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Abstract. The rational fixed point of a set functor is well-known to capture the behaviour
of finite coalgebras. In this paper we consider functors on algebraic categories. For them
the rational fixed point may no longer be fully abstract, i.e. a subcoalgebra of the final
coalgebra. Inspired by Ésik and Maletti’s notion of a proper semiring, we introduce the
notion of a proper functor. We show that for proper functors the rational fixed point is
determined as the colimit of all coalgebras with a free finitely generated algebra as carrier
and it is a subcoalgebra of the final coalgebra. Moreover, we prove that a functor is proper
if and only if that colimit is a subcoalgebra of the final coalgebra. These results serve as
technical tools for soundness and completeness proofs for coalgebraic regular expression
calculi, e.g. for weighted automata.

1. Introduction

Coalgebras allow to model many types of systems within a uniform and conceptually clear
mathematical framework [33]. One of the key features of this framework is final semantics ; the
final coalgebra provides a fully abstract domain of system behaviour (i.e. it identifies precisely
the behaviourally equivalent states). For example, the standard coalgebraic modelling of
deterministic automata (without restricting to finite state sets) yields the set of formal
languages as final coalgebra. Restricting to finite automata, one obtains precisely the regular
languages [32]. It is well-known that this correspondence can be generalized to locally finitely
presentable (lfp) categories [8], where finitely presentable objects play the role of finite sets.
For a finitary functor F (modelling a coalgebraic system type) one then obtains the rational
fixed point %F , which provides final semantics to all coalgebras with a finitely presentable
carrier [25]. Moreover, the rational fixed point is fully abstract, i.e. %F is a subcoalgebra of the
final one νF , whenever the classes of finitely presentable and finitely generated objects agree
in the base category and F preserves non-empty monomorphisms [27, Section 5]. While the
latter assumption on F is very mild, the former one on the base category is more restrictive.
However, it is still true for many categories used in the construction of coalgebraic system
models (e.g. sets, posets, graphs, vector spaces, commutative monoids, nominal sets and
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positively convex algebras). Hence, in these cases the rational fixed point %F is the canonical
domain of regular behaviour, i.e. the behaviour of ‘finite’ systems of type F .

In this paper we will consider rational fixed points in algebraic categories (a.k.a. finitary
varieties), i.e. categories of algebras specified by a signature of operation symbols with
finite arity and a set of equations (equivalently, these are precisely the Eilenberg-Moore
categories for finitary monads on sets). Being the target of generalized determinization [36],
these categories provide a paradigmatic setting for coalgebraic modelling beyond sets. For
example, non-deterministic automata, weighted or probabilistic automata [23], or context-
free grammars [43] are coalgebraically modelled over the categories of join-semilattices,
modules for a semiring, positively convex algebras, and idempotent semirings, respectively.
In algebraic categories one would like that the rational fixed point, in addition to being fully
abstract, is determined already by those coalgebras carried by free finitely generated algebras,
i.e. precisely those coalgebras arising by generalized determinization. In particular, this
feature is used in completeness proofs for generalized regular expressions calculi [12, 36,37];
there one proves that the quotient of syntactic expressions modulo axioms of the calculus
is (isomorphic to) the rational fixed point by establishing its universal property as a final
object for that quotient. A key feature of the settings in loc. cit. is that it suffices to verify
the finality only w.r.t. coalgebras with a free finitely generated carrier.

The purpose of the present paper is to provide sufficient conditions on the algebraic
base category and coalgebraic type functor that ensure that the rational fixed point is fully
abstract and that such finality proofs are sound. To this end we form a coalgebra that serves
as the semantics domain of all behaviours of target coalgebras of generalized determinization
(modulo bisimilarity on the level of these coalgebra). More precisely, let T : SetÑ Set be a
finitary monad on sets and F : SetT Ñ SetT be a finitary endofunctor preserving surjective
T -algebra morphisms (note that the last assumption always holds if F is lifted from some
endofunctor on Set). Now form the colimit ϕF of the inclusion functor of the full subcategory
Coalgffg F formed by all F -coalgebras of the form TX Ñ FTX, where X is a finite set.
Urbat [41] has shown that ϕF is a fixed point of F . We first first provide a characterization
of ϕF that uniquely determines it up to isomorphism: based on Adámek et al.’s notion of a
Bloom algebra [2], we introduce the new notion of an ffg-Bloom algebra, and we prove that,
considered as an algebra for F , ϕF is the initial ffg-Bloom algebra (Theorem 4.4).

Then we turn to the full abstractness of the rational fixed point %F and the soundness
of the above mentioned finality proofs. Inspired by Ésik and Maletti’s notion of a proper
semiring (which is in fact a notion concerning weighted automata), we introduce proper
functors (Definition 5.2), and we prove that for a proper functor on an algebraic category
the rational fixed point is determined by the coalgebras with a free finitely generated carrier.
More precisely, if F is proper, then the rational fixed point %F is (isomorphic to) initial
Bloom algebra ϕF . Moreover, we show that a functor F is proper if and only if ϕF is a
subcoalgebra of the final coalgebra νF (Theorem 5.6). As a consequence we also obtain the
desired result that for a proper functor F the finality property of %F can be established by
only verifying that property for all coalgebras from Coalgffg F (Corollary 5.9).

In addition, we provide more easily established sufficient conditions on SetT and F that
ensure properness: F is proper if finitely generated algebras of SetT are closed under kernel
pairs and F maps kernel pairs to weak pullbacks in Set. For a lifting F this holds whenever
the lifted functor on sets preserves weak pullbacks; in fact, in this case the above conditions
were shown to entail Corollary 5.9 in previous work [12, Corollary 3.36]. However, the type
functor (on the category of commutative monoids) of weighted automata with weights drawn



PROPER FUNCTORS 3

from the semiring of natural numbers provides an example of a proper functor for which the
above condition on SetT fails.

Another recent related work concerns the so-called locally finite fixed point ϑF [27]; this
provides a fully abstract behavioural domain whenever F is a finitary endofunctor on an lfp
category preserving non-empty monomorphisms. In loc. cit. it was shown that ϑF captures
a number of instances that cannot be captured by the rational fixed point, e.g. context free
languages [43], constructively algebraic formal power-series [30, 44], Courcelle’s algebraic
trees [6, 13] and the behaviour of stack machines [22]. However, as far as we know, ϑF is not
amenable to the simplified finality check mentioned above unless F is proper.

Putting everything together, in an algebraic category we obtain the following picture of
fixed points of F (where � denotes quotient coalgebras and � a subcoalgebra):

ϕF � %F � ϑF � νF. (1.1)

We exhibit an example, where all four fixed points are different. However, if F is proper and
preserves monomorphisms, then ϕF , %F and ϑF are isomorphic and fully abstract, i.e. they
collapse to a subcoalgebra of the final one: ϕF – %F – ϑF � νF .

At this point, note that Urbat’s above mentioned recent work [41] also provides a
framework which covers the four above fixed points as four instances of one theory. This
provides, for example, a uniform proof of the fact that they are fixed points and their
universal properties (in the case of %F , ϑF and ϕF ). However, Urbat’s paper does not study
the relationship between the four fixed points.

The rest of the paper is structured as follows: in Section 2 we collect some technical
preliminaries and recall the rational and locally finite fixed points more in detail. Section 3
introduces the new fixed point ϕF and establishes the picture in (1.1). Next, Section 4
provides the characterization of ϕF as the initial ffg-Bloom algebra for F . Section 5 introduces
proper functors and presents our main results, while in Section 6 we present the proof of
Theorem 5.6. Finally, Section 7 concludes the paper.

This paper is a reworked full version of the conference paper [26]. We have included
detailed proofs, and in addition, we have added the new results in Section 4.

Acknowledgments. I would like to thank Jiří Adámek, Henning Urbat and Joost Winter
for helpful discussions. I am also grateful to the anonymous reviewers whose constructive
comments have helped to improve the presentation of this paper.

2. Preliminaries

In this section we recall a few preliminaries needed for the subsequent development. We
assume that readers are familiar with basic concepts of category theory.

We denote the coproduct of two objects X and Y of a category A by X ` Y with
injections inl : X Ñ X ` Y and inr : Y Ñ X ` Y .

Remark 2.1. Recall that a strong epimorphism in a category A is an epimorphism e : A� B
of A that has the unique diagonal property w.r.t. any monomorphism. More precisely,
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whenever the outside of the following square

A
e // //

f
��

B

g

��

d

~~

C //
m
// D

commutes, where m : C � D is a monomorphism, then there exists a unique morphism
d : B Ñ C with d ¨ e “ f and m ¨ d “ g.

Similarly, a jointly epimorphic family ei : Ai Ñ B, i P I, is strong if it has the following
similar unique diagonal property: for every monomorphism m : C � D and morphisms
g : B Ñ D and fi : Ai Ñ C, i P I, such that m ¨ fi “ g ¨ ei holds for all i P I, there exists a
unique d : C Ñ D such that m ¨ d “ g and d ¨ ei “ fi for all i P I.

On several occasions we will make use of the following fact.

Lemma 2.2. Let D : D Ñ C be a diagram with a colimit cocone ind : DdÑ C. Then the
colimit injections ind form a strongly epimorphic family.

Proof. First, it is easy to see that the ind form a jointly epimorphic family. To see that it
is strong, suppose we have a monomorphism m : M � N and morphisms g : C Ñ N and
fd : DdÑM for every object d in D such that m ¨ fd “ g ¨ ind. Then the fd : DdÑM form
a cocone of D. Indeed, for every morphism h : dÑ d1 of D we have

m ¨ fd1 ¨Dh “ g ¨ ind1 ¨Dh “ g ¨ ind “ m ¨ fd,

which implies that fd1 ¨Dh “ fd since m is a monomorphism. Therefore there exists a unique
i : C Ñ M such that fd “ i ¨ ind for every d in D . It follows that also m ¨ i “ g since
this equation holds when extended by every ind; then use that the ind form an epimorphic
family.

2.1. Algebras and Coalgebras. We also assume that readers are familiar with algebras
and coalgebras for an endofunctor. Given an endofunctor F on some category A we write
pνF, tq for the final F -coalgebra (if it exists). Recall, that the final F -coalgebra exists under
mild assumptions on A and F , e.g. whenever A is locally presentable and F an accessible
functor (see [8]). For any coalgebra c : C Ñ FC we will write :c : C Ñ νF for the unique
coalgebra morphism. We write

CoalgF

for the category of F -coalgebras and their morphisms. Recall that all colimits in CoalgF
are formed on the level of A , i.e. the canonical forgetful functor CoalgF Ñ A creates all
colimits (see e.g. [1, Prop. 4.3]).

