a, q0), (q0, !m, q1), (q1, ?a, q0), (q1, ?m, q0)}. Then A and
the peers P1,P2,P3 are depicted in Fig. 2.

Let SA = ⟨P1,P2,P3⟩. There is a tight correspondence between the k-bounded traces of
A, for k ≥ 1, and the k-bounded traces of SA: every trace τ ∈ Tracesk(A) induces the trace
h(τ) ∈ Tracesk(SA) where h : ActΣ → Act∗M is the homomorphism from the traces of A to
the traces of SA defined by h(!a) =!a1→2 and h(?a) =!?a1→3 · !?a3→2 · ?a1→2 · !?a2→3 · !?a3→1.
The converse is not true: there are traces of SA that are not prefixes of a trace h(τ) for some
τ ∈ Tracesk(A). This happens when P1 sends an order to dequeue a1→3 that correspond
to a transition ?a that A cannot execute. In that case, the system blocks when P2 has to
execute the order. To sum up, we obtain the following result.

Lemma 3.5. For all k ≥ 0,

Tracesk(SA) = ↓ {h(τ) | τ ∈ Tracesk(A)}
∪ ↓ {h(τ) · !?a1→3 · !?a3→2 | ∃q, b, w, q′ s.t.

τ ∈ Tracesk(A), (q0, ϵ)
τ−→ (q, bw), (q, ?a, q′) ∈ ∆and b ̸= a}.

3.3. A Synchronizable System. Let us fix a special message m ∈ Σ. In this section, we
define a system S ′A,m = ⟨P1,P ′2,P3⟩ where P1 and P3 are like in the system SA, but P ′2 is
a new peer. This system will later be combined with SA so as to form the whole system
that will be used in the reduction of the message reception problem to the synchronizability
problem. The main purpose of S ′A,m = ⟨P1,P ′2,P3⟩ is to be a synchronizable system that

will “make synchronizable” all traces of SA except the ones that contain m2→3, which are
the only ones we want to care about in the reduction. Our outline for this section is therefore
the following: (1) define S ′A,m, (2) compute its synchronous traces, (3) show that they “make



33:10 A. Finkel and E. Lozes Vol. 19:4

A

!a
!m

?a, ?m

P1

!a1→2
!m1→2

!a1→3?a3→1

!m1→3?m3→1

P2

?a3→2
?a3→2

?a1→2

!a2→3

?m3→2

?m3→2

?m1→2

!m2→3

P3

?a1→3 !a3→2

?a2→3!a3→1

?m1→3!m3→2

?m2→3 !m3→1

P ′2

?a1→2, ?m1→2 ?a1→2, ?m1→2

?a3→2

?a1→2, ?m1→2

!a2→3

?a3→2

Figure 2: The FIFO automaton A of Example 3.4 and its associated systems SA =
⟨P1,P2,P3⟩ and S ′A,m = ⟨P1,P ′2,P3⟩. The sink state q⊥ and the transitions

q
?m3→2

−−−−→ q⊥ are omitted in the representation of P ′2.



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:11

synchronizable” the asynchronous traces of SA where !m2→3 does not occur, and (4) show
that it is a synchronizable system.

Let us start with the definition of S ′A,m = ⟨P1,P ′2,P3⟩. Intuitively, the new peer P ′2 will
always be able to receive any message from peer P1, in particular at the time the message is
sent. Moreover, like P2, P ′2 will also be able to receive orders to dequeue from peer P3, but
instead of executing the order before sending an acknowledgement, it will ignore the order
as follows. If P ′2 receives the order to dequeue a message a1→2 ̸= m1→2, P ′2 acknowledges P3

but does not dequeue a in the 1 → 2 queue. If the order was to dequeue m, P ′2 blocks in the
sink state q⊥ and does not send an acknowledgement to P3. As for P2, we “unroll the loop”
so as to make sure that it not possible to come back to the initial state of P ′2. Formally, P ′2
is defined as follows.

Q′2 = {q0,2, q′0,2} ∪ {q′a,1 | a ∈ Σ, a ̸= m, } ∪ {q⊥}
∆′2 = {(q0,2, ?a1→2, q′0,2), (q, ?a

1→2, q) | a ∈ Σ, q ̸= q0,2}
∪ {(q0,2, ?a3→2, q′a,1), (q

′
0,2, ?a

3→2, q′a,1), (q
′
a,1, !a

2→3, q′0,2), | a ∈ Σ, a ̸= m}
∪ {(q, ?m3→2, q⊥) | q ∈ Q′2}

Example 3.6. For Σ = {a,m}, and A as in Example 3.4, P ′2 is depicted in Fig. 2 (omitting
the transitions to the sink state q⊥).

Let us now compute the set of all synchronous traces of S ′A,m. Observe first that

the system S ′A,m = ⟨P1,P ′2,P3⟩ contains many synchronous traces: when P1 sends a

message a1→2, it can always do it synchronously, because P ′2 is always ready to receive
it. When P1 sends an order for dequeuing, the transmission of this order to P ′2 through
P3 can be synchronous. If this order is not the order to dequeue m1→2, then P ′2 sends
the acknowledgment to P1 through P3, which can also happen synchronously. Note in
particular that, unlike in SA, peer 1 does not block forever after it has sent an order a1→3 in
a configuration where the first message to be dequeued in channel 1 → 2 is not a, because
P ′2 now acknowledges any order (except for m). Therefore any trace τ labeling a path in
automaton P1 can be lifted to a synchronous trace τ ′ ∈ Traces0(S ′A,m) provided !m1→3 does

not occur in τ . However, if P1 takes a !m1→3 transition, it gets blocked for ever waiting for
m3→1. Therefore, if !m1→3 occurs in a synchronous trace τ of S ′A,m, it must be in the last
four actions, and this trace leads to a deadlock configuration in which both 1 and 3 wait for
an acknowledgement and 2 is in the sink state.

Let us now formalize further these observations. Let Lm(A) be the set of traces τ
recognized by A as a finite state automaton (over the alphabet ActΣ) such that either ?m
does not occur in τ , or it occurs only once and it is the last action of τ .

Example 3.7. With A as in Example 3.4, Lm(A) = ↓
(
(!a∗ · !m · ?a)∗ · !a∗ · !m · ?m

)
.

The next lemma formalizes the observations we did about how synchronous traces of
S ′A,m correspond, up to an homomorphism, to Lm(A), and gives the desired computation of

the synchronous traces of S ′A,m.

Lemma 3.8. Traces0(S ′A,m) = ↓ {h′(τ) | τ ∈ Lm(A)}, where h′ : Act∗Σ → Act∗M is the
morphism defined by

• h′(!a) =!?a1→2 for all a ∈ Σ,
• h′(?a) =!?a1→3 · !?a3→2 · !?a2→3 · !?a3→1 for all a ̸= m, and
• h′(?m) =!?m1→3 · !?m3→2.



33:12 A. Finkel and E. Lozes Vol. 19:4

As a consequence, we get the following result, which will be later used to “make
synchronizable” all traces of SA that do not contain !m2→3.

Lemma 3.9. For all trace τ ∈ Traces(SA) such that !m2→3 ̸∈ τ , there is a synchronous
trace τ ′ ∈ Traces0(S ′A,m) such that send(τ) = send(τ ′).

Proof. Let τ ∈ Traces(SA) such that !m2→3 ̸∈ τ be fixed. By Lemma 3.5, there is τ0 ∈
Traces(A) such that τ = h(τ0). By definition of h, ?m does not occur in τ0. Let τ

′ = h′(τ0).
By Lemma 3.8, τ ′ ∈ Traces0(S ′A,m), and by definition of h and h′, and the fact that ?m does

not occur in τ0, send(τ) = send(τ ′).

Let us finally establish the synchronizability of S ′A,m. We consider some arbitrary

asynchronous trace τ ∈ Traces(S ′A,m) that we need to be equivalent, up to receive actions,
to a synchronous trace. Let us reason message by message on τ , by case analysis on the
channel of the message.

