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Abstract. In spatially located, large scale systems, time and space dynamics interact
and drives the behaviour. Examples of such systems can be found in many smart city
applications and Cyber-Physical Systems. In this paper we present the Signal Spatio-
Temporal Logic (SSTL), a modal logic that can be used to specify spatio-temporal properties
of linear time and discrete space models. The logic is equipped with a Boolean and a
quantitative semantics for which efficient monitoring algorithms have been developed. As
such, it is suitable for real-time verification of both white box and black box complex
systems. These algorithms can also be combined with stochastic model checking routines.
SSTL combines the until temporal modality with two spatial modalities, one expressing that
something is true somewhere nearby and the other capturing the notion of being surrounded
by a region that satisfies a given spatio-temporal property. The monitoring algorithms are
implemented in an open source Java tool. We illustrate the use of SSTL analysing the
formation of patterns in a Turing Reaction-Diffusion system and spatio-temporal aspects
of a large bike-sharing system.
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1. Introduction

The ongoing digital revolution is concretising itself in scenarios where a large number of
computational devices, located in space, interact among each other and with humans in an
open and mutating environment. Designing and controlling such systems, and guaranteeing
some sort of correctness at run-time, are incredibly challenging problems.

In this paper, we consider spatially located systems, where time and space dynamics
interact and drive the system behaviour. Examples are Cyber-Physical Systems, like
pacemaker devices controlling the rhythm of heart beat, and Collective Adaptive Systems,
such as bike sharing systems in smart cities or the guidance of crowd movement in emergency
situations.

Controlling and designing spatio-temporal behaviours requires appropriate formal tools
to describe such properties, and to monitor and verify whether, and how robustly, they are
satisfied by a system. Formal methods play a central role in these tasks, providing both
formal languages to specify spatio-temporal models and properties, and algorithms to verify
such properties on models and on traces of monitored systems. In this paper we consider
large and complex systems for which standard model checking procedures, i.e. those that
check in an exhaustive way which states of a system model satisfy a given property, are
not feasible. For these kinds of systems simulation and testing are currently the preferred
verification methods. This is the area of monitoring (run-time verification) [22,33], where
an individual simulation trace x of a system is checked against a modal logic formula, using
an automatic verification procedure.

Related work. Logical specification and monitoring of temporal properties of systems is a
well-developed area. Here we mention Signal Temporal Logic (STL) [22, 33], an extension of
Metric Interval Temporal Logic (MITL) [3], describing linear-time properties of real-valued
signals. STL has monitoring routines both for its Boolean and quantitative semantics. The
latter provides a measure of the satisfaction degree of a formula [22,23,33]. In monitoring
algorithms verification is performed over single trajectories.

Much work can be found also in the area of spatial logic, mostly to reason about
continuous space (so-called topological spatial logics, see [1]) and focussing on theoretical
issues such as expressivity and decidability. Instead, model checking and monitoring
procedures have a more recent history. Some logics have been proposed to specify properties
of networks of processes [38], for (graph) rewriting theories [4], [35], bigraphs [21] and
data structures such as graphs [13] and heaps [12]. However these logics have often high
computational cost, and sometimes they are even undecidable.

In the present work, we will focus on a notion of discrete space. The reason is that
many applications, such as bike sharing systems or meta-population epidemic models [34],
are naturally framed in a discrete spatial structure. Moreover, in many circumstances
continuous space is abstracted as a grid or as a mesh. This is the case, for instance, in
many numerical methods to simulate the spatio-temporal dynamics of Partial Differential
Equations (PDE). Hence, this class of models is naturally dealt with by checking properties
on such a discretisation.

One of the recent spatial logics that has inspired the work in the current paper is
the Spatial Logic for Closure Spaces (SLCS) [14,18]. SLCS is a logic proposed for both a
discrete and topological notion of space and is based on the theory of (quasi discrete) closure
spaces [27, 28]. In SLCS some interesting spatial operators have been introduced such as
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the (unbounded) surround operator and the near-operator inspired by the closure operator
of closure spaces and many derived operators among which well-known operators such as
somewhere and everywhere.

Even more challenging is the combination of spatial and temporal operators [1] and
few works exist with a practical perspective. Among those, SLCS has been extended
with a branching time temporal logic in STLCS [15, 17] leading to an implementation of
a spatio-temporal model checker. STLCS has been applied in the context of smart public
transportation, such as public buses [16] and bike sharing systems [19,20]. The temporal
aspects are introduced as “snapshot” models, where each snapshot represents the situation
of the discrete space at a particular point in time. Differently from the logic considered in
this paper, STLCS is only equipped with a Boolean semantics.

SpaTeL [30] is a linear-time spatio-temporal logic that combines the temporal logic STL
with the Tree Spatial Superposition Logic (TSSL) [29]. It has been provided with both a
Boolean semantics as well as with a quantitative semantics. The spatial logic TSSL is suited
to specify properties of quad trees. These are spatial data structures that are constructed by
recursively partitioning a finite space into uniform quadrants. TSSL provides a statistical
way to describe the distribution of discrete states in a particular partition of the space. Its
spatial logic operators can be used to zoom in and zoom out of particular areas of interest.
In this way, very complex spatial structures may be captured, but at the price of a complex
formulation of spatial properties. The properties can in practice only be learned from some
template image using supervised learning algorithms and are not human-readable, even too
long to be displayed. In contrast, the sub-language for spatial properties that we adopt in
this paper is descriptive and topological in nature.

Contributions. In this work we present a formal definition of the Signal Spatio-Temporal
Logic (SSTL). SSTL integrates the temporal modalities of STL with two spatial modalities;
the somewhere operator and a novel bounded version of the topological surrounded operator.
The surrounded operator is inspired by the topological spatial until operator of SLCS [14],
adding useful metric bounds on spatial distances. A key point of our logic is that the spatial
properties are not only considered as atomic propositions of a temporal logic as in SpaTeL.
This means that the temporal and spatial operators can be arbitrarly nested, permitting the
specification of complex spatio-temporal behaviours. The logic is provided with a Boolean
and a quantitative semantics, both equipped with efficient monitoring algorithms. The major
challenge is to monitor the bounded surrounded operator for the quantitative semantics,
for which we propose a novel fixed point algorithm, discussing in detail its correctness and
computational cost. A prototype tool has been developed in Java and can be downloaded
from https://github.com/Quanticol/jsstl.

This article is an extension of the conference papers [8,36]. Specifically, the description of
the monitoring algorithms has been enhanced, describing the procedure in detail, including
proofs of all statements (in particular, correctness of the monitoring algorithm for the
surrounded operator). The Turing Reaction-Diffusion case study of [36] has been used as a
running example throughout the paper, to illustrate the intuition and formal semantics of the
new spatial operators. We show how SSTL can deal with stochastic scenarios, considering
the effects of external perturbations on the Turing system, adding a white Gaussian noise
to the set of equations. To this purpose SSTL monitoring algorithms are combined with
statistical model checking techniques, following up on earlier works on such combinations
with STL [6]. Furthermore, we illustrate the application of SSTL, and the verification

https://github.com/Quanticol/jsstl
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methods we have developed, on a larger case study concerning issues of the spatio-temporal
distribution of bikes in a bike-sharing system, modelled as a Continuous Time Markov Chain
(CTMC).

Paper structure. The paper is organised as follows: Section 2 introduces some background
concepts on STL and on discrete topologies. Section 3 presents the syntax and the semantics
of SSTL and the Turing system running example. Section 4 introduces the monitoring
algorithms and the implementation details of the model checker. Section 5 describes the
extension of the monitoring procedure to stochastic systems and its applications on the
running example. In Section 6, the logic SSTL is applied to a Bike-Sharing system, while
conclusions are drawn in Section 7. Proofs of the main results are provided in Appendix A.

2. Background material

In this section we provide some general background material and notation directly relevant
to the results developed in subsequent sections.

2.1. Weighted undirected graphs. We consider discrete models of space that can be
represented as finite undirected graphs. Edges of such graphs are equipped with a positive
weight, providing a metric structure to the space in terms of shortest path distances. The
weight will often represent the distance between two nodes. This is the case, for instance,
when the graph is a discretisation of continuous space. However, the notion of weight is
more general, and may be used to encode different kinds of information. As an example, in a
model where nodes represent locations in a city and edges represent streets, the weight could
represent the average travelling time, which can be different between two paths with the
same physical length but different levels of congestion or different number of traffic lights.

Definition 2.1. A (positive) weighted undirected graph is a tuple G = (L,E,w), where:

● L is a finite set of locations (nodes), L /= ∅
● E ⊆ L ×L is a symmetric relation, namely the set of connections between nodes (edges),
● w ∶ E → R>0 is a function that returns the positive cost/weight of each edge.

We will use both (`, `′) ∈ E and ` E `′ as equivalent notations for an edge in the relation
E. The space is equipped with a distance metric.

Definition 2.2. For `, `′ ∈ L, the weighted distance is defined as

d(`, `′) ∶= min{∑
e∈σ

w(e) ∣ σ is a path between ` and `′}.

This means that the weighted distance is a metric that returns the cost of the shortest
path, for each pair of nodes of the graph; where the shortest path is the path that minimises
the sum of the weights of the edges of the path.

Remark 2.3. Let E∗ be the set containing all the pairs of connected locations, i.e. the
transitive closure of E. If L is finite, and if we define an order on the locations, L =
{`1, ..., `i, ...}, then the weighted distance can be seen as a matrix (d)(`i,`j)∈E∗ , where d[i, j]
is the distance between `i and `j .
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Furthermore, we denote by L`
[d1,d2]

the set of locations `′ at a distance between d1 and

d2 from `, formally

L`[d1,d2] ∶= {`′ ∈ L ∣ d1 ≤ d(`, `′) ≤ d2, with d1, d2 ≥ 0}.

2.2. Closure spaces. In this work we focus on finite graphs as an algorithmically tractable
representation of space. However, spatial logics traditionally use more abstract structures,
very often of a topological nature (see [1] for an exhaustive reference). Indeed, the logic we
propose can also be defined in a more abstract setting. We can frame a generalised notion
of topology on graphs within the so-called Cech closure spaces, a superclass of topological
spaces allowing a clear formalisation of the semantics of the spatial surrounded operator on
both topological and graph-like structures (see [14,15,18] and the references therein). As
an example, we mention the topological notion of external boundary of a set of nodes A,
instantiated on weighted graphs as the set of nodes directly connected to an element of A
but not part of it.

Definition 2.4. Given a subset of locations A ⊆ L, we define the external boundary of A as:

B+(A) ∶= {` ∈ L ∣ ` ∉ A ∧ ∃`′ ∈ A s.t. (`′, `) ∈ E}.

2.3. Signal Temporal Logic. Signal Temporal Logic (STL) [22,33] is a linear dense time-
bounded temporal logic that extends Metric Interval Temporal Logic (MITL) [3] with a set
of atomic propositions {µ1, ..., µm} that specify properties of real valued traces, therefore
mapping real valued traces into Boolean values.

Let x ∶ T → D be a trace that describes an evolution of our system, where T = R≥0

represents continuous time and D = D1 × ⋯ × Dn ⊆ Rn is the domain of evaluation; then
each µj ∶ D → B is of the form µj(x1, . . . , xn) ≡ (fj(x1, . . . , xn) ⩾ 0), where fj ∶ D → R is a
(possibly non-linear) real-valued function and B = {true, false} is the set of Boolean values.
The projections xi ∶ T → Di on the ith coordinate/variable are called the primary signals
and, for all j, the function sj ∶ T→ R, defined by point-wise application of fj to the image
of x, namely sj(t) ∶= fj(x1(t), ..., xn(t)), is called the secondary signal [23].

