
Logical Methods in Computer Science
Volume 15, Issue 1, 2019, pp. 14:1–14:27
https://lmcs.episciences.org/

Submitted Oct. 24, 2017
Published Feb. 15, 2019

ALGEBRA, COALGEBRA, AND MINIMIZATION

IN POLYNOMIAL DIFFERENTIAL EQUATIONS

MICHELE BOREALE
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Abstract. We consider reasoning and minimization in systems of polynomial ordinary
differential equations (ode’s). The ring of multivariate polynomials is employed as a syntax
for denoting system behaviours. We endow this set with a transition system structure based
on the concept of Lie derivative, thus inducing a notion of L-bisimulation. We prove that
two states (variables) are L-bisimilar if and only if they correspond to the same solution in
the ode’s system. We then characterize L-bisimilarity algebraically, in terms of certain
ideals in the polynomial ring that are invariant under Lie-derivation. This characterization
allows us to develop a complete algorithm, based on building an ascending chain of ideals,
for computing the largest L-bisimulation containing all valid identities that are instances of
a user-specified template. A specific largest L-bisimulation can be used to build a reduced
system of ode’s, equivalent to the original one, but minimal among all those obtainable by
linear aggregation of the original equations. A computationally less demanding approximate
reduction and linearization technique is also proposed.

1. Introduction

The past few years have witnessed a surge of interest in computational models based on
ordinary differential equations (ode’s), ranging from continuous-time Markov chains (e.g.
[4]) and process description languages oriented to bio-chemical systems (e.g. [42, 5, 13]), to
deterministic approximations of stochastic systems (e.g. [18, 41]), and hybrid systems (e.g.
[39, 37, 29]).

From a computational point of view, our motivation to study ode’s arises from the
following problems.

(1) Reasoning : provide methods to automatically prove and discover identities involving
the system variables.

(2) Reduction: provide methods to automatically reduce, and possibly minimize, the number
of variables and equations of a system, in such a way that the reduced system retains all
the relevant information of the original one.

Key words and phrases: Ordinary Differential Equations, Bisimulation, Minimization, Polynomials,
Gröbner Bases.
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Reasoning may help an expert (a chemist, a biologist, an engineer) to prove or to disprove
certain system properties, even before actually solving, simulating or realizing the system.
Often, the identities of interest take the form of conservation laws. For instance, chemical
reactions often enjoy a mass conservation law, stating that the sum of the concentrations
of two or more chemical species, is a constant. More generally, one would like tools to
automatically discover all laws of a given form. Pragmatically, before actually solving or
simulating a given system, it can be critical to reduce the system to a size that can be
handled by a solver or a simulator.

Our goal is showing that these issues can be dealt with by a mix of algebraic and
coalgebraic techniques. We will consider initial value problems, specified by a system of
ode’s of the form ẋi = fi(x1, ..., xN ), for i = 1, ..., N , plus initial conditions. The functions fis
are called drifts ; here we will focus on the case where the drifts are multivariate polynomials
in the variables x1, .., xN . Practically, the majority of functions found in applications is in,
or can be encoded into this format (possibly under restrictions on the initial conditions),
including exponential, trigonometric, logarithmic and rational functions.

A more detailed account of our work follows. We introduce the ring of multivariate
polynomials as a syntax for denoting the behaviours induced by the given initial value
problem (Section 2). In other words, a behaviour is any polynomial combination of the
individual components xi(t) (i = 1, .., N) of the (unique) system solution. We then endow
the polynomial ring with a transition system, based on a purely syntactic notion of Lie
derivative (Section 3). This structure naturally induces a notion of bisimulation over
polynomials, L-bisimilarity, that is in agreement with the underlying ode’ s. In particular,
any two variables xi and xj are L-bisimilar if and only the corresponding solutions are the
same, xi(t) = xj(t) (this generalizes to polynomial behaviours as expected). This way, one
can prove identities between two behaviours, for instance conservation laws, by exhibiting
bisimulations containing the given pair . The resulting proof method is greatly enhanced by
introducing a polynomial version of the up to technique of [36]. In order to turn this method
into a fully automated proof procedure, we first characterize L-bisimulation algebraically, in
terms of certain ideals in the polynomial ring that are invariant under Lie-derivation (Section
4). This characterization leads to an algorithm that, given a user-specified template, returns
the set of all its instances that are valid identities in the system (Section 5). One may use
this algorithm, for instance, to discover all the conservation laws of the system involving
terms up to a given degree. The algorithm implies building an ascending chain of ideals until
stabilization, and relies on a few basic concepts from Algebraic Geometry, notably Gröbner
bases [20]. The output of the algorithm is in turn essential to build a reduced system of
ode’s, equivalent to the original one, but featuring a minimal number of equations and
variables, in the class of systems that can be obtained by linear aggregation from the original
one (Section 6). A computationally less demanding approximate reduction and linearization
technique is proposed (Section 7). This may be an attractive alternative, because it is entirely
based on linear algebraic, hence efficient, techniques, and produces ‘small’ linear systems. In
particular, m linear equations are sufficient to guarantee an approximation within O(tm)
of the original system. We then illustrate the results of some simple experiments we have
conducted using a prototype implementation (in Python) of our algorithms (Section 8). Our
approach is mostly related to some recent work on equivalences for ode’s by Cardelli et al.
[14] and to work in the area of hybrid systems. We discuss this and other related work, as
well as some possible directions for future work, in the concluding section (Section 9). In the



Vol. 15:1 COALGEBRA AND DIFFERENTIAL EQUATIONS 14:3

interest of readability, some proofs and technical material have been confined to a separate
appendix (Appendix A).

To sum up, we give the following contributions.

(1) A complete bisimulation-based proof technique to reason on the polynomial behaviours
induced by a system of ode’s.

(2) An algorithm to find all the valid polynomial identities induced by the given system and
fitting a user-specified template.

(3) An algorithm to build a reduced, equivalent system that is minimal in the class of all
linear aggregations of the original system.

(4) An algorithm to build a small linear system, approximating within O(tm) the original
system.

2. Preliminaries

Let us fix an integer N ≥ 1 and a set of N distinct variables x1, ..., xN . We will denote by
x the column1 vector (x1, ..., xN )T . We let R[x] denote the set of multivariate polynomials
in the variables x1, ..., xN with coefficients in R, and let p, q range over it. Here we regard
polynomials as syntactic objects. Given an integer d ≥ 0, by Rd[x] we denote the set of
polynomials of degree ≤ d. As an example, p = 2xy2 + (1/5)wz + yz + 1 is a polynomial of
degree deg(p) = 3, that is p ∈ R3[x, y, z, w], with monomials xy2, wz, yz and 1. Depending
on the context, with a slight abuse of notation it may be convenient to let a polynomial
denote the induced function RN → R, defined as expected. In particular, xi can be seen as
denoting the projection on the i-th coordinate.

A (polynomial) vector field is a vector of N polynomials, F = (f1, ..., fN )T , seen as a
function F : RN → RN . A vector field F and an initial condition v0 ∈ RN together define
an initial value problem Φ = (F, v0), often written in the following form

Φ :

{
ẋ(t) = F (x(t))
x(0) = v0 .

(2.1)

The functions fi in F are called drifts in this context. A solution to this problem is a
differentiable function x(t) : D → RN , for some nonempty open interval D ⊆ R containing
0, which fulfills the above two equations, that is: d

dtx(t) = F (x(t)) for each t ∈ D and
x(0) = v0. By the Picard-Lindelöf theorem [2], there exists a nonempty open interval D
containing 0, over which there is a unique solution, say x(t) = (x1(t), ..., xN (t))T , to the
problem. In our case, as F is infinitely often differentiable, the solution is seen to be analytic
in D: each xi(t) admits a Taylor series expansion in a neighborhood of 0. For definiteness,
we will take the domain of definition D of x(t) to be the largest symmetric open interval
where for each i = 1, ..., N , the Taylor expansion from 0 of xi(t) converges pointwise to xi(t)
(possibly D = R). The resulting vector function of t, x(t), is called the time trajectory of
the system.

Given a differentiable function g : E → R, for some open set E ⊆ RN , the Lie derivative
of g along F is the function E → R defined as

LF (g)
4
= 〈∇g, F 〉 =

N∑
i=1

(
∂g

∂xi
· fi) .

1Vector means column vector, unless otherwise specified.
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The Lie derivative of the sum h+ g and product h · g functions obey the familiar rules

LF (h+ g) = LF (h) + LF (g) (2.2)

LF (h · g) = h · LF (g) + LF (h) · g . (2.3)

Note that LF (xi) = fi. Moreover if p ∈ Rd[x] then LF (p) ∈ Rd+d′ [x], for some integer d′ ≥ 0
that depends on d and on F . This allows us to view the Lie derivative of polynomials along
a polynomial field F as a purely syntactic mechanism, that is as a function LF : R[x]→ R[x]
that does not assume anything about the solution of (2.1). Informally, we can view p as a
program, and taking the Lie derivative of p can be interpreted as unfolding the definitions
of the variables xi’s, according to the equations in (2.1) and to the formal rules for product
and sum derivation, (2.2) and (2.3). We will pursue this view systematically in Section 3.

Example 2.1. Consider N = 4, x = (x, y, z, w)T and the set of polynomials R[x]. The
vector field F = (xz + z, yw + z, z, w)T and the initial condition v0 = (0, 0, 1, 1)T together
define an initial value problem (with no particular physical meaning) Φ = (F, v0). This
problem can be equivalently written in the form

ẋ(t) = x(t)z(t) + z(t)
ẏ(t) = y(t)w(t) + z(t)
ż(t) = z(t)
ẇ(t) = w(t)
x(0) = v0 = (0, 0, 1, 1)T .

(2.4)

As an example of Lie derivative, if p = 2xy2 +wz, we have LF (p) = 4wxy2 + 2wz + 2xy2z +
4xyz + 2y2z.

The connection between time trajectories, polynomials and Lie derivatives can be
summed up as follows. For any polynomial p ∈ R[x], the function p ◦x(t) : D → R, obtained
by composing p as a function RN → R with the time trajectory x(t) : D → RN , is analytic:
we let p(x(t)) denote the extension of this function over the largest symmetric open interval
of convergence (possibly coinciding with R) of its Taylor expansion from 0. We will call
p(x(t)) the polynomial behaviour induced by p and by the initial value problem (2.1). The
connection between Lie derivatives of p along F and the initial value problem (2.1) is given
by the following equations, which can be readily checked. Here and in the sequel, we let
p(v0) denote the real number obtained by evaluating p at v0.

p(x(t))|t=0 = p(v0) (2.5)

d

dt
p(x(t)) = (LF (p))(x(t)) . (2.6)

More generally, defining inductively L(0)
F (p)

4
= p and L(j+1)

F (p)
4
= LF (LjF (p)), we have the

following equation for the j-th derivative of p(x(t)) (j = 0, 1, ...)

dj

dtj
p(x(t)) = (L(j)

F (p))(x(t)) . (2.7)

In the sequel, we shall often abbreviate L(j)
F (p) as p(j), and shall omit the subscript F from

LF when clear from the context.
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3. Coalgebraic semantics of polynomial ode’s

In this section we show how to endow the polynomial ring with a transition relation structure,
hence giving rise to coalgebra. Bisimilarity in this coalgebra will correspond to equality
between polynomial behaviours.

We recall that a (Moore) coalgebra (see e.g. [34]) with outputs in a set O is a triple
C = (S, δ, o) where S is a set of states, δ : S → S is a transition function, and o : S → O is
an output function. A bisimulation in C is a binary relation R ⊆ S × S such that whenever
sR t then: (a) o(s) = o(t), and (b) δ(s)Rδ(t). It is an (easy) consequence of the general
theory of bisimulation that a largest bisimulation over S, called bisimilarity and denoted by
∼, exists, is the union of all bisimulation relations, and is an equivalence relation over S.

Given an initial value problem Φ = (F, v0) of the form (2.1), the triple

CΦ
4
= (R[x],LF , o)

forms a coalgebra with outputs in R, where: (1) R[x] is the set of states; (2) LF acts as

the transition function; and (3) o defined as o(p)
4
= p(v0) is the output function. Note that

this definition of coalgebra is merely syntactic, and does not presuppose anything about the
solution of the given initial value problem. When the standard definition of bisimulation
over coalgebras is instantiated to CΦ, it yields the following.

Definition 3.1 (L-bisimulation ∼Φ). Let Φ be an initial value problem. A binary relation
R ⊆ R[x] × R[x] is a L-bisimulation if, whenever pR q then: (a) p(v0) = q(v0), and (b)
L(p)RL(q). The largest L-bisimulation over R[x] is denoted by ∼Φ.

We now introduce a new coalgebra with outputs in R. Let A denote the family of
real valued functions f such that f is analytic at 0 and f ’s domain of definition coincides
with the open interval of convergence of its Taylor series (nonempty, centered at 0, possibly
coinciding with R)2. We define the coalgebra of analytic functions as

Can
4
= (A, (·)′, oan)

where (f)′ = df
dt is the standard derivative, and ofin(f)

4
= f(0) is the output function. We

recall that a morphism µ between two coalgebras with outputs in the same set, µ : C1 → C2,
is a function from states to states that preserves transitions (µ(δ1(s)) = δ2(µ(s))) and
outputs (o1(s) = o2(µ(s))). It is a standard (and easy) result of coalgebra that a morphism
maps bisimilar states into bisimilar states: s ∼1 s

′ implies µ(s) ∼2 µ(s′).
The coalgebra Can has a special status, in that, given any coalgebra C with outputs in

R, if there is a morphism from C to Can, this morphism is guaranteed to be unique. For
our purposes, it is enough to focus on C = CΦ. We define the function µ : R[x]→ A as

µ(p)
4
= p(x(t)) .

Theorem 3.2 (coinduction). µ is the unique morphism from CΦ to Can. Moreover, the
following coinduction principle is valid: p ∼Φ q in CΦ if and only if p(x(t)) = q(x(t)) in A.

Proof. The function µ given above is well defined, because p(x(t)) ∈ A, and is a morphism:
for output and transition preservation, use (2.5) and (2.6), respectively. By the above recalled
standard result in coalgebra, then p ∼Φ q implies p(x(t)) ∼ q(x(t)) in Can. Assume now
that ν is a morphism from CΦ to Can. From the definition of morphism and bisimulation,

2Equivalently, A is the set of power series f(t) =
∑

j≥0 ajt
j with a positive radius of convergence.
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it is readily checked that for each p, µ(p) ∼ ν(p) in Can. Finally, we check that ∼ in Can

coincides with equality: indeed, if two functions are bisimilar in A, then they have the same
Taylor coefficients (this is shown by induction on the order of the derivatives, relying on the
fact that f ∼ g means f(0) = g(0) and f ′ ∼ g′); the vice-versa is obvious. This completes
the proof of both parts of the statement.

Remark 3.3 (categorical presentation). Existence of a morphism from any coalgebra with
outputs in R into Can is not guaranteed: for instance, the sequence (stream) of coefficients
of any series with a radius of convergence 0, such as (0!, 1!, 2!, ..., i!, ...), trivially induces a
coalgebra from which no morphism to Can exists. In this sense, Can is not final. Note that
Can can be injected into the coalgebra of streams in the sense of Rutten [34], which is indeed
final.

In a more categorical perspective, Can induces a so-called covariety – see e.g. [22] – that
is, the category of coalgebras that have a unique morphism into Can: Can is of course final
in this covariety. How to characterise such covariety more explicitly, for example in terms of
comonads, is left for future research.

Theorem 3.2 allows one to prove polynomial relations among the components xi(t) of x(t),
say that p(x(t)) = q(x(t)), by coinduction, that is, by exhibiting a suitable L-bisimulation
relating the polynomials p and q.

Example 3.4. For N = 2, consider the vector field F = (x2,−x1)T with the initial value
v0 = (0, 1)T . The binary relation R ⊆ R[x1, x2]× R[x1, x2] defined thus

R = { (0, 0), (x2
1 + x2

2, 1) }
is easily checked to be an L-bisimulation. Thus we have proved the polynomial relation
x2

1(t) +x2
2(t) = 1. Note that the unique solution to the given initial value problem is the pair

of functions x(t) = (sin(t), cos(t))T . This way we have proven the familiar trigonometric
identity sin(t)2 + cos(t)2 = 1.

This proof method can be greatly enhanced by a so called L-bisimulation up to technique,
in the spirit of [36]. This can be regarded as a form of up-to context technique, since we
are just considering the closure w.r.t. the syntax, that is, the algebraic structure of the
polynomial ring.

Definition 3.5 (L-bisimulation up to). Let R ⊆ R[x]×R[x] be a binary relation. Consider

the binary relation R̂ defined by: p R̂ q iff there are m ≥ 0 and polynomials hi, pi, qi
(i = 1, ...,m) such that: p =

∑m
i=1 hipi and q =

∑m
i=1 hiqi and piRqi, for i = 1, ...,m.

A relation R ⊆ R[x] × R[x] is a L-bisimulation up to if, whenever pR q then: (a)

p(v0) = q(v0), and (b) L(p) R̂L(q).

Note that, from the definition, for each relation R we have R ⊆ R̂.

Lemma 3.6. Let R be an L-bisimulation up to. Then R̂ is an L-bisimulation, consequently
R ⊆∼Φ.

Proof. In order to check that R̂ is an L-bisimulation, assume that p R̂ q, that is p =
∑m

i=1 hipi
and q =

∑m
i=1 hiqi, for some hi, pi, qi (i = 1, ...,m) as specified by Definition 3.5. It is

immediate to check that p(v0) = q(v0), which proves condition (a) of the definition of

L-bisimulation. Furthermore, for each i = 1, ..,m, we have by assumption that L(pi) R̂L(qi).
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That is, for suitable gij ’s and rij ’s, we have

L(pi) =
∑
j

gijrij L(qi) =
∑
j

gijsij rij Rsij .

Recalling the rules for the Lie derivative, (2.2) and (2.3), we have

L(p) =
∑
i

hiL(pi) + L(hi)pi =
∑
i

hi
∑
j

gijrij + L(hi)pi =
∑
i

∑
j

higijrij +
∑
i

L(hi)pi

R̂
∑
i

∑
j

higijsij +
∑
i

L(hi)qi =
∑
i

hi
∑
j

gijsij +
∑
i

L(hi)qi =
∑
i

hiL(qi) + L(hi)qi

= L(q) .

This proves condition (b) of the definition of L-bisimulation.

Example 3.7. Consider the initial value problem of Example 2.1 and the relation defined
below

R = { (xzj , ywj) , (zj , wj) : j ≥ 0} .
It is easy to check that R is an L-bisimulation up to. As an example, let us check condition
(b) for a pair (xzj , ywj):

L(xzj) = (xz+z)zj+jxzj = (xzj+1+jxzj+zzj) R̂ (ywj+1+jywj+zwj) = (yw+z)wj+jywj = L(ywj) .

This proves that x(t) = y(t) and that z(t) = w(t).

In the next two sections we will prove that this technique can be fully automated by
resorting to the concept of ideal in a polynomial ring.

4. Algebraic characterization of L-bisimilarity
We first review the notion of polynomial ideal from Algebraic Geometry, referring the reader
to e.g. [20] for a comprehensive treatment. A set of polynomials I ⊆ R[x] is an ideal if: (1)
0 ∈ I, (2) I is closed under sum +, (3) I is absorbing under product ·, that is p ∈ I implies
h · p ∈ I for each h ∈ R[x]. Given a set of polynomials S, the ideal generated by S, denoted
by
〈
S
〉
, is defined as

m∑
j=1

hjpj : m ≥ 0, hj ∈ R[x] and pj ∈ S, for j = 1, ...,m

 . (4.1)

The polynomial coefficients hj in the above definition are called multipliers. It is clear that〈
S
〉

is the smallest ideal containing S, which implies that
〈 〈

S
〉 〉

=
〈
S
〉
. Any set S

such that
〈
S
〉

= I is called a basis of I. Every ideal in the polynomial ring R[x] is finitely
generated, that is has a finite basis (a version of Hilbert’s basis theorem).
L-bisimulations can be connected to certain types of ideals. This connection relies on

Lie derivatives. First, we define the Lie derivative of any set S ⊆ R[x] as follows

L(S)
4
= {L(p) : p ∈ S} .

We say that S is a pre-fixpoint of L if L(S) ⊆ S. L-bisimulations can be characterized as
particular pre-fixpoints of L that are also ideals, called invariants.

Definition 4.1 (invariant ideals). Let Φ = (F, v0). An ideal I is a Φ-invariant if: (a)
p(v0) = 0 for each p ∈ I, and (b) I is a pre-fixpoint of LF .
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We will drop the Φ- from Φ-invariant whenever this is clear from the context. The
following definition and lemma provide the link between invariants and L-bisimulation.

Definition 4.2 (kernel). The kernel of a binary relation R ⊆ R[x]×R[x] is ker(R)
4
= {p−q :

pR q}.

Lemma 4.3. Let R be a binary relation. If R is an L-bisimulation then
〈

ker(R)
〉

is
an invariant. Conversely, given an invariant I, then R = {(p, q) : p − q ∈ I} is an
L-bisimulation.

Consequently, proving that p ∼Φ q is equivalent to exhibiting an invariant I such that
p− q ∈ I.

Example 4.4. Consider the initial value problem of Example 3.7. Let I =
〈
{x−y, z−w}

〉
.

Let us check that I is an invariant. Let p = h1(x− y) + h2(z − w) be a generic element of
I. Clearly p(v0) = 0, thus condition (a) is satisfied. Concerning (b), we consider the two
summands separately:

L(h1(x− y)) = L(h1)(x− y) + h1L(x− y)

= L(h1)(x− y) + h1(xz + z − (yz + w))

=
(
L(h1) + h1z

)
(x− y) + h1(z − w)

∈ I

L(h2(z − w)) = L(h1)(z − w) + h1L(z − w)

= L(h1)(z − w) + h1(z − w)

=
(
L(h1) + h1

)
(z − w)

∈ I .

Consequently, L(p) = L(h1(x− y)) + L(h2(z − w)) ∈ I.

A more general problem than equivalence checking is finding all valid polynomial
equations of a given form. We will illustrate an algorithm to this purpose in the next section.

The following result sums up the different characterization of L-bisimilarity ∼Φ. In
what follows, we will denote the constant zero function in A simply by 0 and consider the
following set of polynomials.

ZΦ
4
= {p : p(x(t)) is identically 0 } .

The following result also proves that ZΦ is the largest Φ-invariant.

Theorem 4.5 (L-bisimilarity via ideals). We have the following characterizations of L-
bisimilarity. For any pair of polynomials p and q:

p ∼Φ q iff p− q ∈ ker(∼Φ) (4.2)

= ZΦ (4.3)

=
{
p : p(j)(v0) = 0 for each j ≥ 0

}
(4.4)

=
⋃
{I : I is a Φ-invariant } . (4.5)
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5. Computing invariants

By Theorem 4.5, proving p ∼Φ q means finding an invariant I such that p − q ∈ I ⊆ ZΦ.
More generally, we focus here on the problem of finding invariants that include a user-
specified set of polynomials. In the sequel, we will make use of the following two basic facts
about ideals, for whose proof we refer the reader to [20].

(1) Any infinite ascending chain of ideals in a polynomial ring, I0 ⊆ I1 ⊆ · · · , stabilizes at
some finite k. That is, there is k ≥ 0 such that Ik = Ik+j for each j ≥ 0. This is just
another version of Hilbert’s basis theorem.

(2) The ideal membership problem, that is, deciding whether p ∈ I, given p and a finite set
of S of generators (such that I =

〈
S
〉
), is decidable (provided the coefficients used in

p and in S can be finitely represented), although it requires exponential space in the
number of variables. The ideal membership will be further discussed later on in the
section.

The main idea is introduced by the naive algorithm presented below.

5.1. A naive algorithm. Suppose we want to decide whether p ∈ ZΦ. It is quite easy to
devise an algorithm that computes the smallest invariant containing p, or returns ‘no’ in
case no such invariant exists, i.e. in case p /∈ ZΦ. Consider the successive Lie derivatives of

p, p(j) = L(j)(p) for j = 0, 1, .... For each j ≥ 0, let Ij
4
=
〈
{p(0), ..., p(j)}

〉
. Let m be the

least integer such that either

(a) p(m)(v0) 6= 0, or
(b) Im = Im+1.

If (a) occurs, then p /∈ ZΦ, so we return ‘no’ (Theorem 4.5(4.4)); if (b) occurs, then Im is
the least invariant containing p. Note that the integer m is well defined: I0 ⊆ I1 ⊆ I2 ⊆ · · ·
forms an infinite ascending chain of ideals, which must stabilize in a finite number of steps
(fact 1 at the beginning of the section). In particular, as soon as Ii+1 = Ii the chain gets
stable, as a consequence of the derivation rules (2.2) and (2.3).

Checking condition (b) amounts to deciding if p(m+1) ∈ Im. This is an instance of the
ideal membership problem, which can be solved effectively. Generally speaking, given a
polynomial p and finite set of polynomials S, deciding the ideal membership p ∈ I =

〈
S
〉

can be accomplished by first transforming S into a Gröbner basis G for I (via, e.g. the
Buchberger’s algorithm), then computing r, the residual of p modulo G (via a sort generalised
division of p by G): one has that p ∈ I if and only if r = 0 (again, this procedure can be
carried out effectively only if the coefficients involved in p and S are finitely representable;
in practice, one often confines to rational coefficients). We refer the reader to [20] for
further details on the ideal membership problem. Known procedures to compute Gröbner
bases have exponential worst-case space complexity depending on the number of variables,
although may perform reasonably well in some concrete cases. One should in any case invoke
such procedures parsimoniously. Here is a small example to illustrate the above outlined
algorithm.

Example 5.1. Consider again the initial value problem of Example 3.7. Let p = x − y.
With the help of a computer algebra system, we can easily check the following.

• p(0) = p and p(0)(v0) = 0;

• p(1) = xz − yw, p(1)(v0) = 0 and p(1) /∈ I0 =
〈
{p(0)}

〉
;
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• p(2) = −w2y − wy − wz + xz2 + xz + z2, p(2)(v0) = 0 and p(2) /∈ I1 =
〈
{p(0), p(1)}

〉
• p(3) = −w3y − 3w2y − w2z − wy − 3wz + xz3 + 3xz2 + xz + z3 + 3z2, p(3)(v0) = 0 and

finally3 p(3) ∈ I2 =
〈
{p(0), p(1), p(2)}

〉
.

Hence I2 is the least invariant containing p = x− y, thus proving that x− y ∈ ZΦ.

We will introduce below a more general algorithm, which can also deal with (infinite)
sets of user-specified polynomials. First, we need to introduce the concept of template.

5.2. Templates. Polynomial templates have been introduced by Sankaranarayanan, Sipma
and Manna in [37] as a means to compactly specify sets of polynomials. Fix a tuple of n ≥ 1
of distinct parameters, say a = (a1, ..., an), disjoint from x. Let Lin(a), ranged over by `, be
the set of linear expressions with coefficients in R and variables in a; e.g. ` = 5a1 +42a2−3a3

is one such expression4. A template is a polynomial in Lin(a)[x], that is, a polynomial with
linear expressions as coefficients; we let π range over templates. For example, the following
is a template:

π = (5a1 + (3/4)a3)xy2 + (7a1 + (1/5)a2)xz + (a2 + 42a3) .

Given a vector v = (λ1, ..., λn)T ∈ Rn, we will let `[v] ∈ R denote the result of replacing
each parameter ai with λi, and evaluating the resulting expression; we will let π[v] ∈ R[x]
denote the polynomial obtained by replacing each ` with `[v] in π. Given a set S ⊆ Rn, we
let π[S] denote the set {π[v] : v ∈ S} ⊆ R[x].

The (formal) Lie derivative of π is defined as expected, once linear expressions are
treated as constants; note that L(π) is still a template. It is easy to see that the following
property is true: for each π and v, one has L(π[v]) = L(π)[v]. This property extends as
expected to the j-th Lie derivative (j ≥ 0)

L(j)(π[v]) = L(j)(π)[v] . (5.1)

5.3. A double chain algorithm. We present an algorithm that, given a template π with n
parameters, returns a pair (V, J), where V ⊆ Rn is such that π[Rn]∩ZΦ = π[V ], and J is the
smallest invariant that includes π[V ]. We first give a purely mathematical description of the
algorithm, postponing its effective representation to the next subsection. The algorithm is
based on building two chains of sets, a descending chain of vector spaces and an (eventually)
ascending chain of ideals. The ideal chain is used to detect the stabilization of the sequence.
In fact, in the sequence of vector spaces below, Vi+1 = Vi does not in itself imply that
Vi+k = Vi for each k ≥ 1. Formally, for each i ≥ 0, consider the sets

Vi
4
= {v ∈ Rn : π(j)[v](v0) = 0 for j = 0, ..., i } (5.2)

Ji
4
=

〈 i⋃
j=0

π(j)[Vi]
〉
. (5.3)

3Indeed, a Gröbner basis for I2 is G = {x− y, yz −wy, z2 −wz}, and p(3) = (z3 + 3z2 + z)(x− y) + (w2 +
wz + 3w + z2 + 3z + 1)(yz − wy) + (w + z + 3)(z2 − wz).

4Differently from Sankaranarayanan et al. we do not allow linear expressions with a constant term, such
as 2 + 5a1 + 42a2 − 3a3. This minor syntactic restriction does not practically affect the expressiveness of the
resulting polynomial templates.
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It is easy to check that each Vi ⊆ Rn is a vector space over R of dimension ≤ n. Now let
m ≥ 0 be the least integer such that the following conditions are both true:

Vm+1 = Vm (5.4)

Jm+1 = Jm . (5.5)

The algorithm returns (Vm, Jm). Note that the integer m is well defined: indeed, V0 ⊇
V1 ⊇ · · · forms an infinite descending chain of finite-dimensional vector spaces, which must
stabilize in finitely many steps. In other words, we can consider the least m′ such that
Vm′ = Vm′+k for each k ≥ 1. Then Jm′ ⊆ Jm′+1 ⊆ · · · forms an infinite ascending chain of
ideals, which must stabilize at some m ≥ m′. Therefore there must be some index m such
that (5.4) and (5.5) are both satisfied, and we choose the least such m.

The next theorem states the correctness and relative completeness of this abstract
algorithm. Informally, the algorithm will output the largest space Vm such that π[Vm] ⊆ ZΦ

and the smallest invariant Jm witnessing this inclusion. Note that, while typically the user
will be interested in π[Vm], Jm as well may contain useful information, such as higher order,
nonlinear conservation laws. We need a technical lemma.

Lemma 5.2. Let Vm, Jm be the sets returned by the algorithm. Then for each j ≥ 1, one
has Vm = Vm+j and Jm = Jm+j.

Theorem 5.3 (correctness and relative completeness). Let Vm, Jm be the sets returned by
the algorithm for a polynomial template π.

(a) π[Vm] = ZΦ ∩ π[Rn];
(b) Jm is the smallest invariant containing π[Vm].

Proof. Concerning part (a), we first note that π[v] ∈ ZΦ ∩ π[Rn] means (π[v])(j)(v0) =

π(j)[v](v0) = 0 for each j ≥ 0 (Theorem 4.5(4.4)), which, by definition, implies v ∈ Vj for
each j ≥ 0, hence v ∈ Vm. Conversely, if v ∈ Vm = Vm+1 = Vm+2 = · · · (here we are using

Lemma 5.2), then by definition (π[v])(j)(v0) = π(j)[v](v0) = 0 for each j ≥ 0, which implies
that π[v] ∈ ZΦ (again Theorem 4.5(4.4)). Note that in proving both inclusions we have used
property (5.1).

Concerning part (b), it is enough to prove that: (1) Jm is an invariant, (2) Jm ⊇
ZΦ ∩ π[Rn], and (3) for any invariant I such that ZΦ ∩ π[Rn] ⊆ I, we have that Jm ⊆ I. We
first prove (1), that Jm is an invariant. Indeed, for each v ∈ Vm and each j = 0, ...,m− 1,

we have L(π(j)[v]) = π(j+1)[v] ∈ Jm by definition, while for j = m, since v ∈ Vm = Vm+1,

we have L(π(m)[v]) = π(m+1)[v] ∈ Jm+1 = Jm (note that in both cases we have used
property (5.1)). Concerning (2), note that Jm ⊇ π[Vm] = ZΦ ∩ π[Rn] by virtue of part
(a). Concerning (3), consider any invariant I ⊇ ZΦ ∩ π[Rn]. We show by induction on

j = 0, 1, ... that for each v ∈ Vm, π(j)[v] ∈ I; this will imply the wanted statement. Indeed,

π(0)[v] = π[v] ∈ ZΦ ∩ π[Rn], as π[Vm] ⊆ ZΦ by (a). Assuming now that π(j)[v] ∈ I, by

invariance of I we have π(j+1)[v] = L(π(j)[v]) ∈ I (again, we have used here property
(5.1)).

According to Theorem 5.3(a), given a template π and v ∈ Rn, checking if π[v] ∈ π[Vm]
is equivalent to checking if v ∈ Vm, which can be effectively done knowing a basis Bm of Vm.
We show how to effectively compute such a basis in the following.
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5.4. Effective representation. For i = 0, 1, ..., we have to give effective ways to:

(i) represent the sets Vi, Ji in (5.2) and (5.3); and
(ii) check the termination conditions (5.4) and (5.5).

It is quite easy to address (i) and (ii) in the case of the vector spaces Vi. For each i, consider

the linear expression π(i)(v0). By factoring out the parameters a1, ..., an in this expression,
we can write, for a suitable (row) vector of coefficients ti = (ti1, ..., tin) ∈ R1×n:

π(i)(v0) = ti1 · a1 + · · ·+ tin · an
The condition on v ∈ Rn, π(i)[v](v0) = 0, can then be translated into the linear constraint

on v
ti · v = 0 . (5.6)

Letting Ti ∈ Ri×n denote the matrix obtained by stacking the rows t1, ..., ti on above the
other, we see that Vi is the right null space of Ti. That is (here, 0i denotes the null vector
in Ri):

Vi = {v ∈ Rn : Tiv = 0i } .
Checking whether Vi = Vi+1 or not amounts then to checking whether the vector ti+1 is or
not linearly dependent from the rows in Ti, which can be accomplished by standard and
efficient linear algebraic techniques. In practice, the linear constraints (5.6) can be resolved
and propagated incrementally5, as they are generated, following the computation of the
derivatives π(i). Concerning the representation of the ideals Ji, we will use the following
lemma6.

Lemma 5.4. Let V ⊆ Rn be a vector space with B as a basis, and π1, ..., πk be templates.
Then

〈
∪kj=0 πj [V ]

〉
=
〈
∪kj=0 πj [B]

〉
.

Now let Bi be a finite basis of Vi, which can be easily built from the matrix Ti. By the
previous lemma, ∪ij=1π

(j)[Bi] is a finite set of generators for Ji: this solves the representation
problem. Concerning the termination condition, we note that, after checking that actually
Vi = Vi+1, checking Ji = Ji+1 reduces to checking that

π(i+1)[Bi] ⊆
〈
∪ij=0 π

(j)[Bi]
〉

= Ji . (5.7)

To check this inclusion, one can apply standard computer algebra techniques. For
example, one can check if π(i+1)[b] ∈ Ji for each b ∈ Bi, thus solving |Bi| ideal membership
problems, for one and the same ideal Ji. As already discussed, this presupposes the
computation of a Gröbner basis for Ji, a potentially expensive operation. One advantage of
the above algorithm, over methods proposed in program analysis with termination conditions
based on testing ideal membership (e.g. [32]), is that (5.7) is not checked at every iteration,
but only when Vi+1 = Vi (the latter a relatively inexpensive check). In the Appendix
(Subsection A.2), we also discuss a sufficient condition which does not involve Gröbner bases,
but leads to an incomplete algorithm.

5E.g., if π = a1x+ a2y + a3x+ a4w and v0 = (0, 0, 1, 1)T , then π[v](v0) = 0 is resolved and propagated
applying to π the substitution [a3 7→ −a4].

6The restriction that linear expressions in templates do not contain constant terms is crucial here.
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Example 5.5. Consider the initial value problem of Example 2.1 and the template π =
a1x+ a2y + a3z + a4w. We run the double chain algorithm with this system and template
as inputs. In what follows, v = (v1, v2, v3, v4)T will denote a generic vector in R4. Recall
that x = (x, y, z, w)T and v0 = (0, 0, 1, 1)T .

• For each v ∈ R4: π(0)[v](v0) = (v1x+ v2y + v3z + v4w)(v0) = 0 if and only if v ∈ V0
4
= {v : v3 =

−v4}.
• For each v ∈ V0: π(1)[v](v0) = (v1xz + v1z + v2wy + v2z + v4w − v4z)(v0) = 0 if and only if

v ∈ V1
4
= {v ∈ V0 : v1 = −v2}.

• For each v ∈ V1: π(2)[v](v0) = (v2w
2y + v2wy + v2wz − v2xz2 − v2xz − v2z2 + v4w − v4z)(v0) = 0

if and only if v ∈ V2
4
= V1.

Being V2 = V1, we also check if J2 = J1. A basis of V1 is B1 = {b1, b2} with b1 = (−1, 1, 0, 0)T and
b2 = (0, 0,−1, 1)T . According to (5.7), we have therefore to check if, for ` = 1, 2:

π(2)[b`] ∈ J1
4
=
〈
{π(0)[b1], π(0)[b2], π(1)[b1], π(1)[b2]}

〉
.

With the help of a computer algebra system, one computes a Gröbner basis for J1 as G1 =
{x− y, z − w}. Then one can reduce π(2)[b1] = w2y + wy + wz − xz2 − xz − z2 modulo G1 and
obtain π(2)[b1] = h1(x − y) + h2(z − w), with h1 = −z2 − z and h2 = −wy − yz − y − z, thus
proving that π(2)[b1] ∈ J1. One proves similarly that π(2)[b2] ∈ J1. This shows that J2 = J1.

Hence the algorithm terminates with m = 1 and returns (V1, J1), or, concretely, (B1, G1).
In particular, x− y ∈ ZΦ, or equivalently x(t) = y(t). Similarly for z − w.

Remark 5.6 (notational convention: result template). According to Theorem 5.3(a), given
a template π and v ∈ Rn, checking if π[v] ∈ π[Vm] is equivalent to checking if v ∈ Vm, which
can be effectively done knowing the basis Bm of Vm concretely returned by the algorithm
(another, equivalent possibility, is checking if v is orthogonal to the space V ⊥m , which is built
in the minimization phase, see next section).

In practice, it is more convenient to represent the whole set π[V ] returned by the
algorithm more compactly, in terms of a new m-parameters result template π′ such that
π′[Rm] = π[V ]. For instance, in the previous example, the result template

π′ = a1x− a1y + a2z − a2w

represents the algorithm’s outcome π[V2], in the precise sense that π[V2] = π′[R2].

Remark 5.7 (linear systems). Consider the case of a linear system, that is, when the drifts
fi in F are linear functions of the xi’s. Consider the chain V0 ⊇ V1 ⊇ · · · in (5.2). It is easy
to prove that as soon as Vm+1 = Vm then the chain has stabilized, that is Vm+k = Vm for
each k ≥ 0. Therefore, for linear systems, stabilization can be detected without looking
at the ideals chain (5.3), hence dispensing with Gröbner bases. The resulting single chain
algorithm boils down to the ‘refinement’ algorithm of [7, Th.2].

Remark 5.8. We end this section pointing out that the naive algorithm of Subsection 5.1
admits a generalization that works with templates as well. Specifically, one can regard
templates as polynomials in both the variables x and parameters a, and compute the
invariant ideal in R[x,a] generated by all Lie derivatives of the given template π. Having
computed this, one substitutes v0 for x. This procedure is related to what is done by
Müller-Olm and Seidl in the discrete-time case [26] (further coniderations in the concluding
section).



14:14 M. Boreale Vol. 15:1

In any case, the idea of the algorithm in Subsection 5.2 is to avoid treating the parameters
in the template symbolically— which is important, bearing in mind that the ideal membership
problem requires exponential space in the number of variables.

6. Minimization

We present a method for reducing the size of an initial value problem. The resulting reduced
problem, while equivalent in a precise sense to the original problem, is minimal in terms
of number of equations and variables, among all systems that can be obtained by linear
aggregations of the original equations.

The method takes as an input the space Vm returned by the double chain algorithm in
the preceding section when fed with a certain linear template. The method itself is quite
simple and only relies on simple linear algebraic operations that can be efficiently automated.

The basic idea is projecting the original system of equations onto a suitably chosen
subspace of RN . Consider the linear template

π = a1 · x1 + · · ·+ aN · xN (6.1)

where the ai’s are distinct parameters. By applying the algorithm of the preceding section

to this template, we obtain a subspace V
4
= Vm ⊆ RN . Consider now the orthogonal

complement of V in RN (where 〈·, ·〉 is the usual scalar product between vectors in RN and
v, w denote generic vectors in RN )

W
4
= V ⊥ = {w ∈ RN : 〈w, v〉 = 0 for each v ∈ V } .

We show that the trajectory x(t) lies entirely in W , that is x(t) ∈W for each t in the open
interval of definition, say D, of the trajectory. Indeed, by virtue of Theorem 5.3(a), we have
that v ∈ V if and only if (here v = (λ1, ..., λN )T )

〈x, v〉 =
∑N

i=1 λixi = π[v] ∈ ZΦ .

By definition of ZΦ, this means that v ∈ V if and only if

〈x(t), v〉 =
∑N

i=1 λixi(t) = π[v](t) = 0 for each t

that is x(t) ∈ W for each t in the open interval D of definition of x(t). In other words,
v ∈ V if and only if v is orthogonal to each x(t), for t ∈ D, or V = {x(t) : t ∈ D}⊥. This is
equivalent to the following crucial lemma.

Lemma 6.1. W = V ⊥ = span{x(t) : t ∈ D }.

The fact that the trajectory x(t) entirely lies in, and in fact generates, the subspace W ,
suggests that we can obtain a more economical representation of x(t) by adopting a system
of coordinates in this subspace. More formally, let B be any orthonormal basis of W . It is
convenient to represent B as a matrix of l independent column vectors, B = [b1| · · · |bl] ∈
RN×l, where l

4
= dim(W ) ≤ N (in fact, l ≤ m+ 1 as well; this is discussed in the Appendix,

Subsection A.3, where an efficient method for building B out of the successive Lie derivatives
of π is explained). Recall that orthonormality means BTB = Il, with Il the l × l identity
matrix. The orthogonal projection of any v onto W has, w.r.t. B, coordinates BT v, which
is of course a vector in Rl. Define now

y(t)
4
= BTx(t) for each t ∈ D . (6.2)
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Since each x(t) ∈W , each x(t) is a fixpoint of the projection, so with the above definition
we have

x(t) = BBTx(t)

= By(t) . (6.3)

From the last equation, it is easy to check that y(t) is a solution, hence the unique analytic
solution in a suitable interval, of the following reduced problem Ψ = (G,y(0)), where F
denotes the vector field of the original initial value problem:

Ψ :

{
ẏ(t) = BTF (By(t))
y(0) = BTx(0) .

(6.4)

In order to check that y(t) as defined in (6.2) satisfies the first equation of (6.4), observe
that, by definition we have:

ẏ(t) = BT ẋ(t)

= BTF (x(t))

= BTF (By(t))

where the last equality follows from (6.3). The second equality of (6.4) is trivially seen to be
true. Note that the reduced system (6.4) features l ≤ N differential equations. In particular,
observe that the vector field G of the reduced system is obtained by replacing each variable
xi in the original F with a linear combination of the variables yj ’ s, as dictated by B, and
then linearly aggregating the resulting N terms, as dictated by BT . As a consequence, the
maximum degree in the reduced G does not exceed the maximum degree in the original F .

Equation (6.3) naturally extends to any polynomial behaviour. That is, for any poly-
nomial p ∈ R[x], we have p(x(t)) = p (x(t)) = p (By(t)). In the end, we have proven the
following result, which shows that we can exactly recover any behaviour induced by the
original system from the reduced system.

Theorem 6.2 (exact reduction). Let y(t) be the unique analytic solution of the (reduced)
problem (6.4). Then, x(t) = By(t). Moreover, for any polynomial behaviour p(x(t)) induced
by the original problem (2.1), we have p(x(t)) = p (By(t)).

The reduced system is minimal among all systems obtained as linear aggregations of the
original system. In the next result, the interpretation of the k-dimensional vector function
z(t) is that it may (but need not) arise as the solution of any system with k equations.

Theorem 6.3 (minimality). Assume for some N × k matrix C and vector function z(t),
we have x(t) = Cz(t), for each t ∈ D. Then k ≥ l.

Proof. Assume k ≤ N (otherwise there is nothing to prove). As the trajectory x(t) spans W
(Lemma 6.1), which has dimension l, we can form a rank l matrix E as E = [x(t1)| · · · |x(tl)] =
[Cz(t1)| · · · |Cz(tl)] = C[z(t1)| · · · |z(tl)], for suitable points t1, ..., tl. As in general rk(AB) ≤
min{rk(A), rk(B)}, we have rk(C) ≥ l. But k ≥ rk(C), which implies the thesis.

As a corollary of Theorem 6.2, we obtain a further characterization of L-bisimilarity,
which shows that we can also reason syntactically on polynomial behaviours in terms of the
reduced system. In particular, L-bisimilarity between pairs of individual variables reduces
to plain equality between the corresponding rows of B, which allows one to easily form
equivalence classes of variables if desired. Let us denote by G = (g1, ..., gl)

T the polynomial
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vector field of the reduced system. Note that G is expressed in terms of the variables
y = (y1, ..., yl)

T , more precisely G = BTF (By).

Corollary 6.4. Let p, q ∈ R[x]. Then p ∼Φ q in CΦ if and only if p(By) ∼Ψ q(By) in CΨ.
In particular, xi ∼Φ xj in if and only if row i equals row j in B.

