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Abstract. Timed transition systems are behavioural models that include an explicit treat-
ment of time flow and are used to formalise the semantics of several foundational process
calculi and automata. Despite their relevance, a general mathematical characterisation of
timed transition systems and their behavioural theory is still missing. We introduce the
first uniform framework for timed behavioural models that encompasses known behavioural
equivalences such as timed bisimulations, timed language equivalences as well as their weak
and time-abstract counterparts. All these notions of equivalences are naturally organised
by their discriminating power in a spectrum. We prove that this result does not depend on
the type of the systems under scrutiny: it holds for any generalisation of timed transition
system. We instantiate our framework to timed transition systems and their quantitative
extensions such as timed probabilistic systems.

1. Introduction

Since Aczel’s seminal work [1], the theory of coalgebras has been recognised as a good
context for the study of concurrent and reactive systems [38]: systems are represented
as maps of the form X → BX for a suitable behavioural functor B. By changing the
underlying category and functor a wide range of cases are covered, from traditional LTSs to
systems with I/O, quantitative aspects, probabilistic distribution, and even systems with
continuous state. Frameworks of this kind provide great returns from a theoretical and a
practical point of view, since they prepare the ground for general results and tools which
can be readily instantiated to various cases, and they help us discover connections and
similarities between apparently different notions. Among the several valuable results offered
by the coalgebraic approach we mention general accounts of bisimulation [1, 46], structural
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Figure 1: The spectrum of branching and linear equivalences of timed systems.

operational semantics [22, 23, 29, 30, 47], weak bisimulation [5, 10, 12, 28], trace equivalence
[14, 18, 19, 36], minimization [3], determinisation [43], up-to techniques [4], encodings [31].

Timed transition systems (TTSs) are behavioural models that include an explicit
treatment of time flow and are used to formalise the semantics of several foundational
process calculi and automata [2, 15, 34, 40, 49, 50]. In [21], Kick et al. introduced the
first coalgebraic characterisation of (strong) timed bisimulation for Wang’s Timed CCS [49]
and similar calculi with explicit time (e.g. delay operations, timeouts) and instantaneous
actions (e.g. process communication). Key to this characterisation is the introduction of the
evolution comonad E : a comonad whose coalgebras capture state changes due to the passage
of time in the sense that E-coalgebras are (isomorphic to) partial left actions of the monoid
modelling time (e.g. ([0,∞),+, 0)). If a behavioural functor B : Set→ Set admits a cofree
comonad B∞ then, the timed extension of behaviours modelled as B-coalgebras is modelled
as coalgebras for the product of comonads E ×B∞ [21]. This construction applies only to the
subclass of TTSs that separate timed transitions from discrete actions (a transition either
models a change due to the passage of time or change due to an instantaneous interaction).
Therefore, [21] does not provide a model of Timed CSP [40] or Timed Automata [2].

In this paper, we introduce the first categorical framework for timed behavioural models
like TTSs and their rich behavioural theory. We provide a new definition of behavioural
equivalence called q-bisimulation building on the theory of bisimulation and a new extension
of saturation [6, 7, 10] we introduce in this work to support time and time abstraction. The
definition is parametrised and these parameters drive the saturation component describing
how computations can be observed e.g. whether the duration of single steps is observed, their
combined duration, or no duration at all. For the first time, we are able to capture many
behavioural equivalences of interest: we show that the notions of timed bisimulation, timed
language equivalence, as well as their weak and time-abstract counterparts, all correspond
to specific instances of q-bisimulation.

All these notions of behavioural equivalence for TTSs are known to have different
discriminating power and are naturally organised in the expressiveness spectrum reported in
Figure 1 as a Hasse diagram (more discriminating notions are at the bottom and less ones
at the top). We present general result for deriving this kind of expressiveness spectra by
simply looking at the parameters used to instantiate the abstract definition of q-bisimulation.
Furthermore, we show that these spectra are independent from specific computational effects:
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they hold for (non-deterministic) TTS as well as their quantitative extensions like timed
probabilistic systems.

Synopsis and related work. This work is closely related to research presented in [5–7, 10]
with the emphasis laid on [6]. Indeed, Brengos’ [6], which is highly motivated by Sobociński’s
work on relational presheaves (i.e. lax functors whose codomain category is the category
of sets and relations) and their saturation [44], presents the lax functorial framework as a
natural extension of weak bisimulation via saturation studied in [7, 10]. The main focus
of [6] is on lax functorial weak bisimulation and reflexive and transitive saturation. We
remark that the first author already pointed out in loc. cit. that timed transition systems
and their weak behavioural equivalence can be modelled in the lax functorial setting. This
work extends these results in a systematic way by:

• presenting the concept of general saturation and the family of behavioural equivalences
associated with it (Section 4);
• describing the categorical framework for behavioural models with explicit time treatment

(Section 5);
• capturing a much wider spectrum of language and behavioural equivalences (Section 6);
• providing new case studies of timed behavioural models like e.g. Segala systems and

weighted systems (Section 7).

Preliminaries on the behavioural theory of timed transition systems and the necessary
categorical machinery are in Sections 2 and 3, respectively. Final remarks are in Section 8.
This paper is an extended and improved version of our conference paper [9]. We included
new results on general expressiveness spectra for behavioural equivalences and instantiated
our framework on Segala and other quantitative systems.

2. Timed transition systems and behavioural equivalences

The aim of this section is to recall basic notions on timed transition systems (TTS) and their
behavioural equivalences known in the classical literature. Timed transition systems are,
in their most general form, labelled transition systems whose transitions are labelled with
action symbols and time durations. They are used as semantics models of timed automata
(cf. [2]) and timed processes (cf. [20, Sec. 2.3]).

In the sequel, we write Σ for set of action symbols and T for the set of time durations.
We reserve the symbol τ to transitions meant to be unobservable and write Στ for the set
Σ + {τ} of action symbols extended with τ . We assume that the set of time durations
carries a monoid structure which we denote as T unless otherwise specified; the prototypical
example is the monoid ([0,∞),+, 0) of positive real numbers under addition.

2.1. Timed behavioural equivalences. Fix a TTS α : X → P(Στ × T×X). We write

x
(σ, t)−−−→ y to denote a timed step in α meaning that y ∈ α(x)(t, σ). We write x

(σ, t)
===⇒ y for a

saturated timed step in α where ⇒ denotes the least relation closed under the following:

x
(τ, 0)

===⇒ x

x
(τ, t0)

====⇒ x′ x′
(σ, t1)−−−→ y′ y′

(τ, t2)
====⇒ y t = t0 + t1 + t2

x
(σ, t)

===⇒ y

Definition 2.1 [2, 27]. For a TTS α and an equivalence relation R on its carrier:



17:4 Tomasz Brengos and Marco Peressotti Vol. 15:1

• R is a timed bisimulation for α if x R y and x
(σ, t)−−−→ x′ implies that there is y′ ∈ X such

that y
(σ, t)−−−→ y′ and x′ R y′;

• R is a (strong) time-abstract bisimulation for α if x R y and x
(σ, t)−−−→ x′ implies that there

are y′ ∈ X and t′ ∈ [0,∞) such that y
(σ, t′)−−−→ y′ and x′ R y′;

• R is a weak timed bisimulation for α if x R y and x
(σ, t)

===⇒ x′ implies that there is y′ ∈ X
such that y

(σ, t)
===⇒ y′ and x′ R y′;

• R is a weak time-abstract bisimulation for α if x R y and x
(σ, t)

===⇒ x′ implies that there

are y′ ∈ X and t′ ∈ [0,∞) such that y
(σ, t′)

====⇒ y′ and x′ R y′R.

Assume that α has also accepting (timed) steps i.e. that it has type α : X → P(Στ ×
T×X + {X}). We write x

t−→ X to denote that x can make an accepting move in time t and

terminate. We write x
t

=⇒ X for the saturated equivalent i.e. any step derivable by means of
the rule below.

x
(τ, t)

===⇒ x′ x′
t′−→ X

x
t+t′

===⇒ X
A timed word t0σ1t1 . . . σntn is accepted by a state x0 provided there is a sequence of timed

steps x0
(σ1, t0)−−−−→ . . .

(σn, tn−1)−−−−−−→ xn
tn−→ X in α. The timed language accepted by x0 is the set

tlα(x0) ,{t0σ1t1 . . . σntn ∈ T× (Στ × T)∗ | x0
(σ1, t0)−−−−→ . . .

(σn, tn−1)−−−−−−→ xn
tn−→ X}

of timed words accepted by x0 and the untimed one is the set

utlα(x0) ,{σ1 . . . σn ∈ Σ∗τ | ∃t0, . . . tn ∈ T s.t. t0σ1t1 . . . σntn ∈ tlα(x0)}
of untimed words accepted by x0. A weaker notion is readily obtained by allowing saturated
steps in the above definitions:

wtlα(x0) ,{t0σ1t1 . . . σntn ∈ T× (Στ × T)∗ | x0
(σ1, t0)

=====⇒ . . .
(σn, tn−1)

======⇒ xn
tn==⇒ X}

wutlα(x0) ,{σ1 . . . σn ∈ Σ∗τ | ∃t0, . . . tn ∈ T s.t. t0σ1t1 . . . σntn ∈ tlα(x0)}.

Definition 2.1. For a TTS α and an equivalence relation R on its carrier:

• R is a timed language equivalence for α if x R y implies that tlα(x) = tlα(y);
• R is a time-abstract language equivalence for α if x R y implies that utlα(x) = utlα(y);
• R is a weak timed language equivalence for α if x R y implies that wtlα(x) = wtlα(y);
• R is a weak time-abstract language equivalence for α if x R y implies that wutlα(x) =

wutlα(y).

2.2. Timed automata and their semantics. Timed automata are presented as machines
akin to non-deterministic automata and equipped with a (finite) set of clocks for recording
time flow. Besides consuming an input character, transitions have the side effect of resetting
some of these clocks. Moreover, transition activation depends on the values stored in by the
automata clocks and are conveniently described by means of guards (or clock constraints)
i.e. syntactic expressions generated by the grammar:

δ ::= c ≤ r | r ≤ c | ¬δ | δ ∧ δ (2.1)
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where c ranges over a given set of clocks C and r is a non-negative rational number (cf.
[2, Def. 3.6]). In the following, we write G(C) for the set of guards defined by (2.1) on the
(finite) set of clocks C. Then, timed automata are described by directed (multi) graphs
whose edges are labelled with an input character, a clock guard, and a set of clocks to be
reset to 0.

Definition 2.2 (Timed automaton). A timed automaton or a timed transition table is a
tuple A = (Σ, L, C,E), where

• Σ is a set called alphabet,
• L is a set of states or locations,
• C is a set of clocks,
• E ⊆ L× G(C)× 2C × Σ× L is a set of edges.

It is important to note that the original definition of timed automaton and its semantics
[2] come with an extra component that is missing in the above, namely an initial state.
Given the aims of this work, this information can be safely omitted.

Example 2.3. Consider the timed transition table from [2, Ex. 3.4] depicted aside. The set

C of clocks C is {c} and the alphabet Σ is {σ, θ}. The edge from l to l′

describes a transition that can be performed provided the input character
is σ and resets c as its side effect. The other transition assumes c < 2
input θ and does not reset c.

l l′

c ≤ 0; {c}; σ

c < 2; ∅; θ

Timed automata are abstract devices for recognising timed languages which in turn
can be intuitively seen1 as words over the alphabet Σ × [0,∞). Then, it is natural to
model the semantics of a timed automaton A = (Σ, L, C,E) as a labelled transition system
α : S → P(Σ× [0,∞)× S) where the state space S actually is given by extending the set of
locations L with all possible assignments of values for its clocks. These assignments are called
clock valuations (or simply valuations) and are functions v : C → [0,∞) from the set of clocks
to the chosen domain of time—in the following, let V be the set of all valuations (for C).

Before we formally define the semantics of timed automata, we need to define guard
satisfiability and how resets and time flow affect clock valuations. A valuation v : C → [0,∞)
is said to satisfy a guard δ ∈ G(C), written v � δ, whenever the expression obtained by
replacing in δ each clock with the value specified by v holds. Formally:

v � c ≤ r if v(c) ≤ r,
v � r ≤ c if r ≤ v(c),
v � δ ∧ δ′ if v � δ and v � δ′,
v � ¬δ if v 6� δ.

