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Abstract. Limit computable functions can be characterized by Turing jumps on the
input side or limits on the output side. As a monad of this pair of adjoint operations we
obtain a problem that characterizes the low functions and dually to this another problem
that characterizes the functions that are computable relative to the halting problem.
Correspondingly, these two classes are the largest classes of functions that can be pre or
post composed to limit computable functions without leaving the class of limit computable
functions. We transfer these observations to the lattice of represented spaces where it leads
to a formal Galois connection. We also formulate a version of this result for computable
metric spaces. Limit computability and computability relative to the halting problem are
notions that coincide for points and sequences, but even restricted to continuous functions
the former class is strictly larger than the latter. On computable metric spaces we can
characterize the functions that are computable relative to the halting problem as those
functions that are limit computable with a modulus of continuity that is computable
relative to the halting problem. As a consequence of this result we obtain, for instance, that
Lipschitz continuous functions that are limit computable are automatically computable
relative to the halting problem. We also discuss 1–generic points as the canonical points
of continuity of limit computable functions, and we prove that restricted to these points
limit computable functions are computable relative to the halting problem. Finally, we
demonstrate how these results can be applied in computable analysis.

1. Introduction

Limit computable functions have been studied for a long time. In computability theory
limits appear, for instance, in the form of Shoenfield’s limit lemma [46]. In algorithmic
learning theory they have been introduced by Gold [22]. Later, limit computable functions
have been studied by Wagner [50, 51], who calls them Turing operators of the first kind (and
he attributes this class to Frĕıvald [18]). Wagner discusses composition and also normal
form theorems. In computable analysis limit computations were studied by Freund [19]
who introduced Turing machines that can revise their output as well as non-deterministic
Turing machines. Later, similar machines were systematically studied by Ziegler [56, 55].
Limit computable real numbers were analyzed by Freund and Staiger [20] and by Zheng
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and Weihrauch [53] and others. On the other hand, Ho [25, 26] studied functions in analysis
that are computable relative to the halting problem.

Many of these results are scattered in the literature, and it remains somewhat unclear
how all these results are related. Some clarity can be brought into the picture if one starts
with the notion of a limit computable function and develops it systematically. It turns out
that at the heart of such a development there is an adjoint situation that is related to the
fact that limit computations can either be described with limits on the output side or with
Turing jumps on the input side. Shoenfield’s limit lemma is the non-uniform correlate of this
observation. From this perspective functions computable relative to the halting problem and
low functions are natural notions that should be studied alongside with limit computable
functions, since they constitute the largest classes of functions that can be post or pre
composed with limit computable functions without leaving the class of limit computable
functions. We will develop these notions systematically in sections 2 and 3.1 Together with
these notions we also study 1–generic points, as these are the canonical points of continuity
of limit computable functions.

In section 4 we transfer these results to the setting of represented spaces and hence to
other data types. The crucial notion here is the notion of a jump of a representation that
was introduced by Ziegler [56, 55] and further generalized by de Brecht [15]. On the level
of represented spaces the adjoint situation between limits and Turing jumps can formally
be expressed as a Galois connection. We also study how the jump of a represented space
interacts with other constructions on represented spaces such as building products and
exponentials.

In section 5 we transfer our results to the setting of computable metric spaces. The
limit normal form for limit computable functions can easily be expressed using limits in
computable metric spaces and for the jump normal form one can use a general jump operation
on computable metric spaces. We also transfer a characterization of 1–generic points to the
level of computable metric spaces.

In section 6 we continue to study mostly computable metric spaces and specifically
the relation between limit computable functions and functions computable relative to the
halting problem. One characterization shows that functions that are computable relative to
the halting problem are exactly those continuous limit computable functions that admit a
global modulus of continuity that is computable relative to the halting problem. We also
provide several examples of functions of different type that show that not all continuous
limit computable functions are computable relative to the halting problem. However, we
can provide oracle classes that are sufficient to compute limit computable functions that are
continuous, uniformly continuous and Lipschitz continuous, respectively. In particular for
Lipschitz continuous functions limit computability and computability with respect to the
halting problem coincide.

We close this article with section 7 in which we demonstrate how some known results
can easily be derived using the techniques provided in this article. We also include some
simple new applications. The discussed examples also highlight connections between results
that are seemingly unrelated or scattered in other sources.

1We note that an unpublished draft of some of the material presented here was circulated since 2007 and
it has influenced some of the references, such as joint work by the author with de Brecht and Pauly [7]. The
material presented in section 3 and everything based on it has only been developed recently.
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2. Limit computability

In this section we are going to characterize limit computable functions in different ways.
We start with recalling the definition. Limit computable functions are defined on Turing
machines that have a two-way output tape, and these machines are allowed to revise their
output.

Definition 2.1 (Limit computable functions). A function F :⊆ NN → NN is called limit
computable, if there exists a Turing machine M that upon any input p ∈ dom(F ) computes
F (p) on its two-way output tape in the long run such that on any output position n ∈ N
after a finite number of steps the output is F (p)(n) and will not be changed anymore.

If the Turing machine does only change the entire output (over all n ∈ N) finitely many
times for each fixed input p, then F is called computable with finitely many mind changes.
This is a strengthening of the notion of limit computability.

It is clear that all computable maps are limit computable and limit computable maps are
obviously closed under restriction. The additional flexibility to revise the output tape gives
additional power to limit machines that ordinary Turing machines do not have. As examples
we mention some discontinuous functions that are not computable, but limit computable.
For the definition we use tupling functions. We define 〈n, k〉 := 1

2(n + k)(n + k + 1) + k,
〈p, q〉(2n) := p(n) and 〈p, q〉(2n+ 1) := q(n), 〈p0, p1, p2, ....〉〈n, k〉 := pn(k), and 〈n, p〉 := np
for all p, q, pi ∈ NN and n, k ∈ N. By n̂ = nnn... ∈ NN we denote the constant sequence with
value n ∈ N.

Example 2.2 (Limit computable maps). The following maps are limit computable but not
continuous and hence not computable:

(1) The equality test for zero

E : NN → NN, p 7→
{

1̂ if p = 0̂

0̂ otherwise

(2) The limit map

lim :⊆ NN → NN, 〈p0, p1, p2, ...〉 7→ lim
i→∞

pi.

(3) The Turing jump J : NN → NN by

J(p)(i) :=

{
1 if Turing machine i halts upon input p
0 otherwise

for all p ∈ NN and i ∈ N.

The function E is even computable with finitely many mind changes.

By lim∆ we denote the restriction of lim to convergent sequences with respect to the
discrete topology on NN. In some sense one can say that the limit map and J are not only
some limit computable maps, but prototypes of limit computable maps. Before we can prove
a formal version of this statement, we first discuss compositions of computable and limit
computable maps that turn out to be limit computable.

Proposition 2.3 (Composition). If F :⊆ NN → NN is limit computable and G :⊆ NN → NN

is computable, then F ◦G and G ◦ F are both limit computable.
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Proof. Let MF be a limit machine computing F and MG an ordinary Turing machine
computing G. Then a limit machine M computing F ◦G can just be obtained by composing
the two machines MF and MG in the straightforward way.

A limit machine M ′ for G ◦ F can also be constructed by composing the machines MF

and MG. However, the composition has to be done such that if MF changes the content of
some output cell n, then the computation of MG has to be restarted at time step n of its
program (which is sufficient to guarantee that MG has not yet seen the content of cell n).
Since the output of MF of any finite length eventually stabilizes and MG uses a one-way
output tape, it follows that M ′ produces a converging output in this way for any input
p ∈ dom(G ◦ F ).

It is easy to see that the first statement of the proposition can even be strengthened in
the following way.

Proposition 2.4 (Composition with finitely many mind changes). If F :⊆ NN → NN is
limit computable and G :⊆ NN → NN is computable with finitely many mind changes, then
F ◦G is limit computable.

For the composition G ◦ F of functions as in Proposition 2.4 the strategy of the
corresponding proof of Proposition 2.3 does not work in general. In fact, it is not too difficult
to construct a counterexample.

Example 2.5 (Composition). The equality test E is computable with finitely many mind
changes, and the limit map lim is limit computable, but E ◦ lim is not limit computable.

We leave the proof to the reader. Now we provide a very useful characterization of limit
computable functions. This result is also implicit in the work of Wagner [50].

Theorem 2.6 (Limit normal form). A function G :⊆ NN → NN is limit computable if and
only if there exists a computable function F :⊆ NN → NN, such that G = lim ◦ F .

Proof. By Example 2.2 lim is limit computable. It follows from Proposition 2.3 that if F is
computable, then lim ◦ F is limit computable.

Conversely, if G is limit computable, then we construct a one-way output Turing machine
MF that computes a function F :⊆ NN → NN. This machine MF internally simulates a
limit machine MG for G on input p. The machine MF successively produces an output
〈q0, q1, ...〉 in steps 〈i, j〉 = 0, 1, 2, .... In step 〈i, j〉 machine MF simulates MG for i time steps
beyond the point where MG has filled its j–th output position for the first time. Machine
MF writes the resulting content of the simulated output of MG in the j–th position into
its own output qi(j). If the simulated j–th position eventually stabilizes, then limi→∞ qi(j)
exists and coincides with the final value of the j–th position G(p)(j). Thus the machine MF

computes a function F :⊆ NN → NN with G = lim ◦ F . Here F is restricted to dom(G).

We note that the limit normal form theorem allows us to study limit computable
functions in terms of ordinary computable functions and without considering limit machines.
The particular output behavior of limit machines can be expressed directly using the limit
map. We also obtain the following characterization of limit computable functions as pointwise
limits of a sequence of computable functions.

Corollary 2.7 (Pointwise limit). A function G :⊆ NN → NN is limit computable if and only
if there is a computable sequence (Fn)n∈N of computable functions Fn :⊆ NN → NN with
dom(G) ⊆ dom(Fn) and such that limn→∞ Fn(p) = G(p) for all p ∈ dom(G).
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Theorem 2.6 together with Proposition 2.3 yield the following corollary.

Corollary 2.8. For any computable function F :⊆ NN → NN there exists a computable
function G :⊆ NN → NN such that lim ◦G = F ◦ lim.

Corollary 2.8 also holds with continuity instead of computability in both occurrences.
We note that the computable functions F do not constitute the largest class of functions
for which there is a computable G with lim ◦G = F ◦ lim. In Corollary 3.5 we extend this
result to functions that are computable relative to the halting problem. Maps that satisfy
the same property as the limit map in Corollary 2.8 have been called jump operators [7, 15]
or transparent [9].

Definition 2.9 (Transparency). A function T :⊆ NN → NN is called transparent if for every
computable F :⊆ NN → NN there exists a computable function G :⊆ NN → NN such that
T ◦G = F ◦ T .

It is easy to see that not all functions are transparent, but the class of transparent
functions is reasonably large.

Proposition 2.10 (Transparency). The class of transparent functions T :⊆ NN → NN

forms a monoid with respect to composition, i.e., the identity is transparent, and transparent
functions are closed under composition.

It is clear that limit computable maps do not necessarily map computable inputs to
computable outputs. However, they map computable inputs to limit computable outputs.

Definition 2.11 (Limit computable points). A point p ∈ NN is called limit computable, if
there exists a computable sequence (pi)i∈N in NN such that p = limi→∞ pi.

It follows directly from the limit normal form theorem (Theorem 2.6) and the fact that
computable maps map computable inputs to computable outputs that limit computable
maps map computable inputs to limit computable outputs.

Corollary 2.12. If F :⊆ NN → NN is limit computable and p ∈ dom(F ) is computable, then
F (p) is limit computable.

It also follows from the limit normal form theorem (Theorem 2.6) that a point p ∈ NN

is limit computable if and only if it is the value of a constant limit computable map
c : NN → NN.

We now study the Turing jump J, and we first prove that its inverse is computable.
Even though J is not continuous, it is injective and has a computable inverse.

Proposition 2.13 (Jump inversion). The Turing jump operator J is injective, and its partial
inverse J−1 :⊆ NN → NN is computable.

Proof. There exists a computable function r : N → N such that the Turing machine with
code r〈n, k〉 halts upon input p ∈ NN if and only if p(n) = k. The function F :⊆ NN → NN

defined by
F (q)(n) := min{k ∈ N : qr〈n, k〉 = 1}

for all q ∈ NN, n ∈ N and dom(F ) := {q ∈ NN : (∀n)(∃k) qr〈n, k〉 = 1} is computable. We
obtain

F ◦ J(p)(n) = min{k ∈ N : J(p)(r〈n, k〉) = 1} = min{k ∈ N : p(n) = k} = p(n)

for all p ∈ NN and n ∈ N, i.e., F ◦ J = id. This implies that J is injective and J−1 = F |range(J)

is computable.
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We also write p′ := J(p), and we call p′ the Turing jump of p, and we call 0′ := J(0̂) the
halting problem. We note that the Turing jump operator considered as a map on Turing
degrees is not injective.2 We mention that Proposition 2.13 also implies that any point can
be reduced to its Turing jump, i.e., p≤T p

′ (of course, this reduction is known to be strict,
which can be proved by an easy diagonalization argument).