Example 6.5. Let us consider again the problem of Example 3.7. Recall from Example
5.5 that the algorithm for computing invariants stops with m = 1 returning V1, J1. In

particular, V
4
= V1 = span{(1,−1, 0, 0)T , (0, 0, 1,−1)T }. It is easily checked that W = V ⊥ =

span{c1, c2}, where c1 = (1/
√

2, 1/
√

2, 0, 0)T and c2 = (0, 0, 1/
√

2, 1/
√

2)T are orthonormal
vectors. Hence we let the basis matrix be B = [c1|c2]. By applying (6.4), we build the
minimal system in the variables y = (y1, y2)T shown below.

ẏ1(t) = 1√
2
y1(t)y2(t) + y2(t)

ẏ2(t) = y2(t)

y(0) = (0,
√

2)T .

Note that the first and second rows of B are equal, as well as the third and the fourth, which
proves (again) that x(t) = y(t) and z(t) = w(t).

7. Approximate reduction and linearization

If one is ready to accept some degree of approximation, it is possible to build a reduced
system in a simpler, linear form. To this purpose, we will illustrate a method for approximate
linearization. The polynomial behaviours induced by the original and by the reduced system
will in general differ by a term which is O(tm), for some prescribed m. This may be useful
for analysis of the beaviour of the system around a chosen operation point t0, which here
will be conventionally fixed as t0 = 0. The approximation can of course be very bad for
t too far from 0 (see in the concluding section the discussion on tpwl for a strategy to
possibly recover global accuracy). The method is based entirely on simple linear algebraic
manipulations. Another attractive feature is that the reduced system, besides being linear,
is quite small, featuring no more than m equations. We will also give conditions under which
the reduction is exact.

Let S ⊆ R[x] be a set of polynomials of bounded degree – that is, there is k such that
deg(p) ≤ k for each p ∈ S. For example, one might take S = π[Rn], for a certain template π
with n parameters. Assume we are interested in computing/simulating the set of functions
{p(x(t)) : p ∈ S} ⊆ A and are ready to accept an approximation error around 0 of order m,
for a fixed m ≥ 1.

The basic idea is viewing L as a linear operator on the vector space of polynomials, and
then taking its projection onto a small, suitably chosen subspace. Let M = {α1, ..., αM} be

the set of distinct monomials appearing in the polynomials of ∪m−1
j=0 L(j)(S). Let UM be the

set of polynomials that can be generated starting from M. Clearly, UM ⊆ Rd[x] for some d
large enough. Moreover, when we regard polynomials as (column) vectors whose components
are indexed by monomials, totally ordered in some way, UM is isomorphic to RM as a
M -dimensional vector space over the field R. Let prUM be the orthogonal projection from
R[x] onto UM, and consider the function prV ◦ L : UM → UM. We denote by L the M ×M
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matrix representing prUM ◦ L w.r.t. the canonical basis of UM, that is M. By definition,
(prUM ◦ L)|S = L|S . This implies that, for each p ∈ S, L(p) = Lp, and more generally that

L(j)(p) = Ljp (p ∈ S and 0 ≤ j ≤ m− 1). (7.1)

Moreover, if we evaluate the given monomials at v0 and let

φT
4
= (α1(v0), ..., αM (v0))

then

(L(j)(p))(v0) = φTLjp (p ∈ S and 0 ≤ j ≤ m− 1). (7.2)

Now consider the subspace of Km defined as follows

Km
4
= span

{
φ,LTφ, ..., (LT )m−1φ

}
. (7.3)

This is the order-m Krylov space generated by the matrix LT and by φ.
Fix now any orthonormal basis of Km, which we may represent as a M × l matrix

B = [b1|...|bl], for some l ≤ m (orthonormality means BTB = Il). The orthogonal projection
from UM onto Km is therefore given by prKm

(v) = BBT v. Consider the function that,

taken a vector v ∈ UM, applies LT and then projects onto Km

v 7→ prKm
(LT v) = BBTLT v .

When restricted to Km, this defines a linear morphism Km → Km. Call A the l × l matrix
representing this morphism w.r.t. the basis B. Explicitly,

A = BTLTB .

Lemma 7.1. For 0 ≤ j ≤ m− 1, we have (LT )jφ = BAjBTφ.

Proof. This is an easy consequence of the fact that, for any v ∈ Km, v = BBT v, and of the
definition of A.

Let us now introduce a new vector of l variables, y = (y1, ..., yl)
T and consider the

following linear initial value problem, given by the matrix A{
ẏ(t) = Ay(t)
y(0) = BTφ .

(7.4)

Let us denote by y(t) = (y1(t), ..., yl(t))
T the (unique) analytic solution of this system. Recall

that, given p ∈ R[x], we let p(x(t)) ∈ A denote the function which extends p ◦ x(t). The
following theorem says that, given p ∈ S, we can reconstruct p(x(t)), within an approximation
of order m, by taking a linear combination of the yi(t) s, with coefficients given by projecting
p (as a vector in UM) onto Km.

Theorem 7.2. Let p ∈ S and let y(t) be the unique solution of the (reduced) problem (7.4).
Then p(x(t))− pTBy(t) = O(tm) as t→ 0.

Proof. By definition, the derivatives of y(t) from the 0-th through the (m− 1)-th, evaluated
at t = 0, can be written as follows:

y(0) = BTφ

y(1)(0) = ABTφ

...

y(m−1)(0) = Am−1BTφ .
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Figure 1: Plots of exact and approximate solutions.

Therefore, for j = 0, ...,m− 1, we have

p(j)(0) = (L(j)(p))(x(t))|t=0

= (L(j)(p))(v0)

= φTLjp (7.5)

= pT (LT )jφ

= pTBAjBTφ (7.6)

= pTBy(j)(0) (7.7)

=
dj

dtj
(
(pTB)y(t)

)
|t=0

(7.8)

where: (7.5) is (7.2), (7.6) follows from Lemma 7.1, (7.7) from the above expressions for
the derivatives of y(t) at 0. This way, we have proved that the first m coefficients in the
Taylor expansion around 0 of p(x(t)) and (pTB)y(t) are the same, which is the wanted
statement.

Example 7.3. Consider again the system of Example 3.7. Assume we are interested in
the behaviours described by S = {x, y, z, w}. The following reduced linear system in the
variables y = (y1, y2, y3)T , which guarantees an approximation of order m = 3 for those
behaviours, can be obtained by applying the method.

ẏ1 = 3y1/2 +
√

5y2/10 +
√

30y3/30

ẏ2 =
√

5y1/2 + 11y2/10 +
√

6y311/30

ẏ3 =
√

6y2/5 + 4y3/10
y(0) = (2, 0, 0)T .

(7.9)

We do not report the full 4× 3 matrix B here, but only mention that, following Theorem 7.2,
the approximated version of x(t) can be obtained from y(t) as: x̂(t) = (1, 0, 0, 0) ·By(t) =√

5y2(t)/5−
√

30y3(t)/10. The plots in Figure 7 show that the approximation is quite good
around t = 0.

We finally give a sufficient condition for exactness. This condition applies, for example,
to linear systems, that is when the drifts fi in F are linear functions. Consider the sequence
of Krylov spaces K1,K2, ... that can be built according to equation (7.3). A Krylov space
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Km is said to be invariant if Km+1 ⊆ Km. Of course there always exists m ≤M such that
Km is invariant; moreover the condition of invariance for Km can be efficiently detected (see
[35]).

Corollary 7.4. Assume M includes all monomials in ∪j≥0L(j)(S). Choose m such that
Km is invariant. Then, with the notation introduced above, p(x(t)) = pTBy(t).

Proof. Under the given condition, L(j)(p) = Lp for any j ≥ 0 and p ∈ S. Moreover, since
Km = Km+1 = · · · , the statement in Lemma 7.1 also holds for any j ≥ m, hence for any
j. This allows one to extend the proof given in 7.2 to prove that the Taylor coefficients of
p(x(t)) and (pTB)y(t) are all the same.

Remark 7.5 (on computing the matrices A and B). There exist relatively efficient and
numerically stable methods to build the pair of matrices A and B needed in the construction
of the reduced system. One of these methods is the Arnoldi algorithm [3, 35], which takes
O(Nz ·m) floating-point operations, and as much memory if a sparse storage scheme is
adopted. Here Nz denotes the number of nonzero elements in the matrix L: this is O(M2)
in the worst case, but it will be typically much smaller, as polynomials arising in applications
tend to be sparse. Moreover, the method need not a fully stored matrix L, but only a handle
to the matrix-vector multiplication function u 7→ LTu. Using appropriate data structures,
this method can be implemented according to an ‘on-the-fly’ strategy, where the terms are
unfolded as needed.

8. Examples

Although the focus of the present paper is mostly on theory, it is instructive to put a
proof-of-concept implementation7 of our algorithms at work on a few simple examples taken
from the literature. We illustrate below two cases, a linear and a nonlinear system.

8.1. Example 1: linearity and weighted automata. The purpose of this example is to
argue that, when the transition structure induced by the Lie-derivatives is considered, L-
bisimilarity is fundamentally a linear-time semantics. We first introduce weighted automata,
a more compact8 way of representing the transition structure of the coalgebra CΦ.

