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Abstract. We introduce a method to lift monads on the base category of a fibration to its
total category. This method, which we call codensity lifting, is applicable to various fibrations
which were not supported by its precursor, categorical >>-lifting. After introducing the
codensity lifting, we illustrate some examples of codensity liftings of monads along the
fibrations from the category of preorders, topological spaces and extended pseudometric
spaces to the category of sets, and also the fibration from the category of binary relations
between measurable spaces. We also introduce the dual method called density lifting of
comonads. We next study the liftings of algebraic operations to the codensity liftings of
monads. We also give a characterisation of the class of liftings of monads along posetal
fibrations with fibred small meets as a limit of a certain large diagram.

1. Introduction

Inspired by Lindley and Stark’s work on extending the concept of reducibility candidates to
monadic types [Lin05, LS05], the first author previously introduced its semantic analogue
called categorical >>-lifting in [Kat05]. It constructs a lifting of a strong monad T on the
base category of a closed-structure preserving fibration p : E→ B to its total category. The
construction takes the inverse image of the continuation monad on the total category along
the canonical monad morphism σ : T → (− ⇒ TR)⇒ TR in the base category, which exists
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for any strong monad T :

T >> // (− ⇒ S)⇒ S

T σ
// (− ⇒ TR)⇒ TR

(1.1)

The objects R and S (such that TR = pS) are presupposed parameters of this >>-lifting,
and by varying them we can derive various liftings of T . The categorical >>-lifting has
been used to construct logical relations for monads [Kat13] and to analyse the concept of
preorders on monads [KS13].

One key assumption for the >>-lifting to work is that the fibration p preserves the
closed structure, so that the continuation monad (− ⇒ S) ⇒ S on the total category
becomes a lifting of the continuation monad (− ⇒ TR) ⇒ TR on the base category.
Although many such fibrations are seen in the categorical formulations of logical relations
[MS93, Her93, Kat13], requiring fibrations to preserve the closed structure of the total
category imposes a technical limitation to the applicability of the categorical >>-lifting.
Indeed, outside the categorical semantics of type theories, it is common to work with the
categories that are not closed. In the study of coalgebras, predicate / relational liftings
of functors and monads are fundamental structures to formulate modal operators and
(bi)simulation relations, and the underlying categories of them are not necessarily closed.
For instance, the category Meas of measurable spaces, which is not cartesian closed, is used
to host labelled Markov processes [vBMOW05]. The categorical >>-lifting does not work
in such situations.

To overcome this technical limitation, in this paper we introduce an alternative lifting
method called codensity lifting. The idea is to replace the continuation monad (− ⇒ S)⇒ S
with the codensity monad RanSS given by a right Kan extension. We then ask fibrations to
preserve the right Kan extension, which is often fulfilled when E has and p preserves limits.
We demonstrate that the codensity lifting is applicable to lift monads on the base categories
of the following fibrations:

Pre

��

Top

��

ERel(Meas) //

��

BRel(Meas)

��

// Pred

��

U∗EPMet //

��

EPMet

��
Set Set Meas

∆
//Meas2

(×)◦U2
// Set Meas

U
// Set

The description of these fibrations are in order:

• Functors Pre → Set and Top → Set are the forgetful functors from the category of
preorders and that of topological spaces to Set.
• Functor BRel(Meas)→Meas is the fibration for binary relations between (the carrier

sets of) two measurable spaces. Functor ERel(Meas) → Meas is the subfibration of
BRel(Meas) → Meas obtained by restricting objects in BRel(Meas) to the binary
relations over the same measurable spaces.
• Functor EPMet→ Set is the forgetful functor from the category of extended pseudometric

spaces and non-expansive functions between them. We then apply the change-of-base
to it to overlay extended pseudometrics on measurable spaces. This yields a fibration
U∗EPMet→ Set.
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By taking the categorical dual of the codensity lifting, we obtain the method to lift
comonads on the base category of a cofibration to its total category. This method, which
we call the density lifting of comonads, is newly added to the conference version of this
paper [KS15]. We illustrate two examples of the density lifting of Set-comonads along the
subobject fibration of Set.

Another issue when we have a lifting Ṫ of a monad T is the liftability of algebraic
operations for T to the lifting Ṫ . For instance, let Ṫ be a lifting of the powerset monad Tp
on Set along the forgetful functor p : Top→ Set, which is a fibration. A typical algebraic
operation for Tp is the union of A-indexed families of sets:

unionAX : A t TpX → TpX, unionAX(f) =
⋃
a∈A

f(a);

here t denotes the power. Then the question is whether we can “lift” the function unionAX
to a continuous function of type A t Ṫ (X,OX) → Ṫ (X,OX) for every topological space
(X,OX). We show that the liftability of algebraic operations to the codensity liftings of
monads has a good characterisation in terms of the parameters supplied to the codensity
liftings.

We are also interested in the categorical property of the collection of liftings of a monad
T (along a limited class of fibrations). We show a characterisation of the class of liftings of
T as a limit of a large diagram of partial orders.

1.1. Related Work. This paper is the journal version of [KS15]. We add an elementary
introduction to the >>-lifting and the codensity lifting (Section 2), and the section about
the density lifting of comonads (Section 5).

In the semantics of programming languages based on typed λ-calculi, logical predicates
and logical relations [Plo80] have been extensively used for establishing (relational) properties
of programs. The categorical analysis of logical relations emerged around the 90’s [MS93,
MR92], and its fibrational account was given by Hermida [Her93]. In these works, the
essence of logical predicates and relations is identified as predicate / relational liftings of
the categorical structures corresponding to type constructors; especially Hermida studied
the construction of such liftings in fibred category theory. Liftings of categorical structures
along a functor are later employed in a categorical treatment of refinement types [MZ15].

One of the earliest work that introduced logical relations (i.e., relational liftings) for
monads is Filinski’s PhD thesis [Fil96]. They play a central role in establishing relationships
between two monadic semantics of programming languages with computational effects
[Fil94, WV04, Fil07, FS07, Kat13]. Larrecq, Lasota and Nowak gave a systematic method
to lift monads based on mono-factorisation systems [LLN08]. Their method is fundamentally
different from the codensity lifting, and the relationship between these lifting methods is
still not clear.

The origin of the codensity lifting goes back to the biorthogonality technique developed
in proof theory. Girard used this technique in various contexts, such as 1) the phase space
semantics of linear logic [Gir87], 2) the proof of the strong normalisation of cut-elimination
in proof nets [Gir87] and 3) the definition of types in the geometry of interaction [Gir89].
Krivine also used biorthogonally-closed sets of terms and stacks in his realisability semantics
of classical logic [Kri09]. Pitts introduced a similar technique called >>-closure operator,
and used >>-closed relations as a substitute for admissible relations in the operational
semantics of a functional language. Abadi considered a domain-theoretic analogue of Pitts’



4 S. KATSUMATA, T. SATO, AND T. UUSTALU

>>-closure operator, and compared >>-closed relations and admissible relations [Aba00].
Lindley and Stark’s leapfrog method extends Pitts’ >>-closure operator to the construction
of logical predicates for monadic types [Lin05, LS05]. The first author gave a categorical
analogue of the leapfrog method [Kat05], which constructs a lifting of a strong monad along
a closed-structure preserving fibration.

In the coalgebraic study of state transition systems and process calculi, one way to
represent a (bi)simulation relation between coalgebras is to give a relational coalgebra with
respect to a relational lifting of the coalgebra functor [HJ98, HT00, JH03, Lev11]. When
the coalgebra functor preserves weak pullbacks, Barr extension [Bar70] is often employed to
derive a relational lifting of the coalgebra functor. In a recent work [SKDH18], Sprunger et
al. introduced the codensity lifting of Set-endofunctors along a partial order fibration over
Set with fibred small meets. The basic lifting strategy is the same as this paper; we derive
a lifting of an endofunctor by pulling back a codensity monad along a canonical morphism.
One notable difference is that the parameter to lift an endofunctor F refers to the category
of F -algebras. This is because we need a substitute for the Kleisli category used in the
codensity lifting of monads.

In Section 4, we illustrate a couple of definitions of (bi)simulation relations that can be
naturally expressed by the codensity lifting of monads: one is the definition of simulation
relation on a single labelled Markov process [vBMOW05], and the other is the definition of
bisimulation relation between two labelled Markov processes [BBLM14].

1.2. Preliminaries. We use white bold letters B,C,E, · · · to range over locally small
categories. We sometimes identify an object in a category C and a functor of type 1→ C.

We do a lot of 2-categorical calculations in CAT. To reduce the notational burden,
we omit writing the composition operator ◦ between functors, or a functor and a natural
transformation. For instance, for functors G,F, P,Q and a natural transformation α : P → Q,
by GαF we mean the natural transformation G(αFI) : G ◦P ◦F (I)→ G ◦Q ◦F (I). We use
• and ∗ for the vertical and horizontal compositions of natural transformations, respectively.

Let A be a set and X be an object of a category C. A power of X by A is a pair of
an object A t X and an A-indexed family of projection morphisms {πa : A t X → X}a∈A.
They satisfy the following universal property: for any A-indexed family of morphisms
{fa : B → X}a∈A, there exists a unique morphism m : B → A t X such that πa ◦m = fa
holds for all a ∈ A. Here are some examples of powers:

(1) When C = Set, the function space A ⇒ X and the evaluation function πa(f) = f(a)
give a power of X by A.

(2) When C has small products, the product of A-fold copies of X and the associated
projections give a power of X by A.

(3) When C has powers by A ∈ Set, any functor category [D,C] also has powers by A,
which can be given pointwisely: (A t F )X = A t (FX).

A right Kan extension of F : A→ C along G : A→ D is a pair of a functor RanGF :
D → C and a natural transformation c : (RanGF )G → F making the mapping (−) :

[D,C](H,RanGF )→ [A,C](HG,F ) defined by

(−)(α) = c • (αG)

bijective and natural in H ∈ [D,C]. A functor p : C→ C′ preserves a right Kan extension
(RanGF, c) if (p(RanGF ), pc) is a right Kan extension of pF along G. Thus for any right
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Kan extension (RanG(pF ), c′) of pF along G, we have p(RanGF ) ' RanG(pF ) by the
universal property.