It is perhaps surprising that there is a dual version of the limit normal form theorem
that characterizes limit computation by an input modification with the help of Turing jumps
instead of an output modification with limits. This shows that in some sense Turing jumps
and topological limits are adjoint to each other. An analogous result can be found in the
work of Wagner [50].

Theorem 2.14 (Jump normal form). A function F :⊆ NN → NN is limit computable, if
and only if there exists a computable function G :⊆ NN → NN such that F = G ◦ J.

Proof. By Example 2.2 the Turing jump operator J : NN → NN is limit computable. Hence for
any computable G :⊆ NN → NN the composition G◦J is limit computable by Proposition 2.3.

Let now MF be a limit Turing machine that computes F :⊆ NN → NN. We describe a
Turing machine MG that computes a function G :⊆ NN → NN with F (p) = G ◦ J(p) for all
p ∈ dom(F ). There exists a computable function r : N→ N such that the Turing machine
with code r〈n, t〉 halts upon input p if and only if MF on input p changes the output cell
n after more than t steps. Now MG on input q works as follows: it simulates the machine
MF on input p = J−1(q), where J−1 is the partial inverse of the Turing jump operator that
is computable by Proposition 2.13, and writes the output to some working tape. After
simulating MF for t steps at most the first k cells on this working tape have been used for
some k ∈ N. In this situation MG checks qr〈n, t〉 for all n = 0, ..., k and when the result is 0
for some initial segment n = 0, ..., j, then MG copies the content of those cells n = 0, ..., j
to the output tape that have not yet been written to the output. This algorithm ensures
that only those output cells which have already stabilized are copied to the output. Thus,
MG operates with a one-way output tape and computes a function G :⊆ NN → NN with
F (p) = G ◦ J(p) for all p ∈ dom(F ). Since J is injective, one can restrict G such that one
obtains F = G ◦ J.

We obtain the following corollary, which is somehow dual to the statement of Corol-
lary 2.8.

Corollary 2.15. For any computable function F :⊆ NN → NN there exists a computable
function G :⊆ NN → NN such that J ◦ F = G ◦ J.

It is clear that J and lim cannot be swapped in Corollaries 2.8 and 2.15. In particular, J
is not transparent, since it has no computable values in its range. However, it is not too
difficult to see that J−1 is transparent.

It is a consequence of Corollary 2.15 that the Turing jump operator is monotone with
respect to Turing reducibility.

Corollary 2.16 (Monotonicity of Turing jumps). q≤T p =⇒ q′≤T p
′ for all p, q ∈ NN.

We also mention that the jump normal form theorem (Theorem 2.14) yields as a
non-uniform corollary a version of Shoenfield’s limit lemma [46].

2There are p 6≡T q such that p′≡T q′.
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Corollary 2.17 (Shoenfield’s limit lemma 1959). A point p ∈ NN is limit computable if and
only if p≤T 0′.

One can prove relativized forms of the jump normal form theorem (Theorem 2.14) and
the limit normal form theorem (Theorem 2.6). However, the exact relativization needs
some care. For every q ∈ NN we define the relativized jump operator Jq : NN → NN by
Jq(p) := J〈q, p〉. We say that F :⊆ NN → NN is limit computable relative to q ∈ NN if there
exists a limit computable G :⊆ NN → NN such that F (p) = G〈q, p〉 for all p ∈ dom(F ). Now
the following theorem can be proved along the lines of the above results.

Theorem 2.18 (Relativized limit computability). The following are equivalent for q ∈ NN:

(1) F is limit computable relative to q,
(2) F = lim ◦G for some G that is computable relative to q,
(3) F = G ◦ Jq for some G that is computable.

The symmetry between the two normal forms does not fully extend to the relativized
case since oracles act on the input side, and hence we need to use either functions that
are computable relative to q or the relativized jump Jq. Related to this observation the
equivalence expressed in the two normal form theorems is not fully uniform and, in fact, J−1

is not transparent in a topological sense (see [7, Proposition 9.13]).
It is rarely mentioned that 1–generic points as they are used in computability theory

[47] can be characterized as points of continuity of the Turing jump J. This was noticed
in [7, Lemma 9.3].

Definition 2.19 (1–generic). A point p ∈ NN is called 1–generic if and only if J is continuous
at p.

It is easy to see that 1–generic points cannot be computable. The following characteriza-
tion of 1–generic points is a consequence of Theorem 2.14. The 1–generic points are exactly
those at which every limit computable function is continuous.

Corollary 2.20 (1–generic points). A point p ∈ NN is 1–generic if and only if every limit
computable function F :⊆ NN → NN with p ∈ dom(F ) is continuous at p.

While the “only if” direction is a consequence of Theorem 2.14, one obtains the “if”
direction by applying the statement to F = J. We note that there are limit computable
functions (such as the limit map lim) that do not have any 1–generics in their domain,
simply because they are not continuous at any point.

It is easy to see that restricted to 1–generics the Turing jump operator is continuous
and computable relative to the halting problem.

Proposition 2.21 (Jump on 1–generics). The Turing jump operator J : NN → NN, p 7→ p′

restricted to the set of 1–generics is computable relative to the halting problem.

Proof. The sets

(1) A := {(w, i) ∈ N∗ × N : the i–th Turing machine halts on all extensions of w},
(2) B := {(w, i) ∈ N∗ × N : the i–th Turing machine halts on no extension of w}
are both computable relative to 0′. Given a 1–generic p ∈ NN it is clear that for each i ∈ N
there is a w v p such that (w, i) ∈ A or (w, i) ∈ B. Depending on the answer we know that
J(p)(i) = 1 or J(p)(i) = 0. Hence, J restricted to 1–generics is computable relative to the
halting problem.
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As a consequence of the jump normal form (Theorem 2.14) we obtain that every limit
computable function is computable relative to the halting problem, when restricted to the
1–generic inputs.

Corollary 2.22 (Limit computability on 1–generics). Restricted to 1–generics every limit
computable F :⊆ NN → NN is computable relative to the halting problem.

As a non-uniform corollary of Proposition 2.21 we obtain that all 1–generics are gen-
eralized low, a property that is made more precise in the next well-known corollary [28,
Lemma 2].

Corollary 2.23 (Jockusch 1977). p′≡T〈p, 0′〉 for all 1–generics p ∈ NN.

Here the reduction p′≤T〈p, 0′〉 follows directly from Proposition 2.21, and the inverse
reduction even holds for arbitrary p ∈ NN.

The points whose jump is below 0′ also have a special name, they are called low.

Definition 2.24 (Low points). A point p ∈ NN is called low, if its Turing jump p′ is limit
computable.

It is clear that all computable points are low, and all limit computable 1–generics are
low by Corollary 2.23. One can use this observation to show that the class of low points also
contains non-computable points. Using the low map L := J−1 ◦ lim we obtain the following
characterization of low points [7, Lemma 8.2].

Corollary 2.25 (Low points). A point p ∈ NN is low if and only if there is a computable
q ∈ NN such that L(q) = p.

It follows from Corollaries 2.16 and 2.17 that computable functions map low inputs to
low outputs. In [7] low functions were introduced that were further studied in [9, 11].

Definition 2.26 (Low functions). A function F :⊆ NN → NN is called low if there is a
computable G :⊆ NN → NN such that F = L ◦G.

This definition captures the idea that the result of F is computed as a low point. It is
clear that low functions map computable inputs to low outputs. We obtain the following
closure properties under composition.

Proposition 2.27 (Composition with low functions). Let F,G :⊆ NN → NN be functions.
If F and G are low then so is G ◦ F . If G is limit computable and F is low, then G ◦ F is
limit computable.

Proof. Both observations are based on the jump normal form theorem (Theorem 2.14) that
yields a computable R :⊆ NN → NN with lim = R ◦ J. By Corollary 2.8 we also have a
computable S :⊆ NN → NN with R◦ lim = lim ◦S. This implies L◦L = J−1 ◦ lim ◦J−1 ◦ lim =
J−1 ◦ R ◦ J ◦ J−1 ◦ lim = L ◦ S and lim ◦L = R ◦ J ◦ J−1 ◦ lim = R ◦ lim. The cases of the
composition of general low and limit computable functions can easily be derived from these
observations.

In fact, the low functions form the largest class of functions that can be composed
with limit computable functions from the left without leaving the class of limit computable
functions (see also [11, Proposition 14.16] for a related result).

Corollary 2.28 (Low functions). A function F :⊆ NN → NN is low if and only if G ◦ F is
limit computable for every limit computable G :⊆ NN → NN.
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The “only if” direction is a direct consequence of Proposition 2.27. The “if” direction
follows from the limit normal form theorem if one applies the assumption to G = J. As a
consequence of Proposition 2.4 we get the following corollary.

Corollary 2.29 (Finite mind changes are low). Every function F :⊆ NN → NN that is
computable with finitely many mind changes is low.

Hence, in contrast to low points p ∈ NN, we have a lot of natural examples of low
functions, such as the equality test E.

We close this section by mentioning briefly that there is a characterization of functions
that are computable with finitely many mind changes that is analogous to Theorem 2.6.

Theorem 2.30 (Discrete limit normal form). A function G :⊆ NN → NN is computable with
finitely many mind changes if and only if there exists a computable function F :⊆ NN → NN,
such that G = lim∆ ◦ F .

We leave the simple proof to the reader (see [7]).

3. Computability Relative to the Halting Problem

Now we consider functions that are computable relative to the halting problem 0′. It turns
out that they play a dual rôle to the low functions that are characterized in terms of
L = J−1 ◦ lim. The functions that are computable relative to the halting problem can be
characterized in terms of H := J ◦ lim−1 : NN ⇒ NN.

The first result shows that H is computable relative to the halting problem. In order
to prove this we need to invert limits such that we obtain control on the jump of the
resulting converging sequence. Roughly speaking, this is possible since there are many
sequences converging to a given point, and this gives us enough freedom to choose a
suitable one. We recall that the composition of two multi-valued functions f :⊆ X ⇒ Y
and g :⊆ Y ⇒ Z is defined by (g ◦ f)(x) := {z ∈ Z : (∃y ∈ f(x)) z ∈ g(y)} with
dom(g ◦ f) := {x ∈ X : x ∈ dom(f) and f(x) ⊆ dom(g)}. A multi-valued f :⊆ NN ⇒ NN

is called computable (relative to some oracle q) if there is a single-valued F :⊆ NN → NN

with the corresponding property and such that F (p) ⊆ f(p) for all p ∈ dom(f) and
dom(f) ⊆ dom(F ). We recall that a function F :⊆ NN → NN is called computable relative
to some oracle q ∈ NN if there is some computable function G :⊆ NN → NN such that
F (p) = G〈q, p〉 for all p ∈ dom(F ). In terms of computability theory, the next proof uses
the finite extension method.

Theorem 3.1 (Limit inversion). H = J ◦ lim−1 is computable relative to the halting problem.

Proof. We need to show that there exists a function I : NN → NN with lim ◦I = id and
such that J ◦ I is computable relative to 0′. Given p ∈ NN we describe the computation
of I relative to 0′ by an inductive construction in i ∈ N. We start with w0 := ε ∈ N∗
and t0 := 0 ∈ N. Given a finite sequence of words w0, ..., wti ∈ N∗ together with numbers
t0 < t1 < ... < ti and bits b0, ..., bi−1 ∈ {0, 1} we describe how we determine ti+1 ∈ N,

wti+1, ..., wti+1 ∈ N∗ and bi ∈ {0, 1} in stage i of the construction.3 We let r0 := p|0w00̂ = 0̂

and rn+1 := (p|n+1wtn+10̂, ..., p|n+1wtn+1 0̂) for all n < i. Now we consider the question
whether the i–th Turing machine halts on

〈r0, ..., ri, p|i+1qti+1, p|i+1qti+2, p|i+1qti+3, ...〉
3For notational clarity, we have underlined the indexes of t; the line has no mathematical meaning.
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for some qti+n ∈ NN with n ∈ N. Whether or not this is the case can be decided with the
help of 0′ since the answer depends only on the finite portion p|i+1 of p read so far. If the
outcome of the decision is positive, then already a finite number qti+1, ..., qti+1 ∈ NN for some

ti+1 > ti and, in fact, finite prefixes of these are sufficient for the machine i to halt. In this

case we can compute such a ti+1 and corresponding words wti+n ∈ N∗ such that qj := wj 0̂
for j ∈ {ti + 1, ..., ti+1} satisfy the condition, and we set bi := 1. Otherwise, if the outcome
of the decision is negative, then we choose wti+1 := ε, ti+1 := ti + 1 and bi := 0. If we
continue inductively in this way, then we can compute I(p) := 〈r0, r1, r2, ...〉 with the help of
0′ uniformly in p. Since we have used longer and longer prefixes p|n of p in the construction
of the rn, the value I(p) satisfies lim ◦I(p) = p. Moreover, the construction guarantees that
we can compute J ◦ I with the help of 0′, namely J ◦ I(p) = (b0, b1, b2, ...).

We note that H is, in particular, continuous, and H−1 = lim ◦J−1 is computable by
Theorem 2.14. Theorem 3.1 yields the following characterization of functions computable
relative to the halting problem. The interesting point of the following theorem is not that
there is an object H that characterizes functions that are computable relative to the halting
problem (the problem 〈id× χ0′〉 with the characteristic function χ0′ of the halting problem
would be a simpler such example), but the point is that our particular H has this property.