The syntax of STL is given by
ϕ ∶= µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 U[t1,t2] ϕ2,

where µ is an atomic proposition, conjunction and negation are the standard Boolean
connectives, [t1, t2] is a real positive dense interval with t1 < t2 and U[t1,t2] is the bounded
until operator. The latter specifies that formula ϕ1 holds until, at time t ∈ [t1, t2], formula
ϕ2 is satisfied. This operator can be used to define the operators eventually and always.
The eventually operator F[t1,t2] and the always operator G[t1,t2] can be defined as usual
with ⊺ denoting true: F[t1,t2]ϕ ∶= ⊺U[t1,t2]ϕ, G[t1,t2]ϕ ∶= ¬F[t1,t2]¬ϕ. Formula F[t1,t2]ϕ states
that ϕ is eventually satisfied at a time t ∈ [t1, t2], while G[t1,t2]ϕ indicates that at each time
t ∈ [t1, t2], ϕ is satisfied.
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3. SSTL: Signal Spatio-Temporal Logic

Signal Spatio-Temporal Logic (SSTL) is a spatial extension of STL [22,33] with two spatial
modalities: the bounded somewhere operator �[d1,d2] and the bounded surrounded operator
S[d1,d2]. SSTL is interpreted on spatio-temporal, real-valued signals. In this section, we
first introduce the signals and then present the syntax and the Boolean and quantitative
semantics of SSTL, using a pattern formation model as running example.

3.1. Spatio-Temporal Signals. We define signals with continuous time and discrete space.
In particular, the space is represented by a weighted undirected graph G = (L,E,w), defined
in Section 2, while the time domain T will usually be the real-valued interval [0, T ], for
some T > 0. Formally, a spatio-temporal signal, is a function s ∶ T ×L→ D, where L is the
set of locations and D is the domain of evaluation. D is a subset of R∗ = R⋃{+∞,−∞}.
Signals with D = B = {0, 1} are called Boolean signals, whereas those where D = R∗ are called
real-valued or quantitative signals.

A spatio-temporal trace is a function x ∶ T×L→ Rn s.t. x(t, `) = (x1(t, `),⋯, xn(t, `)) ∈ D,
where each xi ∶ T × L → R, for i = 1, ..., n, is the projection on the ith coordinate/variable.
Note that these projections have the form of quantitative signals. They are called the primary
signals of the trace. We can thus see the trace as a set of primary signals. This means that
SSTL can be used to specify spatio-temporal properties of such traces. Spatio-temporal
traces can be obtained by simulating a stochastic model or by computing the solution of a
deterministic system. In previous work [8] the framework of patch-based population models
is discussed, which generalise population models and are a natural setting from which both
stochastic and deterministic spatio-temporal traces of the considered type emerge. An
alternative source of traces are measurements of real systems. For the purpose of this work,
it is irrelevant which is the source of traces, as we are interested in their off-line monitoring.

Spatio-temporal traces are then converted into spatio-temporal Boolean or quantitative
signals in the following way: similarly to the case of STL, each atomic predicate µj is of the
form µj(x1, . . . , xn) ≡ (fj(x1, . . . , xn) ≥ 0), for some function fj ∶ D→ R, where (x1, . . . , xn)
are the primary signals. Each atomic proposition gives rise to a spatio-temporal signal. In
the Boolean case, one may define function sj ∶ T × L → B; given a trace x, this gives rise
to the Boolean signal sj(t, `) = µj(x(t, `)) by point-wise lifting. Similarly, a quantitative
signal is obtained as the real-valued function sj ∶ T×L→ R, with sj(t, `) = fj(x(t, `)). These
signals, derived from the atomic proposition, are called the secondary signals.

When the space L is finite, as in our case, we can represent a spatio-temporal signal as
a finite collection of temporal signals. More specifically, the signal s(t, `) can be equivalently
represented by the collection {s`(t) ∣ ` ∈ L}. We will stick mostly to this second notation in
the following, as it simplifies the presentation.

3.2. SSTL Syntax. The syntax of SSTL is given by

ϕ ∶= µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 U[t1,t2] ϕ2 ∣ �[d1,d2]ϕ ∣ ϕ1 S[d1,d2]ϕ2.

Atomic predicates, Boolean operators, and the time bounded until operator U[t1,t2] are those
of STL. The new spatial operators are the somewhere operator, �[d1,d2], and the bounded
surrounded operator S[d1,d2], where [d1, d2] is a closed real interval with d1 < d2. We can
derive also the everywhere operator as �[d1,d2]ϕ ∶= ¬�[d1,d2] ¬ϕ.
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The somewhere and the everywhere operators were inspired by the modal operators
of the Multiprocess Network Logic [38]; the idea originated from the necessity to describe
behaviours at a certain distance from a specific point, e.g., “from a bike sharing station, in
a radius of 100 meters, there are more than 30 bikes” or “in all the positions around my
location, at a distance less than 1 km, there are no infected individuals”. Formally, the
spatial somewhere operator �[d1,d2]ϕ requires ϕ to hold in a location reachable from the
current one with a cost greater than or equal to d1 and less than or equal to d2. The cost is
given by the shortest weighted distance between the locations, i.e. the sum of the weights of
the edges of the shortest path (Def. 2.2). We use the word “cost” to distinguish it from the
classical spatial notion of distance. Indeed, we can have two streets with the same distance
but different travel time due to the presence of traffic lights or congestion. In Figure 1,
representing a regular grid where the distance between adjacent nodes is 1, we provide some
examples of spatial properties. In the graph of the figure, the orange point satisfies the
property �[3,5] pink. Indeed, there exists a point at a distance 4 from the orange point
that satisfies the pink property. The everywhere operator �[d1,d2]ϕ ∶= ¬�[d1,d2] ¬ϕ requires
ϕ to hold in all the locations reachable from the current one with a total cost between d1

and d2. In Figure 1, the orange point of the graph satisfies the property �[2,3] yellow.
Indeed, all the points at a distance between 2 and 3 from the orange point satisfy the yellow
property.

The (bounded) surrounded operator ϕ1 S[d1,d2]ϕ2 is inspired by the surrounded operator
of the Spatial Logic for Closure Spaces SLCS (see [14, 18]), and it is a spatial interpretation
of the temporal until connective. It expresses the topological notion of being surrounded
by a ϕ2-region, while being in a ϕ1-region, with additional metric constraints. Informally
speaking, the intended meaning of ϕ1 S[d1,d2]ϕ2 is that one cannot escape from a ϕ1-region
without passing from a node that satisfies ϕ2 and, in any case, one has to reach a ϕ2-node
at a distance between d1 and d2. An example drawn from analysis of bike sharing facilities
in smart cities is the property “there are no bikes in the station where I am, but all the bike
stations directly connected with this one have at least one bike available, and are located at
a distance less than 100 meters from here”.

The surrounded operator makes the logic strictly more expressive. Whenever its distance
bounds are trivial (i.e., equal to [0,∞)), it allows us to express global properties, depending
upon the state of the whole system and not only on the local neighbourhood of each point.
This version of the surrounded operator with non-trivial metric bounds adds an additional
level of expressivity, allowing us to restrict the attention to subregions of the space defined by
the distance constraints. In any case, the topological properties captured by the surrounded
operator cannot be captured by the simpler somewhere and everywhere operators, which
in turn cannot be defined in terms of the surrounded operator, due to the effect of metric
bounds.

Formally, the bounded variant of the surrounded formula, i.e. ϕ1 S[d1,d2]ϕ2, is true in a
location `, when ` belongs to a set of locations A satisfying ϕ1 and at a distance less than
d2 from `, the external boundary B+(A) of A must contain only locations satisfying ϕ2.
Furthermore, locations in B+(A) must be reached from ` with a cost between d1 and d2.
B+(A) is the set of all the locations that do not belong to A but that are directly connected
with a location in A. In Figure 1, the green points satisfy greenS[0,100] blue. Indeed, for
each green point we can find a region that contains the point, such that all its points are
green and all the points connected with an element that belongs to the region are blue and
satisfy the metric constraint. Instead, the property greenS[2,3] blue is satisfied only by
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the dark green point. The reason is that such a dark green point is the only point for which
there exists a region (the green region) such that all its elements are at a distance less than
3 from it and are green; and all the elements of the external boundary (the blue region) are
at a distance between 2 and 3 from it.

Figure 1: Example of spatial properties. The orange point satisfies �[3,5] pink. The orange
point satisfies �[2,3] yellow. All green points satisfy greenS[0,100] blue. The
dark green point satisfies also greenS[2,3] blue.

3.3. Running Example: Turing Patterns. To illustrate more complex examples of
spatial and spatio-temporal properties in SSTL we introduce a model of pattern formation
in a reaction-diffusion system which will be used as a running example in the following
sections.

Alan Turing conjectured in [39] that pattern formation is a consequence of the coupling
of reaction and diffusion phenomena involving different chemical species, and that these
can be described by a set of PDE reaction-diffusion equations, one for each species.The
natural analogue, systems of agents interacting and moving in continuous space, is however
prohibitively expensive to analyse computationally; an approach that is more amenable
to analysis is to discretise space into a number of cells which are assumed to be spatially
homogeneous, and to replace spatial diffusion with transitions between different cells.

From the point of view of formal verification, the formation of patterns is an inherently
spatio-temporal phenomenon, in that the relevant issue is how the spatial organisation of
the system changes over time.

Pattern formation model. Our model, similar to that in [29,30], describes the production
of skin pigments that generate spots in animal furs. The reaction-diffusion system is
discretised, according to a Finite Difference scheme, as a system of ODEs whose variables
are organised in a K ×K rectangular grid. More precisely, we treat the grid as a weighted
undirected graph, where each cell (i, j) ∈ L = {1, . . . ,K} × {1, . . . ,K} is a location (node),
edges connect each pairs of neighbouring nodes along four directions (so that each node
has at most 4 adjacent nodes), and the weight of each edge is always equal to the spatial
length-scale δ of the system1. We consider two species (chemical substances) A and B in a

1For simplicity, here we fix δ = 1. Note that using a non-uniform mesh the weights of the edges of the
resulting graph will not be uniform.
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K ×K regular grid, obtaining the system:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

dxAi,j
dt = R1x

A
i,jx

B
i,j − xAi,j +R2 +D1(µAi,j − xAi,j) i = 1..,K, j = 1, ..,K,

dxBi,j
dt = R3x

A
i,jx

B
i,j +R4 +D2(µBi,j − xBi,j) i = 1..,K, j = 1, ..,K,

(3.1)

where: xAi,j and xBi,j are the concentrations of the two species in the cell (i, j); Ri, i = 1, ..., 4
are the parameters that define the reaction between the two species; D1 and D2 are the
diffusion constants; µAi,j and µBi,j are the inputs for the (i, j) cell, that is

µni,j =
1

∣νi,j ∣
∑
ν∈νi,j

xnν n ∈ {A,B}, (3.2)

where νi,j is the set of indices of cells adjacent to (i, j). The spatio-temporal trace of the

system is the function x = (xA, xB) ∶ [0, T ] ×L→ RK×K ×RK×K where each xA and xB are
the projection on the first and second variable, respectively. In Figure 2 the concentration
of species A is shown for a number of time points, generated by the numerical integration of
System 3.1. The initial conditions have been set randomly to concentrations of both species
in a range between values 0 and 16. It can be observed that at times t = 20 and t = 50 the
shape of the pattern appears and then remains stable. Clearly, some regions (in blue) have
a low concentration of A surrounded by regions with a high concentration of A. We consider
the regions with low concentration of species A as the ‘spots’ in the pattern. The opposite
happens for the value of B (high density regions surrounded by low density regions, not
shown).

3.4. SSTL Boolean Semantics. We first define the Boolean semantics for SSTL. This
semantics, as customary, returns true/false depending on whether the observed trace satisfies
the SSTL specification.