If A is a concrete category, i.e. equipped with a faithful functor | ¨ | : A Ñ Set, one
defines behavioural equivalence as the following relation „: given two F -coalgebras pX, cq
and pY, dq then x „ y holds for x P |X| and y P |Y | if there is another F -coalgebra pZ, eq and
F -coalgebra morphisms f : X Ñ Z and g : Y Ñ Z with |f |pxq “ |g|pyq.

The base categories A of interest in this paper are the algebraic categories, i.e. categories
of Eilenberg-Moore algebras (or T -algebras, for short) for a finitary monad T on Set. Recall
that, for a monad T on Set with unit η and multiplication µ, a T -algebra is a pair pA,αq
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where α : TA Ñ A, called the algebra structure, is a map such that the diagram below
commutes:

A
ηA
// TA

α
��

TTA
µA
oo

Tα
��

A TAα
oo

Morphisms of T -algebras are just the usual morphisms of functor algebra, i.e. a T -algebra
morphism h : pA,αq Ñ pB, βq is a map h : AÑ B such that the square below commutes:

TA
α //

Th
��

A

h
��

TB
β
// B

The category of T -algebras and their morphisms is denoted by SetT as usual. Equivalently,
those categories are precisely the finitary varieties, i.e. category of Σ-algebras for a signature
Σ, whose operation symbols have finite arity, satisfying a set of equations (e.g. the categories
of monoids, groups, vector spaces, or join-semilattices).

We will frequently make use of the fact that pTX, µXq is the free T -algebra on the set
X (of generators). This means that for every T -algebra pA,αq and every map f : X Ñ A
there exists a unique extension of f to a T -algebra morphisms, i.e., there exists a unique
T -algebra morphism f‹ such that f‹ ¨ ηX “ f :

X
ηX
//

f
!!

TX

f‹

��

TTX
µX
oo

Tf‹

��

A TAα
oo

Moreover, it is easy to verify that f‹ “ µA ¨ Tf holds.
A free T -algebra pTX, µXq where X is a finite set is called free finitely generated.
In the following we will often drop algebra structures when we discuss a T -algebra pA,αq

and simply speak of the algebra A.

Example 2.3. (1) The leading example in this paper are weighted automata considered as
coalgebras. Let pS,`, ¨, 0, 1q be a semiring, i.e. pS,`, 0q is a commutative monoid, pS, ¨, 1q
a monoid and the usual distributive laws hold: r ¨ 0 “ 0 “ 0 ¨ r, r ¨ ps` tq “ r ¨ s` r ¨ t
and pr ` sq ¨ t “ r ¨ t ` s ¨ t. We just write S to denote a semiring. As base category
A we consider the category S-Mod of S-semimodules; recall that a (left) S-semimodule
is a commutative monoid pM,`, 0q together with an action S ˆM Ñ M , written as
juxtaposition sm for r P S and m PM , such that for every r, s P S and every m,n PM
the following laws hold:

pr ` sqm “ rm` sm 0m “ 0 1m “ m
rpm` nq “ rm` rn r0 “ 0 rpsmq “ pr ¨ sqm

An S-semimodule morphism is a monoid homomorphism h : M1 ÑM2 such that hprmq “
rhpmq for each r P S and m PM1.

An S-weighted automaton over the fixed input alphabet Σ is a triple pi, pMaqaPΣ, oq,
where i and o are a row and a column vector in Sn, respectively, of input and output
weights, respectively, and Ma is an n ˆ n-matrix over S, for some natural number n.
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This number n is the number of states of the weighted automaton and the matrices Ma

represent S-weighted transitions; in fact, Ma
i,j is the weight of the a-transition from state

i to state j (with a weight of 0 meaning that there is no a-transition). Every weighted
automaton accepts a formal power series (or weighted language) L : Σ˚ Ñ S defined in
the following way: Lpwq “ i ¨Mw ¨ o where Mw is the obvious inductive extension of
a ÞÑMa to words in Σ˚: M ε is the identity matrix and Mav “Ma ¨Mv for every a P Σ
and v P Σ˚.

Now consider the functor FX “ SˆXΣ on S-Mod. Clearly, a weighted automaton
(without its initial vector) on n states is equivalently an F -coalgebra on Sn; in fact,
to give a coalgebra structure Sn Ñ Sˆ pSnqΣ amount to specifying two S-semimodule
morphisms o : Sn Ñ S (equivalently, a column vector over in S) and t : Sn Ñ pSnqΣ

(equivalently, an Σ-indexed family of S-semimodule morphisms on Sn each of which can
be represented by an nˆ n-matrix).

The final F -coalgebra is carried by the set SΣ˚ of all weighted languages over Σ
with the obvious (coordinatewise) S-semimodule structure and with the F -coalgebra
structure given by xo, ty : SΣ˚ Ñ Sˆ pSΣ˚qΣ with opLq “ Lpεq and tpLqpaq “ λw.Lpawq;
it is straightforward to verify that o and t are S-semimodule morphisms and form a
final coalgebra. Moreover, for every F -coalgebra on Sn the unique coalgebra morphism
Sn Ñ SΣ˚ assigns to every element i of Sn (perceived as the row input vector of the
weighted automaton associated to the given coalgebra) the weighted language accepted
by that automaton.

(2) An important special case of S-weighted automata are ordinary non-deterministic au-
tomata. One takes S “ t0, 1u the Boolean semiring for which the category of S-
semimodules is (isomorphic to) the category of join-semilattices. Then FX “ t0, 1uˆXΣ

is the coalgebraic type functor of deterministic automata with input alphabet Σ, and
there is a bijective correspondence between an F -coalgebra on a free join-semilattice and
non-deterministic automata. In fact in one direction one restricts PfX Ñ t0, 1uˆpPfXq

Σ

to the set X of generators, and in the other direction one performs the well-known subset
construction. The final coalgebra is carried by the set of all formal languages on Σ in
this case.

(3) Another special case is where S is a field. In this case, S-semimodules are precisely the
vector spaces over the field S. Moreover, since every field is freely generated by its basis,
it follows that the S-weighted automata are precisely those F -coalgebras whose carrier is
a finite dimensional vector space over S.

We will now recall a few properties of algebraic categories SetT , where T is a finitary set
monad, needed for our proofs.

Remark 2.4. (1) Recall that every strong epimorphism e in SetT is regular, i.e. e is the
coequalizer of some pair of T -algebra morphisms. It follows that the classes of strong
and regular epimorphisms coincide, and these are precisely the surjective T -algebra
morphisms. Similarly, jointly strongly epimorphic families of morphisms are precisely
the jointly surjective families. Finally, monomorphisms in SetT are precisely the injective
T -algebra morphisms since the canonical forgetful functor SetT Ñ Set creates all limits
(and pullbacks in particular).

(2) Every free T -algebra TX is (regular) projective, i.e. given any surjective T -algebra
morphism q : A � B then for every T -algebra morphism h : TX Ñ B there exists a
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T -algebra morphism g : TX Ñ A such that q ¨ g “ h:

A

q
����

TX

g
==

h
// B

(3) Furthermore, note that every finitely presentable T -algebra A is a regular (“ strong)
quotient of a free T -algebra TX with a finite set X of generators. Indeed, A is presented
by finitely many generators and relations. So by taking X as a finite set of generators of
A, the unique extension of the embedding X ãÑ A yields a surjective T -algebra morphism
TX � A.

2.2. The Rational Fixed Point. As we mentioned in the introduction the canonical
domain of behaviour of ‘finite’ coalgebras is the rational fixed point of an endofunctor. Its
theory can be developed for every finitary endofunctor on a locally finitely presentable
category. We will now recall the necessary background material.

A filtered colimit is the colimit of a diagram D Ñ C where D is a filtered category
(i.e. every finite subcategory D0 ãÑ D has a cocone in D), and a directed colimit is a colimit
whose diagram scheme D is a directed poset. A functor is called finitary if it preserves filtered
(equivalently directed) colimits. An object C is called finitely presentable (fp) if the hom-
functor C pC,´q preserves filtered (equivalently directed) colimits, and finitely generated (fg)
if C pC,´q preserves directed colimits of monos (i.e. colimits of directed diagrams D : D Ñ C
where all connecting morphisms Df are monic in C ). Clearly, every fp object is fg, but the
converse fails in general. In addition, fg objects are closed under strong epis (quotients),
which fails for fp objects in general.

A cocomplete category C is called locally finitely presentable (lfp) if there is a set of
finitely presentable objects in C such that every object of C is a filtered colimit of objects
from that set. We refer to [8] for further details.

Example 2.5. Examples of lfp categories are the categories of sets, posets and graphs, with
finitely presentable objects precisely the finite sets, posets, and graphs, respectively. The
category of vector spaces over the field k is lfp with finite-dimensional spaces being the
fp-objects. Every algebraic category is lfp. The finitely generated objects are precisely the
finitely generated algebras (in the sense of general algebra), and finitely presentable objects
are precisely those algebras specified by finitely many generators and finitely many relations.

Example 2.6. Finitary functors abound. We just mention a few examples of finitary functors
on Set.

Constant functors and the identity functor are, of course, finitary. For every finitary
signature Σ, i.e. Σ “ pΣnqnăω is a sequence of sets with Σn containing operation symbols of
the finite arity n, the associated polynomial functor given by

FΣX “
ž

năω

Σn ˆX
n

is finitary. The finite power-set functor given by PfX “ tY | Y Ď X,Y finiteu is finitary
(while the full power-set functor is not) and so is the bag functor mapping a set X to the set of
finite multisets on X. The class of finitary functors enjoys good closure properties: it is closed
under composition, finite products, arbitrary coproducts, and, in fact, arbitrary colimits.
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As we have mentioned already, the finitary monads (i.e. whose functor part is finitary) on
Set are precisely those monads whose Eilenberg-Moore category SetT is (isomorphic to) a
finitary variety of algebras.

Assumptions 2.7. For the rest of this section we assume that F denotes a finitary endo-
functor on the lfp category A .

Remark 2.8. Recall that an lfp category, besides being cocomplete, is complete and has
(strong epi, mono)-factorizations of morphisms [8], i.e. every morphism f : X Ñ Y can be
decomposed as f “ m ¨ e where e : X � I is a strong epi and m : I � Y a mono. One
should think of I as the image of X in Y under f .

The rational fixed point is a fully abstract model of behaviour for all F -coalgebras whose
carrier is an fp-object. We now recall its construction [5].

Notation 2.9. Denote by Coalgfp F the full subcategory of all F -coalgebras on fp carriers,
and let p%F, rq be the colimit of the inclusion functor of Coalgfp F into CoalgF :

p%F, rq “ colimpCoalgfp F ãÑ CoalgF q

with the colimit injections a7 : AÑ %F for every coalgebra a : AÑ FA in Coalgfp F .
We call p%F, rq the rational fixed point of F ; indeed, it is a fixed point:

Proposition 2.10 ([5]). The coalgebra structure r : %F Ñ F p%F q is an isomorphism.