Theorem 3.2 (Computability relative to the halting problem). A function F :⊆ NN → NN

is computable relative to the halting problem if and only if there is a computable function
G :⊆ NN → NN such that F = G ◦ H.

Proof. By Theorem 3.1 H is computable relative to 0′. Hence G ◦ H is computable relative
to the halting problem for every computable G :⊆ NN → NN. Let now F be computable
relative to the halting problem 0′. Then there is a computable S :⊆ NN → NN, such that
F (p) = S〈0′, p〉 for all p ∈ dom(F ). By Theorem 2.14 we know that there is a computable
function T :⊆ NN → NN such that T ◦ J = lim, i.e., T ◦H = id. On the other hand, there is a
computable function r : N→ N such that Turing machine r(i) halts on all inputs if and only

if machine i halts on input 0̂. Hence J(0̂)(i) = J(p)(r(i)) for all p ∈ NN and i ∈ N. Then
R : NN → NN with R(q)(i) := qr(i) is computable and so is G := S ◦ 〈R, T 〉. We obtain

F (p) = S〈J(0̂), p〉 = S〈R ◦ H(p), T ◦ H(p)〉 = G ◦ H(p)

for all p ∈ dom(F ), hence F = G ◦ H if G is restricted suitably (which is possible since
H(p) ∩ H(q) = ∅ for p 6= q.)

We note that this result implies that H is not computable (hence it is an interesting
example of a natural problem that is continuous and not computable). Another interesting
consequence of our results is that the functions that are computable relative to the halting
problem form the largest class of functions that, when composed with a limit computable
function from the right, yield a limit computable function.

Corollary 3.3 (Computability relative to the halting problem). A function F :⊆ NN → NN

is computable relative to the halting problem if and only if F ◦ G is limit computable for
every limit computable G :⊆ NN → NN.

The “if” direction follows from Theorems 3.2 and 2.14, when one chooses G = lim. The
“only if” direction is a consequence of Theorems 3.2 and 2.6. A comparison of Corollaries 3.3
and 2.28 shows that the notions of a low function is dual to the notion of a function that
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is computable relative to the halting problem. Both classes should be naturally studied
alongside the limit computable functions.

As another non-uniform side result of the limit inversion theorem (Theorem 3.1) we
obtain a classical result from computability theory, the Friedberg jump inversion theorem [21].

Corollary 3.4 (Friedberg jump inversion theorem 1957). For every q ∈ NN with 0′≤T q
there exists a p ∈ NN with p′≡T q.

Proof. Given a fixed q ∈ NN with 0′≤T q we can compute p := I(q) and p′ = J ◦ I(q) with
I from the proof of Theorem 3.1. In particular, p′≤T q. On the other hand, by the same
theorem and Theorem 2.14 we obtain q = lim(p)≤T p

′.

As another corollary we obtain the announced extension of Corollary 2.8.

Corollary 3.5. For every function F :⊆ NN → NN that is computable relative to the halting
problem there exists a computable function G :⊆ NN → NN such that lim ◦G = F ◦ lim.

NN NN

NN NN

G

F

lim lim

Figure 1: Limit diagram.

This result can be interpreted as a statement about the diagram in Figure 1. Vice
versa, if G is an arbitrary computable function that transfers converging sequences into
converging sequences (not necessarily in an extensional way), then we can mimic the behavior
of G on the limits by a function that is computable relative to the halting problem. This
follows from Theorems 3.2 and 2.14 and was proved directly with a somewhat more involved
proof that does not exploit the Galois connection between Turing jumps and limits in [11,
Theorem 14.11].

Corollary 3.6 (B., Hendtlass and Kreuzer 2017). For all computable G :⊆ NN → NN the
multi-valued function lim ◦G ◦ lim−1 is computable relative to the halting problem.

We close this section with a uniform version of Corollary 3.6. For the formulation we
need a total representations Φ of all continuous functions F :⊆ NN → NN with computable
Gδ–domain that satisfies a utm- and smn-theorem [52, Theorem 2.3.5]. The result is
tailor-made to yield a proof of Theorem 4.12 (3).

Theorem 3.7 (Uniform limit control theorem). There exists a computable R : NN → NN

such that Φlim ◦R(q)(p) ∈ lim ◦Φq ◦ lim−1(p) for all p, q ∈ NN with p ∈ dom(lim ◦Φq ◦ lim−1).

Proof. By a relativized version of Theorem 3.1 there exist computable I, S :⊆ NN → NN

such that lim ◦Iq′ = id and Sq′ = Jq ◦ Iq′ for every q ∈ NN. This can be proved exactly as in
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the proof of Theorem 3.1 except that we check whether the i–th Turing machine halts upon
input of

〈q, 〈r0, ..., ri, p|i+1qti+1, p|i+1qti+2, p|i+1qti+3, ...〉〉,
which can be decided using q′. Now, by applying the jump normal form theorem (Theo-
rem 2.14) to Φ we obtain a computable function H with lim ◦Φq = H ◦ Jq. Then H ◦ S
is computable, and by the smn-theorem for Φ there exists a total computable function P
such that ΦP (r)(p) = H ◦ S〈r, p〉 for all r, p ∈ NN. Finally, by the limit normal form theorem
(Theorem 2.6) there exists a computable function R such that lim ◦R = P ◦ J. Such an R is
necessarily total. Altogether, we obtain

ΦlimR(q)(p) = ΦPJ(q)(p) = HS〈q′, p〉 = HJqIq′(p) = lim ΦqIq′(p) ∈ lim ◦Φq(lim
−1(p))

for all p, q ∈ NN with lim−1(p) ⊆ dom(lim ◦Φq).

We note that the basic problems lim, J−1 are generators of a monoid which can be
used to characterize all sorts of other computability theoretic properties. For instance
J−1J−1 lim lim characterizes the property of being low2 and J−1 lim lim the property of being
low relative to the halting problem (see also [9]).

4. Limit computability on represented spaces

The purpose of this section is to transfer our results on limit computable maps to represented
spaces. We recall that a representation of a set X is a surjective function δ :⊆ NN → X. In
this situation we say that (X, δ) is a represented space. Any point p ∈ NN with δ(p) = x
is called a name of x, and the word “representation” is reserved for the map δ as such.
A problem is a multi-valued partial function f :⊆ X ⇒ Y on represented spaces X and
Y . If (X, δX) and (Y, δY ) are represented spaces and f :⊆ X ⇒ Y is a problem, then
F :⊆ NN → NN realizes f , in symbols F ` f , if δY F (p) ∈ fδX(p) holds for all p ∈ dom(fδX).

Definition 4.1 (Computable functions). A problem f is called continuous, computable,
limit computable, low or computable with respect to the halting problem, if it has a realizer
with the corresponding property.

Likewise, other properties can be transferred from realizers to problems. By C(X,Y )
we denote the set of total continuous functions f : X → Y . It is clear that all properties
related to closure under composition that have been discussed in the previous section can be
transferred to problems. This is because F ` f and G ` g implies F ◦G ` f ◦ g. We can
also transfer properties of points to represented spaces using representations.

Definition 4.2 (Computable points). A point x ∈ X in a represented space X is called
computable, limit computable or low if it has a name with the corresponding property.

We note that the notion of 1–genericity is an example of a property that should
not be defined via names since it is not invariant under equivalent representations (see
Proposition 5.23 and the discussion afterwards).

Our main goal here is to transfer the limit normal form theorem and the jump normal
form theorem (Theorems 2.6 and 2.14) to problems on represented spaces. Since we can
incorporate limits and jumps into the represented spaces, these normal forms can be expressed
very neatly. For this purpose we need the following concepts of jumps on represented spaces.



A GALOIS CONNECTION BETWEEN TURING JUMPS AND LIMITS 13

Definition 4.3 (Jumps). Let (X, δX) be a represented space and δ := δX , let T :⊆ NN → NN

be surjective, and let S :⊆ NN ⇒ NN be such that S−1 :⊆ NN → NN is single-valued and
surjective. We define the following representations of X:

(1) δT := δXT := δX ◦ T (T–jump)
(2) δS := δXS

:= δX ◦ S−1 (S−1–jump)

We denote the represented spaces (X, δXT ) and (X, δXS
) for short by XT and XS , respectively.

In the special case of T = lim and T = lim∆, we define

(3) δ′ := δX′ := δX ◦ lim (jump)
(4) δ∆ := δX∆ := δX ◦ lim∆ (discrete jump)

We denote the represented spaces (X, δX′) and (X, δX∆) also by X ′ and X∆, respectively.

We will apply this concept of a jump in the case of T = lim, T = L, S = H and S = J.
The special jumps for T = lim and T = lim∆ (the limit on Baire space with respect to the
discrete metric) were originally defined by Ziegler [56] and later also studied by the author,
de Brecht and Pauly [7]. More general concepts of jumps were also studied in the context of
effective descriptive set theory by de Brecht [15] and de Brecht and Pauly [38, 39, 40].

A common feature of the maps lim, lim∆, J
−1, L and H−1 is that they are surjective and

transparent. It was noted by de Brecht [15] that the functor X 7→ XT for surjective and
transparent T can be seen as an endofunctor on the class of represented spaces (that leaves
the maps unchanged). This is made precise by the following result.

Proposition 4.4 (The jump as endofunctor). If f :⊆ X ⇒ Y is a computable problem and
T :⊆ NN → NN is transparent and surjective then it follows that f considered as a problem
of type f :⊆ XT ⇒ Y T is computable too.

Proof. If f :⊆ X ⇒ Y is computable, then it has a computable realizer F :⊆ NN → NN.
Since T is transparent, there is a computable G :⊆ NN → NN with F ◦ T = T ◦G. Hence G
is a computable realizer of f :⊆ XT ⇒ Y T .

Through some results presented in this section we will get a better understanding of
the types of problems mentioned in Proposition 4.4 for the specific maps T that we are
interested in.

We start with a result that characterizes limit computable problems and shows that the
jump Y ′ on the output side can be balanced by XJ on the input side.

Theorem 4.5 (Limit computability). Let f :⊆ X ⇒ Y be a problem. Then the following
are equivalent:

(1) f :⊆ X ⇒ Y is limit computable,
(2) f :⊆ X ⇒ Y ′ is computable,
(3) f :⊆ XJ ⇒ Y is computable.

Proof. The equivalences are consequences of the limit normal form theorem (Theorem 2.6)
and the jump normal form theorem (Theorem 2.14).

We note that this result can be interpreted such that jumps X ′ and XJ are adjoint to each
other. However, this is a pure computability theoretic adjointness that does not relativize to
a topological adjointness. The proof of the direction (3)=⇒(2) can be extended to a uniform

proof, but this is not so for the direction (2)=⇒(3). In fact, C((NN)J,NN) $ C(NN, (NN)
′
),

since J−1 is not topologically transparent. However, we can derive the following relativized
version of Theorem 4.5 from Theorem 2.18.
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Corollary 4.6 (Relativized limit computability). Let f :⊆ X ⇒ Y be a problem and q ∈ NN.
Then the following are equivalent:

(1) f :⊆ X ⇒ Y is limit computable relative to q,
(2) f :⊆ X ⇒ Y ′ is computable relative to q,
(3) f :⊆ XJq ⇒ Y is computable.

We can transfer our characterization of low problems.

Theorem 4.7 (Low computability). Let f :⊆ X ⇒ Y be a problem. Then the following are
equivalent:

(1) f :⊆ X ⇒ Y is low,
(2) f :⊆ X ⇒ Y L is computable,
(3) f :⊆ XL ⇒ Y L is computable,
(4) f :⊆ XJ ⇒ YJ is computable,
(5) f :⊆ XJ ⇒ YJ is computable relative to the halting problem 0′.

Proof. The equivalence of (1) and (2) is a direct consequence of the definition of low maps
on Baire space. Since low maps are closed under composition by Proposition 2.27, it follows
that (2) implies (3). Since id : X → XL is computable, it follows that (3) implies (2). By
Theorem 4.5 (2) and (4) are equivalent since XL = (XJ)

′. By the statement “(1)⇐⇒ (4)”
of Theorem 4.8 (which independently follows from Corollaries 3.5 and 3.6) we obtain that
(3) and (5) are equivalent.

Finally, we obtain a dual characterization of the problems that are computable relative
to the halting problem.4

Theorem 4.8 (Computability relative to the halting problem). Let f :⊆ X ⇒ Y be a
problem. Then the following are equivalent:

(1) f :⊆ X ⇒ Y is computable relative to the halting problem 0′,
(2) f :⊆ XH ⇒ Y is computable,
(3) f :⊆ XH ⇒ YH is computable,
(4) f :⊆ X ′ ⇒ Y ′ is computable,
(5) f :⊆ X ′ ⇒ Y ′ is low.

Proof. The equivalence of (1) and (2) is a consequence of Theorem 3.2. Since functions
computable relative to 0′ are closed under composition, it follows again by Theorem 3.2
that (2) implies (3). Since id : YH → Y is computable, it is clear that (3) implies (2). The
equivalence of (2) and (4) follows from Theorem 4.5 since XH = (X ′)J. The equivalence of
(3) and (5) follows from Theorem 4.7.