Definition 3.1 (SSTL Boolean semantics). The Boolean satisfaction relation for an
SSTL formula ϕ over a spatio-temporal trace x is given by:

(x, t, `) ⊧ µ ⇔ µ(x(t, `)) = 1

(x, t, `) ⊧ ¬ϕ ⇔ (x, t, `) /⊧ ϕ
(x, t, `) ⊧ ϕ1 ∧ ϕ2 ⇔ (x, t, `) ⊧ ϕ1 ∧ (x, t, `) ⊧ ϕ2

(x, t, `) ⊧ ϕ1 U[t1,t2]ϕ2 ⇔ ∃t′ ∈ t + [t1, t2] ∶ (x, t′, `) ⊧ ϕ2 ∧ ∀t′′ ∈ [t, t′], (x, t′′, `) ⊧ ϕ1

(x, t, `) ⊧ �[d1,d2]
ϕ ⇔ ∃`′ ∈ L ∶ (`′, `) ∈ E∗ ∧ d1 ⩽ d(`′, `) ⩽ d2 ∧ (x, t, `′) ⊧ ϕ

(x, t, `) ⊧ ϕ1 S[d1,d2]
ϕ2 ⇔ ∃A ⊆ L`

[0,d2]
∶ ` ∈ A ∧ ∀`′ ∈ A, (x, t, `′) ⊧ ϕ1

∧B+(A) ⊆ L`
[d1,d2]

∧ ∀`′′ ∈ B+(A), (x, t, `′′) ⊧ ϕ2.

A trace x satisfies ϕ in location `, denoted by (x, `) ⊧ ϕ, if and only if (x,0, `) ⊧ ϕ.

Example 3.2 (Spot Formation properties). We illustrate the Boolean semantics of
SSTL and, in particular, the use of the surrounded operator to characterise spot and pattern
formation of the running example introduced in Section 3.3. In order to classify spots,
sub-regions of the grid have to be identified that present a high (or low) concentration of one
of the species, surrounded by a low (high, respectively) concentration of the same species.
For example, one can capture the spots of the A species using the spatial formula

ϕspot ∶= (xA ≤ h)S[d1,d2](x
A > h). (3.3)
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Figure 2: Value of xA for the system (3.1) for t = 0, 5, 7, 12, 20, 50 time units with parameters
K = 32,R1 = 1,R2 = −12,R3 = −1,R4 = 16,D1 = 5.6 and D2 = 25.5. The initial
condition has been set randomly in a range between values 0 and 16. The colour
map for the concentration is specified in the legend on the right of each subplot.

A trace x satisfies ϕspot at time t, in the location (i, j), (x, t, (i, j)) ⊧ ϕspot, if and only if
there is a subset L′ ⊂ L, that contains (i, j), such that all elements in L′ have a distance less
than d2 from (i, j), and xA, at time t, is less or equal to a constant value h. Furthermore, in
each element in the boundary of L′ we have that xA > h at time t, and its distance from (i, j)
is in the interval [d1, d2]. Note that the use of distance bounds in the surrounded operator
allows one to constrain the size (diameter) of the spot. Recall that we are considering a
spatio-temporal system, so this spatial property alone is not enough to describe the formation
of a pattern over time; to identify the insurgence time of the pattern and whether it remains
stable over time we combine the spatial property with temporal operators in the following
way:

ϕspotFormation ∶= F[Tpattern,Tpattern+δ]G[0,Tend](ϕspot); (3.4)

ϕspotFormation states that eventually, at a time between Tpattern and Tpattern + δ, the property
ϕspot becomes true and remains true for at least Tend time units. Figure 3(b) shows the
satisfaction of the property ϕspotFormation in each cell (i, j) ∈ L for a simulated trace, for
the Boolean semantics with formula parameters set to d1 = 1 and d2 = 6. In Figure 3(d)
we similarly show the satisfaction of the same property for a smaller value of the maximal
dimension of a spot d2 = 4 (the other parameters are as indicated in the caption of Figure 3).
The plot shows the satisfaction at time t = 0 because by default we have that (x, `) ⊧ ϕ,
if and only if (x,0, `) ⊧ ϕ. It is clear that the satisfaction of the property is capable of
identifying which locations belong to the spots and which not. If we make the distance
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constraint stricter, by reducing the width of the interval [d1, d2], we are able to identify
only the “centre” of the spot, as shown in Figure 3 (d). However, in this case we may fail
to identify spots that have an irregular shape (i.e., that deviate too much from a circular
shape).

Example 3.3 (Pattern Formation properties). The next formula, ϕpattern, describes
the global spatial pattern in which every location is part of a spot or has a nearby spot.
This is expressed by the following SSTL formula:

ϕpattern ∶= �[0,dmax] �[0,dspot] ϕspot, (3.5)

where � and � are the everywhere and somewhere operators, dmax is chosen to cover the
whole space, and dspot specifies the maximal distance between spots. Checking this formula
in a random location of our space is enough to verify the presence of the pattern; this is so
because the first part of the formula, �[0,dmax], covers all the locations of the grid. This is
an example of how one can describe a global property also with a semantics that verifies
properties in single locations. For dmax = 45 and dspot = 15 (and the other parameters are as
indicated in Figure 3) for a solution of the system (3.1) we obtain the result true for the
Boolean semantics. Changing the diffusion constants D1 and D2 affects the shape and size of
the spots or disrupts them, as we can see in Figure 4. We evaluate the pattern formula (3.5)
with parameters as in Figure 3, for the patterns in Figure 4(a) and (b), where D = [1.5, 23.6]
and D = [8.5, 40.7], respectively, and the other parameters equal to the previous model. This
gives the result false in both cases. Formula (3.4), though, is still true in some locations.
This is due to the irregularity of the spots (where, as in Figure 4(a), some spots can have a
shape similar to the model in Figure 3 (a)), or due to particular boundary effects on the
border of the grid (where fractions of spots still remain, as in Figure 4(a)).

3.5. Quantitative Semantics. The quantitative semantics returns a real value that can be
interpreted as a measure of the strength with which the specification is satisfied or falsified
by an observed trajectory. More specifically, the sign of such a satisfaction score is related to
the truth of the formula (positive stands for true), while the absolute value of the score is a
measure of the robustness of the satisfaction or dissatisfaction. This definition of quantitative
measure is based on [22,23], and it is a reformulation of the robustness degree of [25].

Definition 3.4 (SSTL Quantitative Semantics ). The quantitative satisfaction function
ρ(ϕ,x, t, `) for an SSTL formula ϕ over a spatio-temporal trace x is given by:

ρ(µ,x, t, `) = f(x(t, `)) where µ ≡ (f ≥ 0)
ρ(¬ϕ,x, t, `) = − ρ(ϕ,x, t, `)
ρ(ϕ1 ∧ ϕ2,x, t, `) = min(ρ(ϕ1,x, t, `), ρ(ϕ2,x, t, `))
ρ(ϕ1 U[t1,t2]ϕ2,x, t, `) = sup

t′∈t+[t1,t2]
(min(ρ(ϕ2,x, t

′, `), inf
t′′∈[t,t′]

(ρ(ϕ1,x, t
′′, `))))

ρ(�[d1,d2]
ϕ,x, t, `) = max{ρ(ϕ,x, t, `′) ∣ `′ ∈ L, (`′, `) ∈ E∗, d1 ⩽ d(`′, `) ⩽ d2}

ρ(ϕ1 S[d1,d2]
ϕ2,x, t, `) = max

A⊆L`[0,d2]
,`∈A,B+(A)⊆L`[d1,d2]

(min(min
`′∈A

ρ(ϕ1,x, t, `
′), min

`′′∈B+(A)

ρ(ϕ2,x, t, `
′′)))

where ρ is the quantitative satisfaction function, returning a real number ρ(ϕ,x, t) quan-
tifying the degree of satisfaction of the property ϕ by the trace x at time t. Moreover,
ρ(ϕ,x, `) ∶= ρ(ϕ,x,0, `).
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Figure 3: Satisfaction of formula (3.4) with h = 0.5, Tpattern = 19, δ = 1, Tend = 30, d1 = 1, d2 = 6
for (b), (c) and d2 = 4 for (d). (a) Concentration of A at time t = 50; (b) (d)
Boolean semantics of the property ϕspotFormation; the cells (locations) that satisfy
the formula are in red, the others are in blue; (c) Quantitative semantics of the
property ϕspotFormation; The value of the robustness is given by a colour map as
specified in the legend on the right of the figure.
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Figure 4: Snapshots at time t = 50 of xA for the model (3.1) with parameters with parameters
K = 32,R1 = 1,R2 = −12,R3 = −1,R4 = 16, and D = [1.5,23.6] in (a) and
D = [8.5,40.7] in (b).
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The definition for the surrounded operator is essentially obtained from the Boolean
semantics by replacing conjunctions and universal quantifications with the minimum and
disjunctions and existential quantifications with the maximum, as done in [22,23] for STL.

Remark 3.5 (Soundness Property). As for STL, the quantitative semantics of SSTL is
sound with respect to the Boolean semantics. It means the ρ is positive whenever the property
holds in the Boolean semantics, and that it has a negative value if the property does not hold.
This can be proved by induction on the structure of the formula, whereas it is already shown
for STL operators (atomic propositions, Boolean and temporal operators, for fixed locations).
The new spatial operators are defined as compositions of maximum and minimum functions
(on finite sets and for a fixed time). Therefore, it is easy to prove that the property holds
also for them. Indeed, considering for example min{ρ(ϕ,x, t, `1), ρ(ϕ,x, t, `2)}, by induction
ρ(ϕ,x, t, `1) and ρ(ϕ,x, t, `2) satisfy the soundness property. If they are both positive, they
both satisfy ϕ and also the minimum is positive. If one ρ(ϕ,x, t, `i) is negative, it does
not satisfy ϕ and the minimum is negative. A similar consideration can be done for the
maximum.

Remark 3.6 (Correctness Property). The quantitative semantics satisfies the correctness
property with respect to the Boolean semantics. It means that for each formula ϕ and
∀x1,x2, it holds:

(ϕ,x1, t, `) ⊧ ϕ and ∣∣x1 − x2∣∣∞ < ρ(ϕ,x1, t, `) ⇒ (ϕ,x2, t, `) ⊧ ϕ
Recalling that the new spatial operators are defined as compositions of maximum and
minimum functions (on finite set and for fixed time), also this property can be proved by
induction on the structure of the formula. It holds for atomic predicates, Boolean and
temporal operators by the correctness proof of the quantitative semantics for MITL [24].
We need just to prove that it holds for maximum and minimum functions of the robustness
function with fixed time. Let ρ(ψ,x1, `) = min{ρ(ϕ,x1, `1), ρ(ϕ,x1, `2)} with ϕ satisfying
correctness by induction. If ∣∣x1−x2∣∣∞ < ρ(ψ,x1, `) and ρ(ψ,x1, `) > 0 (soundness property),
i.e. (x1, `i) ⊧ ϕ for i = 1,2, by induction on ϕ and the minimum function we have that
(x2, `i) ⊧ ϕ for i = 1,2, then (x2, `) ⊧ ψ; similarly it can be proved for the maximum.

Remark 3.7. The quantitative semantics is a measure of how robust is the truth value
of a formula ϕ for a given trace x. More specifically, it tells us the maximum size of a
perturbation of the secondary signal to preserve the satisfaction of ϕ [23] (a variant of our
definition, [25] returns a robustness measure for the primary signal, i.e. the trace x). This
perturbation can be applied to the quantitative value of the secondary signal at any point in
time and space. As such, the value of the robustness defines a tube in the space of secondary
signals, uniformly with respect to space-time, containing equisatisfiable trajectories (with
respect to the Boolean semantics): any trace in this tube will have the same truth value of
ϕ as x. We stress that perturbations are applied pointwise in space and time: this version
of the quantitative semantics tells us nothing about the effect of time and space warps. This
would require a different notion of quantitative semantics, as done e.g. in [2, 23] for time
only, coupled with a meaningful notion of perturbation of a discrete space (e.g. on edge
weights).

Example 3.8 (Robustness of Spot Formation). As a first example, consider again
the property ϕspotFormation. Figure 3(b) shows the Boolean satisfaction of the property
ϕspotFormation in each cell (i, j) ∈ L, for d1 = 1 and d2 = 6 and Figure 3(c) shows the result
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of the quantitative semantics for the same formula, showing for each cell (i, j) the value
of the robustness with which the formula is satisfied. Positive values indicate cells where
the formula holds, negative values where it does not. Where the value is positive its value
amounts to 0.3. This low value is due to the specific choice of the threshold value h = 0.5.

