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Abstract. Session types describe the structure of communications implemented by chan-
nels. In particular, they prescribe the sequence of communications, whether they are
input or output actions, and the type of value exchanged. Crucial to any language with
session types is the notion of linearity, which is essential to ensure that channels exhibit the
behaviour prescribed by their type without interference in the presence of concurrency. In
this work we relax the condition of linearity to that of affinity, by which channels exhibit
at most the behaviour prescribed by their types. This more liberal setting allows us to
incorporate an elegant error handling mechanism which simplifies and improves related
works on exceptions. Moreover, our treatment does not affect the progress properties of
the language: sessions never get stuck.

1. Introduction

A session is a semantically atomic chain of communication actions which can interleave
with other such chains freely, for high-level abstraction of interaction-based computing [24].
Session types [16] capture this intuition as a description of the structure of a protocol, in
the simplest case between two programs (binary sessions). This description consists of types
that indicate whether a communication channel will next perform an output or input action,
the type of the value to send or receive, and what to do next, inductively.

For example, !nat.!string.?bool.end is the type of a channel that will first send a value of
type nat, then one of type string, then receive a value of type bool, and nothing more. This type
can be materialised by the π-calculus [20] process P1

.
= a5.a “hello”.a(x).0. The dual of the

previous type is ?nat.?string.!bool.end, and can be implemented by P2
.
= b(x).b(y).b(x+ 1 <

2).0. To compose two processes and enable them to communicate, we use a double binder [25].
For the above example, we can write (νab)(P1 | P2), indicating that a and b are the
two endpoints of the same channel. The double binder guides reduction, so that we have
(νab)(P1 | P2) −→ (νab)(a “hello”.a(x).0) | b(y).b(5 + 1 < 2).0. In a well-typed term, the
endpoints of a channel must have complementary (or dual) types, so that an input on one
will match an output on the other, and vice versa. This is the case for a and b, above.

Beyond the basic input/output types, sessions typically provide constructors for alter-
native sub-protocols, which are very useful for structured interaction. For example, type
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& {go : T1, cancel : T2} can be assigned to an (external) choice a . {go.Q1 8 cancel.Q2}, a
process that offers the choice go and then Q1 or cancel and then Q2. The dual type, where T
denotes T with an alternation of all constructors, is ⊕

{
go : T1, cancel : T2

}
, and corresponds

to a process that will make a (internal) choice, either b / go.R1 or b / cancel.R2. In the first
case the two processes will continue as Q1 and R1, respectively.

From Linearity to Affinity. To ensure that sequenced interactions take place in the
prescribed order, session typing relies crucially on the notion of linearity [13]. However,
instead of requiring each endpoint to appear exactly once in a term, which is the standard
notion of linearity, session systems only require that an endpoint can interact once at
any given moment. Both channel ends a and b in processes P1 and P2 are linear in this
sense. To see why this condition is required, imagine that we write the first process as
P ′1

.
= a5.0 | a “hello”.a(x).0. Now, a does not appear linearly in P ′1 since there are two

possible outputs ready to fire. The net effect is that P2 can receive a “hello” first, which would
clearly be unsound and would most likely raise an error in any programming environment.
We only relax this condition in one case: two outputs (of the same type) are allowed in
parallel when the dual endpoint is a replicated input.

It is because of linearity, as explained above, that sessions can be used to structure
protocols with sequences of inputs and outputs, without losing type safety. However, linearity
is a rather rigid condition, because it demands that everything in the description of a
session type must be implemented by an endpoint with that type. In real world situations,
interactions are structured but can be aborted at any time. For example, an online store
should be prepared for clients that get disconnected, that close their web browsers, or for
general errors that abruptly severe the expected pattern of interaction.

In this work we address the above issue. In technical terms, we relax the condition of
linearity to that of affinity, so that endpoints can perform less interactions than the ones
prescribed by their session type. However, a naive introduction of affinity can leave programs
in a stuck state: let us re-write P1 into P ′′1

.
= a5.a “hello”.0, i.e., without the final input

a(x); then, after two communications process (νab)(P ′′1 | P2) will be stuck trying to perform
the output b(5 + 1 < 2).0. We want to be able to perform only an initial part of a session,
but we also want to ensure that processes do not get stuck waiting for communications that
will never take place. Our solution is to introduce a new kind of communication action
written a , which reads cancel a. This action is used to explicitly signal that a session has
finished, so that communications on the other endpoint can also be cancelled and computation
can proceed. For example, we can replace P1 with P c1

.
= a5.a “hello”.a , and after two

steps (νab)(P c1 | P2) becomes (νab)(a | b(5 + 1 < 2).0), which reduces (modulo structural
equivalence) to 0.

Our development is inspired by Affine Logic, the variation of Linear Logic with unre-
stricted weakening. The work by Asperti [2], which studies Proof Nets for Affine Logic, shows
that weakening corresponds to an actual connective with specific behaviour. In particular,
this connective performs the weakening step by step, progressing through the dependencies
of a proof, and removing all that must be removed. This is exactly what a represents.

We take the idea of affinity a step further: if cancellation of a session is explicit,
we can treat it as an exception, and for this we introduce a do-catch construct that can
provide an alternative behaviour activated when a cancellation is encountered. For example,
(νab)(do a(5 + 1 < 2).0 catch P | b ) will result in the replacement of a(5 + 1 < 2).0 with the
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Buyer Seller Bank

b : “Proofs and Types”

b : e 178

b : select buy

c : e 178

c : b

b : ccard

c : b

c : select accepted

b : select accepted

Figure 1: Sequence Diagram for Succesful Book Purchase

exception handler P . Note that a do-catch is not the same as the try-catch commonly found
in sequential languages: it does not define a persistent scope that captures exceptions from
the inside, but rather it applies to the first communication and is activated by exceptions from
the outside (as in the previous example). Thus, (νab)(do a(5 + 1 < 2).0 catch P | b(x).0)
becomes 0, because the communication was successful.

The outline of the rest of the paper is as follows. The next section presents affine sessions
in action. Section 3 introduces the calculus of affine sessions, Section 4 its typing system,
and Section 5 the main properties. Section 6 discusses related works and future plans. The
appendix contains the proof of the Subject Reduction theorem.

2. Affine Sessions by Example

We describe a simple interaction comprising three processes—Buyer, Seller, and Bank—that
implements a book purchase. The buyer sends the title of a book, receives the price, and
chooses either to buy or to cancel. If the buyer decides to buy the book, the credit card
information is sent over the session, and the buyer is informed whether or not the transaction
was successful. The diagram in Figure 1 shows the interactions of a specific purchase.

We now show how this scenario can be implemented using sessions, and how our treatment
of affinity can be used to enable a more concise and natural handling of exceptional outcomes.
Our language is an almost standard π-calculus where replication is written acc a(x).P and
plays the role of “accept” in session terminology [16]. Dually, an output that activates a
replication is written req ab.P , and is called a “request.” Channels are described by two
distinct identifiers, denoting their two endpoints and introduced by (νab)P [25].