The equivalence of (1) and (4) can also be directly derived from Corollaries 3.5 and 3.6.
Likewise we obtain the following relativized version.

Theorem 4.9 (Computability relative to an oracle). Let f :⊆ X ⇒ Y be a problem and
q ∈ NN. Then the following are equivalent:

(1) f :⊆ X ⇒ Y is computable relative to q′,
(2) f :⊆ X ′ ⇒ Y ′ is computable relative to q.

4We note that the equivalence of (1) and (4) shows that [55, Theorem 23 (c)] is not correct.
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Proof. The implication from (2) to (1) is a consequence of Theorem 3.7. For the implication
from (1) to (2) we need a relativized version of Corollary 3.5 that can actually be derived
from this corollary. Let U〈q, p〉 := Φq(p) be the universal computable function. Then by
Corollary 3.5 there exists a computable G such that lim ◦G = U ◦ lim. There is also a
computable R : NN → NN with lim ◦R〈q, p〉 = 〈lim q, lim p〉. If we denote by Rq the function
with Rq(p) := R〈q, p〉 then we obtain lim ◦G ◦Rq = Φlim q ◦ lim. Hence, G ◦Rq is a realizer
for f :⊆ X ′ ⇒ Y ′ if Φlim q is a realizer for f :⊆ X ⇒ Y . This proves the claim.

We immediately obtain the following corollary, where q(n) denotes the n–th Turing jump
of q ∈ NN and X(n) denotes the n–th jump of the represented space X.

Corollary 4.10 (Computability relative to higher jumps). Let f :⊆ X ⇒ Y be a problem
and n ∈ N. Then the following are equivalent:

(1) f :⊆ X ⇒ Y is computable relative to 0(n),

(2) f :⊆ X(n) ⇒ Y (n) is computable.

Other characterizations can be derived as conclusions of the results provided in this
section. Now we want to show that jumps interact nicely with products and function space
constructions. We recall that for two represented spaces (X, δX) and (Y, δY ) we can define a
representation of X × Y , of XN and of C(X,Y ) as follows:

(1) δX×Y :⊆ NN → X × Y, 〈p, q〉 7→ (δX(p), δY (q)).
(2) δXN :⊆ NN → XN, 〈p0, p1, p2, ...〉 7→ (δX(pn))n∈N.
(3) δC(X,Y ) :⊆ NN → C(X,Y ) by δC(X,Y )(p) = f :⇐⇒ Φp ` f .

It is known that these representations make evaluation and currying computable [52, Lem-
mas 3.3.14, 3.3.16 and Theorem 3.3.15] and that sequences can be identified with continuous
functions.

Fact 4.11 (Function space). The following are computable for all represented spaces X,Y :

(1) ev : C(X,Y )×X → Y, (f, x) 7→ f(x),
(2) cur : C(X × Y, Z)→ C(X, C(Y, Z)), f 7→ (x 7→ (y 7→ f(x, y))),
(3) id : C(N, X)→ XN and its inverse.

We obtain the following result that shows how jumps interact with products and
function space constructions. We call a problem f : X → Y a computable isomorphism if f
is computable and bijective and its inverse f−1 is computable too.

Theorem 4.12 (Jumps with products and exponentials). Let X and Y be represented
spaces. Then the following are computable isomorphisms:

(1) id : (X × Y )′ → X ′ × Y ′,
(2) id : (XN)′ → (X ′)N,
(3) id : C(X,Y )′ → C(X ′, Y ′).
In particular, C(X ′, Y ′) is exactly the set of continuous functions f : X → Y .

Proof. The first two statements follow from the fact that the tupling functions are continuous:

lim
i→∞
〈pi, qi〉 = 〈 lim

i→∞
pi, lim

i→∞
qi〉 and lim

i→∞
〈p0i, p1i, ...〉 = 〈 lim

i→∞
p0i, lim

i→∞
p1i, ...〉.

Now we consider the evaluation map ev : C(X,Y ) × X → Y , which is computable. By
Proposition 4.4 it follows that also ev : (C(X,Y )×X)′ → Y ′ is computable, and hence by
(1) we obtain that ev : C(X,Y )′ ×X ′ → Y ′ is computable. Since currying is computable,
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it follows that id : C(X,Y )′ → C(X ′, Y ′) is computable. We still need to prove that
id : C(X ′, Y ′)→ C(X,Y )′ is computable. But this follows from the uniform version of the
uniform limit control theorem (Theorem 3.7).

We should warn the reader that we have an ambiguity in the terminology that one has
to keep in mind and that is expressed in the following corollary.

Corollary 4.13 (Limit computable points in function spaces). Let X,Y be represented
spaces and f ∈ C(X,Y ). Then f is limit computable as a point in C(X,Y ) if and only if
f : X → Y is computable relative to the halting problem as a function.

However, one can also see this as fit in terminology since for points in Baire space being
limit computability is equivalent to being computable relative to the halting problem by
Shoenfield’s limit lemma (Corollary 2.17). Hence f being computable relative to the halting
problem as a point in C(X,Y ) is equivalent to f : X → Y being computable relative to the
halting problem as a function. The equivalence between computability relative to the halting
problem and limit computability for points extends to sequences. Theorem 4.12 together
with the fact that id : C(N, X)→ XN is a computable isomorphism imply the following.

Corollary 4.14 (Limit computable sequences). The identity id : C(N, X)′ → C(N, X ′) is
a computable isomorphism. In particular, the limit computable functions f : N → X are
exactly the functions f : N→ X that are computable relative to the halting problem.

The jump X 7→ XJ does not preserve products and function spaces in the way X 7→ X ′

does according to Theorem 4.12. Basically, all our negative results in this direction can be
derived from Spector’s jump inversion theorem (see [48] or [36, Proposition V.2.26]). In
particular, it implies that the notion of a low function is incomparable with the notion of a
function that is computable relative to a low oracle.5

Proposition 4.15 (Low functions). There is a Lipschitz continuous function F : NN → NN

that is computable relative to a low oracle, but that is not low as a function. There is also a
low function f : {0, 1} → NN that is not computable relative to a low oracle.

Proof. By Spector’s jump inversion theorem there are low p, q ∈ NN such that 〈p, q〉 is not
low. Hence the function F : NN → NN, r 7→ 〈q, r〉 does not map the low p ∈ NN to a low
value F (p) = 〈q, p〉. That is, F is not low, but computable relative to the low point q. It is
easy to see that F is Lipschitz continuous with Lipschitz constant 1.

There are also computable r, s ∈ NN such that L(r) = p and L(s) = q. We consider the
functions f, g : {0, 1} → NN defined by

f(i) :=

{
p if i = 0
q otherwise

and g(i) :=

{
r if i = 0
s otherwise

.

Then g is computable and f = L ◦ g. Hence f is low. Let us assume that f is computable
with respect to a low oracle t ∈ NN. Then p = f(0)≤T t and q = f(1)≤T t follows and hence
〈p, q〉≤T t, which is a contradiction since 〈p, q〉 is not low.

We will see several further low functions that are not computable relative to a low oracle
in section 6.

5A referee provided an interesting alternative proof of this result, using Chaitin’s Ω = 〈Ω0,Ω1〉. The even
and odd parts Ω0 and Ω1, respectively, are low according to [16, Theorem 15.2.3] and hence F : p 7→ 〈Ω0, p〉
and f : i 7→ Ωi are alternative concrete examples that satisfy Proposition 4.15.
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As a preparation for the following results we show that relative computability can also
be characterized via function spaces if the corresponding oracle class is closed downwards by
Turing reducibility.

Lemma 4.16 (Relative computability). Let F :⊆ NN → NN be a function and q ∈ NN.
Then the following are equivalent:

(1) F is computable relative to q,
(2) (∃r≤T q)(∀p ∈ dom(F )) F (p) = Φr(p).

Proof. (1) implies (2) by the smn-theorem and (2) implies (1) by the utm-theorem.

We can apply this in particular to the class of functions that are computable with
respect to a low oracle.

Corollary 4.17 (Computability relative to a low oracle). Let X,Y be represented spaces.
Then C(X,Y )L is the class of functions that are computable relative to a low oracle.

Now we get the following negative result on how L and J behave on function spaces. We
note that the given identities are not surjective, since the spaces C(XL, Y L) and C(XJ, YJ)
contain discontinuous functions.

Proposition 4.18 (Function spaces for low functions). For instance for X = Y = NN the
embeddings id : C(X,Y )L → C(XL, Y L) and id : C(X,Y )J → C(XJ, YJ) are not computable.
The partial inverses of these maps are also not computable.

Proof. The function F from Proposition 4.15 is not a computable point in C(XL, Y L), but
by Corollary 4.17 it is a computable point in C(X,Y )L. This means that the embedding
id : C(X,Y )L → C(XL, Y L) is not computable. With Theorem 4.12 it follows that also the
embedding id : C(X,Y )J → C(XJ, YJ) is not computable since ZL = (ZJ)

′. The function f
from Proposition 4.15 can easily be converted into a function f : NN → NN with corresponding
properties, and hence C(XL, Y L) contains computable points which are not computable in
C(X,Y )L. The space C(X,Y )J does not even contain any computable points whatsoever.
Altogether, this shows that the partial inverses of the given maps are not computable.

The positive properties that apply to Turing jumps and products are captured in the
following result.

Proposition 4.19 (Turing jumps and products). Let X and Y be represented spaces. Then
the following maps are computable:

(1) id : (X × Y )J → XJ × YJ,
(2) id : (XN)J → (XJ)

N.

In general, these maps are not computable isomorphisms.

Proof. It is easy to see that 〈J× J〉 is limit computable since J is limit computable. Hence,
by the jump normal form theorem (Theorem 2.14) there exists a computable F such that
FJ〈p, q〉 = 〈J(p), J(q)〉. This function F is a realizer of id : (X × Y )J → XJ × YJ. Likewise,

limit computability of 〈Ĵ〉 implies that id : (XN)J → (XJ)
N is computable. Let us assume

that the inverse of id : (X × Y )J → XJ × YJ is computable. Then by Proposition 4.4
and Fact 4.11 the evaluation ev : C(X,Y )J × XJ → YJ would be computable, and hence
id : C(X,Y )J → C(XJ, YJ) would be computable, which is not the case in general by
Proposition 4.18, for instance for X = Y = NN. If the inverse of id : (X × Y )J → XJ × YJ
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for binary products of X = Y = NN is not computable, it follows that the inverse of
id : (XN)J → (XJ)

N for countable products of X = NN is not computable either.

We mention that the jump X 7→ XJ commutes with coproducts while the jump X 7→ X ′

does not. However, we do not needs these facts here. Hence, we leave the details to the
reader. Here we just formulate a corollary for X 7→ XL that we obtain from Proposition 4.19
and Theorem 4.12.

Corollary 4.20 (Lowness and products). Let X and Y be represented spaces. Then the
following maps are computable:

(1) id : (X × Y )L → XL × Y L,
(2) id : (XN)L → (XL)N.

In general, these maps are not computable isomorphisms.

That the maps are not computable isomorphisms follows again from Spector’s jump
inversion theorem. As a consequence of Corollary 4.20 and Fact 4.11 we obtain at least one
positive implication for sequences that are computable relative to a low oracle. The inverse
implication is not correct in general by Proposition 4.15.

Corollary 4.21 (Low sequences). The identity id : C(N, X)L → C(N, XL) is computable. In
particular, every function f : N→ X that is computable relative to a low oracle is also low
as a function.

In the remainder of this section we briefly want to discuss some interpretations of
our results in the lattice of representations. We recall that given two represented spaces
(X, δX) and (Y, δY ) with X ⊆ Y we say that δX is reducible to δY , in symbols δX ≤ δY , if
id : (X, δX)→ (Y, δY ) is computable. The corresponding equivalence is denoted by ≡.

As an immediate corollary of Proposition 4.4 we obtain the following.

Corollary 4.22 (Monotonicity of jumps). Let (X, δX) and (Y, δY ) be represented spaces
and let T :⊆ NN → NN be transparent and surjective. Then δX ≤ δY implies δTX ≤ δTY .

We now consider the jump operations that we have introduced on represented spaces.
Firstly, they are all ordered in the following way.

Corollary 4.23 (Order of jumps). For every representation δ each of the following reductions
holds: δJ ≤ δH ≤ δ ≤ δ∆ ≤ δL ≤ δ′.

Here the first reduction holds since lim has a computable right inverse F : NN → NN,
and hence F : (NN)J → (NN)J is computable by Proposition 4.4; the second reduction holds
since H−1 is computable; the third reduction holds since lim∆ has a computable right inverse;
the fourth reduction holds in lim∆ is low by Corollary 2.29 and Theorem 2.30, and the
last reduction holds since L is limit computable by Proposition 2.27. In fact, some of the
discussed operations on represented spaces have further properties. In particular the pair
(δ 7→ δJ, δ 7→ δ′) forms a Galois connection in the lattice of representations of a fixed set.
This is a consequence of Theorem 4.5 applied to the injection id : X → Y .