Let T be a monad on a category C. Its components are denoted by (T, η, µ). The
monad induces the Kleisli lifting (−)# : C(I, TJ) → C(TI, TJ) defined by f# = µJ ◦ Tf .
We write J : C→ CT and K : CT → C for the left and right adjoint of the Kleisli resolution
of T , respectively. We also write ε : JK → IdC for the counit of this adjunction. When T is
decorated with an extra symbol, like Ṫ , the same decoration is applied to the components
of T and the notation for the Kleisli adjunction, like η̇, J̇ , ε̇, etc.

For the definition of fibrations and related concepts, see [Jac99].

2. From >>-Lifting to Codensity Lifting

Before introducing the codensity lifting, we first briefly review its precursor, the semantic >>-
lifting [Kat05]. It is a semantic analogue of Lindley and Stark’s leapfrog method [LS05, Lin05],
and constructs a logical predicate for a monad T = (T, η, µ) on Set. Below, by a predicate
we mean a pair (X, I) of sets such that X ⊆ I.

The semantic >>-lifting takes a lifting parameter, which is a pair of a set R and a
predicate (S, TR). Fix such a parameter. The semantic >>-lifting is defined as a mapping
of a predicate (X, I) to the predicate (T>>X,TI), where T>>X is constructed in two steps:

T>X = {k ∈ I ⇒ R | ∀x ∈ X . k(x) ∈ S}
T>>X = {c ∈ TI | ∀k ∈ T>X . k#(c) ∈ S}. (2.1)

Regarding monads as models of computational effects [Mog91], the above two steps may
be intuitively understood as follows. We think of the parameter R as the type of return values
of continuations (which corresponds to stack frames in operational semantics [Pit00, LS05]),
and the parameter S as a specification of “good computations” over R. Now let (X, I) be
a predicate, which we regard as a set I of values with a specification X of “good values”.
Then T>X collects all the continuations that send good values to good computations, and
T>>X collects all the computations over I that yield good computations when passed to
continuations in T>X. Overall, we regard the semantic >>-lifting as a process to collect a
set T>>X of good computations from a given set X of good values. The semantic >>-lifting
is suitable for the construction of logical predicates for monadic types [Kat05, Theorem 3.8].

The semantic >>-lifting can further be formulated in fibred category theory. To illustrate
this, let us introduce the category Pred, where an object is a predicate and a morphisms
from (X, I) to (Y, J) is a function f : I → J that maps elements in X to those in Y . The
evident forgetful functor p : Pred→ Set is a partial order fibration: the inverse image of a
predicate (X, I) along a function f : J → I is the predicate ({j | f(j) ∈ X}, J), which we
denote by f∗(X, I); see [Jac99, Chapter 0] for more detail. Moreover, the following facts are
known: 1) The category Pred is cartesian closed. The following gives exponentials in Pred:

(X, I)⇒̇(Y, J) = ({f | ∀x ∈ X.f(x) ∈ Y }, I ⇒ J),

and they are strictly preserved by p [Her93]. 2) Monads on Set are always equipped with the
bind morphism σ : TX → (X ⇒ TR)⇒ TR given by σ(c) = λk.k#(c), which is derivable
from the canonical strength of monads on Set [Mog91]. Then both T>X and T>>X can be
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computed using these categorical facts:

(T>X, I ⇒ TR) = (X, I) ⇒̇ (S, TR)

(T>>X,TR) = σ∗(((X, I) ⇒̇ (S, TR)) ⇒̇ (S, TR)). (2.2)

We can also deduce from this characterisation that T>> extends to a lifting (Definition 3.1)
of the monad T along the fibration p : Pred→ Set. A more conceptual reading of (2.2) is
that the semantic >>-lifting is the inverse image of the continuation monad on Pred along
σ, as depicted in (1.1). The right hand side of (2.2) can be computed in a more general
situation where p is a symmetric monoidal closed fibration of type E→ B 1 and T is a strong
monad on B. This is the categorical >>-lifting in [Kat05, Section 4].

In this paper, we pursue the lifting method based on an alternative characterisation
of the semantic >>-lifting. We observe that: 1) the set T>X is identical to the homset
Pred((X, I), (S, TR)), and 2) the universal quantification ∀k ∈ T>X in the definition of
T>>X can be extracted as the intersection of predicates, which corresponds to the fibred meet
of the partial order fibration p : Pred→ Set. From these observations, we can characterise
T>>X as the fibred meet of inverse images:

(T>>X,TR) =
∧

k∈Pred((X,I),(S,TR))

((pk)#)∗(S, TR); (2.3)

here
∧

stands for the fibred meet.
The above presentation of T>>X in the language of fibred category theory leads us to

adopt (2.3) as the generalised definition of T>>X for any partial order fibration p : E→ B
with fibred meets and monad T on B. Since p need not to be closed-structure preserving,
the generalised definition makes sense in a wide range of such fibrations, including forgetful
functors from the category of preorders, topological spaces and metric spaces to Set. However,
unlike the categorical >>-lifting, the meaning of the generalised definition is not very clear,
because it is a direct encoding of the right hand side of (2.1) in fibred category theory.
In the next section, we introduce the codensity lifting for general fibrations, which has a
conceptually clear definition using the codensity monad. Then in Proposition 4.1 we show
that the codensity lifting reduces to the right hand side of (2.3) when the lifting parameter
is single, and the fibration has sufficient limits.

3. Codensity Lifting of Monads

Fix a fibration p : E→ B and a monad T on B. We formally introduce the main subject of
this study, liftings of T .

Definition 3.1. A lifting of T (along p) is a monad Ṫ on E such that pṪ = Tp, pη̇ = ηp
and pµ̇ = µp.

We do not require fibredness on Ṫ . The codensity lifting is a method to construct a
lifting of T from the following data called lifting parameter.

Definition 3.2. A lifting parameter (for T ) is a span BT A S //Roo E of functors such that
KR = pS. We say that it is single if A = 1.

1 That is, E,B are symmetric monoidal closed, and p strictly preserves the symmetric monoidal closed
structure.
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Any single lifting parameter can be written as (JR, S) for some R ∈ B. We therefore
call a pair (R,S) of R ∈ B and S ∈ ETR a single lifting parameter too. This is the same
data used in the single-result categorical >>-lifting in [Kat05].

Fix a lifting parameter BT A S //Roo E . In this section we introduce the codensity lifting
under the assumption that the fibration p : E→ B and the functor S of the lifting parameter
satisfy the following codensity condition.

Definition 3.3. We say that a fibration p : E → B and a functor S : A → E satisfy the
codensity condition if

(1) a right Kan extension of S along S exists, and
(2) p : E→ B preserves this right Kan extension.

We give some sufficient conditions for (p, S) to satisfy the codensity condition.

Proposition 3.4. Let p : E→ B be a fibration and S : A→ E be a functor. The following
are sufficient conditions for (p, S) to satisfy the codensity condition:

(1) E has, and p preserves powers, and A = 1.
(2) E has, and p preserves small products, and A is small discrete.
(3) E has, and p preserves small limits, and A is small.
(4) S is a right adjoint.

Proof. (1-3) are immediate. (4) Let P be a left adjoint of S. Then the assignment F 7→ FP
extends to a right Kan extension of F along S. This Kan extension is absolute [Mac98,
Proposition X.7.3].

Assume that (p, S) satisfies the codensity condition. We take a right Kan extension
(RanSS, c : (RanSS)S → S), and equip it with the following monad structure: the unit
u : Id → RanSS and multiplication m : (RanSS)(RanSS) → RanSS are respectively
unique natural transformations such that c • uS = idS and c •mS = c • (RanSS)c. This is
the codensity monad [Mac98, Exercise X.7.3].

Since p preserves the right Kan extension RanSS, (p(RanSS), pc) is a right Kan
extension of pS along S. Thus the mapping (−) : [E,B](H, p(RanSS)) → [A,B](HS, pS)
defined by

(−) = pc • −S
is bijective and natural on H : E→ B. We denote its inverse by (−), and call f the mate of
f .

The codensity lifting constructs a lifting T >> = (T>>, η>>, µ>>) of T along p as follows.

Lifting the Endofunctor T . We first regard KεR as a natural transformation of type
TpS → pS. We then apply the function (−) to it:

KεR : TpS = KJpS = KJKR→ KR = pS

KεR : Tp→ p(RanSS)
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We next take its cartesian lifting with respect to RanSS.

T>>
σ // RanSS [E,E]

[E,p]
��

Tp
KεR

// p(RanSS) [E,B]

This is possible because [E, p] : [E,E]→ [E,B] is again a fibration. We name the cartesian
lifting σ, and its domain T>>. We have pT>> = [E, p]T>> = Tp.

Lifting the Unit η. Consider the following diagram:

IdE

η>> !!

u

&&
T>> σ

// RanSS [E,E]

[E,p]

��

p

ηp
""

pu

&&
Tp

KεR

// p(RanSS) [E,B]

The triangle in the base category commutes by:

KεR • ηp = KεR • ηpS = KεR • ηKR = idKR = idpS = pu.

Therefore from the universal property of σ, we obtain the unique natural transformation
η>> above ηp making the triangle in the total category commute.

Lifting the Multiplication µ. Consider the following diagram.

T>>T>>

µ>> &&

T>>σ // T>>RanSS
σRanSS // (RanSS)RanSS

m

  
T>>

σ // RanSS [E,E]

[E,p]

��

TTp
TKεR //

µp
''

Tp(RanSS)
KεRRanSS // p(RanSS)RanSS

pm

!!
Tp

KεR

// p(RanSS) [E,B]

The pentagon in the base category commutes by:

pm •KεRRanSS • TKεR = pc • p(RanSS)c •KεR(RanSS)S • TKεRS
(interchange law) = pc •KεRS • Tpc • TKεRS = KεR •KJKεR

= KεR • µKR = KεR • µpS = KεR • µp.
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Therefore from the universal property of σ, we obtain the unique morphism µ>> above µp
making the pentagon in the total category commute.