We use some standard language constructs that can be easily encoded in π-calculus, such
as ae for the output of the value obtained by evaluating the expression e, and if t thenP elseQ
for a conditional expression. The latter is an abbreviation of a new session (νab)(a .
{true.P 8 false.Q} | R) where R represents the test t and evaluates to b / true or b / false. An
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implementation of the interaction in Figure 1 is:

(νseller1seller2, bank1bank2)( Buyer | Seller | Bank )

where:

Buyer
.
= (νbb′)

(
req seller1 b

′ | b “Proofs and Types”.b(price).if price < 200

then b / buy.b ccard.b . {accepted.P 8 rejected.Q} else b / cancel

)

Seller
.
= acc seller2(b).


b(prod).b price(prod).

b . { buy.(νkk′)(req bank1 k
′ | k price(prod).kb.k(b′).

k . {accepted.b′ / accepted 8 rejected.b′ / rejected})
8 cancel.0}


Bank

.
= acc bank2(k).

(
k(amount).k(b).b(card).kb.

if charge(amount, card) then k / accepted else k / rejected

)
First we note how sessions are established. For example, in Buyer fresh channel end b′

is sent to Seller via the request req seller1 b
′, while the other end, b, is kept in the Buyer for

further interaction. The identifiers b and b′ are the two endpoints of a session, and it is easy
to check that the interactions match perfectly. Another point is the borrowing of the session
b from Seller to Bank, with subprocess kb.k(b′) at the Seller process, and k(b).b(card).kb at
the Bank, so that the credit card information is received directly by Bank; see also Figure 1.

A more robust variation of Seller could utilise the do-catch mechanism to account for
the possibility of the Bank not being available. In this case, the seller would provide an
alternative payment provider. Concretely, we can substitute req bank1 k

′ in Seller with
do req bank1 k

′ catch req paymate k′, so that a failure to use the bank service (triggered by
bank2 ) will activate req paymate k′ and the protocol has a chance to complete successfully.

The Buyer might also benefit from our notion of exception handling. As an example we
show an adaptation that catches a cancellation at the last communication of the buy branch
and prints an informative message:

BuyerMsg
.
= (νbb′)


req seller1 b

′ | b “Proofs and Types”.b(price).
if price < 200 then b / buy.b ccard.
do b . {accepted.P 8 rejected.Q}
catch req print “An error occurred”

else b / cancel


As mentioned in the Introduction, a do-catch on a given communication does not catch

subsequent cancellations. For instance, if in the above example the do-catch was placed
around b “Proofs and Types”, then any b′ generated after this output has been read would
be uncaught, since reqprint “An error occurred” would have been already discarded. However,
a do-catch does catch cancellations emitted before the point of definition, so it should be
placed near the end of a protocol if we just want a single exception handler that catches
everything. In general, our mechanism is very fine-grained, and a single session can have
multiple, nested do-catch on crucial points of communication and with distinct alternative
behaviours.

Note also that cancellation can be very useful in itself, even without the do-catch
mechanism. Here are two ways to implement a process that starts a protocol with Seller only
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to obtain the price of a book and use it in R:

CheckPriceA
.
= (νbb′)(req seller1 b

′ | b “Principia Mathematica”.b(price).(b / cancel | R))

CheckPriceB
.
= (νbb′)(req seller1 b

′ | b “Introduction to Metamathematics”.b(price).(b | R))

Both the above processes can be typed. However, the first requires a knowledge of the
protocol, which in that case includes an exit point (branch cancel), while the second is
completely transparent. For example, imagine a buyer that selects buy by accident and then
wishes to cancel the purchase: without cancellation this is impossible because such behavior
is not predicted by the session type; with cancellation it is extremely simple, as shown below.

BuyerCancel
.
= (νbb′)(req seller1 b

′ | b “Tractatus Logico-Philosophicus”.b(price).b / buy.b )

3. The Process Calculus of Affine Sessions

This section introduces our language, its syntax and operational semantics.

Syntax. The language we work with, shown in Figure 2, is a small extension of standard
π-calculus [20]. We rely on a denumerable set of variables, denoted by lower case roman
letters. As for processes, instead of the standard restriction (νa)P , we use double binders [25]
in the form (νab)P , which are similar to polarities [12], and enable syntactically distinguishing
the two endpoints of a session. For technical convenience we shall consider all indexing sets
I to be non-empty, finite, and totally ordered, so that we can speak, e.g., of the maximum
element. Also for technical convenience, we separate the prefixes denoted by ρ, i.e., all
communication actions except for accept (replication). We only added two non-standard
constructs: the cancellation a and the do-catch construct that captures a cancellation,
written do ρ catch P .

Parentheses introduce the bindings in the language: variable x is bound in processes
a(x).P and acc a(x).P ; both variables x and y are bound in process (νxy)P . The notions of
free and bound variables as well as that of substitution (of x by a in P , notation P{a/x})
are defined accordingly. We follow Barendregt’s variable convention, whereby all variables in
binding occurrences in any mathematical context are pairwise distinct and distinct from the
free variables.

Structural Congruence. With ≡ we denote the least congruence on processes that is an
equivalence relation, equates processes up to α-conversion, satisfies the abelian monoid laws
for parallel composition (with unit 0), the usual laws for scope extrusion, and satisfies the
axioms below. (For the complete set of axioms with double binders, see [25]).

(νab)P ≡ (νba)P a | a ≡ a (νab)(a | b ) ≡ 0 (νab)a ≡ 0

The first axiom is needed for reduction; the second is needed for soundness; the remaining
two are not strictly necessary but they allow to throw away garbage processes, specifically
sessions that are fully cancelled.

From now on, in all contexts (notably reduction, typing, proofs) we shall consider
processes up to structural equivalence; this is especially useful in typing. Note that
acc a(x).P 6≡ P | acc a(x).P , i.e., we did not add the axiom for replication found in
many presentations of π-calculus. We made this choice because adding the axiom would put
to question the decidability of ≡ [19], and consequently of typing.
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ρ ::= a(x).P (input)
| ab.P (output)
| a . {li.Pi}i∈I (branching)

| a / lk.P (selection)

| req ab.P (request)

P ::= ρ (prefix)

| acc a(x).P (replicated accept)
| 0 (nil)
| P | Q (parallel)
| (νab)P (restriction)

| a (cancel)
| do ρ catch P (catch)

Figure 2: Syntax

(νab)(H1[ ac.P ] | H2[ b(x).Q ]) −→ (νab)(P | Q{c/x}) (R-Com)
(νab)(H1[ a / lk.P ] | H2[ b . {li.Qi}i∈I ]) −→ (νab)(P | Qk) (k ∈ I) (R-Bra)

(νab)(H[ req ac.P ] | acc b(x).Q | R) −→ (νab)(P | Q{c/x} | acc b(x).Q | R) (R-Ses)
P −→ Q ⇒ P | R −→ Q | R (R-Par)
P −→ Q ⇒ (νab)P −→ (νab)Q (R-Res)

Figure 3: Standard Reductions

Reduction. Do-catch contexts allow for possible exception handling.

H ::= [ ] | do [ ] catch P

Notation H[P ] denotes the process obtained by filling the hole [ ] in context H with process
P , as usual.

Reduction is defined in two parts: the standard rules (Figure 3), and the cancellation
rules (Figure 4). First, recall that we work up to structural equivalence, which means
we do not explicitly state that P ≡ P ′ −→ Q′ ≡ Q ⇒ P −→ Q, but of course it holds.
In standard reductions, the only notable point is that we discard any do-catch handlers,
since there is no cancellation, which explains why the H-contexts disappear. For example,
(νab)(do ac.P catch Q | b(x).R) −→ (νab)(P | R{c/x}). The type system ensures that it is
sound to discard Q, since it implements the same sessions as P as well as the session on c.
On the other hand, a cancellation activates a handler, which may provide some default values
to a session, completing it or eventually re-throwing a cancellation. For example, notice
how c appears in the handler when a is cancelled in (νab)((do ac.P catch c5.c ) | b ) −→
(νab)(c5.c | b ) ≡ c5.c .

Our cancellation reductions are inspired by cut-elimination for weakening in Proof Nets
for Affine Logic (see [2]). Specifically, a behaves like a weakening (proof net) connective
which consumes progressively everything it interacts with (in logic this happens with cut).
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(νab)(acc a(x).P | b | R) −→ (νab)(acc a(x).P | R) (C-Acc)
(νab)(req ac.P | b | R) −→ (νab)(P | b | c | R) (C-Req)

(νab)(ac.P | b ) −→ (νab)(P | b | c ) (C-Out)
(νab)(a(x).P | b ) −→ (νab)(νxy)(P | b | y ) (C-Inp)

(νab)(a / lk.P | b ) −→ (νab)(P | b ) (C-Sel)
(νab)(a . {li.Pi}i∈I | b ) −→ (νab)(Pk | b ) max(I) = k (C-Bra)

(νab)(do ρ catch P | b | R) −→ (νab)(P | b | R) subject(ρ) = a (C-Cat)

Figure 4: Cancellation Reductions

For example, using (C−Inp) we can perform (νab)(a(x).xc | b ) −→ (νab)(νxy)(xc | y | b )
and then by (C−Out) we obtain (νab)(νxy)(xc | y | b ) −→ (νab)(νxy)(b | y | c ) ≡ c .

In the cancellation of branching, (C−Bra), we choose the maximum index k which exists
given our assumption that index sets are non-empty and totally ordered. This is a simple
way to avoid non-determinism via cancellation, i.e., to ensure that cancellation does not
break confluence.

In the rule (C−Cat), we use a function subject(ρ) which returns the subject in the prefix
of ρ. This is defined in the obvious way, e.g., subject(ab.P ) = subject(req ab.P ) = a, and
similarly for the other prefixes ρ. If ρ happens to be a request req ac.Q, then b plays the
role of an accept. This explains why b remains in the result: like an accept, it must be
replicated to deal with possibly multiple requests in P and R.

The rule (C−Acc) is not strictly necessary for computation. It simply reinforces the fact
that a request does not cancel an accept, a fact that may not be as obvious if we simply
do not have a reduction for this case. Moreover, it is important to define how cancellation
interacts with all constructors.

In the cancellation reductions (C−Acc/Req/Cat), R represents the remaining scope of a
and b, so in the general case we should have it also in (C−Out/Inp/Sel/Bra). However, the
typing system guarantees that in these cases both a and b are linear, and therefore cannot
appear elsewhere, so we preferred to keep the rules simpler. The same reasoning applies to
the R in the standard reductions; only (R−Ses) needs it.

In rule (C−Inp), variable y is not free in P , a fact that results from the variable convention.

4. Typing affine sessions

This section introduces our notion of types and the typing system. It motivates our choices
and discusses the typing of the running example.

Types. The session types we use, shown in Figure 5, are based on the constructs of Honda et
al. [16] with two exceptions. First, following Vasconcelos [25] we allow a linear type to evolve
into a shared type. Second, following the concept of Caires and Pfenning [4] we decompose
shared types into accept types acc T and request types req T . Technically, acc T corresponds
to !T (“of course T ”) and req T to ?T (“why not T ”) from Linear Logic [13].
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T ::= end (nothing)

| !T.T (output)
| ?T.T (input)
| ⊕ {li : Ti}i∈I (selection)

| & {li : Ti}i∈I (branching)

| req T (request)
| acc T (accept)

Figure 5: Session Types

Duality. The two ends of a session can be composed when their types are dual, which is
defined as an involution over the type constructors, similarly to Linear Logic’s negation
except that end is self-dual.1

!T1.T2
.
= ?T1.T2 ?T1.T2

.
= !T1.T2

⊕{li : Ti}i∈I
.
= &

{
li : Ti

}
i∈I & {li : Ti}i∈I

.
= ⊕

{
li : Ti

}
i∈I

req T
.
= acc T acc T

.
= req T end

.
= end

Interfaces (or typing contexts). We use Γ,∆, and Θ to range over interfaces, unordered
lists of entries of the form a : T . We note that processes can have multiple uses of a : req T ,
which corresponds to the logical principle of contraction; this is the only kind of entry that
can appear multiple times in a context. In this way, formation of contexts requires that
T = U = req V for contexts Γ, a : T when a : U ∈ Γ. Henceforth, we assume all contexts are
of this form, so that, whenever we write Γ, a : T , then it must be the case that if a is in Γ,
then its type is a request type equal to T .

To simplify the presentation, we identify interfaces up to permutations, so we do not
need to define a type rule for the exchange of entries. We also use a pair of abbreviations:
req Γ stands for an interface of the shape a1 : req T1, . . . , an : req Tn, and similarly, endΓ
stands for an interface a1 : end, . . . , an : end.

Typing rules. Typing judgements take the form:

Γ ` P
meaning that process P has interface Γ.

The typing rules are presented in Figure 6. We focus on some key points, noting that a
rule can only be applied if the interface of the conclusion is well-formed.

In (Out), an output ab.P records a conclusion b : T1, so in fact it composes against the
dual b : T1. Therefore !T1.T2 really means to send a name of type T1, which matches with the
dual input. The same reasoning applies to requests; see (Req). In (Res) we split the process
so that each part implements one of the ends of the session. This is inspired by Caires and

1The expert might notice that logical negation suggests a dualisation of all components, e.g., !T.T ′
.
= ?T .T

′

In fact the output type !T.T ′ and the request req T hide a duality on T , effected by the type system, so
everything is compatible.
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(Out)

Γ, a : T2 ` P
Γ, a : !T1.T2, b : T1 ` ab.P

(In)

Γ, x : T1, a : T2 ` P
Γ, a : ?T1.T2 ` a(x).P

(Sel)

Γ, a : Tk ` P k ∈ I
Γ, a : ⊕{li : Ti}i∈I ` a / lk.P

(Bra)

∀i ∈ I .Γ, a : Ti ` Pi I 6= ∅
Γ, a : & {li : Ti}i∈I ` a . {li.Pi}i∈I

(Req)

Γ ` P
Γ, a : req T, b : T ` req ab.P

(Acc)

req Γ, x : T ` P
req Γ, a : acc T ` acc a(x).P

(Res)

Γ1, a : T ` P Γ2, b : T ` Q
Γ1,Γ2 ` (νab)(P | Q)

(Contraction)

Γ, a : req T, a : req T ` P
Γ, a : req T ` P

(Nil)

∅ ` 0

(Weak)

Γ ` P
Γ, req ∆, endΘ ` P

(Catch)

Γ, a : T ` ρ Γ ` P subject(ρ) = a

Γ, a : T ` do ρ catch P

(Cancel)

a : T ` a 

Figure 6: Affine Session Typing

Pfenning [4] which interprets sessions as propositions in a form of Intuitionistic Linear Logic;
the notion of “cut as composition under name restriction” comes from Abramsky [1].

In (Cancel), a can be given any type. A do-catch process is typed using rule (Catch),
as follows: if ρ is an action on a and has an interface (Γ, a : T ), then the handler P will
implement Γ, i.e., all sessions of ρ except for a : T which has been cancelled. The rule is
sound, since no session is left unfinished, irrespectively of which process we execute, ρ or P .
Notice that, if T = req U , we may have more occurrences of a : T in Γ, because of contraction.
We made the choice to allow this, since it does not affect any property.2

Typing the book purchase example. It is easy to verify that the examples in Section 2
are well-typed. For the Buyer we obtain the following sequent

ccard : string, seller1 : req T1 ` Buyer

where T1 abbreviates type ?string.!double.&{buy : ?string.T2, cancel : end} and T2 stands for
⊕{accepted : end, rejected : end}. The behaviour of b inside process Buyer is described by T1.

For the Bank we obtain the following sequent

bank2 : acc T3 ` Bank

with T3 = ?double.?(?string.T2).!T2.T2.

2On the other hand, adding a premise a 6∈ dom(Γ) in (Catch) would cause problems with subject reduction.
For example (νcd)(ca | d(x).do req ay catch req xz) would be typable, but it reduces to do req ay catch req az
which is not typable.
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Finally, for the Seller we have

bank1 : req T3, seller2 : acc T1 ` Seller

Interestingly, no type structure is needed for the affine adaptations: cancellation is
completely transparent. The variation of Seller with an added do-catch:

do req bank1 k
′ catch req paymate k′

will simply need paymate : req T3 in its interface, i.e., with a type matching that of bank1,
but the original Seller can also be typed in the same way by using weakening to add an
extra assumption to the context. Similarly, BuyerMsg has the same interface as Buyer, except
that it must include print : req string, and again the two processes can be assigned the same
interface by weakening, if needed. Processes CheckPriceA, CheckPriceB, and BuyerCancel can
typed under contexts containing seller1 : req T1, exactly as in process Buyer.

Finally, as we shall see next affinity does not destroy any of the good properties we
expect to obtain with session typing.

Typing modulo structural equivalence. Since we consider processes up to ≡, we have
that P ≡ P ′ and Γ ` P ′ implies Γ ` P . This possibility is suggested by Milner [19] and used
by Caires and Pfenning [4]. It is necessary because associativity of “ | ” does not preserve
typability, for example (νab)(P | (Q | R)) may be untypable in the form (νab)((P | Q) | R).
This applies also to scope extrusion (νab)(P | Q) and (νab)P | Q.

Implicit and explicit weakening. The rules (Weak) and (Cancel) implement a form of
weakening. In the case of (Weak), this weakening is implicit, in the sense that we extend an
interface without adding any behaviour at the process level. Specifically, to close a session
(introducing a : end) or to record that a service is invoked (with a : req T ) weakening is
standard. On the other hand, (Cancel) introduces an explicit weakening, since we maintain
the logical concept of a device to perform it, and this is why, as we shall see, sessions do not
get stuck.

Deriving the Mix rule. A common situation is when we want to compose independent
processes, i.e., processes that do not communicate. This corresponds to the introduction of
Girard’s “Mix” rule, which is derived in our system as follows:

(Mix)

Γ1 ` P Γ2 ` Q
Γ1,Γ2 ` P | Q

.
=

Γ1 ` P
Γ1, a : end ` P

(Weak)
Γ2 ` Q

Γ2, b : end ` Q
(Weak)

Γ1,Γ2 ` P | Q
(Res)

Recall that whenever a, b are not free in P and Q, we have P | Q ≡ (νab)(P | Q).
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The need for double binders. In our system, the terms (νab)(req ac.P | b | R) and
(νab)(req ac.P | a | R) behave differently. In particular, there is a reduction of the first one,
using (C−Req), but not of the second one where both the request and the cancellation are
on the same endpoint, namely a. Both terms are typable, but with different derivations:
for the first we need to use (Res) on a : req T and b : acc T , while on the second we apply
(Mix) and possibly (Contraction) for a : req T . However, in a system with the standard scope
restriction from π-calculus there are no separate endpoints and therefore the two terms above
are identified as (νa)(req ac.P | a | R{a/b}).

Can we apply a cancellation reduction? The two terms above have different dynamics,
so there is no solution once we identify them. From the perspective of the typing system,
we would not know any more if the type of a in the last term is a : req T or a : acc T ,
since there can be different type derivations for each possibility. In the extended abstract of
this work [22] we did not employ double-binders, and as a result we had to deal with this
ambiguity. Our solution was to impose a rather severe condition on typing, roughly that
a : T ` a only if T does not contain a subexpression req T ′. In this way we excluded one of
the two possible cases. The introduction of double binders resolves such ambiguities without
any restriction on the shape of types.

5. Properties

This section discusses the tree main properties of our system: soundness, confluence, and
progress.

Theorem 5.1 (Subject Reduction). If Γ ` P and P −→ Q then Γ ` Q.

Proof. See Appendix A.

Theorem 5.2 (Diamond property). If Γ ` P and Q1 ←− P −→ Q2 then either Q1 ≡ Q2

or Q1 −→ R←− Q2.