The rational fixed point can be characterized by a universal property both as a coalgebra
and as an algebra for F : as a coalgebra %F is the final locally finitely presentable coalgebra [25],
and as an algebra it is the initial iterative algebra [5]. We will not recall the latter notion
as it is not needed for the technical development in this paper. Locally finitely presentable
(locally fp, for short) coalgebras for F can be characterized as precisely those F -coalgebra
obtained as a filtered colimit of a diagram of coalgebras from Coalgfp F :

Proposition 2.11 ([25], Corollary III.13). An F -coalgebra is locally fp if and only if it is a
colimit of some filtered diagram D Ñ Coalgfp F ãÑ CoalgF .

For A “ Set an F -coalgebra pX, cq is locally fp iff it is locally finite, i.e. every element
of X is contained in a finite subcoalgebra. Analogously, for A the category of vector spaces
over the field k an F -coalgebra pX, cq is locally fp iff it is locally finite dimensional, i.e. every
element of X is contained in a finite dimensional subcoalgebra.

Of course, there is a unique coalgebra morphism %F Ñ νF . Moreover, in many cases
%F is fully abstract for locally fp coalgebras, i.e. besides being the final locally fp coalgebra
the above coalgebra morphism is monic; more precisely, if the classes of fp- and fg-objects
coincide and F preserves non-empty monos, then %F is fully abstract (cf. Theorem 2.17
below). The assumption that the two object classes coincide is often true:

Example 2.12. (1) In the category of sets, posets, and graphs, fg-objects are fp and those
are precisely the finite sets, posets, and graphs, respectively.

(2) A locally finite variety is a variety of algebras, where every free algebra on a finite set of
generators is finite. It follows that fp- and fg-objects coincide and are precisely the finite
algebras. Concrete examples are the categories of Boolean algebras, distributive lattices
and join-semilattices.
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(3) In the category of S-semimodules for a semiring S the fp- and fg-objects need not coincide
in general. However, if the semiring S is Noetherian in the sense of Ésik and Maletti [18],
i.e. every subsemimodule of a finitely generated S-semimodule is itself finitely generated,
then fg- and fp-semimodules coincide. Examples of Noetherian semirings are: every
finite semiring, every field, every principal ideal domain such as the ring of integers and
therefore every finitely generated commutative ring by Hilbert’s Basis Theorem. The
tropical semiring pNY t8u,min,`,8, 0q is not Noetherian [17]. The usual semiring of
natural numbers is also not Noetherian: the N-semimodule NˆN is finitely generated
but its subsemimodule generated by the infinite set tpn, n` 1q | n ě 1u is not. However,
N-semimodules are precisely the commutative monoids, and for them fg- and fp-objects
coincide (this is known as Redei’s theorem [31]; see Freyd [20] for a very short proof).

(4) The category PCA of positively convex algebras [14, 15] is the Eilenberg-Moore category
for the monad D of finitely supported subprobability distributions on sets. This monad
maps a set X to

DX “ td : X Ñ r0, 1s | supp d is finite and
ÿ

xPX

dpxq ď 1u,

where supp d “ tx P X | dpxq ‰ 0u, and a function f : X Ñ Y to Df : DX Ñ DY with

Dfpdq “ λy.
ÿ

fx“y

dpxq.

More concretely, a positively convex algebra is a set X equipped with finite convex sum

operations: for every n and p1, . . . , pn P r0, 1s with
n
ř

i“1
pi ď 1 we have an n-ary operation

assigning to x1, . . . , xn P X an element
n
Ð

i“1
pixi subject to the following axioms:

(a)
n
Ð

i“1
pki xi “ xk whenever pkk “ 1 and pki “ 0 for i ‰ k, and

(b)
n
Ð

i“1
pi

˜

k
Ð

j“1
qi,jxj

¸

“
k
Ð

j“1

ˆ

n
ř

i“1
piqi,j

˙

xj .

For n “ 1 we write the convex sum operation for p P r0, 1s simply as px. The morphisms
of PCA are maps preserving finite convex sums in the obvious sense.

The point of mentioning this example at length is that PCA is used for the coalgebraic
modelling of the trace semantics of probabilistic systems (see e.g. [38]), and recently,
it was established by Sokolova and Woracek [39] that in PCA, the classes of fp- and
fg-objects coincide. We shall come back to this example in Section 5 when we introduce
and discuss proper functors.

Example 2.13. We list a number of examples of rational fixed points for cases where they
do form subcoalgebras of the final coalgebra.
(1) For the functor FX “ t0, 1uˆXA on Set the finite coalgebras are deterministic automata,

and the rational fixed point is carried by the set of regular languages on the alphabet A.
(2) For every finitary signature Σ, the final coalgebra for the associated polynomial functor

FΣ (see Example 2.6) is carried by the set of all (finite and infinite) Σ-trees, i.e. rooted and
ordered trees where each node with n-children is labelled by an n-ary operation symbol.
The rational fixed point is the subcoalgebra given by rational (or regular [13]) Σ-trees,
i.e. those Σ-trees that have only finitely many different subtrees (up to isomorphism) –
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this characterization is due to Ginali [21]. For example, for the signature Σ with a binary
operation symbol ˚ and a constant c the following infinite Σ-tree (here written as an
infinite term) is rational:

c ˚ pc ˚ pc ˚ ¨ ¨ ¨ qqq;

in fact, its only subtrees are the whole tree and the single node tree labelled by c.
(3) For the functor FX “ R ˆ X on Set the final coalgebra is carried by the set Rω of

real streams, and the rational fixed point is carried by its subset of eventually periodic
streams (or lassos). Considered as a functor on the category of vector spaces over R,
the final coalgebra νF remains the same, but the rational fixed point %F consists of all
rational streams [34].

(4) For the functor FX “ SˆXA on the category S-Mod of S-semimodules for the semiring
S we already mentioned that νF “ SA˚ consists of all formal power-series. Whenever the
classes of fg- and fp-semimodules coincide, e.g. for every Noetherian semiring S or the
semiring of natural numbers, then %F is formed by the recognizable formal power-series;
from the Kleene-Schützenberger theorem [35] (see also [11]) it follows that these are,
equivalently, the rational formal power-series.

(5) On the category of presheaves SetF , where F is the category of all finite sets and maps
between them, consider the functor FX “ V `X ˆX ` δpXq, where V : F ãÑ Set is the
embedding and δpXqpnq “ Xpn` 1q. This is a paradigmatic example of a functor arising
from a binding signature for which initial semantics was studied by Fiore et al. [19].

The final coalgebra νF is carried by the presheaf of all λ-trees modulo α-equivalence:
νF pnq is the set of (finite and infinite) λ-trees in n free variables (note that such a tree
may have infinitely many bound variables). And %F is carried by the rational λ-trees,
where an α-equivalence class is called rational if it contains at least one λ-tree which has
(up to isomorphism) only finitely many different subtrees (see [7] for details). Rational
λ-trees also appear as the rational fixed point of a very similar functor on the category
of nominal sets [29]. An analogous characterization can be given for every functor on
nominal sets arising from a binding signature [28].

As we mentioned previously, whether fg- and fp-objects coincide is currently unknown in
some base categories used in the coalgebraic modelling of systems, for example, in idempotent
semirings (used in the treatment of context-free grammars [43]), in algebras for the stack
monad (used for modelling configurations of stack machines [22]); or it even fails, for example
in the category of finitary monads on sets (used in the categorical study of algebraic trees [6])
or in Eilenberg-Moore categories for a monad in general (the target categories of generalized
determinization [36]).

As a remedy, in recent joint work with Pattinson and Wißmann [27], we have introduced
the locally finite fixed point which provides a fully abstract model of finitely generated
behaviour. Its construction is very similar to that of the rational fixed point but based on
fg- in lieu of fp-objects. In more detail, one considers the full subcategory Coalgfg F of all
F -coalgebras carried by an fg-object and takes the colimit of its inclusion functor:

pϑF, `q “ colimpCoalgfg F ãÑ CoalgF q.

Theorem 2.14 ([27], Theorems 3.10 and 3.12). Suppose that the finitary functor F : A Ñ A
preserves non-empty monos. Then pϑF, `q is a fixed point for F , and it is a subcoalgebra of
νF .



PROPER FUNCTORS 11

Remark 2.15. (1) Note that for an arbitrary (not necessarily concrete) lfp category A the
notion of a non-empty monomorphisms needs explanation: a monomorphism m : X � Y
is said to be empty if its domain X is a strict initial object of A , where recall that the
initial object 0 of A is strict provided that every morphism AÑ 0 is an isomorphism. In
particular, if the initial object of A is not strict, then all monomorphisms are non-empty.

(2) For a functor F : A Ñ A preserving non-empty monos the category CoalgF of all F -
coalgebras inherits the (strong epi, mono)-factorization system from A (see Remark 2.8)
in the following sense: every coalgebra morphism f : pX, cq Ñ pY, dq can be factorized
into coalgebra morphisms e and m carried by a strong epi and a mono in A , respectively.
In fact, one (strong epi, mono)-factorizes f “ m ¨ e in A and obtains a unique coalgebra
structure on the ‘image’ I such that e and m are coalgebra morphisms:

X
c //

e
����

FX

Fe
��

I //
��

m
��

FI
��

Fm
��

Y
d
// FY

Indeed, if m is a non-empty mono, we know that Fm is monic by assumption and we
use the unique diagonal property. Otherwise, m is an empty mono, which implies that
e : X � I is an isomorphism since I is a strict initial object. Then Fe ¨ c ¨ e´1 is the
desired coalgebra structure on I.

Furthermore, like its brother, the rational fixed point, ϑF is characterized by a universal
property both as a coalgebra and as an algebra: it is the final locally finitely generated
coalgebra and the initial fg-iterative algebra [27, Theorem 3.8 and Corollary 4.7].

Under additional assumptions, which all hold in every algebraic category, we have a close
relation between %F and ϑF ; in fact, the following is a consequence of [27, Theorem 5.4]:

Theorem 2.16. Suppose that A is an lfp category such that every fp-object is a strong
quotient of a strong epi projective fp-object, and let F : A Ñ A be finitary and preserving
non-empty monos. Then ϑF is the image of %F in the final coalgebra.

More precisely, taking the (strong epi, mono)-factorization of the unique F -coalgebra
morphism %F Ñ νF yields ϑF , i.e. for F preserving monos on an algebraic category we have
the following picture:

%F � ϑF � νF.