• If P1 sends a message a1→2 to P ′2, it is always possible to make sure that P ′2 receives it
immediately. Indeed, there are two cases: if a1→2 was not received in τ , adding ?a1→2

right after !a1→2 in τ yields a valid trace in Traces(S ′A,m), because the transitions ?a1→2 in

P ′2 do not modify the control state; similary, if a1→2 was received in τ but not immediately
after !a1→2, it is possible to move ?a1→2 immediately after !a1→2 in τ while keeepin a
valid trace in Traces(S ′A,m), again because the transitions ?a1→2 in P ′2 do not modify the

control state. In the remainder, we therefore assume that all !a1→2 in τ are immediately
followed by ?a1→2.

• If P1 sends a message to P3, it is always possible to make sure that P3 receives it
immediately. Indeed, it is always the case that whenever P1 sends a message to P3, P3 is
in its initial state, otherwise P1 would be waiting for an acknowledgment from P3, and
won’t be able to send a message to P3.

• For the same reason, if P ′2 sends a message a2→3 to P3, it must be the case that P3 is
blocked waiting for this message, and we can either move ?a2→3 right after !a2→3 or insert
it in τ if it was not there.

• For the same reason, if P3 sends a message to P1, it is always possible to make sure that
P1 receives it immediately.

• Finally, let us consider the case of P3 sending a message a3→2 to P ′2. It must be the
case that P ′2 is either in its initial state q0,2 or in the similar receiving state q0,2′ at the
moment of the sending. Indeed, if P ′2 was in a state q′a,1, P3 would be blocked waiting

for an acknowledgment from P ′2, so it would not have been able to send a message to P ′2.
So P ′2 is either in its initial state q0,2 or in the similar receiving state q0,2′ at the moment
of the sending !a3→2. With the same reasoning, it also holds that the buffer 3 → 2 was
empty before the sending of a3→2. Since there are no send transitions from q0,2 and q0,2′ ,
and since we assumed above that all ?a1→2 immediately follow their matching send in
τ , the only possible first action of P ′2 in τ after !a3→2 is ?a3→2. If this action exists in τ ,
we can move it right after the sending of P3 up to causal equivalence. If ?a2→3 does not
happen in τ after this !a3→2, it means that no further action of P ′2 occurs in τ after !a3→2.
So we can insert ?a3→2 in τ right after !a3→2 while keeping a valid trace in Traces(S ′A,m).

In order to sum up what we showed with this case analysis, let us introduce the
homomorphism h′′ : Act∗M → Act∗M such that

• h′′(!a1→2) =!?a1→2,



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:13

• h′′(?a1→2) = ϵ, and
• h′′(λ) = λ otherwise.

For any given τ ∈ Traces(S ′A,m), our case analysis shows that h′′(τ) ∈ Traces0(S ′A,m). It

is also easy to observe that send(τ) = send(h′′(τ)). As a consequence, we get the desired
result.

Lemma 3.10. S ′A,m is synchronizable.

3.4. Reducing the Message Reception Problem to Synchronizability. We are
now close to reach our initial goal, namely to reduce the message reception problem to
synchronizability. Let us consider the system S ′′A,m = ⟨P1,P2 ∪ P ′2,P3⟩, where P2 ∪ P ′2 =

⟨Q2 ∪Q′2, q02,∆2 ∪∆′2⟩ is obtained by merging the initial state q0,2 of P2 and P ′2.
It is now time to explain why we defined P2 and P ′2 so that it is not possible to come

back to the initial state q0,2. While doing so, we make sure that any trace of S ′′A,m is either

a trace of SA or a trace of S ′A,m.

Tracesk(S ′′A,m) = Tracesk(SA) ∪ Tracesk(S ′A,m),

In particular,

Jk(S ′′A,m) = Jk(SA) ∪ Jk(S ′A,m), and Ik(S ′′A,m) = Ik(SA) ∪ Ik(S ′A,m).

The next lemma establishes the soundness of the reduction of message reception to
language synchronizability. The reduction to synchronizability will be later treated.

Lemma 3.11. S ′′A,m is not language synchronizable iff there is a trace τ ∈ Traces(A) such
that ?m occurs in τ .

Proof. (⇒) Assume that S ′′A,m is not language synchronizable and let us show that there is

a trace τ ∈ Traces(A) such that ?m occurs in τ .
Let us first observe that if S ′′A,m is not synchronizable, then J(S ′′A,m)\J0(S ′′A,m) ̸= ∅. Since

by Lemma 3.10 S ′A,m is synchronizable, J(S ′A,m) \ J0(S ′A,m) = ∅. So J(SA) \ J0(S ′′A,m) ̸= ∅,
and in particular

J(SA) \ J0(S ′A,m) ̸= ∅.

Let τ1 ∈ Traces(SA) be such that send(τ1) ̸∈ J0(SA,m). Then !m2→3 occurs in τ1. Indeed, if
it was not the case, then by Lemma 3.9, we would have send(τ1) ∈ J0(SA,m). Now, since
!m2→3 occurs in τ1, by Lemma 3.5, there is a trace τ ∈ Traces(A) such that h(τ) = τ1, and
by definition of h, ?m occurs in τ .

(⇐) Assume that there is a trace τ ∈ Traces(A) such that ?m occurs in τ , and let us
show that S ′′A,m is not language synchronizable. By Lemma 3.5, h(τ) ∈ Traces(SA). In order

to show that S ′′A,m is not synchronizable (resp. not language synchronizable), let us show

that send(h(τ)) ∈ J(S ′′A,m) and send(h(τ)) ̸∈ J0(S ′′A,m).

• send(h(τ)) ∈ J(S ′′A,m). Indeed, send(h(τ)) ∈ J(SA) because h(τ) ∈ Traces(SA), and
J(SA) ⊆ J(S ′′A,m).

• Let us show that send(h(τ)) ̸∈ J0(S ′′A,m). Since J0(S ′′A,m) = J0(SA) ∪ J0(S ′A,m), we need

to show that send(h(τ)) ̸∈ J0(SA) and send(h(τ)) ̸∈ J0(S ′A,m).



33:14 A. Finkel and E. Lozes Vol. 19:4

– send(h(τ)) ̸∈ J0(S ′A,m). Indeed, since ?m occurs in τ , !m2→3 occurs in h(τ), but by

definition, P ′2, contains no !m2→3 transition, so a trace that contains !m2→3 can’t be
trace of S ′′A,m, therefore send(h(τ)) ̸∈ J0(S ′A,m).

– send(h(τ)) ̸∈ J0(SA). Let us assume by absurd that there is a synchronous trace τ ′ ∈
Traces0(SA) such that send(τ ′) = send(h(τ)). By Lemma 3.5, there is τ0 ∈ Traces0(A)
such that either τ ′ is a prefix of h(τ0), or τ

′ is a prefix of h(τ0) · !?a1→3 · !?a3→2 for some
a ∈ Σ. Since τ ′ is a synchronous trace, and by definition of h, τ0 must only contain
receptions, and since τ0 corresponds to a trace in A, τ0 is the empty trace. So τ ′ is a
prefix of !?a1→3 · !?a3→2 for some a ∈ Σ, and !a2→3 does not occur in τ ′. This contradicts
send(τ ′) = send(h(τ)) and the fact that !a2→3 does occur in h(τ).

Let us now establish the soundness of the reduction of message reception to synchroniz-
ability, instead of language synchronizability. It is slightly more involved due to the possible
existence of stable traces of SA that are not “catched” by a stable synchronous trace of SA.
This is actually only a minor problem, and we will actually fix it with the following extra
hypothesis on the FIFO automaton A.

Definition 3.12. A FIFO automaton A is good for reduction if the only stable trace of A
is the empty trace.

Note that the FIFO automaton A that we defined in the proof of the undecidability
of the message reception problem is good for reduction: indeed, after the first row of the
tiling has been queued, the automaton always queues a new tile right after it has dequeued
a tile, or queues the marker of the end of the row ($) right after it dequeues it. So the buffer
always contains either at least one tile or the $ marker, except in the initial configuration.

Lemma 3.13. Assume that A is good for reduction. Then S ′′A,m is not synchronizable iff

there is a trace τ ∈ Traces(A) such that ?m occurs in τ .

Proof. Let us show that, under the hypothesis that A is good for reduction, S ′′A,m is

synchronizable if and only if S ′A,m is language synchronizable, which, by Lemma 3.11 will
entail what we need to prove.