Proof. The result is easy to establish, since the only critical pairs would arise from multiple
requests to the same replication or to the same cancellation. However, even in that case the
theorem holds because: a) replications are immediately available and functional (uniform
availability); b) cancellations are persistent.

Possible critical pairs arise when two reductions overlap (they both use a common
sub-process). Let us consider a process (νab)(H1[req ac1.P1] | H2[req ac2.P2] | acc b(x).P3).
There are two critical pairs, depending on which request reacts first, resulting in either
the process (νab)(P1 | P3{c1/x} | H2[req ac2.P2] | acc b(x).P3) or alternatively to the
process (νab)(P2 | P3{c2/x} | H1[req ac1.P1] | acc b(x).P3). But both reduce in one step to
(νab)(P1 | P3{c1/x} | P2 | P3{c2/x} | acc b(x).P3) .

Another possibility is (νab)(H1[req ac1.P1] | H2[req ac2.P2] | b ). Again, the critical pair
is trivial.

In both cases above, the same reasoning applies if there are more than two possible
reductions.

The above strong confluence property indicates that our sessions are completely deter-
ministic, even considering the possible orderings of requests.
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Progress. Our contribution to the theory of session types is well-behaved affinity, in the
sense that we can guarantee that any session that ends prematurely will not affect the quality
of a program. Indeed, if we simply allowed unrestricted weakening, for example by a type
rule Γ ` 0 as done in [14], but without any cancellation apparatus at the language level,
it would be easy to type a process such as (νxz)((νab)ax.P | z(y).Q) and clearly not only
a (and everything in P ) but also z (and everything in Q) would be stuck for ever. In this
section we prove that this never happens to a well-typed process.

The next notion identifies the set of characteristic processes, conducting a session T on
a channel a.

Definition 5.3 (Atomic Action). The atomic actions are defined by the grammar below.

α ::= H[ ρ ] | acc a(x).P | a 

Definition 5.4 (Active and Inactive Processes). We say that a process P is inactive, written
inactive(P ), if it belongs to the set

{P | Γ ` P and P ≡ (ν ~cc′, a1a
′
1, · · · , ana′n)(acc a1(x1).P1 | · · · | acc an(xn).Pn}

Otherwise P is called active, written active(P ).

The reason for distinguishing inactive processes is that they are typable (and naturally
emerge) because an accept can be used zero or more times. For example the process
(νab)(reqac.0 | reqar.0 | acc b(x).0) is active and can be typed with interface (c : end, r : end),
but after two steps it reduces to the inactive process (νab)acc b(x).0. To type the last
process, we need to transform it to (νab)(acc b(x).0 | 0) and apply (Nil,Weak) so as to obtain
a : req end ` 0, then (Res) to obtain the result.

Definition 5.5 (Observation Predicate). We write P↓a whenever P ≡ (ν ~bb′)(α | P ′) with
subject(α) = a and a 6∈ ~b, ~b′. We write P⇓a whenever P −→∗ P ′ and P ′↓a, for some a.

Below we write P 6−→ if there does not exist Q such that P −→ Q.

Lemma 5.6. If Γ ` P and P 6−→ and active(P ), then Γ = Γ′, a : T and P↓a.

Proof. By rule induction on the first premise.

The assumption P 6−→ is necessary, since there are active processes that reduce to
inactive processes, such as (νcc′)(ca | c′(x)) or the example under Definition 5.4. Our
formulation of the Lemma 5.6 is close in principle to the approach of Dezani-Ciancaglini et
al. [10] and is similar to Caires and Pfenning’s Lemma 4.3 [23], except that we use the shape
of the process (having a top-level action on a) instead of the ability of the process to perform
a labelled transition P a−→.

The next notion identifies the set of characteristic processes of the type of any given
session on a, following the terminology and main idea of Coppo et al. [9].
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Definition 5.7 (Characteristic Process). The set of processes L a : T M is defined, for each
channel end a, inductively on the type T . We take b, b′ to be different from a.

L a : end M .
= {0}

L a : !T1.T2 M
.
=
{

(νbb′)(ab′.P | Q) : P ∈ L a : T2 M, Q ∈ L b : T1 M
}

L a : ?T1.T2 M
.
= {a(x).(P | Q) : P ∈ L a : T2 M, Q ∈ Lx : T1 M}

L a : ⊕{li : Ti}i∈I M
.
= ∪i∈I {a / li.P : P ∈ L a : Ti M} (I 6= ∅)

L a : & {li : Ti}i∈I M
.
=
{
a . {li.Pi}i∈I : P ∈ L a : Ti M

}
L a : req T1 M

.
=
{

(νbb′)(req ab′ | P ) : P ∈ L b : T1 M
}

L a : acc T1 M
.
= {acc a(x).P : P ∈ Lx : T1 M}

The clauses L a : !T1.T2 M and L a : ?T1.T2 M identify sets of characteristic processes which
are non-interleaving. This means that they do not mix different sessions within the same
prefix sequence. Indeed, the reason is that P must continue its evolution on a independently
from Q which instead works on b or x. Moreover, all characteristic processes are complete,
meaning that they provide communication actions for the whole session as defined by the
type. For example, any process in L a : !end.?end.end M will perform an output on a and then
an input also on a. On the other hand, there are processes such as ab.ca which can be
assigned Γ, a : !end.?end.end but do not complete the session on a.

Proposition 5.8.
(a) For all a and T , L a : T M is non-empty;
(b) For all P ∈ L a : T M we have a : T ` P ;
(c) For all P ∈ L a : T M, either T = end or P↓a.

Proof. (a) Immediate from the definition. (b) Easy induction on T . (c) In all cases except
for T = end, the characteristic processes P ∈ L a : T M are of the form α or (νbb′)(α | R) with
subject(α) = a, and therefore we have P↓a.

We can now claim a standard progress result, which guarantees that active processes
can always perform some interaction.

Corollary 5.9 (Progress). If Γ ` P and P 6−→, then either inactive(P ) or there exists Q, a,
a′, ∆, Θ with ∆ ` Q and Q 6−→, such that Θ ` (νaa′)(P | Q) and (νaa′)(P | Q) −→.

Proof. We focus on the interesting case, which is when the process P is active. From
the assumptions and from Lemma 5.6 we know that Γ, a : T ` P and P↓a; notice that
T 6= end, since this contradicts P↓a. But then we can compose with a characteristic process
Q ∈ L a′ : T M obtaining Γ ` (νaa′)(P | Q), and clearly (νaa′)(P | Q) −→ because both P
and Q (see Proposition 5.8(c)) are ready to react on a and a′, respectively, having actions of
dual type.