Corollary 4.24 (Galois connection between Turing jumps and limits). Let (X, δX) and
(Y, δY ) be represented spaces with X ⊆ Y . Then δXJ

≤ δY ⇐⇒ δX ≤ δY ′.

The operation δ 7→ δL = (δJ)
′ is the monad of this Galois connection, which implies that

it is a closure operator. Likewise, δ 7→ δH = (δ′)J is an interior operator [17, Proposition 3(4)].



A GALOIS CONNECTION BETWEEN TURING JUMPS AND LIMITS 19

Proposition 4.25 (Closure and interior operators). δ 7→ δL and δ 7→ δ∆ are closure
operators and δ 7→ δH is an interior operator on the lattice of representations of a fixed set
X.

The fact that δ 7→ δ∆ is also a closure operator can easily be proved directly. Another
consequence of Corollary 4.24 which can also easily be proved directly, is that δ 7→ δJ preserves
suprema and δ 7→ δ′ preserves infima [17, Proposition 3(8)]. We recall for represented spaces
(X, δX) and (Y, δY ) the meet or infimum δX ∧ δY , which is a representation of X ∩Y , can be
defined by (δX ∧ δY )〈p, q〉 = z :⇐⇒ δX(p) = δY (q) = z. If X = Y , then δX ∧ δY is actually
known to the the infimum in the lattice of representations of X [52, Lemma 3.3.8]. Hence
we obtain the following.

Proposition 4.26 (Infimum and jumps). Let (X, δX) and (Y, δY ) be represented spaces.
Then (δX ∧ δY )′ ≡ δ′X ∧ δ′Y .

Analogously, δ 7→ δ′ commutes with products (see Theorem 4.12), which also implies
Proposition 4.26 since δX ∧ δY = ∆−1

X∩Y ◦ δX×Y , where ∆X∩Y denotes the diagonal ∆X∩Y :
X ∩ Y → (X ∩ Y )× (X ∩ Y ), x 7→ (x, x). Likewise, δ 7→ δJ commutes with coproducts and
suprema, but we do not formulate these results here.

5. Limit computability on metric spaces

In this section we want to transfer some of our results to computable metric spaces. We recall
that (X, d, α) is called a computable metric space, if (X, d) is a metric space with metric
d : X×X → R and α : N→ X is a sequence that is dense in X such that d◦(α×α) : N2 → R
is a computable sequence of real numbers. Each computable metric space is equipped with
its Cauchy representation δX :⊆ NN → X that is defined by δX(p) := limn→∞ αp(n) with
dom(δX) := {p ∈ NN : (∀k)(∀n ≥ k) d(αp(n), αp(k)) < 2−k and (αp(n))n∈N converges}.
The real numbers R are also equipped with a Cauchy representation that is induced by a
standard numbering α of all rational numbers. Besides the usual Cauchy representation
there is also the so-called naive Cauchy representation δn

X that is defined exactly as δX but

with dom(δn
X) := {p ∈ NN : (αp(n))n∈N converges}.

Given a computable metric space (X, d, α) we define the open ball B〈c,r〉 := B(α(c), r) :=

{x ∈ X : d(x, α(c)) < r} for every c, r ∈ N, where 〈i, j, k〉 := i−j
k+1 denotes the rational number

encoded by i, j, k ∈ N. By Wi := {n ∈ N : Turing machine i halts on input n} we denote the
usual numbering of c.e. subsets of N, and by Ui :=

⋃
n∈Wi

Bn we denote a numbering of all
c.e. open subsets of X. We can consider the set O(X) of open subsets as a represented space
with representation δO(X)(p) =

⋃
i∈NBp(i). The c.e. open subsets are exactly the computable

points in O(X) with this representation.
We can now generalize the limit map and the Turing jump as defined in Example 2.2 to

arbitrary computable metric spaces.

Definition 5.1 (Limit and Turing jump). Let X be a computable metric space. We define:

(1) The limit map of X by limX :⊆ XN → X, (xn)n∈N 7→ limn→∞ xn.
(2) The Turing jump JX : X → NN of X by

JX(x)(i) :=

{
1 if x ∈ Ui
0 otherwise

for all x ∈ X and i ∈ N.
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It is easy to see that both functions defined here are always limit computable.

Proposition 5.2. limX and JX are limit computable for every computable metric space X.

Proof. Let δX be the Cauchy representation of the computable metric space (X, d, α). Given
a p = 〈p0, p1, p2, ...〉 ∈ NN with a sequence (pn)n∈N of names of points xn := δX(pn) such
that x := limn→∞ xn exists, we need to devise a limit computation that yields a q ∈ dom(δX)
with δX(q) = x. For every i, k ∈ N the property

(∃n > i) d(δX(pn), δX(pi)) > 2−k−2

is c.e. in p and k, i. Hence, with the help of J(p) we can decide this property, and hence
for each k ∈ N we can systematically search for a i = ik ∈ N such that it fails. Such an ik
must exists since xn converges to x. We can assume that the sequence (ik)k∈N is strictly
monotone increasing. For each k ∈ N we let q(k) := pik(k + 2). Then for n > k

d(αq(n), αq(k)) ≤ d(αpin(n+ 2), δX(pin)) + d(δX(pin), δX(pik)) + d(δX(pik), αpik(k + 2))

≤ 2−n−2 + 2−k−2 + 2−k−2 < 2−k

and δX(q) = limk→∞ αpik(k + 2) = limk→∞ xk = x. By Theorem 2.14 it follows that limX

is limit computable.
JX can easily be computed on a limit Turing machine. Given a name of an input x ∈ X

one produces for each output position JX(x)(i) the default value 0 and simultaneously one
tries to verify x ∈ Ui. As soon as x ∈ Ui can be confirmed, the i–th output value has to be
changed to 1, which happens at most once for each position i.

This allows us to transfer the limit normal form theorem (Theorem 2.6) to computable
metric spaces. For f, s :⊆ X ⇒ Y we write s v f if s(x) ⊆ f(x) for all x ∈ dom(f) and
dom(f) ⊆ dom(s). In this situation we call s a solution or selector of f .

Theorem 5.3 (Limit normal form). Let X be a represented space, Y a computable metric
space and f :⊆ X ⇒ Y a problem. Then the following are equivalent:

(1) f :⊆ X ⇒ Y is limit computable,
(2) limY ◦g v f for some computable g :⊆ X ⇒ Y N.

Proof. That (2) implies (1) follows since limY is limit computable by Proposition 5.2. We
need to prove that (1) implies (2). Let f :⊆ X ⇒ Y be limit computable. We use the
Cauchy representation δY of Y . Then f has a limit computable realizer F :⊆ NN → NN. By
the limit normal form theorem (Theorem 2.6) there exists a computable G :⊆ NN → NN

such that F = lim ◦G. Now we define a function H :⊆ NN → NN by H(p) = 〈r0, r1, r2, ...〉,
provided that G(p) = 〈q0, q1, q2, ...〉, where each ri is determined as follows. We choose
r1 := r0 := (q0(0), q0(0), ...) and if i > 1 then for each k ∈ {2, ..., i} we check, which of the
following two conditions is recognized first:

(1) (∀j ∈ {1, ..., k − 1}) d(αqi(k), αqi(j)) < 2−j+1,
(2) (∃j ∈ {1, ..., k − 1}) d(αqi(k), αqi(j)) > 2−j .

Depending on which condition is recognized first, we choose

(1) ri := (qi(1), qi(2), ..., qi(i), qi(i), ....), if for all k ≤ i the first condition is recognized first,
(2) ri := (qi(1), qi(2), ..., qi(k − 1), qi(k − 1), ...), if k ≤ i is minimal such that the second

condition is recognized first.
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We note that ri ∈ dom(δY ) for all i and if qi has a prefix of length k ≤ i that is a valid prefix
of a name in q ∈ dom(δY ), then d(δY (ri), δY (q)) ≤ 2−k+1. Altogether, H is computable, and
the definition ensures that range(H) ⊆ dom(δNY ) and limY ◦δNY ◦H = δY ◦ lim ◦G = δY ◦ F .

This proves that H is a realizer of a computable multi-valued function g :⊆ X ⇒ Y N with
limY ◦g v f .

For completeness we formulate the result also for single-valued f . We note that the
problem g still needs to be multi-valued in general.

Corollary 5.4 (Limit normal form). Let X be a represented space, Y a computable metric
space and f :⊆ X → Y a map. Then the following are equivalent:

(1) f :⊆ X → Y is limit computable,
(2) f = limY ◦g for some computable g :⊆ X ⇒ Y N.

As a corollary we obtain the following conclusion on pointwise limits of computable
sequences of functions.

Corollary 5.5 (Pointwise limit). Let X be a represented space and Y a computable metric
space. Let (gn)n∈N be a computable sequence in C(X,Y ), i.e., a computable sequence of
computable functions gn : X → Y . Then f : X → Y , defined by f(x) := limn→∞ gn(x) for
all x ∈ X, is limit computable.

We note that in general one cannot expect that all limit computable f can be obtained
as the pointwise limit of a computable sequence of single-valued g (as in the case of Baire
space, see Corollary 2.7). We obtain, however, a characterization of limit computable points
in computable metric spaces.

Corollary 5.6 (Limit computable points). Let X be a computable metric space. Then
x ∈ X is limit computable (in the sense that it has a limit computable name) if and only if
there is a computable sequence (xn)n∈N such that x = limn→∞ xn.

We recall that a computable metric space (X, d) is called computably compact if {X} is
c.e. open in O(X). We note that for computably compact metric spaces (X, d) the function
space C(X) = C(X,R) with the metric induced by the uniform norm ||f || := supx∈X |f(x)|
is a computable metric space again. As a dense subset one can use, for instance, the set of
rational polynomials in the distance functions dx : X → R, y 7→ d(x, y). This space C(X) is
then computably isomorphic to the space obtained by using the function space representation
δC(X,R), see [3]. If we apply Corollaries 4.13 and 5.6 to the space C(X), then we obtain the
following result.

Corollary 5.7 (Uniform limit). Let X be a computably compact computable metric space.
Then f : X → R is computable relative to the halting problem if and only if there is a
computable sequence (fn)n∈N of computable functions fn : X → R that converges uniformly
to f , i.e., such that limn→∞ ||f − fn|| = 0.

A characterization similar to Corollary 5.4 was obtained for effectively Σ0
2–measurable

functions in [6, Theorem 9.5] (we refer the reader to [6] for the definition of measurability, as
we are not going to use these notions here any further). This yields the following conclusion.

Corollary 5.8 (Borel measurability). Let X,Y be computable metric spaces. Then a
function f : X → Y is limit computable if and only if it is effectively Σ0

2–measurable.
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Corollary 5.4 can also be applied to the naive Cauchy representation since δn
X =

limX ◦α̂, where α̂ : NN → XN, p 7→ (αp(0), αp(1), αp(2), ...) is the parallelization of α that is
computable with respect to the Cauchy representation δX . We obtain the following result
that generalizes corresponding results for the spaces X = R and X = C([0, 1]n) by Ziegler [56,
Propositions 2.5 and 2.7].

Corollary 5.9 (Naive Cauchy representation as jump). δn
X ≡ limX ◦δNX ≡ δ′X for every

computable metric space X.

Proof. With the help of Theorem 4.5 and Corollary 5.4 one obtains δn
X ≤ δ′X . The reduction

δ′X ≤ limX ◦δNX follows from the same theorems applied to the identity id : X ′ → X. The

remaining reduction limX ◦δNX ≤ limX ◦α̂ is easy to prove directly, by choosing a diagonal
sequence.

Together with Theorem 4.8 we obtain a proof of the following result from [12, Theo-
rem 22].

Corollary 5.10 (B. and Hertling 2002). Let X,Y be computable metric spaces. The
functions f :⊆ X → Y that are continuous with respect to the naive Cauchy representations
on X and Y are the usual continuous functions.

Now we study the jump JX . We first prove that J−1
X is computable in general.

Proposition 5.11 (Inverse jump). J−1
X :⊆ NN → X is computable for every computable

metric space X.

Proof. We recall that a standard representation of X can be defined by δ(p) = x : ⇐⇒
range(p) = {n ∈ N : x ∈ Bn}. It is easy to see that δ ≤ δX , where δX denotes the Cauchy
representation of X [52, Theorem 8.1.4]. Hence, it suffices to compute J−1

X with respect to
δ. Since JX(x) is the characteristic function of {n ∈ N : x ∈ Un}, it is straightforward to
generate a list of all n ∈ N with x ∈ Bn, given JX(x).

Using this result we obtain the following form of the jump normal form theorem.
Surprisingly we need a variant of Schröder’s representation [43] of computable metric spaces
that has compact fibers, which can be computed with respect to positive information. Such
a representation was studied in [6].

Theorem 5.12 (Jump normal form). Let X,Y be computable metric spaces and f :⊆ X ⇒ Y
a problem. Then the following are equivalent:

(1) f :⊆ X ⇒ Y is limit computable,
(2) g ◦ JX v f for some computable g :⊆ NN → Y .

