10.23638/LMCS-14(3:21)2018 Thinniyam, Ramanathan S. Ramanathan S. Thinniyam Defining Recursive Predicates in Graph Orders episciences.org 2018 Computer Science - Logic in Computer Science contact@episciences.org episciences.org 2017-09-12T07:29:27+02:00 2018-09-24T09:05:41+02:00 2018-09-24 eng Journal article https://lmcs.episciences.org/3923 arXiv:1709.03060 1860-5974 PDF 1 Logical Methods in Computer Science ; Volume 14, Issue 3 ; 1860-5974 We study the first order theory of structures over graphs i.e. structures of the form ($\mathcal{G},\tau$) where $\mathcal{G}$ is the set of all (isomorphism types of) finite undirected graphs and $\tau$ some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order $\leq_t$ on the set $\mathcal{G}$ such that ($\mathcal{G},\leq_t$) is isomorphic to ($\mathbb{N},\leq$). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form ($\mathcal{G},\leq$) where $\leq$ is a partial order. We show that the subgraph order i.e. ($\mathcal{G},\leq_s$), induced subgraph order with one constant $P_3$ i.e. ($\mathcal{G},\leq_i,P_3$) and an expansion of the minor order for counting edges i.e. ($\mathcal{G},\leq_m,sameSize(x,y)$) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity.