
Logical Methods in Computer Science
Vol. 14(4:24)2018, pp. 1–29
https://lmcs.episciences.org/

Submitted Mar. 09, 2017
Published Dec. 11, 2018

SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC

RESOLUTION

HANS DE NIVELLE

School of Science and Technology, Nazarbayev University, 53 Qabanbay Batyr, Astana 010000,
Kazakhstan

Abstract. In our implementation of geometric resolution, the most costly operation is
subsumption testing (or matching): One has to decide for a three-valued, geometric formula,
if this formula is false in a given interpretation. The formula contains only atoms with
variables, equality, and existential quantifiers. The interpretation contains only atoms with
constants. Because the atoms have no term structure, matching for geometric resolution
is hard. We translate the matching problem into a generalized constraint satisfaction
problem, and discuss several approaches for solving it efficiently, one direct algorithm and
two translations to propositional SAT. After that, we study filtering techniques based on
local consistency checking. Such filtering techniques can a priori refute a large percentage
of generalized constraint satisfaction problems. Finally, we adapt the matching algorithms
in such a way that they find solutions that use a minimal subset of the interpretation. The
adaptation can be combined with every matching algorithm. The techniques presented in
this paper may have applications in constraint solving independent of geometric resolution.

1. Introduction

Main topic of this paper is the generalized matching problem, for example how to match
p(X,Y ), q(Y,Z) into p(0, 1), p(0, 2), q(1, 3), q(2, 4), r(0, 3) without matching r(X,Z). This
problem arose in the implemention of geometric resolution. Geometric logic as a theorem
proving strategy was introduced in [2]. (The authors use the name coherent logic.) Bezem
and Coquand were motivated mostly by the desire to obtain a theorem proving strategy
with a simple normal form transformation, which makes that many natural problems need
no transformation at all, others have a much simpler transformation, and which makes that
in all cases Skolemization can be avoided. This results in more readable proofs, and proofs
that can be backtranslated more easily.

Our motivation for using geometric resolution is different, more engineering-oriented: We
hope that three-valued, geometric resolution can be made sufficiently efficient, so that it can
be used as a generic reasoning core, into which different kinds of two- or three-valued decision
problems (e.g. problems representing type correctness, two-valued decision problems, or
simply typed classical problems) can be translated. Because we want the geometric reasoning
core to be generic, we are willing to accept transformations that do not preserve much of the
structure of the original formula. Subformulas are freely renamed, and functional expressions

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(4:24)2018
c© Hans de Nivelle
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses


2 HANS DE NIVELLE

are flattened and replaced by relations. For details of the calculus, its motivation, and
related work, we refer to [6].

In the current paper we give only a short introduction, which is aimed at explaining how
matching is used in geometric resolution, and how matching instances in geometric resolution
are translated into generalized constraint satisfaction problems. If one is interested only in
the methods for constraint satisfaction, one can ignore the technical part of this section and
continue reading at the overview at the end of this section.

We continue this section by giving a definition of three-valued, geometric formulas. The
definition that we give here is slightly too general, but easier to understand than the correct
definition in [6], which contains some additional, technical restrictions which are not relevant
for matching.

Definition 1.1. A geometric literal has one of the following four forms:

(1) A simple atom of form pλ(x1, . . . , xn), where x1, . . . , xn are variables (with repetitions
allowed) and λ ∈ {f , e, t}. (denoting false, error and true.)

(2) An equality atom of form x1 ≈ x2, with x1, x2 distinct variables.
(3) A domain atom #f x, with x a variable.
(4) An existential atom of form ∃y pλ(x1, . . . , xn, y) with λ ∈ {f , e, t}, and such that y

occurs at least once in the atom, not necessarily on the last place.

A geometric formula has form A1, . . . , Ap | B1, . . . , Bq, where the Ai are simple or domain
atoms, and the Bj are atoms of arbitrary type.

We require that geometric formulas are range restricted, which means that every variable
that occurs free in a Bj must occur in an Ai as well.

The intuitive meaning of A1, . . . , Ap | B1, . . . , Bq is ∀x A1 ∨ · · · ∨ Ap ∨ B1 ∨ · · · ∨ Bq,
where x are all the free variables. The vertical bar (|) has no logical meaning. Its only
purpose is to separate the two types of atoms.

A geometric formula that is not range restricted, can always be made range restricted
by inserting suitable #f atoms into the left hand side. This is the only purpose of the
#-predicate. Interpretations contain predicates of form #t c, for every domain element c.
Atoms in geometric formulas are variable-only, and are labeled with truth-values, as in [16].
It is shown in [4] and [6] that formulas in classical logic with partial functions ([3]) can be
translated into sets of geometric formulas.

Definition 1.2. We define an interpretation I as a finite set of atoms of forms #t c with
c a constant, or form pλ(x1, . . . , xn), where x1, . . . , xn are constants (repetitions allowed).
Interpretations must be range restricted as well. This means that every constant x occurring
in the interpretation must occur in an atom of form #t x.

Matching searches for false formulas. These are formulas whose premises A1, . . . , Ap clash
with I, while none of the Bj is true in I.

Definition 1.3. Let I be an interpretation. Let A be a geometric literal. Let Θ be a
substitution that assigns constants to variables, and that is defined on the variables in A.
We say that AΘ conflicts(or is in conflict with) I if (1) A has form pλ(x1, . . . , xn), and
there is an atom of form pµ(x1Θ, . . . , xnΘ) ∈ I with λ 6= µ, (2) A has form x1 ≈ x2 and
x1Θ 6= x2Θ, or (3) A has form #f x and (#t xΘ) ∈ I.
We say that AΘ is true in I if
(1) A has form pλ(x1, . . . , xn) and pλ(x1Θ, . . . , xnΘ) ∈ I, (2) A has form x1 ≈ x2 and



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 3

x1Θ = x2Θ, (3) A has form #t x and (#t xΘ) ∈ I, or (4) A has form ∃y Bλ(x1, . . . , xn, y)
and there exists a constant c, s.t. Bλ(x1Θ, . . . , xnΘ, c) ∈ I.

In the definitions of truth and conflict, # is treated as a usual predicate.

Definition 1.4. Let I be an interpretation. Let B be a geometric atom. Let Θ be a
substitution that instantiates all free variables of B, and for which BΘ is not true in I. We
define the extension set E(B,Θ) as follows:

• If B has form pλ(x1, . . . , xn) or #t x, then E(B,Θ) = {BΘ}.
• If B has form x1 ≈ x2, then E(B,Θ) = ∅.
• If B has form ∃y pλ(x1, . . . , xn, y), then

E(B,Θ) = { pλ(x1Θ, . . . , xnΘ, c) } | c ∈ I } ∪ { pλ(x1Θ, . . . , xnΘ, ĉ) } }.
By c ∈ I we mean: c is a constant occurring in an atom of I. We assume that ĉ is a fresh
constant for which ĉ 6∈ I.

Intuitively, if for a geometric formula φ = A1, . . . , Ap | B1, . . . , Bq and a substitution Θ,
the AiΘ are in conflict with I, while none of the BjΘ is true in I, then φΘ is false in I. If
there exist a Bj and an atom C ∈ E(Bj ,Θ) that is not in conflict with I, then φΘ can be
made true by adding C. If no such C exists, a conflict was found. If more than one C exists,
the search algorithm has to backtrack through all possibilities. The search algorithm tries
to extend an initial interpretation I into an interpretation I ′ ⊃ I that makes all formulas
true. At each stage of the search, it looks for a formula and a substitution that make the
formula false. If no formula and substitution can be found, the current interpretation is a
model. Otherwise, search continues either by extending I, or by backtracking. Details of the
procedure are described in [8] for the two-valued case, and in [6] for the three-valued case.
Experiments with the current three-valued version (available from [18]), and the previous
two-valued version ([9]) show that the search for false formulas consumes nearly all of the
resources of the prover.

Definition 1.5. An instance of the matching problem consists of an interpretation I and a
geometric formula A1, . . . , Ap | B1, . . . , Bq.

Determine if there exists a substitution Θ that brings all Ai in conflict with I, and
makes none of the Bj true in Θ. If yes, then return such substitution.

Examples 1.6. Consider an interpretation I consisting of atoms

Pt(x0, x0), Pe(x0, x1), Pt(x1, x1), Pe(x1, x2), Qt(x2, x0).

The formula φ1 = Pf (X,Y ), Pf (Y, Z) | Qt(Z,X) can be matched in five ways:

Θ1 = { X := x0, Y := x0, Z := x0 }
Θ2 = { X := x0, Y := x0, Z := x1 }
Θ3 = { X := x0, Y := x1, Z := x1 }
Θ4 = { X := x1, Y := x1, Z := x1 }
Θ5 = { X := x1, Y := x1, Z := x2 }

The substitution Θ6 = { X := x0, Y := x1, Z := x2 } would make the conclusion Qt(Z,X)
true. Next consider the formula φ2 = Pf (X,Y ), Pt(Y,Z) | X ≈ Y.
The substitution Θ = {X := x0, Y := x1, Z := x2 } is the only matching of φ2 into I. Finally,
the formula φ3 = Pt(X,Y ) | ∃Z Qt(Y, Z) can be matched with Θ = { X := x0, Y := x1 },
and in no other way.



4 HANS DE NIVELLE

The first formula φ1 in example 1.6 has five matchings. In case there exists more than one
matching, it matters for the geometric prover which matching is returned. This is because
the prover analyses which ground atoms in the interpretation I contributed to the matching,
and will consider only those in backtracking. In general, the set of conflicting atoms in I
should be as small as possible, and should depend on as few as possible decisions. (Decisions
in the sense of propositional reasoning, see [15].) The simplest solution for finding the best
matching would be to enumerate all matchings, and use some preference relation � to keep
the best one. Unfortunately, this approach is not practical because the number of matchings
can be extremely high. We will address this problem in Section 9.

Even if one is interested in the decision problem only, matching is still intractable
because the decision problem is already NP-complete. (See problem LO18 in [12].) In this
paper, we introduce several algorithms for efficiently solving the matching problem. The
algorithms evolved out of predecessors that have been implemented before in the two-valued
version of Geo ([9]), and in the three-valued version of Geo that took part in CASC J8
(see [18]). The matching algorithm of the three-valued version is discussed in detail in [5].
Unfortunately, after comparison with other methods, in particular the algorithms in the
current paper, and translation to SAT, the approach of [5] turned out not competitive, and
we have abandoned it. The algorithm in this paper, and translation to SAT are on average
500-1000 times faster than the algorithm of [5].

The paper is organized as follows: In Section 2, we translate the matching problem into
a structure called generalized constraint satisfaction problem (GCSP). The generalization
consists of the fact that it contains additional constraints, that a solution must not make
true. These constraints correspond to the conclusions of the geometric formula that one is
trying to match.

After that, we present in Section 3 a backtracking algorithm for solving GCSP, which is
based on backtracking combined with a form of propagation. It relies on a data structure
that we call refinement stack. Refinements stacks were introduced in [5]. The matching
algorithm of [5] turned out non-competitive, but its data structure is still useful. In Section 4
we add conflict learning to our matching algorithm. In Section 5, we briefly discuss the
algorithm of [5]. In Section 6, we give two translations from GCSP to SAT. The translations
are straightforward, and efficiently solved by MiniSat ([11]). In order to make it possible
to run our matching algorithm independent of geometric logic, possibly opening the way
for other applications, we define an input format for matching problems in Section 7. The
format is derived from the DIMACS format for SAT. We released the sources in [7]. Section 8
contains experimental results. The main conclusions are that the algorithm of [5] is not
competitive, and that our own algorithm is comparable to translation to SAT combined with
MiniSat. In Section 9, we explain how every algorithm that is able to find some solution,
can be transformed into an algorithm that finds an optimal solution. This transformation
is essential for the application in geometric resolution. In Section 10, we present a priori
filtering techniques, that are able to reject a large percentage of matching instances a priori.