Theorem 3.5. Let p : E → B be a fibration, T be a monad on B, BT A S //Roo E be a

lifting parameter for T , and assume that (p, S) satisfies the codensity condition. The tuple
T >> = (T>>, η>>, µ>>) constructed as above is a lifting of T along p.

Proof. From the universal property of the cartesian morphism σ, it suffices to show the
following three equalities:

σ • µ>> • T>>η>> = σ, σ • µ>> • η>>T>> = σ, σ • µ>> • µ>>T>> = σ • µ>> • T>>µ>>.
They are easily shown from the definition of η>> and µ>>. For instance,

σ • µ>> • T>>η>> = m • σ(RanSS) • T>>σ • T>>η>> = m • σ(RanSS) • T>>u
(interchange law) = m • (RanSS)u • σ = σ.

Corollary 3.6. The cartesian morphism σ : T>> → RanSS is a monad morphism.

Any lifting of T along p can be obtained by the codensity lifting, although the choice of
the lifting parameter is rather canonical.

Theorem 3.7. Let p : E→ B be a fibration, T be a monad on B and Ṫ be a lifting of T .
Then there exists a lifting parameter R,S such that (p, S) satisfies the codensity condition

and Ṫ ' T >>.

Proof. We write pk : EṪ → BT for the canonical functor extending p : E → B to Kleisli

categories. Then the span BT EṪ
K̇ //pkoo E is a lifting parameter that satisfies the codensity

condition by Proposition 3.4. Since Ṫ = K̇J̇ , (Ṫ , K̇ε̇) is a right Kan extension of K̇ along

K̇, and this is preserved by p. Moreover, the morphism Kεpk : Tp→ pṪ = Tp becomes the
identity morphism. Hence Ṫ is isomorphic to T >>.

The codensity lifting is given with respect to the Kleisli resolution J a K : CT → C of
T . In fact, we can replace it with the Eilenberg-Moore resolution J ′ a K ′ : CT → C of T ,
because the initiality of the Kleisli resolution of T is irrelevant in the codensity lifting. This
replacement affects the argument in this section as follows:

• A lifting parameter becomes a pair BT A S //Roo E of functors R,S such that pS = K ′R.
The codensity condition remains the same.
• When lifting the components of T , we replace J with J ′, K with K ′, and ε with the counit
ε′ of J ′ a K ′.
• Theorem 3.5 and Corollary 3.6 remains the same.

• In the proof of Theorem 3.7, we use the Eilenberg-Moore resolution EṪ of Ṫ instead of
EṪ . The remaining part is the same.

At this moment we do not know which resolution is better for the codensity lifting.
Theorem 3.7 shows that for deriving any lifting of T , it is enough to use CT -valued lifting
parameters; enlarging CT to CT does not increase the expressiveness of the codensity lifting.
In this paper we use the Kleisli resolution in the codensity lifting.
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4. Examples of Codensity Liftings with Single Lifting Parameters

We illustrate codensity liftings of monads with single lifting parameters where 1) the fibration
p : E → B has fibred small products and 2) B has small products. In this situation, E
also has small products that are preserved by p [Jac99, Exercise 9.2.4], and any single
lifting parameter satisfies the codensity condition. We below give a formula to compute the
codensity lifting of a monad with a single lifting parameters.

Proposition 4.1. Let p : E→ B a fibration such that p has fibred small products and B has
small products, and let T be a monad on B. Then the functor part of the codensity lifting
T >> of T with a single lifting parameter R ∈ B and S ∈ ETR satisfies

T>>X '
∧

f∈E(X,S)

((pf)#)−1(S), (4.1)

where
∧

stands for the fibred product in ET (pX).

Proof. We supply the lifting parameter (JR, S) to the codensity liftinig (see the convention
after Definition 3.2). Let X ∈ E. We take the power (E(X,S) t pS, π) in B. From [Jac99,
Exercise 9.2.4], the object ∧

f∈E(X,S)

(πf )−1(S)

together with an appropriate projection morphism is a power of S by E(X,S), and p sends
it to the power (E(X,S) t pS, π). Therefore the pair (E(−, S) t pS, πidS

) is a right Kan

extension of pS along S, and the mate function (−) : E(FS, pS)→ [E,B](F,E(−, S) t pS)
of this right Kan extension is given by

(f)X = 〈f ◦ Fg〉g∈E(X,S) : FX → E(X,S) t pS.

From this, we have (KεJR)X = 〈KεJR ◦KJpg〉g∈E(X,S) = 〈(pg)#〉g∈E(X,S). Therefore

T>>X = (〈(pg)#〉g∈E(X,S))
−1

 ∧
f∈E(X,S)

(πf )−1(S)


'

∧
f∈E(X,S)

(〈(pg)#〉g∈E(X,S))
−1(πf )−1(S)

'
∧

f∈E(X,S)

(πf ◦ 〈(pg)#〉g∈E(X,S))
−1(S)

=
∧

f∈E(X,S)

((pf)#)−1(S).

In the rest of this section, we instantiate the parameters of Proposition 4.1 and identify
the right hand side of (4.1). All the fibrations appearing in this section have fibred small
limits, and are over categories with small limits.
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4.1. Lifting Set-Monads to the Category of Preorders. The forgetful functor p :
Pre→ Set from the category Pre of preorders and monotone functions is a fibration with
fibred small limits. The inverse image of a preorder (J,≤J) along a function f : I → J is the
preorder (I,≤I) given by i ≤I i′ ⇐⇒ f(i) ≤J f(i′). The fibred small limits are given by
the set-theoretic intersections of preorder relations. Although the category Pre is cartesian
closed, p does not preserve exponentials. Hence the categorical >>-lifting [Kat05] is not
applicable for lifting Set-monads along p.

We consider the codensity lifting of a monad T on Set along p : Pre → Set with a
single lifting parameter: a pair of R ∈ Set and S = (TR,≤) ∈ Pre. By instantiating (4.1),
for every preorder (X,≤X) ∈ Pre (X for short), T>>X is the preorder (TX,≤>>X ) where

≤>>X is given by

x≤>>X y ⇐⇒ ∀f ∈ Pre(X,S) . (pf)#(x) ≤ (pf)#(y). (4.2)

We further instantiate this by letting T be the powerset monad Tp, R = 1 and ≤ be one
of the following partial orders on Tp1 = {∅, 1}:
(1) Case ≤ = {∅ ≤ 1}. The homset Pre(X,S) is isomorphic to the set Up(X) of upward

closed subsets of X, and (4.2) is rewritten to:

x≤>>X y ⇐⇒ (∀F ∈ Up(X) . x ∩ F 6= ∅ =⇒ y ∩ F 6= ∅)
⇐⇒ ∀i ∈ x . ∃j ∈ y . i ≤X j,

that is, ≤>>X is the lower preorder.

(2) Case ≤ = {1 ≤ ∅}. By the similar argument, ≤>> is the upper preorder:

x≤>>X y ⇐⇒ ∀j ∈ y . ∃i ∈ x . i ≤X j.

In order to make ≤>> the convex preorder on Tp:

x≤>>X y ⇐⇒ (∀i ∈ x . ∃j ∈ y . i ≤X j) ∧ (∀j ∈ y . ∃i ∈ x . i ≤X j),

it suffices to supply the cotupling SetTp ← 1 + 1→ Pre of the above two lifting parameters
to the codensity lifting.

4.2. Lifting Set-Monads to the Category of Topological Spaces. The forgetful func-
tor p : Top→ Set from the category Top of topological spaces and continuous functions is a
fibration with fibred small limits. For a topological space (X,OX) and a function f : Y → X,
the inverse image topological space f−1(X,OX) is given by (Y, {f−1(U) | U ∈ OX}). We
note that each fibre category TopX on a set X is the poset of topologies on X ordered by
the coarseness, that is, (X,O1) ≤ (X,O2) holds if and only if O2 ⊆ O1.

We consider the codensity lifting of a monad T on Set along p : Top → Set with a
single lifting parameter: a pair of R ∈ Set and S = (TR,OS) ∈ Top. By instantiating (4.1),
for every (X,OX) ∈ Top (X for short), T>>X is the topological space (TX, T>>OX) whose
topology T>>OX is the coarsest one making every set ((pf)#)−1(U) open, where f and U
range over Top(X,S) and OS , respectively.

We further instantiate this by letting T = Tp, R = 1, and OS be one of the following
topologies on Tp1. The resulting codensity liftings respectively equip TpX with the same
topologies as lower and upper Vietoris topologies, which appear in the construction of
hyperspace [Nad78].
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(1) Case OS = {∅, {1}, {∅, 1}}. The topology T>>p OX is the coarsest one making every set
{V ⊆ pX | V ∩ U 6= ∅} open, where U ranges over OX . We call this lower Vietoris
lifting.

(2) Case OS = {∅, {∅}, {∅, 1}}. The topology T>>p OX is the coarsest one making every set
{V ⊆ pX | V ⊆ U} open, where U ranges over OX . We call this upper Vietoris lifting.

We note that the hyperspace of X ∈ Top has closed subsets of X as points, and therefore is
not a lifting of the powerset monad Tp.

4.3. Simulations on LMPs by Codensity Lifting. We next move on to the category
Meas of measurable spaces and measurable functions between them. Recall that Meas has
small limits. We introduce some notations: For X ∈Meas, by ΣX we mean the σ-algebra
of X. For a topological space X ∈ Top, by BX ∈Meas we mean the Borel space associated
to X.