Proof. By Proposition 5.2 it is clear that g ◦ JX is limit computable for every computable
g :⊆ NN → Y . Let now f :⊆ X ⇒ Y be limit computable. By Theorem 5.3 there is a
computable h :⊆ X ⇒ Y N such that limY ◦h v f . Let δ ≡ δX be a representation of X that is
equivalent to the Cauchy representation δX and that makes κX : X → K+(NN), x 7→ δ−1{x}
computable, where K+(NN) denotes the space of compact subsets of NN endowed with
the representation δK+(NN)(p) = K : ⇐⇒ range(p) = {n ∈ N : K ∩ Bn 6= ∅}. Such a

representation δ with compact fibers δ−1{x} exists for every computable metric space [6,
Lemma 6.3 (5)]. Let F be a computable realizer of h, i.e., limY δY NF v fδ. That κX is
computable implies that the set

U := {(x, n, k) ∈ X × N2 : (∃p ∈ δ−1{x})(∃i > n) dY (δY (F (p)(i)), δY (F (p)(n))) > 2−k}
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is c.e. open relative to dom(f)× N2, and hence there is a computable function r : N→ N
such that Ur〈n,k〉 ∩ dom(f) = {x ∈ X : (x, n, k) ∈ U} ∩ dom(f). Let x ∈ dom(f) and

k ∈ N. Then for all p ∈ δ−1{x} there is some n ∈ N such that for all i > n we have
dY (δY (F (p)(i)), δY (F (p)(n))) ≤ 2−k, because (δY F (p)(n))n∈N is convergent. Since δ−1{x}
is compact, the number n ∈ N even exists uniformly for all p ∈ δ−1{x}. That is, for
every x ∈ dom(f) and k ∈ N there is some n ∈ N with x 6∈ Ur〈n,k〉. With the help of
JX(x)(r〈n, k〉) we can actually check this condition, and hence we can compute an s : N→ N
such that for each k ∈ N we obtain x 6∈ Ur〈s(k),k〉. By Proposition 5.11 we can also obtain

a p ∈ NN with δ(p) = x from JX(x). Hence there is a computable g :⊆ NN → Y with
g ◦ JX(x) = limk→∞ δY (F (p)(s(k))) = limY δY NF (p) v f(x) for all x ∈ dom(f), where the
first limit is computable since it is effective (with speed of convergence 2−k, see the proof of
Proposition 5.2 for a detailed calculation).

Since JX is injective, we can assume that dom(g) is such that dom(g ◦ JX) = dom(f).
We formulate the characterization for single-valued functions as a corollary.

Corollary 5.13 (Jump normal form). Let X,Y be computable metric spaces and f :⊆ X →
Y a function. Then the following are equivalent:

(1) f :⊆ X → Y is limit computable,
(2) f = g ◦ JX for some computable g :⊆ NN → Y .

Another consequence of Theorem 5.12 is that every multi-valued limit computable
problem has a single-valued limit computable selector.

Corollary 5.14 (Selection). Let X,Y be computable metric spaces. For every limit com-
putable f :⊆ X ⇒ Y there is a limit computable single-valued g :⊆ X → Y with g v f .

Now we define 1–genericity for computable metric spaces.

Definition 5.15 (1–genericity). Let X be a computable metric space. Then we call x ∈ X
1–generic if it is a point of continuity of JX .

It is easy to see that 1–generic points can be characterized as those points that avoid
the boundaries of all c.e. open sets. By ∂U we denote the boundary of U .

Lemma 5.16 (1–genericity). Let X be a computable metric space. Then x ∈ X is 1–generic
if and only if x ∈ X \

⋃∞
i=0 ∂Ui.

This characterization is equivalent to the definition of 1–genericity as it is used in
computability theory and as it has been used in computable metric spaces before (see [30,
Corollary 2.3], [10, Lemma 9.2] or [27, Definition 2.1]). By the Baire category theorem every
complete metric space is comeager and since the set

⋃∞
i=0 ∂Ui is meager, it follows that the

1–generics form a comeager Gδ–set in any complete computable metric space. In particular,
in a complete computable metric space, there are many 1–generic points. We obtain the
following characterization of 1–genericity.

Theorem 5.17 (1–genericity). Let X be a computable metric space. Then x ∈ X is 1–generic
if and only if for every computable metric space Y , every limit computable f :⊆ X → Y with
x ∈ dom(f) is continuous at x.

Proof. For the “if” direction it is sufficient to consider Y = NN and f = JX : X → NN. For
the “only if” direction we assume that f :⊆ X → Y is limit computable and x ∈ dom(f).
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Then by Corollary 5.13 there is a computable g :⊆ NN → X such that f = g ◦ JX . Hence, it
follows that f is continuous at x.

The “if” direction of this theorem can be seen as a computability theoretic version of a
well-known theorem of Baire that states that every Baire class 1 function has a comeager
Gδ–set of continuity points [29, Theorem 24.14]. We note that the “only if” direction of
Theorem 5.17 for the special case of X = [0, 1] was also proved by Kuyper and Terwijn [30,
Theorem 4.2].

Since limX is not continuous at any point for computable metric spaces X with at least
two points, it follows that no 1–generic sequence in such a space is convergent.

Corollary 5.18 (1–generic sequences). Let X be a computable metric space with at least
two points. Then every sequence (xn)n∈N that is a 1–generic point in XN is not convergent.

The following result generalizes Proposition 2.21 to computable metric spaces.

Proposition 5.19 (Jump on 1–generics). The Turing jump operator JX : X → NN restricted
to the set of 1–generic points x ∈ X is computable relative to the halting problem for all
computable metric spaces X.

Proof. We consider the metric space (X, d) and we define the relations of formal inclusion
and formal disjointness by

(1) B〈c1,r1〉 CB〈c2,r2〉 :⇐⇒ d(α(c1), α(c2)) + r1 < r2,
(2) B〈c1,r1〉 ./ B〈c2,r2〉 :⇐⇒ d(α(c1), α(c2)) > r1 + r2.

These are rather relations between the numbers c1, r1 ∈ N and c2, r2 ∈ N than between the
corresponding balls, but they are denoted for convenience in the given way. It is clear that
both relations are c.e. and that Bj CBi implies Bj ⊆ Bi and Bj ./ Bi implies Bj ∩Bi = ∅.
The sets

(1) A := {(n, j) ∈ N2 : (∃i ∈Wn) Bj CBi},
(2) B := {(n, j) ∈ N2 : (∀i ∈Wn) Bj ./ Bi}
are both computable relative to 0′. A 1–generic x ∈ X satisfies x ∈ X \

⋃∞
n=0 ∂Un and hence

(1) x ∈ Un ⇐⇒ (∃j ∈ N)(x ∈ Bj and (n, j) ∈ A),
(2) x 6∈ Un ⇐⇒ (∃j ∈ N)(x ∈ Bj and (n, j) ∈ B).

Thus, for each 1–generic x we can systematically search for some j ∈ N such that x ∈ Bj
and either (n, j) ∈ A or (n, j) ∈ B and the condition that holds tells us how to compute
JX(x)(n). Hence, JX restricted to 1–generics is computable relative to 0′.

Another consequence of the jump normal form (Theorem 5.12) together with Proposi-
tion 5.19 is the following result that generalizes Corollary 2.22.

Corollary 5.20 (Limit computability on 1–generics). Restricted to 1–generics every limit
computable F :⊆ X → Y on computable metric spaces X,Y is computable relative to the
halting problem.

Now the question appears how the property of being 1–generic relates to the property
of having a 1–generic name. What we can prove in general is that atypical points have
atypical names. As a preparation we need to show that admissible representations are
hereditarily quotient maps. We recall that a representation δ of a topological space X is
called admissible (with respect to this space) if and only if it is maximal with respect to the
topological version ≤t of the reducibility ≤ among all continuous representations [44]. The
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Cauchy representation δX is an example of an admissible representation [52, Theorem 8.1.4],
and hence any representation δ ≡ δX is also admissible. It follows from the second half of
the proof of [44, Theorem 4] that admissible representations are hereditary quotient maps in
the following sense.

Lemma 5.21 (Hereditary quotients). Let δ be an admissible representation of a topological
space X, and let Y be another topological space. Let f :⊆ X → Y be a function and
x ∈ dom(f). If fδ is continuous at all p ∈ δ−1{x}, then f is sequentially continuous at x.

Since every metric space X is sequential, we can replace sequential continuity by ordinary
continuity in this case. Then the property expresses what is usually called a hereditary
quotient map or a pseudo-open map [2].

Corollary 5.22 (Hereditary quotients). Every admissible representation of a sequential
topological space is a hereditary quotient map (or equivalently, is pseudo-open).

Using Lemma 5.21 we can now prove the following result, which shows that atypical
points have atypical names with respect to every representation in the equivalence class of
the Cauchy representation.

Proposition 5.23 (Non-generic names). Let X be a computable metric space with Cauchy
representation δX and x ∈ X. Let δ ≡ δX be another representation of X. If x is not
1–generic, then there is a p ∈ NN with δ(p) = x that is not 1–generic.

Proof. By Propositions 5.2 and 2.14 there is some computable F such that JXδ = FJ. Let
x be such that all names p ∈ δ−1{x} are 1–generic. Then FJ is continuous at all these p
and hence so is JXδ. By Lemma 5.21 this implies that JX is continuous at x, hence x is
1–generic.

This result captures as much as can be said about the relation of arbitrary points
and their names with respect to genericity in arbitrary computable metric spaces. It is
easy to see that in the equivalence class of the Cauchy representation δX there are always
representations without 1–generic names: one can for instance define δ ≡ δX such that names
are always zero in every second component and hence not 1–generic. But even if we restrict
ourselves to total δ ≡ δX for complete metric spaces X, then there are spaces such as X = N
in which all points are 1–generic. Hence having a non 1–generic name does not imply being
not 1–generic in general. If we consider the case of the reals X = R and reasonable total
variants of the Cauchy representation (such as the one from [10, Lemma 6.1]), then there
are syntactic properties of names such as: every component of the name encodes a rational
number with even denominator. This property constitutes a co-c.e. closed set A ⊆ NN that
is nowhere dense, i.e., ∂A = A, which means that all points in A are not 1–generic. On
the other hand, every real x, in particular every 1–generic real, has a name p ∈ A. Thus
having a non 1–generic name does not imply being not 1–generic for such a representation.
For special types of spaces and special representations one can provide further results along
these lines. For instance Kuyper and Terwijn proved that an irrational number x ∈ [0, 1] is
1–generic if and only if its unique binary expansion is 1–generic [30, Proposition 2.5].

6. Limit computability and computability relative to the halting problem

It is clear that every function that is computable relative to the halting problem is also
limit computable. This observation even holds uniformly in the sense specified in the
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following corollary. The corollary is a consequence of Theorem 4.12 (3) since id : X → X ′ is
computable.

Corollary 6.1 (Limit computability of functions computable relative to the halting problem).
id : C(X,Y )′ → C(X,Y ′) is computable for all represented spaces X,Y .

For some spaces, such as X = N, this identity is even a computable isomorphism (see
Corollary 4.14). However, it is clear that this does not happen for many other spaces X,Y
since often C(X,Y )′ $ C(X,Y ′). The former set contains only continuous functions, the
latter can contain discontinuous ones. Even restricted to continuous functions the identity
in Corollary 6.1 is not a computable isomorphism in general.

We can, however, characterize the functions that are computable relative to the halting
problems in terms of limit computable functions. For this purpose we need the notion of a
modulus of continuity. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y a function.
Then m : N→ N is called a modulus of continuity of f at x ∈ X if

dX(x, y) < 2−m(n) =⇒ dY (f(x), f(y)) < 2−n

holds for all y ∈ X and n ∈ N. The following result is well-known (see, for instance, [3,
Lemma 4.4.25]).

Proposition 6.2 (Modulus of continuity). Let X,Y be computable metric spaces. Then

Mod : C(X,Y )×X ⇒ NN, (f, x) 7→ {m ∈ NN : m is a modulus of continuity of f at x}
is computable.

We call M : X ⇒ NN, x 7→ {m ∈ NN : m is a modulus of continuity of f at x} the
global modulus of continuity of f . Using the previous proposition we can prove the following
characterization.

Theorem 6.3 (Computability relative to the halting problem). Let X,Y be computable
metric spaces and let f : X → Y be a function. Then the following are equivalent:

(1) f is computable relative to the halting problem,
(2) f is limit computable and continuous and its global modulus of continuity is computable

relative to the halting problem.

Proof. Let f : X → Y be computable relative to the halting problem. Then f : X ′ → Y ′

is computable by Theorem 4.8, and hence f is computable as a point in C(X,Y )′ by
Theorem 4.12. In particular, f is also limit computable (see Corollary 6.1). By Theorem 4.12
and Proposition 4.4 the problem Mod from Proposition 6.2 is computable with type Mod :
C(X,Y )′ × X ′ ⇒ (NN)′, and hence the global modulus of f is computable with type
M : X ′ ⇒ (NN)′, x 7→ Mod(f, x). By Theorem 4.8 this means that M is computable relative
to the halting problem.

