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TAYLOR EXPANSION IN LINEAR LOGIC IS INVERTIBLE
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Abstract. Each Multiplicative Exponential Linear Logic (MELL) proof-net can be ex-
panded into a differential net, which is its Taylor expansion. We prove that two different
MELL proof-nets have two different Taylor expansions. As a corollary, we prove a complete-
ness result for MELL: We show that the relational model is injective for MELL proof-nets,
i.e. the equality between MELL proof-nets in the relational model is exactly axiomatized
by cut-elimination.

In the seminal paper by Harvey Friedman [18], it has been shown that equality between
simply-typed lambda-terms in the full typed structureMX over an infinite setX is completely
axiomatized by β and η: for any simply-typed lambda-terms v and u, we have (MX � v =
u ⇔ v 'βη u). Some variations, refinements and generalizations of this result have been
provided by Gordon Plotkin [30] and Alex Simpson [33]. A natural problem is to know
whether a similar result could be obtained for Linear Logic.

Such a result can be seen as a “separation” theorem. To obtain such separation theorems,
it is a prerequisite to have a “canonical” syntax. When Jean-Yves Girard introduced Linear
Logic (LL) [19], he not only introduced a sequent calculus system but also “proof-nets”.
Indeed, as for LJ and LK (sequent calculus systems for intuitionnistic and classical logic,
respectively), different proofs in LL sequent calculus can represent “morally” the same proof:
proof-nets were introduced to find a unique representative for these proofs.

The technology of proof-nets was completely satisfactory for the multiplicative fragment
without units.1 For proof-nets having additives, contractions or weakenings, it was easy to
exhibit different proof-nets that should be identified. Despite some flaws, the discovery of
proof-nets was striking. In particular, Vincent Danos proved by syntactical means in [6]
the confluence of these proof-nets for the Multiplicative Exponential Linear Logic fragment
(MELL). For additives, the problem to have a satisfactory notion of proof-net has been
addressed in [23]. For MELL, a “new syntax” was introduced in [7]. In the original syntax,
the following properties of the weakening and of the contraction did not hold:

• the associativity of the contraction;
• the neutrality of the weakening for the contraction;
• the contraction and the weakening as morphisms of co-algebras.

Key words and phrases: Linear Logic, Denotational semantics, Taylor expansion.
1For the multiplicative fragment with units, it has been recently shown [21, 22] that, in some sense, no

satisfactory notion of proof-net can exist. Our proof-nets have no jump, so they identify too many sequent
calculus proofs, but not more than the relational semantics.
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But they hold in the new syntax; at least for MELL, we got a syntax that was a good
candidate to deserve being considered “canonical”. Then trying to prove that any two
(η-expanded) MELL proof-nets that are equal in some denotational semantics are β-joinable
has become sensible and had at least the two following motivations:

• to prove the canonicity of the “new syntax” (if we quotient more normal proof-nets, then
we would identify proof-nets having different semantics);
• to prove the confluence by semantic means (if a proof-net reduces to two cut-free proof-nets,

then they have the same semantics, so they would be β-joinable, hence equal).

The problem of injectivity2 of the denotational semantics for MELL, which is the question
whether equality in the denotational semantics between (η-expanded) MELL proof-nets is
exactly axiomatized by cut-elimination or not, can be seen as a study of the separation
property with a semantic approach. The first work on the study of this property in the
framework of proof-nets is [25] where the authors deal with the translation into LL of
the pure λ-calculus; it has been studied more recently for the intuitionistic multiplicative
fragment of LL [26] and for differential nets [27]. For Parigot’s λµ-calculus, see [8] and [32].

Finally the precise problem of injectivity for MELL has been addressed by Lorenzo
Tortora de Falco in his PhD thesis [34] and in [35] for the (multiset based) coherence semantics
and the multiset based relational semantics. He gave partial results and counter-examples
for the coherence semantics: the (multiset based) coherence semantics is not injective for
MELL. Also, it was conjectured that the relational model is injective for MELL. It is worth
mentioning that the injectivity of the relational model trivially entails the injectivity of other
denotational semantics: non-uniform coherence semantics ([4] and [3]), finiteness spaces [15],
weighted sets [1]...

We presented an abstract of a proof of this conjecture in [10]. This result can be seen as

• a semantic separation property in the sense of [18];
• a semantic proof of the confluence property;
• a proof of the “canonicity” of the new syntax of MELL proof-nets;
• a proof of the fact that if the Taylor expansions of two cut-free MELL proof-nets into

differential nets coincide, then the two proof-nets coincide.

Differential proof-nets [17] are linear approximations of proof-nets that are meant to allow
the expression of the Taylor expansion of proof-nets as infinite series of their linear approxi-
mations, which can be seen as a syntactic counterpart of quantitative semantics of Linear
Logic (see [16] for an introduction to the topic). Now, in the present paper, we not only
provide a fully detailed proof of this result, we also prove a more general result: We show
that if the Taylor expansions of any two MELL proof-nets into differential nets coincide,
then the two proof-nets coincide, i.e. we removed the assumption of the absence of cuts.
Then the injectivity of the relational semantics becomes a corollary of this new result. By
the way, the proof is essentially the same as before.3

2The tradition of the lambda-calculus community rather suggests the word “completeness” and the
terminology of category theory rather suggests the word “faithfulness”, but we follow here the tradition of
the Linear Logic community.

3The two main differences are the following ones:

(1) The pseudo-experiments we consider are not necessarily induced by experiments any more, which means
that we consider simple differential nets that might reduce to 0 and have no counterpart in the denotational
semantics.

(2) The constraints on the basis k of the k-heterogeneous pseudo-experiments we consider are stronger.
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In [35], a proof of the injectivity of the relational model is given for a weak fragment. But
despite many efforts ([34], [35], [2], [28], [27], [29]...), all the attempts to prove the conjecture
failed up to now. New progress was made in [13], where it has been proved that the relational
semantics is injective for “connected” MELL proof-nets. Even though, there, “connected” is
understood as a very strong assumption, the set of “connected” MELL proof-nets contains
the fragment of MELL defined by removing weakenings and units. Actually [13] proved a
much stronger result: in the full MELL fragment, two cut-free proof-nets R and R′ with
the same interpretation are the same up to the map associating auxiliary doors with their
box (we say that they have the same LPS4 - for instance, there are exactly four different
proof-nets whose LPS is the LPS depicted in Figure 22, p. 22: These four proof-nets are the
ones depicted in Figure 23, Figure 24, Figure 25 and Figure 26, p. 38). We wrote: “This
result can be expressed in terms of differential nets: two cut-free proof-nets with different
LPS have different Taylor expansions. We also believe this work is an essential step towards
the proof of the full conjecture.” Despite the fact we obtained a very interesting result about
all the proof-nets (i.e. also for non-“connected” proof-nets5), the last sentence was a bit
too optimistic, since, in the present paper, which presents a proof of the full conjecture, we
could not use any previous result nor any previous technique/idea.

Let us give one more interpretation of its significance. First, notice that a proof of this
result should consist in showing that, given two non β-equivalent proof-nets R and R′, their
respective semantics JRK and JR′K are not equal, i.e. JRK \ JR′K 6= ∅ or JR′K \ JRK 6= ∅.6 But,
actually, we prove something much stronger: We prove that, given a proof-net R, there exist
two points α and β such that, for any proof-net R′, we have ({α, β} ⊆ JR′K⇔ R 'β R′).

Now, the points of the relational model can be seen as non-idempotent intersection
types7 (see [9] and [11] for a correspondence between points of the relational model and
System R - System R has also been studied recently in [5]). And the proof given in the
present paper uses MELL types only to derive the normalization property; actually we
prove the injectivity for cut-free proof-nets in an untyped framework:8 Substituting the
assumption that proof-nets are typed by the assumption that proof-nets are normalizable
does not change anything to the proof.9 In [12], we gave a semantic characterization of
normalizable untyped proof-nets and we characterized “head-normalizable” proof-nets as
proof-nets having a non-empty interpretation in the relational semantics, while [14] gave a
characterization of strongly normalizable untyped proof-nets via non-idempotent intersection

4The LPS of a cut-free proof-net is the graph obtained by forgetting the outline of the boxes but keeping
the trace of the auxiliary doors. The acronym LPS originally stands for “Linear Proof-Structure”; this
terminology might be misleading since the LPS is much more informative than the result of an injective
1-experiment but is well-established, so we keep the acronym forgetting what it stood for.

5and even adding the MIX rule
6The converse, i.e. two β-equivalent proof-nets have the same semantics, holds by soundness.
7Idempotency of intersection (α ∩ α = α) does not hold.
8Our proof even works for “non-correct” proof-structures (correctness is the property characterizing nets

corresponding in a typed framework with proofs in sequent calculus): we could expect that if the injectivity
of the relational semantics holds for proof-nets corresponding with MELL sequent calculus, then it still holds
for proof-nets corresponding with MELL+MIX sequent calculus, since the category Rel of sets and relations
is a compact closed category. The paper [20] assuming correctness substituted in the proof the “bridges”
of [13], which are essentially connected components (in the strong sense of the term since the notion of
bridge ignores boxes - we will consider other “connected components” in our proof), by “empires”, which, in
contrast, discriminate between the connectors ⊗ and `.

9Except that we have to consider the atomic subset of the interpretation instead of the full interpretation
(see Definition 4.10).
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types. Principal typings in untyped λ-calculus are intersection types which allow to recover
all the intersection types of some term. If, for instance, we consider the System R of [9] and
[11], it is enough to consider some injective 1-point10 to obtain the principal typing of an
untyped λ-term. But, generally, for normalizable MELL proof-nets, injective k-points, for
any k, are not principal typings; indeed, two cut-free MELL proof-nets having the same
LPS have the same injective k-points for any k ∈ N. In the current paper we show that a
1-point and a k-heterogeneous point11 together allow to recover the interpretation of any
normalizable MELL proof-net; by the way, our result cannot be improved in such a way
that one point would be already enough for any MELL proof-net (see our Proposition 3.52).
So, our work can also be seen as a first attempt to find a right notion of “principal typing”
of intersection types in Linear Logic. As a consequence, the introduction of technologies
allowing to compute directly by semantic means this principal typing should make possible
normalization by evaluation, as in [31] for λ-calculus; that said, the complexity of such a
computation is still unclear.

Section 1 formalizes untyped proof-structures (PS’s) and typed proof-structures (typed
PS’s). Taylor expansion is defined in Section 2. Section 3 presents our algorithm leading
from the Taylor expansion of R to the rebuilding of R and proves its correctness, which
shows the invertibility of Taylor expansion (Corollary 3.51). Section 4 is devoted to show
the completeness (the injectivity) of the relational semantics: for any typed PS’s R and
R′, we have (JRK = JR′K⇔ R 'β R′) (Corollary 4.37), where 'β is the reflexive symmetric
transitive closure of the cut-elimination relation, by showing first that cut-free PS’s are
characterized by their relational interpretation (Theorem 4.20).

Notations. We denote by ε the empty sequence.
For any n ≥ 2, for any α1, . . . , αn+1, we define, by induction on n, the (n + 1)-tuple

(α1, . . . , αn+1) by setting (α1, . . . , αn+1) = (α1, (α2, α3, . . . , αn+1)).
For any set E, we denote by P(E) the set of subsets of E, by Pfin(E) the set of finite

subsets of E and by P2(E) the set {E0 ∈ P(E);Card (E0) = 2}.
A multiset f of elements of some set E is a function E → N; we denote by Supp(f) the

support of f i.e. the set {e ∈ E ; f(e) 6= 0}. A multiset f is said to be finite if Supp(f) is
finite. The set of finite multisets of elements of some set E is denoted by Mfin(E).

If f is a function E → E ′, x0 ∈ E and y ∈ E ′, then we denote by f [x0 7→ y] the function

E → E ′ defined by f [x0 7→ y](x) =

{
f(x) if x 6= x0;
y if x = x0.

If f is a function E → E ′ and

E0 ⊆ dom(f) = E, then we denote by f [E0] the set {f(x);x ∈ E0} and by f∗ the function
P(E)→ P(E)′ that associates with every E0 ∈ P(E) the set f [E0].

1. Syntax

1.1. Differential proof-structures. We introduce the syntactical objects we are interested
in. As recalled in the introduction, correctness does not play any role, that is why we

10An injective k-point is a point in which all the positive multisets have cardinality k and in which each
atom occurring in it occurs exactly twice.

11k-heterogeneous points are points in which every positive multiset has cardinality kj for some j > 0
and, for any j > 0, there is at most one occurrence of a positive multiset having cardinality kj (see our
Definition 4.17).



TAYLOR EXPANSION IN LINEAR LOGIC IS INVERTIBLE 5

do not restrict our nets to be correct and we rather consider proof-structures (PS’s).
Since it is convenient to represent formally our proof using differential nets possibly with
boxes (differential PS’s), we define PS’s as differential PS’s satisfying some conditions
(Definition 1.7). More generally, differential in-PS’s are defined by induction on the depth,
which is the maximum level of box nesting: Definition 1.1, Definition 1.2 and Definition 1.4
concern what happens at depth 0, i.e. whenever there is no box; in particular, typed
ground-structures allow to represent proofs of the multiplicative fragment (MLL).

We set T = {⊗, `, 1,⊥, !, ?, ax}.

Definition 1.1. A pre-net is a 7-tuple G = (P, l,W,A, C, t,L), where

• P is a finite set; the elements of P are the ports of G;
• l is a function P → T; the element l(p) of T is the label of p in G;
• W is a subset of P; the elements of W are the wires of G;12

• A ⊆ P2(P) is a partition of {p ∈ P; l(p) = ax}; the elements of A are the axioms of G;
• C is a subset of P2(P \W) such that (∀c, c′ ∈ C)(c ∩ c′ 6= ∅ ⇒ c = c′); the elements of C

are the cuts of G;
• t is a function W → {p ∈ P; l(p) /∈ {1,⊥, ax}} such that, for any p ∈ P, we have (l(p) ∈
{⊗, `} ⇒ Card ({w ∈ W; t(w) = p}) = 2); if t(w) = p, then w is a premise of p; the arity
aG(p) of p is the number of its premises;
• and L is a subset of {w ∈ W; l(t(w)) ∈ {⊗,`}} such that (∀p ∈ P) (l(p) ∈ {⊗,`} ⇒
Card ({w ∈ L; t(w) = p}) = 1); if w ∈ L such that t(w) = p, then w is the left premise of
p; if w ∈ W \ L such that l(t(w)) ∈ {⊗,`}, then w is the right premise of t(w).

We set W(G) = W, P(G) = P, lG = l, tG = t, L(G) = L, A(G) = A and C(G) = C.
The set P f(G) = P \ (W ∪

⋃
C) is the set of conclusions of G. For any t ∈ T, we set

Pt(G) = {p ∈ P; l(p) = t}; we set Pm(G) = P⊗(G) ∪ P`(G); the set Pe(G) of exponential
ports of G is P !(G) ∪ P?(G).

A pre-ground-structure is a pre-net G such that im(tG) ∩ P !(G) = ∅.

Notice that, although we depict cuts as wires13 (see the content of the box o3 of the PS
R - the third leftmost box at depth 0 of Figure 11, p. 9 - for an example of a cut), cuts are
not elements of the set W . A wire p ∈ W goes from a port that has the same name p to its
target t(p); instead of using arrows in our figures to indicate the direction, we will use the
following convention: Unless l(p) = ax (but in this case there is no ambiguity since such a
port p can never be the target of any wire), whenever a wire goes from p to some port q, it
will be depicted by an edge reaching underneath the vertice corresponding to p.

Definition 1.2. Given a pre-net G, we denote by ≤G the reflexive transitive closure of the
binary relation PG on P(G) defined by (PG(q, p)⇔ tG(p) = q).

A simple differential net (resp. a ground-structure) is a pre-net G (resp. a pre-ground-
structure) such that the relation PG is irreflexive and the relation ≤G is antisymmetric.

Example 1.3. The ground-structure G of the content of the box o1 of the PS R (the leftmost
box of Figure 11) is defined by: P(G) = {p1, p2, p3, p4}, W(G) = {p2}, lG(p1) = ⊥ = lG(p2),
lG(p3) = ?, lG(p4) = 1, tG(p2) = p3 and C(G) = ∅ = A(G).

12We identify a wire with its source port.
13like wires between principal ports in the formalism of interaction nets [24] (but, in contrast with

interaction nets, Definition 1.1 allows axiom-cuts)
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?

. . .

!A

!

. . .
A A

?A

A An ≥ 0 n ≥ 0

Figure 1: Typing of exponential
ports

!

!
!AA

!

!Aco-weakening:

co-dereliction:

co-contraction:
!A

!A

!A

Figure 2: Original cells of differential
nets

Types will be used only in Subsection 4.2. We introduce them right now in order to
help the reader to see how ground-structures can represent MLL proofs.

We are given a set X of propositional variables. We set X⊥ = {X⊥;X ∈ X}. We define
the set T of MELL types as follows: T ::= X |X⊥ | 1 | ⊥| (T⊗T) | (T`T) | !T | ?T. We extend
the operator −⊥ from the set X to the set T by defining T⊥ ∈ T by induction on T , for any
T ∈ T \ X , as follows: (X⊥)⊥ = X if X ∈ X ; 1⊥ = ⊥; ⊥⊥ = 1; (A ⊗ B)⊥ = (A⊥ ` B⊥);
(A`B)⊥ = (A⊥ ⊗B⊥); (!A)⊥ = ?A⊥; (?A)⊥ = !A⊥.

Definition 1.4. A typed simple differential net (resp. a typed ground-structure) is a pair
(G,T) such that G is a pre-net (resp. a pre-ground-structure) and T is a function P(G)→ T
such that

• for any axiom a of G, there exists a propositional variable C such that T[a] = {C,C⊥};14
• for any cut c of G, there exists a MELL type T such that T[c] = {T, T⊥};
and, for any p ∈ P(G), the following properties hold:

• (lG(p) ∈ {1,⊥} ⇒ T(p) = lG(p));
• if p ∈ P⊗(G), then T(p) = (T(w1)⊗ T(w2)), where w1 (resp. w2) is the left premise of p

(resp. the right premise of p);
• if p ∈ P`(G), then T(p) = (T(w1) ` T(w2)), where w1 (resp. w2) is the left premise of p

(resp. the right premise of p);
• and, if p is an exponential port of G, then there exists a MELL type C such that

(T(p) = lG(p)C ∧ (∀w ∈ W)(tG(w) = p⇒ T(w) = C)).

Notice that the ports labelled by “!” are completely symmetric to the ports labelled by
“?”: They can have any number of premises and the typing rule systematically introduces the
connector ! (see Figure 1, while in [17], there were three different kinds of cells : co-weakenings
(of arity 0) and co-derelictions (of arity 1) that introduce the connector !, and co-contractions
(of arity 2) that do not modify the type (see Figure 2).

Fact 1.5. Let (G,T) be a typed ground-structure (resp. a typed simple differential net).
Then G is a ground-structure (resp. a simple differential net).

Proof. It is enough to notice that, for any p ∈ W(G), the size of T(tG(p)) is greater than the
size of T(p).

14Our typed proof-structures are η-expanded.
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` A,A⊥ ` B,B⊥
⊗

` (A⊗ B), A⊥, B⊥

`
` (A⊗ B), (A⊥ ` B⊥) ` A,A⊥

⊗
` ((A⊗ B)⊗ A), (A⊥ ` B⊥), A⊥

Figure 3: Proof π1

` A,A⊥ ` B,B⊥
⊗

` (A⊗ B), A⊥, B⊥ ` A,A⊥

⊗
` ((A⊗ B)⊗ A), A⊥, B⊥, A⊥

`
` ((A⊗ B)⊗ A), (A⊥ ` B⊥), A⊥

Figure 4: Proof π2

` A,A⊥ ` B,B⊥
⊗

` (A⊗ B), A⊥, B⊥ ` A,A⊥

⊗
` ((A⊗ B)⊗ A), A⊥, B⊥, A⊥

`
` ((A⊗ B)⊗ A), (A⊥ ` B⊥), A⊥

Figure 5: Proof π3

⊗

⊗

ax

ax

ax

((A⊗B)⊗ A)

A

B

A⊥

B⊥

`
(A⊥ `B⊥)

A⊥A

Figure 6: The typed proof-net R′

⊗

⊗

ax

ax
A A⊥

ax

((A⊗B)⊗ A)

B B⊥

`
(A⊥ `B⊥)

A A⊥

Figure 7: The typed proof-net R′′

A ground-structure G such that P !(G) = ∅ is essentially a PS of depth 0, so MLL proofs
can be represented by typed ground-structures.

Example 1.6. As we wrote in the introduction, the motivation for proof-nets was to have
a canonical object to represent different sequent calculus proofs that should be identified.
For instance, Figure 3, Figure 4 and Figure 5 are three different sequent calculus proofs of
the same sequent,15 but the two first proofs are two different sequentializations of the same
typed proof-net (R′,T′) depicted in Figure 6, while the third proof is a sequentialization of
the typed proof-net (R′′,T′′) depicted in Figure 7. Let G′ (resp. G′′) be the ground-structure
that corresponds to the proof-net R′ (resp. R′′).

We can define G′ and G′′ as follows: P(G′) = {p1, p2, p3, p4, p5, p6, p7, p8, p9} = P(G′′);

A(G′) = {{p3, p4}, {p5, p6}, {p7, p8}} = A(G′′); lG′ = lG′′ with lG′(pi) =

 ax if 3 ≤ i ≤ 8;
⊗ if i ∈ {1, 9};
` if i = 2;

W(G′) = {p3, p5, p6, p7, p8, p9} and W(G′′) = {p3, p5, p6, p7, p4, p9}; L(G′) = {p7, p8, p9}
and L(G′′) = {p7, p4, p9}; and tG′(p3) = p1 = tG′′(p3), tG′(p6) = p2 = tG′′(p6), tG′(p7) = p9 =
tG′′(p7), tG′(p5) = p9 = tG′′(p5), tG′(p9) = p1 = tG′′(p9), tG′(p8) = p2 and tG′′(p4) = p2.

15We underline some occurrences of propositional variables in order to distinguish between different
occurrences of the same propositional variable instead of using explicitly the exchange rule.
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1

!

?d ?d

⊥⊥

aux aux

?c

Figure 8: Proof-net in
Girard’s original
syntax

1

!aux

?d ?d

⊥⊥

?c

Figure 9: Proof-net in
Girard’s original
syntax

1

!

?

⊥ ⊥

Figure 10: PS (Danos &
Regnier’s new
syntax)

We can now define our notion of PS : We recall that this notion formalizes Danos &
Regnier’s new syntax, and not Girard’s original syntax. Figure 8, Figure 9 and Figure 10
illustrate some differences between the two syntaxes: Figure 8 and Figure 9 are two different
objects in the original syntax, both of them are represented in the new syntax by the PS
that is depicted in Figure 10. In particular, in the new syntax, auxiliary doors of boxes are
always premises of contractions. Since between auxiliary doors and contractions several box
boundaries might be crossed, we need the auxiliary notion of (differential) in-PS. Concerning
differential PS’s, it is worth noticing that the content of each of their boxes is an in-PS, in
particular every !-port inside is always the main door of a box.

Definition 1.7. For any d ∈ N, we define, by induction on d, the set of differential in-PS’s
of depth d (resp. the set of in-PS’s of depth d) and, for any differential in-PS S of depth d,
the sets P(S) and P f(S) ⊆ P(S). A differential in-PS of depth d (resp. an in-PS of depth
d) is a 4-tuple S = (G,B0, B0, t) such that

• G is a simple differential net (resp. a ground-structure); we set G(S) = G;
• B0 ⊆ {p ∈ P !(G); aG(p) = 0} (resp. B0 = P !(G)) such that ε /∈ B0 and, for any pair

(p1, p2) ∈ P(G), we have p1 /∈ B0 and, if p1 is a pair (p, p′) too, then p /∈ B0;16 the elements
of B0 are the boxes of S at depth 0;17

• B0 is a function that associates with every o ∈ B0 an in-PS of depth < d that enjoys the
following property: if d > 0, then there exists o ∈ B0 such that B0(o) is an in-PS of depth
d− 1;18 we set P(S) = P(G)∪

⋃
o∈B0({o} ×P(B0(o))); the elements of P(S) are the ports

of S;
• t is a partial function

⋃
o∈B0({o} × P f(B0(o))) ⇀ P?(G) ∪ B0 such that, for any o ∈ B0,

there is a unique qo ∈ P f(G(B0(o))), which we will denote by !S(o), such that {(o, qo)} =
{q ∈ dom(t); t(q) = o};19 we set P f(S) = P f(G(S))∪

⋃
o∈B0{(o, q); (q ∈ P f(B0(o))∧ (o, q) /∈

dom(t))} and P f
>0(S) = P f(S) \ P f(G(S)); the elements of P f(S) (resp. of P f(G(S)), resp.

of P f
>0(S)) are the (resp. shallow, resp. non-shallow) conclusions of S.

16We cannot simply disallow pairs in P(G) since in the definition of the differential in-PS TR[i](e)
(Definition 2.3) we will use pairs to denote copies of ports of the contents of the boxes that have been
expanded.

17We identify a box with its main door.
18The function B0 maps boxes at depth 0 to their contents.
19The function t maps to exponential ports at depth 0 their premises that are doors of boxes.
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Figure 11: The PS R

We set P0(S) = P(G(S)) (the elements of P0(S) are the ports of S at depth 0) and, for
any l ∈ T ∪ {m, e}, we set P l0(S) = P l(G(S)). We set W0(S) =W(G(S)), L0(S) = L(G(S)),
A0(S) = A(G(S)) and C0(S) = C(G(S)). The function aS : P0(S)→ N is defined by setting
aS(p) = aG(S)(p) + Card ({q ∈ dom(t); t(q) = p}) for any p ∈ P0(S). The integer co-size(S)

is defined by induction on depth(S):20

co-size(S) = sup ({aS(p); p ∈ P0(S)} ∪ {co-size(B0(o)); o ∈ B0(S)})
We set B0(S) = B0, BS = B0 and tS = t. For any o ∈ B0(S), we set P f

S(o) = {p ∈
P f(BS(o)); (o, p) ∈ dom(tS)}.21 We denote by tS the function W0(S) ∪

⋃
o∈B0(S)({o} ×

P f
S(o))→ P0(S) that associates with every p ∈ W0(S) the port tG(S)(p) of G(S) and with

every (o, p), where o ∈ B0(S) and p ∈ P f
S(o), the port tS(o, p) of G(S). We set P?

S(o) =

tS [{o} × P f
S(o)] \ {o} for any o ∈ B0(S). The set B(S) of boxes of S is defined by induction

on depth(S): B(S) = B0(S) ∪
⋃
o∈B0(S){(o, o

′); o′ ∈ B(B0(o))}. For any binary relation

P ∈ {≥,=, <} on N, for any i ∈ N, we set BPi0 (S) = {o ∈ B0(S);P (depth(BS(o)), i)} and
we define, by induction on depth(S), the set BPi(S) ⊆ B(S) as follows: BPi(S) = BPi0 (S) ∪⋃
o∈B0(S){(o, o

′); o′ ∈ BPi(BS(o))}. We set P>i(S) =
⋃
o∈B≥i

0 (S)
{(o, q); q ∈ P(BS(o))} and

P≤i(S) = P(S) \ P>i(S).
A differential PS (resp. a PS ) is a differential in-PS (resp. an in-PS) S such that

P f(S) ⊆ P f(G(S)).22

The set of cocontractions of an in-PS S is the set P !
0(S) \ B0(S). Notice that an in-PS

is a differential in-PS with no co-contraction.
It is worth noticing that the binary relation ≤S on the set B(S) ∪ {ε} defined by

((o1, . . . , om) ≤S (o′1, . . . , o
′
n)⇔ (m ≤ n ∧ (o1, . . . , om) = (o′1, . . . , o

′
m))) defines a tree with ε

as the root.

Example 1.8. If R is the PS of depth 2 depicted in Figure 11, then we have B0(R) =
{o1, o2, o3, o4}, B(R) = {o1, o2, o3, o4, (o2, o), (o2, o′), (o4, o), (o4, o′)}, B=0(R) = {o1, (o2, o),
(o2, o

′), o3, (o4, o), (o4, o
′)}, B=1(R) = {o2, o4}, P f(R) = {p1, p2, p3, p4, p5, p6, p7} and

G(BR(o1)) is the ground-structure of Example 1.3.

20The supremum is taken in N, hence, if S is the empty PS, then co-size(S) = 0.
21Equivalently, P f

S(o) = {p ∈ P f(BS(o)); (o, p) /∈ P f(S)}.
22Equivalently, a differential PS (resp. a PS) is a differential in-PS (resp. an in-PS) S such that

(∀o ∈ B0(S))P f
S(o) = P f(BS(o)).



10 D. DE CARVALHO

In the absence of axioms and cuts, our definition of PS through in-PS’s is equivalent to
our definition of PS in Definition 4 of [10] through ◦-PS’s. We removed ◦-ports because we
simplified the proof of Proposition 3.43 and after this simplification they would not play
any role any more (actually we introduced a syntactic construction23 that, roughly speaking,
can be seen as a partial recovery of these ◦-ports).

Definition 1.9. For any l ∈ {!, ?}, for any p, we denote by lp the PS R of depth 0 such
that P0(R) = {p} and lG(R)(p) = l.

Definition 1.10. For any d ∈ N, we define, by induction on d, the set of typed differential
in-PS’s of depth d (resp. the set of typed in-PS’s of depth d): it is the set of pairs (S,T)
such that S is a differential in-PS (resp. an in-PS) and T is a function P(S)→ T such that:

• (G(S),T P0(S)) is a typed simple differential net (resp. a typed ground-structure);
• for any o ∈ B0(S), the pair (BS(o),To) is a typed simple differential net, where To is the

function P(BS(o))→ T defined by To(p) = T(o, p) for any p ∈ P(BS(o));
• and, for any o ∈ B0(S), we have (∀q ∈ P f

S(o))(∃ζ ∈ {?, !})T(tS(o, q)) = ζT(o, q).

A typed differential PS (resp. a typed PS ) is a typed differential in-PS (resp. a typed
in-PS) (S,T) such that P f(S) ⊆ P f(G(S)).

1.2. Isomorphisms. We want to consider PS’s up to the names of the ports, apart from
the names of the shallow conclusions. We thus define the equivalence relation ≡ on PS’s;
this relation is slightly finer than the equivalence relation ', which ignores all the names of
the ports.

Definition 1.11. For any simple differential nets G and G′, an isomorphism ϕ from G to G′
is a bijection P(G) ' P(G′) such that:

• ϕ[W(G)] =W(G′)
• ϕ∗[A(G)] = A(G′)
• ϕ∗[C(G)] = C(G′)
• ϕ[L(G)] = L(G′)
• tG′ ◦ ϕ W(G) = ϕ ◦ tG
• lG = lG′ ◦ ϕ
We write ϕ : G ' G′ to denote that ϕ is an isomorphism from G to G′; we write G ' G′ if
there exists ϕ such that ϕ : G ' G′.

Moreover, we write ϕ : G ≡ G′ to denote that ϕ : G ' G′ and (∀p ∈ P f(G))ϕ(p) = p; we
write G ≡ G′ if there exists ϕ such that ϕ : G ≡ G′.