(⇒) Let us assume that S ′′A,m is synchronizable and let us show that S ′′A,m is language syn-
chronizable. This implication actually holds for any system S. Indeed, if S is synchronizable,
then I(S) \ I0(S) = ∅. Since J(S) ⊆ I(S), we have in particular

J(S) \ I0(S) = ∅.
By definition, I0(S) = J0(S) ∪ Stab, where Stab is a set of pairs (send(τ), γ); such pairs do
not belong to J(S), so

J(S) \ I0(S) = J(S) \ J0(S).
As a consequence, J(S) \ J0(S) = ∅, and since J0(S) ⊆ J(S), we finally get

J(S) = I0(S).
(⇐) Let us assume that Jk(S ′′A,m) = J0(S ′′A,m), and let us show that Ik(S ′′A,m) =

I0(S ′′A,m). The inclusion I0(S ′′A,m) ⊆ I(S ′′A,m) holds for any system. Let us therefore show

that Ik(S ′′A,m) ⊆ I0(S ′′A,m). Since Ik(S ′′A,m) = Ik(SA) ∪ Ik(S ′A,m) for all k ≥ 0, we have to

show that I(SA) ⊆ I0(SA) ∪ I0(S ′A,m) and I(S ′A,m) ⊆ I0(SA) ∪ I0(S ′A,m).

• I(S ′A,m) ⊆ I0(SA) ∪ I0(S ′A,m) follows from Lemma 3.10.



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:15

• Let us show that I(SA) ⊆ I0(SA) ∪ I0(S ′A,m). Since S ′′A,m is language synchronizable by

hypothesis, we have in particular that J(A) ⊆ J0(SA) ∪ J0(S ′A,m). So we only need to

prove that for all stable trace τ of SA, there is a stable synchronous trace τ ′ of S ′′A,m
leading to the same configuration and such that send(τ) = send(τ ′). We will actually show
that the only stable traces of SA are synchronous, and therefore we can even take τ ′ = τ .

Let τ ∈ Traces(SA) a stable trace be fixed, and let us show that τ is synchronous.
By Lemma 3.5, there is a trace τ0 ∈ Traces(A) and a message a ∈ Σ such that either
τ = h(τ0), or τ = h(τ0) · !?a1→3, or τ = h(τ0) · !?a1→3 · !?a3→2. By definition of h, if τ is
stable, then τ0 is stable too. Since A is good for reduction, τ0 must be the empty trace.
So either τ is the empty trace, or τ =!?a1→3, or τ =!?a1→3 · !?a3→2. In all cases, τ is a
synchronous trace, which ends the proof.

Theorem 3.14. Synchronizability (resp. language synchronizability) is undecidable.

Proof. Let a FIFO automaton A that is good for reduction over the message alphabet Σ
and let a message m ∈ Σ be fixed. By Lemma 3.11, S ′′A,m is (language) synchronizable iff

Jk(SA) \ J0(S ′A,m) = ∅. By Lemma 3.13, Jk(SA) \ J0(S ′A,m) = ∅ iff there is no trace τ such

that τ · ?m ∈ Traces(A). By Lemma 3.3, this is an undecidable problem.

4. The case of oriented rings

In the previous section we established the undecidability of synchronizability for systems
with (at least) three peers. In this section, we show that this result is tight, in the sense that
synchronizability is decidable if GM is an oriented ring, in particular if the system involves
two peers only. This relies on the fact that 1-synchronizability implies synchronizability for
such systems. In order to show this result, we first establish some confluence properties on
traces for arbitrary topologies. With the help of this confluence properties, we can state a
trace normalization property that is similar to the one that was used in [BBO12b] and for
half-duplex systems [CF05]. This trace normalization property implies that 1-synchronizable
systems on oriented rings have no unspecified receptions2, and their reachability set is
channel-recognizable. Finally, this trace normalization property leads to a proof that
1-synchronizability implies synchronizability when GM is an oriented ring.

4.1. Confluence properties. The following confluence property holds for any synchroniz-
able system (see also Fig 3).

Lemma 4.1 (Weak commutativity). Let S be a 1-synchronizable system. Let τ ∈ Traces0(S)
and a, b ∈ M be such that

(1) τ · !a ∈ Traces1(S),
(2) τ · !b ∈ Traces1(S), and
(3) src(a) ̸= src(b).

If υ1, υ2 are any two of the six different shuffles of !a · ?a with !b · ?b, then τ · υ1 ∈ Traces(S),
τ · υ2 ∈ Traces(S) and τ · υ1

S∼ τ · υ2.

2An unspecified reception occurs when a process P is in a receiving state, some messages awaits for P
receiving them, but they are not the ones that P may dequeue. See [CF05] for formal definitions.



33:16 A. Finkel and E. Lozes Vol. 19:4

causal∼

!a !b

!b
?a

!a
?b

!b ?a ?b !a

?b ?a

Figure 3: Diagrammatic representation of Lemma 4.1

Remark 4.2. This lemma should not be misunderstood as a consequence of causal equiv-
alence. Observe indeed that the square on top of the diagram is the only square that
commutes for causal equivalence. The three other squares only commute with respect to
S∼, and they commute for

causal∼ only if some extra assumptions on a and b are made. For

instance, the left square does commute for
causal∼ if and only if dst(a) ̸= src(b).

Before we prove Lemma 4.1, let us first prove the following.

Lemma 4.3. Let a, b be two messages such that src(a) ̸= src(b). Then for all peers i, for
all shuffle υ of !a · ?a with !b · ?b, either onPeeri(υ) = onPeeri(!?a · !?b) or onPeeri(υ) =
onPeeri(!?b · !?a).

Proof. Let i and υ be fixed. Since src(a) ̸= src(b), it is not the case that both !a and !b
occur in onPeeri(υ). By symmetry, let us assume that !b does not occur in onPeeri(υ). We
consider two cases:

(1) Let us assume that ?a does not occur in onPeeri(υ). Then onPeeri(υ) ∈ {!a, ?b, !a · ?b},
and in all cases, onPeeri(υ) = onPeeri(!?a · !?b).

(2) Let us assume that ?a occurs in onPeeri(υ). Then !a does not occur in onPeeri(υ),
therefore onPeeri(υ) contains only receptions, and onPeeri(υ) ∈ {?a, ?a · ?b, ?b, ?b · ?a}.
In every case, either onPeeri(υ) = onPeeri(!?a · !?b) or onPeeri(υ) = onPeeri(!?b · !?a).

Let us prove now Lemma 4.1.

Proof. Observe first that, since src(a) ̸= src(b), τ ·!a·!b ∈ Traces1(S) and τ ·!b·!a ∈ Traces1(S),
and since S is 1-synchronizable, τ · !?a·!?b ∈ Traces0(S) and τ · !?b·!?a ∈ Traces0(S). By
Lemma 4.3, it follows that for all shuffle υ of !a · ?a with !b · ?b, τ ·υ ∈ Traces1(S). It remains
to show that

for all two shuffles υ, υ′ of !a · ?a with !b · ?b, τ · υ S∼ τ · υ′. (P )

Let τab =!a · !b · ?a · ?b and τba =!b · !a · ?a · ?b, and let υ be a shuffle of !a · ?a with !b · ?b.
Since S is 1-synchronizable, the stable configuration that τ · υ leads to only depends on

the order in which the send actions !a and !b are executed in υ, i.e. either τ · υ S∼ τab or

τ · υ S∼ τba. Moreover, τab
causal∼ τba, hence (P ).

Our aim now is to generalize Lemma 4.1 to arbitrary sequences of send actions (see
Lemma 4.9 below and the corresponding diagram). For this, we need to reason by induction
on the length of the sequence of send actions. The first step is to establish the following
property: a synchronous trace followed by a sequence of send actions can be completed to
form a fully synchronous trace.



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:17

!?a !?b1 · · ·!?bn

!?b1 · · ·!?bn !?a

Figure 4: Diagram of Lemma 4.5

Lemma 4.4. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and a1, · · · , an ∈ M
be such that

(1) τ · !a1 · · · !an ∈ Tracesn(S)
(2) src(ai) = src(aj) for all i, j ∈ {1, . . . , n}.
Then τ · !?a1 · · · !?an ∈ Traces0(S).