2. Translation into Generalized Constraint Satisfaction Problem

We introduce the generalized constraint satisfaction problem, and show how instances of the
matching problem can be translated. It is ‘generalized’ because there are additional, negative
constraints (called blockings), which a solution is not allowed to satisfy. The blockings
originate from translations of the B1, . . . , Bq.



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 5

Definition 2.1. A substlet s is a (small) substitution. We usually write s in the form v/x,
where v is a sequence of variables without repetitions, and x is a sequence of constants of
same length as v.

We say that two substlets v1/x1 and v2/x2 are in conflict if there exist i, j s.t. v1,i = v2,j
and x1,i 6= x2,j .

If v1/x1, . . . , vn/xn is a sequence of substlets not containing a conflicting pair, then one
can merge them into a substitution as follows:

⋃
{v1/x1, . . . , vn/xn} = {vi,j := xi,j | 1 ≤ i ≤

n, 1 ≤ j ≤ ‖vi‖}.
If Θ is a substitution and s = v/x is a substlet, we say that Θ makes s true if every

vi := xi is present in Θ.
We say that Θ and s are in conflict if there is a vi/xi with 1 ≤ i ≤ ‖v‖, s.t. viΘ is

defined and distinct from xi.
A clause c is a finite set of substlets with the same domain. We say that a substitution

Θ makes c true (notation Θ |= c) if Θ makes a substlet (v/x) ∈ c true. We say that Θ makes
c false (notation Θ |= ¬c) if every substlet (v/x) ∈ c is in conflict with Θ. In the remaining
case, we call c undecided by Θ.

Definition 2.2. A generalized constraint satisfaction problem (GCSP) is a pair of form
(Σ+,Σ−) in which Σ+ is a finite set of clauses, and Σ− is a finite set of substlets.

A substitution Θ is a solution of (Σ+,Σ−), if every clause in Σ+ is true in Θ, and there
is no σ ∈ Σ−, s.t. Θ makes σ true.

Definition 2.3. Let (Σ+,Σ−) a GCSP. We call (Σ+,Σ−) range restricted if for every
variable v that occurs in a substlet σ ∈ Σ−, there exists a clause c ∈ Σ+ s.t. every substlet
s ∈ c has v in its domain.

We now explain how a matching instance is translated into a generalized constraint satisfac-
tion problem.

Definition 2.4. Assume that I and φ = A1, . . . , Ap | B1, . . . , Bq together form an instance
of the matching problem. The translation (Σ+,Σ−) of (I, φ) into GCSP is obtained as
follows:

• For every Ai, let vi denote the variables of Ai. Then Σ+ contains the clause

{ vi/viΘ | AiΘ is in conflict with I }.
• For every Bj , let wj denote the variables of Bj . For every Θ that makes BjΘ true in I,

Σ− contains the substlet wj/(wjΘ).

Theorem 2.5. A matching instance (I, φ) has a matching iff its corresponding GCSP has
a solution.

In theory, the set of blockings Σ− can be removed, because a blocking σ can always be
replaced by a clause as follows: Let σ be a blocking, let v be its variables. Define σ1 = σ,
and let σ2, . . . , σn ∈ Σ− be the blockings whose domain is also v. One can replace σ1, . . . , σn
by the clause { v/c | v/c conflicts all σi (1 ≤ i ≤ n) }.

We prefer to keep Σ−, because in the worst case, the resulting clause has size m‖v‖,
where m is the size of the domain. For example, if σ1, . . . , σn result from an equality X ≈ Y,
then σi has form (X,Y )/(xi, xi). The resulting clause c = {(X,Y )/(xi, xj) | i 6= j} has size
n(n− 1) ≈ n2.

Clauses resulting from a matching problem have the following trivial, but essential
property:



6 HANS DE NIVELLE

Lemma 2.6. Let (Σ+,Σ−) be obtained by the translation in Definition 2.4. Let s1, s2 ∈ c ∈
Σ+. Then either s1 = s2, or s1 and s2 are in conflict with each other.

Lemma 2.6 holds because s1 and s2 have the same domain.

Examples 2.7. In example 1.6, the matching problem (I, φ1) can be translated into the
GCSP below. The clauses are above the horizontal line, and the blockings are below it.
Because substlets in the same clause always have the same variables, we write the variables
of a clause only once.

(X,Y ) / (x0, x0) | (x0, x1) | (x1, x1) | (x1, x2)
(Y,Z) / (x0, x0) | (x0, x1) | (x1, x1) | (x1, x2)
(X,Z) / (x0, x2)

Translating (I, φ2) results in:

(X,Y ) / (x0, x0) | (x0, x1) | (x1, x1) | (x1, x2)
(Y,Z) / (x0, x1) | (x1, x2)
(X,Y ) / (x0, x0)
(X,Y ) / (x1, x1)
(X,Y ) / (x2, x2)

Translation of (I, φ3) results in:

(X,Y ) / (x0, x1) | (x1, x2)
(Y ) / (x2)

Before one runs any algorithms on a GCSP, it is useful to do some simplifications. If the
GCSP contains a propositional clause (a clause whose domain contains no variables), this
clause either has form ( ) / (no assignments), or ( ) / ( ) (one assignment). In the first case,
the problem is trivially unsolvable. In the second case, the clause can be removed.

Similarly, if Σ− contains a propositional blocking, then (Σ+,Σ−) is trivially unsolvable.
Such blockings originate from a Bj that is purely propositional, or that has form ∃y Pλ(y).

A third important preprocessing step is removal of unit blockings. Let σ ∈ Σ− be a
blocking whose domain is included in the domain of some clause c ∈ Σ+. In that case, one
can remove every substlet v/c from c, that has

⋃
{v/c} |= σ. If this results in c being empty,

then (Σ+,Σ−) trivially has no solution. If no v/c in any clause c ∈ Σ+ implies σ, then σ
can be removed from Σ−, because of Lemma 2.6.

Applying removal of unit blockings to the translation of (I, φ2) above results in

(X,Y ) / (x0, x1) | (x1, x2)
(Y,Z) / (x0, x1) | (x1, x2)

It is worth noting that removal of propositional blockings can be viewed as a special case of
removal of unit blockings.

A GCSP can be solved by backtracking, similar to SAT solving. A backtracking
algorithm for GCSP can be either variable or clause based. A variable based algorithm
maintains a substitution Θ, which it tries to extend into a solution. It backtracks by picking
a variable v and trying to assign it in all possible ways. It backtracks when Θ makes a clause
c ∈ Σ+ false, or a blocking σ ∈ Σ− true.

A clause based algorithm maintains a consistent set S of substlets (whose union defines
a substitution). It backtracks by picking an undecided clause c ∈ Σ+, and consecutively



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 7

inserting all substlets that are consistent with S into S. It backtracks when there is a clause
c all of whose atoms are in conflict with S, or when

⋃
S makes a blocking true.

Our experiments suggest that there is no significant difference in performance, nor in
programming effort, between the two variants. We will stick with clause based algorithms,
because it seems that they can be more easily combined with local consistency checking.

3. Matching Using Refinement Stacks

We first present the algorithm without learning, and add learning in the next section. The
algorithm that we present here is a simplification of the algorithm in [5], which unfortunately
could not be made competitive. The previous algorithm was based on a combination of local
consistency checking and lemma learning from conflicts. Local consistency checking will be
discussed in detail in Section 10, because there is still a probability that it can be used as
priori check.

Local consistency checking means that one generates all subsets of clauses up to some
size S + 1 and checks which substlets can occur in solutions. Substlets that do not occur in
any solution of some subset, certainly do not occur in a solution of the complete GCSP. In
most instances, filtering with a small S, e.g. 1 or 2 results in an empty clause. The algorithm
of [5] was based on a combination of local consistency checking and decision. It is discussed
in more detail in Section 5.

The algorithm that we discuss in this section evolved from [5]. The main differences
are: Clauses are not checked against each other anymore. Instead, clauses are checked only
against the substitution in combination with blockings. Secondly, learnt lemmas are flat, i.e.
finite disjunctions of single assignments to variables. In [5], lemmas were finite disjunctions
of substlets. It turns out that this simplification improves performance by a factor between
100 and 1000.

In order to implement matching algorithms and local consistency checking, one needs to
be able to remove substlets from clauses, and reintroduce them during backtracking. We
call the process of removing substlets from a clause refinement. Whenever a clause has
been refined, it may trigger other refinements. In the earlier algorithm, refinement of a
clause could directly trigger more refinements of other clauses. In the current algorithm,
refinement of a clause can only trigger possible extension of the substitution, but extension
of the substitution may still trigger other clause refinements. As a consequence, one needs to
maintain a queue of recent refinements and use this queue to check which more clauses can
be refined. We introduce a data structure, called refinement stack which supports refinement
of clauses, restoring during backtracking, and keeping track of unchecked refinements.

Definition 3.1. A refinement has form c⇒ d, where both c and d are clauses, and d is a
subclause of c.
A refinement stack C is a finite sequence of refinements ci ⇒ di. If there exists a j with
i < j and ci = cj , then dj must be a strict subclause of di.

For a clause c, if ci ⇒ di is the last refinement with c = ci occurring in C, we call di the
current refinement of c.
We define a predicate αi(C) that is true if ci ⇒ di is the current refinement of ci in C. This
means that there is no j > i with cj = ci.

A refinement stack supports gradual refinement of clauses. If αi(C) is true, then clause
di can be refined into d′ by appending ci ⇒ d′ to C.



8 HANS DE NIVELLE

In the new refinement stack C
′
= C + (ci ⇒ d′), we have ci = cn+1, αi(C

′
) is false, and

αn+1(C
′
) is true.

The size ‖C‖ of a refinement stack C is defined as the total number of refinements that
occur in it, independent of the values of αi(C).

The refinement stack is initialized with the refinements c ⇒ c, for each initial clause c.
Refinement stacks can be efficiently implemented without need to copy clauses by maintaining
a stack of intervals of active substlets in the initial clauses. A substlet can be disabled
by swapping it with the last active substlet in the interval, and decreasing the size of the
interval by one. When the substlet is made active again, it is sufficient to restore the interval,
because the order of active substlets in a clause does not matter. Refinement stacks support
change driven inspection as well as backtracking.

Change driven inspection of clauses can be implemented by starting at position k = 1.
As long as k ≤ ‖C‖, one first checks αk(C). If it is false, then dk is not the current version
of ck, and one can increase k. If αk(C) is current, one can check if dk triggers refinement of
other clauses. If yes, the results are inserted at the end, so that they will be inspected at
later time. When one reaches k > ‖C‖, one has reached a stable state.

When some change involving a variable v takes place, one needs to check which clauses
may be affected by the change, so that they can be refined. These are obviously the clauses
that contain v, but also the clauses that contain a variable occuring in a blocking that
contains v, since the algorithm takes blockings into account, when refining. This gives rise
to the following definition:

Definition 3.2. Let v, w be two variables. We call v and w connected if v and w occur
together in a blocking σ ∈ Σ−.

We define the search algorithm. We assume that propositional clauses and unit blockings
have been removed from (Σ+,Σ−). We assume that the substitution Θ is an ordered sequence
(stack) of assignments (v1/x1, . . . , vs/xs).

Algorithm 3.3. We want to find a solution for (Σ+,Σ−). Initially, set Θ := ∅ and C := ∅.
After that, for each k (1 ≤ k ≤ ‖Σ+‖), do the following:

PREPROC: Let ck be the k-th clause in Σ+. Append (ck ⇒ ck) to C. For every variable v
occurring in ck, for which all substlets in ck agree on the value of v, let x be the agreed
value.
• If vΘ is defined, and vΘ 6= x, then return ⊥.
• If vΘ is undefined and there is a blocking σ containing v, s.t. Θ ∪ {v/x} |= σ, then

return ⊥. Otherwise, append v/x to Θ.

After that, we call the main search algorithm findmatch(C,Θ, s,Σ−) with s = 1. It either
returns ⊥, or it extends Θ into a solution of (C,Σ−). findmatch(C,Θ, s,Σ−) is defined as
follows:

FORW: As long as s ≤ ‖Θ‖, let v/x be the s-th assignment of Θ.
(1) For every (ci ⇒ di) ∈ C which has αi(C) true, and which either contains v itself, or

a variable w that is connected to v, let

d′ = {s ∈ di | s is not in conflict with Θ}.
If d′ = ∅, then return ⊥. Otherwise, let

d′′ = {s ∈ d′ | there is no σ ∈ Σ−, s.t. Θ ∪ {s} |= σ}.



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 9

If d′′ = ∅, then return ⊥. Otherwise, if d′′ ⊂ di, then
(a) append (ci ⇒ d′′) to C.
(b) For every variable v′ occurring in d′′, that is unassigned in Θ, for which all

substlets in d′′ agree on the assigned value, let x′ be the agreed value. Append
v′/x′ to Θ.

(2) Set s = s+ 1.
PICK: Find an i with αi(C) true and ‖di‖ > 1. If no such i exists, then Θ is a solution.

Otherwise, for every substlet vj/xj in di, do the following:

(1) Append ci ⇒ (vj/xj) to C, and extend Θ with the unassigned variables in vj/xj .

(2) Recursively call findmatch( C,Θ, s, Σ− ). If Θ was extended into a solution, then
return Θ.

(3) Otherwise, restore Θ and C to the sizes that they had before (1).
At this point, each of the recursive calls has returned ⊥. Return ⊥.

At FORW, the algorithm attempts deterministic reasoning. For every new assignment in
Θ, it is checked if it conflicts with some substlets in some clause. Two types of conflicts are
considered, either the substlet contains an assignment that directly conflicts with Θ, or it
contains an assignment that, together with Θ, implies a blocking. As long as conflicts are
found, the corresponding clauses are refined. Refinement of a clause may result in Θ being
extended (FORW b), if the remaining substlets agree on an assignment. Extension of Θ
may result in further refinements of clauses.
If FORW failed to solve the problem, then at PICK a non-unit clause is picked, and
non-deterministically refined into a unit clause. This step requires backtracking. It is
important (for performance) to pick a clause of minimal length.

Main purpose of PREPROC is to initialize the refinement stack C with Σ+. After that,
Θ is initialized by looking for assignments that are common to all substlets in some clause.
If this results in a conflict (either directly, or with a blocking), the problem is rejected.
Algorithm 3.3 is similar to DPLL in that it tries to postpone backtracking as long as possible
by giving preference to deterministic extension. At FORW, blockings are taken into account.
It is possible to implement FORW without considering blockings. In that case, it has to
be checked, whenever the substitution is extended (at PICK 2 and at FORW 1b) that
the extended substitution does not imply a blocking. The given version performs better in
experiments.

In order to show that Algorithm 3.3 is correct, i.e. does not report false solutions, we
have to show that all necessary checks are made.

Lemma 3.4.

(1) At points FORW and PICK of Algorithm 3.3, there is no σ ∈ Σ−, s.t. Θ |= σ.
(2) At point PICK, no refined clause di contains a substlet that is in conflict with Θ.

Initially, the preprocessor ensures that there is no σ ∈ Σ−, s.t. Θ |= σ. When σ is
extended in FORW 1b, it has been checked before that Θ ∪ {s} does not imply a blocking,
for each of the substlets in d′′. At point PICK, findmatch passed through FORW which
refined away all substlets that conflict with Θ.

In the next section, we will extend Algorithm 3.3 with learning. This will prove
completeness, because whenever Algorithm 3.3 does not find a solution, it will construct a
lemma that proves that no lemma exists.



10 HANS DE NIVELLE

4. Conflict Learning

It is known from propositional SAT solving that conflict learning dramatically improves the
performance of SAT solvers ([15]). The matching algorithm in the two-valued version of
Geo ([9]) was already equipped with a primitive form of conflict learning. Before releasing
Geo, we had experimented with naive matching, the algorithm in [13], and many ad hoc
methods. Matching with conflict learning is the only approach that results in acceptable
performance. Despite this, matching was still a critical operation in the last two-valued
version of Geo. In the two-valued version of Geo, lemmas had form v1/x1, . . . , vn/xn → ⊥,
i.e. they had form (v/x)→ ⊥ for a single substlet.

In [5] we proposed to replace the lemmas of Geo 2007 by arbitrary sets of substlets. It
is quite easy to see, that in general such a lemma can be in conflict with more substitutions
than a lemma of the previous form. For example, if we assume that the domain is {X,Y, Z}
and the range {0, 1, 2}, then (X,Y, Z)/(0, 1, 2) → ⊥ rejects a single substitution, while
(X,Y, Z)/(0, 1, 2), (X,Y, Z)/(2, 1, 0) rejects 25 substitutions. Since in case of a conflict, one
can always obtain a lemma of the second form, it seemed that lemmas of the second form
should be preferred over lemmas of the first form.

The latest version of Geo see ([18]) used the algorithm of [5] with lemmas of the
unrestricted form above. Although this matching algorithm performs better than matching
in Geo 2007, recent experiments have shown that it performs significantly worse than
some other approaches, in particular translation to SAT and Algorithm 3.3 in combination
with flat lemmas. Flat lemmas are lemmas of form v1 ∈ V1 ∨ · · · ∨ vn ∈ Vn. Surprisingly,
Algorithm 3.3 with unrestricted lemmas performs several orders worse than Algorithm 3.3
with flat lemmas. This is surprising, because every general lemma can be flattened into a
lemma of the second form by picking a single assignment from each substlet. The resulting
lemma is obviously less general than its original, non-flattened version. This loss of generality
also applies to the reasoning rules that we use on lemmas. If two substlets in two general
lemmas are in conflict, then their flattenings are not necessarily in conflict. Conversely,
whenever two flattened substlets are in conflict, their original counterparts are. This means
that by using flattened lemmas, one looses conflicts with substitutions, and also resolution
derivations involving lemma resolution. Despite this clever reasoning, the first columns of
Figure 1 of Section 8 show that Algorithm 3.3 with flat lemmas performs approximately
200-400 times worse than Algorithm 3.3 with unrestricted lemmas. One could assume that
this is caused by the fact that handling of unrestricted lemmas is more costly, and that
their theoretical advantage is compensated by the increased cost of their maintenance. This
assumption is rejected by Figure 1, because Algorithm 3.3 with flattened lemmas is not
only faster, but it also uses less lemmas, typically by a factor 2-3. The only point where
Algorithm 3.3 with and without flattening can diverge, is when a conflict lemma rejects a
substitution Θ, and there exists more than one conflict lemma. Since both versions will
prefer the shortest lemma, it must be due to the fact that flattening changes the relative
sizes of the lemmas.

The outcomes of the experiments make it probable that the best approach to matching
will be either Algorithm 3.3 with flat lemmas, or translation to SAT in combination with a
SAT-solver, which we will describe in Section 6.

From the practical point of view, the fact that the refining algorithm in [5] turned
out not competitive, is not a serious loss. Despite being elegant on paper, it was hard to
implement. Implementation of Algorithm 3.3 was much easier, and in the long term, it



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 11

is better that the easier algorithm has the better performance. Moreover, it is clear from
Figure 1 that matching in future versions of Geo can be approximately 1000 times faster
than it was at Geo 2016c ([18]).

We will now introduce the flat lemmas, and prove that Algorithm 3.3 can always generate
a flat conflict lemma.

Definition 4.1. A lemma is an object of form {v1/V1, . . . , vn/Vn} with n ≥ 0. The vi are
variables, and the Vi are finite sets of constants.
It is convenient to treat lemmas as total functions from variables to sets of constants. For a
variable v and λ = {v1/V1, . . . , vn/Vn}, λ(v) is defined as

⋃
{Vi | vi = v}.

Let Θ be a substitution. We say that Θ makes λ true if there exists a variable v in the
domain of Θ, for which vΘ ∈ λ(v).
We say that Θ makes λ false if all variables v for which λ(v) is nonempty, are in the domain
of Θ, and vΘ 6∈ λ(v). In that case, we write Θ |= ¬λ.
Definition 4.2. Let (Σ+,Σ−) be a GCSP. Let λ be a lemma. We say that λ is valid in
(Σ+,Σ−) if every solution Θ of (Σ+,Σ−) makes λ true.
For a given substitution Θ, we call λ a conflict lemma if λ is valid and Θ makes λ false.

If Θ is a substitution, and there exists a valid lemma that is false in Θ, then it is not possible
to extend Θ into a solution of (Σ+,Σ−).

In order to derive the conflict lemma, the following rules will be used:

Definition 4.3. Given a GCSP (Σ+,Σ−), we define the following derivation rules:

RESOLUTION: Let λ1, . . . , λm be a sequence of lemmas. Let v be a variable. Let V be
the set of variables v, for which one of the λj has λ(v) 6= ∅. We define the v-resolvent of
λ1, . . . , λm as

{v/
⋂

1≤j≤m
λj(v)} ∪ {v′/

⋃
1≤j≤m

λj(v
′) | v′ ∈ V ∧ v′ 6= v}.

PROJECTION: Let c ∈ Σ+ be a clause, let λ be a lemma. We call λ a projection of c, if
every substlet (v/x) ∈ c contains an assignment v/x, s.t. x ∈ λ(v).

σ-RESOLUTION: Let σ ∈ Σ− be a blocking. Write σ = {v1/x1, . . . , vn/xn} (n > 0). Let
c1, . . . , cn ∈ Σ+ be clauses, chosen in such a way that every variable vi occurs in ci. For
every ci, let

Vi = { x | ci contains a substlet w/y which contains vi/x and x 6= xi }.
Then the lemma

{v1/V1, . . . , vn/Vn}
is called a σ-resolvent of c1, . . . , cn.

The lemmas { x/{1, 2, 3}, y/{2, 3} } and { x/{3, 4}, y/{3, 4}, z/{2} } can resolve into
{ x/{3}, y/{2, 3, 4}, z/{2} }. Given clauses c1 = { (x, y)/(1, 2), (x, y)/(1, 1), (x, y)/(3, 3) }
and c2 = { (y, z)/(1, 2), (y, z)/(2, 1) }, and a blocking (x, z)/(1, 2), one can obtain the
σ-resolvent { x/{3}, z/{1} }. The lemma λ′1 = {x/{1, 3}} is a projection of c1. λ

′′
1 =

{ x/{3}, y/{1, 2} } is also a projection of c1. It is easy to see that the reasoning rules are
valid, which implies that every lemma that has been obtained by repeated application from
the original clauses in Σ+ and blockings in Σ−, is valid.

Lemma 4.4. Let (Σ+,Σ−) be a GCSP. Let Θ be an interpretation. Let σ ∈ Σ− be a blocking
for which Θ |= σ. Let λ be a σ-resolvent of σ. Then Θ makes λ false.



12 HANS DE NIVELLE

Proof. Write σ = {v1/x1, . . . , vn/xn}. Let c1, . . . , cn ∈ Σ+ be the clauses that were used
in the construction of λ. Because Θ |= σ, we know that for every i (1 ≤ i ≤ n), we have
viΘ = xi. From the construction of the Vi, it follows that xi 6∈ Vi. Because the variables vi
are pairwise distinct, we have Vi = λ(xi). It follows that xi 6∈ λ(vi). For all other variables v
that do not occur in σ, we have λ(v) = ∅. We can conclude that if λ(v) is non-empty, then v
equals one of the vi, and we have viΘ 6∈ λ(vi).