Example 3.9 (Robustness of Pattern Formation). The second example considers the
global formula ϕpattern. This formula resulted in false applying the Boolean semantics for
both patterns in Figure 4. The quantitative semantics gives -0.05 as a result in both cases,
indicating a weak robustness.

Example 3.10 (Perturbation). A strength of spatio-temporal logics is the possibility to
nest the temporal and spatial operators. We illustrate this in the following scenario as a
variant of the running example. We set as initial conditions for the dynamical system (3.1) its
stable state, i.e. the concentrations of substances A and B at time 50 (see Figure 3(a)). We
introduce a small perturbation by changing a single value in a specific location in the centre
of a spot. The idea is to study the effect of this perturbation over time by checking whether
it will disrupt the system or not. Specifically, we perturb the cell (6,6) in Figure 3(a), by
setting xA6,6(0) = 10 while its original value was 0. Dynamically, the perturbation is quickly
absorbed and the system returns to the previous steady state. Formally, we consider the
following property:

ϕpert ∶= (xA ≥ hpert) ∧ (ϕabsorbS[dm,dM ]ϕno effect); (3.6)

The meaning of ϕpert is that the induced perturbation remains confined inside the original
spot when the property is satisfied. More in detail, a trace x satisfies ϕpert in the location

(i, j), i.e. (x, (i, j)) ⊧ ϕpert, if and only if xAi,j(0) ≥ hpert, with hpert = 10, (the location is

perturbed) and if there is a subset L′ ⊆ L that contains location (i, j) such that all its
elements have a distance less than dM from (i, j) and satisfy ϕabsorb = F[0,Tp]G[0,Td](x

A < h′);
ϕabsorb states that the perturbation of xA is absorbed within Tp units of time, stabilising

back to a value xA < h′ for an additional period of Td time units. Here h′ is a suitable
threshold capturing the fact that concentrations have returned close to their value before the
perturbation, and it is set to h′ = 3 in our case. Furthermore, within distance [dm, dM ] from
the original perturbation, where dM is chosen such that we are within the spot at cell (6, 6)
of the non-perturbed system, ϕno effect ∶= G[0,T ](xA < h′) is satisfied; i.e., no relevant effect is

observed, the value of xA stably remains below h′. In Figure 5, we report the evaluation
of the quantitative semantics for ϕpert, zooming in on the 15 × 15 lower left corner of the
original grid. As shown in the figure, the perturbed location (6,6) satisfies the property.

It is interesting to observe that this property requires a genuine nesting of space and
time modalities, and as such it cannot be expressed in logics like SpaTeL, in which the
spatial properties are limited to the level of atomic propositions.

4. Monitoring Algorithms

In this section, we present the offline monitoring algorithms to check the satisfaction of
a formula ϕ on a trace x(t, `). The monitoring procedures spatially extend the property
monitors introduced in [33] for the Boolean and in [22] for the quantitative semantics of
STL.
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(a) (b)

Figure 5: Boolean (a) and quantitative (b) semantics for formula 3.6 with parameters
hpert = 10, dm = 1, dM = 2, Tp = 1, Td = 10, h′ = 3, and T = 20.

As for STL formulae, our algorithms work with a bottom-up approach on the syntax
tree of ϕ, iteratively computing the temporal signals of each subformula. Each node of the
tree represents a subformula, the leafs are the atomic propositions and the root represents
the complete formula. Given a spatio-temporal trace x(t, `), the algorithm starts computing
the spatio-temporal Boolean/quantitative signals of all the atomic propositions, then it
moves upwards in the tree computing the spatio-temporal Boolean/quantitative signals of a
node using the signals of its child and a specific algorithm for each operator of the logic.
Finally, the spatial Boolean/quantitative satisfaction function corresponds to the value of
the signal at time zero ρϕ(0, `). An example of the procedure is shown in Figure 6.

In the case of the Boolean semantics, for each subformula ψ, the algorithm constructs a
spatio-temporal signal sψ s.t. sψ(`, t) = 1 iff the subformula is true in position ` at time t.
In the case of the quantitative semantics, for each subformula ψ, the signal sψ corresponds
to the value of the quantitative satisfaction function ρ, for any time t and location `. Here,
we discuss in detail the algorithms to check the new spatial operators: the somewhere and
surrounded operators; the procedures for the other Boolean and temporal operators are
similar to STL and will be just briefly recalled.

The processing of the somewhere operator is a simple extension of the disjunction
operator. The treatment of the bounded surrounded modality ψ = ϕ1S[w1,w2]ϕ2, instead,
deviates substantially from all these procedures and will be discussed in more detail. In
particular, in the following, we will present two recursive algorithms to compute the Boolean
and the quantitative satisfaction, assuming the Boolean/quantitative signals of ϕ1 and ϕ2

being known.
We remark that this surround operator requires very different algorithms from those

developed for timed modalities, as space is bi-directional, thus it makes sense to consider
both reaching and being reached ; classical path-based model checking does not coincide
with spatial model checking also because loops in space are not relevant in the definition of
surrounded operators.

4.1. Boolean Monitoring. The algorithm proceeds inductively bottom-up on the parse
tree of the formula. Given a formula ϕ, to determine if (x, `) ⊧ ϕ, we construct for all ψ that
are subformulas of ϕ, a Boolean signal sψ ∶ [0, T ] ×L→ B s.t. sψ(t, `) = 1 iff (x, t, `) ⊧ ψ and
0 otherwise. At the termination of the algorithm, we obtain the signal sϕ(t, `) whose value
at t = 0 determines whether the trace x satisfies ϕ in location ` (at time 0). The properties
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sϕ(0, `), ρϕ(0, `)

ϕ ∶ Ψ1 U[t1,t2] Ψ2

sϕ(t, `), ρϕ(t, `)

Ψ1 ∶ �[d1,d2] µ1

sΨ1(t, `), ρΨ1(t, `)

µ1 ∶ f1(x(t, `)) > 0
sµ1(t, `), ρµ1(t, `)

f1(x(t, `))

x1(t, `), ..., xn(t, `)

Ψ2 ∶ µ2 ∧ µ3

sΨ2(t, `), ρΨ2(t, `)

µ2 ∶ f2(x(t, `)) > 0
sµ2(t, `), ρµ2(t, `)

f2(x(t, `))

x1(t, `), ..., xn(t, `)

µ3 ∶ f3(x(t, `)) > 0
sµ3(t, `), ρµ3(t, `)

f3(x(t, `))

x1(t, `), ..., xn(t, `)

Boolean signals
Quant. signals

Secondary signal

Spatial Boolean satisfaction
Spatial Quant. satisfaction

Secondary signals

Primary signals

Figure 6: The monitoring procedure of the SSTL formula ϕ ∶ (�[d1,d2] µ1)U[t1,t2](µ2 ∧ µ3).

can be verified pointwise for each location and each time independently, indeed (x, `, t) ⊧ ϕ
means “the trace x in location ` at time t satisfies the property ϕ”.

To optimise the monitoring procedure, we split the time domain according to the
minimal interval covering Is1,...,sn consistent with a set of temporal Boolean signals s1, . . . sn
(as in [33]) that we describe below. A temporal Boolean signal is a function s ∶ [0, T ] → B.
Note that, we can represent the signal sψ ∶ [0, T ] ×L→ B as a finite collection of temporal
signals {sψ,`}`∈L where sψ,`(t) ∶= sψ(`, t).
Definition 4.1. Given a time interval I, and a set of temporal signals s1, . . . sn with
si ∶ I → B, the minimal interval covering Is1,...,sn of I consistent with the set of signals
s1, . . . , sn is the shortest finite sequence of left-closed right-open intervals I1, ..., Ih such that

⋃j Ij = I, Ii⋂ Ij = ∅, ∀i ≠ j, and for k ∈ {1, . . . , n}, sk(t) = sk(t′) for all t, t′ belonging to

the same interval 2. Restricting to a single signal s, the positive minimal interval covering
of s is I+s = {I ∈ Is∣∀t ∈ I ∶ s(t) = 1}. The negative minimal interval covering of s is

I−s = {I ∈ Is∣∀t ∈ I ∶ s(t) = 0}, and it holds Is = I+s ⋃I−s and I+s ⋂I−s = ∅.

The positive interval covering I+sψ,` corresponds to the satisfaction set of the formula

over the signal sψ,`. Futhermore, any signal can be written as s = s1 ∨ s2 ∨⋯∨ sk where each
si is a unitary signal, meaning that it has a singleton positive interval, i.e., I+si = {[t1, t2)}
for some t1 < t2 ∈ R⩾0. Then , we have that Is = Is1,...,sk and I+s = ⋃i I+si . The idea is that
the satisfaction set of a formula over a signal can be seen as the union of disjoint intervals.

2The fact that we can always obtain a finite interval covering is a consequence of the restriction to closed
intervals [t1, t2], t1 < t2, in STL. Further details about signals and interval covering are provided in [33].
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Using these definitions of signals, interval coverings, and satisfaction set, the procedure
for the classic operators of STL is similar to the one described in [33]. We briefly recall
these procedures in the following and then we describe the algorithms for the new spatial
operators.

Atomic Predicates. ψ = µ. The computation of the Boolean signal associated with an
atomic predicate is a direct application of Definition 3.1: sµ,`(t) = µ(x(t, `)).

Negation. ψ = ¬ϕ, then I+s¬ϕ,` = I
−
sϕ,`

.

Disjunction. ψ = ϕ1 ∨ ϕ2, then, given sϕ1,`, sϕ2,`, let I be the minimal interval covering
consistent with both signals. For each Ii ∈ I, we construct the signal sψ,`(Ii) = sϕ1,`(Ii) ∨
sϕ2,`(Ii) and we merge adjacent positive intervals to obtain I+

ψ,`
.

Until. ψ = ϕ1U[a,b]ϕ2. As we are working with future temporal modalities, we need to
shift intervals backwards. This has to be done independently for each unitary signal, then
taking the union of the so obtained satisfaction sets. Given two unitary signals p and
q, the signal ψ = pU[a,b]q is the unitary signal such that I+ψ = {((Ip ∩ Iq) ⊖ [a, b])⋂ Ip},

where [m,n) ⊖ [a, b] = [m − b, n − a)⋂[0, T ] is the Minkowski sum. In the general case, let
sϕ1,` = p1 ∨⋯∨ pn and sϕ2,` = q1 ∨⋯∨ qm be signals written as union of unitary signals, then
ψ = sϕ1,`U[a,b]sϕ2,` = ⋁ni=1⋁mj=1 piU[a,b]qj . The proof of this result can be found in [33].

Somewhere. ψ = �[d1,d2]ϕ. As remarked at the beginning of this section, and relying on
the fact that we have a finite number of locations, we can process each location in the signal
independently. Given the signal sψ,`, for a fixed location `, we can rewrite the somewhere
operator as a disjunction between all signals in locations `′ s.t. d1 ⩽ d(`′, `) ⩽ d2. This
allows us to use the monitoring procedure for disjunction, constructing the minimal interval
covering I consistent with all sϕ,`′ signals s.t. d1 ⩽ d(`′, `) ⩽ d2, and defining, for each Ii ∈ I ∶

sψ,`(Ii) = ⋁
d1⩽d(`′,`)⩽d2

sϕ,`′(Ii).

The satisfaction set I+sψ,` is then the union of the positive Ii (i.e., Ii s.t. sψ,`(Ii) = 1), merging

adjacent positive intervals.
We stress here that the rewriting of the somewhere operator as a finite disjunction is

possible only at monitoring time, when the space structure is known. In fact, one cannot
express the somewhere operator in terms of the or-operator in general, as this requires the
knowledge of the spatial model to be verified, both in terms of locations and of distances
among them. Therefore, the spatial somewhere operator is not merely syntactic sugar.
Additionally, it can be applied so to countably infinite discrete spaces, and it can be
generalised to continuous spaces [18]. Furthermore, even if we assume that the space is finite
and if we encode the space structure of the model in the formula, expanding the operator as
a disjunction would produce a blowup of the size of the formula which is exponential in the
nesting level of spatial operators, and hence it would result in an exponential increase in the
complexity of the monitoring procedure.