Proof. By induction on n. Let a1, . . . , an+1 be fixed, and let τn = τ · !?a1 · · · !?an. By
induction hypothesis, τn ∈ Traces0(S). Let τ ′n+1 = τn · !an+1. Then

• onPeeri(τ
′
n+1) = onPeeri(τn) for all i ̸= src(an+1), and τn ∈ Traces(S)

• for i = src(an+1), onPeeri(τ
′
n+1) = onPeeri(τ · !a1 · · · !an+1) and τ · !a1 · · · !an ∈ Traces(S)

• τ ′n+1 is 1-bounded FIFO

therefore τ ′n+1 ∈ Traces1(S).
By 1-synchronizability, it follows that τ ′n+1 · ?an+1 ∈ Traces0(S).

The second step is a confluence property that allows to commute a synchronization on
one message and a sequence of synchronizations on other messages with different senders
(see also the diagram on Figure 4).

Lemma 4.5. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and a, b1, . . . , bn ∈ M
be such that

(1) τ · !?a ∈ Traces0(S)
(2) τ · !?b1 · · · !?bn ∈ Traces0(S)
(3) src(a) ̸= src(bi) for all i ∈ {1, . . . , n}.
Then the following holds

• τ · !?a · !?b1 · · · !?bn ∈ Traces0(S),
• τ · !?b1 · · · !?bn · !?a ∈ Traces0(S), and
• τ · !?a · !?b1 · · · !?bn

S∼ τ · !?b1 · · · !?bn · !?a.

Proof. By induction on n. Let a, b1 . . . , bn+1 be fixed, let τn = τ · !?b1 · · · !?bn. By induction
hypothesis, τn · !?a ∈ Traces0(S), and by hypothesis τn · !?bn+1 ∈ Traces0(S). By Lemma 4.1,
τn · !?a · !?bn+1 ∈ Traces0(S), τn · !?bn+1 · !?a ∈ Traces0(S), and

τn · !?a · !?bn+1
S∼ τn · !?bn+1 · !?a.

On the other hand, by induction hypothesis, τn · !?a S∼ τ · !?a · !?b1 · · · !?bn, and by right

congruence of
S∼

τn · !?a · !?bn+1
S∼ τ · !?a · !?b1 · · · !?bn+1



33:18 A. Finkel and E. Lozes Vol. 19:4

!?a1 · · ·!?an !?b1 · · ·!?bm

!?b1 · · ·!?bm !?a1 · · ·!?an

!?c1 · · ·!?cn+m

Figure 5: Diagram of Lemma 4.6

By transitivity of
S∼, we can relate the two right members of the above identities, i.e.

τn · !?bn+1 · !?a
S∼ τ · !?a · !?b1 · · · !?bn+1

which shows the claim.

The next lemma expresses the following, rather technical property: considering two
sequences of synchronizations that are orthogonal (with different senders), it is possible to
combine them in a single synchronous trace by shuffling the synchronization in any order.
Diagramatically, it expresses that all paths that result from a shuffle inside the diamond
lead to the same configuration (see Figure 5).

Lemma 4.6. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and a1, . . . , an, b1, . . . , bm ∈
M be such that

(1) τ · !?a1 · · · !?an ∈ Traces0(S)
(2) τ · !?b1 · · · !?bm ∈ Traces0(S)
(3) src(ai) ̸= src(bj) for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
Then for all shuffle c1 . . . cm+n of a1 · · · an with b1 · · · bm,

• τ · !?c1 · · · !?cn+m ∈ Traces0(S), and
• τ · !?a1 · · · !?an · !?b1 · · · !?bm

S∼ τ · !?c1 · · · !?cm.

Proof. By induction on n+m. Let a1, . . . , an, b1 . . . , bm be fixed, and let c1 · · · cn+m be a
shuffle of a1 · · · an with b1 · · · bm.

• Assume that c1 = a1. Let τ
′ = τ · !?a1. By Lemma 4.5, τ ′ · !?b1 · · · !?bm ∈ Traces0(S), and

by hypothesis τ ′ · !?a2 · · · !?an ∈ Traces0(S), so we can use the induction hypothesis with
(a′1, . . . , a

′
n−1) = (a2, . . . , an). We get τ ′ · !?c2 · · · !?cn ∈ Traces0(S), and

τ ′ · !?c2 · · · !?cn
S∼ τ ′ · !?a2 · · · !?an · !?b1 · · · !?bm

which shows the claim.
• Assume that c1 = b1. Then by the same arguments,

τ · !?c1 · · · !?cn
S∼ τ · !?b1 · · · !?bm · !?a1 · · · !?an

Since this holds for all shuffle c1, . . . , cn+m, this also holds for c1 = a1, . . . , cn = an, cn+1 =
b1, · · · , cn+m = bm, which shows the claim.

The next lemma generalizes Lemma 4.4: a sequence of send following a synchronous
trace can be completed in a synchronous trace, regardless whether these sends are from the
same sender or not.

Lemma 4.7. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and m1, · · · ,mn ∈ M
be such that τ · !m1 · · · !mn ∈ Tracesn(S) Then τ · !?m1 · · · !?mn ∈ Traces0(S).



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:19

causal∼

!a1 · · ·!an !b1 · · ·!bm

Figure 6: Diagrammatic representation of Lemma 4.9

Proof. By induction on n. Let m1, . . . ,mn be fixed with n ≥ 1. There are two subsequences
a1, . . . , ar and b1, . . . , bm such that

• src(aℓ) = src(m1) for all ℓ ∈ {1, . . . , r},
• src(bℓ) ̸= src(m1) for all ℓ ∈ {1, . . . ,m},
• m1 · · ·mn is a shuffle of a1 · · · ar with b1 · · · bm
By hypothesis, τ · !a1 · · · !ar ∈ Traces(S) and τ · !b1 · · · !bm ∈ Traces(S). By Lemma 4.4,
τ · !?a1 · · · !?ar ∈ Traces0(S), and by induction hypothesis τ · !?b1 · · · !?bm ∈ Traces0(S), and
finally by Lemma 4.6 τ · !?m1 · · · !?mn ∈ Traces0(S).

The next lemma, the last one before the main lemma we aim at, is a purely combinatorial
property that does not have anything to do with synchronizability. It says that if a trace is a
shuffle of two synchronous traces, and if it projected on a given machine, then this projection
looks like the projection of a synchronous trace that is a shuffle of the original messages.

Lemma 4.8. Let a1, . . . , an, b1, · · · , bm ∈ M , and let τ be a shuffle of !?a1 · · ·!?an with
!?b1 · · · !?bm. Then for all i ∈ {1, . . . , p} there is a shuffle c1 · · · cn+m of a1 · · · an with
b1 · · · bm such that onPeeri(τ) = onPeeri(!?c1 · · · !?cn+m).

Proof. Let us fix τ = λ1 · · ·λ2(n+m) a shuffle !?a1 · · ·!?an with !?b1 · · · !?bm. Consider the
trace τ ′ = τ ′1 · · · τ ′2(n+m) where, for all k ∈ {1, . . . , 2(n+m)}, τ ′k is defined as follows:

• if there are m, j such that λk =!mi→j or λk =?mj→i, then τ ′k =!?m
• otherwise, if λk =!mk, then τi =!?mk, else λi =?mk and τ ′k = ϵ

Then by construction τ ′ is of the form !?c1 · · ·!?cn+m with c1, . . . , cn+m a shuffle of a1, . . . , an
with b1, . . . , bm. Moreover, onPeeri(τ

′) = onPeeri(τ), which ends the proof.

We are now ready to generalise Lemma 4.1 to an arbitrary long sequence of send actions,
which is the main property we wanted to establish with this long serie of lemmas.

Lemma 4.9 (Strong commutativity). Let S be a 1-synchronizable system. Let a1, . . . , an, b1, . . . bm ∈
M and τ ∈ Traces0(S) be such that

(1) τ · !a1 · · · !an ∈ Tracesn(S),
(2) τ · !b1 · · · !bm ∈ Tracesm(S), and
(3) src(ai) ̸= src(bj) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
Then for any two different shuffles υ1, υ2 of !?a1 · !?a2 · · · !?an with !?b1 · !?b2 · · · !?bm, it holds

that τ · υ1 ∈ Traces(S) , τ · υ2 ∈ Traces(S) and τ · υ1
S∼ τ · υ2.