A sufficient condition under which %F and ϑF coincide is the following (cf. [27, Section 5]):

Theorem 2.17. Suppose that in addition to the assumption in Theorem 2.16 the classes of
fg- and fp-objects coincide in A . Then %F – ϑF , i.e. the left-hand morphism above is an
isomorphism.

In the introduction we briefly mentioned a number of interesting instances of ϑF that
are not (known to be) instances of the rational fixed point; see [27] for details. A concrete
example, where %F is not a subcoalgebra of νF (and hence not isomorphic to ϑF ) was given
in [12, Example 3.15]. We present a new, simpler example based on similar ideas:
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Example 2.18. (1) Let A be the category of algebras for the signature Σ with two unary
operation symbols u and v. The natural numbers N with the successor function as both
operations uN and vN form an object of A . We consider the functor FX “ NˆX on
A . Coalgebras for F are automata carried by an algebra A in A equipped with two
Σ-algebra morphisms: an output morphism AÑ N and a next state morphism AÑ A.
The final coalgebra is carried by the set Nω of streams of natural numbers with the
coordinatewise algebra operations and with the coalgebra structure given by the usual
head and tail functions.

Note that the free Σ-algebra on a set X of generators is TX – tu, vu˚ˆX; we denote
its elements by wpxq for w P tu, vu˚ and x P X. The operations are given by prefixing
words by the letters u and v, respectively: sTX : wpxq ÞÑ swpxq for s “ u or v.

Now one considers the F -coalgebra a : AÑ FA, where A “ T txu is free Σ-algebra on
one generator x and a is determined by apxq “ p0, upxqq. Recall our notation :a : AÑ νF
for the unique coalgebra morphism. Clearly, :apxq is the stream p0, 1, 2, 3, ¨ ¨ ¨ q of all
natural numbers, and since :a is a Σ-algebra morphism we have

:apupxqq “ :apvpxqq “ p1, 2, 3, 4, ¨ ¨ ¨ q.

Since A is (free) finitely generated, it is of course, finitely presentable as well. Thus, pA, aq
is a coalgebra in Coalgfp F . However, we shall now prove that the (unique) F -coalgebra
morphism a7 : AÑ %F maps upxq and vpxq to two distinct elements of %F .

We prove this by contradiction. So suppose that a7pupxqq “ a7pvpxqq. By the
construction of %F as a filtered colimit (see Notation 2.9) we know that there exists a
coalgebra b : B Ñ FB in Coalgfp F and an F -coalgebra morphism h : AÑ B with

hpupxqq “ hpvpxqq. (2.1)

Since B is a finitely presented Σ-algebra it is the quotient in A of a free algebra A1
via some surjective Σ-algebra morphism q : A1 � B, say. Next observe, that there
is a coalgebra structure a1 : A1 Ñ FA1 such that q is an F -coalgebra morphism from
pA1, a1q to pB, bq: for Fq is a surjective Σ-algebra morphism and so we obtain q1 by using
projectivity of A1 w.r.t. b ¨ q : A1 Ñ FB (cf. Remark 2.4(2)):

A1
a1 //

q
����

FA1

Fq
����

B
b
// FB

Now choose a term tx in A1 with qptxq “ hpxq. Using that q and h are Σ-algebra
morphisms we see that qpuptxqq “ qpvptxqq as follows:

qpuptxqq “ uBpqptxqq “ uBphpxqq “ hpupxqq “ vBphpxqq “ vBpqptxqq “ qpvptxqq. (2.2)

Since h is an F -coalgebra morphism, we obtain from (2.1) that h merges the right-hand
components of apupxqq and apvpxqq, in symbols: hpuupxqq “ hpvupxqq. It follows that q
satisfies qpuuptxqq “ qpvuptxqq using a similar argument as in (2.2) above.

Continuing to use that h and q are F -coalgebra morphisms, we obtain the following
infinite list of elements (terms) of A1 that are merged by q (we write these pairs as
equations):

qpun`1ptxqq “ qpvunptxqq for n P N. (2.3)
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We need to prove that there exists no finite set of relations E Ď A1 ˆA1 generating
the above congruence on A1 given by q : A1 � B. So suppose the contrary, and let A10
be the Σ-subalgebra of A1 generated by ttxu, i.e. A10 – tu, vu˚ˆ ttxu. Since qptxq “ hpxq
and q and h are both coalgebra morphisms we know that :a1 “ :b ¨ q and :b ¨ h “ :a and
therefore

:a1ptxq “ :bpqptxqq “ :bphpxqq “ :apxq “ p0, 1, 2, 3, ¨ ¨ ¨ q.

Since :a1 is a Σ-algebra morphism it follows that for a word w P tu, vu˚ of length n we
have

:a1pwptxqq “ pn, n` 1, n` 2, n` 3, ¨ ¨ ¨ q. (2.4)
Thus, when w,w1 P tu, vu˚ are of different length, then the pair pwptxq, w1ptxqq cannot be
in the congruence generated by E; otherwise we would have qpwptxqq “ qpw1ptxqq which
implies :a1pwptxqq “ :a1pw1ptxqq contradicting (2.2).

Now let ` be the maximum length of words from tu, vu˚ occurring in any pair contained
in the finite set E. Then the pair pu``2ptxq, vu

``1ptxqq obtained from the ``1-st equation
in (2.3) is not in the congruence generated by E; for if any pair of terms of height greater
then ` are related by that congruence, these two terms must have the same head symbol.
Thus we arrive at a contradiction as desired.

(2) In this example we also have that ϑF and νF do not coincide. To see this we use
that ϑF is the union of images of all :c : TX Ñ νF where pTX, cq ranges over those
F -coalgebras whose carrier TX is free finitely generated (i.e. TX – tu, vu˚ˆX for some
finite set X) [27, Theorem 6.5]. Hence, each such algebra TX is countable, and there
exist only countably many of them, up to isomorphism. Furthermore, note that on every
free finitely generated algebra TX there exist only countably many coalgebra structures
c : TX Ñ FTX, since FTX “ NˆTX is countable and c, being a Σ-algebra morphism,
is determined by its action on the finitely many generators. Thus, ϑF is countable
because it is the above union of countably many countable coalgebras. However, νF
being carried by the set Nω of all streams over N is uncountable.

3. A Fixed Point Based on Coalgebras Carried by Free Algebras

In this section we study coalgebras for a functor F on an algebraic category SetT whose
carrier is a free finitely generated algebra. These coalgebras are of interest because they are
precisely those coalgebras arising as the results of the generalized determinization [36].

We shall see that their colimit yields yet another fixed point of F (besides the rational
fixed point and the locally finite one). Moreover, in the next section we show that this fixed
point is characterized by a universal property as an algebra.

Assumptions 3.1. Throughout the rest of the paper we assume that A is an algebraic
category, i.e. A is (equivalent to) the Eilenberg-Moore category SetT for a finitary monad
T on Set. Furthermore, we assume that F : A Ñ A is a finitary endofunctor preserving
surjective T -algebra morphisms.

Remark 3.2. (1) Note that we do not assume here that F preserves non-empty monomor-
phisms (cf. Theorems 2.14 and 2.16) as this assumption is not needed for our main result
Theorem 5.6. However, we will make this assumption at the end, in order to obtain the
picture in (1.1) (see Corollary 5.8).
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(2) The most common instance of a functor F on an algebraic category A is a lifting of an
endofunctor F0 : SetÑ Set, i.e. we have a commutative square

SetT
F //

U
��

SetT

U
��

Set
F0

// Set

where U : A Ñ Set is the forgetful functor. Recall that monomorphisms in SetT are
precisely the injective T -algebra morphisms (see Remark 2.4(1)). Hence, a lifting F
preserves all non-empty monos since the lifted set functor F0 does so. Similarly, F
preserves surjective T -algebra morphisms since F0 preserves surjections (which are split
epis in Set). Finally, F is finitary whenever F0 is so because filtered colimits in SetT are
created by U .

(3) It is well known that liftings F : SetT Ñ SetT are in bijective correspondence with
distributive laws of the monad T over the functor F0, i.e. natural transformations
λ : TF0 Ñ F0T satisfying two obvious axioms w.r.t. the unit and multiplication of T
(see e.g. Johnstone [24]):

F0
F0η
//

ηF0 !!

TF0

λ
��

F0T

TTF0
Tλ //

µF0

��

TF0T
λT // F0TT

F0µ
��

TF0
λ

// F0T

Moreover, coalgebras for the lifting F are precisely the λ-bialgebras, i.e. sets X equipped
with an Eilenberg-Moore algebra structure α : TX Ñ X and a coalgebra structure
c : X Ñ F0X subject to the following commutativity condition

TX

α

��

Tc // TF0X
λX // F0TX

F0α
��

X c
// F0X

which states that c is a T -algebra morphism from pX,αq to F pX,αq.
(4) Let F0 : SetÑ Set have a lifting to SetT . Generalized determinization [36] is the process

of turning a given coalgebra c : X Ñ F0TX in Set into the coalgebra c‹ : TX Ñ FTX
in SetT . For example, for the functor F0X “ t0, 1u ˆXΣ on Set and the finite power-set
monad T “ Pf , F0T -coalgebras are precisely non-deterministic automata and generalized
determinization is the construction of a deterministic automaton by the well-known
subset construction. The unique F -coalgebra morphism :pc‹q assigns to each state
x P X the language accepted by x in the given non-deterministic automaton (whereas
the final semantics for F0T on Set provides a kind of process semantics taking the
non-deterministic branching into account).

Thus studying the behaviour of F -coalgebras whose carrier is a free finitely generated
T -algebra TX is precisely the study of a coalgebraic language semantics of finite F0T -
coalgebras.

Notation 3.3. We denote by
Coalgffg F
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the full subcategory of CoalgF given by all coalgebras c : TX Ñ FTX whose carrier is a
free finitely generated T -algebra, i.e. where X is a finite set X.

The colimit of the inclusion functor of Coalgffg F into the category of all F -coalgebras is
denoted by

pϕF, ζq “ colimpCoalgffg F ãÑ CoalgF q

with the colimit injections inc : TX Ñ ϕF for every c : TX Ñ FTX in Coalgffg F .

Notation 3.4. Since every free finitely generated algebra TX is clearly fp (being presented
by the finite set X of generators and no relations), Coalgffg F is a full subcategory of Coalgfp F .
Therefore, the universal property of the colimit ϕF induces a coalgebra morphism denoted by
h : ϕF Ñ %F . Furthermore we write m : ϕF Ñ νF for the unique F -coalgebra morphisms
into the final coalgebra, respectively.

We shall show in Proposition 3.9 that h is a strong epimorphism. Thus, whenever F
preserves non-empty monos, we have the picture (1.1) from the introduction.