Definition 1.12. For any differential in-PS S of depth d, for any differential in-PS S′, we
define, by induction on d, the set of isomorphims from S to S′: an isomorphism ϕ from S to
S′ is a function P(S)→ P(S′) such that:

• (∀p ∈ P0(S))ϕ(p) ∈ P0(S′) and the function G(ϕ) :
P0(S) → P0(S′)

p 7→ ϕ(p)
is an isomor-

phism G(S) ' G(S′);
• ϕ[B0(S)] = B0(S′);

23See Definition 1.34
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• (∀o ∈ B0(S))(∀p ∈ P(BS(o)))(∃p′ ∈ P(BS′(ϕ(o))))ϕ(o, p) = (ϕ(o), p′) and the function

ϕo :
P(BS(o)) → P(BS′(ϕ(o)))

p 7→ p′ such that ϕ(o, p) = (ϕ(o), p′)

is an isomorphism from BS(o) to BS′(ϕ(o));
• dom(tS′) = ϕ[dom(tS)] and, for any p ∈ dom(tS), we have (ϕ ◦ tS)(p) = (tS′ ◦ ϕ)(p).

We write ϕ : S ' S′ to denote that ϕ is an isomorphism from S to S′; we write S ' S′ if
there exists ϕ such that ϕ : S ' S′.

Moreover, we write ϕ : S ≡ S′ to denote that ϕ : S ' S′ and (∀p ∈ P f(G(S)))ϕ(p) = p;
we write S ≡ S′ if there exists ϕ such that ϕ : S ≡ S′.

Now, if T and T ′ are two sets of differential in-PS’s, we write T ≡ T ′ if there exists a
bijection ϕ : T ' T ′ such that, for any T ∈ T , we have T ≡ ϕ(T ).

Finally, if (S,T) and (S′,T′) are two typed differential in-PS’s, then we write (S,T) ≡
(S′,T′) if there exists ϕ : S ≡ S′ such that T = T′ ◦ ϕ.

Fact 1.13. Let (S,T) and (S′,T′) be two cut-free typed differential in-PS’s such that S ≡ S′.
If T P f(S) = T′ P f(S′), then (S,T) ≡ (S′,T′).

Another variant of the notion of isomorphism will be defined in the next subsection
(Definition 1.32). A special case of isomorphism consists in renaming only ports at depth 0:

Definition 1.14. Let S and S′ be two differential in-PS’s. Let ϕ be a bijection P ' P ′,
where P ′ ∩ (P0(S) \ P) = ∅. We say that S′ is obtained from S by renaming the ports via ϕ
and we write S′ = S[ϕ] if the following properties hold:

• P0(S′) = ϕ[P0(S)]
• W0(S

′) = ϕ[W0(S)]
• A0(S

′) = {ϕ[a]; a ∈ A0(S)}
• C0(S′) = {ϕ[a]; a ∈ C0(S)}
• L0(S′) = ϕ[L0(S)]
• lG(S′) ◦ ϕ = lG(S)
• tG(S′) ◦ ϕ = ϕ ◦ tG(S)
• B0(S′) = ϕ[B0(S)]
• dom(tS′) =

⋃
o∈B0(S){(ϕ(o), p); p ∈ P f

S(o)} and, for any (o, p) ∈ dom(tS), we have

tS′(ϕ(o), p) = tS(o, p)
• and BS′ = BS ◦ ϕ,

where ϕ is the function P0(S)→ P0(S′) that associates with every p ∈ P0(S) the following

port of G(S′):

{
p if p ∈ P0(S) \ P;
ϕ(p) if p ∈ P.

If S′ = S[ϕ] and ϕ is, for some singleton E = {a}, the bijection P0(S) ' E ×P0(S) that
associates with every p ∈ P0(S) the pair (a, p), then S′ is denoted by 〈a, S〉 too.

1.3. Some operations on differential proof-structures. In this subsection, we describe
some operations to obtain new PS’s from old ones.

For any differential in-PS S, for any integer i, we define a differential in-PS S≤i of depth
≤ i, which is obtained from S by removing some boxes:
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Definition 1.15. Let S be a differential in-PS and let i ∈ N. We denote by S≤i the
differential in-PS such that G(S≤i) = G(S), B0(S≤i) = B<i0 (S), BS≤i = BS B<i

0 (S) and

tS≤i = tS ⋃
o∈B<i

0 (S)
({o}×P f

S(o))
.

In particular S≤0 is essentially the same object as G(S).

Remark 1.16. If depth(T ) < i, then T≤i = T .

Remark 1.17. We have (S≤i)
≤i′

= S≤min{i,i′}.

Example 1.18. The differential PS R≤1, where R is the PS depicted in Figure 11, is
depicted in Figure 35, p. 54.

We can also erase some ports at depth 0:

Definition 1.19. Let S′ and S be two differential in-PS’s. Let Q ⊆ P0(S). We write
S′ vQ S to denote that P0(S′) ⊆ P0(S), W0(S

′) = {w ∈ (W0(S) ∩ P0(S′)) \ (Q ∩
Pe
0(S)); tG(S)(w) ∈ P0(S′)}, lG(S′) = lG(S) P0(S′)

, tG(S′) = tG(S) W0(S′)
, L(G(S′)) = L(G(S)) ∩

{w ∈ W0(S); tG(S)(w) ∈ Pm
0 (S′)}, A0(S

′) = {a ∈ A0(S);
⋃
a ⊆ P0(S′)}, C0(S′) = {a ∈

C0(S);
⋃
a ⊆ P0(S′) \ (Q ∩ Pe

0(S))}, B0(S′) = B0(S) ∩ P0(S′), BS′ = BS B0(S′) and
tS′ = tS ⋃

o∈B0(S′)
({o}×P f

S(o))
.

We write S′ v S if there exists Q such that S′ vQ S.

Remark 1.20. We have S′ vQ S if and only if S′ vQ∩Pe
0(S)

S.

Remark 1.21. If S′ v S, then P0(S′) ∩ P f(G(S)) ⊆ P f(G(S′)).

Remark 1.22. If S′, S′′ vQ S and P0(S′) = P0(S′′), then S′ = S′′. So, if, for some
P ⊆ P0(S), there exists a differential in-PS S′ such that P0(S′) = P and S′ v∅ S, then we
can denote by S P the unique such differential in-PS S′.

Remark 1.23. We have S′ vQ S if, and only if, the following properties hold:

• S′≤0 vQ S≤0
• B0(S′) = B0(S) ∩ P0(S′)
• BS′ = BS B0(S′)
• tS′ = tS ⋃

o∈B0(S′)
({o}×P f

S(o))

Remark 1.24. If S′1 vQ S1 and ϕ : S1 ' S2, then there exists a unique S′2 vϕ[Q] S2 such
that there exists an isomorphism S′1 ' S′2 associating with every port p of S′1 the port ϕ(p)
of S2.

Fact 1.25. Let S, S′ and S′′ be three differential in-PS’s. Let Q ⊆ P0(S) and Q′ ⊆ P0(S′).
If S′′ vQ′ S′ and S′ vQ S, then S′′ vQ∪Q′ S.

Fact 1.26. Let S′ and S be two differential in-PS’s and let Q ⊆ Pe
0(S) such that S′ vQ S.

Let i ∈ N. Then S′≤i vQ S≤i.

The operator
⊕

glues together several differential in-PS’s that share only shallow
conclusions that are contractions:24

24This operation has nothing to do with the additive ⊕ of linear logic, it is rather essentially the mix of
linear logic.
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Definition 1.27. Let U be a finite set of differential in-PS’s. We say that U is gluable if, for
any T, T ′ ∈ U such that T 6= T ′, we have P0(T )∩P0(T ′) ⊆ P f(G(T ))∩P?

0(T )∩P f(G(T ′))∩
P?
0(T ′) and, for any pair (p1, p2) ∈ P0(T ), we have p1 /∈ B0(T ′) and, if p1 is a pair (p, p′) too,

then p /∈ B0(T ′).
If U is gluable, then

⊕
U is the differential in-PS such that:

• P0(
⊕
U) =

⋃
T∈U P0(T )

• W0(
⊕
U) =

⋃
T∈UW0(T )

• lG(⊕U)(p) = lG(T )(p) for any p ∈ P0(
⊕
U) and any T ∈ U such that p ∈ P0(T )

• A0(
⊕
U) =

⋃
T∈U A0(T )

• C0(
⊕
U) =

⋃
T∈U C0(T )

• L0(
⊕
U) =

⋃
T∈U L0(T )

• tG(⊕U)(p) = tG(T )(p) for any p ∈ W0(
⊕
U) and any T ∈ U such that p ∈ W0(T );

• B0(
⊕
U)(p) =

⋃
T∈U B0(T )

• B⊕
U (o) = BT (o) for any o ∈ B0(

⊕
U) and any T ∈ U such that o ∈ B0(T );

• dom(t⊕U) =
⋃
T∈U dom(tT ) and t⊕U(p) = tT (p) for any p ∈ dom(t⊕U) and any T ∈ U

such that p ∈ dom(tT ).

Remark 1.28. If U is gluable, then (
⊕
U)≤i =

⊕
{U≤i;U ∈ U}.

We can add wires:

Definition 1.29. Let S be a differential in-PS. Let W ⊆ P f(S) and W ′ ⊆ Pe
0(S) \ B0(S)

such that (∀p ∈ W ∩ P0(S))(∀p′ ∈ W ′)¬p ≤G(S) p′. Let t be a function W →W ′. Then we
denote by S@t the differential in-PS such that

• tS@t is the extension of tS such that dom(tS@t) = dom(tS)∪W and (∀p ∈ W)tS@t(p) = t(p)
• and P0(S@t) = P0(S), lG(S@t) = lG(S), L0(S@t) = L0(S), A0(S@t) = A0(S), C0(S@t) =
C0(S), B0(S@t) = B0(S), BS@t = BS .

Remark 1.30. We have (S@t)≤i = (S≤i)@t P≤i(S).

We can remove shallow conclusions:

Definition 1.31. Let T be a differential in-PS such that P f(G(T )) ⊆ Pe
0(T ) \ B0(T ). Then

T is the unique differential in-PS such that

• P0(T ) = P0(T ) \ P f(G(T ))
• and T = (T ⊕P f(G(T )))@t, where t is the function that associates with every p ∈ dom(tT )

such that tT (p) ∈ P f(G(T )) the port tT (p).

If T is a set of differential in-PS’s, then T = {T ;T ∈ T }.

This operation allows to define the following variant of the notion of isomorphism of
differential in-PS’s:

Definition 1.32. Let S and U be two differential in-PS’s. Let o ∈ B0(S) such that
P f(U) ⊆ P f

S(o). Let T be a differential in-PS such that P f(G(T )) ⊆ Pe
0(T ) \B0(T ). Then we

write ϕ : U ≡(S,o) T if ϕ : U ' T such that, for any p ∈ P f(U), we have tS(o, p) = tT (ϕ(p)).
We write U ≡(S,o) T if there exists ϕ such that ϕ : U ≡(S,o) T .

Remark 1.33. Notice that:

• While the relations ' and ≡ are symmetric, the relation ≡(S,o) is not symmetric.
• If ϕ : U ≡(S,o) T and ψ : U ′ ≡ U , then ϕ ◦ ψ : U ′ ≡(S,o) T .
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Figure 12: The in-PS ϕ ·o3 R

• If ϕ1 : U ≡(S,o) T1 and ϕ2 : U ≡(S,o) T2, then ψ : T1 ≡ T2, where ψ is the bijection

P(T1) ' P(T2) defined by ψ(p) =

{
ϕ2(ϕ1

−1(p)) if p /∈ P f(G(T1));
p otherwise.

The following operation consists in adding contractions as shallow conclusions to the
content of some box o; the conclusions of the box o that were contracted at depth 0 are
now contracted inside the box o. We can then define a complexity measure on in-PS’s that
decreases with this operation, which allows to prove Proposition 3.43 by induction on this
complexity measure.

Definition 1.34. Let R and Ro be two in-PS’s. Let o ∈ B0(R) ∩ B0(Ro). Let Q′ ⊆
P?
0(BRo(o)) and let ϕ be a bijection P?

R(o) ' Q′. We say that Ro is obtained from R by
adding, according to ϕ, contractions as shallow conclusions to the content of the box o and
we write Ro = ϕ ·o R if the following properties hold:

• Ro≤0 = R≤0;
• B0(Ro) = B0(R);

• BRo(o′) =

{
BR(o′) if o′ 6= o;
R′o if o′ = o;

with R′o = (BR(o)⊕
⊕

q′∈Q′ ?q′)@t, where Q′ is a disjoint

set from P0(BR(o)) and t is the function P f
R(o) \ {!R(o)} → Q′ that associates with every

p ∈ P f
R(o) \ {!R(o)} the port ϕ(tR(o, p));

• and tRo = tR dom(tR)\({o}×(P f
R(o)\{!R(o)})).

Remark 1.35. For any o′ ∈ B0(BR(o)), we have

• P f
BR(o)(o

′) = {p ∈ P f
B(ϕ·oR)(o)

(o′); tB(ϕ·oR)(o)(o
′, p) /∈ Q′}

• and (∀p ∈ P f
BR(o)(o

′))tBR(o)(o
′, p) = tB(ϕ·oR)(o)(o

′, p).

Moreover, for any q ∈ P f
R(o) such that tB(ϕ·oR)(o)(q) ∈ Q

′, we have tB(ϕ·oR)(o)(q) = ϕ(tR(o, q)).

Notice that, if R is a PS, then B(ϕ·oR)(o) is a PS too (while BR(o) is not necessarily a
PS); we will implicitly use this property in the proofs of Lemma 3.39 and Proposition 3.47.

Example 1.36. The in-PS ϕ ·o3 R, where ϕ is some bijection P?
R(o3) ' Q′, is depicted in

Figure 12.

Example 1.37. The in-PS ϕ′ ·o4 R, where ϕ′ is some bijection P?
R(o4) ' Q′, is depicted in

Figure 13.
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2. Taylor expansion

When Jean-Yves Girard introduced proof-nets in [19], he also introduced experiments on
proof-nets. Experiments (see our Definition 4.22 in Section 4) are a technology allowing
to compute pointwisely the interpretation JRK of a proof-net R in the model directly on
the proof-net rather than through some sequent calculus proof obtained from one of its
sequentializations: the set of results of all the experiments on a given proof-net is its
interpretation JRK. In an untyped framework, experiments correspond to derivations of
intersection types and results correspond to intersection types.

Inspired by this notion, we introduce pseudo-experiments.

Definition 2.1. For any differential in-PS R, we define, by induction on depth(R), the
set E(R) of pseudo-experiments on R: it is the set of functions that associate with every
o ∈ B0(R) a finite set of pseudo-experiments on BR(o) and with ε some m ∈ N.

Given a pseudo-experiment e on a differential in-PS R, we define, by induction on
depth(R), the function e# : B(R) → Pfin(N) as follows: for any o ∈ B0(R), e#(o) =

{Card (e(o))} and, for any o′ ∈ B(BR(o)), e#(o, o′) =
⋃
eo∈e(o) eo

#(o′).

Our definition is quite ad hoc; actually, what we have in mind is the following notion
of canonical pseudo-experiment : A canonical pseudo-experiment on a differential in-PS R
is a function that associates with every o ∈ B0(R) a finite multiset of canonical pseudo-
experiments on BR(o). Thus a canonical pseudo-experiment is an experiment without any
labels on the axioms and any constraints on cuts. If we consider pseudo-experiments instead
of canonical pseudo-experiments, it is only in order to be less verbose. For instance, if we
used canonical pseudo-experiments instead of pseudo-experiments, the differential in-PS S
of Definition 2.3 could be defined by setting

S = R≤i ⊕
⊕

o∈B≥i
0 (R)

⊕
eo∈Supp(e(o))

⊕
z∈{1,...,e(eo)}

〈o, 〈(eo, z), TBR(o)[i](eo)〉〉

instead of S = R≤i ⊕
⊕

o∈B≥i
0 (R)

⊕
eo∈e(o)〈o, 〈eo, TBR(o)[i](eo)〉〉.

Example 2.2. There exists a pseudo-experiment e on the PS R of Figure 11 such that
e#(o1) = {10223}, e#(o2) = {10}, e#(o3) = {10224}, e#(o4) = {100}, e#((o2, o)) =
{103, . . . , 1012}, e#((o2, o

′)) = {1013, . . . , 1022}, e#((o4, o)) = {1023, . . . , 10122} and e#((o4, o
′))

= {10123, . . . , 10222}.



16 D. DE CARVALHO

For defining Taylor expansion, we only need to define TR[i](e) with i = 0, which is the
differential in-PS obtained by (fully) expanding the boxes according to e. But a key tool of
the proof is the introduction of the differential in-PS’s TR[i](e) with i > 0, which are the
differential in-PS’s obtained by expanding only the boxes of depth at least i. We recall that
the notation 〈o,R〉 for any differential in-PS R was introduced in Definition 1.14.

Definition 2.3. Let R be an in-PS of depth d. Let e be a pseudo-experiment on R.
Let i ∈ N. We define, by induction on d, a differential in-PS TR[i](e) of depth min{i, d}
and a function κR[i](e) : P(TR[i](e)) → P(R) as follows: We set TR[i](e) = S@t, where
S = R≤i⊕

⊕
o∈B≥i

0 (R)

⊕
eo∈e(o)〈o, 〈eo, TBR(o)[i](eo)〉〉 and t is the functionW0∪W>0 → Pe

0(R)

with

• W0 =
⋃
o∈B≥i

0 (R)

⋃
eo∈e(o){(o, (eo, q)); (q ∈ P f(G(TBR(o)[i](eo)))∧κBR(o)[i](eo)(q) ∈ P f

R(o))}

• W>0 =
⋃

(o,(eo,o′))∈B0(S)\B0(R≤i)

{
((o, (eo, o

′)), q);
((o′, q) ∈ P f

>0(TBR(o)[i](eo))

∧κBR(o)[i](eo)(o
′, q) ∈ P f

R(o))

}
• and t(p) =

{
tR(o, κBR(o)[i](eo)(q)) if p = (o, (eo, q)) ∈ W0;
tR(o, κBR(o)[i](eo)(o

′, q)) if p = ((o, (eo, o
′)), q) ∈ W>0.

For any p ∈ P(TR[i](e)), the port κR[i](e)(p) of R is the following one:
p if p ∈ P(R≤i);
(o, κBR(o)[i](eo)(p

′)) if p = (o, (eo, p
′)) ∈ P0(TR[i](e)) \ P0(R);

(o, κBR(o)[i](eo)(o
′, p′)) if p = ((o, (eo, o

′)), p′) and (o, (eo, o
′)) ∈ B0(TR[i](e)) \ B0(R≤i).

If o ∈ B≥i0 (R) and eo is a pseudo-experiment on BR(o), then we set

R〈o, i, eo〉 = 〈o, 〈eo, TBR(o)[i](eo)〉〉.

Remark 2.4. We have W0 ⊆ W0(TR[i](e)) and dom(tTR[i](e)) is the set

dom(tR≤i)∪

 ⋃
o∈B≥i

0 (R)

⋃
eo∈e(o)

⋃
o′∈B0(TBR(o)[i](eo))

{((o, (eo, o′)), p); p ∈ P f
TBR(o)[i](eo)

(o′)}

∪W>0

Moreover, for any p ∈ dom(tR≤i), we have tTR[i](e)(p) = tR(p).

Notice that if R is cut-free, then TR[i](e) is cut-free too. The conclusions are the
duplications of the conclusions; in particular, if R is a PS, then TR[i](e) is a differential PS:

Fact 2.5. Let R be an in-PS. Let e be a pseudo-experiment on R. Let i ∈ N. Then we have
(∀q ∈ P(TR[i](e)))(κR[i](e)(q) ∈ P f(R)⇔ q ∈ P f(TR[i](e))).

Proof. By induction on depth(R). Let q ∈ P(TR[i](e)) such that κR[i](e)(q) ∈ P f(R). We
distinguish between two cases:

• κR[i](e)(q) ∈ P f(R≤i): we have q = κR[i](e)(q) ∈ P f(R≤i) ⊆ P f(TR[i](e));

• There exist o ∈ B≥i0 (R) and p ∈ P f(BR(o)) \ P f
R(o) such that κR[i](e)(q) = (o, p): Then

– either there exist eo ∈ e(o) and q′ ∈ P0(TBR(o)[i](eo)) such that q = (o, (eo, q
′)) and

κBR(o)[i](eo)(q
′) = p, and then, by induction hypothesis, q′ ∈ P f(TBR(o)[i](eo)), hence q =

(o, (eo, q
′)) ∈ P f(R〈o, i, eo〉); since κBR(o)[i](eo)(q

′) /∈ P f
R(o), we have q /∈ dom(tG(TR[i](e)))

and we obtain q ∈ P f(TR[i](e));
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Figure 15: The differential PS S02

– or there exist eo ∈ e(o), o′ ∈ B0(TBR(o)[i](eo)) and q′ ∈ P(BTBR(o)[i](eo)(o
′)) such that q =

((o, (eo, o
′)), q′) and κBR(o)[i](eo)(o

′, q′) = p, and then, by induction hypothesis, (o′, q′) ∈
P f(TBR(o)[i](eo)), hence q = ((o, (eo, o

′)), q′) ∈ P f(R〈o, i, eo〉); since κBR(o)[i](eo)(o
′, q′) /∈

P f
R(o), we have q /∈ dom(tTR[i](e)) and we obtain q ∈ P f(TR[i](e)).

Conversely, let q ∈ P f(TR[i](e)). We distinguish between three cases:

• q ∈ P f(R≤i): we have κR[i](e)(q) = q ∈ P f(R≤i) ⊆ P f(TR[i](e));

• There exist o ∈ B≥i0 (R), eo ∈ e(o) and q′ ∈ P f(G(TBR(o)[i](eo))) such that κBR(o)[i](eo)(q
′) /∈

P f
R(o) and q = (o, (eo, q

′)): by induction hypothesis, we have κBR(o)[i](eo)(q
′) ∈ P f(BR(o)),

hence κR[i](e)(q) = (o, κBR(o)[i](eo)(q
′)) with κBR(o)[i](eo)(q

′) ∈ P f(BR(o)) \ P f
R(o); we

thus have κR[i](e)(q) ∈ P f(R).

• There exist o ∈ B≥i0 (R), eo ∈ e(o), o′ ∈ B0(TBR(o)[i](eo)) and q′ ∈ P f(BTR[i](e)(o, (eo, o
′))) \

P f
TR[i](e)((o, (eo, o

′))) such that κBR(o)[i](eo)(o
′, q′) /∈ P f

R(o) and q = ((o, (eo, o
′)), q′): we

have q′ ∈ P f(BTBR(o)[i](eo)(o
′)) \ P f

TBR(o)[i](eo)
(o′), hence (o′, q′) ∈ P f(TBR(o)[i](eo)); by

induction hypothesis, we have κBR(o)[i](eo)(o
′, q′) ∈ P f(BR(o)); since κBR(o)[i](eo)(o

′, q′) /∈
P f
R(o), we have κR[i](e)(q) = (o, κBR(o)[i](eo)(o

′, q′)) ∈ P f(R).

Example 2.6. Generally, given a PS R and an integer i, the PS TR[i](e) does not depend only
on e# (we can have e1

# = e2
# and not TR[i](e1) ≡ TR[i](e2)), but with the PS R depicted in

Figure 11, it is not the case: with this PS R, we have (∀i ∈ N)(∀e1, e2 ∈ E(R))(e1
# = e2

# ⇒
TR[i](e1) ≡ TR[i](e2)). If R is this PS and e some pseudo-experiment such that e# is as
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described in Example 2.2, then TR[0](e) = S01⊕S02, where S01 and S02 are the differential
PS’s depicted in Figures 14 and 15 respectively, and TR[1](e) = S11 ⊕ S12 ⊕ S13, where S11,
S12 and S13 are the differential PS’s depicted in Figures 16, 17 and 18 respectively.

The Taylor expansion we consider has no coefficients (i.e. has coefficients in the Boolean
semiring B = {0, 1}, where 1 + 1 = 1). In other words, we consider the support of Taylor
expansion with coefficients:

Definition 2.7. Let R be a PS. A Taylor expansion of R is a set TR[0] of simple differential
nets such that TR[0] ≡ {TR[0](e); e ∈ E(R)}.

It is clear that two Taylor expansions of R are the same sets of simple differential nets
up to the names of the ports that are not conclusions, that is why it makes sense to speak
about “the” Taylor expansion of a PS.

An important case for our proof is the partial Taylor expansion of an in-PS of the
form ϕ ·o R for some in-PS R, some box o of R at depth 0 and some bijection ϕ : P?

R(o) '
Q′. Since we have E(ϕ ·o R) = E(R), we can compare TR[i](e) with T(ϕ·oR)[i](e). From
BB(ϕ·oR)(o) = BBR(o), we already deduce BTB(ϕ·oR)(o)

[i](e) = BTBR(o)[i](e); more information is

given by the following lemma:

Lemma 2.8. Let R be an in-PS. Let o ∈ B0(R). Let eo be a pseudo-experiment on BR(o).
Let ϕ be some bijection P?

R(o) ' Q′. Let Ro be an in-PS such that Ro = ϕ ·o R. Let i ∈ N.
Then we have:

• tTBR(o)[i](eo) = tTBRo
(o)[i](eo) {p∈dom(tTBRo

(o)[i](eo)
);tTBRo

(o)[i](eo)
(p)/∈Q′}

• and, for any o1 ∈ B0(TBRo (o)
[i](eo)), for any p ∈ P f

TBRo
(o)[i](eo)

(o1) such that

tTBRo
(o)[i](eo)(o1, p) ∈ Q

′,
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we have
tTBRo

(o)[i](eo)(o1, p) = ϕ(tTR[i](e)((o, (eo, o1)), p))

Proof. We set

S = BR(o)≤i ⊕
⊕

o′∈B≥i
0 (BR(o))

⊕
eo′∈eo(o′)

〈o′, 〈eo′ , TBBR(o)(o
′)[i](eo′)〉〉

and
So = BRo(o)≤i ⊕

⊕
o′∈B≥i

0 (BRo (o))

⊕
eo′∈eo(o′)

〈o′, 〈eo′ , TBBRo
(o)(o

′)[i](eo′)〉〉

Notice that

So = BRo(o)≤i ⊕
⊕

o′∈B≥i
0 (BR(o))

⊕
eo′∈eo(o′)

〈o′, 〈eo′ , TBBR(o)(o
′)[i](eo′)〉〉

and B0(So) = B0(S). Let p ∈ dom(tTBR(o)[i](eo)) and let us show that p ∈ dom(tTBRo
(o)[i](eo)).

We distinguish between two cases:

• p ∈ dom(tBR(o)≤i): Then p ∈ dom(tBRo (o)
≤i) ⊆ dom(tTBRo

(o)[i](eo)).

• p /∈ dom(tBR(o)≤i): Then there exists (o′, (eo′ , o
′′)) ∈ B0(S) \ B0(BR(o)≤i) = B0(So) \

B0(BRo(o)≤i) such that p is an element of the set{
((o′, (eo′ , o

′′)), q);
((o′′, q) ∈ P f

>0(TBBR(o)(o
′)[i](eo′))

∧κBBR(o)(o
′)[i](eo′)(o

′′, q) ∈ P f
BR(o)(o

′))

}

=

{
((o′, (eo′ , o

′′)), q);
((o′′, q) ∈ P f

>0(TBBRo
(o)(o

′)[i](eo′))

∧κBBRo
(o)(o

′)[i](eo′)(o
′′, q) ∈ P f

BR(o)(o
′))

}

⊆

{
((o′, (eo′ , o

′′)), q);
((o′′, q) ∈ P f

>0(TBBRo
(o)(o

′)[i](eo′))

∧κBBRo
(o)(o

′)[i](eo′)(o
′′, q) ∈ P f

BRo (o)
(o′))

}
⊆ dom(tTBRo

(o)[i](eo))

Conversely, let p ∈ dom(tTBRo
(o)[i](eo)) such that tTBRo

(o)[i](eo)(p) /∈ Q
′; we will check that

p ∈ dom(tTBR(o)[i](eo)) and tTBRo
(o)[i](eo)(p) = tTBR(o)[i](eo)(p). We distinguish between two

cases:

• p ∈ dom(tBRo (o)
≤i): Then p ∈ dom(t(BR(o)⊕

⊕
q′∈Q′ ?q′ )

≤i) = dom(tBR(o)≤i) ⊆ dom(tTBR(o)[i](eo)).

In this case, we have tTBR(o)[i](eo)(p) = tBR(o)(p) = tBRo (o)
(p) = tTBRo

(o)[i](eo)(p).

• p /∈ dom(tBRo (o)
≤i): Then there exists (o′, (eo′ , o

′′)) ∈ B0(So) \ B0(BRo(o)≤i) = B0(S) \
B0(BR(o)≤i) such that p is an element of the set{

((o′, (eo′ , o
′′)), q);

((o′′, q) ∈ P f
>0(TBBRo

(o)(o
′)[i](eo′))

∧κBBRo
(o)(o

′)[i](eo′)(o
′′, q) ∈ P f

BRo (o)
(o′))

}

=

{
((o′, (eo′ , o

′′)), q);
((o′′, q) ∈ P f

>0(TBBR(o)(o
′)[i](eo′))

∧κBBR(o)(o
′)[i](eo′)(o

′′, q) ∈ P f
BRo (o)

(o′))

}
(because BBRo (o)

(o′) = BBR(o)(o
′))
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=

{
((o′, (eo′ , o

′′)), q);
((o′′, q) ∈ P f

>0(TBBR(o)(o
′)[i](eo′))

∧κBBR(o)(o
′)[i](eo′)(o

′′, q) ∈ P f
BR(o)(o

′))

}

∪

((o′, (eo′ , o
′′)), q);

((o′′, q) ∈ P f
>0(TBBR(o)(o

′)[i](eo′))

∧κBBR(o)(o
′)[i](eo′)(o

′′, q) ∈ P f
BRo (o)

(o′)

∧tBRo (o)
(o′, κBBR(o)(o

′)[i](eo′)(o
′′, q)) ∈ Q′)


(by Remark 1.35, P f

BRo (o)
(o′) = P f

BR(o)(o
′) ∪ {q′ ∈ P f

BRo (o)
(o′); tBRo (o)

(o′, q′) ∈ Q′})

=

{
((o′, (eo′ , o

′′)), q);
((o′′, q) ∈ P f

>0(TBBR(o)(o
′)[i](eo′))

∧κBBR(o)(o
′)[i](eo′)(o

′′, q) ∈ P f
BR(o)(o

′))

}

∪

{
((o′, (eo′ , o

′′)), q);
((o′′, q) ∈ P f

>0(TBBR(o)(o
′)[i](eo′))

∧tTBRo
(o)[i](eo)((o

′, (eo′ , o
′′)), q) ∈ Q′)

}

=

{
((o′, (eo′ , o

′′)), q);
((o′′, q) ∈ P f

>0(TBBR(o)(o
′)[i](eo′))

∧κBBR(o)(o
′)[i](eo′)(o

′′, q) ∈ P f
BR(o)(o

′))

}
(by assumption, we have tTBRo

(o)[i](eo)(p) /∈ Q
′)

⊆ dom(tTBR(o)[i](eo))

In this case, if q is such that p = ((o′, (eo′ , o
′′)), q), then we have

tTBR(o)[i](eo)(p) = tBR(o)(o
′, κBBR(o)(o

′)[i](eo′)(o
′′, q))

= tBRo (o)
(o′, κBBRo

(o)(o
′)[i](eo′)(o

′′, q))

= tTBRo
(o)[i](eo)(p)

We thus have tTBR(o)[i](eo) = tTBRo
(o)[i](eo) {p∈dom(tTBRo

(o)[i](eo)
);tTBRo

(o)[i](eo)
(p)/∈Q′}

.