Proof. Let τ ∈ Traces0(S) and a1, . . . , an, b1, . . . , bm, be fixed. Let υ be a shuffle of
!?a1 · · · !?an with !?b1 · · · !?bm. We want to show that τ · υ ∈ Traces(S). Clearly, τ · υ ∈



33:20 A. Finkel and E. Lozes Vol. 19:4

Traces(S) is a FIFO trace. Therefore, it is enough to find for all i ∈ {1, . . . , p} a trace τi
such that

τi ∈ Traces(S) and onPeeri(τ · υ) = onPeeri(τi). (4.1)

Let i ∈ {1, . . . , p} be fixed, and let us construct τi that validates (4.1). By hypothesis

τ · !a1 · · · !an ∈ Traces(S) and τ · !b1 · · · !bn ∈ Traces(S)

therefore, by Lemma 4.7,

τ · !?a1 · · · !?an ∈ Traces0(S) and τ · !?b1 · · · !?bn ∈ Traces0(S). (4.2)

On the other hand, by Lemma 4.8, there is a shuffle c1 . . . cn+m of a1 · · · an with b1 · · · bm
such that

onPeeri(υ) = onPeeri(!?c1 · · · !?cn+m) (4.3)

Let τi = τ · !?c1 · · · !?cn+m. By Lemma 4.6 and (4.2), τi ∈ Traces0(S), and by (4.3), the
second part of (4.1) holds.

4.2. Trace normalization. In this section and the next one, it will be necessary to assume
that the communication topology is an oriented ring.

Definition 4.10 (Normalized trace). A M -trace τ is normalized if there is a synchronous
M -trace τ0, n ≥ 0, and messages a1, . . . , an such that τ = τ0 · !a1 · · · !an.

Lemma 4.11 (Trace Normalization). Assume M is such that the com-
munication topology GM is an oriented ring. Let S = ⟨P1, . . . ,Pp⟩ be a
1-synchronizable M -system. For all τ ∈ Traces(S), there is a normalized

trace norm(τ) ∈ Traces(S) such that τ
S∼ norm(τ).

τ

!m1 · · · !mk

τ0

Proof. By induction on τ . Let τ = τ ′ · λ, be fixed. Let us assume by induction hypothesis

that there is a normalized trace norm(τ ′) ∈ Traces(S) such that τ ′
S∼ norm(τ ′). Let us

reason by case analysis on the last action λ of τ . The easy case is when λ is a send action:

then, norm(τ ′) · λ is a normalized trace, and norm(τ ′) · λ S∼ τ ′ · λ by right congruence of
S∼. The difficult case is when λ is ?a for some a ∈ M . Let i = src(a), j = dst(a), i.e.

i+ 1 = j mod p. By the definitions of a normal trace and
causal∼ , there are τ ′0 ∈ Traces0(S),

a1, . . . , an, b1, . . . , bm ∈ M such that

norm(τ ′)
causal∼ τ ′0 · !a1 · · · !an · !b1 · · · !bm

with src(ak) = i for all k ∈ {1, . . . , n} and src(bk) ̸= i for all k ∈ {1, . . . ,m}. Since GM is an
oriented ring, dst(a1) = j, therefore a1 = a (because by hypothesis j may receive a in the
configuration that norm(τ ′) leads to). Let norm(τ) = τ ′0 · !a · ?a · !b1 · · ·!bm · !a2 · · · !an and let

us show that norm(τ) ∈ Traces(S) and τ
S∼ norm(τ).

Since norm(τ ′) ∈ Traces(S), we have in particular that τ ′0 · !a ∈ Traces1(S) and τ ′0 ·
!b1 · · ·!bn ∈ Traces(S). Consider the two traces

υ1 = τ ′0 · !a · ?a · !b1 · · ·!bn · ?b1 · · ·?bn
υ2 = τ ′0 · !a · !b1 · · ·!bn · ?a · ?b1 · · ·?bn.



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:21

By Lemma 4.9, υ1, υ2 ∈ Traces(S) and both lead to the same configuration, and in particular
to the same control state q for peer j. The actions ?b1, ?b2, . . .?bn are not executed by peer
j (because src(m) ̸= i implies dst(m) ̸= j on an oriented ring), so the two traces

υ′1 = τ ′0 · !a · ?a · !b1 · · ·!bn
υ′2 = τ ′0 · !a · !b1 · · ·!bn · ?a

lead to two configurations γ′1, γ
′
2 with the same control state q for peer j as in the configuration

reached after υ1 or υ2. On the other hand, for all k ≠ j, onPeerk(υ
′
1) = onPeerk(υ

′
2), therefore

υ′1
S∼ υ′2. Since τ

′
0 ·!a·!a2 · · ·!an ∈ Tracesn(S), and onPeeri(τ

′
0 ·!a) = onPeeri(υ

′
1) = onPeeri(υ

′
2),

the two traces
υ′′1 = τ ′0 · !a · ?a · !b1 · · ·!bn · !a2 · · ·!an
υ′′2 = τ ′0 · !a · !b1 · · ·!bn · ?a · !a2 · · ·!an

belong to Traces(S) and υ′′1
S∼ υ′′2 . Consider first υ′′1 : this is norm(τ) as defined above,

therefore norm(τ) ∈ Traces(S), and norm(τ)
S∼ υ′′2 . Consider now υ′′2 . By definition, υ′′2

causal∼
norm(τ ′) · ?a. By hypothesis, norm(τ ′)

S∼ τ ′, therefore norm(τ ′) · ?a causal∼ τ . To sum up,

norm(τ)
S∼ υ′′2

causal∼ norm(τ ′) · ?a S∼ τ , therefore norm(τ)
S∼ τ .

Note how we used the hypothesis that the communication topology is an oriented ring
in the proof of Lemma 4.11. As a hint that this trace normalization does not hold if a peer
can send to two different peers, consider the following example:

Example 4.12. Let P1 =!a · !b, P2 =?a, P3 =?b, in other words, P1 sends a message to both
P2 and P3, and they can receive this message. The system is obviously 1-synchronizable.

But the only trace
S∼-equivalent to τ =!a · !b · ?b is τ itself, which is not a normalized trace.

4.3. Reachability set. As a consequence of Lemma 4.11, 1-synchronizability implies several
interesting properties on the reachability set.

Definition 4.13 (Channel-recognizable reachability set [Pac87, CF05]). Let S = ⟨P1, . . . ,Pp⟩
with Pi = ⟨Qi,∆i, q0,i⟩. The (coding of the) reachability set of S is the language Reach(S) over
the alphabet (M∪

⋃p
i=1Qi)

∗ defined as {q1 · · · qp ·w1 · · ·wp | γ0
τ−→ (q1, . . . , qp, w1, . . . , wp), τ ∈

Traces(S)}. Reach(S) is channel recognizable (or QDD representable [BG99]) if it is a recog-
nizable (and rational) language.

Theorem 4.14. Let M be a message set such that GM is an oriented ring, and let S be a
M -system that is 1-synchronizable. Then

(1) the reachability set of S is channel recognizable,

(2) for all τ ∈ Traces(S), for all γ0
τ−→ γ, there is a stable configuration γ′, n ≥ 0 and

m1, . . .mn ∈ M such that γ
?m1···?mn−−−−−−→ γ′.

In particular, S does not have unspecified receptions.

Proof.

(1) Let S be the set of stable configurations γ such that γ0
τ−→ γ for some τ ∈ Traces0(S);

S is finite and effective. By Lemma 4.11, Reach(S) =
⋃
{Reach!(γ) | γ ∈ S}, where

Reach!(γ) = {q1 · · · qp · w1 · · ·wp | γ !a1···!an−−−−−→ (q1, . . . , qp, w1, . . . , wp), n ≥ 0, a1, . . . an ∈
M} is an effective rational language.