Remark 3.5. We will also use that the colimit ϕF is a sifted colimit.
(1) Recall that a small category D is called sifted [9] if finite products commute with colimits

over D in Set. More precisely, D is sifted iff given any diagram D : D ˆJ Ñ Set, where
J is a finite discrete category, the canonical map

colim
dPD

´

ź

jPJ

Dpd, jq
¯

Ñ
ź

jPJ

pcolim
dPD

Dpd, jqq

is an isomorphism. A sifted colimit is a colimit of a diagram with a sifted diagram
scheme.

(2) It is well-known that the forgetful functor SetT Ñ Set preserves and reflects sifted
colimits; this follows from [9, Corollary 11.9].

(3) Further recall [9, Example 2.16] that every small category D with finite coproducts is
sifted. Thus, from Lemma 3.6 below it follows that D “ Coalgffg F is sifted, and therefore
ϕF is a sifted colimit.

Lemma 3.6. The category Coalgffg F is closed under finite coproducts in CoalgF .

Proof. The empty map 0 Ñ FT0 extends uniquely to a T -algebra morphism T0 Ñ FT0,
i.e. an F -coalgebra, and this coalgebra is the initial object of Coalgffg F .

Given coalgebras c : TX Ñ FTX and d : TY Ñ FTY one uses that T pX ` Y q together
with the injections T inl : TX Ñ T pX ` Y q and T inr : TY Ñ T pX ` Y q form a coproduct in
SetT . This implies that forming the coproduct of pTX, cq and pTY, dq in CoalgF we obtain
an F -coalgebra on T pX ` Y q, and this is an object of Coalgffg F since X ` Y is finite.

Theorem 3.7 (Urbat [41], Lemma 4.5). If F preserves sifted colimits, then ϕF is a fixed
point of F , i.e. ζ : ϕF Ñ F pϕF q is an isomorphism.

Recall that every finitary endofunctor on Set preserves sifted colimits (this follows
from [9, Corollary 6.30]). Thus, so does every lifting F : SetT Ñ SetT of a finitary endofunctor
on Set, using Remark 3.5(2). In general, finitary functors need not preserve sifted colimits [9,
Example 7.11].

One might now expect that ϕF is characterized as a coalgebra by a universal property
similar to finality properties that characterize %F and ϑF . However, Urbat [41] shows that
this is not the case. In fact, he provides the following example of a coalgebra c : TX Ñ FTX
where inc : TX Ñ ϕF is not the only F -coalgebra morphism:
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Example 3.8. (1) Let A be the category of algebras for the signature with one unary
operation symbol u (and no equations), and let F “ Id be the identity functor on A .
Let A be the free (term) algebra on one generator x, and let B be the free algebra on
one generator y (i.e. both A and B are isomorphic to N). We equip A and B with the
F -coalgebra structures a “ id : AÑ A and b : B Ñ B given by bpyq “ upyq. Then the
mapping t ÞÑ uptq clearly is an F -coalgebra morphism from B to itself, i.e. a morphism
in Coalgffg F . Therefore we have inbpyq “ inbpupyqq.

Now define a morphism g : AÑ ϕF in A by gpxq “ inbpyq. Then g is an F -coalgebra
morphism since

g ¨ apxq “ gpxq “ inbpyq “ inbpupyqq “ inbpbpyqq “ ζpinbpyqq “ ζpgpxqq,

where ζ : ϕF Ñ F pϕF q is the coalgebra structure on ϕF .
We prove the following property: for every morphism f in Coalgffg F from α : TX Ñ

TX to β : TY Ñ TY , any t P TX reaches finitely many states iff fptq does so, more
precisely:

tαnptq | n P Nu is finite ðñ tβnpfptqq | n P Nu is finite.

Indeed, if t reaches finitely many states, then the fpαnptqq, for n P N, form a finite set,
and βnpfptqq, n P N is the same set since f is a coalgebra morphism.

Conversely, suppose that t reaches infinitely many states. Since f is a morphism in A ,
we know that if αnptq is ukpxq for some x P X then fpαnptqq “ βnpfptqq must be ulpyq
with l ě k for some y P Y . Thus, fptq must also reach infinitely many states.

We can now conclude that g, ina : AÑ ϕF are different coalgebra morphisms. Indeed,
inapxq reaches only itself since x does so, but gpxq “ inbpyq reaches infinitely many states
since y does so. Thus, gpxq ‰ inapxq.

It follows that |ϕF | ě 2, while %F “ ϑF “ νF “ 1; to see the latter equation use
that id : 1 Ñ 1 is a coalgebra in Coalgfp F since 1 is the object of A presented by one
generator z and one relation z “ upzq.

(2) Using similar ideas as in the previous point one can show that, for the category A and
FX “ N ˆX from Example 2.18, ϕF and %F do not coincide. Consequently, in this
example, none of the arrows in (1.1) is an isomorphism.

In order to see that ϕF and %F do not coincide, consider the two coalgebras a : AÑ FA
and b : B Ñ FB with A “ T txu and B “ T tyu and with the coalgebra structure given by
apxq “ p0, upxqq and bpyq “ p0, vpyqq. These coalgebras both lie in Coalgffg F . Consider
also the coalgebra p : P Ñ FP where P is presented by one generator z and one relation
upzq “ vpzq, i.e. P “ T tzu{„, where „ is the smallest congruence with upzq „ vpzq.
Hence, wpzq „ w1pzq for w,w1 P tu, vu˚ iff w and w1 have the same length. The coalgebra
structure is defined by pprwpxqsq “ p0, ruwpxqsq. The coalgebra pP, pq lies in Coalgfp F .
Now f : A Ñ P and g : B Ñ P determined by fpxq “ z “ gpyq are easily seen to be
F -coalgebra morphisms, and therefore a7 “ p7 ¨ f and b7 “ p7 ¨ g. Therefore

a7pxq “ p7pfpxqq “ p7pzq “ p7pgpyqq “ b7pyq.

However, we will prove that inapxq ‰ inbpxq. For any pTX, cq in Coalgffg F and t P TX,
we say that t-reachable states are u-bounded if there exists a natural number k such
that, for any state s “ wpxq reachable from t via the next state function, the number
|w|u of u’s in w is at most k. Now we prove for any morphism f : pTX, cq Ñ pTY, dq in
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Coalgffg F and any t P TX the following claim:

t-reachable states are u-bounded iff fptq-reachable states are u-bounded.

Indeed, a state s “ wpxq is reachable from t iff fpsq “ wfpxq is reachable from fptq.
Then the ’only if’ direction is clear: if t-reachable states are not u-bounded, then neither
are fptq-reachable states. For the ’if’ direction suppose t-reachable states are u-bounded
by k. Then fptq-reachable states are bounded by k `maxt|fpxq|u | x P Xu.

Coming back to the discussion of properties that ϕF does have, the following proposition
shows that %F is always a strong quotient of ϕF . Recall from Notation 3.4 the canonical
coalgebra morphism h from ϕF to %F :
Proposition 3.9. The morphism h : ϕF � %F is a strong epimorphism in A .

The following proof is set theoretic and makes explicit use of the fact that A is algebraic
over Set, i.e. we use that strong epimorphisms in A are precisely surjective T -algebra
morphisms. In the appendix we provide a purely category theoretic proof, which is somewhat
longer, however. That proof shows that the above result holds for more general base categories
than sets.

Proof. We first prove the following fact:

every coalgebra in Coalgfp F is a regular quotient of some coalgebra in Coalgffg F .

Indeed, given any a : AÑ FA in Coalgfp F we know that its carrier is a regular quotient of
some free T -algebra TX with X finite, via q : TX � A, say (see Remark 2.4.3). Since F
preserves regular epis (“ surjections) we can use projectivity of TX (see Remark 2.4.2) to
obtain a coalgebra structure c on TX making q an F -coalgebra morphism:

TX
c //

q
����

FTX

Fq
����

A a
// FA

This implies that we have c7 “ a7 ¨ q.
Now let p P %F . Since %F is the colimit of all coalgebras in Coalgfp F , we know from

Lemma 2.2 that there exists some coalgebra a : AÑ FA in Coalgfp F and r P A such that
a7prq “ p. By the above fact, we have pTX, cq in Coalgffg F and the surjective coalgebra
morphism q : TX � A. Hence there exists some s P TX with qpsq “ r. By the finality of
%F we have the commuting square below:

TX
q
// //

inc

��

A

a7

��

ϕF
h
// // %F

Thus we have p “ a7pqpsqq “ hpincpsqq, which shows that h is surjective as desired.
Corollary 3.10. If F preserves non-empty monomorphisms, then we obtain the situation
displayed in (1.1):

ϕF � %F � ϑF � νF.

Indeed, this follows from Proposition 3.9 and Theorem 2.16.
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4. A Universal Property of ϕF

We have seen in Example 3.8(1) that ϕF , unlike %F and ϑF , does not enjoy a finality
property as a coalgebra. In this section we will prove that, as an algebra for F , ϕF is
characterized by a universal property. This property then determines ϕF uniquely up to
isomorphism. To this end we make the

Assumption 4.1. In addition to Assumptions 3.1 we assume in this section that F preserves
sifted colimits (cf. Remark 3.5).

By Theorem 3.7, we know that ϕF is then a fixed point of F so that by inverting its
coalgebra structure we may regard it as the F -algebra ζ´1 : F pϕF q Ñ ϕF .

We have already mentioned that both %F and ϑF are characterized by universal properties
as F -algebras: they are the initial iterative and initial fg-iterative algebras, respectively.
However, those properties entail that there exists a unique F -coalgebra morphism from every
coalgebra in Coalgfp F to %F , and from every coalgebra in Coalgfg F to ϑF , respectively.
That means that simply adjusting the definition of the notion of iterative algebra does not
yield the desired universal property of ϕF , again due to Example 3.8(1).

The key to establishing a universal property of ϕF is to consider algebras which admit
canonical (rather than unique) coalgebra-to-algebra homomorphisms. The following notion
is inspired by the Bloom algebras introduced by Adámek et al. [2].

Definition 4.2. An ffg-Bloom algebra for the functor F is a triple pA, a, :q where a : FAÑ A
is an F -algebra and : is an operation

TX
c
ÝÑ FTX,X finite

TX
c:
ÝÑ A

subject to the following axioms:
(1) solution: c: is a coalgebra-to-algebra morphism, i.e. the diagram below commutes:

TX
c: //

c
��

A

FTX
Fc:
// FA

a

OO

(2) functoriality: for every coalgebra morphism m : pTX, cq Ñ pTY, dq in Coalgffg F we have
c: “ d: ¨m:

TX
c //

m
��

FTX

Fm
��

TY
d
// FY

ùñ

TX
c:

((
m

��

A

TY d:

66

A morphism of ffg-Bloom algebras from pA, a, :q to pB, b, ;q is an F -algebra morphism
preserving solutions, i.e. an F -algebra morphism h : pA, aq Ñ pB, bq such that for every
c : TX Ñ FTX in Coalgffg F we have

c; “ pTX
c:
ÝÑ A

h
ÝÑ Bq.