Now, let o1 ∈ B0(TBRo (o)
[i](eo)) and p ∈ P f

TBRo
(o)[i](eo)

(o1) such that tTBRo
(o)[i](eo)(o1, p) ∈

Q′.
• If o1 ∈ B<i0 (BRo(o)), then (o1, p) ∈ P f

R(o), hence tTBRo
(o)[i](eo)(o1, p) = tBRo (o)

(o1, p) =

ϕ(tR(o, (o1, p))) = ϕ(tR(o, κBRo (o)
[i](eo)(o1, p)));

• if o1 = (o′, (eo′ , o
′′)) with o′ ∈ B≥i0 (BRo(o)), then ((o′, (eo′ , o

′′)), p) /∈ P f(TBRo (o)
[i](eo)),

hence, by Fact 2.5, (o′, κBBRo
(o)(o

′)[i](eo′)(o
′′, p)) = κBRo (o)

[i](eo)((o
′, (eo′ , o

′′)), p) /∈ P f(BRo(o)).

Moreover, since tTBRo
(o)[i](eo)(o1, p) ∈ Q

′, we have (o′′, p) ∈ P f(TBBRo
(o)(o

′)[i](eo′)) (oth-

erwise, tTBBRo
(o)(o

′)[i](eo′ )
(o′′, p) ∈ P0(TBBRo

(o)(o
′)[i](eo′)) = P0(TBBR(o)(o

′)[i](eo′)), which

entails tTBRo
(o)[i](eo)(o1, p) ∈ P0(TBR(o)[i](eo)), which contradicts tTBRo

(o)[i](eo)(o1, p) ∈
Q′). By Fact 2.5, we obtain κBBRo

(o)(o
′)[i](eo′)(o

′′, p) ∈ P f(BBRo (o)
(o′)). We showed

κBBRo
(o)(o

′)[i](eo′)(o
′′, p) ∈ P f

BRo (o)
(o′). We thus have

tTBRo
(o)[i](eo)(o1, p) = tBRo (o)

(o′, κBBRo
(o)(o

′)[i](eo′)(o
′′, p))

= ϕ(tR(o, (o′, κBBRo
(o)(o

′)[i](eo′)(o
′′, p))))

= ϕ(tR(o, κBRo (o)
[i](eo)(o1, p)));
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now, we have tR(o, κBRo (o)
[i](eo)(o1, p)) = tR(o, κBR(o)[i](eo)(o1, p)) = tTR[i](e)((o, (eo, o1)), p).

The rest of this section is devoted to show Proposition 2.12, which shows how one can
compute, for any in-PS R, the arity in TR[i](e) of a port at depth 0 of R. For that purpose,

we introduce the function b≥iS that associates with every port p of S at depth greater than i
the deepest box of depth at least i that contains p:

Definition 2.9. For any differential in-PS S, for any i ∈ N, we define, by induction on
depth(S), the function b≥iS : P>i(S)→ B≥i(S) as follows:

b≥iS : P>i(S) → B≥i(S)

(o, p) 7→

{
o if o ∈ B≥i0 (S) and p ∈ P≤i(BS(o));

(o, b≥iBS(o)
(p)) if o ∈ B≥i0 (S) and p ∈ P>i(BS(o));

Fact 2.10. Let R be an in-PS. Let e be a pseudo-experiment on R. Let i ∈ N. Then we
have

(∀p ∈ P(TR[i](e)) \ P0(R))(p ∈ P0(TR[i](e))⇔ (b≥0R ◦ κR[e](i))(p) ∈ B≥i(R))

Proof. First notice that, for any differential in-PS S, we have:

(∀p ∈ P>0(S))(b≥0S (p) ∈ B≥i(S)⇒ p ∈ P>i(S)) (∗)

Indeed: Let p ∈ P>0(S) such that b≥0S (p) ∈ B≥i(S) and let o ∈ B0(S) and p′ ∈ P(BS(o))
such that p = (o, p′); we distinguish between two cases:

• p′ ∈ P0(BS(o)): We have b≥0S (p) = o ∈ B≥i0 (S);

• p′ ∈ P>0(BS(o)): We have b≥0S (p) = (o, b≥0BS(o)
(p′)) ∈ B≥i0 (S), hence o ∈ B≥i(S);

in both cases we have o ∈ B≥i0 (S), hence p = (o, p′) ∈ P>i(S).
We prove now the fact by induction on depth(R). If depth(R) = 0, then P(TR[i](e)) \

P0(R) = ∅. Otherwise, let p ∈ P(TR[i](e)) \ P0(R) 6= ∅:
• If p ∈ P0(TR[i](e)), then there exist o ∈ B≥i0 (R), eo ∈ e(o) and p′ ∈ P0(TBR(o)[i](eo)) such

that p = (o, (eo, p
′)); we distinguish between two cases:

– p′ ∈ P0(BR(o)): We have b≥0R (κR[i](e)(p)) = b≥0R (o, p′) = o ∈ B≥i(R).

– p′ ∈ P>0(BR(o)): By induction hypothesis, we have b≥0BR(o)(κBR(o)[i](eo)(p
′)) ∈ B≥i(BR(o)),

hence, by (∗), κBR(o)[i](eo)(p
′) ∈ P>i(BR(o)); we thus have

b≥0R (κR[i](e)(p)) = b≥0R (o, κBR(o)[i](eo)(p
′)) = (o, b≥0BR(o)(κBR(o)[i](eo)(p

′))) ∈ B≥i(R).

• If p ∈ P>0(TR[i](e)), then there exist o ∈ B0(TR[i](e)) and p′ ∈ P(BTR[i](e)(o)) such that
p = (o, p′); we distinguish between two cases:

– o ∈ B<i0 (R): Then p′ ∈ P≤i(BR(o)), hence b≥0R (κR[i](e)(p)) = b≥0R (o, p′) = o ∈ B<i(R);

– o = (o1, (e1, o
′)) with o1 ∈ B≥i0 (R), e1 ∈ e(o1) and o′ ∈ B0(TBR(o1)[i](e1)): By induction

hypothesis, we have b≥0BR(o1)
(κBR(o1)[i](e1)(o

′, p′)) ∈ B<i(BR(o1)), hence

b≥0R (κR[i](e)(p)) = b≥0R (o1, κBR(o1)[i](e1)(o
′, p′)) = (o1, b

≥0
BR(o1)

(κBR(o1)[i](e1)(o
′, p′))) ∈ B<i(R).

If a port q of a PS R is deep enough, then it is duplicated
∑
e#(b≥iR (q)) times in TR[i](e):
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Lemma 2.11. Let R be an in-PS. Let e be a pseudo-experiment on R. Let i ∈ N. Let
q ∈ P>i(R). Then we have

Card ({p ∈ P(TR[i](e));κR[i](e)(p) = q}) =
∑

e#(b≥iR (q))

Proof. By induction on depth(R). If depth(R) = 0, then there is no such q. Otherwise: Let

o ∈ B≥i0 (R) and q′ ∈ P(BR(o)) such that q = (o, q′). We distinguish between three cases:

• q′ ∈ P≤i(BR(o)): we have b≥0R (q) = b≥0R (o, q′) = o ∈ B≥i(R), hence, by Fact 2.10, we have
{p ∈ P(TR[i](e));κR[i](e)(p) = q} = {p ∈ P0(TR[i](e)) \ P0(R);κR[i](e)(p) = (o, q′)} =
{(o, (eo, q′)); eo ∈ e(o)}, hence

Card ({p ∈ P(TR[i](e));κR[i](e)(p) = q}) = Card (e(o))

=
∑

e#(o)

=
∑

e#(b≥iR (q))

• q′ ∈ P>i(BR(o)) and b≥0BR(o)(q
′) ∈ B≥i(BR(o)): we have b≥0R (q) = b≥0R (o, q′) = (o, b≥0BR(o)(q

′)) ∈
B≥i(R), hence, by Fact 2.10, {p ∈ P(TR[i](e));κR[i](e)(p) = q} = {p ∈ P0(TR[i](e)) \
P0(R);κR[i](e)(p) = (o, q′)} =

⋃
eo∈e(o){(o, (eo, p

′)); (p′ ∈ P0(TBR(o)[i](eo))∧κBR(o)[i](eo)(p
′) =

q′)}; for any eo ∈ e(o), by Fact 2.10 again, we have

{p′ ∈ P(TBR(o)[i](eo));κBR(o)[i](eo)(p
′) = q′} = {p′ ∈ P0(TBR(o)[i](eo));κBR(o)[i](eo)(p

′) = q′}
and, by induction hypothesis, we have

Card
(
{p′ ∈ P(TBR(o)[i](eo));κeo,i(p

′) = q′}
)

=
∑

eo
#(b≥iBR(o)(q

′))

We thus obtain

Card ({p ∈ P(TR[i](e));κR[i](e)(p) = q})

= Card

 ⋃
eo∈e(o)

{(o, (eo, p′)); (p′ ∈ P(TBR(o)[i](eo)) ∧ κBR(o)[i](eo)(p
′) = q′)}


=

∑
eo∈e(o)

Card
(
{p′ ∈ P(TBR(o)[i](eo));κBR(o)[i](eo)(p

′) = q′}
)

=
∑

eo∈e(o)

∑
eo

#(b≥iBR(o)(q
′))

=
∑

e#(o, b≥iBR(o)(q
′))

=
∑

e#(b≥iR (q))

• q′ ∈ P>i(BR(o)) and b≥0BR(o)(q
′) ∈ B<i(BR(o)): we have b≥0R (q) = b≥0R (o, q′) = (o, b≥0BR(o)(q

′)) ∈
B<i(R), hence, by Fact 2.10,

{p ∈ P(TR[i](e));κR[i](e)(p) = q} = {p ∈ P>0(TR[i](e));κR[i](e)(p) = (o, q′)};
for any eo ∈ e(o), by Fact 2.10 again, we have {p ∈ P(TBR(o)[i](eo));κBR(o)[i](eo)(p) =
q′} = {p ∈ P>0(TBR(o)[i](eo));κBR(o)[i](eo)(p) = q′} and, by induction hypothesis, we have

Card
(
{p ∈ P(TBR(o)[i](eo));κBR(o)[i](eo)(p) = q′}

)
=
∑

eo
#(b≥iBR(o)(q

′))
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hence

Card ({p ∈ P(TR[i](e));κR[i](e)(p) = q})

= Card

 ⋃
eo∈e(o)

{((o, (eo, o′)), p′); ((o′, p′) ∈ P>0(TBR(o)[i](eo)) ∧ κBR(o)[i](eo)(o
′, p′) = q′)}


=

∑
eo∈e(o)

Card
(
{p ∈ P>0(TBR(o)[i](eo));κBR(o)[i](eo)(p) = q′}

)
=

∑
eo∈e(o)

Card
(
{p ∈ P(TBR(o)[i](eo));κBR(o)[i](eo)(p) = q′}

)
(because (∀eo ∈ e(o))(∀p ∈ P0(TBR(o)[i](eo)))κBR(o)[i](eo)(p) /∈ P>i(BR(o)))

=
∑

eo∈e(o)

∑
eo

#(b≥iBR(o)(q
′))

=
∑

e#(o, b≥iBR(o)(q
′))

=
∑

e#(b≥iR (q))

We finally obtain Proposition 2.12:

Proposition 2.12. Let R be an in-PS. Let e be a pseudo-experiment on R. Let i ∈ N. Let
p ∈ P0(R). Then we have

aTR[i](e)(p) = aR≤i(p) +
∑

p′∈P>i(R)
tR(p′)=p

∑
e#(b≥iR (p′))

Proof. We have∑
o∈B≥i

0 (R)

∑
eo∈e(o)

Card

({
q ∈ P f(G(TBR(o)[i](eo)));

(κBR(o)[i](eo)(q) ∈ P f
R(o)

∧tR(o, κBR(o)[i](eo)(q)) = p)

})

=
∑

o∈B≥i
0 (R)

∑
eo∈e(o)

∑
p′∈P f

R(o)
tR(o,p′)=p

Card
({
q ∈ P f(G(TBR(o)[i](eo)));κBR(o)[i](eo)(q) = p′

})

=
∑

o∈B≥i
0 (R)

∑
eo∈e(o)

∑
p′∈P f

R(o)
tR(o,p′)=p

Card
({
q ∈ P0(TBR(o)[i](eo));κBR(o)[i](eo)(q) = p′

})
(by Fact 2.5)

=
∑

o∈B≥i
0 (R)

∑
eo∈e(o)

∑
p′∈P f

R(o)
tR(o,p′)=p

Card
({
q ∈ P0(TBR(o)[i](eo));κR[i](e)(o, (eo, q)) = (o, p′)

})
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=
∑

o∈B≥i
0 (R)

∑
p′∈P f

R(o)
tR(o,p′)=p

∑
eo∈e(o)

Card
({
q ∈ P0(TBR(o)[i](eo));κR[i](e)(o, (eo, q)) = (o, p′)

})

=
∑

p′∈P>i(R)
tR(p′)=p

Card
(
{q ∈ P0(TR[i](e));κR[i](e)(q) = p′}

)

and, for any o ∈ B≥i0 (R), for any eo ∈ e(o), we set

do(eo)

=
∑

o′∈B0(TBR(o)[i](eo))

Card

({
(o′, q) ∈ P f(TBR(o)[i](eo));

(κBR(o)[i](eo)(o
′, q) ∈ P f

R(o)
∧tR(o, κBR(o)[i](eo)(o

′, q)) = p)

})
we have

do(eo)

=
∑

o′∈B0(TBR(o)[i](eo))

∑
q′∈P f

R(o)
tR(o,q′)=p

Card
({

(o′, q) ∈ P f(TBR(o)[i](eo));κBR(o)[i](eo)(o
′, q) = q′

})

=
∑

o′∈B0(TBR(o)[i](eo))

∑
q′∈P f

R(o)
tR(o,q′)=p

Card
({

(o′, q) ∈ P(TBR(o)[i](eo));κBR(o)[i](eo)(o
′, q) = q′

})
(by Fact 2.5)

hence∑
eo∈e(o)

do(eo)

=
∑

q′∈P f
R(o)

tR(o,q′)=p

∑
eo∈e(o)

∑
o′∈B0(TBR(o)[i](eo))

Card
({

(o′, q) ∈ P(TBR(o)[i](eo));κBR(o)[i](eo)(o
′, q) = q′

})

=
∑

q′∈P f
R(o)

tR(o,q′)=p

∑
eo∈e(o)

∑
o′∈B0(TBR(o)[i](eo))

Card
({

(o′, q) ∈ P(TBR(o)[i](eo));κR[i](e)((o, (eo, o
′)), q) = (o, q′)

})
and ∑

o∈B≥i
0 (R)

∑
eo∈e(o)

do(eo) =
∑

p′∈P>i(R)
tR(p′)=p

Card
(
{q ∈ P>0(TR[i](e));κR[i](e)(q) = p′}

)
We thus have

aTR[i](e)(p)

=aR≤i(p) +
∑

o∈B≥i
0 (R)

∑
eo∈e(o)

do(eo)

+
∑

o∈B≥i
0 (R)

∑
eo∈e(o)

Card

({
q ∈ P f(G(TBR(o)[i](eo)));

(κBR(o)[i](eo)(q) ∈ P f
R(o)

∧tR(o, κBR(o)[i](eo)(q)) = p)

})
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=aR≤i(p) +
∑

p′∈P>i(R)
tR(p′)=p

Card
(
{q ∈ P>0(TR[i](e));κR[i](e)(q) = p′}

)
+

∑
p′∈P>i(R)
tR(p′)=p

Card
(
{q ∈ P0(TR[i](e));κR[i](e)(q) = p′}

)
=aR≤i(p) +

∑
p′∈P>i(R)
tR(p′)=p

Card
(
{q ∈ P(TR[i](e));κR[i](e)(q) = p′}

)
=aR≤i(p) +

∑
p′∈P>i(R)
tR(p′)=p

∑
e#(b≥iR (p′))

(by Lemma 2.11)

Example 2.13. Consider the port p1 of R at depth 0 (see Figure 11): We have {p′ ∈
P>1(R); tR(p′) = p1} = {(o2, q′)}, b≥1R ((o2, q

′)) = o2 and aR≤1(p1) = 1 (see Figure 35, p. 54).

Now, if e is a pseudo-experiment as in Example 2.2, then e#(o2) = {10}, hence aR≤1(p1) +∑
p′∈P>1(R)
tR(p′)=p1

∑
e#(b≥1R (p′)) = 1 +

∑
{10} = 11. And, indeed, we have aTR[1](e)(p1) = 11 (see

Figure 16).

Corollary 2.14. Let R be an in-PS. Let o ∈ B0(R). Let ϕ be some bijection P?
R(o) ' Q′

and let Ro be an in-PS such that Ro = ϕ ·o R. Let eo ∈ e(o). Let i ∈ N. Then, for any
p ∈ P0(TBR(o)[i](eo)), we have aTBR(o)[i](eo)(p) = aTBRo

(o)[i](eo)(p).

Proof. Let p ∈ P0(TBR(o)[i](eo)). If p ∈ P0(BR(o)), then, by Proposition 2.12, we have

aTBR(o)[i](eo)(p) = aBR(o)≤i(p) +
∑

p′∈P>i(BR(o))
tBR(o)(p

′)=p

∑
eo

#(b≥iBR(o)(p
′))

= aBRo (o)
≤i(p) +

∑
p′∈P>i(BRo (o))
tBRo

(o)(p
′)=p

∑
eo

#(b≥iBRo (o)
(p′))

= aTBRo
(o)[i](eo)(p)

If p /∈ P0(BR(o)), then there exist o1 ∈ B≥i0 (BR(o)), e1 ∈ eo(o1) and p′ ∈ P0(TBBR(o)(o1)[i](e1))

such that p = (o1, (e1, p
′)); moreover,

aTBR(o)[i](eo)(p) = aTBBR(o)(o1)
[i](e1)(p

′)

= aTBBRo
(o)(o1)

[i](e1)(p
′)

= aTBRo
(o)[i](eo)(p)

3. Rebuilding the proof-structure

The Taylor expansion of a PS is an infinite set of simple differential nets (for PS’s of depth
> 0). It was not known whether from this infinite set is was possible to rebuild the PS;
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indeed, a priori, two different PS’s could have the same Taylor expansion. We will not
only show that it is possible to rebuild any PS R from its Taylor expansion TR[0], we will
also show something much stronger: We are already able to rebuild the PS with only one
well-chosen simple differential net that appears in the Taylor expansion, chosen according to
a specific information given by a second simple differential net of the Taylor expansion.

The algorithm leading from the simple differential net TR[0](e) for some well-chosen
pseudo-experiment e on R to the entire rebuilding of R is done in several steps: In the
intermediate steps, we obtain a partial rebuilding where some boxes have been recovered but
not all of them; a convenient way to represent this information is to use differential PS’s,
which lie between the purely linear differential proof-nets and the non-linear proof-nets.

The rebuilding of the PS R is done in d steps, where d is the depth of R. We first
rebuild the occurrences of the boxes of depth 0 (the deepest ones) and next we rebuild
the occurrences of the boxes of depth 1 and so on... This can be formalized using simple
differential nets (possibly with boxes) as follows: starting from TR[0](e), the first step of the
algorithm builds TR[1](e), the second step builds TR[2](e) from TR[1](e), and so on... until
TR[depth(R)](e) = R. We thus reduced the problem of rebuilding the PS to the problem of
rebuilding TR[i+ 1](e) from TR[i](e) for some well-chosen pseudo-experiment e.

We can hardly obtain much more than the following property for a non-well-chosen
pseudo-experiment:

Lemma 3.1. Let R be an in-PS. Let e be a pseudo-experiment on R. Let i ∈ N. Then we
have:

• TR[i+ 1](e)≤i v∅ TR[i](e)
• (∀o ∈ B<i0 (TR[i+ 1](e)))P f

TR[i+1](e)(o) = P f
TR[i](e)(o);

• and κR[i+ 1](e) P0(TR[i+1](e)) = κR[i](e) P0(TR[i+1](e)).

Proof. By induction on depth(R), noticing, by applying Remark 1.30, Remark 1.28 and

Remark 1.17, that we have TR[i+ 1](e)≤i = S@t with

S = R≤i ⊕
⊕

o∈B≥i+1
0 (R)

⊕
eo∈e(o)

〈o, 〈eo, TBR(o)[i+ 1](eo)
≤i〉〉

and t is the function W0 ∪W>0 → Pe
0(R), where

• W0 =
⋃
o∈B≥i+1

0 (R)

⋃
eo∈e(o){(o, (eo, q)); (q ∈ P f(G(TBR(o)[i+1](eo)))∧κBR(o)[i+1](eo)(q) ∈

P f
R(o))}

• W>0 =
⋃

(o,(eo,o′))∈B<i
0 (S)\B0(R≤i+1)

{
((o, (eo, o

′)), q);
((o′, q) ∈ P f

>0(TBR(o)[i+ 1](eo))

∧κBR(o)[i+ 1](eo)(o
′, q) ∈ P f

R(o))

}
• and t(p) =

{
tR(o, κBR(o)[i+ 1](eo)(q)) if p = (o, (eo, q)) ∈ W0;
tR(o, κBR(o)[i+ 1](eo)(o

′, q)) if p = ((o, (eo, o
′)), q) ∈ W>0.

We thus have to consider some special experiments. As a first requirement, the pseudo-
experiments we will consider are exhaustive:

Definition 3.2. A pseudo-experiment e of an in-PS R is said to be exhaustive if, for any
o ∈ B(R), we have 0 /∈ e#(o).

But this requirement is not strong enough. More specific pseudo-experiments have to
be considered.
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• In [35], it was shown that given the result of an injective k-obsessional experiment (k big
enough) of a cut-free proof-net in the fragment A ::= X|?A ` A|A ` ?A|A ⊗ A|!A, one
can rebuild the entire experiment and, so, the entire proof-net. We recall that the LPS of
a cut-free proof-net forgets the outline of the boxes but keeps the trace of the auxiliary
doors (see Figure 22, p. 38 for an example). There, “injective” means that the experiment
labels two different axioms with different atoms and “obsessional” means that different
copies of the same axiom are labeled by the same atom. Obsessionality entails that the
names of the atoms play some role and thus we cannot reduce such experiments to some
pseudo-experiments.
• In [13], it was shown that, for any two cut-free MELL proof-nets R and R′, we have
LPS(R) = LPS(R′) if, and only if, for k big enough25, there exist an injective k-experiment
on R and an injective k-experiment on R′ having the same result; as an immediate corollary
we obtained the injectivity of the set of (recursively) connected proof-nets. There, “injective”
means that not only the experiment labels two different axioms with different atoms, but it
labels also different copies of the same axiom by different atoms. Given some proof-net R,
there is exactly one injective k-experiment on R up to the names of the atoms. Injectivity
allows to reduce such experiments to some pseudo-experiments: it makes sense to define
k-pseudo-experiments and we could show in the same way that, for any two cut-free
proof-nets R and R′, the two following statements are equivalent:
– we have LPS(R) = LPS(R′);
– for any k ∈ N, for any k-pseudo-experiment e on R, for any k-pseudo-experiment e′ on
R′, we have TR[0](e) = TR′ [0](e′), where a k-pseudo-experiment is a pseudo-experiment
such that, for any o ∈ B(R), we have e#(o) = {k}.

Now, there are many different cut-free PS’s with the same LPS (see Figures 22, 23, 24, 25
and 26, p. 38 for an example).

In [13], the interest for injective experiments came from the remark that the result
of an (atomic) injective experiment on a cut-free proof-net can be easily identified with a
simple differential net of its Taylor expansion in a sum of simple differential nets [17] (it
is essentially the content of our Lemma 4.19). Thus any proof using injective experiments
can be straightforwardly expressed in terms of simple differential nets and conversely. Since
this identification is trivial, besides the idea of considering injective experiments instead of
obsessional experiments, the use of the terminology of differential nets does not bring any
new insight26, it just superficially changes the presentation.That is why we decided in [13]
to avoid introducing explicitly differential nets. In [10], we made the opposite choice for the
following reason: The simple differential net representing the result and the proof-net are
both instances of the more general notion of “simple differential nets possibly with boxes”,
which are used to represent the partial information obtained during the algorithm execution.
Moreover, this identification allows to see the injectivity of the relational semantics as a
particular case of the invertibility of Taylor expansion.

25Interestingly, [20], following the approach of [13], showed that, if these two proof-nets are assumed to be
(recursively) connected, then we can take k = 2.

26For proof-nets with cuts, the situation is completely different: the great novelty of differential nets is
that differential nets have a cut-elimination; the simple differential nets appearing in the Taylor expansion of
a proof-net with cuts have cuts, while the semantics does not see these cuts. But the proofs of the injectivity
only consider cut-free proof-nets.
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Figure 19: Proof-net S

In the present paper, we introduce the notion of k-heterogeneous (pseudo-)experiment
(k-heterogeneous pseudo-experiments on cut-free PS’s are an abstraction of injective k-
heterogeneous experiments, where injective has the same meaning as in [13]) and the simple
differential net we will consider to rebuild entirely the PS is the simple differential net
obtained by expanding the boxes according to any k-heterogeneous pseudo-experiment (for
k big enough): We show that, for any cut-free PS R, given the result α of a k-heterogeneous
experiment on R for k big enough, if α ∈ JR′K, where R′ is any cut-free PS, then R′ is
the same PS as R. The constraints on k are given by the result of a 1-experiment, so
we show that two (well-chosen) points are enough to determine a PS. The expression “k-
heterogeneous” means that, for any two different occurrences of boxes, the experiment
never takes the same number of copies: it takes kj1 copies and kj2 copies with j1 6= j2 (a
contrario, in [35] and [13], the experiments always take the same number of copies). As
shown by the proof-net S of Figure 19, it is impossible to rebuild the experiment from
its result, since there exist five different 4-heterogeneous experiments e1, e2, e3, e4 and e5
on S such that, for any i ∈ {1, 2, 3, 4, 5}, we have ei(p) = (∗, ∗), ei(o1) = [∗, ∗, ∗, ∗] and
ei(p

′) = [[∗, . . . , ∗︸ ︷︷ ︸
42

], . . . , [∗, . . . , ∗︸ ︷︷ ︸
46

]]: The experiment ei takes 4 copies of the box o1 and 4i+1

copies of the box o2.
Actually, more generally, we show that, for any PS R, given the simple differential net

TR[0](e) that belongs to the support of the Taylor expansion and that has been obtained by
expanding the boxes according to any (atomic) injective k-heterogeneous pseudo-experiment
e on R for k big enough, if TR[0](e) belongs to the support of the Taylor expansion of any PS
R′, then R′ is the same PS as R. Notice that in presence of cuts, the k-heterogeneous pseudo-
experiment we consider is not necessarily induced (see Definition 4.3) by an experiment.27

Definition 3.3. Let k > 0. A pseudo-experiment e on an in-PS R is said to be k-
heterogeneous if

• for any o ∈ B(R), for any m ∈ e#(o), there exists j > 0 such that m = kj ;
• for any o ∈ B0(R), for any o′ ∈ B(BR(o)), we have (∀e1, e2 ∈ e(o)) (e1

#(o′) ∩ e2#(o′) 6=
∅ ⇒ e1 = e2);
• and, for any o1, o2 ∈ B(R), we have (e#(o1) ∩ e#(o2) 6= ∅ ⇒ o1 = o2).

27In the case there is no such experiment, the simple differential net TR[0](e) reduces to 0.
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Example 3.4. The pseudo-experiment e of Example 2.2 is a 10-heterogeneous pseudo-
experiment.

k-heterogeneous experiments are characterized by (the arities of the co-contractions of)
their corresponding terms of the Taylor expansion:

Lemma 3.5. For any in-PS R, we have
⋃
o∈B(R) e

#(o) = aTR[0](e)[P !
0(TR[0](e))].

Proof. By Proposition 2.12, we have
⋃
o∈B0(R) e

#(o) = aTR[0](e)[B0(R)], hence⋃
o∈B(R)

e#(o) =
⋃

o∈B0(R)

e#(o) ∪
⋃

o∈B0(R)

⋃
o′∈B(BR(o))

e#(o, o′)

= aTR[0](e)[B0(R)] ∪
⋃

o∈B0(R)

⋃
o′∈B(BR(o))

⋃
eo∈e(o)

eo
#(o′)

= aTR[0](e)[B0(R)] ∪
⋃

o∈B0(R)

⋃
eo∈e(o)

aTBR(o)[0](eo)[P
!
0(TBR(o)[0](eo))]

(by induction hypothesis)

= aTR[0](e)[B0(R)] ∪
⋃

o∈B0(R)

⋃
eo∈e(o)

aTR[0](e)[P !
0(R〈o, 0, eo〉)]

= aTR[0](e)[P !
0(TR[0](e))]

Corollary 3.6. Let R be an in-PS. Let e be a pseudo-experiment on R. Let k > 1. Then e
is a k-heterogeneous pseudo-experiment on R if, and only if, the two following properties
hold together:

(1) aTR[0](e)[P !
0(TR[0](e))] ⊆ {kj ; j > 0}

(2) (∀p1, p2 ∈ P !
0(TR[0](e)))(aTR[0](e)(p1) = aTR[0](e)(p2)⇒ p1 = p2)

Proof. For any pseudo-experiment e on R, applying Lemma 3.5, we obtain:

• For any k > 1, one has (∀o ∈ B(R))(∀m ∈ e#(o))(∃j > 0)m = kj if, and only if, one has
aTR[0](e)[P !

0(TR[0](e))] ⊆ {kj ; j > 0}.
• One has (∀o ∈ B0(R))(∀o′ ∈ B(BR(o)))(∀e1, e2 ∈ e(o))(e1

#(o′) ∩ e2#(o′) 6= ∅ ⇒ e1 =
e2) if, and only if, one has (∀o ∈ B0(R))(∀e1, e2 ∈ e(o)) (aTR[0](e)[P !

0(R〈o, 0, e1〉)] ∩
aTR[0](e)[P !

0(R〈o, 0, e2〉)] 6= ∅ ⇒ e1 = e2).

• One has (∀o1, o2 ∈ B(R))(e#(o1) ∩ e#(o2) 6= ∅ ⇒ o1 = o2) if, and only if, one has
(∀p1, p2 ∈ P !

0(TR[0](e)))(aTR[0](e)(p1) = aTR[0](e)(p2)⇒ κR[0](e)(p1) = κR[0](e)(p2)).

We prove, by induction on depth(R), that, for any k > 1, the two following properties
together:

• (∀o ∈ B0(R))(∀e1, e2 ∈ e(o)) (aTR[0](e)[P !
0(R〈o, 0, e1〉)] ∩ aTR[0](e)[P !

0(R〈o, 0, e2〉)] 6= ∅ ⇒
e1 = e2)
• and (∀p1, p2 ∈ P !

0(TR[0](e)))(aTR[0](e)(p1) = aTR[0](e)(p2)⇒ κR[0](e)(p1) = κR[0](e)(p2))

imply (∀p1, p2 ∈ P !
0(TR[0](e)))(aTR[0](e)(p1) = aTR[0](e)(p2) ⇒ p1 = p2); the converse is

trivial.

We will rebuild TR[i+ 1](e) from TR[i](e) for any k-heterogeneous pseudo-experiment
e on R (with k ≥ β(R), where β(R) is an integer28 provided by any 1-pseudo-experiment

28The integer β(R) is defined in Definition 3.33.
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on R). For this purpose we will introduce our notion of critical component (elements
of SkTR[i](e)(Kk,j(TR[i](e))) with j ∈ Ni(e))29, which are special connected components of

TR[i](e), connected in a weak sense, and we will consider equivalence classes of critical
components of TR[i](e) for the relation ≡ that forgets names of ports apart from those of
shallow conclusions.30 We can summarize the three main ideas of our proof as follows:

(1) The simple differential net that corresponds to a k-heterogeneous pseudo-experiments is
informative enough to rebuild the entire PS if k is big enough.

(2) We introduce the notion of partial Taylor expansion TR[i] of a PS R (with i ∈ N)
and reduce the problem of the rebuilding of a PS R to the problem of the rebuilding
of the simple differential net possibly with boxes TR[i + 1](e) that corresponds to a k-
heterogeneous pseudo-experiment e in the partial Taylor expansion TR[i] from the simple
differential net possibly with boxes TR[i](e) that corresponds to the same k-heterogeneous
pseudo-experiment e in the partial Taylor expansion TR[i].

(3) We consider cardinalities of equivalence classes SkTR[i](e)(Kk,j(TR[i](e)))/ ≡ of critical

components of TR[i](e) for the relation≡ in order to deduce the cardinalities of equivalence
classes SkTR[i+1](e)(Kk,j(TR[i+ 1](e)))/ ≡ of critical components of TR[i+ 1](e) and the

contents of the new boxes of depth i of TR[i+ 1](e).

3.1. The borders of the boxes. In this subsection we first show how to recover the
set

⋃
o∈B≥i(R){logk(m);m ∈ e#(o)} and, therefore, the set P !

0(TR[i](e)) \ B0(TR[i](e)) of

co-contractions of TR[i](e) (Lemma 3.11). Next, we show how to determine, from TR[i](e),
the set B=i0 (TR[i+ 1](e)) of “new” boxes and, for any such “new” box o ∈ B=i0 (TR[i+ 1](e)),
its border i.e. the set tTR[i+1](e)[{o}×P f

TR[i+1](e)(o)] of exponential ports that are immediately

below (Proposition 3.19), which, as shown by Example 3.20, p. 37, is an information that is
not provided by the LPS but is still too weak to rebuild the PS (the borders of the boxes
do not allow to recover their outlines). In particular, we have B=i0 (TR[i+ 1](e)) =!e,i[Ni(e)],
where the set Ni(e) ⊆ N is defined from the set M0(e) of the numbers of copies of boxes
taken by the pseudo–experiment e:

Definition 3.7. Let R be a differential in-PS. Let k > 1. Let e be a k-heterogeneous
pseudo-experiment on R. For any i ∈ N, we define, by induction on i, Mi(e) ⊆ N \ {0}
and (mi,j(e))j∈N ∈ {0, . . . , k − 1}N as follows. We set M0(e) =

⋃
o∈B(R){j ∈ N; kj ∈ e#(o)}

and we write Card (Mi(e)) in base k: Card (Mi(e)) =
∑

j∈Nmi,j(e) · kj ; we set Mi+1(e) =

{j > 0;mi,j(e) 6= 0}.
For any i ∈ N, we set Ni(e) =Mi(e) \Mi+1(e).

Notice that all the sets Mi(e) and Ni(e) can be computed from TR[0](e), since, by
Lemma 3.5, we have M0(e) = logk[{aTR[0](e)(p); p ∈ P !

0(TR[0](e))}].

Example 3.8. If e is a 10-heterogeneous pseudo-experiment as in Example 3.4, then
M0(e) = {1, . . . , 224}. We have Card (M0(e)) = 4 + 2 · 101 + 2 · 102, hence M1(e) = {1, 2}
and N0(e) = {3, . . . , 224}. We have Card (M1(e)) = 2, henceM2(e) = ∅ and N1(e) = {1, 2}.

29The set Ni(e) is a set of integers that will be defined in Definition 3.7, the set Kk,j(TR[i](e)) is a set
of exponential ports of TR[i](e) at depth 0 that will be defined in Definition 3.13 and the sets Sk

S(Q) of
components T of S that are connected via other ports than Q, whose conclusions belong to Q and with
co-size(T ) < k will be defined in Definition 3.25.

30This relation has been defined in Definition 1.11.
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Lemma 3.9. Let k > 1. Let R be an in-PS. If e is a k-heterogeneous pseudo-experiment on
R, then, for any i ∈ N, there exists a unique bijection

!e,i : logk[
⋃
e#[B≥i(R)]] ' P !

0(TR[i](e)) \ B0(TR[i](e))

such that, for any j ∈ dom(!e,i), the following properties hold:

(1) kj ∈ (e# ◦ κR[i](e) ◦ !e,i)(j)
(2) and (aTR[i](e)◦!e,i)(j) = kj.

Proof. Notice first that, for any o ∈ B≥i0 (R), we have aTR[i](e)(o) = Card (e(o)), hence

the function that associates with every j ∈
⋃
o∈B≥i

0 (R)
{logk(m);m ∈ e#(o)} the unique

oj ∈ B≥i0 (R) such that e#(oj) = {kj} is a bijection⋃
o∈B≥i

0 (R)

{logk(m);m ∈ e#(o)} ' P !
0(R) \ B0(TR[i](e))

such that aTR[i](e)(oj) =
∑
e#(oj) = kj .

Now, we prove the lemma by induction on depth(R). We set

!e,i(j) =

{
oj if j ∈

⋃
o∈B≥i

0 (R)
{logk(m);m ∈ e#(o)};

(o, (eo, !eo,i(j))) if o ∈ B≥i0 (R) and kj ∈ (eo
# ◦ κeo,i ◦ !eo,i)(j).

For checking Property 2, notice that, for any o ∈ B≥i0 (R), for any eo ∈ e(o), for any
p ∈ P0(TBR(o)[i](eo)), we have aTR[i](e)(o, (eo, p)) = aTBR(o)[i](eo)(p).

3.1.1. Identifying the co-contractions that correspond to the new boxes. This part is devoted
to prove Lemma 3.11, which shows that, for any k-heterogeneous pseudo-experiment e on R,
for any i ∈ N, the function !e,i is actually a bijection Mi(e) → P !

0(TR[i](e)) \ B0(TR[i](e))
such that, for any j ∈Mi(e), we have (aTR[i](e) ◦ !e,i)(j) = kj .

Lemma 3.10. Let k > 1. For any i ∈ N, for any in-PS R such that Card (B(R)) < k, for
any k-heterogeneous pseudo-experiment e on R, the following properties hold:

(1) P1(R, e, i): (∀o, o′ ∈ B0(R))(∀eo ∈ e(o))(∀j ∈Mi(eo))k
j /∈ e#(o′)

(2) P2(R, e, i): (∀o, o′ ∈ B0(R))(∀eo ∈ e(o))(∀eo′ ∈ e(o′))(Mi(eo) ∩Mi(eo′) 6= ∅ ⇒ (o, eo) =
(o′, eo′))

(3) P3(R, e, i): (depth(R) = i⇒Mi(e) = ∅)
(4) P4(R, e, i): mi,0(e) = Card

(
B≥i0 (R)

)
(5) P5(R, e, i): Mi(e) ⊆Mi−1(e)

(6) P6(R, e, i): Mi(e) = logk[
⋃
e#[B≥i0 (R)]] ∪

⋃
o∈B≥i+1

0 (R)

⋃
eo∈e(o)Mi(eo)

Proof. By complete induction on depth(R) + i. First, if i = 0 = depth(R), then M−1 =
∅ =M0, hence P1(R, e, i), P2(R, e, i), P3(R, e, i), P4(R, e, i), P5(R, e, i) and P6(R, e, i) hold
trivially. Now, let i ∈ N. Notice that if P6(R, e, i) holds, then P3(R, e, i) holds; moreover, if,
in addition, P1(R, e, i) and P2(R, e, i) hold, then

Card (Mi(e))

= Card
(
B≥i0 (R)

)
+

∑
o∈B≥i+1

0 (R)

∑
eo∈e(o)

Card (Mi(eo))



32 D. DE CARVALHO

= Card
(
B≥i0 (R)

)
+

∑
o∈B≥i+1

0 (R)

∑
eo∈e(o)

∑
j∈Mi+1(eo)∪{0}

mi,j(eo) · kj

= Card
(
B≥i0 (R)

)
+

∑
o∈B≥i+1

0 (R)

Card
(
B≥i0 (BR(o))

)
· Card (e(o)) +

∑
eo∈e(o)

∑
j∈Mi+1(eo)

mi,j(eo) · kj


(by P4(BR(o), eo, i) for each o ∈ B≥i+1
0 (R) and each eo ∈ e(o))

We thus have P4(R, e, i). Moreover, if i > 0, then by applying P6(R, e, i − 1), P6(R, e, i)

and P5(BR(o), eo, i) for each o ∈ B≥i+1
0 (R) and each eo ∈ o, and by noticing the inclusion

logk[
⋃
e#[B≥i0 (R)]] ⊆ logk[

⋃
e#[B≥i−10 (R)]], we obtain P5(R, e, i).

• Let us assume that i = 0. For any in-PS R, for any k-heterogeneous pseudo-experiment
e on R, since

⋃
e#[B(R)] ⊆ {kj ; j > 0}, we have Card (M−1(e)) =

∑⋃
e#[B(R)] =∑

j∈logk[
⋃
e#[B(R)]] k

j , hence M0(e) = logk[
⋃
e#[B(R)]].

Let R be an in-PS such that Card (B(R)) < k and let e be a k-heterogeneous experiment
on R.

Let o, o′ ∈ B0(R) and let eo ∈ e(o). Let j ∈M0(eo). There exists o′′ ∈ B(BR(o)) such
that kj ∈ eo#(o′′). Assume that kj ∈ e#(o′). We have e#((o, o′′)) ∩ e#(o′) 6= ∅; but, by
the definition of k-heterogeneous experiment (Definition 3.3), this entails that o′ = (o, o′′);
we thus obtain a contradiction with the following requirement of the definition of in-PS’s
(Definition 1.7): for any (p1, p2) ∈ P0(R), we have p1 /∈ B0(R). We showed that P1(R, e, 0)
holds.

Let o, o′ ∈ B0(R). Let eo ∈ e(o) and eo′ ∈ e(o′) such that M0(eo) ∩M0(eo′) 6= ∅. Let
j ∈M0(eo)∩M0(eo′). There exist o1 ∈ B(BR(o)) such that kj ∈ eo#(o1) = e#(o, o1) and
o2 ∈ B(BR(o′)) such that kj ∈ eo′#(o2) = e#(o′, o2). By the definition of k-heterogeneous
experiment, we have (o, o1) = (o′, o2). We have eo

#(o1)∩ eo′#(o1) 6= ∅, hence, again by the
definition of k-heterogeneous experiment, we obtain eo = eo′ . We showed that P2(R, e, 0)
holds.

We have

M0(e) = logk[
⋃
e#[B(R)]]

= logk[
⋃
e#[B0(R)]] ∪

⋃
o∈B≥1

0 (R)

logk[
⋃
e#[{o} × B0(BR(o))]]

= logk[
⋃
e#[B0(R)]] ∪

⋃
o∈B≥1

0 (R)

⋃
eo∈e(o)

logk[
⋃
eo

#[B0(BR(o))]]

= logk[
⋃
e#[B0(R)]] ∪

⋃
o∈B≥1

0 (R)

⋃
eo∈e(o)

M0(eo)

hence P6(R, e, 0) holds. We already know that it follows that P4(R, e, 0) holds.
Let j ∈M0(e): We have kj ∈

⋃
e#[B(R)], hence kj ≤

∑⋃
e#[B(R)]. Since j < kj , we

have j <
∑⋃

e#[B(R)]; so j ∈M−1(e). We thus proved P5(R, e, 0).
• Let us assume that i > 0. Let R be an in-PS such that Card (B(R)) < k and let e be a
k-heterogeneous experiment on R. By P1(R, e, i−1) and P5(R, e, i−1), we have P1(R, e, i).
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By P2(R, e, i− 1) and P5(R, e, i− 1), we have P2(R, e, i). We have

Card (Mi−1(e))

= Card
(
B≥i−10 (R)

)
+

∑
o∈B≥i

0 (R)

∑
eo∈e(o)

Card (Mi−1(eo))

(by P6(R, e, i− 1), P1(R, e, i− 1) and P2(R, e, i− 1))

= Card
(
B≥i−10 (R)

)
+

∑
o∈B≥i

0 (R)

∑
eo∈e(o)

mi−1,0(eo) +
∑

j∈Mi(eo)

mi−1,j(eo) · kj


= Card
(
B≥i−10 (R)

)
+

∑
o∈B≥i

0 (R)

∑
eo∈e(o)

Card
(
B≥i−10 (BR(o))

)
+

∑
j∈Mi(eo)

mi−1,j(eo) · kj


(by P4(BR(o), eo, i− 1) for each o ∈ B≥i0 (R) and each eo ∈ e(o))

= Card
(
B≥i−10 (R)

)
+

∑
o∈B≥i

0 (R)

Card
(
B≥i−10 (BR(o))

)
· Card (e(o)) +

∑
eo∈e(o)

∑
j∈Mi(eo)

mi−1,j(eo) · kj


= Card
(
B≥i−10 (R)

)
+

∑
o∈B≥i

0 (R)

Card
(
B≥i−10 (BR(o))

)
·
∑

e#(o)

+
∑

o∈B≥i+1
0 (R)

∑
eo∈e(o)

∑
j∈Mi(eo)

mi−1,j(eo) · kj

(by P3(BR(o), eo, i) for each o ∈ B=i0 (R) and each eo ∈ e(o))
By P1(R, e, i) and P2(R, e, i), we have {j > 0;mi−1,j(e) 6= 0} =

⋃
o∈B≥i

0 (R)
{j ∈ N; kj =∑

e#(o)} ∪
⋃
o∈B≥i+1

0 (R)

⋃
eo∈e(o)Mi(eo), hence P6(R, e, i) holds.

Lemma 3.11. Let R be an in-PS. Let k > Card (B(R)). For any k-heterogeneous pseudo-
experiment e on R, for any i ∈ N, we have Mi(e) = logk[

⋃
e#[B≥i(R)]], hence Ni(e) =

logk[
⋃
e#[B=i(R)]] and (κR[i](e) ◦ !e,i)[Ni(e)] = B=i(R).

Proof. By induction on depth(R). We have

Mi(e) = logk[
⋃
e#[B≥i0 (R)]] ∪

⋃
o∈B≥i+1

0 (R)

⋃
eo∈e(o)

Mi(eo)

(by Lemma 3.10)

= logk[
⋃
e#[B≥i0 (R)]] ∪

⋃
o∈B≥i+1

0 (R)

⋃
eo∈e(o)

logk[
⋃
eo

#[B≥i(BR(o))]]

(by the induction hypothesis)

= logk[
⋃
e#[B≥i0 (R)] ∪

⋃
o∈B≥i+1

0 (R)

⋃
eo∈e(o)

⋃
eo

#[B≥i(BR(o))]]
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= logk[
⋃
e#[B≥i0 (R)] ∪

⋃
o∈B≥i+1

0 (R)

⋃
eo∈e(o)

⋃
e#[{o} × B≥i(BR(o))]]

= logk[
⋃
e#[B≥i0 (R) ∪

⋃
o∈B≥i+1

0 (R)

⋃
eo∈e(o)

({o} × B≥i(BR(o)))]]

= logk[
⋃
e#[B≥i(R)]]

Hence

Ni(e) = Mi(e) \Mi+1(e)

= logk[
⋃
e#[B≥i(R)]] \ logk[

⋃
e#[B≥i+1(R)]]

= logk[
⋃
e#[B=i(R)]]

Moreover, since (∀j ∈ Ni(e))kj ∈ (e# ◦ κR[i](e) ◦ !e,i)(j), we obtain (κR[i](e) ◦ !e,i)[Ni(e)] =
B=i(R).
Example 3.12. (Continuation of Example 3.8) We thus have M1(e) = {1, 2} and
P !
0(TR[i](e)) \ B0(TR[1](e)) = {o2, o4} with aTR[1](e)(o2) = 101 and aTR[1](e)(o4) = 102 (see

Figures 16, 17 and 18 - we recall that TR[1](e) = S11 ⊕ S12 ⊕ S13).

3.1.2. Determining the contractions immediately below the new boxes. The set Kk,Ni(e)(S)
of “critical ports” is a set of exponential ports that will play a crucial role in our algorithm.

Definition 3.13. Let S be a differential in-PS. Let k > 1. For any p ∈ P0(S), we define the
sequence (mk,j(S)(p))j∈N ∈ {0, . . . , k − 1}N as follows: aS(p) =

∑
j∈Nmk,j(S)(p) · kj . For

any j ∈ N, we set Kk,j(S) = {p ∈ P0(S);mk,j(S)(p) 6= 0} ∩ Pe(G(S)) and, for any J ⊆ N,
we set Kk,J(S) =

⋃
j∈J Kk,j(S).

In particular, for any j ∈Mi(e), we have !e,i(j) ∈ Kk,j(TR[i](e)).

Example 3.14. We have K10,1(TR[1](e)) = {p1, p4, p5, p6, p7, o2} and K10,2(TR[1](e)) = {p4,
p5, p6, p7, o4}, where TR[1](e) = S11 ⊕ S12 ⊕ S13 with S11, S12 and S13 depicted in
Figures 16, 17 and 18 respectively. So we have K10,{1,2}(TR[1](e)) = {p1, p4, p5, p6, p7, o2, o4}.

Critical ports are defined by their arities. Proposition 3.19 shows that they are expo-
nential ports that are immediately below the “new” boxes.

In particular, this proposition highlights one more essential difference between the
k-experiments of [34, 35, 13, 20] and our k-heterogeneous experiments. There, such a
k-experiment labelling some contraction p with a multiset of cardinality

∑
jmj · kj (where

0 ≤ mj < k for any j) gives the information that immediately above the contraction p
there are exactly mj0 series of exactly j0 auxiliary doors. Here, whenever a k-heterogeneous
experiment labels some contraction p with a multiset of cardinality

∑
jmj · kj (where

0 ≤ mj < k for any j), the integer j0 is not related to the number of auxiliary doors in
series anymore; it corresponds, in the case mj0 > 0, with the existence of a box that has an
occurrence taking kj0 copies of its content, the box having, among all its auxiliary doors,
exactly mj0 auxiliary doors that are, each of them, the first one (i.e. the deepest one) of a
series of auxiliary doors immediately above the contraction p.

By the way, the constraints on the experiments are completely different: The constraints
in [34, 35, 13, 20] give a lower bound on the arities of the co-contractions, while the constraints
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Figure 21: What our decomposition
would provide

here are on the basis k. For instance, in the case of Figure 20, the co-size is < 100 and
there are only 2 boxes, but still it is not enough to consider a 10-heterogeneous experiments
with powers ≥ 2: by taking an experiment e with e#(o1) = 103 and e#(o2) = 102, we get a
contraction of arity 9800 = 9 · 103 + 8 · 102 in the corresponding term of the Taylor expansion,
which, following our decomposition, would correspond to the PS of Figure 21.

Example 3.15. (Continuation of Example 3.12) We thus have !f,1[N1(f)] = {o2, o4}; and
indeed o2 and o4 are the boxes of depth 1 at depth 0 of TR[2](e) ≡ R (see Figure 11). Moreover
we have K10,1(TR[1](e)) = {p1, p4, p5, p6, p7, o2} and K10,2(TR[1](e)) = {p4, p5, p6, p7, o4};
and indeed, in Figure 11, we have tTR[2](e)[{o2} × P f

TR[2](e)(o2)] = {p1, p4, p5, p6, p7, o2} and

tTR[2](e)[{o4} × P f
TR[2](e)(o4)] = {p4, p5, p6, p7, o4}.

Definition 3.16. Let R be an in-PS. For any p ∈ P0(R), for any i ∈ N, we define a subset

B≥iR (p) of B≥i(R): we set B≥iR (p) = {b≥iR (q); (q ∈ P>i(R) ∧ tR(q) = p)}.

A crucial lemma is the following one:

Lemma 3.17. Let R be an in-PS. Let p ∈ P0(R). Let k > co-size(R). Let e be a k-
heterogeneous pseudo-experiment on R. Let i ∈ N. Let p ∈ P0(R). Then, for any j > 0,

we have p ∈ Kk,j(TR[i](e)) if, and only if, there exists o ∈ B≥iR (p) such that kj ∈ e#(o).
Moreover we have aTR[i](e)(p) mod k = aR≤i(p).

Proof. By Proposition 2.12, we have

aTR[i](e)(p) = aR≤i(p) +
∑

p′∈P>i(R)
tR(p′)=p

∑
e#(b≥iR (p′))

Moreover we have

• aR≤i(p) < k;
• Card ({p′ ∈ P>i(R); tR(p′) = p}) < k;

• and (∀p′ ∈ P>i(R))(∀m ∈ e#(b≥iR (p′)))(∃j > 0)kj ∈ e#(b≤iR (p′)).

Hence

• aTR[i](e)(p) mod k = aR≤i(p)

• and p ∈ Kk,j(TR[i](e)) if, and only if, (∃p′ ∈ P>i(R))(tR(p′) = p ∧ kj ∈ e#(b≥iR (p′))), i.e.

(∃o ∈ B≥iR (p))kj ∈ e#(o).

Fact 3.18. Let R be an in-PS. Let e be a pseudo-experiment on R. Let i ∈ N. Let
o ∈ B=i0 (TR[i+ 1](e)). Let q ∈ P>i(R). Then we have b≥iR (q) = κR[i+ 1](e)(o) if, and only if,
there exists q′ ∈ P(BTR[i+1](e)(o)) such that q = κR[i+ 1](e)(o, q′).
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Proof. By induction on depth(R). We assume that b≥iR (q) = κR[i+1](e)(o) and we distinguish
between two cases:

• o ∈ B=i0 (R): we have κR[i + 1](e)(o) = o, hence there exists q′ ∈ P≤i(BR(o)) such that
q = (o, q′); but BR(o) = BTR[i+1](e)(o);

• o = (o1, (e1, o
′)) for some o1 ∈ B≥i0 (R), e1 ∈ e(o1) and o′ ∈ B=i0 (TBR(o1)[e1](i)): we

have κR[i + 1](e)(o) = (o1, κBR(o1)[i + 1](e1)(o
′)), hence there exists q0 ∈ P>i(BR(o1))

such that q = (o1, q0) and b≥iBR(o1)
(q0) = κBR(o1)[i + 1](e1)(o

′); by induction hypothesis,

there exists q′ ∈ P(BTBR(o1)
[i+1](e1)(o

′)) such that q0 = κBR(o1)[i + 1](e1)(o1, q
′); but

BTBR(o1)
[i+1](e1)(o

′) = BTR[i+1](e)(o).

Conversely, we assume that there exists q′ ∈ P(BTR[i+1](e)(o)) such that q = κR[i+1](e)(o, q′)
and we distinguish between two cases:

• o ∈ B=i0 (R): we have b≥iR (κR[i+ 1](e)(o, q′)) = b≥iR (o, q′) = o = κR[i+ 1](e)(o);

• o = (o1, (e1, o
′)) for some o1 ∈ B≥i0 (R), e1 ∈ e(o1) and o′ ∈ B=i0 (TBR(o1)[e1](i)): we

have b≥iR (κR[i+ 1](e)(o, q′)) = b≥iR (o1, (κBR(o1)[i+ 1](e1)(o
′, q′))) = (o1, b

≥i
BR(o1)

(κBR(o1)[i+

1](e1)(o
′, q′))); since BTR[i+1](e)(o) = BTBR(o1)

[i+1](e1)(o
′), we can apply the induction

hypothesis and we thus obtain b≥iR (κR[i + 1](e)(o, q′)) = (o1, κBR(o1)[i + 1](e1)(o
′)) =

κR[i+ 1](e)(o).

Proposition 3.19. Let R be an in-PS. Let k > Card (B(R)) , co-size(R). Let e be a k-
heterogeneous pseudo-experiment on R and let i ∈ N. Then we have B=i0 (TR[i + 1](e)) =
!e,i[Ni,e]. Moreover, the set Kk,N\(Mi(e)∪{0})(TR[i](e)) is empty. Furthermore, for any

j ∈ Ni(e), we have Kk,j(TR[i](e)) = tTR[i+1](e)[{!e,i(j)} × P f
TR[i+1](e)(!e,i(j))] and, if !e,i(j) /∈

B=i0 (R), then there exist o ∈ B≥i+1
0 (R) and eo ∈ e(o) such that j ∈ Ni(eo) and Kk,j(TR[i](e))\

P0(R) = {o} × ({eo} × Kk,j(TBR(o)[i](eo))). In particular, we have Kk,Ni(e)(TR[i](e)) ⊆
Pe
0(TR[i+ 1](e)).

Proof. It is trivial to check, by induction on depth(R), that we have

(∀o ∈ B0(TR[i](e)))(∀p ∈ P(BTR[i](e)(o)))κR[i](e)(o, p) /∈ B=i(R) (∗)

Now, we prove, by induction on depth(R), that B=i0 (TR[i+ 1](e)) =!e,i[Ni(e)]:
• Let j ∈ Ni(e). By Lemma 3.11, there exists o ∈ B=i(R) such that j ∈ logk[e

#(o)], hence
kj ∈ e#(o). Since kj ∈ e#((κR[i](e) ◦ !e,i)(j)), we have (κR[i](e) ◦ !e,i)(j) = o ∈ B=i(R).
If o ∈ B=i0 (R), then !e,i(j) = o. Otherwise, there exist o1 ∈ B0(R) and o′ ∈ B=i(BR(o1))
such that o = (o1, o

′): By (∗), there exist e1 ∈ e(o1) and o′′ ∈ P0(TBR(o1)[i](e1)) such
that κBR(o1)[i](e1)(o

′′) = o′ and !e,i(j) = (o1, (e1, o
′′)), hence o′′ = !e1,i(j). By induction

hypothesis, we have !e1,i(j) ∈ B=i0 (TBR(o1)[e1](i+1)), hence (o1, (e1, o
′′)) ∈ B=i0 (TR[e](i+1)).

• Conversely, let o ∈ B=i0 (TR[i + 1](e)). Let j ∈ logk[e
#(o)]. By Lemma 3.11, we have

j ∈ Ni(e). We have kj ∈ e#(o) and kj ∈ e#((κR[i](e)◦!e,i)(j)), hence (κR[i](e)◦!e,i)(j) = o.

If o ∈ B=i0 (R), then !e,i(j) = o. Otherwise, there exist o1 ∈ B≥i+1
0 (R), e1 ∈ e(o1) and

o′ ∈ B=i0 (BTBR(o1)
[i+1](e1)) such that o = (o1, (e1, o

′)). By induction hypothesis, there exists

j ∈ Ni(e1) such that !e1,i(j) = o′: we have !e,i(j) = (o1, (e1, o
′)).

By Lemma 3.11 and Lemma 3.17, we have Kk,N\(Mi(e)∪{0})(TR[i](e)) ∩ P0(R) = ∅.
Moreover, for any o ∈ B≥i0 (R), for any eo ∈ e(o), again by Lemma 3.11, we have Mi(eo) ⊆
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Mi(e), hence

Kk,N\(Mi(e)∪{0})(TR[i](e)) ∩ ({o} × ({eo} × P0(TBR(o)[i](eo))))

= {o} × ({eo} × Kk,N\(Mi(e)∪{0})(TBR(o)[i](eo)))

⊆ {o} × ({eo} × Kk,N\(Mi(eo)∪{0})(TBR(o)[i](eo)))

= {o} × ({eo} × ∅)
= ∅ (by induction hypothesis)

We showed Kk,N\(Mi(e)∪{0})(TR[i](e)) = ∅ (∗∗).
Now, let j ∈ Ni(e). We distinguish between two cases:

• !e,i(j) ∈ B0(R): By Lemma 3.17, we have Kk,j(TR[i](e)) ∩ P0(R) = {p ∈ P0(R); !e,i(j) ∈
B≥iR (p)} = tR[{!e,i(j)}×P f

R(!e,i(j))] = tTR[i+1](e)[{!e,i(j)}×P f
TR[i+1](e)(!e,i(j))]. Moreover, by

(∗∗), we have Kk,j(TR[i](e)) ⊆ P0(R). We thus have Kk,j(TR[i](e)) = tTR[i+1](e)[{!e,i(j)} ×
P f
TR[i+1](e)(!e,i(j))].

• !e,i(j) = (o, (eo, !eo,i(j))) for some o ∈ B≥i0 (R) and eo ∈ e(o): By induction hypothesis, we

have Kk,j(TBR(o)[i](eo)) = tTBR(o)[i+1](eo)[{!eo,i(j)} × P f
TBR(o)[i+1](eo)

(!eo,i(j))]. By (∗∗), we

have Kk,j(TR[i](e)) ⊆ P0(R) ∪ P0(R〈o, i, eo〉), hence

Kk,j(TR[i](e)) \ P0(R) = Kk,j(R〈o, i, eo〉)
= ({o} × ({eo} × Kk,j(TBR(o)[i](eo))))

= {o} × ({eo} × tTBR(o)[i+1](eo)[{!eo,i(j)} × P
f
TBR(o)[i+1](eo)

(!eo,i(j))])

= tTR[i+1](e)[{!e,i(j)} × P f
TR[i+1](e)(!e,i(j))] \ P0(R)

We have

Kk,j(TR[i](e)) ∩ P0(R) = {p ∈ P0(R); (∃o ∈ B≥iR (p))kj ∈ e#(o)}
(by Lemma 3.17)

= {p ∈ P0(R);κR[i](e)(!e,i(j)) ∈ B≥iR (p)}
(by Lemma 3.9)

= {p ∈ P0(R); (∃q ∈ P>i(R))(b≥iR (q) = κR[i](e)(!e,i(j)) ∧ tR(q) = p)}
= {p ∈ P0(R); (∃q ∈ P>i(R))(b≥iR (q) = κR[i+ 1](e)(!e,i(j)) ∧ tR(q) = p)}

(by Lemma 3.1)

= {tR(κR[i+ 1](e)(!e,i(j), q
′)); q′ ∈ P(BTR[i+1](e)(!e,i(j)))}

(by Fact 3.18)

= {tR(κR[i+ 1](e)(!e,i(j), q
′)); q′ ∈ P f(BTR[i+1](e)(!e,i(j)))}

(by Fact 2.5)

= tTR[i+1](e)[{!e,i(j)} × P f
TR[i+1](e)(!e,i(j))] ∩ P0(R)

As the following example shows, the information we obtain is already non-trivial, but
far away to be strong enough.