33:22 A. Finkel and E. Lozes Vol. 19:4

(2) Assume γ0
τ−→ γ. By Lemma 4.11, γ0

τ0·!m1···!mr−−−−−−−→ γ for some τ0 ∈ Traces0(S). Then

τ0 · !m1 · · · !mr
causal∼ τ0 · τ1 where τ1 :=!a1 · · · !an · b1 · · · bm for some a1, . . . , an, b1, bm

such that src(ai) ̸= src(bj) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. By Lemma 4.9,

τ0 · τ1 · τ1 ∈ Traces(S) (where τ1 =?a1 · · · ?an ·?b1 · · · ?bm), and therefore γ0
τ0·τ1−−−→ γ

τ1−→ γ′

for some stable configuration γ′.

4.4. 1-synchronizability implies synchronizability.

Theorem 4.15. Let M be a message set such that GM is an oriented ring. For any
M -system S, S is 1- synchronizable if and only if it is synchronizable.

Proof. We only need to show that 1-synchronizability implies synchronizability. Let us
assume that S is 1-synchronizable. Let synch(τ) denote the unique synchronous M -trace
such that send(synch(τ)) = send(τ). We prove by induction on τ the following property
(which implies in particular that S is synchronizable):

for all τ ∈ Traces(S), there are m1, . . . ,mk ∈ M such that

(C1) synch(τ) ∈ Traces0(S)
(C2) τ · ?m1 · · ·?mk ∈ Traces(S), and

(C3) τ · ?m1 · · ·?mk
S∼ synch(τ).

Let τ = τ ′ · λ be fixed and assume that there are m′1, . . . ,m
′
k ∈ M

such that τ ′ · ?m′1 · · ·?m′k ∈ Traces(S), synch(τ ′) ∈ Traces0(S), and
τ ′ · ?m′1 · · · ?m′k

S∼ synch(τ ′). Let us show that (C1), (C2), and (C3)
hold for τ . We reason by case analysis on the last action λ of τ .

τ

?m1 · · · ?mk

synch(τ)

• Assume λ =?a. Then synch(τ) = synch(τ ′) ∈ Traces0(S), which proves (C1). Let
i = dst(a). Since peer i only receives on one channel, there are m1, . . . ,mk−1 such that

τ ′ · ?m′1 · ?m′k
causal∼ τ ′ · ?a · ?m1 · ?mk−1.

Since τ ′ · ?m′1 · ?m′k
S∼ synch(τ) by induction hypothesis, (C2) and (C3) hold.

• Assume λ =!a. By Lemma 4.11, there is norm(τ ′) = τ0 · !m′′1 · · ·!m′′k with τ0 ∈ Traces0(S)
such that τ ′

S∼ norm(τ ′). Since τ ′ · ?m′1 · · · ?m′k leads to a stable configuration, m′′1, . . . ,m
′′
k

is a permutation of m′1, . . . ,m
′
k that do not swap messages of a same channel. Since GM

is an oriented ring, norm(τ ′)
causal∼ τ0 · !m′1 · · · !m′k. Since τ ′ · !a ∈ Traces(S), it holds that

τ0 · !m1 · · ·!mk · !a ∈ Traces(S), which implies by Lemma 4.9 that the two traces

υ1 = τ0 · !m′1 · · ·!m′k · · ·?m1 · · ·?m′k · !a · ?a
υ2 = τ0 · !m′1 · · ·!m′k · !a · · ·?m′1 · · ·?m′k · ?a

belong to Traces(S) and verify υ1
S∼ υ2. Consider first υ1, and let υ′1 = τ0 · !m′1 · · ·!m′k ·

?m′1 · · ·?m′k. Since norm(τ ′)
causal∼ τ0 · !m′1 · · ·!m′k

S∼ τ ′ and τ ′ · ?m1 · · ·?mk
S∼ synch(τ ′), it

holds that υ′1
S∼ synch(τ ′). Therefore, synch(τ ′) · !a · ?a = synch(τ) belongs to Traces(S),

which shows (C1), and synch(τ)
S∼ υ1. Consider now υ2, and let υ′2 = τ0 ·!m′1 · · ·!m′k ·!a

causal∼
norm(τ ′) · !a. Then υ′2

S∼ τ ′ · !a = τ , therefore τ · ?m′1 · · ·?m′k · ?a ∈ Traces(S), which shows

(C2), and τ · ?m′1 · · ·?m′k · ?a
S∼ υ2. Since υ2

S∼ υ1
S∼ synch(τ), this shows (C3).



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:23

Theorem 4.16. Let M be a message set such that GM is an oriented ring. The problem of
deciding whether a given M -system is synchronizable is decidable.

Since a system with two machines is a particular case of a system that is an oriented
ring, we deduce from the above result that synchronizability is decidable in that particular
case.

Theorem 4.17. Synchronizability is decidable for systems of 2-CFSMs.

5. Extensions and Related Works

5.1. Synchronizability for other communication models. We considered the notions of
synchronizability and language synchronizability introduced by Basu and Bultan [BB16] and
we showed that both are not decidable for systems with peer-to-peer FIFO communications,
called (1-1) type systems in [BB16]. In the same work, Basu and Bultan considered the
question of the decidability of language synchronizability for other communication models.
All the results we presented so far do not have any immediate consequences on their claims
for these communication models. Therefore, we briefly discuss now what we can say about
the decidability of language synchronizability for the other communication models that have
been considered.

5.1.1. Bags. In [BB16], language synchronizability is studied for systems where peers com-
municate through bags instead of queues, thus allowing to reorder messages. Language
synchronizability is decidable for bag communications: Tracesbag(S) is the trace language

of a Petri net, T0(S) = {τ ∈ Act∗M | send(τ) ∈ J bag
0 (S)} is an effective regular language, S

is language synchronizable iff Tracesbag(S) ⊆ T0(S), and whether the trace language of a
Petri is included in a given regular language reduces to the coverability problem. Lossy
communications where not considered in [BB16], but the same kind of argument would also
hold for lossy communications. However, our Example 2.2 is a counter-example for Lemma 3
in [BB16], i.e. the notion of language 1-synchronizability for bag communications defined
in [BB16] does not imply language synchronizability. The question whether (language)
synchronizability can be decided more efficiently than by reduction to the coverability
problem for Petri nets is open.

5.1.2. Mailboxes. The other communication models considered in [BB16] keep the FIFO
queue model, but differ in the way how queues are distributed among peers. The ∗-1 (mailbox)
model assumes a queue per receiver. This model is the first model that was considered for
(language) synchronizability [BB11, BBO12b]. Our Example 2.2 is not easy to adapt for
this communication model. We therefore design a completely different counter-example.

Example 5.1. Consider the system of communicating machines depicted in Fig. 7. Assume
that the machines communicate via mailboxes, like in [BB11, BBO12b], i.e. all messages
that are sent to peer i wait in a same FIFO queue Qi, and let J ∗−1k (S) denote the k-bounded
send traces of S within this model of communications. Then J ∗−10 (S) = J ∗−11 (S) ̸=
J ∗−12 (S), as depicted in Figure 7. Therefore S is language 1-synchronizable but not language
synchronizable, which contradicts Theorem 1 in [BB11], Theorem 2 in [BBO12a], and



33:24 A. Finkel and E. Lozes Vol. 19:4

P1
!a1→2 !a1→2 !b1→3

P2
?a1→2

?a1→2

!c2→3

!c2→3

?a1→2

?d3→2
!c2→3

?a1→2 ?a1→2 ?d3→2 !e2→1

P3

?c2→3

?b1→3

?b1→3

?c2→3

!d3→2

J ∗−1
0 (S) = ↓ { aabcd,

aacb,
acab,
caab}

= J ∗−1
1 (S)

J ∗−1
2 (S) = J ∗−1

0 (S) ∪ {aabcde}

Figure 7: Language 1-synchronizability does not imply language synchronizability for 1-∗
(mailbox) communications à la [BB11, BBO12b].

Theorem 2 in [BB16]. It can be noticed that it does not contradict Theorem 1 in [BBO12b],
but it contradicts the Lemma 1 of the same paper, which is used to prove Theorem 1.