The following lemma states that substlets that are switched off, were switched off because
they conflict Θ, possibly with help of a blocking.

Lemma 4.5. At every moment during Algorithm 3.3, for every refinement (ci ⇒ di) ∈ C,
the following holds: If s ∈ (di\ci), then either s is in conflict with Θ, or Θ ∪ {s} |= σ, for a
σ ∈ Σ−.

Proof. There are two points at which refinement can take place, PICK 1 and FORW 1a.
At PICK 1, clause ci is refined into vj/xj , after which Θ is extended with vj/xj . If some
substlet s occurs in ci\{vj/xj}, then either s ∈ ci\di, or s ∈ di\{vj/xj}. In the first case,
the desired property is inherited from the previous state, because it is an invariant. In the
second case, because Θ is extended by vj/xj at the same time, we can apply Lemma 2.6.

At FORW 1a, if s ∈ d′′\ci, then either s ∈ di\ci, s ∈ d′\di, or s ∈ d′′\d′. In the first
case, the desired property is inherited from the previous state. In the second case, it follows
from the construction of d′, that s was in conflict with Θ. In the third case, it follows from
the construction of d′′, that there is a σ ∈ Σ−, for which Θ ∪ {s} |= σ.

The following property is the essential property, for proving that Algorithm 3.3 can always
return a conflict lemma.

Lemma 4.6. Let (Σ+,Σ−) be a GCSP. Let c ∈ Σ+ be a clause. Let Θ be a substitution.
Let Λ be a set of lemmas. Assume that there is no σ ∈ Σ−, s.t. Θ |= σ, and no λ ∈ Λ, s.t.
Θ makes λ false. Assume that for every substlet s ∈ c, either

(1) s is in conflict with Θ,
(2) Θ ∪ {s} |= σ, for a σ ∈ Σ−, or
(3) Θ ∪ {s} makes a λ ∈ Λ false.

Then it is possible to derive a conflict lemma for Θ from Σ+ and Λ, by applying the rules in
Definition 4.3.

Proof. We first remove (2) by means of σ-resolution. We will add the resulting σ-resolvents
to Λ. For every s ∈ c, for which (1), (3) do not apply, (2) must apply. Write σ =
{v1/x1, . . . , vn/xn}. Since (Σ+,Σ−) is range restricted, we can find clauses c1, . . . , cn ∈ Σ+,
s.t. each vi occurs in ci. We now can construct the σ-resolvent. Write λ for the resulting
lemma. It follows from Lemma 4.4 that λ is false in Θ. We can add λ to Λ. At this point,
we have for every s ∈ c, either (1) or (3). The rest of the proof is Lemma 4.7.

Lemma 4.7. Let (Σ+,Σ−) be a GCSP. Let c ∈ Σ+ be a clause. Let Θ be a substitution.
Let Λ be a set of lemmas. Assume that there is no λ ∈ Λ, s.t. Θ makes λ false. Assume
that for every substlet s ∈ c, either

(1) s is in conflict with Θ, or
(2) Θ ∪ {s} makes a λ ∈ Λ false.

Then it is possible, using the rules in Definition 4.3, to obtain a conflict lemma for Θ from c
and Λ.



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 13

Proof. We prove the lemma by induction on the number of unassigned variables in c. Let c1
be the part of c to which (1) applies, and let c2 = c\c1.

Since each s ∈ c1 is in conflict with Θ, one can obtain a projection µ1 of c1 by picking
from each s ∈ c1 an assignment v/x for which vΘ is defined and vΘ 6= x. By construction,
µ1 will be false in Θ.

If there are no unassigned variables in c, then c2 must be empty. This means that µ1 is
a projection of c and false in Θ, so we are done.

Otherwise, select a v in c that is unassigned by Θ. Let V be set of values that are
assigned to v by the substlets in c2. Define µ2 = {v/V }. Clearly, µ2 is a projection of c2,
and µ = µ1 ∪ µ2 is a projection of c. For each value x ∈ V, define Θx = Θ ∪ {v/x}. If there
is no λ ∈ Λ, that is false in Θx, then c, Θx, Λ still satisfy the conditions of Lemma 4.7.
Moreover, since Θx contains an assignment to v, the number of unassigned variables in c
has decreased by one. This means that we can assume, by induction, that we can derive a
lemma λx that is false in Θx. If λx is also a conflict lemma of Θ, we have completed the
proof. Otherwise, we can assume that λx is added to Λ.

At this point, Λ contains a conflict lemma λx for every Θ ∪ {v/x} with x ∈ V. Let λ be
the v-resolvent of the projection µ constructed above, and the λx, i.e.

λ = { v/( µ(v) ∩
⋂
x∈V

λx(v) ) } ∪ { v′/( µ(v′) ∪
⋃
x∈V

λx(v′) ) | v′ 6= v }.

In order to show that λ is false in Θ, we have to show that for every variable v′, for which
λ(v′) 6= ∅, v′Θ is defined, and v′Θ 6∈ λ(v′).

• For v, we just show that λ(v) = ∅. We have µ(v) = µ2(v), because µ1(v) = ∅. It follows
from the fact that v is undefined in Θ, and µ1 is false in Θ. For each x ∈ µ2(v), we know
that λx is false in Θ ∪ {v/x}, which implies that x 6∈ λx(v). This implies that x is not in
the intersection of all λx(v), which in turn implies µ(v) and

⋂
x∈V λx(v) have no elements

in common.
• If v′ 6= v and λ(v′) 6= ∅, then either λx(v′) 6= ∅, for an x ∈ V, or µ(v′) 6= ∅. In the first case,

it follows from the fact that λx is false in Θ ∪ {v/x} and v′ 6= v, that v′Θ is defined. In
the second case, we know that µ2(v′) only assigns to v, so that µ1(v′) 6= ∅. Since we know
that µ1 is false in Θ, we know v′Θ is defined.

At this point, we are certain that v′Θ is defined, so that we can start showing that
v′Θ 6∈ µ(v′) ∪

⋃
x∈V λx(v′). If v′Θ ∈ µ(v′), then, because µ2 only assigns to v, we have

v′Θ ∈ µ1(v′) This is impossible because µ1 is false in Θ.
We can also not have v′Θ ∈ λx(v′), for any x ∈ V, because this would imply that

v′(Θ ∪ {v/x}) ∈ λx(v′), which contradicts the fact that λx is false in Θ ∪ {v/x}.

At this point, it is straightforward to prove that Algorithm 3.3 can always derive a conflict
lemma. There are two points in Algorithm 3.3 where the substitution is extended. We
show for both points that it is possible to obtain a conflict lemma when the substitution is
restored.

FORW 1b: The substitution Θ is extended by the common assignments in d′′. Since the
extension of Θ had a conflict lemma, we know that for each s ∈ d′′, Θ ∪ {s} has a
conflict lemma. It follows from Lemma 4.5 that for every substlet s in d′′\{ci}, either s
is in conflict with Θ, or Θ ∪ {s} implies σ, for a blocking σ ∈ Σ−. From Lemma 3.4, we
know that there is no σ ∈ Σ−, s.t. Θ |= σ. It follows that we can apply Lemma 4.6 with
Λ = {λ} to obtain a conflict lemma for Θ.



14 HANS DE NIVELLE

PICK: Let ci ⇒ di be the refinement that was selected by PICK. Let Λ be the set of
conflict lemmas that were returned by the recursive calls of findmatch. If there is a
λ ∈ Λ that is false in Θ, we can return λ. Otherwise, we know that no λ ∈ Λ is false in
Θ. From Lemma 3.4, we know that there is no σ ∈ Σ−, s.t. Θ |= σ.

By Lemma 4.5, every substlet s ∈ (ci\di), is either in conflict with Θ, or there exists a
σ ∈ Σ−, s.t. Θ∪ {s} |= σ. This implies that we can apply Lemma 4.6 to obtain a conflict
lemma of Θ.

In an implementation of Algorithm 3.3, there is no need to follow the rules of Definition 4.3
carefully, because the conflict lemma can be constructed immediately from the premisses of
Lemma 4.6.

In order to make Algorithm 3.3 reuse conflict lemmas, one has to add before FORW 1:
If there is a λ ∈ Λ containing variable v, s.t. Θ makes λ false, then return λ.

Integrating lemmas into the refining step of FORW 1 seems difficult, because the notion
of connection (Definition 3.2) must be extended to include ‘v and w occur together in a
lemma λ ∈ Λ.’ Currently we don’t know how to efficiently enumerate variables that are
connected through a lemma.

5. Matching Based on Local Consistency Checking

We will discuss the matching algorithm of [5]. Its performance turned out not competitive,
so we will omit most of the details, in particular the completeness proofs for learning. The
algorithm is based on the fact that local consistency checking rejects a large percentage of
GCSPs without backtracking.

Local consistency checking is the following procedure: For every clause c = {s1, . . . , sn} ∈
Σ+, check, for all sets of clauses C with size S ≥ 1, if {si} ∪ C has a solution. If not, then
remove si from c. Keep on doing this, until no further changes are possible or a clause
has become empty. The procedure is described in detail in Section 10. Local consistency
checking with small S rejects a large percentage of instances without backtracking. It
therefore seemed reasonable to combine local consistency checking with backtracking in the
following way:

FILTER: Apply local consistency checking. If this results in an empty clause, then backtrack
to the last decision. If there are no decisions left, then report failure.

DECIDE: If every clause has become unit, then report a solution. Otherwise, pick a
non-unit clause, and replace it by a singleton consisting of one of its substlets. Continue
at FILTER. If this results in an empty clause, then backtrack through the remaining
substlets of the clause.

The assumption was that local consistency checking could play the same role as unit
propagation in DPLL, and that local consistency checking would be equally effective on
the subproblems obtained during backtracking, as on the initial problem. This assumption
turned out false. In [5], the algorithm is described for S = 1, but we have implemented it for
arbitrary S ≥ 1. Note that a size of S means that ‖C‖ = S, so that {ci} ∪ C has size S + 1.
Performance results are presented in Figure 2 in Section 8. It can be seen that S > 1 does
not perform better than S = 1. It rarely creates less lemmas, and it usually costs more time.

The main observation to be made is that the algorithm is not close to being competitive
against Algorithm 3.3 with flat lemmas, or translation to SAT. In addition to that, it turned
out rather unpleasant to implement, much harder than Algorithm 3.3. Especially S > 1



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 15

is difficult to handle, because the resolution rules for obtaining lemmas become rather
complicated. This does not only apply to the implementation, but also to the theoretical
description.

We define the lemmas that were used by the matching algorithm, and the reasoning
rules that it uses. A clause can be viewed as a special form of lemma in which the substlets
have the same domain.

Definition 5.1. A lemma is a finite set of substlets, possibly with different domains.
If λ is a lemma, and Θ a substitution, then Θ makes λ true if there is a substlet

(v/x) ∈ λ, s.t. Θ makes λ true. Θ makes λ false if every substlet (v/x) ∈ λ is in conflict with
Θ. We say that λ is valid relative to (Σ+,Σ−), if Θ is true in every solution Θ of (Σ+,Σ−).
We call λ a conflict lemma if λ is false in the current Θ and valid (Σ+,Σ−).

Learning was based on the following resolution rules:

Definition 5.2. Let λ1 and λ2 be lemmas. Let µ1 ⊆ λ1, and let µ2 ⊆ λ2. Assume that
every s1 ∈ µ1 is in conflict with every s2 ∈ µ2. Then (λ1\µ1) ∪ (λ2\µ2) is a resolvent of λ1
and λ2.