Example 3.20. The PS’s R1, R2, R3 and R4 of Figure 23, Figure 24, Figure 25 and
Figure 26 respectively have the same LPS, which is depicted in Figure 22. But if we know
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Figure 26: R4

that p ∈ tR[{o1} × P f
R(o1)] ∩ tR[{o2} × P f

R(o2)], then we know that R 6= R3 and R 6= R4:
The information we already obtain is an information that is not obtained from LPS(R).
Still we are not yet able to distinguish between R1 and R2. Since LPS(R1) = LPS(R2)
and depth(R1) = 1 = depth(R2), the sets of pseudo-experiments on R1 and R2 coincide.
Now, for any pseudo-experiment on these two proof-nets R1 and R2, we have aTR1

[0](e)(o1) =

aTR2
[0](e)(o1), aTR1

[0](e)(o2) = aTR2
[0](e)(o2) and aTR1

[0](e)(p) = aTR2
[0](e)(p), which shows that

the arity of exponential ports in the Taylor expansion is not sufficient to recover the PS.

Corollary 3.21. Let R be an in-PS. Let o ∈ B0(R). Let ϕ be some bijection P?
R(o) ' Q′.

Let Ro be an in-PS such that Ro = ϕ ·o R. Let k > Card (B(R)) , co-size(R). Let e be a
k-heterogeneous pseudo-experiment on R, let eo ∈ e(o), let i ∈ N and let j ∈ Ni(eo). Then
Kk,j(TBRo (o)

[i](eo)) ∩Q′ ⊆ ϕ[P?
R(o) ∩ Kk,j(TR[i](e))].

Proof. Notice first that, since the set Ni(eo) is non-empty, by Proposition 3.19, we have

o ∈ B≥i+1
0 (R). By Proposition 3.19 again, it is enough to show that

tTBRo
(o)[i+1](eo)[{!eo,i(j)} × P

f
TBRo

(o)[i+1](eo)
(!eo,i(j))] ∩Q′

⊆ ϕ[P?
R(o) ∩ tTR[i+1](e)[{!e,i(j)} × P f

TR[i+1](e)(!e,i(j))]]

Now, let p ∈ P f
TBRo

(o)[i+1](eo)
(!eo,i(j)) such that tTBRo

(o)[i+1](eo)(!eo,i(j), p) ∈ Q′. By Lemma 2.8,

we have p /∈ P f
TBRo

(o)[i+1](eo)
(!eo,i(j)) and tTBRo

(o)[i+1](eo)(!eo,i(j), p) = ϕ(tR(o, κBRo (o)
[i +
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1](eo)(!eo,i(j), p))). Moreover, since p ∈ P f(BTBR(o)[i+1](eo)(!eo,i(j))), we obtain (!eo,i(j), p) ∈
P f(TBR(o)[i + 1](eo)), hence, by Fact 2.5, κBR(o)[eo](i + 1)(!eo,i(j), p) ∈ P f(BR(o)): We

thus showed κBR(o)[i + 1](eo)(!eo,i(j), p) ∈ P f
R(o), which entails p ∈ P f

TR[i+1](e)(!e,i(j)) and

tR(o, κBRo (o)
[i+ 1](eo)(!eo,i(j), p)) = tTR[i+1](e)(!e,i(j), p).

3.2. Connected components. In order to achieve the rebuilding of the ground-structure
of TR[i+ 1](e) and to recover the content of its boxes, we introduce our notion of connected
component (Definition 3.25). This subsection is devoted to relate connected components of
TR[i](e) with connected components of TR[i+ 1](e) (Proposition 3.40 and Proposition 3.43).

The relation ¨S formalizes the notion of “connectedness” between two ports of S at
depth 0. But be aware that, here, “connected” has nothing to do with “connected” in the
sense of [13]: here, any two doors of the same box are always “connected”.

Definition 3.22. Let T be a differential in-PS. We define the binary relation ¨T on P0(T ) as
follows: for any p, p′ ∈ P0(T ), we have p ¨T p

′ iff {p, p′} ∈ A0(T )∪C0(T ) or (p ∈ W0(T ) and
p′ = tG(T )(p)) or (p′ ∈ W0(T ) and p = tG(T )(p

′)) or (∃o ∈ B0(T ))(∃q, q′ ∈ P f
T (o)){p, p′} =

{tT (o, q), tT (o, q′)}.
Let Q ⊆ Pe

0(T ) and let p, p′ ∈ P0(T ). A path in T from p to p′ without crossing Q is
a finite sequence (p0, . . . , pn) of elements of P0(T ) such that p0 = p, pn = p′ and, for any
j ∈ {0, . . . , n− 1}, we have pj ¨T pj+1 and (pj ∈ Q ⇒ j = 0).

We say that T is connected through ports not in Q if, for any p, p′ ∈ P0(T ), there exists
a path in T from p to p′ without crossing Q.

Definition 3.23. Let T and S two differential in-PS’s and let Q such that T vQ S. We
write T EQ S if the following property holds:

(∀p ∈ P0(T ) \ Q)(∀q ∈ P0(S))(p ¨S q ⇒ q ∈ P0(T ))

As we can expect, the connected components of TR[i + 1](e) that do not cross any
expanded box are exactly the connected components of TR[i](e) that do not cross any
expanded box:

Fact 3.24. Let R be an in-PS. Let e be an exhaustive pseudo-experiment on R. Let
i ∈ N. Let Q ⊆ P0(R). Let T be a differential in-PS such that T vQ R≤i. Then we have
T EQ TR[i](e) if and only if T EQ TR[i+ 1](e).

Proof. Assume T EQ TR[i](e). Let p ∈ P0(T ) \ Q and let q ∈ P0(TR[i + 1](e)) such that
p ¨TR[i+1](e) q. Let us show that there is no o ∈ B=i0 (R) such that p ∈ tR[{o} × P f

R(o)]: Let
us assume that there is such an o, let eo ∈ e(o) (such an eo exists since e is exhaustive) and let
p′ ∈ P f

R(o) such that tR(o, p′) = p; we have p ¨TR[i](e) (o, (eo, p
′)), hence (o, (eo, p

′)) ∈ P0(T ),

which contradicts T v R≤i. This entails p ¨TR[i](e) q.
Conversely, assume that T EQ TR[i+ 1](e). Let p ∈ P0(T ) \ Q and let q ∈ P0(TR[i](e))

such that p ¨TR[i](e) q. If q = (o, (eo, q
′)) for some o ∈ B=i0 (R), eo ∈ e(o) and q′ ∈ P f

R(i) such

that tR(o, q′) = q, then p ∈ tR[{o} × P f
R(o)], hence p ¨TR[i+1](e) o; then o ∈ P0(T ), which

contradicts T v R≤i. We thus have q ∈ P0(TR[i+ 1](e)), hence p ¨TR[i+1](e) q.

The sets SkS(Q) of components T of S that are connected via other ports than Q, whose
conclusions belong to Q and with co-size(T ) < k will play a crucial role in the algorithm
of the rebuilding of TR[i + 1](e) from TR[i](e), where we will take for Q a subset of the
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critical ports Kk,Ni(e)(TR[i](e)) that were considered in the previous subsection.31 The reader
already knows that, here, “connected” has nothing to do with the “connected proof-nets” of
[13]: there, the crucial tool used was rather the “bridges”, which put together two doors of
the same copy of some box only if they are connected in the LPS of the proof-net.

Definition 3.25. Let k ∈ N. Let S be a differential in-PS. Let Q ⊆ Pe
0(S). We set

SkS(Q) =

{
T EQ S;

(co-size(T ) < k and P f(G(T )) ⊆ Q and
P0(T ) \ Q 6= ∅ and T is connected through ports not in Q)

}
Remark 3.26. If T ∈ SkS(Q), then P f(G(T )) = Q∩ P0(T ).

A port at depth 0 of S that is not in Q cannot belong to two different components:

Fact 3.27. Let k ∈ N. Let S be a differential in-PS. Let Q ⊆ P0(S). Let T, T ′ ∈ SkS(Q)
such that (P0(T ) ∩ P0(T ′)) \ Q 6= ∅. Then T = T ′.

Proof. By Remark 1.22, it is enough to check that P0(T ) = P0(T ′).
Example 3.28. We have

• Card
(
S10S ({p1, p4, p5, p6, p7, o2})

)
= 241

• and Card
(
S10S ({p4, p5, p6, p7, o4})

)
= 320

with S = S11 ⊕ S12 ⊕ S13, where S11, S12 and S13 are the differential PS’s of Figures 16,
17 and 18 respectively.

The connected components we consider do not mix several copies of boxes. More
precisely:

Lemma 3.29. Let R be an in-PS. Let k > co-size(R). Let e be a k-heterogeneous pseudo-

experiment on R. Let i ∈ N. Let P ⊆ P0(TR[i](e)). Let T ∈ SkTR[i](e)(P). Let o ∈ B≥i0 (R)

and eo ∈ e(o) such that P0(T ) ∩ P0(R〈o, i, eo〉) 6= ∅. Then the following properties hold:

(1) P0(T ) ⊆ (tR[{o} × P f
R(o)] ∩ P) ∪ P0(R〈o, i, eo〉)

(2) P0(T ) ∩ tR[{o} × P f
R(o)] ⊆ P f(G(T ))

(3) W0(T ) ⊆ P0(R〈o, i, eo〉)
Proof. Notice first that the two following properties hold:

(i) For any p ∈ P f
R(o), we have aTR[i](e)(tR(o, p)) ≥ k. Indeed, for any p ∈ P f

R(o), the set
{p′ ∈ P>i(R); tR(p′) = p} is non-empty, hence this property is obtained by applying
Proposition 2.12.

(ii) For any p ∈ P0(T ) \ P, we have aT (p) = aTR[i](e)(p).

By (i) and (ii), we obtain

tR[{o} × P f
R(o)] ∩ P0(T ) ⊆ P (∗)

Let p ∈ P0(T ) \ P0(R〈o, i, eo〉). There exist q0 ∈ P0(T ) \ P and a path (q0, . . . , qn) in T
from q0 to p = qn without crossing P. We set ι0 = min{ι ∈ {1, . . . , n}; qι /∈ P0(R〈o, i, eo〉)}.
Since qι0 ¨TR[i](e) qι0+1, there exists p′ ∈ P f

R(o) such that qι0+1 = tR(o, p′), hence, by (∗),
qι0+1 ∈ P; we thus have ι0 + 1 = n and then p = qn ∈ tR[{o} × P f

R(o)] ∩ P. We showed
Property 1.

Property 2 is obtained by applying Property 1 and Remark 3.26.
Finally, Property 3 is an immediate consequence of Properties 1 and 2.

31In presence of cuts, we cannot say any more that these components are “above” Q.
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As a consequence, if T ∈ SkTR[i](e)(P) for some k-heterogeneous pseudo-experiment e on

R, then T has at most one co-contraction, which is necessarily a conclusion of T (hence an
element of P) and of arity 1.

A PS R with cuts might have some connected components without any conclusion;
copies of such components will occur in the PS TR[i](e) and we want to recover from which
boxes they come from. That is why we will consider k-heterogeneous experiments with
k > Θ(R), where Θ(R) is defined as follows:

Definition 3.30. Let R be an in-PS. We set

H(R) =
{
T E∅ R; (P0(T ) 6= ∅ ∧ T is connected through ports not in ∅)

}
We denote by HR the function P(R)→ H(R) that associates with every p ∈ P(R) the

unique T ∈ H(R) such that p ∈ P(T ).
We define, by induction on depth(R), the integer Θ(R) as follows:

Θ(R) = Card
(
{U ∈ H(R);P f(U) = ∅}

)
+

∑
o∈B0(R)

Θ(BR(o))

Notice that, if R is a cut-free in-PS, then Θ(R) = 0.

Example 3.31. If R is the PS of Figure 11, then Card (H(BR(o3))) = 4 and Θ(R) = 1.

The set H(R) is an alternative way to describe an in-PS R:

Fact 3.32. Let R be an in-PS. We have R =
⊕
H(R).

Definition 3.33. Let R be an in-PS. We set

β(R) = max{Card (B(R)) , co-size(R),Θ(R), 1}+ 1

Lemma 3.34. Let R and Ro be two in-PS’s. Let o ∈ B0(R). Let ϕ be a bijection P?
R(o) ' Q′

such that Ro = ϕ ·o R. Let k > co-size(R). There exists a bijection θ : SkBRo (o)
(Q′) '

H(BR(o)) \ {HBR(o)(!R(o))} such that, for any T ∈ SkBRo (o)
(Q′), we have θ(T ) = T .

Proof. Notice first (∀p, q ∈ P0(BR(o)))(p ¨BR(o) q ⇒ p ¨BRo (o)
q)(∗).

We check that, for any T ∈ SkBRo (o)
(Q′), we have T ∈ H(BR(o)) \ {HBR(o)(!R(o))}; let

T ∈ SkBRo (o)
(Q′):

• By Remark 1.21, P0(T ) = P0(T )\Q′ ⊆ (P0(BRo(o))\{!R(o)})\Q′ = P0(BR(o))\{!R(o)};
•

W0(T ) = {w ∈ W0(T ); tG(T )(w) /∈ Q′}
= {w ∈ (W0(BRo(o)) ∩ P0(T )) \ Q′; tG(BRo (o))

(w) ∈ P0(T ) \ Q′}
= {w ∈ (W0(BR(o)) ∩ P0(T ); tG(BR(o))(w) ∈ P0(T )}

• by (∗), we have T E∅ BR(o)
• and (∀p ∈ P0(T ) \ Q′)(∀q ∈ P0(T ) \ Q′)(p ¨T q ⇒ p ¨T q), hence T is connected through

ports not in ∅.
Now, for any U ∈ H(BR(o))\{HBR(o)(!R(o))}, we set TU = (U⊕

⊕
p∈P f

R(o)∩P(U) ?ϕ(tR(o,p)))@t,

where t is the function P f
R(o) ∩ P(U)→ ϕ[tR[{o} × (P f

R(o) ∩ P(U))]] that associates with

every p ∈ P f
R(o)∩P(U) the port ϕ(tR(o, p)) of BRo(o), and we check that TU ∈ SkBRo (o)

(Q′):
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• P0(TU ) ⊆ P0(U) ∪Q′ ⊆ P0(BR(o)) ∪Q′ = P0(BRo(o))
•
W0(TU ) = W0(U) ∪ (P f

R(o) ∩ P0(U))

= {w ∈ W0(BR(o)) ∩ P0(U); tG(BR(o))(w) ∈ P0(U)} ∪ (P f
R(o) ∩ P0(U))

= {w ∈ W0(BR(o)) ∩ P0(U); tG(BRo (o))
(w) ∈ P0(U)}

∪{w ∈ P f
R(o) ∩ P0(U); tG(BRo (o))

(w) ∈ P0(TU )}
= {w ∈ W0(BRo(o)) ∩ P0(U); tG(BRo (o))

(w) ∈ P0(TU )}
= {w ∈ (W0(BRo(o)) ∩ P0(U)) \ (Q′ ∩ Pe

0(BRo(o)); tG(BRo (o))
(w) ∈ P0(TU )}

• P f(G(TU )) = {ϕ(tR(o, p)); p ∈ P f
R(o) ∩ P(U)} ⊆ Q′

•
tTU = tBRo (o)

⋃
o′∈B0(U)({o′}×(P f

BR(o)
(o′)∪{p∈P(BBR(o)(o

′));(o′,p)∈P f
R(o)}))

= tBRo (o)
⋃

o′∈B0(TU )({o′}×(P f
BR(o)

(o′)∪{p∈P(BBR(o)(o
′));(o′,p)∈P f

R(o)}))

= tBRo (o)
⋃

o′∈B0(TU )({o′}×P f
BRo

(o)
(o′))

• by (∗), we have TU EQ′ BRo(o) and TU is connected through ports not in Q′.
Moreover we have TU = U , which shows that θ is a surjection and, for any T ∈ SkBRo (o)

(Q′),
we have T = (TU ⊕

⊕
p∈P f

R(o)∩P(TU ) ?ϕ(tR(o,p)))@t where t is the function P f
R(o) ∩ P(TU )→

ϕ[tR[{o}×(P f
R(o)∩P(TU ))]] that associates with every p ∈ P f

R(o)∩P(TU ) the port ϕ(tR(o, p))
of BRo(o), which shows that θ is an injection.

Example 3.35. Let us consider the PS R of Figure 11. We set Q′ = {p′1, p′4, p′5, p′6, p′7} and
we define the bijection ϕ : P?

R(o2) ' Q′ as follows: ϕ(p1) = p′1; ϕ(p4) = p′4; ϕ(p5) = p′5;

ϕ(p6) = p′6; ϕ(p7) = p′7. If k is big enough, then Sk(ϕ·o2R)(Q
′) = {H ′1, H ′2, H ′3}, where H ′1, H ′2

and H ′3 and the differential in-PS’s of Figure 27, Figure 28 and Figure 29 respectively.

Lemma 3.36. Let R be an in-PS. Let o ∈ B0(R). Let Q′ be some set, let ϕ be some bijection
P?
R(o) ' Q′, let Ro be an in-PS obtained from R by adding, according to ϕ, contractions as

shallow conclusions to the content of the box o. Then β(Ro) ≤ β(R).

Proof. Let us show that Θ(Ro) ≤ Θ(R):

• If P f(HRo(o)) = ∅, then ({o} × Q′) ∩ P(HRo(o)) = ∅, hence Q′ = ∅, which entails that
Ro = R and then HRo(o) = HR(o).
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• Moreover we have {T ∈ H(BRo(o));P f(T ) = ∅} ⊆ SkBRo (o)
(Q′), hence, by Lemma 3.34, we

have {T ∈ H(BRo(o));P f(T ) = ∅} ⊆ H(BR(o)).

Lemma 3.37. Let R be an in-PS. Let k > co-size(R). Let e be a k-heterogeneous pseudo-

experiment on R. Let i ∈ N. Let P ⊆ P0(TR[i](e)). Let o ∈ B≥i0 (R). We set Q = P?
R(o). Let

ϕo be some bijection P?
R(o) ' Q′ and let Ro be an in-PS such that Ro = ϕo ·o R. Then, for

any T ∈ SkTR[i](e)(P), we have T vP Ro≤i if, and only if, T vP R≤i.

Proof. Assume o ∈ B≥i0 (R). Let T ∈ SkTR[i](e)(P). Notice that, since T v TR[i](e), we have

o /∈ B0(T ).

Assume T vP Ro≤i. We have T≤0 vP (Ro
≤i)
≤0

= Ro
≤0 = R≤0 = (R≤i)

≤0
. Moreover:

• B0(T ) = B0(Ro≤i) ∩ P0(T ) = B<i0 (Ro) ∩ P0(T ) = B<i0 (R) ∩ P0(T ) = B0(R≤i) ∩ P0(T );
• and, since o /∈ B0(T ), we have BT = BR B0(T ) and tT = tR≤i

⋃
o′∈B0(T )({o′}×P f

R≤i (o
′)).

We obtained T vP R≤i.
Conversely, assume T vP R≤i. We have T≤0 vP (R≤i)

≤0
= R≤0 = Ro

≤0 = (Ro
≤i)
≤0

.
Moreover:

• B0(T ) = B0(R≤i) ∩ P0(T ) = B<i0 (R) ∩ P0(T ) = B<i0 (Ro) ∩ P0(T ) = B0(Ro≤i) ∩ P0(T );
• and, since o /∈ B0(T ), we have BT = BRo B0(T ) and tT = tRo

≤i ⋃
o′∈B0(T )({o′}×P f

Ro≤i (o
′))

.

We obtained T vP Ro≤i.

The proof of the following lemma is postponed in the appendix.

Lemma 3.38. Let R be an in-PS. Let k > co-size(R). Let e be a k-heterogeneous pseudo-

experiment on R. Let i ∈ N. Let P ⊆ P0(TR[i](e)). Let o ∈ B≥i0 (R). We set Q = P?
R(o). Let

ϕo be some bijection Q ' Q′ and let Ro be an in-PS such that Ro = ϕo ·o R. Let ϕeo be the
bijection Q ' {o} × ({eo} × Q′) defined by ϕeo(p) = (o, (eo, ϕo(p))) for any p ∈ Q. We set
Peo = (P \ Q) ∪ ϕeo [P ∩Q]. Then:

(1) for any T ∈ SkTR[i](e)(P) such that P0(T ) ∩ P0(R〈o, i, eo〉) 6= ∅, we have T [ϕeo ] ∈
SkTRo [i](e)

(Peo);

(2) for any T ∈ SkTRo [i](e)
(Peo) such that P0(T ) ⊆ P0(Ro〈o, i, eo〉), we have T [ϕeo

−1] ∈
SkTR[i](e)(P);

(3) for any T ∈ SkTRo [i](e)
(P) such that (∀e1 ∈ e(o))P0(T ) ∩ P0(Ro〈o, i, e1〉) = ∅, we have

T ∈ SkTR[i](e)(P);

(4) for any T ∈ SkTR[i](e)(P) such that (∀e1 ∈ e(o))P0(T ) ∩ P0(Ro〈o, i, e1〉) = ∅, we have

T ∈ SkTRo [i](e)
(P);

The set of “critical components” we will consider in our algorithm is the set⋃
j∈Ni(e)

SkTR[i](e)(Kk,j(TR[i](e)))

From this set we will build the contents of the new boxes. In particular, each port of TR[i](e)
at depth 0 that goes inside a new box of TR[i + 1](e) (i.e. each element of P0(TR[i](e)) \
P0(TR[i+ 1](e))) belongs to a “critical component”:
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Lemma 3.39. Let R be a PS. Let k > Card (B(R)) , co-size(R). Let e be a k-heterogeneous
experiment on R. Let i ∈ N. For any p ∈ P0(TR[i](e)) \ P0(TR[i + 1](e)), there exists
T ∈

⋃
j∈Ni(e)

SkTR[i](e)(Kk,j(TR[i](e))) such that

p ∈ P0(T ) \ Kk,j(TR[i](e)) ⊆ P0(TR[i](e)) \ P0(TR[i+ 1](e))

Proof. By induction on depth(R). If depth(R) = 0, then P0(TR[i](e)) \ P0(TR[i+ 1](e)) = ∅.
Assume that depth(R) > 0 and let p ∈ P0(TR[i](e))\P0(TR[i+1](e)). There exist o ∈ B≥i0 (R)
and eo ∈ e(o) such that p ∈ P0(R〈o, i, eo〉). We distinguish between two cases:

• o ∈ B=i0 (R): By Proposition 3.19, there exists j0 ∈ Ni(e) such that !e,i(j0) = o. We
have R〈o, i, eo〉 = 〈o, 〈eo, BR(o)〉〉, hence there exists T ′ ∈ H(BR(o)) such that p ∈
P0(〈o, 〈eo, T ′〉〉). We set T = (〈o, 〈eo, T ′〉〉 ⊕

∑
p∈P f(T ′) lG(R)(tR(o, p))

tR(o,p)
)@tR {o}×P f(T ′).

We have P f(G(T )) = tR[{o} × P f(T ′)] = tTR[i+1](e)[{o} × P f(T ′)] ⊆ Kk,j0(TR[i](e)) (by

Proposition 3.19), hence T ∈ SkTR[i](e)(Kk,j0(TR[i](e))).

• o ∈ B≥i+1
0 (R): There exists p′ ∈ P0(TBR(o)[i](eo)) \ P0(TBR(o)[i + 1](eo)) such that

p = (o, (eo, p
′)). Let Ro be an in-PS such that Ro = ϕ ·o R, where ϕ is some bijection

P?
R(o) ' Q′. We have p′ ∈ P0(TBRo (o)

[i](eo)) \ P0(TBRo (o)
[i + 1](eo)), hence, by induc-

tion hypothesis, there exists T ′ ∈
⋃
j∈Ni(eo)

SkTBRo
(o)[i](eo)

(Kk,j(TBRo (o)
[i](eo))) such that

p′ ∈ P0(T ′); let j0 ∈ Ni(eo) such that T ′ ∈ SkTBRo
(o)[i](eo)

(Kk,j0(TBRo (o)
[i](eo))). By Corol-

lary 2.14, we have T ′ ∈ SkTBRo
(o)[i](eo)

((Q′∩Kk,j0(TBRo (o)
[i](eo)))∪Kk,j0(TBR(o)[i](eo))). By

Corollary 3.21, we have T ′ ∈ SkTBRo
(o)[i](eo)

(ϕ[P?
R(o)∩Kk,j0(TR[i](e))]∪Kk,j0(TBR(o)[i](eo))).

We denote by ϕeo the bijection P?
R(o) ' {o} × ({eo} × Q′) that associates (o, (eo, ϕ(q)))

with every q ∈ P?
R(o). By Proposition 3.19, we have 〈o, 〈eo, T ′〉〉 ∈ SkTRo [i](e)

(ϕeo [P?
R(o) ∩

Kk,j0(TR[i](e))] ∪ Kk,j0(TR[i](e))). We set T = 〈o, 〈eo, T ′〉〉[ϕeo−1]. By Lemma 3.38 (2),

we have T ∈ SkTR[i](e)((P
?
R(o) ∩ Kk,j0(TR[i](e))) ∪ Kk,j0(TR[i](e))); we thus have T ∈

SkTR[i](e)(Kk,j0(TR[i](e))).

Notice that not each port belonging to a “critical component” goes inside a new box.
That is why, for now, we are not yet able to describe exactly the ground-structure of
TR[i+ 1](e) but we can only obtain an approximant of TR[i+ 1](e)≤0:

Proposition 3.40. Let R be a PS. Let k > Card (B(R)) , co-size(R). Let e be a k-
heterogeneous pseudo-experiment on R. Let i ∈ N. We set

P =

P0(TR[i](e)) \
⋃

j∈Ni(e)

⋃
T ∈ SkTR[i](e)(Kk,j(TR[i](e)))

P0(T )

 ∪ Kk,Ni(e)(TR[i](e))

Then we have TR[i](e)≤0 P v∅ TR[i+ 1](e)≤0.

Proof. By Lemma 3.1, we have:

(1) W0(TR[i+ 1](e)) ⊆ W0(TR[i](e)) and tG(TR[i+1](e)) = tG(TR[i](e)) W0(TR[i+1](e))

(2) W0(TR[i](e)) ∩ P0(TR[i+ 1](e)) ⊆ W0(TR[i+ 1](e))
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By 1., we have

{w ∈ W(G(TR[i+ 1](e))) ∩ P; tG(TR[i+1](e))(w) ∈ P}
⊆ {w ∈ W(G(TR[i](e))) ∩ P; tG(TR[i](e))(w) ∈ P}

By Lemma 3.39 and Proposition 3.19, we have P ⊆ P0(TR[i+ 1](e)) (∗). By (∗) and 2., we
have

{w ∈ W(G(TR[i](e))) ∩ P; tG(TR[i](e))(w) ∈ P}
⊆ {w ∈ W(G(TR[i+ 1](e))) ∩ P; tG(TR[i+1](e))(w) ∈ P}

We thus showed

W(G(TR[i](e)) P)

= {w ∈ W(G(TR[i](e))) ∩ P; tG(TR[i](e))(w) ∈ P}
= {w ∈ W(G(TR[i+ 1](e))) ∩ P; tG(TR[i+1](e))(w) ∈ P}

Example 3.41. (Continuation of Example 3.15) Figure 31 depicts the differential PS

TR[1](e)≤0 P obtained by applying Proposition 3.40: We have

P =

P0(TR[1](e)) \
⋃

j∈N1(e)

⋃
T ∈ SkTR[1](e)(K10,j(TR[1](e)))

P0(T )

 ∪ K10,N1(e)(TR[1](e))

with K10,N1(e)(TR[i](e)) = {p1, p4, p5, p6, p7, o2, o4}.

There is no other connected component of TR[i + 1](e) whose conclusions belong to
critical ports of TR[i](e) than critical components of TR[i](e):

Proposition 3.42. Let R be an in-PS. Let k > co-size(R). Let e be a k-heterogeneous
pseudo-experiment on R. Let i ∈ N. Then SkTR[i+1](e)(Kk,Ni(e)(TR[i](e))) ⊆ SkTR[i](e)(Kk,Ni(e)(TR[i](e))).

Proof. Let T ∈ SkTR[i+1](e)(Kk,Ni(e)(TR[i](e))). Notice that depth(T ) < i. We have

T vKk,Ni(e)
(TR[i](e)) TR[i+ 1](e),

hence, by Remark 1.16, Lemma 3.1 and Fact 1.25, T = T≤i vKk,Ni(e)
(TR[i](e)) TR[i](e).

If T vKk,Ni(e)
(TR[i](e)) R

≤i, then one can apply Fact 3.24.

Otherwise: Let p ∈ P0(T ) \ Kk,Ni(e)(TR[i](e)) and q ∈ P0(TR[i](e)) \ P0(TR[i + 1](e))

such that p ¨TR[i](e) q. By Lemma 3.39, there exists T ′ ∈ SkTR[i](e)(Kk,Ni(e)(TR[i](e))) such

that p, q ∈ P0(T ′) \ Kk,Ni(e)(TR[i](e)) ⊆ P0(TR[i](e)) \ P0(TR[i + 1](e)), which contradicts
p ∈ P0(T ) ⊆ P0(TR[i+ 1](e)).

We will apply Proposition 3.43 with P = Kk,j0(TR[i](e)), where j0 ∈ Ni(e), but, since
the proof is by induction, we need to slightly generalize it.

Proposition 3.43. Let R be an in-PS. Let k ≥ β(R). Let e be a k-heterogeneous pseudo-
experiment on R. Let i ∈ N. Let P ⊆ Pe

0(TR[i+ 1](e)) \ B0(TR[i](e)). Let T ∈ SkTR[i](e)(P)

such that P f(T ) ⊆ P f(G(T )). We set

• T = {T ′ ∈ SkTR[i](e)(P);T ≡ T ′}
• T ′ = {T ′ ∈ SkTR[i+1](e)(P);T ≡ T ′}
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Figure 30: The differential PS TR[1](e)≤0
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Figure 31: The approximant TR[1](e)≤0 P of the differential PS TR[2](e)≤0
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Figure 32: The differential PS TR[2](e)≤0

• B = {o ∈ B≥i0 (R);P f(G(T )) ∩ tR[{o} × P f
R(o)] 6= ∅}

• B′ = {o ∈ B≥i+1
0 (R);P f(G(T )) ∩ tR[{o} × P f

R(o)] 6= ∅}
Let (mj)j∈N, (m

′
j)j∈N ∈ {0, . . . , k − 1}N such that Card (T ) =

∑
j∈Nmj · kj and Card (T ′) =∑

j∈Nm
′
j · kj. Then the following properties hold:

• {j ∈ N \ {0};mj 6= 0} ⊆ Mi(e)
• {j ∈ N \ {0};m′j 6= 0} ⊆ Mi+1(e)

• (∀j ∈Mi+1(e))m
′
j = mj

• (∀j ∈ Ni(e))mj = Card
(
{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T}

)
Moreover, if B 6= ∅, then the following properties hold:

• !e,i[{j ∈ N \ {0};mj 6= 0}] ⊆ B ∪
⋃
o∈B

⋃
eo∈e(o) !e,i[Mi(eo)]

• !e,i[{j ∈ N \ {0};m′j 6= 0}] ⊆ B′ ∪
⋃
o∈B′

⋃
eo∈e(o) !e,i[Mi+1(eo)]

Finally, if P ⊆ P0(R), then m0 = Card
(
{T ′ ∈ T ;T ′ vP R≤i}

)
= m′0.