Observation 4.3. The algebra ζ´1 : F pϕF q Ñ ϕF together with the operation ; given
by the colimit injections, i.e. c; “ inc : TX Ñ ϕF for every c : TX Ñ FTX in Coalgffg F ,
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clearly is an ffg-Bloom algebra. Indeed, the solution axiom holds since inc is a coalgebra
morphisms from pTX, cq to pϕF, ζq and functoriality holds since the inc form a compatible
cocone of the diagram D : Coalgffg F ãÑ CoalgF .

Theorem 4.4. The above Bloom algebra on ϕF is the initial ffg-Bloom algebra.

Proof. It remains to prove the universal property. Let pA, a, :q be any ffg-Bloom algebra.
Then the morphisms c: : TX Ñ A, for c : TX Ñ FTX ranging over Coalgffg F , form a
compatible cocone on the diagram D by functoriality. Therefore we have a unique morphism
h : ϕF Ñ A such that the triangles below commute

TX

inc

��

c:

!!

ϕF
h
// A

for every c : TX Ñ FTX in Coalgffg F .

In order to see that h is an F -algebra morphism consider the diagram below:

TX
c //

inc

��

FTX

F inc

��

ϕF
ζ
//

h
��

F pϕF q
ζ´1
oo

Fh
��

A//

c:

FAa
oo oo

Fc: (4.1)

Its outside commutes, for every c : TX Ñ FTX in Coalgffg F , by the solution axiom for A,
and the left-hand and right-hand parts by the definition of h. The upper square commutes
by the solution axiom for ϕF . Therefore, for every c : TX Ñ FTX in Coalgffg F we have

h ¨ inc “ a ¨ Fh ¨ ζ ¨ inc.

Use that the colimit injections inc form an epimorphic family to conclude that h is an
F -algebra morphism, i.e. h ¨ ζ´1 “ a ¨ Fh. This proves existence of a morphism of ffg-Bloom
algebras from ϕF to A.

For the uniqueness suppose that g : ϕF Ñ A is any morphism of ffg-Bloom algebras.
Then

g ¨ inc “ g ¨ c; “ c:

holds for every c : TX Ñ FTX in Coalgffg F . Thus, g “ h by the universal property of the
colimit ϕF .

The following result provides a simple alternative characterization of the category of
ffg-Bloom algebras for F without mentioning : and its axioms. This result is similar
to [2, Prop. 3.4] for ordinary Bloom algebras. Here AlgF denotes the category of all
F -algebras.

Proposition 4.5. The category of ffg-Bloom algebras is isomorphic to the slice category
pϕF, ζ´1q{AlgF .

Proof. (1) Given an ffg-Bloom algebra pA, a, :q, initiality of ϕF provides an F -algebra
morphism h : ϕF Ñ A, i.e. an object of the slice category. Moreover, this object assignment
clearly gives rise to a functor using the initiality of ϕF .
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(2) In the reverse direction, suppose we are given any F -algebra pA, aq and F -algebra
morphism h : pϕF, ζ´1q Ñ pA, aq. Then we define for every c : TX Ñ FTX in Coalgffg F ,

c: “ pTX
inc
ÝÑ ϕF

h
ÝÑ Aq.

Then using diagram (4.1) we see that c: satisfies the solution axiom: indeed, the outside of
the diagram commutes since all its inner parts do. Moreover, functoriality of : follows from
that of ;: given any m : pTX, cq Ñ pTY, dq in Coalgffg F we have

d: ¨m “ h ¨ ind ¨m “ h ¨ inc “ c:.

Furthermore, given a morphism in the slice category, i.e. we have h : pϕF, ζ´1q Ñ pA, aq,
g : pϕF, ζ´1q Ñ pB, bq and m : pA, aq Ñ pB, bq such that m ¨ h “ g, we see that m is a
morphism of ffg-Bloom algebras from pA, a, :q to pB, b, ;q, where c; : TX Ñ B is defined as
g ¨ inc: indeed, m is an F -algebra morphism and we have

m ¨ c: “ m ¨ h ¨ inc “ g ¨ inc “ c;.

That this gives a functor from the slice category to the category of ffg-Bloom algebras is
again straightforward.

(3) We have defined two identity-on-morphisms functors and it remains to show that
they are mutually inverse on objects.

From ffg-Bloom algebras to the slice category and back we form for the given ffg-
Bloom algebra pA, a, :q the ffg-Bloom algebra pA, a, ;q where c; “ h ¨ inc for the unique
morphism h : ϕF Ñ A of ffg-Bloom algebras. Hence, since h preserves solutions we thus
have c; “ h ¨ inc “ c: for every c : TX Ñ FTX in Coalgffg F .

From the slice category to ffg-Bloom algebras and back we take for a given F -algebra
morphism h : pϕF, ζ´1q Ñ pA, aq the Bloom algebra pA, a, :q with c: “ h ¨ inc, which shows
that h is a morphism of ffg-Bloom algebras. Thus, going back to the slice category we get
back to h.

5. Proper Functors and Full Abstractness of ϕF

In this section we are going to investigate when the three left-hand fixed points in (1.1)
collapse to one, i.e. ϕF – %F – ϑF . We introduce proper functors and show that a functor
is proper if and only if ϕF is fully abstract, i.e. a subcoalgebra of the final one. This also
entails that the rational fixed point %F is fully abstract and at the same time it is determined
by the coalgebras with free finitely generated carrier. More precisely, the finality of a given
locally fp coalgebra for F can be established by checking the universal property only for the
coalgebras in Coalgffg F (Corollary 5.9). Here we continue to work under Assumptions 3.1.

Remark 5.1. (1) Recall that a zig-zag in a category A is a diagram of the form

Z0

f0   

Z2

f1~~ f2   

¨ ¨ ¨

f3~~ fn´2 ""

Zn

fn´1||

Z1 Z3 ¨ ¨ ¨ Zn´1

For A “ SetT , we say that the zig-zag relates z0 P Z0 and zn P Zn if there exist zi P Zi,
i “ 1, . . . , n´ 1 such that fipziq “ zi`1 for i even and fipzi`1q “ zi for i odd.
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(2) Ésik and Maletti [17] introduced the notion of a proper semiring in order to obtain the
decidability of the (language) equivalence of weighted automata. A semiring S is called
proper provided that for every two S-weighted automata A and B whose initial states x
and y, respectively, accept the same weighted language there exists a zig-zag

A “M0

$$

M2

}} !!

¨ ¨ ¨

}} ""

Mn “ B

yy

M1 M3 ¨ ¨ ¨ Mn´1

of simulations that relates x and y. Recall here that a simulation from a weighted
automaton pi, pMaqaa P A, oq with n states to another one pj, pNaqaPA, pq with m states
is an S-semimodule morphism represented by an n ˆ m matrix H over S such that
i ¨H “ j, o ¨H “ p and Ma ¨H “ H ¨Na.

Ésik and Maletti show that every Noetherian semiring is proper as well as the semiring
N of natural numbers, which is not Noetherian. However, the tropical semiring pNY
t8u,min,`,8, 0q is not proper.

Recall from Example 2.3 that S-weighted automata with input alphabet Σ are equivalently
coalgebras with carrier Sn, where n ě 1 is the number of states, for the functor FX “

SˆXΣ on the category S-Mod. Note that the Sn are precisely the free finitely generated
S-semimodules, whence S-weighted automata are precisely the coalgebras in Coalgffg F , which
explains why we are interested in collecting precisely their behaviour in the form of the fixed
point ϕF . Moreover, since simulations of S-weighted automata are clearly in one to one
correspondence with F -coalgebra morphisms, one easily generalizes the notion of a proper
semiring as follows. Recall that ηX : X Ñ TX denotes the unit of the monad T .

Definition 5.2. We call the functor F : A Ñ A proper whenever for every pair of coalgebras
c : TX Ñ FTX and d : TY Ñ FTY in Coalgffg F and every x P X and y P Y such that
ηXpxq „ ηY pyq are behaviourally equivalent there exists a zig-zag in Coalgffg F relating ηXpxq
and ηY pyq.

Example 5.3. A semiring S is proper iff the functor FX “ SˆXΣ on S-Mod is proper for
every input alphabet Σ. We know that Noetherian semirings are proper (cf. Example 2.12.3),
and the semiring N of natural numbers is proper. Recently, Sokolova and Woracek [40] have
shown that the non-negative rationals Q` and non-negative reals R` form proper semirings.

Example 5.4. Constant functors are always proper. Indeed, suppose that F is the constant
functor on some algebra A. Then we have νF “ A, and for any F -coalgebra B its coalgebra
structure c : B Ñ FB “ A is also the unique F -coalgebra morphism from B to νF “ A.

Now given any c : TX Ñ FTX “ A and d : TY Ñ FTY “ A and x P TX, y P TY as
in Definition 5.2. Then ηXpxq „ ηY pyq is equivalent to cpηXpxqq “ dpηY pyqq. Let a be this
element of A, and extend x : 1 Ñ X, y : 1 Ñ Y and a : 1 Ñ A to T -algebra morphisms
Tx : T1 Ñ TX, Ty : T1 Ñ TY and

a‹ : T1 Ñ A “ FT1 (the latter yielding an F -coalgebra). Then

TX T1
Tx

||

Ty

""

TY

TX TY
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is the required zig-zag in Coalgffg F relating ηXpxq and ηY pyq.

Example 5.5. Sokolova and Woracek [40] have recently proved that the functor FX “

r0, 1s ˆXΣ on the category PCA of positively convex algebras (see Example 2.12.4) is proper.
In addition, its subfunctor F̂ given by

F̂X “ tpo, fq P r0, 1s ˆXΣ | @s P Σ : Dps P r0, 1s, xs P X :

o`
ÿ

sPΣ

ps ď 1, fpsq “ psxsu

is proper. The latter functor was used as coalgebraic type functor for the axiomatization of
probabilistic systems in [38]. In fact, the completeness proof of the expression calculus in
loc. cit. makes use of our Corollary 5.9 below.

In general, it seems to be non-trivial to establish that a given functor is proper (even
for the identity functor this may fail; in the light of Theorem 5.6 below this follows from
Example 3.8(1)). However, we will provide in Proposition 5.10 sufficient conditions on A
and F the entail properness using our main result:

Theorem 5.6. The functor F is proper iff the coalgebra ϕF is a subcoalgebra of νF .

The latter condition states that the unique coalgebra morphism m : ϕF Ñ νF is a
monomorphism in A .