One can resolve λ1 = { (x, y)/(1, 2), (x, y)/(1, 1), (x, y)/(3, 3) } with λ2 = { (y, z)/(1, 2),
(y, z)/(2, 1) } based on µ1 = { (x, y)/(1, 2), (x, y)/(3, 3) }, and µ2 = { (y, z)/(1, 2) }. The
resolvent is { (x, y)/(1, 1), (y, z)/(2, 1) }.

Definition 5.3. Let σ ∈ Σ− be a blocking. Let c1, . . . , cn ∈ Σ+ be a sequence of clauses
containing all variables of σ. For each ci, let ρi = { s ∈ ci | s is in conflict with σ }. Then
ρ1 ∪ · · · ∪ ρn is a σ-resolvent of c1, . . . , cn.

Using λ1, λ2 given above, and blocking (x, z)/(1, 2), one can obtain the σ-resolvent
{ (x, y)/(3, 3), (y, z)/(2, 1) }.

It is easy to see that both conflict resolution and σ-resolution are valid reasoning rules,
which implies that every lemma that was derived by repeated application of resolution from
the original clauses in Σ+, is valid.

In [5], it was shown that a matching algorithm using S = 1 can always obtain a conflict
lemma using resolution and σ-resolution. For S > 1, an additional rule, called product
resolution, is required. Results are listed in Figure 2.

After observing that Algorithm 3.3 improves by a factor 500 when lemmas are flattened,
we tried the same with the refining algorithm. Whenever a new lemma is derived, the
assignments that do not contribute to conflicts are removed from the substlets. Different from
Algorithm 3.3, this does not necessarily lead to a lemma consisting only of single-assignment
substlets, but in most cases it does. Surprisingly, this has a strong, negative impact on the
performance.

6. Translation to SAT

Translating an instance of the matching problem to SAT is easy, and modern SAT solvers
have become very effective. As a consequence, translation to SAT should be attempted. In
this section, we give two methods of translating GCSP into SAT. The translations are not
complicated, and MiniSat [11] performs rather well on the results of the translations. Results
are listed in the last two columns of Figure 1 and in Figure 3 in Section 8. The results
suggest that translation to SAT has a performance that is comparable with Algorithm 3.3.



16 HANS DE NIVELLE

In our first translation only substlets are translated. We assign propositional variables
to the substlets, specify that at least one substlet from each clause has to be selected, and
list the conflicts between the substlets.

Definition 6.1. We assume a general mapping [ ] that transforms mathematical objects
into distinct propositional variables.

Definition 6.2. Let (Σ+,Σ−) be GCSP. The translation into propositional logic has form
(A,P ), where A is a set of atoms, and P is a set of clauses over A. Assume that the GCSP
has form (Σ+,Σ−), assume that Σ+ contains n clauses, and write {si,1, . . . , si,ki} for the
i-th clause of Σ+.

The set of atoms is defined as A = {[si,j ] | 1 ≤ i ≤ n, 1 ≤ j ≤ kn}. The clause set P is
defined as follows:

(1) For every ci = {si,1, . . . , si,ki} ∈ Σ+ (1 ≤ i ≤ n), the propositional clause set P contains
the propositional clause { [si,1], . . . , [si,ki ] }, and for every j1, j2 (1 ≤ j1 < j2 ≤ ki) the
clause { ¬[si,j1 ], ¬[si,j2 ] }.

(2) For every pair of distinct clauses ci1 , ci2 ∈ Σ+ that share a variable, for every substlet
s ∈ ci1 , P contains the clause

{ ¬[s] } ∪ { [s′] ∈ ci2 | s′ ∈ ci2 , and s′ is not in conflict with s }.
(3) For every blocking σ ∈ Σ−, we assume that there is a way of selecting a most suitable

subset Cσ of Σ+ that contains all variables of σ. Then P contains the clause

{ [s] | ∃c ∈ Cσ, s.t. s ∈ c and s is in conflict with σ }.

The first part specifies that exactly one substlet must be selected from each c ∈ Σ+.
The second part specifies that if one selects a substlet s from ci1 , one has to select a substlet
s′ from ci2 that is not in conflict with s. The third part of Definition 6.2 can be viewed as
an application of σ-RESOLUTION (Definition 5.3).

The second translation differs from the first translation in the fact that it does not only
translate substlets, but also variable assignments. In addition to the substlets, it assigns
propositional variables to variable assignments v/x. It specifies the dependencies between
substlets and variable assignments. Instead of relying on σ-RESOLUTION, blockings can
be specified directly in terms of the forbidden variable assignments.

Definition 6.3. Let (Σ+,Σ−) be a GCSP. Write Σ+ = {c1, . . . , cn}. Write each ci in the
form {si,1, . . . , si,ki}. The translation to propositional logic has form (A,P ), where A is the
set of atoms used in the translation, and P is the set of clauses. The set of atoms A is
defined as

{ [si,j ] | 1 ≤ i ≤ n, 1 ≤ j ≤ ki } ∪ { [v/x] | (v/x) occurs in a substlet in Σ+ }.
The set of propositional clauses P is obtained as follows:

(1) For every clause ci, (1 ≤ i ≤ n), clause set P contains the clause { [si,1], . . . , [si,ki ] }.
(2) For every substlet si,j with 1 ≤ i ≤ n, 1 ≤ j ≤ ki, for every assignment v/x that occurs

in si,j , clause set P contains the clause { ¬[si,j ], [v/x] }.
(3) For every variable v that occurs in Σ+, for every two distinct values x1, x2, s.t. v/x1 and

v/x2 occur somewhere in substlets in Σ+, clause set P contains the clause { ¬[v/x1], ¬[v/x2] }.
(4) For every blocking σ ∈ Σ−, if every (v/x) ∈ σ occurs somewhere in a clause in Σ+, then

clause set P contains the clause { ¬[v/x] | (v/x) ∈ σ }. If some (v/x) ∈ σ does not occur
in Σ+, then σ is impossible, and there is no need to generate a clause for it.



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 17

We show correctness of Definition 6.3. If (Σ+,Σ−) has a solution Θ, one can define a
satisfying interpretation I for (A,P ) as follows:

• For 1 ≤ i ≤ n, 1 ≤ j ≤ ki, set I( [si,j ] ) = t iff Θ |= si,j .
• For every assignment v/x occurring in a substlet s occurring in a clause ci, set I( [v/x] ) = t

iff vΘ = x.

It is easily checked that I makes all clauses in Definition 6.3 true.
For the other direction, assume that (A,P ) has a satisfying interpretation I. Define

Θ = { (v/x) | I( [v/x] ) = t }. By part 4, Θ does not contain conflicting assignments. By
part 1 and part 2, Θ contains an assignment for every variable occurring in Σ+. Because of
part 3, Θ does not imply a blocking σ ∈ Σ−. By part 1 and part 2, every ci ∈ Σ+ contains
one substlet that agrees with Θ.
We end the section with an example of both translations:

Example 6.4. We will translate the following GCSP. As usual, Σ+ and Σ− are separated
by a horizontal bar.

(X,Y ) / (0, 1) | (1, 0)
(Y,Z) / (0, 0) | (0, 1) | (1, 0)
(X,Z) / (0, 0)
(X,Z) / (1, 1)

Σ+ alone has three solutions:

Θ1 = { X := 0, Y := 1, Z := 0 },
Θ2 = { X := 1, Y := 0, Z := 0 },
Θ3 = { X := 1, Y := 0, Z := 1 }.

The first solution is blocked by (X,Z)/(0, 0), the third solution is blocked by (X,Z)/(1, 1),
so that only Θ2 is a solution of the complete GCSP. Assume that

[(X,Y )/(0, 1)] = 1, [(X,Y )/(1, 0)] = 2, [(Y,Z)/(0, 0)] = 3, [(Y, Z)/(0, 1)] = 4, [(Y,Z)/(1, 0)] = 5.

Definition 6.2 constructs the following translation:

Part 1 :


1 2
3 4 5
−1 −2
−3 −4
−3 −5
−4 −5

 Part 2 :


−1 5
−2 3 4
−3 2
−4 2
−5 1

 Part 3 :

(
1 4
2 3 5

)

The only satisfying interpretation is {−1, 2, 3,−4,−5}, which corresponds to Θ2. In order to
apply the second translation, assume that

[X/0] = 6, [X/1] = 7, [Y/0] = 8, [Y/1] = 9, [Z/0] = 10, [Z/1] = 11.



18 HANS DE NIVELLE

The second translation constructs

Part 1 :

(
1 2
3 4 5

)
Part 2 :



−1 6
−1 9
−2 7
−2 8
−3 8
−3 10
−4 8
−4 11
−5 9
−5 10


Part 3 :

 −6 −7
−8 −9
−10 −11

 Part 4 :

(
−6 −10
−7 −11

)

Its only satisfying interpretation is {−1, 2, 3,−4,−5,−6, 7, 8,−9, 10,−11}, which again cor-
responds to Θ2.

7. An Input Format for GCSP

Since we are claiming that GCSPs are fundamental enough to study on their own, and may
have applications outside of geometric resolution, we made our implementation publicly
available ([7]). In this section, we define the input format for GCSP, which is used by our
implementation. The format is similar to the DIMACS format for satisfiability ([1]). Similar
to the DIMACS format, variables and constants are represented by integers. Since GCSP
has no polarity (there is no negation), all integers are non-negative.

Definition 7.1. We define a representation for GCSP. Input is represented in plain ASCII.
The format never distinguishes between upper and lower case.

• Input starts with whitespace, possibly mixed with comment lines. A comment line is a
line whose first non-whitespace character is a ‘c’ or a ‘C’. The initial comment lines are
ignored.
• After that comes a line of form

p gcsp nrvars nrconsts nrclauses nrblockings

nrvars is the number of variables in the problem, nrconsts is the number of constants
in the problem. Both need not be exact, but must be upperbounds. More precisely, both
variables and constants are represented by non-negative integers, and nrvars,nrconsts

must be bigger than any variable or constant that appears in the problem.
nrclauses must be the exact number of clauses, and nrblockings must be the exact

number of blockings.
• A clause has form V var1 ... varV S subst1 ... substS. Here V is the exact number

of variables in the clause, and var1 ... varV are the variables, represented by non-
negative integers. Each variable must be less than nrvars.

S is the exact number of substlets in the clause. Each substlet is represented by a
sequence of non-negative integers of length V, that specifies the values assigned to the
variables, in the same order as the variables. Each value must be less than nrconsts.
There must be exactly nrclauses clauses.
• Blockings are represented in the same way as clauses. Although in Definition 2.2, blockings

are single substlets, it is convenient to merge blockings with identical domain into clauses,
so that they can be represented more compactly.



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 19

There must be exactly nrblockings (merged) blockings. Note that it is not obligatory
to merge blockings with same domain.
• Everything after the blockings is ignored, so there is room for more comments.
• Solutions are presented in the format

A V1 C1 ... VA CA

Here A is the number of assignments in the substitution, and each Vi⇒ Ci is an assignment.
The assigments can be listed in arbitrary order.

Example 7.2. We represent the GCSP of Example 6.4. There are three variables X,Y, Z,
which we will represent by 0, 1, 2. This means that 3 is an upperbound. There are two
constants 0, 1, so that 2 is an upperbound. This is a representation:

c we did not merge the blockings

p gcsp 3 2 2 2

2 0 1 2 0 1 1 0

2 1 2 3 0 0 0 1 1 0

2 0 2 1 0 0

2 0 2 1 1 1

Since the two blockings in Example 6.4 have the same domain, the GCSP can be
alternatively represented as follows:

c this time we merged the two blockings

c there is no difference in meaning

P GCSP 3 2 2 1

2 0 1 2 0 1 1 0

2 1 2 3 0 0 0 1 1 0

2 0 2 2 0 0 1 1

The solution Θ2 can be output as 3 0 1 1 0 2 0. Since the order is arbitrary, it can
also be output as 3 1 0 2 0 0 1.