Proof. We prove the proposition by induction on (depth(R),Card (B)) lexicographically
ordered. Part I) is devoted to the case where depth(R) = 0, Part II) is devoted to the case
where depth(R) > 0 and B = ∅, Part III) is devoted to the case where depth(R) > 0, B 6= ∅
and P f(G(T ))∩B≥i0 (R) = ∅, and Part IV) is devoted to the case where depth(R) > 0, B 6= ∅
and P f(G(T )) ∩ B≥i0 (R) 6= ∅.
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Part I. depth(R) = 0: Then TR[i](e) = R = TR[i + 1](e) and R≤i = R, hence T = {T ′ ∈
T ;T ′ vP R≤i} = T ′;
• P f(G(T )) 6= ∅: Card

(
{T ′ ∈ T ;T ′ vP R≤i}

)
≤ co-size(R) < k;

• P f(G(T )) = ∅: Card
(
{T ′ ∈ T ;T ′ vP R≤i}

)
≤ Θ(R) < k;

so, in both cases, Card (T ) = Card (T ′) < k, which entails m0 = Card (T ) = Card (T ′) = m′0
and {j ∈ N \ {0};mj 6= 0} = ∅ = {j ∈ N \ {0};m′j 6= 0}; moreover, Mi+1(e) = ∅ = Ni(e).

Part II. depth(R) > 0 and B = ∅:32 Then we distinguish between two cases (Case 1) and
Case 2)):

• Case 1) There exist o ∈ B≥i0 (R) and eo ∈ e(o) such that the set P0(T ) ∩ P0(R〈o, i, eo〉)
is non-empty: By Lemma 3.29, we have P0(T ) ⊆ P0(R〈o, i, eo〉); we set Po = {p ∈
P0(TBR(o)[i](eo)); (o, (eo, p)) ∈ P} and T0 ∈ SkTBR(o)[i](eo)

(Po) such that T = 〈o, 〈eo, T0〉〉;
we have T = {〈o, 〈eo, T ′〉〉; (T ′ ∈ SkTBR(o)[i](eo)

(Po)∧T0 ≡ T ′)} and T ′ = {〈o, 〈eo, T ′〉〉; (T ′ ∈
SkTBR(o)[i+1](eo)

(Po) ∧ T0 ≡ T ′)}. We have β(BR(o)) ≤ β(R) and P f(T0) ⊆ P f(G(T0)),

hence we can apply the induction hypothesis: we obtain
– {j ∈ N \ {0};mj 6= 0} ⊆ Mi(eo) ⊆Mi(e) (by Lemma 3.11)
– {j ∈ N \ {0};m′j 6= 0} ⊆ Mi+1(eo) ⊆Mi+1(e) (by Lemma 3.11)

– and (∀j ∈ Mi+1(eo))m
′
j = mj , which entails (∀j ∈ Mi+1(e))m

′
j = mj , since, by

Lemma 3.11, we have Mi+1(e) ∩Mi(eo) =Mi+1(eo).
Now, let j ∈ Ni(e), let U ∈ H(BTR[i+1](e)(!e,i(j))) such that U ≡(TR[i+1](e),!e,i(j)) T

and let p ∈ P f(G(U)); there exists p′ ∈ P f(G(T )) such that p′ = tTR[i+1](e)(!e,i(j), p); by

Proposition 3.19, we have !e,i(j) ∈ B=i0 (R) or there exist o′ ∈ B≥i+1
0 (R) and eo′ ∈ e(o′)

such that j ∈ Ni(eo′):
– !e,i(j) ∈ B=i0 (R): then we have p′ ∈ P0(R), hence p′ /∈ P, which is in contradiction with

P f(G(T )) ⊆ P;

– or (j ∈ Ni(eo′) for some o′ ∈ B≥i+1
0 (R) and eo′ ∈ e(o′)): then we have

p′ = (o′, (eo′ , tTBR(o′)[i+1](eo′ )
(!eo′ ,i(j), p))) ∈ P

hence (o′, eo′) = (o, eo).
This shows that, for any j ∈ Ni(e) \ Ni(eo), we have

Card
(
{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T}

)
= 0

but, since j /∈Mi(eo), we have mj = 0.

32As an instance of this case, take for R the PS that is depicted in Figure 11, take i = 0, take for e a
10-heterogeneous experiment with e# like in Example 2.2, take for P any subset of Pe

0(TR[1](e))\B0(TR[0](e))

and for T one of the 10224 copies of
⊥1

.
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For any j ∈ Ni(eo), we have !e,i(j) = (o, (eo, !eo,i(j))); applying the induction hypothesis,
we obtain

Card
(
{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T}

)
= Card

(
{U ∈ H(BTR[i+1](e)(o, (eo, !e,i(j))));U ≡(TR[i+1](e),(o,(eo,!eo,i(j))))

T}
)

= Card
(
{U ∈ H(BTBR(o)[i+1](eo)(!eo,i(j)));U ≡(TBR(o)[i+1](eo),!eo,i(j))

T0}
)

= mj

• Case 2) For any o ∈ B≥i0 (R), for any eo ∈ e(o), we have P0(T )∩P0(R〈o, i, eo〉) = ∅: Notice
that then T v R. We set P0 = P ∩ P0(R). We have T = {T ′ ∈ T ;T ′ vP0 R

≤i}, T ′ =
{T ′ ∈ T ′;T ′ vP0 R

≤i} and Card
(
{T ′ ∈ T ;T ′ vP0 R

≤i}
)
< k, hence, by Fact 3.24, we have

m0 = Card (T ) = Card (T ′) = m′0 and {j ∈ N \ {0};mj 6= 0} = ∅ = {j ∈ N \ {0};m′j 6= 0}.
Since T v R and B = ∅, for any o ∈ B=i0 (TR[i+ 1](e)), we have

{U ∈ H(BTR[i+1](e)(o));U ≡(TR[i+1](e),o) T} = ∅

Part III. depth(R) > 0, B 6= ∅ and P f(G(T )) ∩ B≥i0 (R) = ∅:33 Then let o ∈ B: Let Ro be an
in-PS and ϕ be some bijection P?

R(o) ' Q′ such that Ro = ϕ ·o R.
Roughly speaking, the number

∑
j∈Nmj · kj (resp.

∑
j∈Nm

′
j · kj) of components of

TR[i](e) (resp. TR[i+ 1](e)) that are equivalent to the connected component T is the sum
of the number

∑
j∈N pj · kj (resp.

∑
j∈N p

′
j · kj) of such components that come from the

expansion of the box o and the number
∑

j∈N nj · kj (resp.
∑

j∈N n
′
j · kj) of such components

that do not come from the expansion of the box o, but we define the sequence (nj)j∈N (resp.
the sequence (n′j)j∈N) through Tϕ·oR[i](e) (resp. Tϕ·oR[i+ 1](e)), and not through TR[i](e)

(resp. TR[i+ 1](e)), in order to be able to apply the induction hypothesis.
Let jo ∈ Mi(e) such that !e,i(jo) = o. We define a subset N of Ni(e) as follows: We

set N =

{
{jo} if o ∈ B=i0 (R);⋃
eo∈e(o)Ni(eo) otherwise.

For every eo ∈ e(o), let ϕeo be the bijection

P?
R(o) ' {o} × ({eo} × Q′) defined by ϕeo(q) = (o, (eo, ϕ(q))) for any q ∈ P?

R(o); we set

Peo = (P \ P?
R(o)) ∪ ϕeo [P ∩ P?

R(o)].

Let (pj)j∈N ∈ {0, . . . , k − 1}N such that

Card

{T ′ ∈ T ;P0(T ′) ∩
⋃

eo∈e(o)

P0(R〈o, i, eo〉) 6= ∅}

 =
∑
j∈N

pj · kj

For every eo ∈ e(o), let (peo,j)j∈N ∈ {0, . . . , k − 1}N such that

Card
(
{T ′ ∈ SkTRo [i](e)

(Peo);T ′ ≡ T [ϕeo ]}
)

=
∑
j∈N

peo,j · kj

Let (p′j)j∈N ∈ {0, . . . , k − 1}N such that

33As an instance of this case, take for R the PS that is depicted in Figure 11, take i = 1, take for e a
10-heterogeneous experiment with e# like in Example 2.2, take P = {p1} and for T the differential PS that
is depicted in Figure 33 (see Example 3.44 on page 54).
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• if o ∈ B≥i+1
0 (R), then

Card

{T ′ ∈ T ′;P0(T ′) ∩ ⋃
eo∈e(o)

P0(R〈o, i+ 1, eo〉) 6= ∅}

 =
∑
j∈N

p′j · kj

• if o ∈ B=i0 (R), then 0 =
∑

j∈N p
′
j · kj .

For any eo ∈ e(o), let (p′eo,j)j∈N ∈ {0, . . . , k − 1}N such that

• if o ∈ B≥i+1
0 (R), then

Card
(
{T ′ ∈ SkTRo [i+1](e)(Peo);T ′ ≡ T [ϕeo ]}

)
=
∑
j∈N

p′eo,j · k
j

• if o ∈ B=i0 (R), then 0 =
∑

j∈N p
′
eo,j
· kj .

By Lemma 3.29, we have

Card

{T ′ ∈ T ;P0(T ′) ∩
⋃

eo∈e(o)

P0(R〈o, i, eo〉) 6= ∅}


=

∑
eo∈eo

Card
(
{T ′ ∈ T ;P0(T ′) ∩ P0(R〈o, i, eo〉) 6= ∅}

)
hence, by Lemma 3.38 (1) and (2), we have:

•
∑

j∈N pj · kj =
∑

eo∈e(o)
∑

j∈N peo,j · kj

•
∑

j∈N p
′
j · kj =

∑
eo∈e(o)

∑
j∈N p

′
eo,j
· kj

Let (nj)j∈N ∈ {0, . . . , k − 1}N such that

Card
(
{T ′ ∈ SkTRo [i](e)

(P f(G(T )));T ′ ≡ T}
)

=
∑
j∈N

nj · kj

and let (n′j)j∈N ∈ {0, . . . , k − 1}N such that

Card
(
{T ′ ∈ SkTRo [i+1](e)(P

f(G(T )));T ′ ≡ T}
)

=
∑
j∈N

n′j · kj .

By Lemma 3.38 (3) and (4), we have:

•
∑

j∈Nmj · kj =
∑

j∈N(pj + nj) · kj

•
∑

j∈Nm
′
j · kj =

∑
j∈N(p′j + n′j) · kj

Now, the proof will be in three steps (Step 1), Step 2) and Step 3)):

Step 1). It consists in proving properties about the sequences (nj)j∈N and (n′j)j∈N. We
distinguish between two cases:

• B = {o}: Then {T ′ ∈ SkTRo [i](e)
(P);T ′ ≡ T} = {T ′ ∈ SkTRo [i](e)

(P); (T ′ ≡ T ∧T ′ vP Ro≤i)}
and {T ′ ∈ SkTRo [i+1](e)(P);T ′ ≡ T} = {T ′ ∈ SkTRo [i+1](e)(P); (T ′ ≡ T ∧T ′ vP Ro≤i)}, hence

Card
(
{T ′ ∈ SkTRo [i](e)

(P);T ′ ≡ T}
)
< k and, by Fact 3.24, we have

Card
(
{T ′ ∈ SkTRo [i](e)

(P);T ′ ≡ T}
)

= Card
(
{T ′ ∈ SkTRo [i+1](e)(P);T ′ ≡ T}

)
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so {j ∈ N \ {0};nj 6= 0} = ∅ = {j ∈ N \ {0};n′j 6= 0} and

n0 = Card
(
{T ′ ∈ SkTRo [i](e)

(P); (T ′ ≡ T ∧ T ′ vP Ro≤i)}
)

= n′0

(in particular, (∀j ∈ N)n′j = nj). If P ⊆ P0(R), then, by Lemma 3.37, we have n0 =

Card
(
{T ′ ∈ T ;T ′ vP R≤i}

)
= n′0.

• B \ {o} 6= ∅: By Lemma 3.36, we can apply the induction hypothesis: We have
– !e,i[{j ∈ N \ {0};nj 6= 0}] ⊆ (B \ {o}) ∪

⋃
o′∈B\{o}

⋃
eo′∈e(o′)

!e,i[Mi(eo′)]

– !e,i[{j ∈ N \ {0};n′j 6= 0}] ⊆ (B′ \ {o}) ∪
⋃
o′∈B′\{o}

⋃
eo′∈e(o′)

!e,i[Mi+1(eo′)]

– (∀j ∈Mi+1(e))n
′
j = nj

– if P ⊆ P0(R), then n0 = Card
(
{T ′ ∈ SkTRo [i](e)

(P); (T ′ ≡ T ∧ T ′ vP Ro≤i)}
)

= n′0,

hence, by Lemma 3.37, we have n0 = Card
(
{T ′ ∈ T ;T ′ vP R≤i}

)
= n′0.

Now, for any j ∈ Ni(e) \ N , we have BTRo [i+1](e)(!e,i(j)) = BTR[i+1](e)(!e,i(j)), hence

Card
(
{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T}

)
= nj

Step 2). In order to prove

• {j ∈ N; pj 6= 0} ⊆ {0, jo} ∪
⋃
eo∈e(o)Mi(eo)

• (p0 6= 0⇒ n0 = 0)
• {j ∈ N; p′j 6= 0} ⊆ {0, jo} ∪

⋃
eo∈e(o)Mi+1(eo)

• (o ∈ B≥i+1
0 (R)⇒ (∀j ∈ {jo} ∪

⋃
eo∈e(o)Mi+1(eo))p

′
j = pj)

• (p′0 6= 0⇒ n′0 = 0)

• (∀j ∈ N )pj = Card
(
{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T}

)
we distinguish between three cases (Case a), Case b) and Case c)):

• Case a) P f(G(T )) ⊆ P?
R(o): It is worth noticing that the differential in-PS T has no

co-contraction. If there is no e1 ∈ e(o) such that {T ′ ∈ SkTRo [i](e)
(Pe1);T ′ ≡ T [ϕe1 ]} 6= ∅,

then, by Lemma 3.38 (1), for any j ∈ N, we have pj = 0 = p′j , so there is nothing to prove.

From now on, let us assume that there exist e1 ∈ e(o) and T ′1 ∈ {T ′ ∈ SkTRo [i](e)
(Pe1);T ′ ≡

T [ϕe1 ]}; let ζ : T ′1 ≡ T [ϕe1 ] and let T1 ∈ SkTBRo
(o)[i](e1)

(Q′) such that T ′1 = 〈o, 〈e1, T1〉〉;
notice that, for any eo ∈ e(o), we have T [ϕeo ] ≡ 〈o, 〈eo, T1〉〉, hence

{T ′ ∈ SkTRo [i](e)
(Peo);T ′ ≡ T [ϕeo ]}

= {〈o, 〈eo, T ′〉〉; (T ′ ∈ SkTBRo
(o)[i](eo)

(Q′) ∧ T ′ ≡ T1)} (∗)

we have P f(T1) ⊆ P f(G(T1)) ⊆ Q′ ⊆ P0(BRo(o)), hence, since by Lemma 3.36 we can
apply the induction hypothesis, we have

pe1,0 = Card
(
{T ′ ∈ SkTBRo

(o)[i](e1)
(Q′); (T ′ ≡ T1 ∧ T ′ vQ′ BRo(o)≤i)}

)
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and ∑
eo∈e(o)

Card
(
{T ′ ∈ SkTRo [i](e)

(Peo);T ′ ≡ T [ϕeo ]}
)

=
∑

eo∈e(o)

Card
(
{T ′ ∈ SkTBRo

(o)[i](eo)
(Q′);T ′ ≡ T1}

)
(by (∗))

= Card
(
{T ′ ∈ SkTBRo

(o)[i](e1)
(Q′); (T ′ ≡ T1 ∧ T ′ vQ′ BRo(o)≤i)}

)
· Card (e(o))

+
∑

eo∈e(o)

∑
j∈Mi(eo)

peo,j · kj

hence !e,i[{j ∈ N; pj 6= 0}] ⊆ {o} ∪
⋃
eo∈e(o) !e,i[Mi(eo)].

If o ∈ B=i0 (R), then there exists a bijection {T ′ ∈ SkBRo (o)
(Q′);T ′ ≡ T1} ' {U ∈

H(BR(o));U ≡(TR[i+1](e),o) T} that associates with every T ′ ∈ SkBRo (o)
(Q′) such that

T ′ ≡ T1 the differential in-PS T ′. Indeed:
– By Lemma 3.34, there exists a bijection SkBRo (o)

(Q′) ' H(BR(o)) that associates with

every T ′ ∈ SkBRo (o)
(Q′) the differential in-PS T ′;

– If T ′ ∈ SkBRo (o)
(Q′) and ψ : T ′ ≡ T1, then the function δ that associates with every

p ∈ P(T ′) the port ζ(o1, (e1, ψ(p))) of T is an isomorphism T ′ ' T such that, for any
p ∈ P f(T ′), we have tT ′(p) = tBRo (o)

(p) = ϕ(tR(o, p)), hence

ϕe1(tT (δ(p))) = ϕe1(tT (ζ(o1, (e1, ψ(p))))

= tT [ϕe1 ]
(ζ(o1, (e1, ψ(p))))

= ζ(tT ′1(o1, (e1, ψ(p))))

= tT ′1(o1, (e1, ψ(p)))

= (o1, (e1, tT1(ψ(p))))

= (o1, (e1, ψ(tT ′(p))))

= (o1, (e1, tT ′(p)))

= (o1, (e1, ϕ(tR(o, p))))

= ϕe1(tR(o, p))

So, tTR[i+1](e)(o, p) = tR(o, p) = tT (δ(p)).

If o ∈ B≥i+1
0 (R), then, by induction hypothesis, p′e1,0 = Card ({T ′ vQ′ BRo(o);T ′ ≡ T1})

and ∑
eo∈e(o)

Card
(
{T ′ ∈ SkTRo [i+1](e)(Peo);T ′ ≡ T [ϕeo ]}

)
=

∑
eo∈e(o)

Card
(
{T ′ ∈ SkTBRo

(o)[i+1](eo)
(Q′);T ′ ≡ T1}

)
= Card

(
{T ′ ∈ SkTBRo

(o)[i](e1)
(Q′); (T ′ ≡ T1 ∧ T ′ vQ′ BRo(o))}

)
· Card (e(o))

+
∑

eo∈e(o)

∑
j∈Mi+1(eo)

p′eo,j · k
j
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hence !e,i[{j ∈ N; p′j 6= 0} ⊆ {o} ∪
⋃
eo∈e(o) !e,i[Mi+1(eo)]; by induction hypothesis, for any

eo ∈ e(o), we have (∀j ∈Mi+1(eo) ∪ {0})p′eo,j = peo,j ; moreover, we have

pjo = Card
(
{T ′ ∈ SkTBRo

(o)[i](e1)
(Q′); (T ′ ≡ T1 ∧ T ′ vQ′ BRo(o))}

)
= p′jo

now, let j ∈ N and let eo ∈ e(o) such that !e,i(j) = (o, (eo, !eo,i(j))): We have

Card
(
{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T}

)
= Card

(
{U ∈ H(BTRo [i+1](e)(!e,i(j)));U ≡(TRo [i+1](e),!e,i(j)) T [ϕeo ]}

)
= pj (by induction hypothesis)

• Case b) There exists e1 ∈ e(o) such that P f(G(T )) ∩ P0(R〈o, i, e1〉) 6= ∅: By Lemma 3.29,
we have P0(T ) ⊆ P0(R〈o, i, e1〉) ∪ tR[{o} × P f

R(o)], hence (∀j ∈ N)nj = 0 = n′j ; we set

P ′ = Q′ ∪ {p; (o, (e1, p)) ∈ P}; let T0 ∈ SkTBRo
(o)[i](e1)

(P ′) such that T = 〈o, 〈e1, T0〉〉; we

have P f(T0) ⊆ P f(G(T0)) and, by Lemma 3.36, β(Ro) ≤ β(R) ≤ k, hence we can apply
the induction hypothesis: We obtain∑

eo∈e(o)

Card
(
{T ′ ∈ T ;P0(T ′) ∩ P0(R〈o, i, eo〉) 6= ∅}

)
= Card

(
{T ′ ∈ T ;P0(T ′) ∩ P0(R〈o, i, e1〉) 6= ∅}

)
= Card

(
{T ′ ∈ SkTRo [i](e)

(Pe1);T ′ ≡ T [ϕe1 ]}
)

= Card
(
{T ′ ∈ SkTBRo

(o)[i](e1)
(P ′);T ′ ≡ T0}

)
=

∑
j∈Mi(e1)∪{0}

pe1,j · kj

hence we have {j ∈ N; pj 6= 0} ⊆ Mi(e1) ∪ {0}.
If o ∈ B=i0 (R) then Mi(e1) = ∅, hence pjo = 0; from the other hand, since P f(G(T )) ∩

P0(R〈o, i, e1〉) 6= ∅, we have {U ∈ H(BTR[i+1](e)(!e,i(jo)));U ≡(TR[i+1](e),!e,i(j)) T} = {U ∈
H(BR(o));U ≡(TR[i+1](e),!e,i(j)) T} = ∅.

If o ∈ B≥i+1
0 (R), then, by induction hypothesis, we have∑

eo∈e(o)

Card
(
{T ′ ∈ T ′;P0(T ′) ∩ P0(R〈o, i+ 1, eo〉) 6= ∅}

)
= Card

(
{T ′ ∈ T ′;P0(T ′) ∩ P0(R〈o, i+ 1, e1〉) 6= ∅}

)
= Card

(
{T ′ ∈ SkTRo [i+1](e)(Pe1);T ′ ≡ T [ϕe1 ]}

)
= Card

(
{T ′ ∈ SkTBRo

(o)[i+1](e1)
(P ′);T ′ ≡ T0}

)
=

∑
j∈Mi+1(e1)∪{0}

p′e1,j · k
j

and {j ∈ N; p′e1,j 6= 0} ⊆ Mi+1(e1)∪{0} and (∀j ∈Mi+1(e1)∪{0})p′e1,j = pe1,j ; let j ∈ N
and let eo ∈ e(o) such that !e,i(j) = (o, (eo, !eo,i(j))):
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– if eo 6= e1, then j /∈Mi(e1), hence pj = 0; from the other hand, we have

{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T} = ∅
– if eo = e1, then we have

Card
(
{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T}

)
= Card

(
{U ∈ H(BTRo [i+1](e)(!e,i(j)));U ≡(TRo [i+1](e),!e,i(j)) T [ϕe1 ]}

)
= pj (by induction hypothesis)

• Case c) P f(G(T )) ∩ (P0(R) \ {tR(o, p); p ∈ P f(BR(o))}) 6= ∅: By Lemma 3.29, for any
eo ∈ e(o), we have {T ′ ∈ T ;P0(T ′) ∩ P0(R〈o, i, eo〉) 6= ∅} = ∅ = {T ′ ∈ T ′;P0(T ′) ∩
P0(R〈o, i, eo〉) 6= ∅}, hence (∀j ∈ N)pj = 0 = p′j . From the other hand, for any j ∈ Ni(e),
the set {U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T} is empty.

Step 3). We distinguish between two cases:

• Case a) o ∈ B=i0 (R): We have !e,i[{j ∈ N; pj 6= 0} ∩ Mi+1(e)] ⊆ !e,i[{j ∈ N; pj 6=
0}] ∩ !e,i[Mi+1(e)] ⊆ ({o} ∪

⋃
eo∈e(o) !e,i[Mi(eo)]) ∩ !e,i[Mi+1(e)] = ({o} ∩ !e,i[Mi+1(e)]) ∪⋃

eo∈e(o)(!e,i[Mi(eo)] ∩ !e,i[Mi+1(e)]) ⊆ ∅ ∪
⋃
eo∈e(o) !e,i[Mi(eo) ∩Mi+1(e)] = ∅, hence, for

any j ∈ N, mj = nj ; by Lemma 3.38 (3) and(4), we have

Card
(
T ′
)

= Card
(
{T ′ ∈ SkTRo [i+1](e)(P

f(G(T )));T ′ ≡ T}
)

hence, for any j ∈ N, we have m′j = n′j ; since, for any j ∈Mi+1(e), we have n′j = nj , we

obtain (∀j ∈Mi+1(e))m
′
j = mj .

• Case b) o ∈ B≥i+1
0 (R): We have {j ∈ N;m′j 6= 0} = {j ∈ N;n′j 6= 0} ∪ {j ∈ N; p′j 6= 0},

hence !e,i[{j ∈ N \ {0};m′j 6= 0}] ⊆ B′ ∪
⋃
o∈B′

⋃
eo∈e(o) !e,i[Mi+1(eo)]. For any j ∈

{jo} ∪
⋃
eo∈e(o)Mi+1(eo), we have n′j = nj and p′j = pj , hence m′j = mj ; for any

j ∈ Mi+1(e) \ ({jo} ∪
⋃
eo∈e(o)Mi+1(eo)), we have n′j = nj and p′j = 0 = p0, hence

m′j = mj .

Part IV. depth(R) > 0, B 6= ∅ and P f(G(T ))∩B≥i0 (R) 6= ∅: Let o ∈ P f(G(T ))∩B≥i0 (R). There
exists eo ∈ e(o) such that (o, (eo, !R(o))) ∈ P0(T ) and tT (o, (eo, !R(o))) = o. Notice that o is
a co-contraction of T such that aG(T )(o) > 0, which entails that the set {T ′ ∈ T ;T ′ vP R≤i}
is empty. We distinguish between two cases: Case a), where P f(G(T )) ⊆ tR[{o} × P f

R(o)]

and Case b), where P f(G(T )) \ tR[{o} × P f
R(o)] 6= ∅.

• Case a) P f(G(T )) ⊆ tR[{o} × P f
R(o)]: Let jo ∈Mi(e) such that !e,i(jo) = o.

– We have Card (T ) = kjo .

– We have Card (T ′) =

{
kjo if o ∈ B≥i+1

0 (R);
0 otherwise.

– We have {U ∈ H(BTR[i+1](e)(!e,i(jo)));U ≡(TR[i+1](e),!e,i(jo)) T} = HBR(o)(!R(o)), hence,

for any j ∈ Ni(e),

Card
(
{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T}

)
=

{
1 if j = jo ∈ Ni(e);
0 otherwise.
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Figure 33: The differential in-PS
T ∈ S10TR[1](e)({p1})

⊥
q′

Figure 34: The in-PS
U0 ∈ H(BTR[2](e)(!e,1(1)))
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Figure 35: The differential PS R≤1

• Case b) P f(G(T )) \ tR[{o} × P f
R(o)] 6= ∅: By Lemma 3.29, P0(T ) \ tR[{o} × P f

R(o)] ⊆
P0(R〈o, i, eo〉), hence P ⊆ P0(R) does not hold.
– For any T ′ ∈ T ∪ T ′, we have (o, (eo, !R(o))) ∈ P0(T ′), hence Card (T ) ≤ 1 and

Card (T ′) ≤ 1.
– For any j ∈ Ni(e), we have

{U ∈ H(BTR[i+1](e)(!e,i(j)));U ≡(TR[i+1](e),!e,i(j)) T} = ∅

Example 3.44. (Continuation of Example 3.41) Let T be the differential in-PS depicted
in Figure 33. We have T ∈ S10TR[1](e)({p1}), Card (T ) = 11 and Card (T ′) = 1, B = {o2} and

B′ = ∅. We thus have:

• m0 = 1 = m1 and mj = 0 for any j ≥ 2
• and m′0 = 1 and m′j = 0 for any j ≥ 1.

We recall (see Example 3.8) that M1(e) = {1, 2} = N1(e) and M2(e) = ∅. Notice that
we have {U ∈ H(BTR[2](e)(!e,1(1)));U ≡(TR[i+1](e),!e,i(j)) T} = {U0}, where U0 is the in-PS
depicted in Figure 34.

The differential PS R≤1 is depicted in Figure 35: We have {T ′ ∈ T ;T ′ v{p1} R≤1} = {T}.

3.3. The content of the boxes.

Lemma 3.45. Let S be a differential in-PS. Let o ∈ B0(S). Let T be a set of differential
in-PS’s that is gluable. Assume that there exists a bijection γ : H(BS(o)) ' T such that, for
any V ∈ H(BS(o)), we have V ≡(S,o) γ(V ). Then BS(o) ≡(S,o)

⊕
T .
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Proof. For each V ∈ H(BS(o)), we are given ϕV : V ≡(S,o) γ(V ). Now, we define ϕ :⊕
H(BS(o)) ≡(S,o)

⊕
T as follows: for any p ∈ P(

⊕
H(BS(o))), we set ϕ(p) = ϕHBS(o)(p)(p).

But, by Fact 3.32, we have
⊕
H(BS(o)) = BS(o).

Fact 3.46. Let R be an in-PS. Let o ∈ B≥i0 (R). Let eo ∈ e(o). Let i ∈ N. Let
o1 ∈ B0(TBR(o)[i](eo)). Let V ∈ H(BTBR(o)[i](eo)(o1)) and let T be an in-PS such that

V ≡(TBR(o)[i](eo),o1) T . Then V ≡(TR[i](e),(o,(eo,o1))) 〈o, 〈eo, T 〉〉.

Proof. Let ϕ : V ≡(TBR(o)[i](eo),o1) T . Let ϕ′ be the function P(V )→ P(〈o, 〈eo, T 〉〉) defined

by ϕ′(p) = (o, (eo, ϕ(p))) for any p. For any p ∈ P f(V ), we have

tTR[i](e)((o, (eo, o1)), p) = (o, (eo, tTBR(o)[i](eo)(o1, p)))

= (o, (eo, tT (ϕ(p))))

= t〈o,〈eo,T 〉〉(ϕ
′(p))

We thus have ϕ′ : V ≡(TR[i](e),(o,(eo,o1))) 〈o, 〈eo, T 〉〉.

The rebuilding of the content of the boxes of TR[i+ 1](e) is achieved by the following
proposition:

Proposition 3.47. Let R be a PS. Let k ≥ β(R). Let e be a k-heterogeneous pseudo-
experiment on R. Let i ∈ N. Let j0 ∈ Ni(e). We set T = SkTR[i](e)(Kk,j0(TR[i](e)))/ ≡.