18 L. NENZI, L. BORTOLUSSI, V. CIANCIA, M. LORETI, AND M. MASSINK

Algorithm 1 Boolean monitoring for the surrounded operator

1: input `,ψ = ϕ1S[d1,d2]ϕ2

2: ∀`′ ∈ L`[0,d2] compute sϕ1,`′ , sϕ2,`′

3: compute Isψ,` {the minimal interval covering consistent with sϕ1,`′ , sϕ2,`′ , `′ ∈ L`
[0,d2]

}
4: for all Ii ∈ Isψ,` do

5: V = {`′ ∈ L`[0,d2]∣sϕ1,`′(Ii) = 1}
6: Q = {`′ ∈ L`[d1,d2]∣sϕ2,`′(Ii) = 1}
7: W = B+(Q⋃V )
8: while W /= ∅ do
9: W ′ = ∅

10: for all ` ∈W do
11: N = pre(`)⋂V = {`′ ∈ V ∣`E`′}
12: V = V /N
13: W ′ =W ′⋃(N/Q)
14: end for
15: W =W ′

16: end while

17: sψ,`(Ii) =
⎧⎪⎪⎨⎪⎪⎩

1 if ` ∈ V,
0 otherwise.

18: end for
19: merge adjacent positive intervals Ii, i.e., Ii s.t. sψ,`(Ii) = 1
20: return sψ,`

Surrounded. ψ = ϕ1S[d1,d2]ϕ2. Algorithm 1 presents the procedure to monitor the Boolean
semantics of ψ at location `, returning the temporal Boolean signal sψ,` of ψ at location

`. The algorithm first computes the set of locations L`
[0,d2]

that are at distance d2 or less

from `, and then, recursively, the temporal Boolean signals sϕ1,`′ and sϕ2,`′ , for `′ ∈ L`
[0,d2]

.

These signals provide the satisfaction of the sub-formulas ϕ1 and ϕ2 at each point in time,
and for each location of interest. Then, a minimal interval covering consistent with all the
signals sϕ1,`′ and sϕ2,`′ is computed, and to each such interval, a core procedure similar to
that of [14] is applied. More specifically, we first compute the set of locations W in which
both ϕ1 and ϕ2 are false, and that belong to the external boundary of the set of locations
that satisfy ϕ1 (V ) or ϕ2 (Q). The locations in W are “bad” locations, that cannot be part
of the external boundary of the set A of ϕ1-locations which has to be surrounded exclusively
by ϕ2-locations. Hence, the main loop of the algorithm removes iteratively from V all those
locations that have a neighbour in W (set N , line 13), constructing a new set T containing
only those locations in N that do not satisfy ϕ2, until a fixed point is reached. As each
location can be added to W and is processed only once, the complexity of the algorithm is
linear in the number of locations and linear in the size of the interval covering. A correctness
theorem, stated below, can be proven in a similar way as in [14]. The proof is reported in
Appendix A.1.

Theorem 4.2. Given a graph G = (L,w,E), two properties ϕ1 and ϕ2, a trace x and a
location `, let sψ,`=BoolSurround(G,x, ϕ1, ϕ2, `) and Isψ,` be the minimal interval covering
consistent with {sϕ1,`′, sϕ2,`′}`′∈L`[0,w2]

, then, for all Ii ∈ Isψ,`

sψ,`(Ii) = 1 ⇐⇒ (x, t, `) ⊧ ϕ1S[d1,d2]ϕ2 ∀t ∈ Ii
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4.2. Quantitative Monitoring. We now turn to the monitoring algorithm for the quanti-
tative semantics. As the input signals are functions of continuous time, we need to make
some assumptions to represent them in a finite way. Contrary to other approaches, like [23],
which assume signals to be piecewise linear, we make a simpler assumption, namely that
they are piecewise constant functions. More specifically, we discretise time with a step h,
and consider a piecewise constant representation of a signal x, assuming its value between
time tk = kh and tk+1 = (k + 1)h being equal to x(kh). We will show how to compute the
quantitative semantics for such an approximation, and discuss the error we introduce in case
the input signal is Lipschitz continuous.

Monitoring Boolean operators is straightforward, we just need to apply the definition
of the quantitative semantics pointwise in the discretisation, i.e. at each time step kh.
The time bounded until operator can also be easily computed by replacing the min and
max over dense real intervals in its definition by the corresponding min and max over the
corresponding finite grid of time points. In this case, however, an error is introduced, due to
the discrete approximation of the Lipschitz continuous signal in intermediate points. The
error accumulates at a rate proportional to Mh, where M is the Lipschitz constant of the
signal x, formally defined in Proposition 4.3.

Monitoring the somewhere operator �[d1,d2]ϕ is also immediate: once the location ` of
interest is fixed, similarly to the Boolean semantics, we can just turn it into a disjunction of
the signals sϕ,`′ for each location `′ ∈ L`

[d1,d2]
.

The only non-trivial monitoring algorithm is the one for the spatial surrounded operator,
which we discuss below. However, as the satisfaction score is computed at each time point
of the discretisation and depends on the values of the signals at that time point only, this
algorithm introduces no further error w.r.t. the time discretisation. Hence, we can globally
bound the error introduced by the time discretisation (see the Appendix for the proof):

Proposition 4.3. Let the primary signal x be Lipschitz continuous, as well as the functions
defining the atomic predicates. Let M be a Lipschitz constant for all secondary signals, and h
be the discretisation step. Given a SSTL formula ϕ, let u(ϕ) count the number of temporal
until operators in ϕ, and denote by ρ(ϕ,x) its satisfaction score over the trace x and by
ρ(ϕ, x̂) the satisfaction score over the discretised version x̂ of x with time step h. Then
∥ρ(ϕ,x) − ρ(ϕ, x̂)∥ ≤ u(ϕ)Mh.

The quantitative monitoring procedure for the bounded surrounded operator is shown
in Algorithm 2. Similarly to the Boolean case, the algorithm for the surrounded formula
ψ = ϕ1S[d1,d2]ϕ2 takes as input a location ` and returns the quantitative signal sψ,`, or
better its piecewise constant approximation with time-step h (an additional input, together
with the signal duration T =mh). As a first step, it computes recursively the quantitative
satisfaction signals of subformula ϕ1, for all locations `′ ∈ L`

[0,d2]
, and of subformula ϕ2, for

all locations `′ ∈ L`
[d1,d2]

. Furthermore, it sets all the quantitative signals for ϕ1 and ϕ2 for

the other locations to the constant signal equal to minus infinity. The algorithm runs a
fixpoint computation for each time instant in the discrete time set {0, h,2h, . . . ,mh}. The
procedure is based on computing a function X , with values in the extended reals R∗, which
is executed on the whole set of locations L, but for the modified signals equal to −∞ for
locations not satisfying the metric bounds for `. The function X is defined below.

Definition 4.4. Given a finite set of locations L and two functions s1 ∶ L→ R∗, s2 ∶ L→ R∗.
The function X ∶ N ×L→ R is inductively defined as:
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(1) X(0, `) = s1(`)
(2) X(i + 1, `) = min(X(i, `),min`′∣`E`′(max(X(i, `′), s2(`′))))

The algorithm then computes the function X iteratively, until a fixed-point is reached.

Theorem 4.5. Let s1 and s2 be as in Definition 4.4, and

s(`) = max
A⊆L,`∈A

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′))),

then
lim
i→∞
X(i, `) = s(`), ∀` ∈ L.

Moreover, ∃K > 0 s. t. X(j, `) = s(`),∀j ≥K.

The following corollary provides the correctness of the method. It shows that, when X
is computed for the modified signals constructed by the algorithm, it returns effectively the
quantitative satisfaction score of the spatial surrounded operator.

Corollary 4.6. Given an ˆ̀∈ L, let ψ = ϕ1S[d1,d2]ϕ2 and

s1(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(ϕ1,x, t, `) if 0 ≤ d(ˆ̀, `) ≤ d2

−∞ otherwise.

s2(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(ϕ2,x, t, `) if d1 ≤ d(ˆ̀, `) ≤ d2

−∞ otherwise.

Then ρ(ψ,x, t, ˆ̀) = s(ˆ̀) = maxA⊆L,ˆ̀∈A (min(min`∈A s1(`),min`∈B+(A) s2(`))).

Algorithm 2 Quantitative monitoring for the surrounded operator

1: inputs: `,ψ = ϕ1S[d1,d2]ϕ2 , h, T
2: for all `′ ∈ L do
3: if 0 ≤ d(`, `′) ≤ d2 then
4: compute sϕ1,`′

5: if d(`, `′) ≥ d1 then
6: compute sϕ2,`′

7: else sϕ2,`′ = −∞
8: else sϕ1,`′ = −∞, sϕ2,`′ = −∞
9: end for

10: for all t ∈ {0, h,2h, . . . , T} do
11: for all `′ ∈ L do
12: Xprec(`′) = +∞
13: X(`′) = sϕ1,`(t)
14: end for
15: while ∃`′ ∈ L, s.t. Xprec(`′) /= X(`′) do
16: Xprec = X
17: for all `′ ∈ L do
18: X(`′) = min(Xprec(`′),min`′′ ∣`′E`′′(max(sϕ2,`′′(t),Xprec(`′′))))
19: end for
20: end while
21: sψ,`(t) = X(`)
22: end for
23: return sψ,`
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In order to discuss the complexity of the monitoring procedure, we need an upper bound
on the number of iterations of the algorithm. This is given by the following.

Proposition 4.7. Let dG be the diameter of the graph G and X(`) the fixed point of X(i, `),
then X(`) = X(dG + 1, `) for all ` ∈ L.

It follows that the computational cost for each single location is O(dG∣L∣m), where m is
the number of sampled time-points. The cost for all locations is therefore O(dG∣L∣2m).

The proofs of Theorem 4.5, Corollary 4.6 and Proposition 4.7 are reported in Appen-
dix A.2.

4.3. SSTL Monitoring Implementation. To support qualitative and quantitative mon-
itoring of SSTL properties, a prototype tool has been developed. This tool, developed
in Java, consists of a Java library (jSSTL API) and a front-end, integrated in ECLIPSE.
Both the library and the ECLIPSE plugin can be downloaded from https://github.

com/Quanticol/jsstl. All the scenarios considered in this paper are available at https:

//github.com/Quanticol/jsstl-examples to permit the replication of experiments.
The library can be used to integrate jSSTL within other applications and tools, whereas

the ECLIPSE plugin provides a user friendly interface to the tool. Furthermore, the modular
approach of the implementation allows us to develop different front-ends for jSSTL. The
tool has been described in more detail in [37].

The ECLIPSE plugin provides a simple user interface to specify and verify SSTL
properties of spatio-temporal trajectories generated from the simulation of a system or from
real observations. We can specify the properties, describe a model of the space (i.e., its
graph structure), import the trajectories and then verify whether such trajectories satisfy
the specified properties.

In Figure 7, a snapshot is shown of the ECLIPSE plugin. It provides an editor for jSSTL,
containing the script with the SSTL properties that we want to analyse in our scenario (on
the left) and a view to visualise the space model, the data and the results of the analyses
(on the right).

Implementation performance. Model (3.1) has been coded in Matlab/Octave, and the
monitoring has been performed by our Java implementation. As time performance, the
verification of property ϕspot took 1.04s (Boolean) and 69.39s (quantitative) for all locations
and 100 time points, while property ϕpattern took 1.81s and 70.06s, and property ϕpert took
28,19s and 55,31s, respectively. The computation of the distance matrix can be done just
once because it remains always the same for a given system, this takes about 23s. All the
experiments were run on an Intel Core i5 2.6 GHz CPU, with 8GB 1600 MHz RAM.