Let p : Pred → Set be the subobject fibration of Set. We here explicitly give Pred
as follows: an object of Pred is a pair of sets (X, I) such that X is a subset of I, and a
morphism from (X, I) to (Y, J) is a function f : I → J such that f(X) ⊆ Y . The first and
second component of X ∈ Pred is denoted by X0 and X1, respectively. The fibration p
has fibred small limits. We then consider the following two fibrations q, r obtained by the
change-of-base of the subobject fibration p : Pred→ Set:

ERel(Meas) //

r

��

BRel(Meas) //

q

��

Pred

p

��
Meas

∆
//Meas2

U2
// Set2

Prod
// // Set

Here, ∆ is the diagonal functor and Prod is the binary product functor. The derived legs q
and r are again fibrations with fibred small limits.2 An explicit description of BRel(Meas)
is:

• An object X is a triple, whose components are denoted by X0, X1, X2, such that X1, X2

are measurable spaces and X0 ⊆ UX1 × UX2 is a binary relation between the carrier sets
of X1 and X2.
• A morphism (f1, f2) : X → Y is a pair of measurable functions f1 : X1 → Y1 and
f2 : X2 → Y2 such that (Uf1 × Uf2)(X0) ⊆ Y0.

An explicit definition of ERel(Meas) is:

• An object X is a pair, whose components are denoted by X0, X1, such that X1 is a
measurable space and X0 ⊆ UX1 × UX1 is a binary relation on the carrier set of X1.
• A morphism f : X → Y is a measurable function f : X1 → Y1 such that Uf1(X0) ⊆ Y0.

Before proceeding further, we introduce some concepts and notations about binary
relations. For a binary relation R ⊆ X × Y and a subset A ⊆ X, the image of A by R is
defined to be the set {y ∈ Y | ∃x ∈ A . (x, y) ∈ R}, and is denoted by R[A]. For a subset
V ⊆ I, by χV : I → [0, 1] we mean the indicator function defined by: χV (i) = 1 when
i ∈ V and χV (i) = 0 when i 6∈ I. For two binary relations P ⊆ I × J and Q ⊆ J × K,
by P ;Q ⊆ I ×K we mean the relational composition of P followed by Q. We extend this
operation to BRel(Meas)-objects X,Y such that X2 = Y1 in the evident way.

2BRel and ERel stand for binary relations and endo-relations, respectively.
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The target of the codensity lifting in this section is the sub-Giry monad [Gir82], which
we recall below. For a measurable space X ∈ Meas, by SPMsr(X) we mean the set of
sub-probability measures on X. We equip it with the σ-algebra generated from the sets of
the following form:

{µ ∈ SPMsr(X) | µ(V ) ∈W} (V ∈ ΣX ,W ∈ O[0,1]),

and denote this measurable space by GX. The assignment X 7→ GX can be extended to a
monad G on Meas, called the sub-Giry monad [Gir82]. Notice that G1 is the Borel space
B[0, 1] associated to the unit interval [0, 1] with the subspace topology induced from the real
line.

4.3.1. Liftings of Sub-Giry Monad to BRel(Meas) and ERel(Meas). We first consider the
codensity lifting of the product sub-Giry monad G2 along the fibration q : BRel(Meas)→
Meas2 with a single lifting parameter R = (1, 1) (the pair of one-point measurable space) and
S = (S0, G1, G1); here S0 is a binary relation over the unit interval [0, 1] = U(G1). From (4.1),
the codensity lifting sends an object X ∈ BRel(Meas) to the object G>>X ∈ BRel(Meas),
whose relation part is given by

(G>>X)0 =

{
(v1, v2) | ∀(f, g) ∈ BRel(Meas)(X,S).

(∫
X1

f dv1,

∫
X2

g dv2

)
∈ S0

}
.

When the binary relation S0 satisfies certain closure properties, we can simplify the right
hand side of the above equality.

Proposition 4.2. Suppose that S = (S0, G1, G1) ∈ BRel(Meas) satisfies the following
conditions:

(1) For any object X ∈ BRel(Meas), morphism (f, g) : X → S, and 0 ≤ β ≤ 1, the pair of
indicator functions (χf−1([β,1]), χg−1([β,1])) is a morphism from X to S in BRel(Meas).

(2) The binary relation S0 is closed under taking convex hulls.
(3) The binary relation S0 is closed under taking pointwise suprema.

Then the codensity lifting of G2 along q : BRel(Meas) → Meas2 with the single lifting
parameter R = (1, 1) and S satisfies:

(G>>X)0 =

{
(v1, v2)

∀V ∈ ΣX1 ,W ∈ ΣX2 .

(χV , χW ) ∈ BRel(Meas)(X,S) =⇒ (v1(V ), v2(W )) ∈ S0

}
.

Proof. (⊇) Obvious. (⊆) Let (v1, v2) be a pair in the right hand side relation of the above
equation. Take an arbitrary pair (f, g) ∈ BRel(Meas)(X,S). From the definition of
Lebesgue integral we obtain∫

X1

f dv1 = sup

{
N∑
n=0

βnv1(f−1([
∑n

i=0 βi, 1]))

N∑
n=0

βn = 1, βn > 0

}
From the first and second condition(

N∑
n=0

βnv1(f−1([
∑n

i=0 βi, 1])),

N∑
n=0

βnv2(g−1([
∑n

i=0 βi, 1]))

)
∈ S0

holds for each {βn}Nn=0 such that
∑N

n=0 βn = 1 and βn > 0. From the third condition, we

conclude
(∫

X1
f dv1,

∫
X2
g dv2

)
∈ S0.
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We next consider the codensity lifting of G along the fibration r : ERel(Meas)→Meas
with R = 1 and S = (S0, G1); here S0 is again a binary relation over [0, 1]. By instantiating
(4.1), we obtain

(G>>X)0 =

{
(v1, v2) | ∀f ∈ ERel(Meas)(X,S) .

(∫
X1

f dv1,

∫
X1

f dv2

)
∈ S0

}
.

The following proposition, which is analogous to Proposition 4.2, holds for the above codensity
lifting.

Proposition 4.3. Suppose that S = (S0, G1) ∈ ERel(Meas) satisfies the following condi-
tions:

(1) For any object X ∈ ERel(Meas), morphism f : X → S and 0 ≤ β ≤ 1, the indicator
function χf−1([β,1]) is a morphism from X to S in ERel(Meas).

(2) The binary relation S0 is closed under taking convex hulls and pointwise supremums.

Then the codensity lifting G>> of G along r : ERel(Meas)→Meas with the single lifting
parameter R = 1 and S = (S0, G1) satisfies

(G>>X)0 = {(v1, v2) | ∀V ∈ ΣX1 . χV ∈ BRel(Meas)(X,S) =⇒ (v1(V ), v2(V )) ∈ S0} .

4.3.2. Simulations on a Single LMP by Codensity Lifting. We further instantiate S0 ⊆ [0, 1]2

in Proposition 4.3 with the numerical order ≤. The codensity lifting with this single lifting
parameter is simplified as follows:

Proposition 4.4. The codensity lifting G>> of G along r : ERel(Meas)→Meas with the
single lifting parameter R = 1 and (≤, G1) satisfies:

(v1, v2) ∈ (G>>X)0 ⇐⇒ (∀U ∈ ΣX1 . X0[U ] ⊆ U =⇒ v1(U) ≤ v2(U)).

Proof. We apply Proposition 4.3: the binary relation S0 = ≤ is obviously closed under taking
convex hulls and pointwise supremums, and for any f ∈ ERel(Meas)(X,S) and β ∈ [0, 1]
we have χf−1([β,1]) ∈ ERel(Meas)(X,S), because β ≤ f(x) =⇒ β ≤ f(y) holds for each
(x, y) ∈ X0. We then conclude the above equivalence because the condition X0[U ] ⊆ U is
equivalent to χU ∈ ERel(Meas)(X,S).

With the above lifting of sub-Giry monad, we can coalgebraically formulate simulation
relations on a single labelled Markov process (LMP) proposed in [vBMOW05]. Fix a set Act
of actions. The following is a coalgebraic definition of LMPs [vBMOW05]:

Definition 4.5. An LMP is an (Act t G−)-coalgebra in Meas.

We omit the proof of the equivalence between this coalgebraic definition of LMPs and
[vBMOW05, Definition 1]. The concept of simulation relation on an LMP is proposed in
[vBMOW05]:

Definition 4.6 [vBMOW05, Definition 3]. Let (X,x) be an LMP and R ⊆ UX ×UX be a
reflexive relation. We say that R is a simulation relation on (X,x) if

∀(s1, s2) ∈ R . ∀a ∈ Act . ∀U ∈ ΣX . R[U ] = U =⇒ πa(x(s1))(U) ≤ πa(x(s2))(U).

In this definition, the formula after “∀U ∈ ΣX” is similar to the right hand side of the
equivalence proved in Proposition 4.4. Actually, as R is assumed to be reflexive, R[U ] = U
is equivalent to R[U ] ⊆ U . Then the above formula defining simulation relations can be
folded into the existence of a coalgebra in ERel(Meas):
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Theorem 4.7. Let (X,x) be an LMP and R ⊆ UX × UX be a reflexive relation. The
following are equivalent:

(1) R is a simulation relation on (X,x).
(2) x is a morphism of type (R,X)→ Act t G>>(R,X) in ERel(Meas), where G>> is the

lifting given in Proposition 4.4.

4.3.3. Bisimulations between Two LMPs by Codensity Lifting. We next instantiate S0 ⊆
[0, 1]2 in Proposition 4.2 with the equality relation = on [0, 1]. We first introduce an auxiliary
concept, which appears in [BBLM14].

Definition 4.8. Let R ⊆ I × J be a binary relation and U ⊆ I and V ⊆ J be subsets. We
say that the pair (V,W ) is R-closed if ∀(x, y) ∈ R . (x ∈ V ) ⇐⇒ (y ∈W ) holds.

Lemma 4.9. Let X ∈ BRel(Meas) be an object and V ⊆ UX1 and W ⊆ UX2 be arbitrary
subsets. Then the following are equivalent:

(1) (V,W ) is X0-closed.
(2) X0 ∩ (V × J) = X0 ∩ (I ×W ).
(3) (χV , χW ) ∈ BRel(Meas)(X,S).