Let now f be limit computable and continuous with a global modulus of continuity M
that is computable relative to the halting problem. We consider the computable metric
spaces (X, dX , α) and (Y, dY ). If f is limit computable, then also f ◦ α : N → Y is limit
computable and hence computable relative to the halting problem by Corollary 4.14. Given
x ∈ X and k ∈ N, we can compute with the help of the halting problem a modulus of
continuity m : N→ N of f at x, and we can compute an n ∈ N with dX(α(n), x) < 2−m(k),
which implies dY (fα(n), f(x)) < 2−k. Since fα(n) can be computed with the help of the
halting problem, we have found an approximation of f(x) with precision 2−k with the help of
the halting problem. This means that f is computable relative to the halting problem.
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This result tells us exactly which additional condition beyond continuity a limit com-
putable function f : X → Y must satisfy in order to be computable relative to the halting
problem. If a function is limit computable and just continuous on metric spaces, then a
hyperarithmetical oracle is sufficient to compute it. In fact, we can prove an even stronger
result.6

Theorem 6.4 (Effective Borel measurability and continuity). Let X,Y be computable metric
spaces and let X be complete. Let A ⊆ X be an effective Σ1

1–subset and let f : A→ Y be a
function. If f is effectively Borel measurable and continuous, then f is computable relative
to some hyperarithmetical oracle (i.e., an oracle in ∆1

1).

Proof. We use a standard numbering (Upn)n∈N of the sets Upn ⊆ Y that are c.e. relative to
p ∈ NN. We omit the upper index in order to denote the unrelativized c.e. open subsets.
For any c.e. open set Un ⊆ Y we have that f−1(Un) is effectively ∆1

1 and open in A,
i.e., we can effectively find some ∆1

1–set Dn in X and there is an open set V ⊆ X such
that f−1(Un) = V ∩ A = Dn ∩ A. In particular, f−1(Un) and A \ f−1(Un) are effectively
Σ1

1 in X and separated by the open set V . Then by the Louveau separation theorem
[32, Theorem B, page 369] the sets f−1(Un) and A \ f−1(Un) are also separated by a

Σ0,p
1 –set for some hyperarithmetical p ∈ NN (i.e., by a c.e. open set relative to p). Hence

f−1(Un) = Upk ∩A for some k ∈ N and some hyperarithmetical p ∈ NN. Now we consider the

function g : N→ NN, n 7→ 〈k, p〉. The property B := {〈n, k, p〉 ∈ NN : f−1(Un) = Upk ∩A} is
an effective Π1

1–property, since

〈n, k, p〉 ∈ B ⇐⇒ (∀x ∈ X)((x 6∈ Upk ∩A ∨ x ∈ Dn) ∧ (x 6∈ f−1(Un) ∨ x ∈ Upk )).

Hence, by the effective Π1
1–uniformization theorem [33, Theorem 4E.4] the function g is a

total Π1
1–function, hence in ∆1

1. Clearly, f is computable relative to g.

As an immediate corollary we obtain the following result.

Corollary 6.5 (Limit computability and continuity). Let X,Y be computable metric spaces
and let X be complete. If f : X → Y is limit computable and continuous, then f is computable
relative to some hyperarithmetical oracle (i.e., an oracle in ∆1

1).

For uniformly continuous functions we can improve this result. In this case even the
jump of the halting problem suffices to compute the function.

Theorem 6.6 (Limit computability and uniform continuity). Let X,Y be computable metric
spaces. If f : X → Y is limit computable and uniformly continuous, then f is computable
relative to 0′′.

Proof. We consider the computable metric spaces (X, dX , α) and (Y, dY ). As in the proof of
Theorem 6.3 we obtain that f ◦α : N→ Y is computable relative to 0′. Additionally, the set

A := {(n, k) ∈ N2 : (∃i, j ∈ N)(dX(α(i), α(j)) < 2−n and dY (fα(i), fα(j)) > 2−k)}
is c.e. relative to 0′ and hence computable relative to 0′′. Since f is uniformly continuous,
it follows that for each k ∈ N there are only finitely many n ∈ N with (n, k) ∈ A. Hence,
for each k ∈ N we can compute some m(k) with (m(k), k + 1) 6∈ A with the help of 0′′ and
m : N→ N is a uniform modulus of continuity of f (i.e., at every x ∈ X). We can proceed
as in the proof of Theorem 6.3 to show that f is computable relative to 0′′.

6This stronger result and its proof have been kindly suggested by an anonymous referee.



28 VASCO BRATTKA

It is clear that this theorem also holds for compact computable metric spaces X and
continuous and limit computable f , since any such f is automatically uniformly continuous.

Corollary 6.7 (Limit computability and uniform continuity). Let X,Y be computable
metric spaces and let X be compact. If f : X → Y is limit computable and continuous, then
f is computable relative to 0′′.

We could also prove such a result for effectively locally compact X and continuous and
limit computable f , since it is sufficient to obtain the modulus of continuity for a suitable
neighborhood of the input.

We will show that Theorem 6.6 gives the best possible condition and 0′′ cannot be
improved to 0′. In the following we will see some examples of continuous functions that
are limit computable but not computable relatively to the halting problem. For these
examples we use the set Fin := {n ∈ N : Wn finite}, which is known to be Σ0

2–complete in
the arithmetical hierarchy [47, Theorem 4.3.2], and hence it is not computable relative to
the halting problem. Its complement Inf := N \ Fin is Π0

2–complete and hence not even c.e.
relative to the halting problem. By |A| we denote the cardinality of a set A.

Proposition 6.8. There exists a uniformly continuous function f : 2N → R that is com-
putable with finitely many mind changes and hence low and limit computable, but that is not
computable relative to the halting problem.

Proof. We define f : 2N → R by

f(p) :=

{
2−n if 0n1|Wn|+10 v p for some n ∈ Fin
0 otherwise

.

Then f is continuous and hence uniformly continuous, since 2N is compact. We use a fixed
computable enumeration en : N→ N of Wn, i.e., range(en) = Wn. The following algorithm
shows that f is computable with finitely many mind changes:

(1) We start producing the default output 0 as long as no other value is determined in the
next step.

(2) As soon as a prefix of the input p of form 0n1k+10w with w ∈ {0, 1}m is known, we
check if there are exactly k different values among the numbers en(0), ..., en(m). If so,
then the output is replaced by 2−n, otherwise by 0.

This algorithm describes a computation with finitely many mind changes, since for any
fixed input p, the output value changes at most two times. In particular, f is low and
limit computable. Let us assume that f is computable relative to the halting problem.
Then by Corollary 5.7 there exists a computable sequence (fk)k∈N of computable functions
fk : 2N → R such that limk→∞ ||fk − f || = 0. Since the sequence (Kn)n∈N with Kn := 0n12N

is a computable sequence of computably compact sets, it follows that (fk(Kn))〈k,n〉∈N is a
computable sequence of computably compact sets too [37]. Since the maximum is computable
on computably compact sets by [52, Lemma 5.2.6], it follows that (max fk(Kn))k∈N is a
computable sequence, and it converges for each n ∈ N to max f(Kn). Hence, by

sn := lim
k→∞

max fk(Kn) = max f(0n12N) =

{
2−n if n ∈ Fin
0 otherwise

we define a sequence of numbers (sn)n∈N that is limit computable and hence computable
relative to the halting problem by Corollary 4.14. But this would imply that Fin is computable
relative to the halting problem. Contradiction!
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We can transfer this construction from Cantor space to the unit interval [0, 1].

Proposition 6.9. There exists a uniformly continuous function f : [0, 1] → R that is
computable with finitely many mind changes and hence low and limit computable, but that is
not computable relative to the halting problem.

Proof. We use the computable “triangle” function

∆ : R→ R, x 7→
{

1− |x| if −1 ≤ x ≤ 1
0 otherwise

This function has the extreme values f(−1) = f(1) = 0 and f(0) = 1 and interpolates linearly
between them otherwise. Outside of the interval (−1, 1) the function f is identically zero.
We define a computable double sequence (∆n,k)n,k∈N of triangle functions ∆n,k : [0, 1]→ R
scaled to the interval In,k := (2−n−1, 2−n−1 + 2−n−k−1) by

∆n,k(x) := ∆(2n+k+2(x− 2−n−1)− 1)

The function ∆n,k is zero outside of Kn := [2−n−1, 2−n], in fact even outside of the interval
In,k. With growing k the triangle of ∆n,k is compressed further on the left hand side of Kn.
We define a continuous function f : [0, 1]→ R by

f(x) :=
∑
n∈Fin

2−n∆n,|Wn|(x).

Similarly as in the proof of Proposition 6.8 one can show that f is computable with finitely
many mind changes and not computable relative to the halting problem. For the latter part
one considers the values sn := max f(Kn). For the former part we proceed as follows with a
given input x ∈ [0, 1]:

(1) As long as we cannot exclude that x = 2−n for some n ∈ N we produce the value 0 as
output.

(2) As soon as we detect that x ∈ (2−n−1, 2−n) we consider the enumeration en(0), en(1), ...
of Wn.

(3) Whenever we find a new number k of distinct values in this enumeration, then we
produce the value 2−n∆n,k(x) as output.

At any point x at most a finite number of mind changes is required since either the value k
stabilizes or ∆n,k(x) = 0 for all sufficiently large k.

We note that Proposition 6.9 cannot be strengthened such that the function f is
additionally continuously differentiable (see Corollary 6.16). However, this can be achieved
by using smooth versions of the triangle function ∆ that are distributed all over the entire
real line.

Proposition 6.10. There exists a function f : R→ R that is infinitely often differentiable,
computable with finitely many mind changes and hence low and limit computable, but that is
not computable relative to the halting problem.

Proof. We use the computable “bump” function ∆ : R→ R

∆(x) :=

{
e

1
1−x2 if |x| < 1

0 otherwise
,
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which is infinitely often continuously differentiable, computable and zero outside of (−1, 1).
We define a computable double sequence (∆n,k)n,k∈N of bump functions ∆n,k : R→ R scaled

to the interval In,k := (n, n+ 2−k−1) by

∆n,k(x) := ∆(2k+2(x− n)− 1)

The function ∆n,k is zero outside of Kn := [n, n+ 1], in fact even outside of the interval In,k.
With growing k the triangle of ∆n,k is compressed further on the left hand side of Kn. We
define f : R→ R by

f(x) :=
∑
n∈Fin

∆n,|Wn|(x).

Similarly as in the proof of Proposition 6.9 one can show that f is computable with finitely
many mind changes and not computable relative to the halting problem. Additionally, f is
infinitely often differentiable, since the ∆n,k are so.

We can also produce a similar counterexample of type f : 2N → S, where S denotes
Sierpiński space S = {0, 1} that is represented by δS(p) = 0 :⇐⇒ p = 0̂.

Proposition 6.11. There exists a continuous function f : 2N → S that is computable with
finitely many mind changes and hence low and limit computable, but that is not computable
relative to the halting problem.

Proof. We define f : 2N → S by

f(p) :=

 0 if p = 0̂

0 if 0n1|Wn|+10 v p for some n ∈ Fin
1 otherwise

.

The sets An := 0n1|Wn|+102N are clopen for every n ∈ Fin and the set A := {0̂} ∪
⋃
n∈FinAn

is closed. Hence f is the characteristic function χU of the open set U = 2N \A and hence
continuous. The following algorithm shows that f is computable with finitely many mind
changes:

(1) We start producing the default output 0 as long as no other value is determined in the
next step.

(2) As soon as a prefix of the input p of form 0n1k+10m+1 is known, we check if there are
exactly k different values among the numbers en(0), ..., en(m). If so, then the output is
replaced by 0, otherwise by 1.

This algorithm describes a computation with finitely many mind changes, since for any fixed
input p, the output value changes at most three times. In particular, f is limit computable.

Let us assume that f = χU is also computable relative to the halting problem. We
note that the map O(2N)→ C(2N,S), V 7→ χV is a computable isomorphism, and hence U
is a computable point in O(2N)′. The map ∀K : O(2N)→ S with ∀K(V ) = 1 ⇐⇒ K ⊆ V
is computable for every computably compact set K ⊆ 2N, and the map K 7→ ∀K is a
computable isomorphism between the space of compact subsets of 2N and C(O(2N), S) [37].
Since (Kn)n∈N with Kn := 0n12N is a computable sequence of computably compact sets, we
obtain that ∀Kn is computable uniformly in n. Hence n 7→ ∀Kn(U) is computable relatively
to the halting problem by Corollary 4.14. This is a contradiction since

∀Kn(U) = 1 ⇐⇒ 0n12N ⊆ U ⇐⇒ n ∈ Inf

and Inf is not c.e. relative to the halting problem.
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Since a set U ⊆ 2N is c.e. open (relative to some oracle q) if and only if χU : 2N → S
is computable (relative to q) and F ⊆ 2N is a computable Σ0

2–set in the Borel hierarchy
(or, equivalently, a computable Fσ–set) if and only if χF : 2N → S′ is computable [38,
Proposition 26], the previous proposition can also be rephrased in the following way.

Corollary 6.12. There is a computable Σ0
2–set U ⊆ 2N in the Borel hierarchy that is open,

but not c.e. open relative to the halting problem.

A similar result for Rn was proved by Ziegler [54, Theorem 4.4. a)]. There is even a
much stronger counter example for 2N. There is a Π0

2–set A ⊆ 2N that is a singleton (its only
member being the ω–jump of the empty set) such that this set is closed but not a Π0

1–set

relative to 0(n) for any n ∈ N (see [35, Proposition 1.8.62 and Exercise 1.8.67], [42, § 15.1
Theorem XII] and [31]).