5. SSTL Analysis of Stochastic Spatio-temporal Systems

SSTL can also be applied to describe properties of stochastic spatio-temporal systems.
Stochastic models describe the evolution of systems in space and time that show noisy
behaviour, due to internal random mechanisms (like in epidemic spreading models), or
environmental effects (typically captured with Stochastic Differential Equations, SDEs).
Independently from the mathematical device to describe them, stochastic models induce
a probability measure on the space of all possible traces (i.e. on the so-called Skorokhod

https://github.com/Quanticol/jsstl
https://github.com/Quanticol/jsstl
https://github.com/Quanticol/jsstl-examples
https://github.com/Quanticol/jsstl-examples
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Figure 7: The jSSTL ECLIPSE plugin

space, the space of càdlàg functions, which are piecewise continuous functions from time
taking real values). Each SSTL formula ϕ describes a subset of these traces, those satisfying
it, which is measurable (with respect to the topology of the Skorokhod space), as can be
proved by a simple adaptation of the proof in [6], owing to the discrete nature of space
considered here. Measurability implies that we can calculate the probability p(ϕ) of this set,
which is known as the satisfaction probability of ϕ for the stochastic model considered. The
goal for analysing these systems is thus to compute such satisfaction probability. Due to
computational unfeasibility of exact methods [5], the mainstream approach in verification
is to rely on Statistical Model Checking [40], which combines simulation of the stochastic
model (i.e. an algorithm that samples traces according to the probability distribution of
the model in the Skorokhod space) with a monitoring routine for the property ϕ. More
specifically, every time a trace is generated by the simulator, it is passed to the Boolean
monitor, which returns either 0 (false) or 1 (true). Probabilistically, this can be seen as a
sample of a Bernoulli random variable, having probability p(ϕ) of observing 1. From a finite
sample of such values, we can rely on standard statistical tools to estimate p(ϕ) and to
compute the confidence level of such an estimate. A scheme of Statistical Model Checking
(SMC) is shown in Figure 8. Examples of spatio-temporal model checking to compute the
approximated probabilistic satisfaction can be found in [20,30]

The integration of SSTL monitoring with statistical model checking opens the possibility
of checking spatio-temporal properties of stochastic models, providing a powerful tool to
explore complex stochastic behaviours in space and time. Moreover, a similar mechanism can
be put in place for the quantitative semantics. In this case, SMC enables one to estimate the
average robustness of a formula (and other moments, like the variance). The combination
with SMC and the quantitative semantics has been explored earlier for STL in [6] and applied
to tasks like system design and parameter synthesis [6, 9, 10]. The spatio-temporal logics
SpaTeL and STLCS have also been used in conjunction with statistical spatio-temporal
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Figure 8: Scheme of Statistical Model Checking (SMC).

model checking for the Boolean semantics; see [30] and in [20], respectively, the latter
focusing on usability issues in bike-sharing systems.

In the following, we give a taste of the use of SSTL to analyse stochastic models,
considering a variant of the running example, in which the pattern formation mechanism is
subject to external random perturbations, which is a more realistic scenario that the one
described by a deterministic ODE model. An additional more complex example can be
found in the next section.

Example 5.1 (Persistence of External Perturbations). We consider the effects of
external perturbations of the Turing pattern formation system, adding a white Gaussian
noise to the set of equations (3.1). In particular, we add a random fluctuation η(z, t), with
zero-mean and covariance matrix < η(z, t), η(z′, t) >= ε2δz2δt, where ε is the noise intensity
and z = (i, j) ∈ [0,32]2 corresponds to the position. The methodology follows [31, 32],
and results in a set of Stochastic Differential Equations. In the discretisation, we set
∆z = 1 and ∆t = 0.01. We study how the noise affects the dynamics for fixed deterministic
parameters, analysing in detail the capability of the system to maintain a specific pattern
with respect to the external perturbation. To this aim, we fix the parameters of the system:
K = 32,R1 = 1,R2 = −12,R3 = −1,R4 = 16,D1 = 5.6 and D2 = 25.5 and we evaluate formula
3.5 (the pattern formula) with parameters h = 0.5, Tpattern = 19, δ = 1, Tend = 30,w1 = 1,w2 = 6
for different values of the noise intensity ε.

In Figure 9(a), we show how the satisfaction probability decreases as a function of the
noise intensity ε; ε was varied between 0 and 0.9 in steps of 0.1 units. We estimate the
probability statistically from 10,000 runs for each parameter value. This result shows that
an increasing intensity of noise prevents the system from establishing a regular pattern of
spots of the form we have seen in a non-perturbed variant of the system. In Figure 9(b),
we plot the satisfaction probability versus the average robustness degree, estimating them
statistically from 10,000 runs for each parameter value. The satisfaction probability varies
from 1 to 0 while the average robustness score varies from −80.01 ± 10.7 to 0.008 ± 0. As
we can see, these two quantities seem to be correlated. In other words, the higher is the
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Figure 9: (a) Satisfaction probability vs. noise intensity; (b) Satisfaction probability vs.
average robustness degree.

number of runs in which we find that the pattern formation property holds, the higher is
the average robustness with which this happens. By varying the threshold, the Pearson’s
correlation coefficient between satisfaction probability and robustness degree is 0.784.

6. Case study: bike sharing system

In this section, we present an analysis of the London Santander Cycles Hire scheme, a bike
sharing system, modelled as a Population Continuous Time Markov Chain (PCTMC) [7]
with time-dependent rates. We use SSTL to study a number of spatio-temporal properties
of the system and to explore their robustness considering a set of parameter values for the
formulas.

6.1. Model. The Bike-Sharing System (BSS) is composed of a number of bike stations,
distributed over a geographic area. Each station has a fixed number of bike slots. The
users can pick up a bike, use it for a while, and then return it to another station in the
area. Following [26], we model the BSS as a Population Continuous Time Markov Chain
(PCTMC) with time-dependent rates, leading to a hybrid system. The model, given the
bike availability in a station at time t, predicts the probability distribution of the number
of available bikes in that station at time t + h with h ∈ [0,40] minutes. The parameters of
the model have been set using the historic journey data and bike availability data from
January 2015 to March 2015 from the London Santander Cycles Hire scheme. In detail, we
can describe the model through the following transitions:

Bi → Si at rate outi(t) ⋅ piout, ∀i ∈ (1,N)
Si → Bi at rate ini(t) ⋅ λiin, ∀j ∈ (1,N)
Bi → Si + T ij at rate outi(t) ⋅ pij(t), ∀i, j ∈ (1,N)
Sj + T ij → Bj at rate inij(#T ij ), ∀i, j ∈ (1,N).
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Here, Bi (respectively Si) represents the bike agent (respectively the slot agent) in the ith

station, T ij is the bike agent travelling from pick-up station i to return station j. To these

different agents we associate counts, e.g. #T ij denotes the population size of an agent type

T ij , while N is the total number of stations. Each transition in the list describes a possible

event changing the state of the system. In general, a transition rule like Bi → Si +T ij models

that an agent Bi is removed from the system (a bike leaves station i), while new agents Si
and T ij are added to the system (a free slot is added to station i, while the bike is set to

travel towards station j). This is reflected also in the population counts: upon the firing of
such a transition, #Bi will be decreased by 1, while #Si and #T ij are increased by 1.

In the list of transitions above, the first transition represents the pick-up of a bike from
a station i and its “removal” from the system. A bike is considered removed from the system
in two cases: if its destination is a station outside the model (in case we model a subset
of stations) or if the bike is taken for a time which is much longer than the usual travel
time between two stations, which is about 15 minutes. This can happen, for example, if the
bike is taken for a day trip. Similarly, the second transition models the return to station i
of a previously removed bike. The last two transitions model the pick-up and return of a
bike by users of the system that are travelling between the bike stations modelled in the
system. Each transition has a rate, encoding the average frequency with which it happens,
based on historic journey data. These rates, together with the updates in population counts,
define a stochastic model in terms of a Continuous Time Markov Chain, which can be
simulated with standard stochastic simulation algorithms. We refer the interested reader e.g.
to [7] for further details. More specifically, outi(t) (respectively ini(t)) is the bike pick-up
(respectively return) rate in station i at time t, λiout(t) (respectively λiin(t) is the probability
that a bike leaves (respectively enters from) outside the system, pij(t) is the probability that

a journey will end at station j given that it started from station i at time t, inij , instead, is
the return rate of a bike pick-up in station i that will be returned in station j. The model
considered is very large comprising 733 bike stations (each with 20-40 slots) and a total
population of 57,713 agents (users) picking up and returning bikes. In our model the first
two transitions have very small rates. They are more significant in the analysis of submodels
where just a subsystem of BSS stations are considered, i.e. where there are considered
stations outside the system.

6.2. Spatio-temporal analysis of the Bike Sharing Systems using SSTL. We sim-
ulate the model using Simhya [11], a Java tool for the simulation of stochastic and hybrid
systems. In particular we exploit its Gibson-Bruck (GB) algorithm. Following [26], the
time-dependent rates change 2 times, all at the same time unit: the first interval is 14
minutes, the second interval is 20 minutes, the third interval is 6 minutes; we simulate the
model for 40 minutes. Then, we consider the trajectories only of the bike (B) and slot (S)
agents, in each station. Our spatio-temporal trace is then XB(t, `) = (XB(t, `),XS(t, `)), i.e.
the number of bikes and free slots at each time, in each station. The space is represented by
a weighted graph, where the nodes are the stations and the edges describe the connection
between each station. Two nodes are connected is they are at a distance less or equal to 1
Kilometer. The weighted function w ∶ E → R returns the distance in kilometres between any
two stations, where E = L ×L is the set of edges and L is the set of stations.
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One of the main problems of these systems consists in the availability of bikes or free
slots in each station. Two important questions related to this issue from a user’s point of
view are:

● if I don’t find a bike (free slot, resp.) is there another station at the distance less than a
certain value where I can find a bike (free slot, resp.) slot?

● if I don’t find a bike (free slot, resp.), how long should I wait before another user returns
a bike or picks one up, respectively?

These concerns can be expressed by the SSTL properties described below. The first one is
given by:

ϕ1 = G[0,Tend]{�[0,d](B > 0) ∧�[0,d](S > 0)} (6.1)

A station ` satisfies ϕ1 if and only if it is always true that, between 0 and Tend minutes,
there exists a station at a distance less than or equal to d, that has at least one bike and a
station at a distance less or equal to d that has at least one free slot.

In the analysis, we explore the value of parameter d ∈ [0,1] kilometres to see how the
satisfaction of the property changes in each location. Figure 10 shows the approximate
satisfaction probability pϕ1 for 1000 runs for all the stations, for (a) d = 0, (b) d = 0.2 , (c)
d = 0.3 and (d) d = 0.5 km. We can see that for d = 0 many stations have a high probability
to be full or empty (indicated by red points), with standard deviation of all the locations in
the range [0, 0.0158] and mean standard deviation 0.0053. However, increasing d to d = 0.2
km, i.e. allowing a search area of up to 200 metres from the station that currently has
no bikes, or no slots resp., we greatly increase the satisfaction probability of ϕ1, with a
standard deviation that remains in the same range and mean standard deviation of 0.0039.
For d = 0.5, the probability of pϕ1 is greater than 0.5 for all the stations; standard deviation
is in the range [0, 0.0142] and mean stdv is 0.0002. Figure 12 (a) shows the satisfaction
probability of some BBS stations vs distance d=[0,1.0].

The second property “if I wait t minutes, I will always find a bike and a free slot” can
instead be formalised by the following property:

ϕ2 = G[0,Tend]{F[0,t]((B > 0) ∧ (S > 0))} (6.2)

A station ` satisfies ϕ2 if and only if it is always true that, for each time h ∈ [0, Tend],
eventually, in a time between h and h + t, there will be a bike and a free slot available in `.

In the analysis, we explore parameter t ∈ [0,10] minutes to see how the satisfaction of
the property changes in each location with respect to the waiting time t for a bike or a
free slot. Figure 11 shows the approximate satisfaction probability pϕ2 for 1000 runs for
all the stations, for (a) t = 0 and (b) t = 10. In this case, we can see that waiting a certain
amount of time does not greatly increase the probability to always find a bike or a free slot
in the stations; even after waiting for 10 minutes Fig. 11 (b) shows that there are still many
stations that satisfy ϕ2 with a nearly zero probability. This means that there are stations
that remain full or empty for at least 10 minutes. Considering that the average human
walking speed is about 5.0 kilometres per hour (km/h), we can conclude that if users do
not find a bike or a free slot in a station, they usually have more probability to find the
bike/free slot in another station rather than when waiting in the same station. The standard
deviation remains in the interval [0,0.0159]. Figure 12 (b) shows the satisfaction probability
of some BBS stations vs the time t=[0,10].