A (finite- or infinite-state) weighted automaton is like an ordinary automaton, save that
both states and transitions are equipped with weights from R. Given F and v0, we can
build a weighted automaton with monomials as states, weighted transitions given by the

rule α
λ−→ β iff LF (α) = λβ + q for some polynomial q not comprising β as a monomial, and

real λ 6= 0, and where each state α is assigned weight α(v0). As an example, consider the
weighted automaton in Figure 2, where the state weights (not displayed) are 1 for x10, and 0
for any other state. This automaton is generated – and in fact codes up – a system of ode’s
with ten variables, where ẋ1 = x2, ẋ2 = (2/3)x3 + (1/3)x4 etc., with the initial condition as
specified by the state weights (x1(0) = 0 etc.).

A run in a weighted automaton is a path in the graph from a state to a state. The
run’s weight is the product of all involved transition weights and the last state’s weight.

7Python code available at http://local.disia.unifi.it/boreale/papers/DoubleChain.py. Reported
execution times relative to the pypy interpreter under Windows 8 on a core i5 machine.

8At least for linear vector fields, the resulting weighted automaton is finite.

http://local.disia.unifi.it/boreale/papers/DoubleChain.py
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Figure 2: A weighted automaton.

In the standard linear-time semantics of weighted automata, each state α is assigned a
function σα : N → R (a stream, in the terminology of Rutten [34]) such that σα(i) is
obtained by summing up all the weights of the runs involving i transitions starting from s;
e.g. σx1(3) = 1× 2

3 ×
3
4 + 1× 1

3 ×
3
2 = 1. Standard results in coalgebra (or a simple direct

proof) ensure that this semantics is in agreement with bisimulation, in the sense that for
any pair of states (in our case, monomials) α and β, α ∼Φ β if and only σα = σβ; we refer
the interested reader to [34, 6] for details on this construction and result.

When applied to our example, these results imply for instance that x1(t) = x5(t). In

fact, when invoked with this system and π =
∑10

i=1 aixi as inputs, the double chain algorithm
terminates at m = 2 (in about 0.3 s; this being a linear system, Gröbner bases are never
actually needed), returning π[V2] = a1(x6 − x7) + a2(x8 − x9) + a3(x6 − x2) + a4(x5 − x1) +
a5(3

2x8 − x4) + a6(3
4x8 − x3). This implies the expected equality x1 = x5 (let a4 = 1 and

ai = 0 for i 6= 4 in the returned template), as well as other equalities, such as x2 = x6 = x7

and x8 = x9. All in all, V2 being a 6-dimensional space, we will have a 4-dimensional
W = V ⊥2 , that is a minimal system with 4 equations, a 60% reduction.

θ

8.2. Example 2: nonlinear conservation laws. The law of the simple

pendulum is d2

dt2
θ = g

` cos θ, where θ is the angle from the roof to the rod
measured clockwise, ` is the length of the rod and g is gravity acceleration
(see picture on the right). If we assume the initial condition θ(0) = 0, this
can be translated into the polynomial initial value problem below, where
x = (θ, ω, x, y)T . The meaning of the variables is ω = θ̇, x = cos θ and
y = sin θ. We assume for simplicity ` = 1 and g = 9.

θ̇ = ω
ω̇ = g

`x
ẋ = −yω
ẏ = xω

x(0) = (0, 0, `, 0)T .

For this system, the double chain algorithm reports that there is no nontrivial linear
conservation law (after m = 6 iterations and about 0.3 s). We then ask the algorithm to find
all the conservation laws of order two, that is we use the template (α ranges over monomials)
π =

∑
αi : deg(αi)≤2 aiαi as input. The algorithm terminates after m = 16 iterations (in

about 7 s). The invariant J16 contains all the wanted conservation laws. The returned
Gröbner basis for it is G = {x2 + y2 − 1, ω2 − 18y}. The first term here just expresses the
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trigonometric identity (cos θ)2 + (sin θ)2 = 1. Recalling that the (tangential) speed of the

bob is v = `θ̇ = `ω, and that its vertical distance from the roof is h = ` sin θ = `y, we see
that the second term, considering our numerical values for `, g, is equivalent to the equation
1
2v

2 = gh, which, when multiplied by the mass m of the bob, yields the law of conservation

of energy 1
2mv

2 = mgh (acquired kinetic energy = lost potential energy).

9. Conclusion, further and related work

We have presented a framework for automatic reasoning and reduction in systems of
polynomial ode’s. In particular, we offer algorithms to: (1) compute the most general set of
identities valid in the system that fit a user-specified template; and, (2) build a minimal
system equivalent to the original one. These algorithms are based on a mix of simple
algebraic and coalgebraic techniques.

9.1. Directions for further work. Scalability of our approach is an issue, as, already for
simple systems, the Gröbner basis construction involved in the double chain algorithm can
be computationally quite demanding. Further experimentation, relying on a well-engineered
implementation of the method, and considering sizeable case studies, is called for in order
to assess this aspect. One would also like to extend the present approach so as to deal
with regions of possible initial values, rather than fixing one such value. This is important,
e.g., in the treatment of hybrid systems (see below). After the short version of the present
paper [9] appeared, some preliminary progress towards this goal has been made, see [10].
Concerning minimization, we note that the reduced system may not preserve the structure
of the original one, e.g. as to the meaning of variables: this may be problematic in certain
application domains, such as system biology. In the future, we intend to investigate this
issue. Approximate reductions in the sense of System Theory [1] are also worth investigating.
One problem of the approach described in Section 7 is that the reduced system depends on
a fixed initial condition v0. Obtaining bounds on the approximation error is another aspect
that deserves further investigation. Some preliminary progress on these issues is reported
in [11].

9.2. Related work. Bisimulations for weighted automata are related to our approach,
because, as argued in subsection 8.1, Lie-derivation can be naturally represented by such an
automaton. Algorithms for computing largest bisimulations on finite weighted automata
have been studied by Boreale et al. [7, 6]. A crucial ingredient in these algorithms is the
representation of bisimulations as finite-dimensional vector spaces. Approximate versions
of this technique have also been recently considered in relation to Markov chains [8]. As
discussed in Remark 5.7, in the case of linear systems, the algorithm in the present paper
reduces to that of [7, 6]. Algebraically, moving from linear to polynomial systems corresponds
to moving from vector spaces to ideals, hence from linear bases to Gröbner bases. From the
point of view automata, this step leads to considering infinite weighted automata. In this
respect, the present work may be also be related to the automata-theoretic treatment of
linear ode’s by Fliess and Reutenauer [21].

Although there exists a rich literature dealing with linear aggregation of systems of
ode’s (e.g. [1, 25, 40, 27]), we are not aware of fully automated approaches to minimization
(Theorem 6.3), with the notable exception of a series of recent works by Cardelli and
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collaborators [14, 15, 16]. Mostly related to ours is [14]. There, for an extension of the
polynomial ode format called IDOL, the authors introduce two flavours of differential
equivalence, called Forward (fde) and Backward (bde). They provide a symbolic, SMT-
based partition refining algorithms to compute the largest equivalence of each type. fde
groups variables in such a way that the corresponding quotient system recovers the sum
of the original solutions in each class, whatever the initial condition. However, precise
information on the individual original solutions cannot in general be recovered from the
reduced system. In bde, variables grouped together are guaranteed to have the same solution.
Therefore the quotient system permits in this case to fully recover the original solutions. As
such, bde can be compared directly to our L-bisimulation.

An important difference is that bde may tell apart variables that have the same solution.
As already seen, this is not the case with L-bisimilarity, which is correct and complete. An
important consequence of this difference is that the quotient system produced by bde is not
minimal, whereas that produced by L-bisimulation is, in a precise sense. In concrete cases,
this may imply a significant size difference. For example, in the linear system of Subsection
8.1, bde finds only two equalities9, leading to a quotient system of eight states; on the other
hand, the minimal system produced by L-bisimulation has four states. For what concerns
reasoning, we note that, being based on partitions of variables, bde cannot express relations
involving polynomial, or even linear, combinations of variables. Finally, the approach of
[14] and ours rely on two quite different algorithmic decision techniques, SMT and Gröbner
bases, both of which have exponential worst-case complexity. As shown by the experiments
reported in [14], in practice bde and fde have proven quite effective at system reduction.
At the moment, we lack similar experimental evidence for L-bisimilarity. We also note that,
limited to the case of polynomials of degree two, a polynomial algorithm for bde exists [15].

Linear aggregation and lumping of (polynomial) systems of ode’s are well known in the
literature, se e.g. [1, 27, 25, 40] and references therein. However, as pointed out by Cardelli
et al. [14], no general algorithms for computing the largest equivalence, hence the minimal
exact reduction (in the sense of our Theorem 6.3) was known.

The seminal paper of Sankaranarayanan, Sipma and Manna [37] introduced polynomial
ideals to find invariants of hybrid systems. Indeed, the study of the safety of hybrid
systems can be shown to reduce constructively to the problem of generating invariants
for their differential equations [30]. The results in [37] have been subsequently refined
and simplified by Sankaranarayanan using pseudoideals [38], which enable the discovery of
polynomial invariants of a special form. Other authors have adapted this approach to the
case of imperative programs, see e.g. [12, 26, 32] and references therein. Reduction and
minimization seem to be not a concern in this field.