At first sight, Corollary 5.9 may seem to allow some deadlocks. For example, it might
seem that we could have a deadlocked sub-process R in parallel to a request req a1b.P

′, then
we could always apply a parallel composition with a forwarder acc a′i(x).req ai+1x (as the Q
in Corollary 5.9) and there would always be a reduction step. However, the sub-process R
would need to be typed as part of the larger derivation, but then we arrive at a contradiction:
by Corollary 5.9, R must be able to perform an action given a suitable context, which
contradicts the assumption that it is deadlocked. To prove this formally, it suffices to show
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that applications of (Res) do not inhibit any action except the restricted one, which is easy
to establish.

Discussion. Finally, it can be shown that typed processes are strongly normalising, which
is not so surprising since we followed closely the logical principles of Affine Logic. This can
be shown by a small adaptation of the standard method [13], first by giving an interpretation
of types based on biorthogonals, then by strengthening the induction hypothesis using a
notion of reducibility (a contextual test for normalisation), and finally by making use of
Theorem 5.2 to obtain strong normalisation from weak normalisation.

Note that Progress (Corollary 5.9) is in a sense more important, for two reasons: first,
a system without progress can still be strongly normalising, since blocked processes are by
definition irreducible; second, practical systems typically allow recursion, and in that case
the progress property (which we believe can be transferred without surprises to this setting)
becomes much more relevant.

6. Related work and future plans

We divide our discussion on the related work in three parts: relaxing linearity in session
types, dealing with exceptional behaviour, and logical foundations.

The study of language constructs for exceptional behavior (including exceptional handling
and compensation handling) has received significant attention; we refer the reader to a recent
overview [11], while concentrating on those works more closely related to ours. Carbone et
al. are probably the first to introduce exceptional behaviour in session types [7]. They do so
by extending the programming language (the π-calculus) to include a throw primitive and a
try-catch process. The language of types is also extended with an abstraction for a try-catch
block: essentially a pair of types describing the normal and the exceptional behaviour. The
extensions allow communication peers to escape, in a coordinated manner, from a dialogue
and reach another point from where the protocol may progress. Carbone [6] and Capecchi
et al. [5] port these ideas to the multi-party setting. Hu et al. present an extension of
multi-party session types that allow to specify conversations that may be interrupted [17].
Towards this end, an interruptible type constructor is added to the type language, requiring
types that govern conversations to be designed with the possible interrupt points in mind. In
contrast, we propose a model where programs with and without exceptional behaviour are
governed by the same (conventional) types, as it is the norm in functional and object-oriented
programming languages.

Caires et al. proposed the conversation calculus [26]. The model introduces the idea
of conversation context, providing for a simple mechanism to locally handle exceptional
conditions. The language supports error recovery via throw and try-catch primitives. In
comparison to our work, no type abstraction is proposed since their language is untyped,
moreover errors are caught in a context and do not follow and destroy sessions as in our
work, and finally their exception mechanism does not guarantee progress.

Contracts take a different approach by using process-algebra languages [8] or labeled
transition systems [3] for describing the communication behaviour of processes. In contrast
to session types, where client-service compliance is given by a symmetric duality relation,
contracts come equipped with an asymmetric notion of compliance usually requiring that a
client and a service reach a successful state. In these works it is possible to end a session
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(usually on the client side only) prematurely, but there is no mechanism equivalent to our
cancellation, no relationship with exception handling, and no clear logical foundations.

Caires and Pfenning gave a Curry-Howard correspondence relating Intuitionistic Linear
Logic and session types in a synchronous π-calculus [4]. To avoid deadlocks, we follow the
same approach and impose that any two processes can communicate over at most a single
session; in our case this in ensured in (Res). Therefore, both systems reject processes of the
shape (νaa′, bb′)(a(x).bc | b′(y).a′r) which are stuck. This restriction is founded on logical
cut and was first introduced into a process algebra by Abramsky [1]. Caires and Pfenning [4]
achieve a progress property similar to Corollary 5.9 in our work, but only in the more rigid
setting of linearity. Adding affinity to their system, without a mechanism similar to our
cancellation, would allow sessions to get stuck. Our formulation allows to type more processes
than Linear Logic interpretations, such as BuyerCancel from Section 1 and the alternative
form of choice shown in Section 4. Moreover, to our knowledge our work is the first logical
account of exceptions in sessions, based on an original interpretation of weakening. Finally,
Propositional Affine Logic is decidable, a result by Kopylov [18], so we face better prospects
for type inference.

As part of future work, we would like to develop an algorithmic typing system, along
the lines of [25]. We also believe it would be interesting to apply our technique to multiparty
session types [15] based on Proof Nets [21]. Finally, we plan to study the Curry-Howard
correspondence with Affine Logic in depth, and examine more primitives that become possible
with our mechanism.
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Appendix A. Subject Reduction

Notation for type derivations. Let D :: Γ ` P stand for a typing derivation with
conclusion P and interface Γ. To ease the notation, sometimes we ignore the process, writing
D :: Γ, or even the interface, writing simply D.

We let D[·∆] stand for a derivation with a hole that contributes an interface ∆. We
make a simplification and require the hole to be unguarded in D, which means that it does
not appear inside a sub-derivation D1 :: α of D. To put simply, we do not consider holes in
sub-derivations guarded by a prefix.

Definition A.1 (Derivation Composition). We denote by D1[D2] :: Γ,Θ the derivation
obtained from D1[·∆,Λ] :: Γ,Λ by the placement of D2 :: ∆,Θ in the hole, assuming the
following conditions:
(1) no element of Θ is bound in D1 (but elements of ∆ can be bound);
(2) Γ,Θ is well-formed (as is ∆,Θ, by assumption).

The point of these conditions is to guarantee that compositions are sound, and specifically
they constrain the type of derivation that can be plugged-in a hole allowing us to know the
final interface; this is very useful in Subject Reduction. The part Λ is what passes from
the inner context to the conclusion, which means it is unused in the derivation. The idea
is that we can substitute it with some Θ that also passes to the conclusion, under suitable
assumptions, namely that no name in Θ is bound in the derivation context. This allows
to place in the hole a derivation with different (typically larger) interface, which is what
happens during our Subject Reduction proof.

After we insert a derivation in place of the hole, we thus obtain D1[D2] :: Γ,Θ.

Remark. If we wanted to provide a detailed definition of derivations with holes—which we
think is not necessary— we would use an extended version of the typing system with the
extra axiom ∆ ` · and would require that it appears at most once in any derivation D. (And
when it does appear we obtain D[·∆], otherwise we have a normal derivation.)

Regarding the restriction to unguarded holes in a derivation, we do not need the more
general form where the hole can be anywhere, since parts under prefix do not reduce and
we never need to manipulate them. Also, our restriction simplifies the notion of placing a
derivation with different interface in a hole, which we need to use extensively. Specifically,
if the hole was allowed to appear inside a sub-derivation with restrictions on the resulting
interface — such as in the premises of (Acc) or (Bra) — then an arbitrary interface added
to them (Θ above) would not guarantee that we obtain a well-formed derivation, i.e., this
plugging-in of a derivation could be unsound.