5.2. Analysis of the original mistake. We analyse the original mistake looking at the
proof of Theorem 1 in [BB11]. The proof attempt is by absurd: the authors assume a
sequence of send actions m1 . . .mn that exists in I(S) but not in I1(S). There exists a prefix
m1 . . .ml in I1(S) such that m1 . . .ml+1 ̸∈ I1(S). So there are two traces τ ∈ Traces(S)
and τ ′ ∈ Traces1(S) with send(τ) = m1 . . .ml+1 and send(τ ′) = m1 . . .ml. The authors
claim that the only reason why τ ′ cannot be extended (in Traces1(S)) to a trace that ends
with !ml+1 is because the buffer where ml+1 should go is full. But they miss another
explanation: it could simply be that the configuration after τ ′ has control states from which
it is not possible to take a transition labeled with a !ml+1, even after a few receptions. This
configuration has a priori nothing in common with the configuration reached in τ right
before !ml+1.

5.3. Realizability of choreographies. Let us recall that a choreography C is a finite
automaton describing the exchange of messages between processes. A transition (q,mi→j , q′)
in C is interpreted as follows: process Pi, in state q, sends message m to process Pj and
moves to state q′; and in the same way, process Pj , in state q, receives message m from
process Pi and moves into state q′. The communication has to be specified and can be done
by rendez-vous, bags, fifo channels ; the topology of communications could be peer-to-peer or
with mailboxes. From a choreography C, one may construct the system SC of communicating
processes Pi such that each process Pi is the (natural) projection of C ; then C coincides with
the synchronous composition of the peer-to-peer system of Pi (Proposition 4 in [SAAB20]).
But choreography-defined peer-to-peer systems form a strict subclass of peer-to-peer systems.

Since the word realizability is used with different meanings, for example in [BBO12a]
and in [SAAB20], we distinguish here two notions of realizability. A choreography C is
said mailbox-realizable (resp. peer-to-peer-realizable) if the system SC with respect to the
mailbox semantics (resp. with respect to the peer-to-peer semantics) is synchronizable.

Basu, Bultan and Ouederni considered the question of the decidability of the mailbox-
realizability of choreographies [BBO12a]. Assuming (from a previous paper from Basu and
Bultan [BB11]) that I0(S) = I1(S) implies I0(S) = I(S), they established the decidability of
the mailbox-realizability of choreographies. Our counter-example shows that this decidability
proof is not correct hence the decidability of the mailbox-realizability is, to the best of



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:25

our knowledge, still an open problem. They did not studied the peer-to-peer-realizability
problem.

Very recenly, Schewe et al [SAAB20] considered the peer-to-per-realizability problem and
proposed a proof of decidability noticing that all our counter-examples are not choreography-
defined peer-to-peer systems. They did not studied the mailbox-realizability problem.

5.4. Branching synchronizability and stability. Branching synchronizability is defined
in [OSB13] and Theorem 1 says that a system S of processes communicating through fifo
channels and mailboxes is branching synchronizable iff its associated synchronous system
Srdv is branching equivalent (i.e. bisimilar) to S in which all channels are bounded by 1.
It is immediate to deduce from Theorem 1 that branching synchronizability is decidable
but this is false. The proof of Theorem 1 is not given in [OSB13] and it is said that it is
on the web page of the first author, Ouederni; we did not found the complete paper on her
web pages. Stability [ASY16] seems to be another name for branching synchronizability.

More precisely, let LTS!k(S) denote the labeled transition system restricted to k-bounded
configurations, where receive actions are considered as internal actions (τ transitions in CCS

dialect). A system S is k-stable if LTS!(S) branch∼ LTS!k(S), where
branch∼ denotes the branching

bisimulation. In particular, a system that is 0-stable is synchronizable. Theorem 1 in [ASY16]

claims that the following implication would hold for any k ≥ 1: if LTS!k(S)
branch∼ LTS!k+1(S),

then LTS!k+1(S)
branch∼ LTS!k+2(S). Our example 2.2 is a counter-example to this implication

for k = 0, and it could be generalized to a counter-example for other values of k by changing
the number of consecutive a messages that are sent by the first peer (and, symmetrically,
received by the second peer). Therefore the claim of Theorem 1 in [ASY16] is not correct.

In [AS18], the authors consider the LTS!?k (S) (note the “?”) associated with a given
system: this LTS is the “standard” one that keeps the receive actions as being “observable”.
A new notion, also called stability is defined accordingly: a system (strongly) k-stable if

LTS!?(S) branch∼ LTS!?k (S), and (strongly) stable if it is strongly k-stable for some k. It is
not difficult to observe that a system is strongly k-stable if and only if all its traces are
k-bounded: indeed, if all traces are k-bounded, LTS!?(S) = LTS!?k (S), and if not, there is

a trace with k + 1 unmatched send actions in LTS!?(S), therefore LTS!?(S) is not trace

equivalent to LTS!?k (S). All results of [AS18] are therefore trivially correct.

5.5. Existentially bounded systems. Existentially bounded systems have been introduced
by Genest, Kuske and Muscholl [GKM06]. A system S is existentially k-bounded, k ≥ 1,

if for all trace τ ∈ Traces(S), there is a trace τ ′ ∈ Tracesk(S) such that τ
causal∼ τ ′. Unlike

synchronizability, existential boundedness takes into account the receive actions, but bases
on a more relaxed notion of trace (also called message sequence chart, MSC for short).

Existential boundedness and synchronizability are incomparable. For instance, a system
with two peers P1 and P2, defined (in CCS notation) as P1 =!a and P2 = 0 (idle), is
existentially 1-bounded, but not synchronizable. Conversely, there are synchronous systems
that are not existentially 1-bounded: consider P =!a.!a||?b.?b (i.e. all shuffles of the two), and
Q =?a.?a||!b!b, and assume that P,Q are represented as (single-threaded) communicating
automata. Then this system is synchronous, but the trace !a!a!b!b?a?a?b?b is not causally
equivalent to a 1-bounded trace.



33:26 A. Finkel and E. Lozes Vol. 19:4

Although Genest et al did not explicitly defined it, one could consider existentially
0-bounded systems. This is a quite restricted notion, but it would imply synchronizability
and would generalize half-duplex systems.

Genest et al showed that for any given k ≥ 1, it is decidable whether a given system S
of communicating machines with peer-to-peer communications is existentially k-bounded
(Proposition 5.5, [GKM10]). Note that what we call a system is what Genest et al called a
deadlock-free system, since we do not have any notion of accepting states.

5.6. Communication layers. Finally, following the work of Lipton on reduction [Lip75],
there has been recently a lot of interest on the verification of FIFO systems on the idea
of grouping communications in closed rounds [CCM09, KQH18], in particular to abstract
a round of communications as a single operation. In [BEJQ18], the authors define the
notion of k-synchronous systems: a system S of machines communicating with mailboxes is
k-synchronous if for all τ ∈ Tracesk(S), there are τ1, . . . , τn such that

• τ
causal∼ τ1 · · · τn,

• for all i = 1, . . . , n τi contains at mots k send actions, and
• every message received in τi has been sent in τi

The classes of k-synchronous systems, of existentially k bounded systems, and the one of
synchronizable systems are incomparable, although they share very similar ideas.

6. Conclusion and Perspectives

We established the undecidability of synchronizability for communicating finite state machines
communicating with peer-to-peer channels. We also proposed a counter-example for an
argument of the proofs that synchronizability is decidable for mailbox communications.
Finally, we showed the decidability of synchronizability for systems organized on an oriented
ring.

Although we identified some problems and fixed them, our work leaves open a bunch of
questions. The first one is the decidability of synchronizability for the mailboxes semantics
- we only found a counter example to the proof of Basu and Bultan, but we did not show
that it is undecidable. Another question is the decidability of the LTL/CTL model checking
for synchronizable systems, either on traces, or on sequences of configurations. We also left
open the exact complexity of synchronizability for oriented rings. We believe these questions
are rather technical and sometimes very challenging.

Acknowledgements. We thank the anonymous reviewers of the Conference ICALP 2017
and of the Journal LMCS who produced detailed and usefull reviews that helped and
motivated us to produce a better version of this paper. In particular, we added many
explanations of the technical proofs, we gave more understandable details and we created
Section 5 devoted to explain mistakes in previous decidability proofs and results. We also
thank Shrisha Rao for his carrefull reading of the paper.