Proposition 4.10. The codensity lifting G>> of G2 along q : BRel(Meas)→Meas2 with
the single lifting parameter R = 1 and (=, G1, G1) satisfies:

(G>>X)0 = {(v1, v2) | ∀V ∈ ΣX1 ,W ∈ ΣX2 . (V,W ) : X0-closed =⇒ v1(V ) = v2(W )} .

We point out a relationship between the above codensity lifting and the concept of
bisimulation relation between two LMPs introduced by Bacci et al [BBLM14].

Definition 4.11 [BBLM14, Definition 5]. Let (X1, x1) and (X2, x2) be two LMPs. A binary
relation R ⊆ UX1 × UX2 is a bisimulation relation if the following holds:

∀(s1, s2) ∈ R . ∀a ∈ Act . ∀V ∈ ΣX1 ,W ∈ ΣX2 .

(V,W ) : R-closed =⇒ πa(x1(s1))(V ) = πa(x2(s2))(W ).

By folding the above defining formula with the characterisation of G>> given in Theorem
4.10, we obtain the following coalgebraic reformulation of Bacci et al’s bisimulation relation:

Theorem 4.12. Let (Xi, xi) be LMPs (i = 1, 2) and R ⊆ UX1 × UX2 be a binary relation.
Then the following are equivalent:

(1) R is a bisimulation relation between (X1, x1) and (X2, x2).
(2) (x1, x2) is a morphism of type (R,X1, X2) → Act t G>>(R,X1, X2) in BRel(Meas),

where G>> is the lifting given in Proposition 4.10.

4.3.4. Codensity Lifting of G2 by the Inequality Relation. From Proposition 4.4 and Theorem
4.7, we naturally speculate that the codensity lifting of the product sub-Giry monad G2

using the inequality relation ≤ yields the lifting that may be used for the definition of
simulation relations between two LMPs. Below we try this, and discuss the problem of the
composability of simulation relations.

We instantiate S0 ⊆ [0, 1]2 in Proposition 4.2 with the numerical order ≤.
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Proposition 4.13. The codensity lifting G>> of G2 along q : BRel(Meas)→Meas2 with
the single lifting parameter R = (1, 1) and S = (≤, G1, G1) satisfies

(G>>X)0 = {(v1, v2) | (∀V ∈ ΣX1 ,W ∈ ΣX2 . X0[V ] ⊆W =⇒ v1(V ) ≤ v2(W )}

Following Theorem 4.7 and Theorem 4.12, we define simulation relations between two
LMPs as coalgebras in BRel(Meas).

Definition 4.14. We define a simulation relation from an LMP (X1, x1) to an LMP
(X2, x2) to be a binary relation R ⊆ UX1 × UX2 such that (x1, x2) is a morphism of type
(R,X1, X2) → Act t G>>(R,X1, X2) in BRel(Meas), where G>> is the lifting given in
Proposition 4.13. We moreover say that R preserves measurable sets if for any measurable
set V ∈ ΣX1 , we have R[V ] ∈ ΣX2 .

Unfolding the definition, R is a simulation relation from (X1, x1) to (X2, x2) if and only
if the following holds:

∀(s1, s2) ∈ R . ∀a ∈ Act . ∀V ∈ ΣX1 ,W ∈ ΣX2 .

R[V ] ⊆W =⇒ πa(x1(s1))(V ) ≤ πa(x2(s2))(W ).

However, simulation relations defined as above are not closed under the relational
composition. A counterexample can be found when Act = 1.

Example 4.15. Let A and B be the discrete and indiscrete spaces over a two-point set
2 = {0, 1}, respectively. We define three probability measures v1, v3 ∈ GA and v2 ∈ GB by:

v1({0}) = v1({1}) = 1/2, v2({0, 1}) = 1, v3({0}) = 1/3, v3({1}) = 2/3.

We consider three constant functions k(vi) from 2 returning vi for i = 1, 2, 3. They are
clearly measurable functions of the following type:

k(v1) : A→ GA, k(v2) : B → GB, k(v3) : A→ GA,

hence they are LMPs (recall Act = 1). We can then easily check that Eq2 ⊆ 2 × 2 is a
simulation relation from k(v1) to k(v2), and also from k(v2) to k(v3). However, Eq2 is not a
simulation relation from k(v1) to k(v3).

This problem stems from the fact that G>> given in Proposition 4.13 does not satisfy the
following property (which is seen in the definition of relators in [Lev11] and lax extensions
in [MV15]):

∀X,Y ∈ BRel(Meas) . X2 = Y1 =⇒ (G>>X;G>>Y )0 ⊆ (G>>(X;Y ))0,

This is a sufficient condition for the composability of simulation relations. Example 4.15 is
actually constructed using a counterexample to the above property.

A work-around is to require simulation relations to preserve measurable sets.

Proposition 4.16. Let (Xi, xi) be LMPs for i = 1, 2, 3, and R1 ⊆ UX1 × UX2 and
R2 ⊆ UX2×UX3 be measurable-set preserving simulation relations from (X1, x1) to (X2, x2)
and (X2, x2) to (X3, x3), respectively. Then R1;R2 is a measurable-set preserving simulation
relation from (X1, x1) to (X3, x3).

On the other hand, we do not know whether there is a largest measurable-set preserving
simulation relation. We leave this point to the future work, and move onto other examples
of the codensity lifting.
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4.4. Kantorovich Metric by Codensity Lifting. An extended pseudometric space (we
omit “extended” hereafter) is a pair (X, d) of a set X and a pseudometric d : X×X → [0,∞]
taking values in the extended nonnegative real numbers. The pseudometric should satisfy

d(x, x) = 0, d(x, y) = d(y, x), d(x, y) + d(y, z) ≥ d(x, z).

For pseudometric spaces (X, d) and (Y, e), a function f : X → Y is non-expansive if for
any x, x′ ∈ X, d(x, x′) ≥ e(f(x), f(x′)) holds. We define EPMet to be the category of
pseudometric spaces and non-expansive functions. The forgetful functor p : EPMet→ Set
is a fibration with fibred small limits. The inverse image of a pseudometric (Y, d) along
a function f : X → Y is given by f−1(Y, d) = (X, d ◦ (f × f)). The fibred small limit of
pseudometric spaces {(X, di)}i∈I above the same set X is given by the pointwise sup of
pseudometrics:

∧
i∈I(X, di) = (X, supi∈I di).

We first consider the codensity lifting of a monad T on Set along p : EPMet→ Set with
a single lifting parameter: a pair of R ∈ Set and S = (TR, s) ∈ EPMet. By instantiating
(4.1), for every (X, d) ∈ EPMet (X for short), the pseudometric space T>>X is of the form
(TX, T>>d) where the pseudometric T>>d is given by

T>>d(c, c′) = sup
f∈EPMet(X,S)

s(f#(c), f#(c′)).

We next derive the Kantorovich metric [Kan42] on subprobability measures by the
codensity lifting. We perform the following change-of-base of the fibration

U∗(EPMet)

q

��

// EPMet

p

��
Meas

U
// Set

and obtain a new fibration q with fibred small limits. An object in U∗(EPMet) is a pair of
a measurable space (X,ΣX) and a pseudometric d on X. A morphism from ((X,ΣX), d)
to ((Y,ΣY ), e) in U∗(EPMet) is a measurable function f : (X,ΣX)→ (Y,ΣY ) that is also
non-expansive with respect to pseudometrics d and e.

We consider the codensity lifting of G along q : U∗EPMet→Meas with the following
single lifting parameter: the pair of R = 1 and S = (G1, s) = (B[0, 1], s), where s(x, y) =
|x− y|. By instantiating (4.1), for every (X, d) ∈ EPMet (X for short), G>>X is the pair
of the measurable space GX and the following pseudometric G>>d on the set SPMsr(X) of
subprobability measures on X:

G>>d(v1, v2) = sup
f

∣∣∣∣∫
X
fdv1 −

∫
X
fdv2

∣∣∣∣ ;
in the above sup, f ranges over U∗EPMet(X,S), the set of measurable functions of type
X → B[0, 1] that are also non-expansive, that is, ∀x, y ∈ UX . d(x, y) ≥ |f(x) − f(y)|.
This pseudometric G>>d between subprobability measures is called the Kantorovich metric
[Kan42].
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5. Density Lifting of Comonads

The categorical dual of the codensity lifting of monads along fibrations is the density lifting
of comonads along cofibrations.

Fix a cofibration p : E→ B and a comonad D = (D, ε, δ) on B. We take the co-Kleisli
resolution (K a J, η) of the comonad D. A lifting parameter for D is a span of functors

BD A S //Roo E such that pS = KR. We also assume that (p, S) satisfies the density
condition: LanSS exists and p preserves it.

Fix a lifting parameter BD A S //Roo E and assume that (p, S) satisfies the density
condition. The density lifting of D proceeds as follows. From pS = KR, we have the
following natural transformation:

KηR : pS = KR→ KJKR = DKR = DpS.

As p preserves the left Kan extension LanSS, we obtain a left Kan extension p(LanSS) of pS
along S. With this left Kan extension, we take the mate of the above natural transformation,
and obtain

KηR : p(LanSS)→ Dp.

In the cofibration [E, p] : [E,E] → [E,B], we take the co-cartesian lifting of this natural
transformation with respect to LanSS:

LanSS // D>> [E,E]

[E,p]
��

p(LanSS) // Dp [E,B]

It yields an endofunctor D>> above Dp, that is, a lifting of the endofunctor D. The counit
and comultiplication for D>> can be dually constructed as done in Section 3.