8. Experiments

We present measurements on two benchmark sets. Both sets were obtained by running Geo
on a few input problems, and collecting hard matching instances. The first set consists of
problems that took more than an hour to solve with a naive matching algorithm. This set
was used in Figures 1 and 2.
Entries in Figure 1 have form t(λ), where t is the time used in seconds, and λ the number of
lemmas generated. For the 3d and 4th column, the times are the CPU-times reported by
MiniSat (Version 2.0 beta) ([11]). Since MiniSat is not integrated into Geo, it is difficult



20 HANS DE NIVELLE

Figure 1: Comparing Direct Matching with SAT Translations

Problem Algo 3.3 Algo 3.3(flat) Def 6.2 Def 6.3
mod01 271(42606) 0.15(2898) 0.17(8248) 0.08(3220)
mod02 138(28830) 0.11(2064) 0.19(8248) 0.12(5982)
mod03 80(21822) 0.095(1632) 0.6(20344) 0.17(5288)
mod04 32(14290) 0.062(1440) 0.05(2955) 0.028(1744)
mod05 21(11640) 0.049(1210) 0.06(5007) 0.036(1747)
mod06∗ 340(23193) 1.42(9862) 0.06(1637) 0.044(1637)
mod07∗ 703(31347) 2.05(12495) 0.14(5032) 0.098(2955)
mod08∗ 1593(42709) 3.06(17947) 0.87(20658) 0.15(5032)
mod22∗ 133(25620) 2.8(18542) 10.14(113548) 100(110445)
mod23∗ 52(17533) 2.09(15114) 75.64(230822) 8.9(58213)
subst15∗ 0.38(4) 0.05(4) 0.07(350) 0.060(98)
syn02∗ 0.0017(0) 0.00014(0) 0.14(0) 0.0035(0)
syn11∗ 0.0006(4) 0.00017(2) 0.024(0) 0.0098(0)
syn12∗ 0.0022(1) 0.00025(0) 0.13(0) 0.012(0)
syn14∗ 3.81(1461) 0.31(1083) 0.04(0) 0.035(1634)

to measure the total time (conversion+solving). For hard problems, the conversion times
are probably negligible, but for trivial problems, they may be significant (in the same order
of magnitude as the solving times) because translation is quadratic. Due to the way the
benchmarks were collected, they contain no trivial problems. It can be seen from Figure 1
that translation to propositional SAT is comparable to Algorithm 3.3 with flat lemmas.
We will dicuss this more in the context of Figure 3. We were not sure how to determine
the number of lemmas generated during a run of MiniSat, due to the fact that it performs
restarts. Currently, we simply added the numbers reported by the different restarts. Since
MiniSat probably reuses lemmas between different restarts, this means that the indicated
numbers are likely too high. It can be seen that nearly always, Definition 6.3 performs better
than Definition 6.2.

Figure 2 shows results for the refining algorithm of [5], discussed in Section 5. It can be
seen that using S > 1 is hardly worth the effort, and that the refining algorithm performs
somewhat worse than Algorithm 3.3 with learning of unrestricted lemmas. Since flattening
of lemmas improves the performance of Algorithm 3.3 dramatically, we tried the same with
the refining algorithm. Unfortunately, the last column of Figure 2 shows that flattening has
a big, negative impact on the refining algorithm. That means that the refining algorithm
can be ruled out as a candidate for being optimal.
Figure 3 presents another benchmark test that was obtained by running Geo on several
input problems using Algorithm 3.3 with flat lemmas. We started by setting a short initial
time t = 10−4. Whenever a matching took more than t seconds to solve, we added it to the
benchmark set, and doubled t. From several runs, we kept the last three instances generated
in this way. Figure 3 shows that most of the problems obtained in this way, are also hard
for MiniSat. We believe Figure 3 shows the potential of direct matching algorithms, but
there are several caveats: Runs of geo do not generate really hard matching instances, all
instances are solved within seconds, most much faster. The way of collecting problems that



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 21

Figure 2: Results for Matching Using Local Consistency

Problem S = 1 S = 2 S = 3 S = 1 (flat)
mod01 257(104268) 256(104268) 283(104268) 1712(670938)
mod02 334(90012) 359(90012) 330(90012) 1397(585402)
mod03 148(75288) 142(75288) 150(75324) 639(464658)
mod04 42(35985) 41(35985) 46(35985) 182(194905)
mod05 39(35110) 40(35110) 43(35110) 133(190530)
mod06∗ 577(27689) 602(27689) 443(32467) 593(125993)
mod07∗ 946(32338) 962(32338) 669(35410) 888(155391)
mod08∗ 1580(42193) 1719(42193) 1091(39057) 1258(175607)
mod22∗ 379(30758) 355(30758) 243(26814) 62(53035)
mod23∗ 92(18228) 91(18228) 69(14662) 26(26384)
subst15∗ 0.42(43) 0.44(43) 0.66(43) 0.42(43)
syn02∗ 0.013(0) 0.01(0) 0.015(0) 0.012(0)
syn11∗ 0.006(2) 0.019(26) 0.063(14) 0.006(2)
syn12∗ 0.01(0) 0.015(0) 0.031(0) 0.008(0)
syn14∗ 0.098(132) 0.12(126) 0.33(92) 0.0023(195)

Figure 3: Algorithm 3.3 (flat lemmas) against Def 6.3

Algo 3.3(flat) Def 6.3 Algo 3.3(flat) Def 6.3
0.66(10565) 5.6(8169) 0.16(2875) 7.29(23457)
0.20(4081) 4.02(13441) 0.13(3231) 0.95(6551)
0.18(4521) 1.07(10670) 0.00013(5) 0.0(0)
0.00019(4) 0.0029(0) 0.037(1182) 0.043(2058)
0.057(317) 0.78(7478) 0.058(683) 1.89(16973)
0.147(558) 2.88(16971) 0.053(1795) 0.12(2810)
0.21(1039) 3.08(17065) 0.026(910) 0.072(1749)
0.033(1006) 0.032(1318) 0.018(402) 0.022(1299)
0.23(6308) 0.073(3210) 0.023(310) 0.101(3216)
0.026(990) 0.027(1318) 0.0655(1208) 0.11(3215)

0.036(553) 0.069(2070)

are hard for Algorithm 3.3 puts it at a disadvantage. For example, there may be problems
that are hard for MiniSat, which will not enter the benchmark set. On the other hand,
MiniSat is not state of the art anymore, and modern SAT solvers probably will perform
better. We carefully conclude that there is a chance that in the long term, at least for some
applications, our approach of directly implementing matching, may be the optimal approach.

9. Finding Optimal Matchings

In this section we address the problem of finding optimal matchings. For the effectiveness
of geometric resolution, it is important that a minimal matching is returned, in case more



22 HANS DE NIVELLE

than one exists. A minimal matching is a matching that uses the smallest possible set
of assumptions. In terminology of DPLL, assumptions represent decision levels. The
assumptions contributing to a conflict represent choice options, which will be replaced by
other options during backtracking. In addition to being as few as possible, assumptions
at a lower decision level should always be preferred over assumptions at a higher decision
level. The reason for this is the fact that in other branches of the search tree, there is a risk
that more assumptions will be used, and when assumptions are at a lower level, there is less
room for this.

Definition 9.1. Let I be an interpretation. A weight function α is a function that assigns
finite subsets of natural numbers to the atoms of I.

Let A be a geometric literal. Let Θ be a substitution such that AΘ is in conflict with I. Re-
ferring to definition 1.3, we define α( pλ(x1, . . . , xn)Θ, I) = α( pµ(x1Θ, . . . , xnΘ) ), α( (x1 ≈
x2)Θ, I) = {}, and α( (#fx)Θ, I) = α( (#txΘ) ).

Definition 9.2. Let I and φ = A1, . . . , Ap | B1, . . . , Bq together form an instance of the
matching problem (Definition 1.5). Assume that Θ is a solution. The weight of Θ, for which
we write α(I, φ,Θ), is defined as⋃{

{ α(AiΘ, I) | 1 ≤ i ≤ p}
{ α(C, I) | 1 ≤ j ≤ q, C ∈ E(Bj ,Θ), and C conflicts I }

Solving optimal matching means: First establish if (I, φ) has a solution. If it has, then find
a solution Θ for which α(I, φ,Θ) is multiset minimal.

One could try to impose further selection criteria that are harder to explain and whose
advantage is less evident.

Solving the minimal matching problem is non-trivial, because the number of possible
solutions can be very large. The straightforward solution is to use some efficient algorithm
(e.g. the one in this paper) that enumerates all solutions, and keeps the best solution.
Unfortunately, this approach is completely impractical because some instances have a very
high number of solutions. One frequently encounters instances with > 109 solutions.

In order to find a minimal solution without enumerating all solutions, one can use any
algorithm that stops on the first solution in the following way: The first call is used to find
out whether a solution exists. If not, then we are done. Otherwise, the algorithm is called
again with its input restricted in such a way that it has to find a better solution than the
previous. One can continue doing this, until all possibilities to improve the solution have
been exhausted. It can be shown that the number of calls needed to obtain an optimal
solution is linear in the size of the assumption set of solution. In this way, it can be avoided
that all solutions have to be enumerated.

Definition 9.3. Let I be an interpretation that is equipped with a weight function α. Let
φ = A1, . . . , Ap | B1, . . . , Bq be a geometric formula. Let α be a fixed set of natural numbers.
We define the α-restricted translation (Σ+,Σ−) of (I, φ) as follows:

• For every Ai, let vi be the variables of Ai. Then Σ+ contains the clause

{vi/viΘ | AiΘ is in conflict with I and α(AiΘ, I) ⊆ α}.
• For each Bj , let wj denote the variables of Bj . For every Θ that makes BjΘ true in I,

Σ− contains the substlet wj/(wjΘ). In addition, if there exists a C ∈ E(Bj ,Θ) that is in
conflict with I and for which α(C,Θ) 6⊆ α, then Σ− contains the substlet wj/(wjΘ).



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 23

The α-restricted translation ensures that only conflicts involving atoms C with α(C) ⊆ α
are considered, and (independently of α), that no Bj is made true. The translation of
Definition 2.4 can be viewed as a special case of α-restricted translation with α = N.

Theorem 9.4. Let (Σ+,Σ−) be obtained by α-restricted translation of (I, φ). For every
substitution Θ, Θ is a solution of (Σ+,Σ−) iff Θ is a solution of (I, φ), and it has
α(I, φ,Θ) ⊆ α.

Using α-restricted translation, we can define the optimal matching algorithm:

Algorithm 9.5. Let solve(Σ+,Σ−) be a function that returns some solution of (Σ+,Σ−)
if it has a solution, and ⊥ otherwise.

We define the algorithm optimal( I, φ ) that returns an optimal solution of (I, φ) if
one exists and ⊥ otherwise.

(1) Let (Σ+,Σ−) be the GCSP obtained by the translation of Definition 2.4. If Σ+ contains
an empty clause, then return ⊥. If Σ− contains a propositional blocking, then return
⊥. Otherwise, remove unit blockings from (Σ+,Σ−). If this results in Σ+ containing an
empty clause, then return ⊥.

(2) Let Θ = solve(Σ+,Σ−). If Θ = ⊥, then return ⊥.
(3) Let α = α(I, φ,Θ), and let k := sup(α).
(4) As long as k 6= 0, do the following:
• Set k = k − 1. If k ∈ α, then do

– Let α′ = (α\{k}) ∪ {0, 1, 2, . . . , k − 1}.
– Let (Σ+,Σ−) be the α′-restricted translation of (I, φ).
– If Σ+ contains an empty clause or Σ− contains a propositional blocking, then skip

the rest of the loop. Otherwise, remove the unit blockings from (Σ+,Σ−). If this
results in Σ+ containing the empty clause, then skip the rest of the loop.