Using the somewhere operator, one can only check if there is a bike in a station within
a certain distance. It may be the case that the station with a bike is located in the opposite
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Figure 10: Approximate satisfaction probability of formula ϕ1 for 1000 runs for each BSS
station for (a) d = 0, (b) d = 0.2, (c) d = 0.3 and (d) d = 0.5. The value of the
probability is given by the color legend.

direction the user is headed to, costing her a large deviation and more time to pick up the
bike. A more precise check is given by the property below:

ϕ3 = G[0,Tend]{B = 0⇒ (B = 0)S[0,d](B > 0)} (6.3)

A station ` satisfies ϕ3 if and only if it is always true, for each time h ∈ [0, Tend], that a
station with no bikes is surrounded by stations with at least one bike at a distance less than
or equal to d. A similar property can be defined for free slots. In other words, this would
guarantee that a user who finds a station without bikes will find a station with at least
one bike within distance d, no matter in which direction the user looks for another station.
In the analysis, we explore parameter d ∈ [0,0.2] kilometers to see how the satisfaction of
the property changes in each location. The results show that increasing the distance does
not significantly increase the probability of ϕ3; that is, the probability to be surrounded
by stations with at least one bike does not increase. Figure 12 (c) shows the satisfaction
probability of some BBS stations vs the distance d=[0,2]. The standard deviation remains in
the interval [0,0.0158]. In other words, there are always some stations with almost a constant
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Figure 11: Approximate satisfaction probability degree of formula ϕ2 for 1000 runs for each
BSS station for (a) t = 0 and (b) t = 10. The value of the degree is given by the
color legend.

number of bikes/free slots in some directions. This analysis suggests that considering spatial
operators that include a notion of direction might be interesting for future work.

Finally, in all the previous properties we did not consider that a user will need some
time to reach a nearby station. Both properties ϕ1 and ϕ2 can be refined to take this aspect
into consideration by considering a nested spatio-temporal property:

ψ1 = G[0,Tend]{�[0,d](F[tw,tw]B > 0) ∧�[0,d](F[tw,tw]S > 0)} (6.4)

A station ` satisfies ψ1 if and only if it is always true between 0 and Tend minutes that there
exists a station at a distance less than or equal to d, that, eventually in a time equal to tw
(the walking time), has at least one bike and a station at a distance less than or equal to d,
that, eventually in a time equal to tw has at least one free slot.

Similarly,
ψ3 = G[0,Tend]{B = 0⇒ (B = 0)S[0,d](F[tw,tw]B > 0)} (6.5)

which expresses that a station ` satisfies ψ3 if and only if it is always true between 0 and
Tend minutes that if it is empty, it is surrounded by stations within a distance of at most d
that have at least one bike, eventually in a walking time equal to tw.

We consider an average walking speed of 6.0 km/h, this means for example that if we
evaluate a distance d = 0.5 kilometers, we consider a walking time tw = 6 minutes. The results
of ψ1 are very similar to the results of ϕ1. This means that there is not much difference
between looking at t = 0 or after the walking time. This is in accordance with the result
of property ϕ2 where increasing the time does not significantly increase the satisfaction
probability of ϕ2. This result becomes even more evident evaluating property ψ3. Figure 12
(d) shows the satisfaction probability of ψ3 of some BBS stations vs distance d=[0,2.0]. In
this case, the probability increases slightly with respect to property ϕ3, obtaining a similar
result for property ϕ2 and meaning that in the selected stations (l0, l50, l100 and l300) the
probability that a user finds a bike while walking to another station is increasing with the
distance. Figure 13 shows the difference between the satisfaction probability of properties
ψ1, ϕ1 and properties ψ3, ϕ3 for the same locations as in Figure 12. We can see that, in the
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Figure 12: Approximate satisfaction probability for 1000 runs of BSS stations `1,`50, `100,
and `300 for property (a) ϕ1 and d=[0,1.0], (b) ϕ2 and t=[0,10], (c) ϕ3 and
d=[0,2.0] (d), ψ3 and d=[0,2.0].

second case, Figure 13 (b), there is a clear improvement of the satisfaction probability vs
the distance parameter.

The analysis is performed using the Java implementation. As time performance, the
monitoring of a single traces takes 0.207s for property ϕ1, 0.011s for property ϕ2, 0.971s for
property ϕ3, 0.178s for property ψ1, and 0.667s for property ψ3. The computation of the
distance matrix takes about 5.574s. All the experiments were run on an Intel Core i7 3.5
GHz CPU, with 16GB 2133 MHz RAM.

7. Discussion

We defined the Signal Spatio-Temporal Logic, a spatio-temporal extension of STL [23], with
two spatial operators: the somewhere operator and the spatial (bounded) surrounded operator.
In SSTL spatial and temporal operators can be arbitrarily nested. We provided the logic with
a Boolean and a quantitative semantics in the style of STL [23], and defined novel monitoring
algorithms to evaluate such semantics on spatio-temporal trajectories. The monitoring
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Figure 13: (a) pψ1 − pϕ1 vs the distance d = [0,1.0] (b)pψ3 − pϕ3 vs the distance d = [0,2.0] .

procedures, implemented in Java, have been applied on two case studies. In the first one, we
study a Turing reaction-diffusion system, modelling a process of morphogenesis [39] in which
spots are formed over time. The second one is a bike sharing system modelled as a CTMC
where we analyse the likelihood for users of the system to find bikes and free parking slots
when they need them.

The work in this paper can be extended in several directions. First, we plan to perform
a more thorough investigation of the expressivity of the logic, and to apply it on further case
studies. Secondly, we plan to extend our logic to more general quasi-discrete metric spatial
structures, exploiting the topological notion of closure spaces [14,18] and extending it to the
metric case. Note that the current monitoring algorithms work already for more general
spatial structures, like finite directed weighted graphs, but we plan to provide a more precise
characterisation of the class of discrete spatial structures on which they can be applied. We
also plan to further optimise the implementation to improve performance, and additionally
investigate if and how directionality can be expressed in SSTL. Finally, we plan to exploit
the quantitative semantics for the robust design of spatio-temporal systems, along the lines
of [6].
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Appendix A. Proofs

In this appendix, we present the proofs of Proposition 4.3 and the correctness of the Boolean
(Algorithm 1) and the quantitative (Algorithm 2) monitoring algorithms for the surrounded
operator.
Proposition 4.3. Let the primary signal x be Lipschitz continuous, as well as the functions
defining the atomic predicates. Let M be a Lipschitz constant for all secondary signals, and h
be the discretisation step. Given a SSTL formula ϕ, let u(ϕ) count the number of temporal
until operators in ϕ, and denote by ρ(ϕ,x) its satisfaction score over the trace x and by
ρ(ϕ, x̂) the satisfaction score over the discretised version x̂ of x with time step h. Then
∥ρ(ϕ,x) − ρ(ϕ, x̂)∥ ≤ u(ϕ)Mh.

Proof. We first observe that the monitoring algorithm for Boolean and spatial operators
preserve the error of the input quantitative signals. This means that if ∥sϕj ,` − ŝϕj ,`∥ ≤ ε,
then ∥sψ,` − ŝψ,`∥ ≤ ε, for ψ one of ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1S[w1,w2]ϕ2, �[w1,w2]ϕ1. Hence, temporal
discretisation introduces errors only for temporal operators.

Now, let I = [t1, t2] be such that tj = kjh, and denote the Minkowski sum by ⊕, so

that t ⊕ I = [t + t1, t + t2]. Denote by Î the discretised version of I, with step h, Î =
{k1h, (k1 + 1)h, . . . , k2h}. We observe two facts for the maximum, with identical statements
holding for the minimum.

● Let f(t) be Lipschitz with constant K. Let g(t) = maxt′∈t⊕I f(t) and ĝ(t) = maxt′∈t⊕Î f(t).
Then ∥g(t) − ĝ(t)∥ ≤ Kh/2. This holds by applying the Lipschitz property between a

generic point in t⊕ I and the closest point in t⊕ Î, and noting that the maximum distance
between such points is h/2.

● If f̃ is such that ∥f̃(t) − f(t)∥ ≤ ε uniformly in t, and we let g, ĝ as above, and g̃(t) =
maxt′∈t⊕Î f̃(t), then

∥g(t) − g̃(t)∥ ≤ ∥g(t) − ĝ(t)∥ + ∥ĝ(t) − g̃(t)∥ ≤Kh/2 + ε.
Hence, the second property implies that the additional error we introduce by evaluating
a time bounded until is an additive term no larger than Kh, as in the definition of the
quantitative semantics of the until, there are a nested minimum and a maximum over dense
time intervals. Hence the total error will be bounded by Kh times the number of temporal
operators.

A.1. Correctness of the Boolean Monitoring Algorithm for the Surrounded Op-
erator. In this section we prove the correctness of Algorithm 1; let us call the algorithm
BoolSurround.

Theorem 4.2. Given a graph G = (L,w,E), two properties ϕ1 and ϕ2, a trace x and a
location `, let sψ,`=BoolSurround(G,x, ϕ1, ϕ2, `) and Isψ,` be the minimal interval covering
consistent with {sϕ1,`′, sϕ2,`′}`′∈L`[0,w2]

, then, for all Ii ∈ Isψ,`

sψ,`(Ii) = 1 ⇐⇒ (x, t, `) ⊧ ϕ1S[d1,d2]ϕ2 ∀t ∈ Ii
Proof. First we note that sψ,`(Ii) = 1 ⇐⇒ ` ∈ VIi , where VIi is the set V at the end of the
iteration of the Ii interval. Then, it is enough to prove that, for all Ii ∈ Isψ,`

` ∈ VIi ⇐⇒ (x, t, `) ⊧ ϕ1S[d1,d2]ϕ2 ∀t ∈ Ii.
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Furthermore, for the definition of the minimal interval covering (Definition 4.1), sϕ1,`′ , sϕ2,`′ , `
′ ∈

L`
[0,w2]

have the same value in each Ii ∈ Isψ,` . This implies, for the Boolean semantics of the

surrounded operator, that, (x, t̂, `) ⊧ ϕ1S[d1,d2]ϕ2 for a specific t̂ ∈ Ii if and only if it satisfies
the property for all t ∈ Ii.

Let’s consider now the distance constraints of the formula. We redefine the property ϕ1

and ϕ2 in this way:

(x, t, `) ⊧ ϕ̂1 ⇐⇒ (x, t, `′) ⊧ ϕ1 ∧ d(`, `′) ≤ d2,

and
(x, t, `) ⊧ ϕ̂2 ⇐⇒ (x, t, `′) ⊧ ϕ1 ∧ d(`, `′) ∈ [d1, d2].

Hence, we have that V = {`′∣sϕ̂1,`′(Ii) = 1} and Q = {`′∣sϕ̂2,`′(Ii) = 1}.
Furthermore, a location ` is a bad location if it can reach a point satisfying ¬ϕ̂1 passing

for a node ¬ϕ̂2. Let’s consider the set

C` = {i ∈ N∣∃p ∶ `↝∞.G, (x, t, p(i)) ⊧ ¬ϕ̂1, and ∀j ∈ {1,⋯, i}(x, t, p(j)) ⊧ ¬ϕ̂2},

where p ∶ `↝∞.G is a path of the graph G, starting from `, then

(x, t, `) ⊧ ϕ1S[d1,d2]ϕ2 ⇐⇒ (x, t, `) ⊧ ϕ̂1 ∧ C` = ∅.
Hence, what we have to prove at the end is that

` ∈ VIi ⇐⇒ (x, t, `) ⊧ ϕ̂1 ∧ C` = ∅, for a t ∈ Ii.
We will prove it by induction. From this point on, we fix the trace x and the time t and

we will write ` ⊧ ϕ to indicate (x, t, `) ⊧ ϕ and V for VIi .