Let us see the density lifting of a comonad D on Set along the subobject cofibration
p : Pred → Set with a single lifting parameter R ∈ Set and S ∈ PredDR. It yields a
comonad D>> whose functor part is given by

D>>X = ({(pf)[(x) | f ∈ Pred(S,X), x ∈ S0}, DI) (X ∈ Pred); (5.1)

here (−)[ is the co-Kleisli lifting of the comonad D. Below we instantiate D with the product
comonad and the stream comonad [UV08].

5.1. Density Lifting of Product Comonad. Fix a set A. We consider the product
comonad DA on Set, whose functor part is given by DAI = I ×A. The co-Kleisli lifting of
this comonad extends a function f : DAI → J to the function f [ : DAI → DAJ given by
f [(i, a) = (f(i, a), a).

We instantiate the density lifting (5.1) with the product comonad, and obtain

D>>A X = ({(f(i, a), a) | f ∈ Pred(S,X), (i, a) ∈ S0}, X1 ×A).

This density lifting is actually a product comonad on Pred.

Theorem 5.1. Let R ∈ Set and S ∈ PredR×A be a single lifting parameter for the product
comonad DA. Then the density lifting of DA satisfies

D>>A X = X ×̇ (S0[R], A) (X ∈ Pred),



CODENSITY LIFTING OF MONADS AND ITS DUAL 19

where ×̇ is the binary product in Pred given by (X, I) ×̇ (Y, J) = (X × Y, I × J).

Proof. (⊆) easy. (⊇) Let (i, a) ∈ X × S0[R]. There exists r ∈ R such that (r, a) ∈ S0. We
take the constant function ki : DAR→ I returning i. This belongs to Pred(S,X) as i ∈ X0.
Then we obtain (ki(r, a), a) = (i, a) ∈ (D>>A X)0.

5.2. Density Lifting of Stream Comonad. We next consider the stream comonad D on
Set. Its functor part sends a set I to the function space N⇒ I from the set N of natural
numbers. We regard functions in the space as infinite sequences of elements in I. For an
infinite sequence x ∈ N ⇒ I and a natural number i ∈ N, by x/i we mean the infinite
sequence xi, xi+1, · · · , that is, x/i = λj . x(i+ j). The counit and the comultiplication of
the stream comonad are given by

εI(l) = l(0), δI(l)(m) = l/m.

We instantiate the density lifting (5.1) with the stream comonad, and obtain

D>>X = ({λm . f(s/m) | f ∈ Pred(S,X), s ∈ S0},N⇒ X1) (X ∈ Pred).

We note that D>>(∅, I) = (∅, DI).

Theorem 5.2. Let R ∈ Set and S ∈ PredN⇒R be a single lifting parameter for the stream
comonad D. For any X ∈ Pred, we have the following equivalence:

x ∈ (D>>X)0 ⇐⇒ ∃v ∈ S0 . (∀i ∈ N . v/i ∈ S0 =⇒ x(i) ∈ X0) ∧
(∀m,n ∈ N . v/n = v/m =⇒ x(n) = x(m)).

Proof. It is easy to check that this equivalence holds when X0 = ∅. We thus show this
equivalence under the assumption that X0 6= ∅.

(=⇒) Take f ∈ Pred(S,X) and s ∈ S0 and assume x = λm . f(s/m). We show that s
satisfies the two conditions on the right hand side:

(1) Let i ∈ N and assume s/i ∈ S0. From f ∈ Pred(S,X), we have f(s/i) = x(i) ∈ X0.
(2) Let m,n ∈ N and assume s/n = s/m. Then x(n) = f(s/n) = f(s/m) = x(m).

(⇐=) Let x ∈ DI and v ∈ S0. We consider the following binary relation F ⊆ DR× I:

F = {(v/i, x(i)) | i ∈ N}.
From the condition ∀n,m ∈ N . v/n = v/m =⇒ x(n) = x(m), this binary relation is
actually a (graph of a) partial function from DR to I. Moreover, for any a ∈ S0, if F (a)
is defined, then F (a) ∈ X0, because of the condition ∀i ∈ N . v/i ∈ S0 =⇒ x(i) ∈ X0.
We now pick an element y ∈ X0, and extend F to a total function F ′ : DR→ I such that
F ′(a) = y when a is not in the domain of F . Clearly F ′ ∈ Pred(S,X). Now for any m ∈ N,
we have F ′(v/m) = x(m). Hence x ∈ (D>>X)0.
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6. Lifting Algebraic Operations to Codensity-Lifted Monads

We introduce the concept of algebraic operation [PP03] for general monads, and discuss their
liftings to codensity liftings of monads. The following definition is a modification of [PP03,
Proposition 2] for non-strong monads, and coincides with the original one when C = Set.

Definition 6.1. Let C be a category, T be a monad on C, A be a set and assume that C has
powers by A. An A-ary algebraic operation for T is a natural transformation α : A t K → K,
where K is the right adjoint of the Kleisli resolution of T . We write Alg(T , A) for the class
of A-ary algebraic operations for T .

Example 6.2. For each set A, the powerset monad Tp has the algebraic operation of A-ary

set-union unionAX : A t TpX → TpX given by unionAX(V ) =
⋃
a∈A Va.

Fix a fibration p : E → B, a monad T on B, a set A and assume that E has and p
preserves powers by A.

Definition 6.3. Let Ṫ be a lifting of T along p and α ∈ Alg(T , A) be an A-ary algebraic

operation for T . A lifting of α to Ṫ is an algebraic operation α̇ ∈ Alg(Ṫ , A) such that
pα̇ = αpk; here pk : EṪ → BT is the canonical extension of p to Kleisli categories. We write

Algα(Ṫ , A) for the class {α̇ ∈ Alg(Ṫ , A) | pα̇ = αpk} of liftings of α to Ṫ .

Example 6.4 (Continued from Example 6.2). Let Ṫ be a lifting of Tp along p : Top→ Set.

Since p is faithful, there is at most one lifting of unionA to Ṫ . It exists if and only if for
every (X,OX) ∈ Top, unionAX is a continuous function of type A t Ṫ (X,OX)→ Ṫ (X,OX).

We give a characterisation of the liftings of algebraic operations to codensity liftings

of monads. Fix a lifting parameter BT A S //Roo E and assume that (p, S) satisfies the
codensity condition. We perform the codensity lifting of T along p with the lifting parameter
(R,S), and consider the Kleisli resolution of T >>. The functor p : E → B extends to
pk : ET >> → BT , and it satisfies

pkJ
>> = Jp, pK>> = Kpk, pη>> = ηp, pkε

>> = εpk.

Starting from a natural transformation α0 : A t S → S such that pα0 = αR, we
construct a lifting φ(α0) ∈ Algα(T >>, A) of α as follows.

From A t S = (A t IdE)S, the natural transformation α0 induces the mate α0 : A t
IdE → RanSS. We then obtain the following situation:

A t IdE α0

&&β $$
T>> σ

// RanSS [E,E]

[E,p]

��

A t p

αJp•Atηp $$

αR

&&
Tp

KεR

// p(RanSS) [E,B]
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The triangle in the base category commutes by:

KεR • αJp •A t ηp = KεR • αJpS •A t ηpS = KεR • αJKR •A t ηKR

= (Kε • αJK •A t ηK)R = (α •A t Kε •A t ηK)R = pα0.

We thus obtain the unique morphism β above αJp •A t ηp making the triangle in the total
category commute. Using this β, we define φ(α0) : A t K>> → K>> by

φ(α0) = K>>ε>> • βK>> : A t K>> → K>>.

This algebraic operation is a lifting of α to T>>:

pφ(α0) = p(K>>ε>> • βK>>) = (Kε • αJK •A t ηK)pk = (α •A t Kε •A t ηK)pk = αpk.

The following theorem shows that φ characterises the class of liftings of α to the codensity
liftings of monads. It is an analogue of Theorem 11 in [Kat13], which is stated for the
categorical >>-lifting.

Theorem 6.5. Let p : E→ B be a fibration, T be a monad on B, and BT A S //Roo E be a

lifting parameter, and A be a set. Suppose that (p, S) satisfies the codensity condition, and E
has, and p preserves powers by A. Then for any α ∈ Alg(T , A), the mapping φ constructed
as above has the following type and is bijective:

φ : [A,E]αR(A t S, S)→ Algα(T >>, A).

Proof. The candidate ψ of the inverse of φ is explicitly given as follows: it maps α̇ ∈
Algα(T >>, A) to a morphism of type A t S → S by the following mate:

σ • α̇J>> •A t η>> : A t IdE → RanSS

ψ(α̇) = σ • α̇J>> •A t η>> : A t S → S

We first show ψ ◦ φ = id:

ψ(φ(α0)) = σ • µ>> • βT>> •A t η>> = σ • µ>> • T>>η>> • β = α0.

We next show φ ◦ ψ = id. By definition, φ(ψ(α̇)) = K>>ε>> • βK>> where β is the unique

morphism above (αJ •A t η)p such that σ •β = ψ(α̇) = σ • α̇J>> •A t η>>. The morphism
α̇J>> •A t η>> is exactly such one. Therefore

φ(ψ(α̇)) = K>>ε>> • (α̇J>> •A t η>>)K>> = K>>ε>> • α̇J>>K>> •A t η>>K>>

= α̇ •A t K>>ε>> •A t η>>K>> = α̇.

Example 6.6 (Continued from Example 6.4). We look at liftings of unionA ∈ Alg(Tp, A)
to the codensity liftings of Tp along p : Top→ Set with some single lifting parameters.