– Let Θ′ = solve(Σ+,Σ−). If Θ′ 6= ⊥, then set Θ = Θ′ and α = α(I, φ,Θ).
(5) Now Θ is an optimal solution, so we can return Θ.

Algorithm optimal first solves (I, φ) without restriction. If this results in a solution
Θ, it checks for each k ∈ α(I, φ,Θ) if k can be removed. The invariant of the main loop is:
There exists no k′ ≥ k that occurs in α(I, φ,Θ), and no Θ′ that is a solution of (I, φ) with
k′ 6∈ α(I, φ,Θ′). In addition, the invariant α = α(I, φ,Θ) is maintained.

Example 9.6. Assume that in example 1.6, the atoms have weights as follows:

α( Pt(c0, c0) ) = {1}, α( Pe(c0, c1) ) = {2}, α( Pt(c1, c1) ) = {3},
α( Pe(c1, c2) ) = {4}, α( Qt(c2, c0) ) = {5}.

We have α(I, φ1,Θ1) = {1}, α(I, φ1,Θ2) = {1, 2}, and α(I, φ1,Θ3) = {2, 3}. If Θ3 is the
first solution generated, solve will construct the {1, 2}-restricted translation of (I, φ1), which
equals

(X,Y ) / (c0, c0) | (c0, c1)
(Y,Z) / (c0, c0) | (c0, c1)
(X,Z) / (c0, c2)

If the next solution found is Θ2, then solve will construct the {1}-restricted translation

(X,Y ) / (c0, c0)
(Y,Z) / (c0, c0)
(X,Z) / (c0, c2)



24 HANS DE NIVELLE

whose only solution is Θ1.

10. Filtering by Local Consistency Checking

Filtering is any procedure that simplifies or possibly rejects a GCSP before the main
algorithm is called. In Geo, we have used filtering based on local consistency checking.
In earlier versions, this was effective because very often, filtering rejects a GCSP without
calling the main algorithm. Since the algorithms that we present in this paper, are much
more efficient, this is not certain anymore. We still present the local consistency checking
procedure, because it is easy to implement using refinement stacks, and it may be still an
effective tool for filtering out easy instances.

Local consistency checking (see [10, 14, 17]) is a pre-check that comes in many variations.
Local consistency checking is the following procedure: For every clause c = {s1, . . . , sn} ∈ Σ+,
check, for all sets of clauses C with size S ≥ 1, if {si}∪C has a solution. If not, then remove
si from c. Keep on doing this, until no further changes are possible or a clause has become
empty. Local consistency checking rejects a large percentage of GCSP instances a priori,
and usually decreases the size of the clauses involved by a factor two or three.

In [10] (Chapter 3), local consistency checking is defined using subsets of variables
(instead of clauses). Using subsets of two variables is called arc consistency checking, while
considering subsets of three variables is called path consistency checking. In general, using
bigger subsets is a more effective precheck, but also more costly because it gets closer to the
original problem.

As discussed in Section 5, we had assumed in [5] that filtering is so effective, that one can
base the complete search algorithm on it. Although this is possible in theory, the resulting
algorithm turned out not competitive.

Since the local consistency checks the substlets in a single clause c against sets of clauses
C ⊆ Σ+, we define the size S of a local consistency check as S = ‖C‖. When performing
a local consistency check up to size S, one has to generate subsets up to size S + 1, and

generate their solutions. If ‖Σ+‖ = n, the total number of such subsets equals

(
n
S + 1

)
,

which grows very quickly for realistic n. The problem can be decreased by not generating
all subsets, but only generate subsets whose clauses share variables, or have variables that
co-occur in a blocking.

Definition 10.1. Let c, c′ be clauses. We write c ∼ c′ if either c and c′ share a variable, or
there exist connected (Definition 3.2) variables v and v′, s.t. v occurs in c and v′ occurs
in c′.

It is sufficient to generate subsets that are connected, because consideration of subsets that
are not connected will not lead to the removal of more substlets. We always assume that
solutions are non-redundant, i.e. do not contain irrelevant assignments.

Lemma 10.2. Let (Σ+,Σ−) be a GCSP. Let C ⊆ Σ+. If C can be written as C1 ∪ C2, s.t.
there exist no c1 ∈ C1 and no c2 ∈ C2 with c1 ∼ c2, then for every two substitutions Θ1,Θ2,
s.t. Θ1 is a solution of (C1,Σ

−) and Θ2 is a solution of (C2,Σ
−), Θ1 ∪Θ2 is a solution of

(C1 ∪ C2,Σ
−).



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 25

Lemma 10.2 guarantees that it is not needed to attempt to remove substlets from clauses
in C1 ∪C2, after C1 and C2 have been checked. If some substlet s in C1 occur some solution
of C1, and C2 has a solution, then s will occur in the combined solution.

We will now show that instead of ignoring disconnected subsets, one can also ignore
subsets that are connected only through a single clause:

Lemma 10.3. Let (Σ+,Σ−) be a GCSP. Assume that C1, C2 ⊆ Σ+, and c ∈ Σ+. Assume
that for every pair of variables v1 occurring in a clause of C1, and v2 occurring in a clause
of C2, if either v1 = v2 or v1 and v2 are connected, then v1, v2 occur in c.

Then the following holds: If Θ1 is a solution of (C1 ∪ {c},Σ−) and Θ2 is a solution of
(C2 ∪ {c},Σ−), s.t. Θ1,Θ2 agree on the variables occurring in c, then Θ1 ∪Θ2 is a solution
of (C1 ∪ C2 ∪ {c},Σ−).

Proof. Assume that Θ1,Θ2, C1, C2, c fulfil the conditions of the lemma. By non-redundancy,
Θ1 does not contain assignments to variables not occurring in c or C1. Similarly, Θ2 does
not contain assignments to variables not occurring in c or C2. If Θ1,Θ2 share a variable v,
then this variable must occur in c, which implies that vΘ1 = vΘ2. As a consequence, Θ1 and
Θ2 can be merged into a single substitution Θ = Θ1 ∪Θ2, which has Θ |= C1 ∪ C2 ∪ {c}.

If there would be a blocking σ ∈ Σ−, s.t. Θ |= σ, then we still have Θ1 6|= σ and Θ2 6|= σ.
This implies that there are variables v1 in C1\{c} and v2 occurring in C1\{c}, which occur
together in σ. But this contradicts the fact that v1 and v2 cannot be connected.

As above, if some substlet s ∈ C1 is used in a solution of C1 ∪ {c}, and {c} ∪ C2 has
a solution, then the solutions can be combined into a single solution that uses s. If some
substlet s of c occurs in a solution of C1∪{c} and in a solution of {c}∪C2, then the solutions
can be combined into a single solution that still uses s.

This implies that, if one uses a local consistency checker that gives preference to small
subsets, one can ignore subsets that do not contain ’cycles’. If there exist c1, c2, c3 ∈ C, s.t.
c1, c3 are not connected, and every path from c1 to c3 has to pass through c2, then C can be
ignored. This gives rise to the following definition:

Definition 10.4. Let (c1, . . . , cS+1) with S ≥ 1 be a sequence of clauses. We call
(c1, . . . , cS+1) a circle if for every i (i ≤ S), we have ci ∼ ci+1, and in addition we have
cS+1 ∼ c1.

If C is a refinement stack, we call a sequence of indices (i1, . . . , iS+1) a circle if each
αij (C) is true, and (di1 , . . . , diS+1) is a circle.

The local consistency checker checks only circles. Generation of circles in Σ+ is easier
to implement than generation of all connected subsets, especially if one wants to avoid
generating the same subset in different ways. In addition, it is more efficient because there
are less circles than connected subsets. The discussion above suggests that generating circles
is sufficient to obtain a complete check. We have believed for some time that this is true in
general, but we will show below that it is false.

Algorithm 10.5. Let S ≥ 1 be a natural number. Let Θ be a substitution. Let C be a
refinement stack.

A call to local(s,Θ, (k1, . . . , kS+1), C) constructs a refinement of C by removing the
substlets that do not occur in any solution of the subset of Σ+ of size S + 1.

It returns ⊥ if it establishes that Θ cannot be extended into a solution of C. Initially
s = k1 = · · · = kS+1 = 1.



26 HANS DE NIVELLE

SUBST: As long as s ≤ ‖Θ‖, let v/x be the s-th assignment in Θ.
(1) For every blocking σ ∈ Σ− involving v, check if Θ |= σ. If yes, then return ⊥.
(2) For every (ci ⇒ di) ∈ C which has αi(C) true and which contains v, let d′ be the set

of substlets in di that are consistent with Θ. If d′ = ∅, then return ⊥. Otherwise, if
∅ ⊂ d′ ⊂ d, append (ci ⇒ d′) to C.

CLAUSES1: As long as k1 < ‖C‖ do the following:
(1) If αk1(C) is true, and the k1-refinement (ck1 ⇒ dk1) contains a variable v, s.t. all

substlets (v/x) ∈ dk1 agree on the assignment to v, then let x be the agreed value.
Append v/x to Θ.

(2) Set k1 := k1 + 1.
If s ≤ ‖Θ‖, then restart at SUBST. (This means that Θ was extended in the previous
step.)

CLAUSESN: As long as there is an i with 2 ≤ i ≤ S + 1, s.t. ki ≤ ‖C‖, pick the smallest
such i. If αki(C) holds, then
(1) Enumerate all circles (λ1, . . . , λi) of size i starting at λ1 = ki. For each such circle

(λ1, . . . , λi), let I = {dλ1 , . . . , dλi}.
Call refine(I,Θ, C). If the result is ⊥, then return ⊥. If after the call, we have
‖C‖ > k1, then restart at CLAUSES1.

Let C be a refinement stack. Let k = ‖C‖. Let I be a subset of {1, . . . , k}, s.t. for every
i ∈ I, αi(C) holds. Algorithm refine(I,Θ, C) is defined as follows:

(1) Initialize a map U with domain I by setting U(i) = ∅, for each i ∈ I. Eventually, U will
map each i ∈ I to the set of substlets in di, that can occur in a solution Θ′ of {di | i ∈ I}
extending Θ.

(2) Enumerate all maps S with domain I that map each i ∈ I to a substlet S(i) in di, and
that have the following properties: No S(i) conflicts Θ, no S(i), S(i′) are in conflict with
each other. Θ ∪ {S(i) | i ∈ I} does not imply a blocking σ ∈ Σ−.
For each of the generated mappings S, for each i ∈ I, set U(i) = U(i) ∪ {S(i)}.

(3) For every i ∈ I, for which U(i) 6= di, add the refinement ( ci ⇒ U(i) ) to C.

The local consistency checker gives priority to checking against the substitution. After
checking for conflicts against the substitution, Algorithm 10.5 generates circles of size up to
S+ 1, and checks for each of the substlets occurring in the clauses of such a circle, whether it
can occur in a solution. Substlets that do not occur in a solution are refined away. Preference
is given to small circles. This means that circles of size i+ 1 will be checked only after all
circles up to size i have been checked.

We will discuss (and disprove) the conjecture mentioned above, that it is sufficient to
check circles, when preference is given to smaller subsets. More precisely: If for a given
subset C ⊆ Σ+, all its subcircles have been checked, then C needs to be checked only if it is
a circle by itself. We formally define what ’has been checked’ means:

Definition 10.6. Let (Σ+,Σ−) be a GCSP. Let Θ be a substitution. Let C be a subset of
clauses of Σ+. We write Φ(C) for the following property: For every clause c ∈ C, for every
substlet s ∈ c, there is a solution Θ of (C,Σ−), s.t. Θ |= s.