Platzer has introduced differential dynamic logic to reason on hybrid systems [29].
The rules of this logic implement a fundamentally inductive, rather than coinductive, proof
method. Mostly related to ours is Ghorbal and Platzer’s recent work on polynomial invariants
[23]. One one hand, they characterize algebraically invariant regions of vector fields – as
opposed to initial value problems, as we do. On the other hand, they offer sufficient
conditions under which the trajectories induced by specific initial values satisfy all instances
of a polynomial template (cf. [23, Prop.3]). The latter result compares with ours, but the
resulting method appears to be not (relatively) complete in the sense of our double chain
algorithm. Moreover, the computational prerequisites of [23] (symbolic linear programming,

9Which are x6 = x7 and x8 = x9, as checked with the Erode tool by the same authors [17].
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exponential size matrices, symbolic root extraction) are very different from ours, and much
more demanding. Again, minimization is not addressed.

Ideas from Algebraic Geometry have been fruitfully applied also in Program Analysis.
Relevant to our work is Müller-Olm and Seidl’s [26], where an algorithm to compute all
polynomial invariants up to a given degree of an imperative program is provided. Similarly
to what we do, they reduce the core problem to a linear algebraic one. However, being the
setting in [26] discrete rather than continuous, the techniques employed there are otherwise
quite different, mainly because: (a) the construction of the ideal chain is driven by the
program’s operational semantics, rather than by Lie derivatives; (b) the found polynomial
invariants must be valid under all initial program states, not just under the user specified
one. If transferred to a continuous setting, condition (b) would lead in most cases to trivial
invariants.

In nonlinear Control Theory, there is a huge amount of literature on Model Order
Reduction (mor), that aims at reducing the size of a given system, while preserving some
properties of interest, such as stability and passivity. A well established approach relies on
building truncated Taylor expansions of the given sysytems [24, 28], repeated at various
points along a trajectory of interest, to keep the approximation error globally small: a
technique known as trajectory piece-wise linear (tpwl) mor, see e.g. [31]. One wonders
whether our approximate linearization technique of Section 7 might conveniently serve as a
building block of this strategy.

The present paper is the extended and revised version of [9]. W.r.t. [9], here we
include complete proofs, the discussion of up-to techniques in Section 3, the approximate
linearization technique of Section 7 and an extended and updated discussion of further and
related work in the present section.
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Appendix A. Proofs and additional technical material

A.1. Proofs.

Proof of Theorem 4.5. We check each of the equivalences (4.2–4.5) in turn.

• If p ∼Φ q then p− q ∈ ker(∼Φ) by definition of ker. Conversely, assume p− q ∈ ker(∼Φ)
⊆
〈

ker(∼Φ)
〉
. Since, by first part of Lemma 4.3 with R =∼Φ, the last set is an invariant,

by the second part of the same lemma we obtain the wanted p ∼Φ q, hence (4.2).
• Since p ∼Φ q implies (p−q)(t) = 0, and r(t) = 0 implies r ∼Φ 0 (in both cases by Theorem

3.2), from the definition of ker(∼Φ) the second equality (4.3) immediately follows.
• A polynomial behaviour p(x(t)) is identically 0 in A if and only if all its derivatives

d
dtj
p(x(t)), j ≥ 0, vanish at 0, and this, via (2.7) and (2.5), yields (4.4).

• Note that if p ∈ I, with I an invariant, then p(j)(v0) = 0 for each j ≥ 0 (easily shown by

induction on j). Conversely, if p(j)(v0) = 0 for each j, then J =
〈
{p, p(1), p(2), ...}

〉
is an

invariant and contains p. To check invariance of J , consider a generic q ∈ J , q =
∑

i hip
(ji):

it is immediate that q(v0) = 0 and that L(q) =
∑

i L(hi)p
(ji) +

∑
i hip

(ji+1) ∈ J . This way
we have also proven the last equation (4.5).

Proof of Lemma 5.2. We proceed by induction on j. The base case j = 1 follows from
the definition of m. Assuming by induction hypothesis that Vm = · · · = Vm+j and that
Jm = · · · = Jm+j , we prove now that Vm = Vm+j+1 and that Jm = Jm+1+1. The key to the
proof is the following fact

π(m+j+1)[v] ∈ Jm for each v ∈ Vm . (A.1)

From this fact the thesis will follow, indeed:

(1) Vm = Vm+j+1. To see this, observe that for each v ∈ Vm+j = Vm (the equality here

follows from the induction hypothesis), it follows from (A.1) that π(m+j+1)[v] can be

written as a finite sum of the form
∑

l hl · π(jl)[ul], with 0 ≤ jl ≤ m and ul ∈ Vm. As

a consequence, π(m+j+1)[v](v0) = 0, which shows that v ∈ Vm+j+1. This proves that
Vm+j+1 ⊇ Vm+j = Vm; the reverse inclusion is obvious;

(2) Jm = Jm+j+1. As a consequence of Vm+j+1 = Vm+j(= Vm) (the previous point), we can
write

Jm+j+1 =
〈
∪m+j
i=0 π(i)[Vm+j ] ∪ π(m+j+1)[Vm+j ]

〉
=

〈
Jm+j ∪ π(m+j+1)[Vm+j ]

〉
=

〈
Jm ∪ π(m+j+1)[Vm]

〉
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where the last step follows by induction hypothesis. From (A.1), we have that

π(m+j+1)[Vm] ⊆ Jm, which implies the thesis for this case, as
〈
Jm

〉
= Jm.

We prove now (A.1). Fix any v ∈ Vm. First, note that π(m+j+1)[v] = L(π(m+j)[v]) (here we

are using (5.1)). As by induction hypothesis π(m+j)[Vm] = π(m+j)[Vm+j ] ⊆ Jm+j = Jm, we

have that π(m+j)[v] can be written as a finite sum
∑

l hl·π(jl)[ul], with 0 ≤ jl ≤ m and ul ∈ Vm.

Applying the rules of Lie derivatives (2.2), (2.3), we find that π(m+j+1)[v] = L(π(m+j)[v])
equals ∑

l

(
hl · π(jl+1)[ul] + L(hl) · π(jl)[ul]

)
.

Now, for each ul, ul ∈ Vm = Vm+1, each term π(jl+1)[ul], with 0 ≤ jl + 1 ≤ m + 1, is by

definition in Jm+1 = Jm. This shows that π(m+j+1)[v] ∈ Jm, as required.

Proof of Corollary 6.4. Concerning the first part, let us denote by ZΨ the largest invariant
induced by Ψ in the polynomial ring R[y], according to Theorem 4.5. We have: p ∼Φ q in
R[x] if and only if (p− q) ∈ ZΦ (Theorem 4.5(4.3)) if and only if (p− q) ◦x(t) = 0 (Theorem
4.5(4.2)) if and only if (p−q)◦By(t) = 0 (Theorem 6.2) if and only if (p(By)−q(By)) (t) = 0
if and only if (p(By)− q(By)) ∈ ZΨ (Theorem 4.5(4.2)) if and only if p(By) ∼Ψ q(By) in
R[y] (Theorem 4.5(4.3)).

Concerning the second part, denoting by ei the i-th canonical vector in RN , note that:
xi ∼Φ xj if and only if xi − xj ∈ ZΦ if and only if ei − ej ∈ Vm if and only if ei − ej⊥W if
and only if BT (ei − ej) = 0, from which the thesis follows for this case.

A.2. Pseudoideals. We briefly discuss a sufficient condition for establishing the condition
(5.7), that is Ji+1 = Ji, which does not involve Gröbner bases, but only linear algebraic
computations, and can therefore lead to a gain in efficiency. We ill make use of a bit of new
notation. For a set of polynomials S and an integer k ≥ 0, denote by

〈
S
〉
k

the subset of〈
S
〉

generated from S by only using multiplier polynomials hj of degree ≤ k (cf. equation
(4.1)); this is a pseudo ideal of degree k, in the terminology of Colón [19]. We can choose
k ≥ 0 and replace (5.7) by the following stronger condition

π(i+1)[Bi] ⊆
〈
∪ij=0 π

(j)[Bi]
〉
k
. (A.2)

If (A.2) is true then of course also (5.7) is true, while the converse is not valid in general.
Condition (A.2) can be checked by linear algebraic techniques, which do not involve Gröbner
bases computations. Indeed, a pseudo ideal

〈
S
〉
k

has the structure of a vector space over R
of dimension |S| ·M , where M is the number of distinct monomials of degree ≤ k. However,
the resulting algorithm is not guaranteed to terminate.

A.3. Building an orthonormal basis of V ⊥. We use here to the terminology of Section
6. Let us first work out a convenient characterization of the space W = V ⊥. Consider the
successive Lie derivatives of the vector x = (x1, ..., xN )T , taken componentwise, that is the

vectors of polynomials x(j) = (x
(j)
1 , ..., x

(j)
N )T , for j = 0, 1, ... Once evaluated at v0, these

become vectors in RN . We claim that

W = span
{

x(v0),x(1)(v0), ...,x(m)(v0)
}
. (A.3)
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Indeed, we have, by definition of V (here v = (λ1, ..., λN )T denotes a generic vector in RN )

V = Vm

=

{
v :

N∑
i=1

λix
(j)
i (v0) = 0 for j = 0, ...,m

}
=

{
v : 〈v,x(j)(v0)〉 = 0 for j = 0, ...,m

}
=

{
x(v0),x(1)(v0), ...,x(m)(v0)

}⊥
which is equivalent to (A.3). Note that l = dim(W ) ≤ m + 1, N (and typically one will
have l� N). Therefore, a way to build an orthonormal basis B for W is just to apply the
Gram-Schmidt orthonormalization process to the set of vectors on the right-hand side of
(A.3). This process can in fact carried out incrementally, as the vectors of Lie derivatives

x(j) are computed.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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