Vol. 19:4 SYNCHRONIZABILITY OF CFSM IS NOT DECIDABLE 33:27

References

[AS18] Lakhdar Akroun and Gwen Salaün. Automated verification of automata communicating via FIFO
and bag buffers. Formal Methods in System Design, 52(3):260–276, 2018.

[ASY16] Lakhdar Akroun, Gwen Salaün, and Lina Ye. Automated analysis of asynchronously communi-
cating systems. In SPIN’16, pages 1–18, 2016.

[BB11] Samik Basu and Tevfik Bultan. Choreography conformance via synchronizability. In Procs. of
WWW 2011, pages 795–804, 2011. doi:10.1145/1963405.1963516.

[BB16] Samik Basu and Tevfik Bultan. On deciding synchronizability for asynchronously communicating
systems. Theor. Comput. Sci., 656:60–75, 2016. doi:10.1016/j.tcs.2016.09.023.

[BBO12a] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography realizability. In Procs.
of POPL’12, pages 191–202, 2012. doi:10.1145/2103656.2103680.

[BBO12b] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for verification of
asynchronously communicating systems. In Procs. of VMCAI 2012, 2012. doi:10.1007/

978-3-642-27940-9_5.
[BEJQ18] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the completeness of

verifying message passing programs under bounded asynchrony. In CAV 2018, pages 372–391,
2018.

[BG99] Bernard Boigelot and Patrice Godefroid. Symbolic verification of communication protocols
with infinite state spaces using qdds. Formal Methods in System Design, 14(3):237–255, 1999.
doi:10.1023/A:1008719024240.

[BZ81] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Technical Report
1053, Tech. Rep. RZ, IBM Zurich Research Lab., Ruschlikon, Switzerland, January 1981.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–
342, April 1983. doi:10.1145/322374.322380.

[CCM09] Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. A reduction theorem for the
verification of round-based distributed algorithms. In Olivier Bournez and Igor Potapov, editors,
Reachability Problems, 3rd International Workshop, RP 2009, Palaiseau, France, September 23-25,
2009. Proceedings, volume 5797 of Lecture Notes in Computer Science, pages 93–106. Springer,
2009. doi:10.1007/978-3-642-04420-5\_10.

[CF05] Gerald Cécé and Alain Finkel. Verification of programs with half-duplex communication. Inf.
Comput., 202(2):166–190, 2005. doi:10.1016/j.ic.2005.05.006.

[CHS14] Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre. Decidable topologies for communi-
cating automata with FIFO and bag channels. In Procs. of CONCUR 2014, pages 281–296, 2014.
doi:10.1007/978-3-662-44584-6_20.

[CS08] Pierre Chambart and Philippe Schnoebelen. Mixing lossy and perfect fifo channels. In Procs. of
CONCUR 2008, pages 340–355, 2008. doi:10.1007/978-3-540-85361-9_28.

[DY12] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating au-
tomata. In Procs. of ESOP 2012, pages 194–213, 2012. doi:10.1007/978-3-642-28869-2_10.

[FBS05] Xiang Fu, Tevfik Bultan, and Jianwen Su. Synchronizability of conversations among web services.
IEEE Trans. Software Eng., 31(12):1042–1055, 2005. doi:10.1109/TSE.2005.141.

[GKM06] Blaise Genest, Dietrich Kuske, and Anca Muscholl. A kleene theorem and model checking
algorithms for existentially bounded communicating automata. Inf. Comput., 204(6):920–956,
2006. doi:10.1016/j.ic.2006.01.005.

[GKM10] Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with bounded
channels. Fundamenta Informaticae, 2010.

[HGS12] Alexander Heußner, Tristan Le Gall, and Grégoire Sutre. Mcscm: A general framework for
the verification of communicating machines. In Procs. of TACAS 2012, pages 478–484, 2012.
doi:10.1007/978-3-642-28756-5_34.

[HLMS12] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability analysis
of communicating pushdown systems. Logical Methods in Computer Science, 8(3), 2012. doi:
10.2168/LMCS-8(3:23)2012.

[KQH18] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the asynchronous. In
Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory,
CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 21:1–21:17.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.21.

https://doi.org/10.1145/1963405.1963516
https://doi.org/10.1016/j.tcs.2016.09.023
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1007/978-3-642-27940-9_5
https://doi.org/10.1007/978-3-642-27940-9_5
https://doi.org/10.1023/A:1008719024240
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-642-04420-5_10
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1007/978-3-662-44584-6_20
https://doi.org/10.1007/978-3-540-85361-9_28
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1109/TSE.2005.141
https://doi.org/10.1016/j.ic.2006.01.005
https://doi.org/10.1007/978-3-642-28756-5_34
https://doi.org/10.2168/LMCS-8(3:23)2012
https://doi.org/10.2168/LMCS-8(3:23)2012
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21


33:28 A. Finkel and E. Lozes Vol. 19:4

[Lip75] Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Commun.
ACM, 18(12):717–721, 1975. doi:10.1145/361227.361234.

[LMP08] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. Context-bounded analysis
of concurrent queue systems. In Procs. of TACAS 2008, pages 299–314, 2008. doi:10.1007/
978-3-540-78800-3_21.

[LP98] Harry R. Lewis and Christos H. Papadimitriou. Elements of the theory of computation, 2nd
Edition. Prentice Hall, 1998.

[MM98] Rajit Manohar and Alain J. Martin. Slack elasticity in concurrent computing. Mathematics of
Program Construction, pages 272–285, 1998. doi:10.1007/BFb0054295.

[OSB13] Meriem Ouederni, Gwen Salaün, and Tevfik Bultan. Compatibility checking for asynchronously
communicating software. In José Luiz Fiadeiro, Zhiming Liu, and Jinyun Xue, editors, Formal
Aspects of Component Software - 10th International Symposium, FACS 2013, Nanchang, China,
October 27-29, 2013, Revised Selected Papers, volume 8348 of Lecture Notes in Computer Science,
pages 310–328. Springer, 2013. doi:10.1007/978-3-319-07602-7\_19.

[Pac87] Jan Pachl. Protocol description and analysis based on a state transition model with channel
expressions. In Proc. of Protocol Specification, Testing, and Verification, VII, 1987.

[SAAB20] Klaus-Dieter Schewe, Yamine Aı̈t-Ameur, and Sarah Benyagoub. Realisability of choreographies.
In International Symposium on Foundations of Information and Knowledge Systems, pages
263–280. Springer, 2020.

[Sie05] Stephen F. Siegel. Efficient verification of halting properties for MPI programs with wildcard
receives. In Procs. of VMCAI 2005, pages 413–429, 2005. doi:10.1007/978-3-540-30579-8_27.

[VVGK10] Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby. Precise dynamic
analysis for slack elasticity: Adding buffering without adding bugs. In Rainer Keller, Edgar
Gabriel, Michael Resch, and Jack Dongarra, editors, Recent Advances in the Message Passing
Interface, pages 152–159, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-15646-5_16.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/BFb0054295
https://doi.org/10.1007/978-3-319-07602-7_19
https://doi.org/10.1007/978-3-540-30579-8_27
https://doi.org/10.1007/978-3-642-15646-5_16
https://doi.org/10.1007/978-3-642-15646-5_16

	1. Introduction
	Outline
	Related Work

	2. Preliminaries
	2.1. Messages and topologies
	2.2. Traces
	2.3. Peers, systems, configurations
	2.4. Synchronizability.

	3. Undecidability of Synchronizability
	3.1. An Undecidable Problem on FIFO automata
	3.2. A System that Simulates a FIFO Automaton
	3.3. A Synchronizable System
	3.4. Reducing the Message Reception Problem to Synchronizability

	4. The case of oriented rings
	4.1. Confluence properties
	4.2. Trace normalization
	4.3. Reachability set
	4.4. 1-synchronizability implies synchronizability

	5. Extensions and Related Works
	5.1. Synchronizability for other communication models
	5.2. Analysis of the original mistake
	5.3. Realizability of choreographies
	5.4. Branching synchronizability and stability
	5.5. Existentially bounded systems
	5.6. Communication layers

	6. Conclusion and Perspectives
	Acknowledgements

	References