Algorithm 10.5 tries to establish Φ(C) for every subset C of size i up to S+1. It assumes
that when Φ(C) holds for circles with size smaller than ‖C‖, and C is not a circle, then Φ(C)
automatically holds. We have believed for some time that this assumption is true, because



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 27

Lemma 10.2 and Lemma 10.3 provide evidence for it, and it simplifies Algorithm 10.5.
Unfortunately, the property fails at S = 4, when circles have size 5.

Conjecture 10.7. Let (Σ+,Σ−) be a GCSP. Assume that every strict subset C ′ ⊂
{c1, . . . , cS+1} that can be arranged into a circle c′1, . . . , c

′
S′+1 has property Φ(C ′). Then if

C cannot be arranged into a circle, C has the property Φ(C).

We prove Conjecture 10.7 for S < 4, and provide a counter example for S = 4.

Proof. • S = 1 follows from Lemma 10.2.
• In order to prove S = 2, assume that c1, c2, c3 are clauses that do not form a circle.

Without loss of generality, we may assume that c1 6∼ c3. If we also have c1 6∼ c2, then
{c1, c2, c3} can be partitioned into {c1}, {c2, c3}, so that Lemma 10.2 can be applied. If
we have c1 ∼ c2, we can apply Lemma 10.3 with C1 = {c1}, c = c2, C2 = {c3}.
• We prove S = 3. We use the fact that Conjecture 10.7 holds for S < 3. Let c1, c2, c3, c4 ∈

Σ+. If {c1, c2, c3, c4} can be partitioned into two disjoints sets, we can apply Lemma 10.2,
and we are done. Otherwise, if {c1, c2, c3, c4} cannot be partitioned into disconnected sets,
there are two possibilities:
– The clauses form a line c1 ∼ c2 ∼ c3 ∼ c4. If c1 ∼ c4, then (c1, c2, c3, c4) is a circle, so

that Conjecture 10.7 holds trivially.
Otherwise, we can still have c1 ∼ c3 or c2 ∼ c4. If we have both, then (c1, c3, c4, c2) is a
circle, so that Conjecture 10.7 again holds trivially.
If c1 6∼ c3, we can apply Lemma 10.3 with C1 = {c1}, c = c2, and C2 = {c3, c4}.
Similarly, if c2 6∼ c4, we can apply Lemma 10.3 with C1 = {c1, c2}, c = c3, and
C2 = {c4}.

– The clauses form a kind of star with c1 in the center: c1 ∼ c2, c1 ∼ c3, c1 ∼ c4.
For c2, if c2 ∼ c3, nor c2 ∼ c4, we can apply Lemma 10.3 with C1 = {c2}, c = c1, C2 =
{c3, c4}.
If we have both of c2 ∼ c3 and c2 ∼ c4, then (c2, c3, c1, c4) is a circle.
In the remaining case, we may assume without loss of generality that c2 ∼ c3, but also
c2 6∼ c4.
This means that we have c2 ∼ c3, c2 6∼ c4. If c4 ∼ c3, then (c1, c2, c3, c4) is a circle. If
c4 6∼ c3, then we can apply Lemma 10.3 with C1 = {c2, c3}, c = c1, C2 = {c4}.

We give a counter example for S = 4.

Example 10.8. Consider the following GCSP, which has no blockings, and the following
clauses:

(c1) (X1, X2, X3) / (0, 0, 0) | (0, 1, 1) | (1, 1, 0) | (1, 0, 1)
(c2) (X1, Y1) / (0, 0) | (1, 1)
(c3) (X2, Y2) / (0, 0) | (1, 1)
(c4) (X3, Y3) / (0, 0) | (1, 1)
(c5) (Y1, Y2, Y3) / (1, 0, 0) | (0, 1, 0) | (0, 0, 1) | (1, 1, 1)

We have c1 ∼ c2, c1 ∼ c3, c1 ∼ c4, and c2 ∼ c5, c3 ∼ c5, c4 ∼ c5. There are no other
connections. The example can be understood as follows: Clause c2 requires that X1Θ = Y1Θ.
Similarly, c3 requires that X2Θ = Y2Θ, and c4 requires that X3Θ = Y3Θ. Clause c1 requires
that X1Θ +X2Θ +X3Θ is even, while c5 requires that Y1Θ + Y2Θ + Y3Θ is odd. Since the
sums must be equal, and cannot be odd and even at the same time, ({c1, c2, c3, c4, c5}, { })
has no solution.



28 HANS DE NIVELLE

Ignoring direction and starting point, there are three circles of size 4 :

(c1, c2, c5, c3), (c1, c2, c5, c4), (c1, c3, c5, c4).

Since the circles are symmetric, we show that every substlet occurring in {c1, c2, c5, c3} can
occur in a solution. One can pick the instance of c1 and c5 in such a way that they agree
on X1/Y1 and X2/Y2. They will disagree on X3/Z3, but because c4 is not considered, this
is no problem. After that, the instances to c2 and c3 are fixed. It is easily checked that
c1, c2, c3, c4, c5 cannot be arranged into a circle.

Example 10.8 contains a GCSP that would not be refined by Algorithm 10.5 with S = 4,
despite the fact that it has no solution. We will refrain from trying to make Algorithm 10.5
complete, because we believe that it is not worth the effort. Experiments suggest that using
Algorithm 10.5 becomes too costly already at S ≥ 3. Implementing a more elaborate check
at S ≥ 3, would make Algorithm 10.5 even more costly, and harder to implement, without
much hope for improvement.

It is important to observe that even when Algorithm 10.5 is used as a precheck, it still
needs to be restorable, because it may be called by Algorithm 9.5, which will turn on and
off different substlets, based on α. Only the first call need not be restorable.

11. Conclusions

The problem of matching a geometric formula into an interpretation used to be the bottleneck
of our implementation of geometric resolution. In order to improve this situation, we gave
a translation of the matching problem into GCSP, and provided efficient approaches for
solving GCSP. One approach is to solve the GCSP directly by a combination of refinement,
backtracking and learning. The other approach is to translate the problem into SAT. Our
experiments suggest that both approaches have comparable performance. Both approaches
still have room for improvement. For translation to SAT, one could develop a dedicated SAT
solver. For the direct approach using GCSP, one could add heuristics that control when
learnt lemmas are forgotten, and probably it will be possible to add deep backtracking.

Independent of the relative performance of the two approaches, one can conclude that
the speed of Geo can be improved by a very large factor, and that matching is no longer
the bottleneck that hinders further development of the geometric resolution calculus.

Since GCSP may have applications outside of geometric logic, we defined an input
format for GCSP, similar to DIMACS format for SAT, that can be used for independent
applications. We also made the sources of our matching algorithm available.

The fact that the clause refining algorithm based on local consistency checking turned
out not competitive, shows that search algorithms that appear good in theory, are not
necessarily good in practice. In general, it is difficult to predict what will be the effect of a
modification of a search algorithm. A seemingly small change may have a large impact on
performance.

As for geometric resolution, one might argue that a calculus that uses an NP-complete
problem as its basic operation is not viable, but there is room for interpretation: The
complexity of the matching problem is caused by the fact that as result of flattening terms,
geometric formulas and interpretations have DAG-structure instead of tree-structure. This
increased expressiveness means that a geometric formula possibly represents exponentially
many formulas with tree-structure. This may very well result in shorter proofs. Only
experiments can determine which of the two effects will be stronger.



SUBSUMPTION ALGORITHMS FOR THREE-VALUED GEOMETRIC RESOLUTION 29

12. Acknowledgements

We gratefully acknowledge that this work was supported by the Polish National Science Center
(Narodowe Centrum Nauki) under grant number DEC-2015/17/B/ST6/01898 (Application
of Logic with Partial Functions). A large part of this work was carried out while the author
was employed at Wroc law University, Poland.

References

[1] Unknown Author. Satisfiability suggested format. http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/
SAT/satformat.ps.

[2] Marc Bezem and Thierry Coquand. Automating coherent logic. In Geoff Sutcliffe and Andrei Voronkov,
editors, LPAR, volume 3835 of LNCS, pages 246–260. Springer Verlag, 2005.

[3] Hans de Nivelle. Classical logic with partial functions. Journal of Automated Reasoning, 47(4):399–425,
2011.

[4] Hans de Nivelle. Theorem proving for logic with partial functions by reduction to Kleene logic. In
Christoph Benzmüller and Jens Otten, editors, Automated Reasoning in Quantified Non-Classical Logics
(ARQNL) 2014, pages 71–85. VSL Workshop Proceedings, 2014.

[5] Hans de Nivelle. Subsumption algorithms for three-valued geometric resolution. In Nicola Olivetti and
Ashish Tiwari, editors, International Joint Conference on Automated Reasoning (IJCAR) 2016, volume
9706 of LNCS, pages 257–272. Springer, 2016.

[6] Hans de Nivelle. Theorem proving for classical logic with partial functions by reduction to Kleene logic.
Journal of Logic and Computation, 27(2):509–548, 2017. (Accepted April 2014).

[7] Hans de Nivelle. solver for GCSP. can be obtained from https://cs-sst.github.io/faculty/nivelle

under ‘Implementation’, 2018.
[8] Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based on finite model search.

In John Harrison, Ulrich Furbach, and Natarajan Shankar, editors, International Joint Conference
on Automated Reasoning 2006, volume 4130 of Lecture Notes in Artificial Intelligence, pages 303–317,
Seattle, USA, August 2006. Springer Verlag.

[9] Hans de Nivelle and Jia Meng. theorem prover Geo 2007f. can be obtained from http://www.ii.uni.

wroc.pl/~nivelle/, September 2007.
[10] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[11] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and Armando Tacchella,

editors, Theory and Applications of Satisfiability Testing, volume 2919 of LNCS, pages 502–518. Springer,
2004.

[12] Michael R. Garey and David S. Johnson. Computers and Intractibility: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[13] Georg Gottlob and Alexander Leitsch. On the efficiency of subsumption algorithms. Journal of the ACM,
32(2):280–295, 1985.

[14] Jérôme Maloberti and Michèle Sebag. Fast theta-subsumption with constraint satisfaction algorithms.
Machine Learning, 55:137–174, 2004.

[15] Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers. In Armin
Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, chapter 4,
pages 131–153. IOS Press, 2009.

[16] Neil Murray and Erik Rosenthal. Signed formulas: A liftable meta-logic for multiple-valued logics.
In Jan Komorowski and Zbigniew Raś, editors, Proceedings of the 7th International Symposium on
Methodologies for Intelligent Systems (ISMIS), volume LNCS 689, pages 275–284, 1993.

[17] Tobias Scheffer, Ralf Herbrich, and Fritz Wysotzki. Efficient theta-subsumption based on graph algorithms.
In Stephen Muggleton, editor, Inductive Logic Programming, 6th International Workshop, Selected Papers,
LNAI, pages 212–228. Springer Verlag Berlin, 1996.

[18] Geoff Sutcliffe. The CADE ATP system competition. http://www.cs.miami.edu/~tptp/CASC/J8/, June
2016.

http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
https://cs-sst.github.io/faculty/nivelle
http://www.ii.uni.wroc.pl/~nivelle/
http://www.ii.uni.wroc.pl/~nivelle/

	1. Introduction
	2. Translation into Generalized Constraint Satisfaction Problem
	3. Matching Using Refinement Stacks
	4. Conflict Learning
	5. Matching Based on Local Consistency Checking
	6. Translation to SAT
	7. An Input Format for GCSP
	8. Experiments
	9. Finding Optimal Matchings
	10. Filtering by Local Consistency Checking
	11. Conclusions
	12. Acknowledgements
	References