Proposition 6.13 (Kuznécov and Trahténbrot 1955). There is a Σ0
2–set A ⊆ 2N with a

singleton complement that is not c.e. open relative to 0(n) for any n ∈ N.

Further results along these lines can be found in [14]. If we re-translate this back to
functions, then we obtain the following corollary.

Corollary 6.14. There is a continuous and limit computable f : 2N → S that is not
computable relative to 0(n) for any n ∈ N.

This also shows that Corollary 6.7 cannot be generalized to arbitrary spaces Y and that
the function f in Corollary 6.14 cannot have a realizer F : 2N → NN that is simultaneously
continuous and limit computable, even though it has separate realizers with each of these
properties individually.

There are some classes of functions for which the condition on the modulus of continuity
in Theorem 6.3 is automatically satisfied. The first example is the class of Hölder continuous
functions. Let (X, dX) and (Y, dY ) be metric spaces. Then f : X → Y is called Hölder
continuous with constant L > 0 and exponent α ∈ (0, 1] if

dY (f(x), f(y)) ≤ LdX(x, y)α

holds for all x, y ∈ X. A function is called Lipschitz continuous with constant L > 0 if it
is Hölder continuous with constant L and exponent α = 1. Since every Hölder continuous
function automatically has a computable constant L (perhaps slightly larger than necessary)
and a computable exponent α (perhaps slightly smaller than necessary and correct at least
for small distances dX(x, y) < 1), it follows that it automatically has a computable global
modulus of continuity. Hence we obtain the following corollary of Theorem 6.3.

Corollary 6.15 (Hölder continuity). Let X and Y be computable metric spaces, and let
f : X → Y be Hölder continuous. Then f is limit computable if and only if f is computable
relative to the halting problem.

Restricted to the set of Hölder continuous functions with a fixed Lipschitz constant L
and a fixed exponent α the map in Corollary 6.1 is even a computable isomorphism, as the
proof of “(2)=⇒(1)” of Theorem 6.3 is uniform. We note that even restricted to Lipschitz
continuous functions the notions of a low function and a function that is computable relative
to a low oracle are incomparable by Proposition 4.15.

In the table in Figure 2 we summarize which oracle classes are sufficient to compute a
limit computable function f : X → Y on complete computable metric spaces that satisfies
extra continuity assumptions.
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f limit computable and oracle class

continuous ∆1
1

uniformly continuous Σ0
2

Lipschitz or Hölder continuous Σ0
1

Figure 2: Oracle classes sufficient to compute f : X → Y .

Since every continuously differentiable function f : [0, 1]→ R is Lipschitz continuous
with Lipschitz constant max f ′[0, 1], we obtain the following conclusion (here it is important
that [0, 1] is compact, and the conclusion does not hold for functions of type f : R→ R by
Proposition 6.10).

Corollary 6.16 (Continuously differentiable functions). Let f : [0, 1]→ R be continuously
differentiable. Then f is limit computable if and only if f is computable relative to the halting
problem.

We can also draw some conclusions on linear operators. We recall that a computable
normed space is just a separable normed space such that the induced metric space is
computable and makes the algebraic operations computable. By the Borel graph theorem
of Schwartz [45] (see also [1, Corollary II.10.4]) every Borel measurable linear operator
T : X → Y from a Banach space X to a normed space Y is continuous, i.e., bounded. Using
Theorem 6.4 we obtain the following conclusion on effectively Borel measurable operators.

Corollary 6.17 (Borel measurable linear functions). Let X be a computable Banach space,
let Y be computable normed spaces, and let T : X → Y be linear. Then T is effectively Borel
measurable if and only if it is computable relative to a hyperarithmetical oracle (i.e., a ∆1

1

oracle).

Every linear bounded operator is automatically Lipschitz continuous. In the special
case of limit computability Corollary 6.15 yields the following.

Corollary 6.18 (Limit computable linear functions). Let X be a computable Banach space,
Y be computable normed spaces, and let T : X → Y be linear. Then T is limit computable
if and only if T is computable relative to the halting problem.

7. Applications

In this section we discuss a number of simple applications of the tools that we have developed
in the previous sections. Some of the results that we derive are known, but our techniques
provide very simple proofs. Other results are new.

We start with considering distance functions. For every subset A ⊆ X of a metric
space (X, d) we define the distance function dA : X → R, x 7→ infy∈A d(x, y). Every distance
function dA satisfies |dA(x) − dA(y)| ≤ d(x, y) for all x, y ∈ X, which means that every
distance function is Lipschitz continuous with Lipschitz constant 1.

Corollary 7.1 (Distance functions). Let X be a computable metric space and A ⊆ X. The
distance function dA : X → R is limit computable if and only if it is computable relative to
the halting problem.
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We recall that a problem f : X → R is called lower semi-computable if it is computable
as a function f : X → R< with the real numbers R< equipped with the lower Dedekind
cut representation, and likewise f is called upper semi-computable if it is computable as a
function f : X → R>, where the real numbers R> are equipped with the upper Dedekind cut
representation. Since it is clear that id : R< → R and id : R> → R are limit computable [8,
Proposition 3.7], we obtain the following conclusion.

Corollary 7.2 (Semi-computable functions). Every lower or upper semi-computable function
f : X → R is limit computable.

By f◦n we denote the n–fold composition of f with itself, i.e., f◦0 = id, f◦1 = f , f◦2 =
f ◦ f , etc. It is easy to see that the Mandelbrot set M := {c ∈ C : (∀n ∈ N) |f◦nc (0)| ≤ 2},
which is defined using the iteration function fc : C → C, z 7→ z2 + c, is co-c.e. closed (see
[52, Exercise 5.1.32 (c)] and [24]), and hence its distance function dM : C → R is lower
semi-computable [13, Corollary 3.14 (2)]. As a corollary of Theorem 6.3 and Corollaries 7.1
and 7.2 we obtain the following.

Corollary 7.3 (Mandelbrot set). The distance function dM : C→ R of the Mandelbrot set
M ⊆ C is computable relative to the halting problem.

Another application concerns the field of limit computable real numbers. By (R(n))c we

denote the set of points that are computable in R(n), i.e., computable with respect to the
n–th jump of the Cauchy representation. We recall that a subfield of the reals is called real
algebraically closed if the real-valued zeros of all non-constant polynomials with coefficients
from the subfield are again in the subfield.

Proposition 7.4 (Field of real numbers). The real numbers in (R(n))c form a real alge-
braically closed subfield of R for every n ∈ N.

Proof. We note the following facts for n ∈ N and a, b ∈ Q with a < b (see [52]):

(1) The algebraic operations +,−, · : R× R→ R are computable.
(2) Division ÷ :⊆ R× R→ R is computable.
(3) The constants 0, 1 are computable real numbers.
(4) The map p : Rn+1 → C[a, b], (a0, ..., an) 7→ (x 7→

∑n
i=0 aix

i) is computable.
(5) There is a computable Z[a,b] :⊆ C[a, b]→ R such that f(Z[a,b](f)) = 0 for every continuous

f : [a, b]→ R that has exactly one zero (see [52, Corollary 6.3.5], where this was proved
for [a, b] = [0, 1]; it is straightforward to generalize the proof).

It follows from (1)–(3) that Rc is a computable subfield of R and from (4) and (5) that this
field is real algebraically closed as the zeros of all non-constant polynomials are isolated and
can be computed if the coefficients are all computable. If we apply Proposition 4.4, then
we obtain that all the operations listed in (1)–(5) are also computable when all spaces are
replaced by their jumps. This implies that (R′)c is also a real algebraically closed subfield of
the real numbers. Inductively, this property can be transferred to higher jumps.

Zheng and Weihrauch [53, Proposition 7.6] also proved that (R(n))c is a subfield of
the reals. The fact that Rc is a real algebraically closed field was proved by Rice [41] and
Grzegorczyk [23]. Freund and Staiger [20] proved that (R′)c is a real algebraically closed
field.

Finally, we want to discuss some simple applications of our methods to differentiable
functions. By f ′ : [0, 1]→ R we denote the derivative of a differentiable function f : [0, 1]→ R.
With very little effort we obtain the following result.
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Proposition 7.5 (Operator of differentiation). The following operation is computable:
d :⊆ C([0, 1],R)→ C([0, 1],R′), f 7→ f ′ with dom(d) := {f : [0, 1]→ R : f differentiable}.

Proof. If f : [0, 1]→ R is differentiable, then

f ′(x) = lim
n→∞

f(x+ (1− x)2−n)− f(x− x2−n)

2−n

Using evaluation, currying and Theorem 5.3 we obtain that d is computable.

Using Theorem 5.17 we obtain the following result of Kuyper and Terwijn [30, Theo-
rem 4.3].

Corollary 7.6 (Kuyper and Terwijn 2014). The derivative f ′ : [0, 1]→ R of every differen-
tiable computable function f : [0, 1]→ R is limit computable and continuous at all 1–generic
points x ∈ [0, 1].

In fact, Kuyper and Terwijn obtained an even stronger result that characterizes 1–
generics in terms of derivatives [30, Theorem 5.2]. Our point here is not to strengthen these
results, but to illustrate the applicability of the tools that we have provided in this article.

If f : [0, 1] → R is even continuously differentiable then the limit in the proof of
Proposition 7.5 can be seen to be a uniform limit. This leads to the following result of von
Stein [49]. By C1 we denote the set of continuously differentiable functions f : [0, 1]→ R.

Proposition 7.7 (von Stein 1989). d|C1 :⊆ C([0, 1],R)→ C([0, 1],R)′, f 7→ f ′ is computable.

Proof. Let f : [0, 1]→ R be continuously differentiable. Then F : [0, 1]2 → R, defined by

F (x, y) :=

{
f ′(x)− f(x)−f(y)

x−y if x 6= y

0 otherwise

is continuous, and since [0, 1]2 is compact, F is even uniformly continuous. Let ε > 0. Since
F vanishes on the diagonal, there exists δ > 0 such that |x− y| < δ =⇒ |F (x, y)| < ε for all
x, y ∈ [0, 1]2. The values xn := x+ (1− x)2−n and yn := x− x2−n satisfy |xn − yn| = 2−n.
Hence there is a k ∈ N such that |xn − yn| < δ for all n ≥ k. Altogether, this shows that
fn : [0, 1]→ R with

fn(x) =
f(x+ (1− x)2−n)− f(x− x2−n)

2−n
.

satisfies ||fn − f ′|| < ε for n ≥ k. Hence, we have the uniform limit limn→∞ fn = f ′. The
sequence (fn)n∈N in C([0, 1],R) can be computed from f using evaluation and currying. It
follows that d|C1 is computable in the given way by Theorem 5.3.

This result can also be phrased such that d|C1 :⊆ C([0, 1],R)→ C([0, 1],R), f 7→ f ′ is limit
computable. In fact, von Stein even proved that d|C1 with this type is Weihrauch equivalent
to lim, which yields for instance Myhill’s result [34] that there is a continuously differentiable
computable function f : [0, 1]→ R with a non-computable derivative f ′ : [0, 1]→ R (see [4]).
Here we rather aim for the following corollary that was originally proved by Ho (announced
in [25, Theorem 1.3] and proved in [26, Theorem 19]).

Corollary 7.8 (Ho 1999). The derivative f ′ : [0, 1]→ R of every continuously differentiable
computable function f : [0, 1]→ R is computable relative to the halting problem.

With the following proposition we generalize the observation [10, Corollary 9.10 (2)] to
all computable metric spaces.
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Proposition 7.9 (C.e. comeager sets). Let X be a computable metric space and let (An)n∈N
be a computable sequence of co-c.e. closed subsets An ⊆ X that are all nowhere dense. Then
A := X \

⋃
n∈NAn is a comeager set that contains all 1–generic points x ∈ X.

Proof. If the An ⊆ X are nowhere dense (have non-empty interior) then An = ∂An = ∂Ac
n.

Hence X \
⋃
n∈N ∂Un ⊆ X \

⋃
n∈N ∂A

c
n = A.

We can also consider 1–generic points in the space C[0, 1] of continuous functions. In [5] it
was proved that the set of somewhere differentiable functions is included in

⋃∞
n=0Dn, where

(Dn)n∈N is a computable sequence of nowhere dense co-c.e. subsets Dn ⊆ C[0, 1], defined

by Dn :=
{
f ∈ C[0, 1] : (∃t ∈ [0, 1])(∀h ∈ R \ {0})

∣∣∣f(t+h)−f(t)
h

∣∣∣ ≤ n}. Hence, we obtain the

following observation.

Corollary 7.10 (Nowhere differentiability of 1–generic functions). Every continuous func-
tion f : [0, 1]→ R that is 1–generic as a point in C[0, 1] is nowhere differentiable.

The mere property that every 1–generic continuous f : [0, 1]→ R is not differentiable
could also be deduced from the fact that the operator of differentiation d is not continuous
at any point f .

These examples just serve as illustrations that a careful analysis of the notions of limit
computability and computability with respect to the halting problem is useful for applications
in analysis. In particular the concepts based on the Galois connection between limit and
Turing jumps yield very transparent and simple proofs.
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