(⇒): We have to prove that if (x, t, `) ⊧ ϕ̂1 ∧minC` = k then ` is removed at iteration k
from V .
(basis step): ` ⊧ ϕ̂1 ∧ minC` = 1 then p(1) ⊧ ¬ϕ̂1 ∧ p(1) ⊧ ¬ϕ̂2. This implies that

∃`′ ∈ T = B+(Q⋃V ), and (`, `′) ∈ E, then ` is removed from V at the first iteration.
(inductive step): Let’s suppose that if ` ⊧ ϕ̂1∧minC` = k then ` is removed at iteration

k from V . We have to prove that this is true also for k + 1. Let’s suppose that
` ⊧ ϕ̂1∧minC` = k+1. This implies that p(k+1) ⊧ ¬ϕ̂1 and ∀j ∈ {1,⋯, k}, p(j) ⊧ ¬ϕ̂2.
But if k + 1 = minC` then `′ = p(1) ⊧ ϕ̂1 and minC`′ = k, i.e., `′ is removed at iteration
k from VIi , then ` is removed at iteration k + 1 because (`, `′) ∈ E.

(⇐): We have to prove that if ` is removed at iteration k from VIi then ` ⊧ ϕ̂1 ∧minC` = k.
(basis step): If ` is removed from V at the first iteration then ∃`′ ∈ T s.t. (`, `′) ∈ E

and (x, t, `′) ⊧ ¬ϕ̂1 ∧ ¬ϕ̂2, this implies minC` = 1.
(inductive step): Let’s suppose that if ` is removed at iteration k from V then ` ⊧

ϕ̂1∧minC` = k. We have to prove that this is true also for k+1. Let’s suppose that ` is
removed at iteration k + 1 from V . This implies that ∃`′ ∈ L s.t. (`, `′) ∈ E and `′ ∈ T
but this means that `′ was removed from V at the previous iteration k and from the
inductive step we have minC`′ = k. If minC`′ = k then ∃p ∶ `′ ↝∞.G s.t. p(k) ⊧ ¬ϕ̂1

and, ∀i ∈ {1,⋯, k}, p(i) ⊧ ¬ϕ̂2. But (`, `′) ∈ E and (x, t, `′) ⊧ ¬ϕ̂2 (because `′ ∈ T )
then ∃p′ ∶ `↝∞.G s.t. p(k + 1) ⊧ ¬ϕ̂1 and, ∀i ∈ {1,⋯, k + 1}, p(i) ⊧ ¬ϕ̂2. This implies
that minC` ≤ k + 1, but it can be less than k + 1 because in that case it has to be
removed before. Hence, we can conclude that minC` = k + 1.
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A.2. Correctness of the Quantitative Monitoring Algorithm for the Surrounded
Operator. In this section, we present the proofs of Theorem 4.5, Corollary 4.6 and Propo-
sition 4.7. For simplicity, we report again the statements.

Theorem 4.5. Let s1 and s2 be as in Definition 4.4, and

s(`) = max
A⊆L,`∈A

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′))),

then
lim
i→∞
X(i, `) = s(`), ∀` ∈ L.

Moreover, ∃K > 0 s. t. X(j, `) = s(`),∀j ≥K.

Note that s is equivalent to the quantitative semantics of the surrounded operator
ϕ1Sϕ2, with si denoting the robustness of ϕi, without the distance constraints. We first
present two lemmas, followed by the proof of Theorem 4.5.

Lemma A.1. If X(k + 1, `) = X(k, `) for all ` ∈ L then, ∀i > k, X(i, `) = X(k, `).

Proof. By induction.

(basis step): i=k +1 is true by hypothesis,
(inductive step): suppose the assert holds for i > k, i.e., X(i, `) = X(k, `) (I.H.), then we

have to prove that it holds for i + 1.

X(i + 1, `) = min(X(i, `), min
`′∣`E`′

(max(X(i, `′), s2(`′)))) {by Def. of X}

= min(X(k, `), min
`′∣`E`′

(max(X(k, `′), s2(`′)))) {by I.H.}

= X(k + 1, `) = X(k, `). {by Def. of X}

Lemma A.2. Let A` be the subregion that maximizes s(`), then, ∀`′ ∈ A`, s(`′) ≥ s(`).

Proof. If A` is the subregion that maximizes s(`) then

s(`) = min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′)))

Suppose by contradiction that ∃ˆ̀∈ A` s.t. s(ˆ̀) < s(`). Let Q = {A ⊆ L, ˆ̀∈ A}. Then

s(ˆ̀) = max
A∈Q

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′)))

and s(ˆ̀) < s(`) implies

max
A∈Q

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′))) < min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′)))

But A` is a subset of L and ˆ̀∈ A` therefore A` ∈ Q, thus the inequality can not hold.

Proof of Theorem 4.5. We have to prove that (1) X(i, `) converges in a finite number of
steps, in each location `, to X(`) ∈ R∗ and that (2) ∀` ∈ L, X(`) = s(`).
(1) Convergence of X .

First note that X(i, `) ≥ min(X(i, `),min`′∣`E`′(max(X(i, `′), s2(`′)))) = X(i+1, `), thus

X∣` is a monotonic decreasing function. Second, note that X(i, `) ∈ {sj(`)∣j ∈ {1, 2}, ` ∈ L}
is a finite set of sortable values. So, in every step, X takes a value of a sortable finite set.
Finally, if it happens that for a step, for all ` ∈ L, X(i, `) does not change then, from
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Lemma A.1, it will remain the same for all the next steps. The convergence of X to the
maximum fixed point follows then from Tarsky’s theorem.

(2) We have to prove that ∀`, X(`) = s(`).
Let A` be the subregion that maximizes s(`) then

s(`) = min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′))).

First we prove that (2a) ∀`, X(`) ≥ s(`) and then that (2b) they are equal.
(2a) To prove that X(`) ≥ s(`) it suffices to prove that, for a generic `, ∀i ∈ N, X(i, `) ≥

s(`), and for the convergence of X that ∃j ∈ N s.t. X(`) = X(j, `),∀`,∀j ≥ i. The
proof is by induction.
● (basis step)

X(0, `) = s1(`) {by Def. of X}
≥ min
`′∈A`

s1(`′) {Because ` ∈ A`}

≥ min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′))) {min property}

= s(`) {by Def. of s(`)}
● (inductive step) Assume X(i, `) ≥ s(`), to prove that X(i + 1, `) ≥ s(`);

X(i + 1, `) = min(X(i, `), min
`′∣`E`′

(max(X(i, `′), s2(`′)))) {by Def. of X}

We know by I.H. that X(i, `) ≥ s(`), so it remains to be shown that also:

min
`′∣`E`′

(max(X(i, `′), s2(`′))) ≥ s(`) (A.1)

Note that it is assumed that ` ∈ A` and that `′ are direct neighbours of `.
Therefore we can distinguish the following two cases:
– Suppose `′ ∈ A`. By I.H. we know that X(i, `′) ≥ s(`′) and by Lemma A.2

we also know that s(`′) ≥ s(`). For what concerns s2(`′), if s2(`′) ≤ X(i, `′)
then the max leads to X(i, `′) ≥ s(`). If instead s2(`′) ≥ X(i, `′) ≥ s(`), then
obviously also s2(`′) ≥ s(`). So inequation (A.1) holds in this case.

– Suppose `′ ∈ B+(A`). Then, by definition of s(`) we know that s2(`′) ≥ s(`).
So, if s2(`′) ≥ X(i, `′) then the inequation holds. If X(i, `′) ≥ s2(`′) then since
s2(`′) ≥ s(`), inequation (A.1) also holds.

(2b) Suppose by contradiction that ∃ˆ̀∈ L s.t. X(ˆ̀) > s(ˆ̀). At the fixed point we have
that

X(ˆ̀) = min(X(ˆ̀),min
`∣ˆ̀E`

(max(X(`), s2(`))))

This means that the inequality

min
`∣ˆ̀E`

(max(X(`), s2(`))) > s(ˆ̀) (A.2)

has to be true.
Let A ⊆ L, we define:
● C(A) ∶= {` ∈ L∣∃`′ ∈ A s.t. `′E` ∧ X(`) ≥ s2(`)}
● Ci(A) = C(Ci−1(A))
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We can then compute the closure of C, as C∗(A) = A⋃∞i=0C
i(A).

Because of the definition of C and the inequality (A.2), we have that s1(`) ≥
X(`) > s(ˆ̀), ∀` ∈ C∗({ˆ̀}), and that s2(`) > s(ˆ̀), ∀` ∈ B+(C∗({ˆ̀})); hence

min( min
`∈C∗({ˆ̀})

s1(`), min
`∈B+(C∗({ˆ̀}))

s2(`))) > s(ˆ̀)

i.e.

min( min
`∈C∗({ˆ̀})

s1(`), min
`∈B+(C∗({ˆ̀}))

s2(`))) > min(min
`∈Aˆ̀

s1(`), min
`′∈B+(Aˆ̀)

s2(`′)))

but this contradicts the assumption of maximality of Aˆ̀.

Corollary 4.6. Given an ˆ̀∈ L, let ψ = ϕ1S[d1,d2]ϕ2 and

s1(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(ϕ1,x, t, `) if 0 ≤ d(ˆ̀, `) ≤ d2

−∞ otherwise.

s2(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(ϕ2,x, t, `) if d1 ≤ d(ˆ̀, `) ≤ d2

−∞ otherwise.

Then ρ(ψ,x, t, ˆ̀) = s(ˆ̀) = maxA⊆L,ˆ̀∈A (min(min`∈A s1(`),min`∈B+(A) s2(`))).

Proof. We recall that

ρ(ψ,x, t, ˆ̀) = max
A⊆L

ˆ̀

[0,d2]
,`∈A,B+(A)⊆L

ˆ̀

[d1,d2]

(min(min
`∈A

ρ(ϕ1,x, t, `), min
`∈B+(A)

ρ(ϕ2,x, t, `))),

where L
ˆ̀

[d1,d2]
∶= {` ∈ A∣d1 ⩽ d(`, ˆ̀) ≤ d2}. This means that ` ∈ A iff d(`, ˆ̀) ≤ d2 and, for all

`′E`, d1 ⩽ d(`′, ˆ̀) ≤ d2.
So, we consider a restricted number of subsets of L for ρ and all the possible subsets of

L for s. Furthermore, the value of the locations considered by both are always the same,
i.e., the value of s1 and s2 differ only in the locations considered by s and not by ρ. For this
reason s(`) ≥ ρ(`).

Let Aρ be the subset that maximizes ρ of ˆ̀ and As the subset that maximizes s of ˆ̀.
And suppose by contradiction that

min(min
`∈As

s1(`), min
`′∈B+(As)

s2(`))) > min(min
`∈Aρ

ρ(ϕ1,x, t, `), min
`∈B+(Aρ)

ρ(ϕ2,x, t, `))),

but the values considered by s and not by ρ are all equal to −∞ (see line 8 of Alg. 2), so if
As has a location that cannot be considered by ρ it means that

min(min
`∈As

s1(`), min
`′∈B+(As)

s2(`))) = −∞

but minus infinity cannot be bigger than any number.

Proposition 4.7. Let dG be the diameter of the graph G and X(`) the fixed point of X(i, `),
then X(`) = X(dG + 1, `) for all ` ∈ L.

Proof. The graph diameter of G is equal to dg = max`,`′∈L d(`, `′). Recall that X(dg, `) ∈
{sj(`) ∣ j ∈ {1, 2}, ` ∈ L} is a finite set of sortable values. At step zero the value of X is equal
to s1 in all the locations. At each next step, the value of X(i, `) depends only on the value
of X in the same location at the previous step and the value of s2 and X in the previous
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step in the direct neighbours of `, `′E`. This means that, after a number of steps equal to
the diameter of the graph, i.e., the longest shortest path of the network, X , for all nodes `,
has taken into account the values s1 and s2 of all the nodes.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany
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