Proposition A.2. If D1[·∆,Λ] :: Γ,Λ and the conditions of instantiation detailed previously
(see Def. A.1) are respected for some D2 :: ∆,Θ, then D1[D2] :: Γ,Θ.

Proof. This is easy to establish by induction on the structure of D1.

Lemma A.3 (Atomic Action Sub-derivation). If D :: Γ ` P and P ≡ (ν
−→
bb′)(α | Q) with

subject(α) = a, then D is of the shape D1[D2 :: ∆, a : T ` α].

To put this into English, when a communication action α appears at the top level of
a well-typed process P , then any derivation D of P will contain a sub-derivation with α
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as its conclusion. Notice that we cannot guarantee that the last rule corresponds to the
introduction of α. We give a simple example:

P = (νcc′)( ab.c′r︸ ︷︷ ︸
α

| c(x).Q )

If the above is well-typed, the last rule is (Res) on endpoints c and c′ and cannot be (Out)
on channel a. This situation is obvious in Affine and Linear Logic, and in particular it
is clear that without commutative reductions the instance of (Res) — which corresponds
to a “cut” in Affine Logic — cannot go “up” in the derivation. In particular we would
need P ≡ ab.(νcc′)( c′r | c(x).Q ).3 This lemma is needed to identify and manipulate the
derivations obtained during the proof of Subject Reduction. Specifically, when dealing
with a redex inside a larger derivation, we can use this inversion-like lemma to obtain the
sub-derivations for the two communications, compose them, use Lemma A.7 (Small Subject
Reduction, defined shortly), and finally recompose the derivation for the contractum into the
original derivation.

Proposition A.4 (Sub-interface Compositionality). If D1i[D2i :: ∆i, ai : Ti] :: Γi, a : Ti
(i ∈ {1, 2}) and Γ1,Γ2 is well-formed, then ∆1,∆2 is well-formed.

Proof. A simple explanation of this proposition is that, if two derivations can be composed
using (Res), as is the case when T1 = T2, then their sub-derivations can also be composed
without conflicts.

In more detail, recall that well-formedness means that only elements of the shape a : req T
can appear multiple times in an interface. In general, the Γi can have a larger interface
than the ∆i since other parts of the derivation can extend it, which is no problem. The
only obstacle to the well-formedness of ∆1,∆2 would be the case where the ∆i have a larger
domain than the corresponding Γi, since in that case the well-formedness of Γ1,Γ2 does
not imply that of ∆1,∆2. Now, let us consider the possible differences between ∆i (the
sub-derivation interface) and Γi. Because of weakening, Γi can have a larger domain (set of
names). Because of contraction, Γi can have lesser copies of some a : req T , but in this case
the domain is the same. Session constructors change the types so that ∆i can contain some
a : T which appears as a : T ′ in Γi, so again the domain is the same. Finally, some part of
∆i can be closed (by scope restriction) and in that case — only in that case — the domain
of ∆i can be larger than that of Γi. However, by the variable convention all bound names
are distinct from each other and from all free names, and therefore there is no conflict when
composing ∆1,∆2. Therefore, the sub-derivations have interfaces that can be composed, i.e.,
the result is well-formed as required.

Lemma A.5 (Free Variables). If a is free in P and Γ ` P then a : T ∈ Γ.

For the purpose of the Substitution Lemma, we denote by ~x : T the non-empty context
x : T, . . . , x : T . According to context formation, if x occurs twice in the context, then it
must be the case that T is a request type.

Lemma A.6 (Substitution). If Γ, ~x : T ` P and x /∈ Γ then Γ, b : T ` P{b/x}.

Proof. The proof is by rule induction on the first premise. Most cases feature two or three
subcases depending on x being equal or different to names a and b in the typing rules. Extra

3 This becomes unmanageable for more complex processes with multiple cuts, unless if type derivations
are manipulated (see for example [27]).
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subcases may also be needed depending on T being a request type or not. We illustrate one
representative case: when derivation ends with the (Catch) rule.
Case a = x and T is not a request type. We have Γ, x : T ` do ρ catch P and x /∈ Γ.
By rule inversion we obtain Γ, x : T ` ρ and Γ ` P and subject(ρ) = x. By induction, we
get Γ, b : T ` ρ{b/x}. We are now in a position to apply rule (Catch) to obtain Γ, b : T `
do ρ{b/x} catch P . To complete the case we note that Lemma A.5 gives us that b is not free
in P , hence do ρ{b/x} catch P = (do ρ catch P ){b/x}.
Case a = x and T is a request type. We have Γ, ~x : T, x : T ` do ρ catch P and x /∈ Γ.
By rule inversion we obtain Γ, ~x : T, x : T ` ρ and Γ, ~x : T ` P and subject(ρ) = x. By
induction, we get Γ, b : T ` ρ{b/x} and Γ, b : T ` P{b/x}. Applying the (Weak) rule as
often as needed, we obtain Γ,~b : T, b : T ` ρ{b/x} and Γ,~b : T ` P{b/x}. We can easily
see that subject(ρ{b/x}) = b. We are then in a position to apply rule (Catch) to obtain
Γ,~b : T ` do ρ{b/x} catch P{b/x}, from which the result follows based the definition of
substitution.
Case a 6= x. We have Γ, a : T, ~x : U ` do ρ catch P . By rule inversion we obtain
Γ, a : T, ~x : U ` ρ and Γ, ~x : U ` P and subject(ρ) = a. Applying the induction hypothesis to
both sequents, followed by the (Catch) rule we get Γ, a : T, b : U ` do ρ{b/x} catch P{b/x}.
The result follows by applying the (Weak) rule as often as needed and the definition of
substitution.

Lemma A.7 (Small Subject Reduction). If Γ ` (νab)(α1 | α2) and (νab)(α1 | α2) −→
(νab)Q then Γ ` (νab)Q.