For any T ∈ T, let (mTj )j∈N ∈ {0, . . . , k − 1}N such that Card (T ) =
∑

j∈Nm
T
j · kj. Let

U ⊆ SkTR[i](e)(Kk,j0(TR[i](e))) such that, for any T ∈ T, we have Card (U ∩ T ) = mTj0. Then

we have
BTR[i+1](e)(!e,i(j0)) ≡(TR[i+1](e),!e,i(j0))

⊕
U

Proof. We first prove, by induction on depth(R), that, for any j ∈ Ni(e), there exists
an injection ξ : H(BTR[i+1](e)(!e,i(j))) → SkTR[i](e)(Kk,j(TR[i](e))) such that, for any V ∈
H(BTR[i+1](e)(!e,i(j))), we have V ≡(TR[i+1](e),!e,i(j)) ξ(V ). (∗)

Let j ∈ Ni(e) and let V ∈ H(BTR[i+1](e)(!e,i(j))).

If !e,i(j) ∈ B=i0 (R), then V ∈ H(BR(!e,i(j))): Let e1 ∈ e(!e,i(j)). Let ξ(V ) be the
following differential PS:

ξ(V ) = (〈!e,i(j), 〈e1, V 〉〉 ⊕
⊕

p∈P f(BR(!e,i(j)))∩P(V )

lG(R)(tR(!e,i(j), p))tR(!e,i(j),p))@t

where t is the function {!e,i(j)} × ({e1} × (P f(BR(!e,i(j))) ∩ P(V ))) → tR[{!e,i(j)} ×
(P f(BR(!e,i(j)))∩P(V ))] that associates with every (!e,i(j), (e1, p)) for some p ∈ P f(BR(!e,i(j)))∩
P(V ) the port tR(!e,i(j), p) of G(R). By Proposition 3.19, we have

P f(G(ξ(V ))) = tR[{!e,i(j)} × (P f(BR(!e,i(j))) ∩ P(V ))]

⊆ tR[{!e,i(j)} × P f(BR(!e,i(j)))]

= tR[{!e,i(j)} × P f
R(!e,i(j))]

= tTR[i+1](e)[{!e,i(j)} × P f
TR[i+1](e)(!e,i(j))]

= Kk,j(TR[i](e))

hence ξ(V ) ∈ SkTR[i](e)(Kk,j(TR[i](e))). Moreover, we have ξ(V ) = 〈!e,i(j), 〈e1, V 〉〉 and

V ≡(TR[i+1](e),!e,i(j)) ξ(V ).
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Figure 36: The differential PS
V1

⊥

?
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Figure 37: The differential PS
V2

1

?
p

Figure 38: The differential PS
V3

Now, if !e,i(j) = (o, (eo, !eo,i(j))) for some o ∈ B≥i+1
0 (R) and eo ∈ e(o), then we

have V ∈ H(BTBR(o)[i+1](eo)(!eo,i(j))): Let ϕ be some bijection P?
R(o) ' Q′ and let Ro

be an in-PS such that Ro = ϕ ·o R; we have V ∈ H(BTBRo
(o)[i+1](eo)(!eo,i(j))), hence,

by induction hypothesis, there exists T ′V ∈ SkTBRo
(o)[i](eo)

(Kk,j(TBRo (o)
[i](eo))) such that

V ≡(TBRo
(o)[i+1](eo),!eo,i(j))

T ′V . Let ϕeo be the bijection P?
R(o) ' {o}× ({eo}×Q′) defined by

ϕeo(p) = (o, (eo, ϕ(p))) for any p ∈ P?
R(o). We have 〈o, 〈eo, T ′V 〉〉 ∈ SkTRo [i](e)

((Kk,j(TR[i](e)) \
P?
R(o)) ∪ ϕeo [Kk,j(TR[i](e)) ∩ P?

R(o)]), hence, by Lemma 3.38 (2), 〈o, 〈eo, T ′V 〉〉[ϕeo−1] ∈
SkTR[i](e)(Kk,j(TR[i](e))). Moreover, by Fact 3.46, we have V ≡(TRo [i+1](e),!e,i(j)) 〈o, 〈eo, T ′V 〉〉,
hence V ≡(TR[i+1](e),!e,i(j)) 〈o, 〈eo, T ′V 〉〉[ϕeo−1]. We can thus set ξ(V ) = 〈o, 〈eo, T ′V 〉〉[ϕeo−1].

We proved (∗). Now, let us show that there exists a bijection

γ : H(BTR[i+1](e)(!e,i(j0))) ' U
such that, for any V ∈ H(BTR[i+1](e)(!e,i(j0))), we have V ≡(TR[i+1](e),!e,i(j0)) γ(V ): For any

T ∈ im(ξ), by Proposition 3.43, there exists a bijection

γT : {U ∈ H(BTR[i+1](e)(!e,i(j0)));U ≡TR[i+1](e),!e,i(j0) T} ' {T
′ ∈ U ;T ′ ≡ T}

We define the function γ by setting γ(V ) = γξ(V )(V ) for any V . Since ξ is an injection, γ is
an injection. Let us check that γ is a surjection too: Let T ∈ U ; by Proposition 3.43, there
exists V ∈ H(BTR[i+1](e)(!e,i(j0))) such that V ≡(TR[i+1](e),!e,i(j)) T ; by Remark 1.33, we have

T ∈ im(γξ(V )).
Finally, we can apply Lemma 3.45 to obtain BTR[i+1](e)(!e,i(j0)) ≡(TR[i+1](e),!e,i(j0))

⊕
U .

Example 3.48. Consider the 3-heterogeneous experiment e on the PS’sR1 andR2 (which are
depicted in Figure 23 and in Figure 24 respectively) such that e#(o1) = {3} and e#(o2) = {9}.
We set T1 = S3TR1

[0](e)(K3,1(TR1 [0](e)))/ ≡ and T2 = S3TR2
[0](e)(K3,1(TR2 [0](e)))/ ≡. We have

Card (T1) = 3 = Card (T2). We have

• Card ({V ∈
⋃
T1;V ≡ V1}) = 3 = Card ({V ∈

⋃
T2;V ≡ V1}),

• Card ({V ∈
⋃
T1;V ≡ V2}) = 3 = Card ({V ∈

⋃
T2;V ≡ V3})

• and Card ({V ∈
⋃
T1;V ≡ V3}) = 9 = Card ({V ∈

⋃
T2;V ≡ V2}),

where V1, V2 and V3 are the differential PS’s that are depicted in Figure 36, Figure 37 and
Figure 38 respectively.
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3.4. Characterizing a PS by some finite subset of its Taylor expansion. The proof
of the following proposition contains a full description of the algorithm leading from TR[i](e)
to TR[i+ 1](e):

Proposition 3.49. Let R and R′ be two PS’s. Let k ≥ max{β(R), β(R′)}. Let e be a
k-heterogeneous pseudo-experiment on R and let e′ be a k-heterogeneous pseudo-experiment
on R′ such that TR[0](e) ≡ TR′ [0](e′). Then, for any i ∈ N, we have TR[i](e) ≡ TR′ [i](e′).

Proof. By induction on i. We assume that we are given ϕ : TR[i](e) ≡ TR′ [i](e′).
We set M = Mi(e) (resp. M′ = Mi(e

′)) and N = Ni(e) (resp. N ′ = Ni(e′)).
There is a bijection ! : M ' P !

0(TR[i](e)) \ B0(TR[i](e)) (resp. a bijection !′ : M′ '
P !
0(TR′ [i](e′)) \ B0(TR′ [i](e′))) such that, for any j ∈ M, we have (aTR[i](e) ◦ !)(j) = kj

(resp. (aTR′ [i](e′) ◦ !′)(j) = kj). For any j ∈ N , we set Tj = SkTR[i](e)(Kk,j(TR[i](e))) (resp.

T ′j = SkTR′ [i](e′)(Kk,j(TR′ [i](e
′)))). We set T =

⋃
j∈N (Tj/ ≡) (resp. T′ =

⋃
j∈N ′(T ′j / ≡)). We

set P = (P0(TR[i](e))\
⋃
j∈N

⋃
T ∈ Tj P0(T ))∪Kk,N (TR[i](e)) (resp. P ′ = (P0(TR′ [i](e′))\⋃

j∈N ′
⋃
T ′ ∈ T ′j

P0(T ′)) ∪ Kk,N ′(TR′ [i](e′))). For any T ∈ T (resp. T ′ ∈ T′), we define

(mTj ) ∈ {0, . . . , k − 1}N (resp. (nT
′

j ) ∈ {0, . . . , k − 1}N) as follows: Card (T ) =
∑

j∈Nm
T
j · kj

(resp. Card (T ′) =
∑

j∈N n
T ′
j · kj).

Notice that M =M′, N = N ′ and, for any j ∈ N , ϕ[Kk,j(TR[i](e))] = Kk,j(TR′ [i](e′)).
Moreover, there exists a bijection σ :

⋃
j∈N Tj '

⋃
j∈N T ′j such that, for any T ∈

⋃
j∈N Tj ,

there is an isomorphism T ' σ(T ) associating with every port p of T the port ϕ(p)
of TR′ [i](e′), hence ϕ[P] = P ′. Also, notice that, for any T1, T2 ∈

⋃
j∈N Tj , we have

(T1 ≡ T2 ⇔ σ(T1) ≡ σ(T2)), which entails that there exists a bijection σ : T ' T′

such that, for any T ∈ T, for any T ′ ∈ T′, for any T ∈ T , for any T ′ ∈ T ′, we have
(σ(T ) = T ′ ⇒ σ(T ) = T ′); moreover, for any T ∈ T, we have Card (T ) = Card (σ(T )). For

any T ∈ T, we thus have (n
σ(T )
j )j∈N = (mTj )j∈N.

For any j ∈ N , we set Vj = SkTR[i+1](e)(Kk,j(TR[i](e))). We set V =
⋃
j∈N (Vj/ ≡). For

any j ∈ N , we are given Uj ⊆ Tj such that, for any T ∈ Tj/ ≡, we have Card (Uj ∩ T ) = mTj .

Then one can describe the differential PS TR[i+ 1](e) as follows:

• TR[i](e)≤0 P v∅ TR[i+ 1](e)≤0 (by Proposition 3.40);

• TR[i+ 1](e)≤i v∅ TR[i](e) (by Lemma 3.1);
• (∀j ∈ N )Vj ⊆ Tj (by Proposition 3.42);
• for any V ∈ V, we have Card (V) =

∑
j /∈N m

T
j · kj , where T ∈ T such that V ⊆ T (by

Proposition 3.43);
• B0(TR[i+ 1](e)) = (B0(TR[i](e)) ∩ P0(TR[i+ 1](e))) ∪ ![N ] (by Lemma 3.1 and Proposi-

tion 3.19);
• and, for any j ∈ N , there exists ϕj : BTR[i+1](e)(!(j)) ≡(TR[i+1](e),!(j))

⊕
Uj (by Proposi-

tion 3.47).

In the same way: For any j ∈ N , we set V ′j = SkTR′ [i+1](e′)(Kk,j(TR′ [i](e
′))). We set

V′ =
⋃
j∈N (V ′j/ ≡). For any j ∈ N , we set U ′j = σ[Uj ]. Then one can describe the differential

PS TR′ [i+ 1](e′) as follows:

• TR′ [i](e′)≤0 P ′ v∅ TR′ [i+ 1](e′)≤0 (by Proposition 3.40);

• TR′ [i+ 1](e′)≤i v∅ TR′ [i](e′) (by Lemma 3.1);
• (∀j ∈ N ′)V ′j ⊆ T ′j (by Proposition 3.42);
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• for any V ′ ∈ V′, we have Card (V ′) =
∑

j /∈N ′ n
T ′
j · kj , where T ′ ∈ T′ such that V ′ ⊆ T ′ (by

Proposition 3.43);
• B0(TR′ [i+ 1](e′)) = (B0(TR′ [i](e′))∩P0(TR′ [i+ 1](e′)))∪ !′[N ′] (by Lemma 3.1 and Propo-

sition 3.19);
• and, for any j ∈ N ′, there exists ϕ′j : BTR′ [i+1](e′)(!

′(j)) ≡(TR′ [i+1](e′),!′(j))

⊕
U ′j (by

Proposition 3.47).

So, for any T ∈ T, there exists a bijection τT : T ' σ(T ) such that

τT [T ∩ (
⋃
j∈N
SkTR[i+1](e)(Kk,j(TR[i](e))))] = σ(T ) ∩ (

⋃
j∈N ′

SkTR′ [i+1](e′)(Kk,j(TR′ [i](e
′))))

hence there exist a bijection τ :
⋃
j∈N Tj '

⋃
j∈N T ′j and a sequence (ψT )T∈

⋃
j∈N Tj such

that (∀T ∈
⋃
j∈N Tj)ψT : σ(T ) ≡ τ(T ) and

τ [
⋃
j∈N
SkTR[i+1](e)(Kk,j(TR[i](e)))] =

⋃
j∈N ′

SkTR′ [i+1](e′)(Kk,j(TR′ [i](e
′)))

For any p ∈ P0(TR′ [i](e′)) \ P ′, let H(p) be the unique T ′ ∈
⋃
j∈N T ′j such that p ∈ P0(T ′).

We can thus define a bijection ψ : P(TR[i+ 1](e)) ' P(TR′ [i+ 1](e′)) such that:

• for any p ∈ P, we have ψ(p) = ϕ(p) ∈ P ′;
• for any o ∈ B0(TR[i+ 1](e)) ∩ P, for any p ∈ P(BTR[i+1](e)(o)), we have ψ(o, p) = ϕ(o, p);
• for any p ∈ P0(TR[i+ 1](e)) \ P, we have ψ(p) = ψH(ϕ(p))(ϕ(p));

• for any o ∈ B<i0 (TR[i + 1](e)) \ P, for any p ∈ P(BTR[i+1](e)(o)), we have ψ(o, p) =
ψH(ϕ(o))(ϕ(o, p));

• and, for any j ∈ N , for any p ∈ P(BTR[i+1](e)(!(j))), we have ψ(!(j), p) = (ϕ(!(j)), (ϕ′j
−1 ◦

ϕ ◦ ϕj)(p)).
It is straightforward to check that ψ : TR[i+ 1](e) ≡ TR′ [i+ 1](e′). In particular:

• for any p ∈ W0(TR[i+ 1](e)) \P such that tG(TR[i+1](e))(p) ∈ P , we have ϕ(tG(TR[i](e))(p)) ∈
P ′ ∩ P0(H(ϕ(p))) = P f(H(ϕ(p))), hence

ψ(tG(TR[i+1](e))(p)) = ϕ(tG(TR[i+1](e))(p))

= ϕ(tG(TR[i](e))(p))

= ψH(ϕ(p))(ϕ(tG(TR[i](e))(p)))

= ψH(ϕ(p))(tG(TR′ [i](e′))(ϕ(p)))

= tG(TR′ [i](e′))(ψH(ϕ(p))(ϕ(p)))

= tG(TR′ [i+1](e′))(ψH(ϕ(p))(ϕ(p)))

= tG(TR′ [i+1](e′))(ψ(p))

• we have

ψ[B0(TR[i+ 1](e))] = ψ[B0(TR[i+ 1](e)) ∩ P] ∪ ψ[B0(TR[i+ 1](e)) \ P]

= ϕ[B0(TR[i+ 1](e)) ∩ P] ∪ {ψH(ϕ(o))(ϕ(o)); o ∈ B0(TR[i+ 1](e)) \ P}
= (B0(TR′ [i+ 1](e′)) ∩ P ′) ∪ (B0(TR′ [i+ 1](e′)) \ P ′)
= B0(TR′ [i+ 1](e′))
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Figure 39: The PS R of the proof of Proposition 3.52

• For any j ∈ N , we have an isomorphism ϕ!(j) :
⊕
Uj '

⊕
U ′j that associates with

every p ∈ P(
⊕
Uj) the port p ∈ P(

⊕
U ′j), hence (ϕ′j)

−1 ◦ ϕ!(j) ◦ ϕj is an isomorphism

BTR[i+1](e)(!(j)) ' BTR′ [i+1](e′)(!
′(j)).

A set of two well-chosen terms of the Taylor expansion are already enough to characterize
a PS:

Theorem 3.50. For any PS R having T as Taylor expansion, there exists a finite subset
T0 of T with Card (T0) = 2 such that, for any PS R′ having T ′ as Taylor expansion, for any
T ′0 ⊆ T ′, we have (T0 ≡ T ′0 ⇒ R ≡ R′).

Proof. From TR[0](e1) for e1 a 1-experiment, one can compute β(R). Indeed, one can easily
check by induction on depth(R) that we have:

• co-size(R) = co-size(TR[0](e1))
• Card (B(R)) = Card (B(TR[0](e1)))
• Θ(R) = Θ(TR[0](e1))

One can then take for T0 the set {TR[0](e1), TR[0](e)}, where e is any k-heterogeneous
pseudo-experiment on R with k ≥ β(R). Indeed:

Let R′ be a PS having T ′ as Taylor expansion and let {T ′1, T ′2} ⊆ T ′ such that
T ′1 ≡ TR[0](e1) and T ′2 ≡ TR[0](e). There exist a pseudo-experiment e′1 on R′ such that
T ′1 = TR′ [0](e′1) and a pseudo-experiment e′ on R′ such that T ′2 = TR′ [0](e′). By Corol-
lary 3.6, the pseudo-experiment e′ is a k-heterogeneous experiment on R′. So we can apply
Proposition 3.49.

In particular, we obtain the invertibility of Taylor expansion:

Corollary 3.51. Let R1 and R2 be two PS’s having respectively T1 and T2 as Taylor
expansions. If T1 ≡ T2, then R1 ≡ R2.

The finite subset T0 of Theorem 3.50 has cardinality 2. A natural question is to ask if
the theorem could be refined in such a way that one could have a singleton T0 (for any PS).
The answer is: no, it is not possible.

Proposition 3.52. There exists a PS R having T as Taylor expansion such that, for any
T ∈ T , there exist a PS R′ having T ′ as Taylor expansion and T ′ ∈ T ′ such that T ≡ T ′

holds but R ≡ R′ does not hold.

Proof. For R, we take the PS of depth 1 depicted in Figure 39. The PS R has as a Taylor
expansion the set {Tn;n ∈ N}, where, for any n ∈ N, the differential PS Tn is as depicted in
Figure 40. For any n ∈ N, let R′n be the PS as depicted in Figure 41 having T ′n as Taylor
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Figure 41: The PS’s R′n of Proposi-
tion 3.52

expansion; there exists T ′ ∈ T ′n such that T ′ ≡ Tn.

4. Relational semantics

4.1. Untyped framework. For the semantics of PS’s in the multiset based relational
semantics, we are given a set A that does not contain any couple nor any 3-tuple and such
that ∗ /∈ A. We define, by induction on n, the sets DA,n for any n ∈ N:

• DA,0 = {+,−} × (A ∪ {∗})
• DA,n+1 = DA,0 ∪ ({+,−} ×DA,n ×DA,n) ∪ ({+,−} ×Mfin(DA,n))

We set DA =
⋃
n∈NDA,n.

• For any α ∈ DA, we denote by height(α) the integer min{n ∈ N;α ∈ DA,n}. For any finite
set P, for any function x : P → DA, we set height(x) = max{height(x(p)); p ∈ P}.
• For any α ∈ DA, we define the integer size(α) by induction on height(α): for any
δ ∈ {+,−}, we set size((δ, γ)) = 1 if γ ∈ A∪{∗}, size((δ, α1, α2)) = 1 + size(α1) + size(α2)
if α1, α2 ∈ DA, and size((δ, [α1, . . . , αm])) = 1 +

∑m
j=1 size(αj). For any finite set P, for

any function x : P → DA, we set size(x) =
∑

p∈P size(x(p)).

• For any α ∈ DA, we denote by At(α) the set of γ ∈ A that occur in α. For any finite set
P, for any function x : P → DA, we set At(x) =

⋃
α∈im(x) At(α).

Definition 4.1. For any α ∈ DA, we define α⊥ ∈ DA as follows:

• if α ∈ A ∪ {∗} and δ ∈ {+,−}, then (δ, α)⊥ = (δ⊥, α);
• if α = (δ, α1, α2) with δ ∈ {+,−} and α1, α2 ∈ DA, then α⊥ = (δ⊥, α1

⊥, α2
⊥);

• if α = (δ, [α1, . . . , αm]) with δ ∈ {+,−} and α1, . . . , αm ∈ DA, then α⊥ = (δ⊥, [α1
⊥, . . . , αm

⊥]);

where +⊥ = − and −⊥ = +.

The following definition is an adaptation of the original definition in [19] to our framework.
If e is an experiment on some PS S, then P(e) P f(S) is its result. Then the interpretation of

a PS is the set of results of its experiments:

Definition 4.2. Let S be a differential in-PS. We define, by induction on depth(S), the set
of experiments on S: it is the set of pairs e = (P(e),B(e)), where

• P(e) is a function that associates with every p ∈ P0(S) an element of DA and with every
p ∈ P>0(S) an element of Mfin(DA),
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• and B(e) is a function which associates with every o ∈ B0(S) a finite multiset of experiments
on BS(o)

such that

• for any p ∈ Pm
0 (S), for any w1, w2 ∈ W0(S) such that tG(S)(w1) = p = tG(S)(w2), w1 ∈

L(G(S)) and w2 /∈ L(G(S)), we have P(e)(p) = (δ,P(e)(w1),P(e)(w2)) with δ ∈ {+,−}
and (lG(S)(p) = ⊗ ⇔ δ = +);

• for any {p, p′} ∈ A0(S) ∪ C0(S), we have P(e)(p) = P(e)(p′)⊥;
• for any p ∈ Pe

0(S), we have P(e)(p) = (δ,
∑

w∈W0(S)
tG(S)(w)=p

[P(e)(w)] +
∑

q∈P>0(S)
tS(q)=p

P(e)(q)) and

δ ∈ {+,−} and (lG(S)(p) = !⇔ δ = +);

• for any p ∈ P1
0 (S), we have P(e)(p) = (+, ∗) and, for any p ∈ P⊥0 (S), we have P(e)(p) =

(−, ∗);
• for any o ∈ B0(S), for any p ∈ P0(BS(o)), we have P(e)(p) =

∑
eo∈Supp(B(e)(o)) B(e)(o)(eo)·

[P(eo)(p)];
• for any o ∈ B0(S), for any p ∈ P>0(BS(o)), we have P(e)(p) =

∑
eo∈Supp(B(e)(o))

B(e)(o)(eo) · P(eo)(p).

If S is a PS, then we set JSK = {P(e) P f(S); e is an experiment on S}.

Every experiment induces a pseudo-experiment:

Definition 4.3. Let S be an in-PS. Let e be an experiment on S. Then we define, by
induction on depth(S), a pseudo-experiment e on S as follows:

• e(ε) = 0
• and, for any o ∈ B0(S), e(o) =

⋃
eo∈Supp(e(o)){eo[ε 7→ i]; 1 ≤ i ≤ B(e)(eo)}.

Definition 4.4. Let r ∈ Mfin(DA). We say that r is A-injective if, for any (δ, γ) ∈
{+,−} ×A, there is at most one occurrence of (δ, γ) in r.

For any set P , for any function x : P → DA, we say that x is A-injective if
∑

p∈P [x(p)]

is A-injective; moreover a subset D0 of (DA)P is said to be A-injective if, for any x ∈ D0,
the function x is A-injective.

An experiment e on a differential PS S is said to be injective if P(e) P f(R) is A-injective.

Definition 4.5. Let σ : A → DA. For any α ∈ DA, we define σ · α ∈ DA as follows:

• if α ∈ A, then σ · (+, α) = σ(α) and σ · (−, α) = σ(α)⊥;
• if α = (δ, ∗) for some δ ∈ {+,−}, then σ · α = α;
• if δ ∈ {+,−} and α1, α2 ∈ DA, then σ · (δ, α1, α2) = (δ, σ · α1, σ · α2);
• if δ ∈ {+,−} and α1, . . . , αm ∈ DA, then σ · (δ, [α1, . . . , αm]) = (δ, [σ · α1, . . . , σ · αm]).

For any set P , for any function x : P → DA, we define a function σ · x : P → DA by setting:
(σ · x)(p) = σ · x(p) for any p ∈ P.

Fact 4.6. For any σ : A→ DA, for any α ∈ DA, we have σ · α⊥ = (σ · α)⊥.

Proof. By induction on α.

Lemma 4.7. For any functions σ, σ′ : A → DA, for any α ∈ DA, we have σ · (σ′ · α) =
(σ · σ′) · α.

Proof. By induction on α, applying Fact 4.6.
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Definition 4.8. Let S be a differential in-PS. Let e be an experiment on S. Let σ : A → DA.
We define, by induction of depth(S), an experiment σ · e on S by setting

• P(σ · e) = σ · P(e)
• B(σ · e)(o) =

∑
eo∈Supp(B(e)(o)) B(e)(o)(eo) · [σ · eo] for any o ∈ B0(S).

Since we deal with untyped proof-nets, we cannot assume that the proof-nets are η-
expanded and that experiments label the axioms only by atoms. That is why we introduce
the notion of atomic experiment :

Definition 4.9. For any differential in-PS S, we define, by induction on depth(S), the set
of atomic experiments on S: it is the set of experiments e on S such that

• for any {p, q} ∈ A(G(S)), we have P(e)(p),P(e)(q) ∈ {+,−} ×A;
• and, for any o ∈ B0(S), the multiset B(e)(o) is a multiset of atomic experiments on BS(o).

Definition 4.10. Let P be a set.
Let x ∈ (DA)P . A renaming of x is a function σ : A → DA such that (∀γ ∈ At(x))σ(γ) ∈

{+,−} ×A.

Let D ⊆ (DA)P . Let x ∈ D, we say that x is D-atomic if we have

(∀σ ∈ (DA)A)(∀y ∈ D)(σ · y = x⇒ σ ∈ R(y))

We denote by DAt the subset of D consisting of the D-atomic elements of D.

Fact 4.11. Let x ∈ DA. Let σ and τ be two applications A → DA. Then we have
(σ · τ ∈ R(x)⇒ (τ ∈ R(x) ∧ σ ∈ R(τ · x))).

Proof. Let us assume that σ · τ ∈ R(x). By Lemma 4.7, we have (σ · τ) · x = σ · (τ · x). So,
we have size(τ ·x) ≤ size(σ · (τ ·x)) = size((σ · τ) ·x) = size(x) ≤ size(τ ·x) ≤ size(σ · (τ ·x)),
hence size(τ · x) = size(x) and size(σ · (τ · x)) = size(τ · x), which entails that τ ∈ R(x) and
σ ∈ R(τ · x).

Fact 4.12. Let S and S′ be two cut-free differential PS’s of depth 0. Let e and e′ be two
atomic experiments on S and S′ respectively such that P(e) P f(S) = P(e) P f(S′) is A-injective.

Then S ≡ S′.

Proof. By induction on Card (P0(S)).

For any PS R, any JRK-atomic injective point is the result of some atomic experiment
on R:

Fact 4.13. Let R be a cut-free in-PS. Let x ∈ JRKAt. We assume that the set A is infinite
or x is A-injective. Then there exists an atomic experiment e on R such that e P f(R) = x.

Proof. We prove, by induction on (depth(R),Card (P0(R))) lexicographically ordered, that,
for any non-atomic experiment e′ on R, there exist an experiment e on R, a function
σ : A → DA such that σ · e = e′ and γ ∈ At(e P f(R)) such that σ(γ) /∈ {+,−} ×A.

The converse does not necessarily hold (but see Lemma 4.29 about typable cut-free
PS’s): for some cut-free PS’s R, there are results of atomic injective experiments on R that
are not JRK-atomic. Indeed, consider Figure 42. There exists an atomic injective experiment
e on R′′ such that

• P(e)(p1) = (−, [(+, γ1), . . . , (+, γ7), (+, (+, γ8), (+, γ9)), . . . , (+, (+, γ22), (+, γ23))]),
• P(e)(p2) = (−, [(−, γ1), . . . , (−, γ7), (−, (−, γ8), (−, γ9)), . . . , (−, (−, γ22), (−, γ23))])
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Figure 42: PS R′′

• and P(e)(p3) = (−, [(+, [(+, ∗), (+, ∗)]), (+, [(+, ∗), (+, ∗), (+, ∗)])]),
where {γ1, . . . , γ23} ⊆ A. But e {p1,p2,p3} is not in (JR′′K)At: there exists an atomic injective
experiment e′ on R′ such that

• P(e′)(p1) = (−, [(+, γ1), . . . , (+, γ8), (+, (+, γ10), (+, γ11)), . . . , (+, (+, γ22), (+, γ23))]),
• P(e′)(p2) = (−, [(−, γ1), . . . , (−, γ8), (−, (−, γ10), (−, γ11)), . . . , (−, (−, γ22), (−, γ23))])
• and P(e′)(p3) = (−, [(+, [(+, ∗), (+, ∗)]), (+, [(+, ∗), (+, ∗), (+, ∗)])]);

we set σ(γ) =

{
(+, γ) if γ ∈ A \ {γ8};
(+, (+, γ8), (+, γ9)) if γ = γ8;

- we have σ ·e′ {p1,p2,p3} = e {p1,p2,p3}.

But it does not matter, because yet atomic points are enough to generate all the points:

Fact 4.14. Let R be an in-PS. For any y ∈ JRK, there exist x ∈ JRKAt and σ : A → DA
such that σ · x = y.

Proof. By induction on size(
∑

p∈P f(R)[y(p)]): if y ∈ JRKAt, then we can set x = y and

σ = idA; if y /∈ JRKAt, then there exist a function σ′ : A → DA, y′ ∈ JRK such that σ′ · y′ = y
and γ ∈ At(y′) such that σ′(γ) /∈ A, hence size(

∑
p∈P f(R)[y

′(p)]) < size(
∑

p∈P f(R)[y(p)]). By

induction hypothesis, there exist x ∈ JRKAt and σ′′ : A → DA such that σ′′ · x = y′. We set
σ = σ′ · σ′′: we have σ · x = (σ′ · σ′′) · x = σ′ · (σ′′ · x) = σ′ · y′ = y.

Lemma 4.15. Let R be an in-PS. Let e be an (resp. atomic) experiment on R. Then
there exists an (resp. atomic) experiment TR(e) on TR[0](e) such that P(TR(e)) P f(TR[0](e)) =

P(e) P f(R).

Proof. We prove, by induction on depth(R), that, for any in-PS R, for any experiment e on
R, there exists an experiment TR(e) on TR[0](e) such that

• for any p ∈ P0(R), we have P(e)(p) = P(TR(e))(p);
• and, for any p ∈ P>0(R), we have P(e)(p) =

∑
q∈P(TR[0](e))
κR[0](e)(q)=p

[P(TR(e))(q)].

One can take for TR(e) the following experiment on TR[0](e):

• for any p ∈ P0(R), P(TR(e))(p) = P(e)(p);
• for any o ∈ B0(R), for any eo ∈ Supp(B(e)(o)), for any p ∈ P0(TBR(o)[0](eo)),

P(TR(e))((o, (eo, p)) = P(TBR(o)(eo))(p).

Definition 4.16. Let k > 1. An experiment e on some in-PS R is said to be k-heterogeneous
if the pseudo-experiment e is k-heterogeneous.