Let R ∈ Set and S = (TpR,OS) ∈ Top be a single lifting parameter. Theorem 6.5

is instantiated to the following statement: a lifting of unionA to T >>p exists if and only if

unionAR : A t TpR→ TpR is a continuous function of type A t S → S. Here, A t S is the
product of A-fold copies of S, and its topology OAtS is generated from all the sets of the
form π−1

a (U), where a and U range over A and OS , respectively. We further instantiate the
single lifting parameter (R,S) as follows (see Section 4.2):

(1) Case R = 1,OS = {∅, {1}, {∅, 1}}. For any set A, unionA1 is a continuous function of
type A t S → S because (unionA1 )−1({1}) =

⋃
a∈A π

−1
a ({1}) ∈ OAtS . From Theorem

6.5, for any set A, unionA lifts to the lower Vietoris lifting T >>p .
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(2) Case R = 1,OS = {∅, {∅}, {∅, 1}}. For any finite set A, unionA1 is a continuous function

of type A t S → S because (unionA1 )−1({∅}) =
⋂
a∈A π

−1
a ({∅})

∗
∈ OAtS . On the other

hand, the membership
∗
∈ does not hold when A is infinite. From Theorem 6.5, for any

set A, unionA lifts to the upper Vietoris lifting T >>p if and only if A is finite.

7. Pointwise Codensity Lifting

Fix a fibration p : E→ B, a monad T on B and a lifting parameter BT A S //Roo E . When
A is a large category, or B,E are not very complete, the right Kan extension RanSS may
not exist, hence the codensity lifting in Section 3 is not applicable to lift T . In this section
we introduce an alternative method, called pointwise codensity lifting, that relies on fibred
limits of p. The trick is to swap the order of computation: instead of taking the inverse
image after computing RanSS, we first take the inverse image of the components of RanSS,
bringing everything inside a fibre, then compute the right Kan extension as a fibred limit.

We assume that A is small (resp. large) and p has fibred small (resp. large) limits. The
pointwise codensity lifting lifts T as follows. What we actually construct below is a Kleisli
triple over E which corresponds to a lifting of T .

Lifting Object Assignment. We first lift T to an object mapping Ṫ : |E| → |E|. Let
X ∈ E. Consider the following diagram:

X ↓ S

⇒γX

πX //

!X↓S
��

A R //

S
��

BT
K
��

⇒ε
BT
K
��

1
X

// E p
// B

T
//

J

==

B

where (X ↓ S, πX , !X↓S , γX) is the comma category. The middle square commutes as R,S is
a lifting parameter. We let δX = KεRπX • TpγX be the composite natural transformation,
and take the inverse image of SπX along δX :

δ−1
X (SπX)

δX(SπX) // SπX [X ↓ S,E]

[X↓S,p]
��

TpX!X↓S
δX

// KRπX [X ↓ S,B]

We obtain a functor δ−1
X (SπX) : X ↓ S → E such that pδ−1

X (SπX) = TpX!X↓S . We then

define T>>X by T>>X = lim(δ−1
X (SπX)), where right hand side is the fibred limit. In the

following calculations we will use the vertical projection and the tupling operation of this
fibred limit, denoted by

PX : (T>>X)!X↓S → δ−1
X (SπX),

〈−〉 : [X ↓ S,E]f !X↓S (Y !X↓S , δ
−1
X (SπX))→ Ef (Y, T>>X) (f ∈ E(Y, TpX)).
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Lifting the Unit. We next lift η. Consider the following diagram:

X!X↓S γX

''η′X &&
δ−1
X (SπX)

δX(SπX)

// SπX [X ↓ S,E]

[X↓S,p]

��

pX!X↓S pγX

''ηpX!X↓S &&
TpX!X↓S

δX

// KRπX [X ↓ S,B]

where the lower triangle commute by:

δX • ηpX!X↓S = KεRπX • ηpSπX • pγX = KεRπX • ηKRπX • pγX = pγX .

Therefore there exists the unique natural transformation η′X above ηpX!X↓S making the

upper triangle commute. We define η>>X = 〈η′X〉, which is above ηpX.

Lifting the Kleisli lifting. We finally lift the Kleisli lifting (−)# of T . Let g : X → T>>Y
be a morphism in E, and f = PY • g!Y ↓S : X!Y ↓S → δ−1

Y (SπY ) be a morphism, which
is above pg!Y ↓S and satisfies g = 〈f〉. We obtain the composite natural transformation

δY (SπY ) • f : X!Y ↓S → δ−1
Y (SπY ) → SπY . From the universal property of the comma

category, we obtain the unique functor Mf : Y ↓ S → X ↓ S such that πXMf = πY and

γXMf = δY (SπY ) • f . We next consider the following diagram:

δ−1
X (SπX)Mf

f[ ''

δX(SπX)Mf

''
δ−1
Y (SπY )

δY (SπY )

// SπY [Y ↓ S,E]

[Y ↓S,p]

��

TpX!Y ↓S δXMf

((µpY !Y ↓S•Tpf ''
TpY !Y ↓S

δY

// KRπY [Y ↓ S,B]

where the lower triangle commutes. Therefore there exists the unique natural transformation
f [ above µpY !Y ↓S • Tpf = µpY !Y ↓S • Tpg!Y ↓S = (pg)#!Y ↓S making the upper triangle

commute. Then we define g#>> = 〈f [ • PXMf 〉, which is above (pg)#.

Theorem 7.1. Let p : E → B be a fibration with fibred small (resp. large) limits, T be a

monad on B, BT A S //Roo E be a lifting parameter for T and assume that A is small (resp.

large). The tuple (T>>, η>>, (−)#>>) constructed as above is a Kleisli triple on E, and the
corresponding monad is a lifting of T .
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Proof. We first show (η>>X )# = 〈η′X〉# = id. The composite natural transformation is

δX(SπX) • η′X = γX by definition. Therefore Mf = IdX↓S . Hence f [ is also the identity
morphism. Therefore the above composite is also the identity morphism.

We next show f# ◦ η>>X = f :

〈f [ •PMf 〉 ◦η>>X = 〈f [ •PMf • 〈η′X〉!Y ↓S〉 = 〈f [ •PMf • 〈η′X〉!X↓SMf 〉 = 〈f [ •η′XMf 〉
∗
= 〈f〉.

The last equation
∗
= holds because the morphisms on both sides are above the same morphism:

p(f [ • η′XMf ) = pf [ • pη′XMf = µpY !Y ↓S • Tpf • ηpX!X↓SMf

= µpY !Y ↓S • Tpf • ηpX!Y ↓S = µpY !Y ↓S • ηpδ−1
Y (SπY ) • pf

= µpY !Y ↓S • ηTpY !Y ↓S • pf = pf

and are equalised by the cartesian morphism δY (SπY ) : δ−1
Y (SπY )→ SπY :

δY (SπY ) • f [ • η′XMf = δX(SπX)Mf • η′XMf = γXMf = δY (SπY ) • f.
We finally show (〈g〉# ◦ 〈f〉)# = 〈g〉# ◦ 〈f〉# for 〈f〉 : X → T>>Y and 〈g〉 : Y → T>>Z.

Let h = g[ • fMg.

(1) We show MfMg = Mh. From

πXMh = πZ = πYMg = πXMfMg

and

γXMh = δZ(SπZ) • g′ • fMg = δY (SπY )Mg • fMg = (δY (SπY ) • f)Mg = γXMfMg,

the universal property of the comma object makes Mh = MfMg.

(2) We show h[ = g[ • f [Mg. First the following calculation shows ph[ = p(g[ • f [Mg):

ph[ = µpZ!Z↓S • Tph
= µpZ!Z↓S • Tpg[ • TpfMg

= µpZ!Z↓S • T (µpZ!Z↓S • Tpg) • TpfMg

= µpZ!Z↓S • TµpZ!Z↓S • T 2pg • TpfMg

= µpZ!Z↓S • µTpZ!Z↓S • T 2pg • TpfMg

= µpZ!Z↓S • Tpg • µpY !Z↓S • TpfMg

= µpZ!Z↓S • Tpg • µpY !Y ↓SMg • TpfMg.

p(g[ • f [Mg) = pg[ • pf [Mg

= µpZ!Z↓S • Tpg • (µpY !Y ↓S • Tpf)Mg

= µpZ!Z↓S • Tpg • µpY !Y ↓SMg • TpfMg.

Second, the cartesian morphism δZ(SπZ) equalise h[ and g[ • f [Mg:

δZ(SπZ) • h[ = δX(SπX)Mh

δZ(SπZ) • g[ • f [Mg = δY (SπY )Mg • f [Mg

= (δY (SπY ) • f [)Mg

= δX(SπX)MfMg

= δX(SπX)Mh.

Therefore ph[ = p(g[ • f [Mg).
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(3) Finally, we show 〈g〉# ◦ 〈f〉# = (〈g〉# ◦ 〈f〉)#.

〈g〉# ◦ 〈f〉# = 〈g[ • PYMg〉 ◦ 〈f [ • PXMf 〉
= 〈g[ • PYMg • 〈f [ • PXMf 〉!Z↓S〉
= 〈g[ • PYMg • 〈f [ • PXMf 〉!Y ↓SMg〉
= 〈g[ • f [Mg • PXMfMg〉
= 〈h[ • PXMh〉

(〈g〉# ◦ 〈f〉)# = (〈g[ • PYMg〉 ◦ 〈f〉)#

= (〈g[ • PYMg • 〈f〉!Z↓S〉)#

= (〈g[ • PYMg • 〈f〉!Y ↓SMg〉)#

= (〈h〉)#

= 〈h[ • PXMh〉.

The pointwise codensity lifting coincides with the codensity lifting in Section 3, provided
that RanSS and p(RanSS) are both pointwise.

Theorem 7.2. Let p : E→ B be a fibration, T be a monad on B and BT A S //Roo E be a
lifting parameter. Assume that p, S satisfies the codensity condition, and moreover RanSS
and p(RanSS) are both pointwise. Then ((KεR)−1(RanSS))X ' lim(δ−1

X (SπX)).