Proof. From Γ ` (νab)(α1 | α2), using (Contraction) and (Weak) (zero or more times) and
(Res), we obtain Γ1, req Γ′1, req Γ′1, a : T ` α1 and Γ2, req Γ′2, req Γ′2, b : T ` α2, where Γ is
Γ1, req Γ′1,Γ2, req Γ′2, req Θ, endΛ. We proceed by case analysis on the various reduction
axioms, illustrating the most complex cases. Notice that subject(α1) = a and subject(α2) = b,
otherwise there is no reduction.
Case (R−Com). In this case T is !T1.T2 and Γ1, req Γ′1, req Γ′1 is Γ′′1, c : T1. We have four
cases to consider depending on the shape of H1 and H2. When both H1 and H2 are
do-catch contexts, using rules (Contraction), (Res), (Catch), (Out) and (In), we continue
with the only derivation scheme for the hypothesis, to conclude that Γ′′1, a : T2 ` P and
Γ2, req Γ′2, req Γ′2, b : T2, x : T1 ` Q. The result follows from the substitution lemma, and rules
(Contraction), (Weak) and (Res).
Case (C−Catch). Using rules (Contraction), (Res), (Cancel), and (Catch), we conclude:
Γ1, req Γ′1, req Γ′1, a : T ` ρ and Γ′1, req Γ′′1, req Γ′′1 ` P where Γ2 is the empty context. We
then distinguish two cases. When a is free in P , from Lemma A.5 we know that a : U is
in Γ, hence, by context formation, U is a request type. We conclude the proof using rules
(Weak), (Contraction), (Cancel) and (Res). When a is not free in P , we conclude the proof
from Γ′1, req Γ′′1, req Γ′′1 ` P , using contraction and the derived rule (Mix), recalling that
P ≡ (νa′b′)(P | 0) where a′, b′ are fresh names. (We first obtain (νab)(P | b ) ≡ P and then
introduce the new binders which are α-convertible to the desired result.)
Case (R−Ses). We obtain Γ1, req Γ′1, req Γ′1, a : acc T ` α1 and Γ2, req Γ′2, req Γ′2, b : req T `
α2. The part R of the scope in the rule is taken to be 0. We consider two cases, de-
pending on the shape of the H-context; we analyse the case where H is empty since the
exception handler disappears anyway. Rules (Contraction), (Acc), (Req) allow to conclude
that Γ1, req Γ′1, req Γ′1 ` P and Γ2, req Γ′2, req Γ′2, x : U ` Q. The result follows from the
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application of the substitution lemma, and rules (Contraction), (Weak), (Mix), and (Res) if a
appears in P .

Theorem 5.1 (Subject Reduction). If Γ ` P and P −→ Q then Γ ` Q.

Proof. We proceed by induction on the typing derivation. Since P must contain a redex, the
possible last rules for any derivation of Γ ` P are (Res,Contraction,Weak). From these, the
cases for (Contraction,Weak) follow immediately by the induction hypothesis. Thus, we can
focus on (Res).
Case (Res) We have D :: Γ ` P and the conclusion is of the shape Γ1,Γ2 ` (νab)(P1 | P2)
with premises D11 :: Γ1, a : T ` P1 and D21 :: Γ2, b : T ` P2. (We indicate the derivations
because we need to manipulate them.)

Now we consider the possible reductions of P . If Pi −→ P ′i then the result easily follows
from the induction hypothesis followed by an application of (Res). We therefore focus on the
case where (part of) P1 interacts with (part of) P2. In this case there is only one possibility,
that of a reduction on the endpoints a and b (possibly more than one when T or T is of the
shape req T ′), which follows by the well-formedness of Γ1,Γ2. (Recall that the Γi can only
have common elements of the shape c : req T ′, so it follows that the Pi can only communicate
over the interface provided by a : T and b : T .)

We now consider the possible sub-cases for a redex on a/b. In order for a redex to be
active, both components obviously need to be at the top level (i.e., unguarded), so we can
determine that:

P1 ≡ (ν
−→
cd)(α1 | P ′1) P2 ≡ (ν−→rs)(α2 | P ′2)

where the αi are dual actions on a and b, respectively.
We thus have P −→ (νab)Q where Q is

(ν
−→
cd)(ν−→rs)(Q1 | P ′1 | P ′2)

up to structural equivalence as usual.
Now, using Lemma A.3 we obtain:

D11[D12 :: ∆1, a : T ` α1] :: Γ1, a : T ` P1 D21[D22 :: ∆2, b : T ` α2] :: Γ2, b : T ` P2

Moreover, by Proposition A.4 we obtain that ∆1,∆2 is a well-formed interface.
We now consider two cases, where the redices are linear and unrestricted, respectively.

This is because each case requires a slightly different construction in order to obtain a
derivation for the contractum. We start with the linear case, in which we know that the αi
are the only actions with subject a and b (for the other case we need to take into account
the fact that multiple actions with interface b : req T ′ can appear).

Linear redex. We form the following derivation:

D3 =
D12 :: ∆1, a : T ` α1 D22 :: ∆2, b : T ` α2

∆1,∆2 ` (νab)(α1 | α2)
(Res)

We have (νab)(α1 | α2) −→ (νab)Q1 and by Lemma A.7 and D3 we obtain D4 :: ∆1,∆2 `
(νab)Q1. Now we can obtain the following derivation:

D11[D21[D4] :: Γ2,∆1] :: Γ1,Γ2 ` Q
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It is easy to check that the conditions of Definition A.1 are respected (see also Proposition A.2),
i.e., that the result is a valid derivation as required.

Unrestricted redex. Let us assume, without loss of generality (the other case is symmetric),
that T = req T ′. In this case we must take into account that multiple compositions against
b : acc T ′ are possible within the derivation, so we perform a few more steps.
Case (R−Ses). We have the following derivations, assuming α1 = req ac.R1 and α2 =
acc b(x).R2, which are obtained by inversion for each prefix, taking into account weakening
and contraction:

D12 =

D13 :: ∆′1, req Σ1, req Σ1 ` R1

∆′1, req Σ1, req Σ1, a : req T ′, c : T ′ ` req ac.R1
(Req)

∆′1, req Σ1, req Θ1, endΛ1, a : req T ′, c : T ′ ` req ac.R1

(Contraction), (Weak)

D22 =

D23 :: ∆′2, req Σ2, req Σ2, x : T ′ ` R2

∆′2, req Σ2, req Σ2, b : acc T ′ ` acc b(x).R2
(Acc)

∆′2, req Σ2, req Θ2, endΛ2, b : acc T ′ ` acc b(x).R2

(Contraction), (Weak)

with ∆1 = ∆′1, req Σ1, req Θ1, endΛ1, c : T ′ and ∆2 = ∆′2, req Σ2, req Θ2, endΛ2 with ∆′2 =
x1 : req T1, . . . , xn : req Tn.

From the substitution lemma we obtain D24 :: (∆′2, req Σ2, req Σ2, x : T ′){c/x} `
R2{c/x}.

First we form:

D14 =
D13 D24

∆′1, req Σ1, req Σ1, (∆′2, req Σ2, req Σ2, x : T ′){c/x} ` R1 | R2{c/x}
(Mix)

The above interface is clearly well-formed. First, by Proposition A.4 ∆′1,∆
′
2 is well-formed,

and also c : T ′ is composable with ∆′1 by assumption.
Now, we form the following derivation, which is equal to the original except that we put

D14 in the place of D12:

D3 =
D11[D14] D21

Γ1,Γ2] ` (νab)Q
(Res)

We omit some applications of (Contraction) on D11[D14], as well as below (Res), which are
needed to obtain the original interface, as required.
Case (C−Acc/Req/Cat). Similar to the above.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany
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