We present the proof of this theorem in Section 6. Here we continue with a discussion of
the consequences of this result.

Corollary 5.7. If F is proper, then ϕF is the rational fixed point of F .

Proof. Let u : %F Ñ νF be the unique F -coalgebra morphism. Then we have a commutative
triangle of F -coalgebra morphisms due to finality of νF :

ϕF
h // // %F

u // νF.
��

m

OO

Since F is proper, m is a monomorphism in A , hence so is h. Since h is also a strong
epimorphism by Proposition 3.9, it is an isomorphism. Thus, ϕF – %F is the rational fixed
point of F .

Corollary 5.8. Suppose that F preserves non-empty monomorphisms. Then the functor F
is proper iff ϕF – %F – ϑF � νF .

Proof. If the three fixed points are isomorphic, then F is proper by Theorem 5.6.
Conversely, since F preserves non-empty monomorphisms, we have the situation displayed

in (1.1) (see Corollary 3.10). Now if F is proper we know from Corollary 5.7 that ϕF – %F .
Thus, %F is a subcoalgebra of νF , i.e. the composition of the last two morphisms in (1.1) is a
monomorphism. Thus, so is %F � ϑF . Since this is also a strong epimorphism, we conclude
that %F – ϑF .

Note that this result also entails full abstractness of ϕF – %F .
A key result for establishing soundness and completeness of coalgebraic regular expression

calculi is the following corollary (cf. [12, Corollary 3.36] and its applications in Sections 4
and 5 of loc. cit.).
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Corollary 5.9. Suppose that F is proper. Then an F -coalgebra pR, rq is a final locally fp
coalgebra if and only if pR, rq is locally fp and for every coalgebra pTX, cq in Coalgffg F there
exists a unique F -coalgebra morphism from TX to R.

Proof. The implication “ñ” clearly holds
For “ð” it suffices to prove that for every a : AÑ FA in Coalgfp F there exists a unique

F -coalgebra morphism from A to R. In fact, it then follows that R is the final locally fp
coalgebra. To see this write an arbitrary locally fp coalgebra A as a filtered colimit of a
diagram D : D Ñ Coalgfp F ãÑ CoalgF with colimit injections hd : DdÑ A (d an object in
D). Then the unique F -coalgebra morphisms ud : DdÑ R form a compatible cocone, and
so one obtains a unique u : AÑ R such that u ¨ hd “ ud holds for every object d of D . It is
now straightforward to prove that u is a unique F -coalgebra morphism from A to R.

Now let a : AÑ FA be a coalgebra in Coalgfp F . For every pTX, cq in Coalgffg F denote
by c; : TX Ñ R the unique F -coalgebra morphism that exists by assumption. These
morphisms c; form a compatible cocone of the diagram Coalgffg F ãÑ CoalgF . Thus, we
obtain a unique F -coalgebra morphism m1 : ϕF – %F Ñ R such that the following diagram
commutes for every c : TX Ñ FTX in Coalgffg F :

TX

inc

��
c7

""

c;

((
ϕF

–
%F

m1
// R

Therefore we have an F -coalgebra morphism

h “ pA
a7
ÝÑ %F

m1
ÝÑ Rq.

To prove it is unique, assume that g : AÑ R is any F -coalgebra morphism. As in the proof
of Proposition 3.9, we know that A is the quotient of some TX in Coalgffg F via q : TX � A,
say. Then we have

m1 ¨ a7 ¨ q “ g ¨ q

because there is only one F -coalgebra morphism from TX to R by hypothesis. It follows
that h “ m1 ¨ a7 “ g since q is epimorphic.

The next result provides sufficient conditions for properness of F . It can be seen as
a category-theoretic generalization of Ésik’s and Maletti’s result [17, Theorem 4.2] that
Noetherian semirings are proper.

Proposition 5.10. Suppose that finitely generated algebras in A are closed under kernel
pairs and that F maps kernel pairs to weak pullbacks in Set. Then F is proper.

Proof. First, since F maps kernel pairs to weak pullbacks in Set we see that F preserves
monomorphisms; indeed, m : A� B is a mono in A iff and only if its kernel pair is idA, idA.
Thus F idA, F idA form a weak pullback in Set, which is in fact a pullback, whence Fm is
monomorphic.

Now let pTX, cq and pTY, dq be in Coalgffg F , x P X and y P Y such that :cpηXpxqq “
:dpηY pyqq. It is our task to construct a zig-zag relating ηXpxq and ηY pyq.

Form Z “ X ` Y and let e : TZ Ñ FTZ be the coproduct of the coalgebras pTX, cq
and pTY, dq in Coalgffg F (see Lemma 3.6). Take the factorization of :e : TZ Ñ νF into
a strong epi q : TZ � A followed by a monomorphism m : A � νF . Since F preserves



24 S. MILIUS

non-empty monos, we obtain a unique coalgebra structure a : AÑ FA such that q and m
are coalgebra morphisms (see Remark 2.15(2)). Now take the kernel pair f, g : KÑÑ TZ of
q. Since TZ and its quotient A are finitely generated T -algebras, so is K because finitely
generated T -algebras are closed under taking kernel pairs by assumption. Now F maps the
kernel pair f, g to a weak pullback Ff, Fg of Fq along itself in Set. Thus, we have a map
k : K Ñ FK such that the diagram below commutes:

K

f
��

g

��

k // FK

Fg
��

Ff
��

TZ

q

��

e // FTZ

Fq
��

A a
// FA

(5.1)

Notice that we do not claim that k is a T -algebra morphism. However, since K is a finitely
generated T -algebra, it is the quotient of some free finitely generated T -algebra TR via
p : TR � K, say. Now we choose some splitting s : K Ñ TR of p in Set, i. e., s is a map
such that p ¨ s “ id. Next we extend the map r0 “ Fs ¨ k ¨ p ¨ ηR to a T -algebra morphism
r : TRÑ FTR; it follows that the outside of the diagram below commutes:

R

ηR
��

r0

##

TR
r //

p

��

FTR

Fp
��

K
k
// FK

(5.2)

(Notice that to obtain r we cannot simply use projectivity of TR since k is not necessarily a
T -algebra homomorphism.)

We do not claim that this makes p a coalgebra morphism (i. e., we do not claim the lower
square in (5.2) commutes). However, f ¨ p and g ¨ p are coalgebra morphisms from pTR, rq to
pTZ, eq; in fact, to see that

e ¨ pf ¨ pq “ F pf ¨ pq ¨ r

it suffices that this equation of T -algebra morphisms holds when both sides are precomposed
with ηR. To this end we compute

e ¨ f ¨ p ¨ ηR “ Ff ¨ k ¨ p ¨ ηR see (5.1),
“ Ff ¨ Fp ¨ r0 outside of (5.2),
“ Ff ¨ Fp ¨ r ¨ ηR definition of d.

Similarly, g ¨ p is a coalgebra morphism.
Now consider the following zig-zag in Coalgffg F (recall that the algebra TZ is the

coproduct of TX and TY with coproduct injections T inl and T inr):

TX

T inl ""

TR
f ¨p

||

g¨p

""

TY
T inr

||

TZ TZ
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We now show that this zig-zag relates ηXpxq and ηY pyq. Let x1 “ T inlpηXpxqq and y1 “
T inrpηY pyqq. Then we have

:epx1q “ :e ¨ T inlpηXpxqq “ :cpηXpxqq “ :dpηY pyqq “ :e ¨ T inrpηY pyqq “ :epy
1q.

Hence, since :e “ m ¨ q and m is monomorphic, we obtain qpx1q “ qpy1q. Thus, there exists
some k P K such that fpkq “ x1 and gpkq “ y1 by the universal property of the kernel pair.
Finally, since p : TR� K is surjective we obtain some z P TR such that ppzq “ k whence
f ¨ ppzq “ x1 and g ¨ ppzq “ y1. This completes the proof.

Remark 5.11. (1) Note that closure of finitely generated algebras under kernel pairs can
equivalently be stated in general algebra terms as follows: every congruence R of a
finitely generated algebra A is finitely generated as a subalgebra R ãÑ AˆA (observe
that this is not equivalent to stating that R is a finitely generated congruence).

(2) For a lifting F of a set functor F0, the condition that F maps kernel pairs to weak
pullbacks in Set holds whenever F0 preserves weak pullbacks. Hence, all the functors on
algebraic categories mentioned in Example 2.13 satisfy this assumption.

(3) For the special case of a lifting, a variant of the argument in the proof of Proposition 5.10
was used in [12, Proposition 3.34] in order to prove that every coalgebra in Coalgfp F is a
coequalizer of a parallel pair of morphisms in Coalgffg F . This has inspired Winter [42,
Proposition 7] who uses a very similar argument to prove that, for a distributive law λ, λ-
bisimulations (see Bartels [10]) are sound and complete for λ-bialgebras (see Remark 3.2).
It turns out that, for a lifting F , Proposition 5.10 is a consequence of Winter’s result, or,
in other words, our result can be understood as a slight generalization of Winter’s one.

Examples 5.12. (1) The first condition in Proposition 5.10 is not necessary for properness of
F . In fact, it fails in the category of semimodules for N, viz. the category of commutative
monoids: in fact, consider the finitely generated commutative monoid N ˆN and its
submonoid infinitely generated by

tpn, n` 1q | n P Nu,

which is easily seen not be finitely generated. However, as we mentioned in Example 5.3,
FX “ NˆXΣ is proper on the category of commutative monoids.

(2) In Example 2.12(4) we mentioned that, in the category PCA of positively convex algebras,
fg- and fp-objects coincide. However, fg-objects are not closed under kernel pairs. In
fact, the interval r0, 1s is the free positively convex algebra on two generators, but
tp0, 0q, p1, 1qu Y p0, 1q ˆ p0, 1q is a congruence on r0, 1s that is not an fg-object (i.e. a
polytope) [39, Example 4.13]. Thus, properness of the functors in Example 5.5 does not
follow from Proposition 5.10.

6. Proof of Theorem 5.6

In this section we will present the proof of our main result Theorem 5.6. We start with two
technical lemmas.

Remark 6.1. Recall [9, Proposition 11.28.2] that every free T -algebra TX is perfectly
presentable, i.e. the hom-functor SetT pTX,´q preserves sifted colimits (cf. Remark 3.5).
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It follows that for every sifted diagram D : D Ñ SetT and every T -algebra morphism
h : TX Ñ colimD there exists some d P D and h1 : TX Ñ Dd such that

Dd

ind
��

TX

h1
99

h
// colimD.