Proof. Let (cS ,RanSS) be the pointwise right Kan extension. Because its image by p is also
assumed to be a pointwise Kan extension, the following diagram is a right Kan extension of
pSπX along !X↓S :

X ↓ S

⇒γX

πX //

!X↓S
��

A S //

S
��
⇒ε

E
p // B

1
X

// E pRanSS

CC

That is, the pair (L,P ) = (p(RanSS)X, pcSπX • pRanSSγX) is a limit of pSπX . Then

((KεR)−1(RanSS))X = (KεRX)−1((RanSS)X)

(RanSS pointwise) ' (KεRX)−1(limSπX)

(limits by fibred limits) = (KεRX)−1(limP−1(SπX))

(preservation of fibred limits) ' lim(KεRX!X↓S)−1(P−1(SπX))

' lim(P •KεRX!X↓S)−1(SπX)

By expanding P ,

P •KεRX!X↓S = pcSπX • pRanSSγX •KεRX!X↓S

= pcSπX •KεRSπX • TpγX
= (pcS •KεRS)πX • TpγX
= KεRπX • TpγX
= δX .
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8. Characterising the Collection of Liftings as a Limit

We give a characterisation of the class of liftings of a monad on the base category of a posetal
fibration with fibred small limits. We show that the class of liftings of T is the vertex of a
certain type of limiting cone.

Fix a posetal fibration p : E→ B with fibred small limits and a monad T on B. Notice
that each fibre actually admits large limits computed by meets. Since p is posetal, p is
faithful. Without loss of generality, we regard each homset E(X,Y ) as a subset of B(pX, pY ).

Definition 8.1. We define Lift(T ) to be the class of liftings of T along p. We introduce a
partial order � on them by

Ṫ � Ṫ ′ ⇐⇒ ∀X ∈ E . ṪX 6 Ṫ ′X (in ET (pX)).

The partially ordered class (Lift(T ),�) admits arbitrary large meets given by the
pointwise meet.

We introduce a convenient notation for the codensity liftings of T . By [S]R we mean
the pointwise codensity lifting T >> of T with a single lifting parameter R ∈ B and S ∈ ETR.
By expanding the definition, we have

[S]RX =
∧

f∈E(X,S)

(f#)−1(S);

see also (4.1).

Definition 8.2. Let X ∈ E be an object. An object S ∈ ET (pX) is closed with respect to

X if 1) ηpX ∈ E(X,S) and 2) for any f ∈ E(X,S), we have f# ∈ E(S, S).

Proposition 8.3. Let X ∈ E be an object. Then an object S ∈ ET (pX) is closed with respect

to X if and only if S = [S]pXX.

Proof. We first show that ηpX ∈ E(X,S) if and only if [S]pXX ≤ S. (only if) We have

[S]pXX ≤ ((ηpX)#)−1(S) = (idT (pX))
−1(S) = S.

(if) As [S]pX is a lifting of T , we have ηpX ∈ E(X, [S]pXX) ⊆ E(X,S).

We next show that ∀f ∈ E(X,S) . f# ∈ E(S, S) holds if and only if S ≤ [S]pXX.

S ≤ [S]pXX ⇐⇒ ∀f ∈ E(X,S) . S ≤ (f#)−1S ⇐⇒ ∀f ∈ E(X,S) . f# ∈ E(S, S).

Definition 8.4. Let X ∈ E be an object.

(1) We define Cls(T , X) to be the set {S ∈ ET (pX) | S = [S]pXX} of closed objects with
respect to X.

(2) We regard the codensity lifting [−]pX as a function of type Cls(T , X)→ Lift(T ).
(3) We define the monotone function qX : (Lift(T ),�)→ (Cls(T , X),≤) to be the evalua-

tion of a given lifting at X, that is, qX(Ṫ ) = ṪX. Here, the order ≤ on Cls(T , X) is
the one inherited from ET (pX).

(4) We extend the order ≤ on Cls(T , X) to the pointwise order between parallel pairs of
functions into Cls(T , X).

We note that [−]pX cannot be monotone, because its argument is used both in a positive
and a negative way. Still, we have the following adjoint-like relationship:

Theorem 8.5. For any X ∈ E, we have qX ◦ [−]pX = idCls(T ,X) and idLift(T ) � [−]pX ◦ qX .
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Proof. We already have qX([S]pX) = [S]pXX = S from the definition of Cls(T , X).

We show Ṫ � [ṪX]pX . We have the following equivalence:

Ṫ � [ṪX]pX ⇐⇒ ∀Y ∈ E, f ∈ E(Y, ṪX) . Ṫ Y ≤ (f#)−1(ṪX)

⇐⇒ ∀Y ∈ E, f ∈ E(Y, ṪX) . f# ∈ E(Ṫ Y, ṪX)

and the last line always holds as Ṫ is a lifting of T .

We define a function φX,Y : Cls(T , X)→ Cls(T , Y ) by

φX,Y (S) = qY ◦ [−]pX(S) = [S]pXY.

Theorem 8.5 asserts that φX,X = idCls(T ,X). Using the second inequality of Theorem 8.5,
for any X,Y ∈ E, we have

qX ≤ qX ◦ [−]pY ◦ qY = φY,X ◦ qY (8.1)

[S]pX � [[S]pXY ]pY = [φX,Y (S)]pY . (8.2)

From Theorem 8.5, Ṫ is a lower bound of the class {[qX(Ṫ )]pX | X ∈ E}. In fact, Ṫ is
the greatest lower bound:

Theorem 8.6. For any lifting Ṫ of T , we have Ṫ =
∧
X∈E[qX(Ṫ )]pX .

Proof. It suffices to show
∧
X∈E[qX(Ṫ )]pX � Ṫ . For any Y ∈ E,∧

X∈E
[qX(Ṫ )]pXY =

∧
X∈E

φX,Y (qX(Ṫ )) ≤ φY,Y (qY (Ṫ )) = qY (Ṫ ) = Ṫ Y.

This theorem also states that any lifting of a monad T is an intersection of a class of
single lifting parameter codensity liftings; see also Theorem 3.7. From this, we obtain the
following corollary:

Corollary 8.7. Let X ⊆ Lift(T ) be a class of liftings of T . If 1) for any X ∈ E and S ∈
Cls(T , X), [S]pX ∈ X , and 2) X is closed under class-size intersection, then X = Lift(T ).

Definition 8.8. We say that an object X ∈ E is a split subobject of an object Y ∈ E
(denoted by X C Y ) if there is a split monomorphism m : X → Y .

One easily sees that the binary relation C on Obj(E) is reflexive and transitive. We
define Split(E) to be the preordered class (Obj(E),C).

Lemma 8.9. Suppose that X C Y holds for objects X,Y ∈ E. The following holds:

(1) φY,X ◦ qY = qX .
(2) For any object Z ∈ E, φY,X ◦ φZ,Y = φZ,X .

Proof. Assume X C Y in E.

(1) Let (Ṫ , η̇, µ̇) ∈ Lift(T ). From (8.1) we have qX(Ṫ ) ≤ φY,X(qY (Ṫ )). To show the opposite
inequality, take a split monomorphism m : X → Y in E. It comes with e : Y → X such
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that e ◦m = idX . We then consider the following diagram:

[Ṫ Y ]pYX

≤
��

((η̇Y ◦m)#̇)−1(Ṫ Y ) // Ṫ Y
Ṫ e // ṪX E

p

��
T (pX)

T (pm)
// T (pY )

T (pe)
// T (pX) B

The composite of the morphisms in the base category is T (e ◦m) = idT (pX). Therefore

[Ṫ Y ]pYX ≤ ṪX.
(2) From the previous equality, we have

φY,X ◦ φZ,Y (S) = φY,X(qY ([S]pZ)) = qX([S]pZ) = φZ,X(S).

Following this lemma, we extend Cls(T ,−) to a functor of type Split(E)op → Set by

Cls(T , X C Y ) = φY,X : Cls(T , Y )→ Cls(T , X).

This is indeed a functor thanks to Theorem 8.5 (for the preservation of the identity) and
Lemma 8.9-2 (for the preservation of the composition).

We establish a universal property of Lift(T ) with respect to a restricted class of cones
over Cls(T ,−).

Definition 8.10. Let V be a class and {rX : V → Cls(T , X)}X∈E be a cone from V over
Cls(T ,−). We say that the cone r satisfies φ-inequality if φY,X ◦ rY ≥ rX holds for any
X,Y ∈ E.

From Lemma 8.9-1, {qX : Lift(T ) → Cls(T , X)}X∈E is a cone from Lift(T ) over
Cls(T ,−), and moreover it satisfies the φ-inequality by (8.1).

Theorem 8.11. For any class V and cone r from V over Cls(T ,−) satisfying φ-inequality,
there exists a unique function m : V → Lift(T ) such that rX = qX ◦m holds for any X ∈ E.

Proof. Let V be a class and r be a cone from V over Cls(T ,−) satisfying φ-inequality. We
define the function m : V → Lift(T ) by

m(v) =
∧
X∈E

[rX(v)]pX .

We show that m satisfies qY ◦m = rY for any Y ∈ E.

qY (m(v)) = m(v)(Y ) =
∧
X∈E

φX,Y (rX(v)) = rY (v) ∧
∧

X∈E,Y 6CX
φX,Y (rX(v)) = rY (v).

If there is another function m′ : V → Lift(T ) such that qY ◦m′ = rY then from Theorem
8.6, we have

m′(v) =
∧
X∈E

[qX(m′(v))]pX =
∧
X∈E

[rX(v)]pX = m(v).

Thus m = m′.
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In Theorem 29 of the conference version of this paper [KS15], we showed a different
universal property about the cone q from Lift(T ). There, we considered all cones (which may
not satisfy φ-inequality), while we restricted Split(E) to be directed. We later realised that
1) Split(E) is often not directed due to the initial object in E (this happens, for instance,
when E = Pred,Top,Pre,EPMet), and 2) the φ-inequality property makes the proof of
the universal property of q work. We therefore changed the claim of [KS15, Theorem 29] to
Theorem 8.11.

9. Conclusion and Future Work

We introduced the codensity lifting of monads along the fibrations that preserve the right Kan
extensions giving codensity monads (this codensity condition was relaxed later in Section 7).
The codensity lifting allows us to lift various monads on non-closed base categories, which
was not possible by its precursor, >>-lifting [Kat05]. The categorical dual of the codensity
lifting is also given, which lifts comonads along cofibrations.
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