Definition 4.17. Let k > 1. For any function x : P → DA, where P is any set, we say that
x is k-heterogeneous if the following properties hold:
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• for any multiset a, the pair (+, a) occurs at most once in im(x) and, if it occurs, then
there exists j > 0 such that the cardinality of a is kj ;
• for any multisets a1 and a2 having the same cardinality such that the pairs (+, a1) and

(+, a2) occur in im(x), we have a1 = a2.

Lemma 4.18. Let R be a cut-free in-PS. Let k > 1. For any experiment e on R, if
P(e) P f(R) is k-heterogeneous, then e is k-heterogeneous. Conversely, if e is an atomic

k-heterogeneous experiment on R, then P(e) P f(R) is k-heterogeneous.

Proof. Let e be an experiment on R such that P(e) P f(R) is k-heterogeneous. By Lemma 4.15,

there exists an experiment TR(e) on TR[0](e) such that P(TR(e)) P f(TR[0](e)) = P(e) P f(R).

Since TR[0](e) is cut-free, we have:

(1) aTR[0](e)[P !
0(TR[0](e))] ⊆ {kj ; j > 0}

(2) (∀p1, p2 ∈ P !
0(TR[0](e)))(aTR[0](e)(p1) = aTR[0](e)(p2)⇒ p1 = p2)

By Corollary 3.6, the pseudo-experiment e is k-heterogeneous.
Conversely, let e be an atomic k-heterogeneous experiment on R. Then, by Lemma 4.15,

there exists an atomic experiment TR(e) of TR[0](e) such that P(TR(e)) P f(TR[0](e)) =

P(e) P f(R). By Corollary 3.6, we have:

(1) aTR[0](e)[P !
0(TR[0](e))] ⊆ {kj ; j > 0}

(2) (∀p1, p2 ∈ P !
0(TR[0](e)))(aTR[0](e)(p1) = aTR[0](e)(p2)⇒ p1 = p2)

Since TR(e) is atomic, P(TR(e)) P f(TR[0](e)) is k-heterogeneous.

Lemma 4.19. Let R and R′ be two cut-free PS’s such that P f(R) = P f(R′). Let e be an
injective atomic experiment on R and let e′ be an injective atomic experiment on R′ such
that P(e) P f(R) = P(e′) P f(R′). Then TR[0](e) ≡ TR′ [0](e′).

Proof. By Lemma 4.15, there exists an atomic experiment TR(e) on TR[0](e) such that
P(TR(e)) P f(TR[0](e)) = P(e) P f(R) and an atomic experiment TR′(e′) on TR′ [0](e′) such that

P(TR′(e′)) P f(TR′ [0](e′))
= P(e′) P f(R′). We apply Fact 4.12.

Theorem 4.20. Let R be a cut-free PS. If the set A is infinite, then there exists an A-
injective subset D0 of JRKAt with Card (D0) = 2 such that, for any cut-free PS R′ with

P f(R) = P f(R′), one has (D0 ⊆ JR′KAt ⇒ R ≡ R′).

Proof. Let f be an injective 1-experiment on R (its existence is ensured by the assumption
that the set A is infinite). By Fact 4.14, there exists x1 ∈ JRKAt and σ1 : A → DA such that
σ1 · x1 = f P f(R); the point x1 is A-injective too. Let k1 ∈ N be the greatest cardinality of

the negative multisets that occur in im(x1). Let k2 ∈ N be the number of occurrences of
positive multisets in im(x1). Let k > max {k1, k2} and let e be an injective k-heterogeneous
experiment on R (its existence is ensured by the assumption that the set A is infinite). By
Fact 4.14, there exist x ∈ JRKAt and σ : A → DA such that σ · x = e P f(R). We can take

D0 = {x1, x}. Indeed:
Since the point e P f(R) is A-injective, the point x is A-injective too. By Lemma 4.18,

e P f(R) is k-heterogeneous, hence x too. Let R′ be a cut-free PS such that P f(R) = P f(R′)

and D0 ⊆ JR′KAt. By Fact 4.13, there exist an atomic experiment f0 (resp. f ′0) on R (resp. of
R′) such that P(f0) P f(R) = x1 (resp. P(f ′0) P f(R′) = x1) and an atomic experiment e0 (resp.
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e′0) on R (resp. of R′) such that P(e0) P f(R) = x (resp. P(e′0) P f(R′) = x). By Lemma 4.19,

we have TR[0](e0) ≡ TR′ [0](e′0).
Moreover, the experiments f0 and f ′0 are 1-experiments on R and R′ respectively (all

the positive multisets of x1 have cardinality 1). We have:

• co-size(R) = k1 = co-size(R′);
• Card (B(R)) = k2 = Card (B(R′));
• and Θ(R) = 0 = Θ(R) (because R and R′ are cut-free).

We thus have k ≥ max {β(R), β(R′)}. Finally, by Lemma 4.18, the experiments e0 and e′0
are k-heterogeneous. We can then apply Proposition 3.49 to obtain R ≡ R′.

Corollary 4.21. Let R and R′ be two cut-free PS’s such that P f(R) = P f(R′). If the set A
is infinite, then one has (R ≡ R′ ⇔ JRKAt = JR′KAt).

4.2. Typed framework. We want to apply Theorem 4.20 to obtain a similar result for
typed PS’s (Theorem 4.36). For that, we need to relate J(R,T)K to JRKAt; it is the role of
Lemma 4.30.

Definition 4.22. We assume that we are given a set JXK for each X ∈ X . Then, for
any C ∈ T, we define, by induction on C, the set JCK as follows: J1K = {∗} = J⊥K;
J(C1 ⊗ C2)K = JC1K× JC2K = J(C1 ` C2)K; J!CK =Mfin(JCK) = J?CK.

Let (R,T) be a typed differential in-PS. We define, by induction on depth(R), the set of
experiments on (R,T): it is the set of pairs e = (P(e),B(e)), where

• P(e) is a function that associates with every p ∈ P0(R) an element of JT(p)K and with
every p ∈ P>0(R) an element of Mfin(JT(p)K),
• and B(e) is a function which associates with every o ∈ B0(R) a finite multiset of experiments

on (BR(o),T P(BR(o)))

such that

• for any p ∈ Pm
0 (R), for any w1, w2 ∈ W0(R) such that tG(R)(w1) = p = tG(R)(w2),

w1 ∈ L(G(R)) and w2 /∈ L(G(R)), we have P(e)(p) = (P(e)(w1),P(e)(w2));
• for any {p, p′} ∈ A0(R) ∪ C0(R), we have P(e)(p) = P(e)(p′);
• for any p ∈ Pe

0(R), we have P(e)(p) =
∑

w∈W0(R)
tG(R)(w)=p

[P(e)(w)] +
∑

o∈B0(R)

∑
eo∈Supp(B(e)(o))∑

q∈P f(BR(o))
tR(o,q)=p

B(e)(o)(eo) · P(eo)(q);

• for any o ∈ B0(R), for any p ∈ P0(BR(o)), we have P(e)(p) =
∑

eo∈Supp(B(e)(o)) B(e)(o)(eo)·
[P(eo)(p)];
• for any o ∈ B0(R), for any p ∈ P>0(BR(o)), we have P(e)(p) =

∑
eo∈Supp(B(e)(o)) B(e)(o)(eo)·

P(eo)(p).

For any experiment e = ((R,T),P(e),B(e)), we set P(e) = P(e) and B(e) = B(e). We set
J(R,T)K = {P(e) P f(R); e is an experiment on (R,T)}.

From now on, we assume that, for any X ∈ X , the set JXK does not contain any couple
nor any 3-tuple and ∗ /∈ A and we assume that A =

⋃
X∈X JXK. We define, by induction on

n, the sets DA,n for any n ∈ N:

• DA,0 = A ∪ {∗}
• DA,n+1 = DA,0 ∪ (DA,n ×DA,n) ∪Mfin(DA,n)
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We set DA =
⋃
n∈NDA,n. We define the function U : DA → DA as follows:

• if α = (δ, γ) with δ ∈ {+,−} and γ ∈ A ∪ {∗}, then U(α) = γ;
• if α = (δ, α1, α2) with δ ∈ {+,−} and α1, α2 ∈ D, then U(δ, α1, α2) = (U(α1), U(α2));
• if α = (δ, α0) with δ ∈ {+,−} and α0 ∈ D, then U(δ, α0) = U(α0).

Definition 4.23. Let σ : A → A. For any α ∈ DA, we define σ · α ∈ DA as follows:

• if α ∈ A, then σ · α = σ(α);
• if α = ∗, then σ · α = α;
• if α1, α2 ∈ DA, then σ · (α1, α2) = (σ · α1, σ · α2);
• if α1, . . . , αm ∈ DA, then σ · [α1, . . . , αm] = [σ · α1, . . . , σ · αm].

For any set P , for any function x : P → DA, we define a function σ · x : P → DA by setting:
(σ · x)(p) = σ · x(p) for any p ∈ P.

For any function σ : A → DA, we define the function U(σ) : A → A as follows:

U(σ)(γ) =

{
U(σ(γ)) if σ(γ) ∈ {+,−} ×A;
γ otherwise.

Fact 4.24. For any α ∈ DA, for any σ ∈ R(α), we have U(σ · α) = U(σ) · U(α).

Fact 4.25. Let (R,T) be a typed in-PS. Then, for any experiment e on R, for any p ∈ P0(R),
we have height(e(p)) ≥ height(T(p)).

Definition 4.26. Any α ∈ DA is said to be uniform if, for any occurrence of any multiset
a that occurs in α, for any β, β′ ∈ Supp(a), we have height(β) = height(β′).

For any finite set P, any function x : P → DA is said to be uniform if, for any p ∈ P,
x(p) is uniform.

Fact 4.27. Let (R,T) be a typed in-PS. Then, for any atomic experiment e on R, for any
p ∈ P0(R), e(p) is uniform and we have height(e(p)) = height(T(p)).

Fact 4.28. Let α, α′ ∈ DA and σ : A → DA such that α′ is uniform and σ · α′ = α. We
have height(α) > height(α′) if, and only if, σ /∈ R(α′).

Proof. By induction on height(α).

Lemma 4.29. We assume that, for any X ∈ X , the set JXK is infinite. Let (R,T) be a
cut-free typed PS. Then, for any atomic experiment e on R, we have e P f(R) ∈ JRKAt.

Proof. Let e be an atomic experiment on R. Let x′ ∈ JRK and let σ : A → DA such that
σ · x′ = e P f(R). By Fact 4.14, there exist x ∈ JRKAt and τ : A → DA such that τ · x = x′.

By Fact 4.13 and Fact 4.27, the point x is uniform and (∀p ∈ P f(R))height(x(p)) =
height(T(p)) = e(p). By Lemma 4.7, we have (σ · τ) · x = σ · (τ · x) = σ · x′ = e P f(R). By

Fact 4.28, we have σ · τ ∈ R(x), hence, by Fact 4.11, σ ∈ R(τ · x) = R(x′), which entails
e P f(R) ∈ JRKAt.

Lemma 4.30. Let us assume that, for any X ∈ X , the set JXK is infinite. Let (R,T) be a
cut-free typed PS. Then {U ◦ x;x ∈ JRKAt} =

⋃
x∈J(R,T)K{σ · x;σ ∈ AA}.

Proof. By Lemma 4.29, we have J(R,T)K ⊆ {U ◦ x;x ∈ JRKAt}. Let x ∈ J(R,T)K. Now, for
any x′ ∈ JRKAt, for any σ ∈ R(x′), we have σ·x′ ∈ JRKAt; indeed, let x ∈ JRK and τ : A → DA
such that τ · x = σ · x′; by Fact 4.13 and Fact 4.27, we have height(x) = height(x′), hence, by



TAYLOR EXPANSION IN LINEAR LOGIC IS INVERTIBLE 67

Fact 4.28, τ ∈ R(x). So, by Fact 4.24, we have
⋃
x∈J(R,T)K{σ·x;σ ∈ AA} ⊆ {U(σ)·(U◦x); (x ∈

JRKAt ∧ σ ∈ AA)} = {U ◦ (σ · x); (x ∈ JRKAt ∧ σ ∈ R(x))} = {U ◦ x;x ∈ JRKAt}.
Conversely, let x ∈ JRKAt. If X = ∅, then U ◦ x ∈ J(R,T)K. Otherwise, the set A is

infinite, hence there exist an injective atomic experiment e on R and σ ∈ R(x) such that
x = σ · e P f(R). Let τ : A → DA such that:

• for any p ∈ Pax
0 (R), for any γ ∈ A, for any δ ∈ {+,−} such that e(p) = (δ, γ), we have

U(τ)(γ) ∈ JT(p)K;
• and, for any p ∈ Pax(R) ∩ P>0(R), for any γ ∈ A, for any δ ∈ {+,−} such that

(δ, γ) ∈ Supp(e(p)), we have U(τ)(γ) ∈ JT(p)K.
We have U(τ) · (U ◦ e P f(R)) ∈ J(R,T)K. It is clear that there exists σ′ ∈ R(τ · e P f(R)) such

that σ′ · (τ · e P f(R)) = σ · e P f(R). We have U ◦x = U ◦ (σ · e P f(R)) = U ◦ (σ′ · (τ · e P f(R))) =

U(σ′) · (U ◦ (τ · e P f(R))) = U(σ′) · (U(τ) · (U ◦ e P f(R))) (by applying Fact 4.24 twice).

Definition 4.31. Let D ⊆ (DA)P for some set P. We say that D reflects renamings if the
following property holds: (∀x ∈ D)(∀y ∈ DA)(∀σ ∈ R(y))(σ · y = x⇒ y ∈ D)

Definition 4.32. For any finite set P, any function x : P → DA is said to be balanced if,
for any γ ∈ A, there are as many occurrences of (+, γ) in

∑
p∈P [x(p)] as occurrences of

(−, γ) in
∑

p∈P [x(p)].

Fact 4.33. Let S be a differential in-PS. Then, for any x ∈ JSK, x is balanced.

Proof. By induction on (depth(S),Card (B(S)) ,Card (P0(S)) ,Card (C0(S))) lexicographically
ordered.

Fact 4.34. Let P be some finite set and let T be a function P → T. Let x1, x2 ∈ (DA)P A-
injective and balanced such that U◦x1 = U◦x2 and, for any p ∈ P , we have U(x1(p)) ∈ JT(p)K.
Then there exists σ ∈ R(x1) such that σ · x1 = x2.

Proof. By induction on
∑

p∈P size(T(p)).

Lemma 4.35. Let P be some finite set. Let D ⊆ (DA)P . Let x ∈ D and let σ ∈ R(x) such
that σ · x ∈ DAt. Then x ∈ DAt.

Proof. Let y ∈ D and let τ : A → DA such that τ · y = x. Then, by Lemma 4.7, we have
(σ · τ) · y = σ · (τ · y) = σ · x. We have σ · τ ∈ R(y), hence, by Fact 4.11, τ ∈ R(y).

Theorem 4.36 is similar to Theorem 4.20:

Theorem 4.36. Let (R,T) be a cut-free typed PS. If, for any X ∈ X , the set JXK is infinite,
then there exists D0 ⊆ J(R,T)K with Card (D0) = 2 such that, for any cut-free typed PS (R′,T′)
with P f(R) = P f(R′) and T P f(R) = T′ P f(R′), we have (D0 ⊆ J(R′,T′)K⇒ (R,T) ≡ (R′,T′)).

Proof. By Theorem 4.20, there exists an A-injective subset D′0 = {y, z} of JRKAt with
Card (D0) = 2 such that, for any cut-free PS R′, we have (D′0 ⊆ JR′KAt ⇒ R ≡ R′). We can
take D0 = {U ◦ x;x ∈ D′0}. Indeed:

Let (R′,T′) be a typed PS such that P f(R) = P f(R′), T P f(R) = T′ P f(R′) and D0 ⊆
J(R′,T′)K. By Lemma 4.30, there exist y′, z′ ∈ JR′KAt such that U◦y = U◦y′ and U◦z = U◦z′.
By Fact 4.33, we can apply Fact 4.34 to obtain that there exist σy ∈ R(y) and σz ∈ R(z)
such that σy · y = y′ and σz · z = z′. By Lemma 4.35, we thus have D′0 ⊆ JR′KAt, hence
R ≡ R′. By Fact 1.13, we obtain (R,T) ≡ (R′,T′).
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Now, we take advantage of the normalization property of the typed PS’s:

Corollary 4.37. Let (R1,T1) and (R2,T2) be two typed PS’s such that P f(R1) = P f(R2)
and T1 P f(R1) = T2 P f(R2). If, for any X ∈ X , the set JXK is infinite, then we have

((R1,T1) 'β (R2,T2)⇔ J(R1,T1)K = J(R2,T2)K).

Proof. Let us assume that J(R1,T1)K = J(R2,T2)K. There exist two cut-free typed PS’s
(R′1,T

′
1) and (R′2,T

′
2) such that (R1,T1) 'β (R′1,T

′
1) and (R2,T2) 'β (R′2,T

′
2). We

have P f(R′1) = P f(R1) = P f(R2) = P f(R′2) and J(R′1,T
′
1)K = J(R1,T1)K = J(R2,T2)K =

J(R′2,T
′
2)K. By Theorem 4.36, we have (R′1,T

′
1) ≡ (R′2,T

′
2), hence (R1,T1) 'β (R2,T2).

Conclusion

The aim of this work was to prove theorems that relate the syntax of the proof-nets with
their relational semantics firstly and with their Taylor expansion secondly. But incidentally
we proved an interesting intrinsic semantical result: We showed that the entire relational
semantics of any normalizable proof-net can be rebuilt from two well-chosen points (and
that it is impossible to strengthen this result by rebuilding any proof-net from only one
well-chosen point). So, in some way, these two points together could be seen as a principal
typing of intersection types for the given proof-net. With the algorithm we described, we
can first rebuild the normal form of the proof-net from this “principal typing” and then
compute the semantics. Now, some technology could probably be developed to compute the
semantics directly from these points without rebuilding the syntactic object, like in the case
of untyped lambda-calculus (expansion, substitution...).
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5. Appendix: Proof of Lemma 3.38

Proof. With Lemma 2.8 in mind, we can describe TRo [i](e):

• P0(TRo [i](e)) = P0(TR[i](e)) ∪
⋃
e1∈e(o){(o, (e1, p)); p ∈ Q

′};

• lG(TRo [i](e))
(p) =

{
lG(TR[i](e))(p) if p ∈ P0(TR[i](e));
? otherwise;

• κRo [i](e)(p) =

 κR[i](e)(p) if p ∈ P0(TR[i](e));
(o, ϕo(q

′)) if p = ϕe1(q′) for some e1 ∈ e(o), q′ ∈ Q;
q if p = q;

• W0(TRo [i](e)) =W0(TR[i](e)) ∪
⋃
e1∈e(o){(o, (e1, p)); p ∈ Q

′};
• tG(TRo [i](e))

(p) is the following port of G(TRo [i](e)):{
(o, (e1, ϕo(tG(TR[i](e))(p)))) if p = (o, (e1, p

′)) with e1 ∈ e(o) and tG(TR[i](e))(p) ∈ Q;
tG(TR[i](e))(p) otherwise.

• C0(TRo [i](e)) = C0(TR[i](e)) and A0(TRo [i](e)) = A0(TR[i](e))
• B0(TRo [i](e)) = B0(TR[i](e))
• BTRo [i](e)

= BTR[i](e)

• dom(tTRo [i](e)
) = dom(tTR[i](e)) and tTRo [i](e)

(o′, p) = (o, (e1, ϕo(tTR[i](e)(o
′, p)))

if tTR[i](e)(o
′, p) ∈ Q and o′ = (o, (e1, o

′′))
for some e1 ∈ e(o), o′′ ∈ B0(TBR(o)[i](e1));

tTR[i](e)(o
′, p) otherwise;

For any p, p′ ∈ P0(R〈o, i, eo〉) ∪ Q ∪ ϕeo [Q] such that Card ({p, p′} ∩ Q) ≤ 1, we have
p ¨TRo [i](e)

p′ if, and only if, one of the following properties holds:

• p, p′ ∈ P0(TR[i](e)) \ Q and p ¨TR[i](e) p
′

• {p, p′} ⊆ {(o, (eo, p′′)), ϕeo(tR(o, p′′))} for some p′′ ∈ P f
R(o)

• {p, p′} ∩ Q is some singleton {p′′} with p′′ ∈ Q and {p, p′} ⊆ {p′′, ϕeo(p′′)}
1) Let T ∈ SkTR[i](e)(P) such that P0(T ) ∩ P0(R〈o, i, eo〉) 6= ∅. We have P0(T [ϕeo ]) =

(P0(T ) \Q)∪ϕeo [Q∩P0(T )], hence, by Lemma 3.29, P0(T [ϕeo ]) ⊆ P0(R〈o, i, eo〉)∪ϕeo [Q∩
P0(T )] (∗). Again, by Lemma 3.29, we have P0(T ) ∩Q ⊆ P (∗∗).

Let w ∈ W0(T ): We have w /∈ P (hence, by (∗∗), w ∈ P0(T [ϕeo ]) \ Peo). Again by
Lemma 3.29, there exists p ∈ P0(TBR(o)[i](eo)) such that w = (o, (eo, p)). We distinguish
between two cases:

• p ∈ P f
R(o): we have tG(TR[i](e))(o, (eo, p)) = tR(o, p) ∈ P0(T )∩Q, hence tG(TRo [i](e))

(o, (eo, p)) =

(o, (eo, ϕo(tR(o, p)))) ∈ P0(T [ϕeo ]);
• p /∈ P f

R(o): we have tG(TRo [i](e))
(o, (eo, p)) = tG(TR[i](e))(o, (eo, p)) ∈ P0(T )\Q ⊆ P0(T [ϕeo ]).

We thus have

W0(T )

⊆ {w ∈ (W0(TRo [i](e)) ∩ P0(T [ϕeo ])) \ Peo ; tG(TRo [i](e))
(w) ∈ P0(T [ϕeo ])}

Conversely, let w ∈ (W0(TRo [i](e))∩P0(T [ϕeo ])) \Peo such that tG(TRo [i](e))
(w) ∈ P0(T [ϕeo ]).

By (∗), there exists p ∈ P0(TBR(o)[i](eo)) such that w = (o, (eo, p)). We distinguish between
two cases:

• p ∈ P f
R(o): we have tG(TRo [i](e))

(o, (eo, p)) = (o, (eo, ϕo(tR(o, p)))) ∈ P0(T [ϕeo ]), hence

(o, (eo, ϕo(tR(o, p)))) ∈ ϕeo [Q∩ P0(T )]; so, tG(TR[i](e))(o, (eo, p)) = tR(o, p) ∈ P0(T ), which
shows that (o, (eo, p)) ∈ W0(T );
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• p /∈ P f
R(o): we have tG(TR[i](e))(o, (eo, p)) = tG(TRo [i](e))

(o, (eo, p)) ∈ P0(T [ϕeo ]) \ ϕeo [Q] ⊆
P0(T ).

We thus have

{w ∈ (W0(TRo [i](e)) ∩ P0(T [ϕeo ])) \ Peo ; tG(TRo [i](e))
(w) ∈ P0(T [ϕeo ])}

⊆ W0(T )

Moreover, W0(T [ϕeo ]) =W0(T ); we thus showed:

W0(T [ϕeo ])

= {w ∈ (W0(TRo [i](e)) ∩ P0(T [ϕeo ])) \ Peo ; tG(TRo [i](e))
(w) ∈ P0(T [ϕeo ])}

So, T [ϕeo ] vPeo
TRo [i](e).

Since T is connected through ports not in P, T [ϕeo ] is connected through ports not in
ϕeo [P ∩ dom(ϕeo)] ∪ (P \ dom(ϕeo)) = Peo .

Finally, co-size(T [ϕeo ]) = co-size(T ) and P f(G(T [ϕeo ])) = P0(T [ϕeo ]) \ (W0(T [ϕeo ]) ∪⋃
C0(T [ϕeo ])) = ((P0(T ) \ Q) ∪ ϕeo [Q ∩ P0(T )]) \ (W0(T ) ∪

⋃
C0(T )) = (P f(G(T )) \ Q) ∪

ϕeo [Q∩P0(T )] ⊆ (P \Q)∪ϕeo [Q∩P0(T )] = Peo . Let p ∈ P0(T [ϕeo ]) and p′ ∈ P0(TRo [i](e))
such that p ¨TRo [i](e)

p′ and p′ /∈ P0(T [ϕeo ]) (hence p /∈ Q, so Card ({p, p′} ∩ Q) ≤ 1): We
distinguish between three cases:

• p, p′ ∈ P0(TR[i](e)) \ Q and p ¨TR[i](e) p
′: we have p ∈ P \ Q ⊆ Peo ;

• {p, p′} ⊆ {(o, (eo, p′′)), ϕeo(tR(o, p′′))} for some p′′ ∈ P f
R(o): either p = ϕeo(tR(o, p′))

(hence p ∈ ϕeo [Q] ⊆ Peo) or p = (o, (eo, p
′′)). From now on, let us assume that p =

(o, (eo, p
′′)). We have tR(o, p′′) ∈ Q. If tR(o, p′′) ∈ P0(T ), then p′ = ϕeo(tR(o, p′′)) ∈

P0(T )[ϕeo ], which contradicts p′ /∈ P0(T )[ϕeo ]; we thus have tR(o, p′′) /∈ P0(T ), which
entails p ∈ P \ Q ⊆ Peo .
• {p, p′}∩Q is some singleton {p′′} with p′′ ∈ Q and {p, p′} ⊆ {p′′, ϕeo(p′′)}: since p /∈ Q, we

have p′ = p′′ and p = ϕeo(p′) ∈ P0(T [ϕeo ]), hence p′ ∈ P0(T ) and, finally, p = ϕeo(p′′) ∈
ϕeo [P ∩Q] ⊆ Peo .

In the three cases, we have p ∈ Peo .
So, we showed T [ϕeo ] ∈ SkTRo [i](e)

(Peo).

2) Let T ∈ SkTRo [i](e)
(Peo) such that P0(T ) ⊆ P0(Ro〈o, i, eo〉). We have P0(T [ϕeo

−1]) =

(P0(T ) \ ϕeo [Q]) ∪ {q′ ∈ Q;ϕeo(q′) ∈ P0(T )}.
Since tG(TRo [i](e))

[ϕeo [Q]] = Q and Q∩ P0(T ) = ∅, we have

W0(T ) = {w ∈ (W0(TRo [i](e)) ∩ P0(T )) \ Peo ; tG(TRo [i](e))
(w) ∈ P0(T )}

= {w ∈ (W0(TRo [i](e)) ∩ P0(T )) \ Peo ; tG(TR[i](e))(w) ∈ P0(T )}
= {w ∈ (W0(TR[i](e)) ∩ P0(T )) \ P; tG(TR[i](e))(w) ∈ P0(T )}

Moreover, we have W0(T [ϕeo
−1]) =W0(T ). Hence

W0(T [ϕeo
−1]) = {w ∈ (W0(TR[i](e)) ∩ P0(T )) \ P; tG(TR[i](e))(w) ∈ P0(T )}

Since T is connected modulo Peo , T [ϕeo
−1] is connected modulo ϕeo

−1[Peo∩dom(ϕeo
−1)]∪

(Peo \ dom(ϕeo
−1)) = P.

Finally, co-size(T [ϕeo
−1]) = co-size(T ) and P f(G(T [ϕeo

−1])) = P0(T [ϕeo
−1])\(W0(T [ϕeo

−1])∪⋃
C0(T [ϕeo

−1])) = ((P0(T ) \ ϕeo [Q]) ∪ {q′ ∈ Q;ϕeo(q′) ∈ P0(T )}) \ (W0(T ) ∪
⋃
C0(T )) =

(P f(G(T ))\ϕeo [Q])∪{q′ ∈ Q;ϕeo(q′) ∈ P0(T )} ⊆ (Peo\ϕeo [Q])∪{q′ ∈ Q;ϕeo(q′) ∈ P0(T )} =
(((P \ Q) ∪ ϕeo [P ∩ Q]) \ ϕeo [Q]) ∪ {q′ ∈ Q;ϕeo(q′) ∈ P0(T )} ⊆ P. Let p ∈ P0(T [ϕeo

−1])
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and p′ ∈ P0(TR[i](e)) such that p ¨TR[i](e) p
′ and p′ /∈ P0(T [ϕeo

−1]). We distinguish between
three cases:

• p, p′ /∈ Q: we have p ∈ P0(T ), p′ /∈ P0(T ) and p ¨TRo [i](e)
p′, hence, since T EPeo

TRo [i](e),

we have p ∈ Peo ; but Peo ∩ P0(TR[i](e)) ⊆ P;
• p ∈ Q: we have ϕeo(p) ∈ P f(G(T )) ⊆ Peo , hence p ∈ P;
• p /∈ Q and p′ ∈ Q: we have p ∈ P f(G(T )) ⊆ Peo ; but Peo ∩ P0(TR[i](e)) ⊆ P.

In the three cases, we have p ∈ P.
So, we showed T [ϕeo

−1] ∈ SkTR[i](e)(P).

3) Let T ∈ SkTRo [i](e)
(P) such that (∀e1 ∈ e(o))P0(T ) ∩ P0(Ro〈o, i, e1〉) = ∅. Notice that

q /∈ P0(T ); indeed, since q ∈ P f(G(TRo [i](e))), we have (q ∈ P0(T )⇒ q ∈ P), but q /∈ P.
Since (∀w ∈ P0(T ))w /∈

⋃
e1∈e(o){(o, (e1, p)); p ∈ Q

′}, we have:

• W0(TR[i](e)) ∩ P0(T ) =W0(TRo [i](e)) ∩ P0(T )
• and (∀w ∈ W0(TR[i](e)) ∩ P0(T ))tG(TR[i](e))(w) = tG(TRo [i](e))

(w).

Hence

W0(T ) = {w ∈ (W0(TRo [i](e)) ∩ P0(T )) \ P; tG(TRo [i](e))
(w) ∈ P0(T )}

= {w ∈ (W0(TR[i](e)) ∩ P0(T )) \ P; tG(TR[i](e))(w) ∈ P0(T )}
So, T vP TR[i](e).

Let p ∈ P0(T ) and q′ ∈
⋃
e1∈e(o) P0(R〈o, i, e1〉) such that p ¨TR[i](e) q

′: We have

p ∈ Q. Since from T EP TRo [i](e) and (∀e1 ∈ e(o))P0(T ) ∩ P0(Ro〈o, i, e1〉) = ∅ we deduce
P0(T ) ∩Q ⊆ P, we obtain p ∈ P. We thus have T EP TR[i](e).

We showed T ∈ SkTR[i](e)(P).

4) Let T ∈ SkTR[i](e)(P) such that (∀e1 ∈ e(o))P0(T ) ∩ P0(R〈o, i, e1〉) = ∅.
Let p ∈ P0(T ) and q′ ∈

⋃
e1∈e(o) P0(R〈o, i, e1〉) such that p ¨TRo [i](e)

q′: We have

p ∈ Q. Since from T EP TR[i](e) and (∀e1 ∈ e(o))P0(T ) ∩ P0(R〈o, i, e1〉) = ∅ we deduce
P0(T ) ∩Q ⊆ P, we obtain p ∈ P. We thus have T EP TRo [i](e).

We showed T ∈ SkTRo [i](e)
(P).
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