Lemma 6.2. For every finite set X and map f : X Ñ ϕF there exists an object pTY, dq in
Coalgffg F and a map g : X Ñ Y such that the triangle below commutes:

X

f
��

g

vv
Y ηY

// TY
ind

// ϕF

Proof. We begin by extending f to a T -algebra morphism h “ f‹ : TX Ñ ϕF . By
Remark 6.1, there exists some c : TZ Ñ FTZ in Coalgffg F and a T -algebra morphism
h1 : TX Ñ TZ such that h “ inc ¨ h

1. Let f 1 “ h1 ¨ ηX , let Y “ X ` Z and consider the
T -algebra morphism rf 1, ηZs

‹ : TY Ñ TZ. This is a split epimorphism in SetT ; we have
T inr : TZ Ñ TY with

rf 1, ηZs
‹
¨ T inr “ ηZ

‹ “ idTZ ,

where the last equation follows from the uniqueness property of ηZ‹ (see Section 2.1) by the
laws of p´q‹. We therefore get a coalgebra structure

d “ pTY
rf 1,ηZ s

‹

ÝÝÝÝÝÑ TZ
c
ÝÑ FTZ

T inr
ÝÝÑ FTY q

such that rf 1, ηZs
‹ is an F -coalgebra morphism from pTY, dq to pTZ, cq. Since Y is a finite

set, pTY, dq is an F -coalgebra in Coalgffg F , and hence inc ¨ rf
1, ηZs

‹
“ ind. Thus we see that

g “ inl : X Ñ Y is the desired morphism due to the commutative diagram below:

X
g“inl

�� f 1zz

f
��

Y ηY
//

rf 1,ηZ s

**
TY

rf 1,ηZ s
‹
// TZ

inc

// ϕF
OO

ind

Remark 6.3. Recall that a colimit of a diagram D : D Ñ Set is computed as follows:

colimD “
`

ž

dPD

Dd
˘

{„,

where „ is the least equivalence on the coproduct (i.e. the disjoint union) of all Dd with
x „ Dfpxq for every f : d Ñ d1 in D and every x P Dd. In other words, for every pair of
objects c, d of D and x P Dc, y P Dd we have x „ y iff there is a zig-zag in D whose D-image

Dc “ Dz0

Df0 %%

Dz2

Df1|| Df2 ""

¨ ¨ ¨

Df3}} Dfn´2 ##

zn “ Dd

Dfn´1yy

Dz1 Dz3 ¨ ¨ ¨ Dzn´1
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relates x and y (cf. Remark 5.1).

Lemma 6.4. Let pTX, cq and pTY, dq be coalgebras in Coalgffg F , x P TX, and y P TY .
Then the following are equivalent:
(1) incpxq “ indpyq P ϕF , and
(2) there is a zig-zag in Coalgffg F relating x and y.

Proof. By Remark 3.5(3), ϕF is a sifted colimit. Hence, the forgetful functor CoalgF Ñ
SetT Ñ Set preserves this colimit. Thus the colimit ϕF is formed as recalled in Remark 6.3:

ϕF –
`

ž

c

TXc

˘

{„,

where c : TXc Ñ FTXc ranges over the objects of Coalgffg F . Therefore, we have the desired
equivalence.

Proof of Theorem 5.6. “ñ” Suppose that for m : ϕF Ñ νF we have x, y P ϕF with mpxq “
mpyq. We apply Lemma 6.2 to

1
x
ÝÑ ϕF and 1

y
ÝÑ ϕF,

respectively, to obtain two objects c : TX Ñ FTX and d : TY Ñ FTY in Coalgffg F with
x1 P X and y1 P Y such that incpηXpx

1qq “ x and indpηY py
1qq “ y. By the uniqueness of

coalgebra morphisms into νF we have

:c “ m ¨ inc and :d “ m ¨ ind. (6.1)

Thus we compute:

:cpηXpx
1qq “ m ¨ inc ¨ ηXpx

1q “ mpxq “ mpyq “ m ¨ ind ¨ ηY py
1q “ :dpηY py

1qq.

Since F is proper by assumption, we obtain a zig-zag in Coalgffg F relating ηXpx1q and
ηY py

1q. By Lemma 6.4, these two elements are merged by the colimit injections, and we have
x “ incpηXpx

1qq “ indpηY py
1q “ y. We conclude that m is monomorphic.

“ð” Suppose that m : ϕF � νF is a monomorphism. Let c : TX Ñ FTX and
d : TY Ñ FTY be objects of Coalgffg F , and let x P X and y P Y be such that :cpηXpxqq “
:dpηY pyqq. Using (6.1) and the fact that m is monomorphic we get incpηXpxqq “ indpηY pyqq.
By Lemma 6.4, we thus obtain a zig-zag in Coalgffg F relating ηXpxq and ηY pyq. This proves
that F is proper.

7. Conclusions and Further Work

Inspired by Ésik and Maletti’s notion of a proper semiring, we have introduced the notion of
a proper functor. We have shown that, for a proper endofunctor F on an algebraic category
preserving regular epis and monos, the rational fixed point %F is fully abstract and moreover
determined by those coalgebras with a free finitely generated carrier (i.e. the target coalgebras
of generalized determinization).

Our main result also shows that properness is necessary for this kind of full abstractness.
For categories in which fg-objects are closed under kernel pairs we saw that when F maps
kernel pairs to weak pullbacks in Set, then it is proper. This provides a number of examples
of proper functors. However, in several categories of interest the condition on kernel pairs
fails, e.g. in N-semimodules (commutative monoids) and positively convex algebras. There
can still be proper functors, e.g. FX “ N ˆXΣ on the former and FX “ r0, 1s ˆXΣ on
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the latter. But establishing properness of a functor without using Proposition 5.10 seems
non-trivial, and we leave the task of finding more examples of proper functors for further
work.

One immediate consequence of our results is that the soundness and completeness proof
for the expression calculi for weighted automata [12] extends from Noetherian to proper
semirings. In fact, Ésik and Kuich [16, Theorems 7.1 and 8.5] already provide sound and
complete axiomatizations of weighted language equivalence for (certain subclasses of) proper
semirings S by showing that S-rational weighted languages form certain free algebras.

In the future, when additional proper functors are known, it will be interesting to study
regular expression calculi for their coalgebras and use the technical machinery developed in
the present paper for soundness and completeness proofs.

Another task for future work is to study the new fixed point ϕF in its own right. Here
we have already proven that ϕF is characterized uniquely (up to isomorphism) as the initial
ffg-Bloom algebra. In the future, it might be interesting to investigate free (rather than
initial) ffg-Bloom algebras. Moreover, related to ordinary Bloom algebras [2] there is the
notion of an Elgot algebra [4]. It is known that for every object Y of an lfp category, the
parametric rational fixed point %pF p´q`Y q yields a free Elgot algebra on Y . In addition, the
category of algebras for the ensuing monad is isomorphic to the category of Elgot algebras
for F . In [3], the new notion of an ffg-Elgot algebra for F is introduced, and it is shown that
for free finitely generated algebras Y the parametric fixed point ϕpF p´q ` Y q forms a free
ffg-Elgot algebra for F on Y , and furthermore the category of ffg-Elgot algebras for F is
monadic over our algebraic base category A . It remains an open question whether ffg-Elgot
algebras (or ffg-Bloom algebras) are monadic over Set.
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Appendix: Category Theoretic Proof of Proposition 3.9

Note first that for every c : TX Ñ FTX in Coalgfp F we clearly have

c7 “ pTX
inc
ÝÑ ϕF

h
ÝÑ %F q

by the finality of %F . Recall that for strong epis the same cancellation law as for epis holds:
if e ¨e1 is a strong epi, then so is e; a similar law holds for strongly epimorphic families. Hence,
we are done if we show that the c7 where c : TX Ñ FTX ranges over Coalgffg F forms a
jointly strongly epimorphic family, too. This is done by using that the a7, where a : AÑ FA
ranges over Coalgfp F , form a strongly epimorphic family (to see this use Lemma 2.2 once
again).

The key observation is as follows: given any a : A Ñ FA in Coalgfp F we know that
its carrier is a regular quotient of some free T -algebra TX with X finite, via q : TX � A,
say. Since F preserves regular epis (“ surjections) we can use projectivity of TX (see
Remark 2.4(2)) to obtain a coalgebra structure c on TX making q an F -coalgebra morphism:

TX
c //

q
����

FTX

Fq
����

A a
// FA

This implies that we have c7 “ a7 ¨ q.
Now suppose that we have two parallel morphisms f, g such that for every c : TX Ñ FTX

in Coalgffg F we have f ¨ c7 “ g ¨ c7. Then for every a : AÑ FA in Coalgfp F we obtain

f ¨ a7 ¨ q “ f ¨ c7 “ g ¨ c7 “ g ¨ a7 ¨ q,

which implies that f ¨ a7 “ g ¨ a7 since q is epimorphic. Hence f “ g since the a7 form a
jointly epimorphic family. This proves that the c7 form a jointly epimorphic family.

To see that they form a strongly jointly epimorphic family, assume that we are given
a monomorphism m : M � N and morphisms g : %F Ñ N and fc : TX Ñ M for every
c : TX Ñ FTX in Coalgffg F such that m ¨ fc “ g ¨ c7. We extend the family pfcq to one
indexed by all a : AÑ FA in Coalgfp F as follows. We have that any such pA, aq is a quotient
coalgebra of some pTX, cq via q : TX � A, which is the coequalizer of some parallel pair
k1, k2 : K Ñ TX in A . Thus we have

m ¨ fc ¨ k1 “ g ¨ c7 ¨ k1

“ g ¨ a7 ¨ q ¨ k1

“ g ¨ a7 ¨ q ¨ k2

“ g ¨ c7 ¨ k2

“ m ¨ fc ¨ k2,

which implies that fc ¨ k1 “ fc ¨ k2 since m is monomorphic. Therefore we obtain a unique
fa : AÑM such that fa ¨ q “ fc using the universal property of the coequalizer q. Hence we
can compute

m ¨ fa ¨ q “ m ¨ fc “ g ¨ c7 “ g ¨ a7 ¨ q,

which implies m ¨fa “ g ¨a7 since q is epimorphic. Now we use that the a7 are jointly strongly
epimorphic (cf. Lemma 2.2) to obtain a unique morphism d : %F ÑM with d ¨ a7 “ fa and
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m ¨ d “ g for all a : AÑ FA in Coalgfp F . In particular, d is the desired diagonal fill-in since
Coalgffg F is a full subcategory of Coalgfp F . As for the uniqueness of the fill-in d we still
need to check that any d with d ¨ c7 “ fc for all c : TX Ñ FTX in Coalgffg F and m ¨ d “ g

also fulfils d ¨ a7 “ fa for every a : AÑ FA in Coalgfp F . Indeed, this follows from

d ¨ a7 ¨ q “ d ¨ c7 “ fc “ fa ¨ q

using that q is epimorphic.
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