For v : C → [0,∞), C ′ ⊆ C, and t ∈ [0,∞) define [C ′ ← 0]v and v + t as follows:

[C ′ ← 0]v(c) ,

{
0 if c ∈ C ′

v(c) otherwise

(v + t)(c) , v(c) + t.

Let t be the time elapsed since the automaton execution started and let v be the
evaluation that describes the value held by each clock. If there is an edge (l, δ, C ′, σ, l′) in the

1Timed words are usually represented as particular words in Σ × [0,∞) i.e. sequences of pairs (σi, ti)
where i ≤ j =⇒ ti ≤ tj but these can be equivalently presented by means of time spans where ti is the time
passed since the last transition.
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transition table E then, the automaton can perform a transition from l to l′ at time t+ t′

provided that the input symbol is σ and that the valuation v + t′ satisfies δ. The transition
has the effect of consuming the input symbol σ, changing the current location from l to l′,
and advancing all clocks of t′ units save for those in C ′ which are reset to 0. Formally:

Definition 2.4. For a timed automaton A = (Σ, L, C,E) define its semantic model is the
timed transition system α with state-space L× V and transitions and transitions as follows

(l, v)
(σ,t)−−−→ (l′, v′)

4⇐⇒ ∃(l, δ, C ′, σ, l′) ∈ E s.t. v + t � δ and v′ = [C ′ ← 0](v + t).

Example 2.5. Recall the timed automaton described in Example 2.3 and consider the LTS
modelling its semantics. Traces starting in (l, v) are sequences such that for any consecutive
(σ, ti) and (θ, ti+1) we have ti + ti+1 < 2.

2.3. Timed processes and their semantics. Timed processes calculi are a family of
process calculi that include an explicit treatment of time flow as part of the behavioural
model for the system under scrutiny; some illustrative examples are Timed CSP [40], Timed
CCS [49], ATP [34]. Their semantics is given in terms of timed transition systems (in the
sense of this section) however, some calculi restrict to special cases of TTSs to enforce
certain assumptions on the system under scrutiny. For instance, Timed CCS and ATP
processes distinguish between discrete and timed transitions and define a TTS as a quadruple
(X,Στ ,−→, ) where

• X is the set of states;
• Σ is the set of (action) symbols;
• −→ ⊆ X × Στ ×X represents “duration-less” discrete transitions;
• ⊆ X × [0,∞)×X describes “symbol-less” time transitions

and subject to

x
t+t′

x′ ⇐⇒ ∃x′′ x t
x′′ ∧ x′′ t

′
x′ (Continuity)

x
t
x′ ∧ x t

x′′ =⇒ x′ = x′′ (Determinacy)

and, depending on the model, some additional constraints like e.g.:

x
0
x (Zero Delay [27])

x
τ−→ x′ =⇒ x 6 t (Urgency [15, 34, 50])

x
t
x′ ∧ x σ−→ x′′ =⇒ x′

σ−→ x′′ (Persistency [50])

A complete review of timed process calculi is out of the scope of this work; we refer the
interested reader to [20, Sec. 2.3].

A timed transition systems over the terms of a timed process calculus is then usually
given by a SOS specification akin to classical, non-timed calculi. A prototypical example of
syntactic construct used by timed process calculi is the time prefix (t).P that intuitively
delays the execution of its continuation P of t units of time. The semantics of time prefixes
can be specified by the following SOS rules.

(t).x
t
x (t+ t′).x

t′
(t).x

x
t′
x′

(t).x
t+t′

x′
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Another example is the rule below which specifies that time affects components composed in
parallel equally:

x1
t
x′1 x2

t
x′2

x1 | x2
t
x′1 | x′2

3. Categorical background

We assume that the reader is familiar with the following basic category theory notions: a
category, a functor, a monad and an adjunction. Here we briefly recall some of them here
and also present other basics needed in this paper.

3.1. Coalgebras. Let C be a category and F : C → C a functor. An F -coalgebra is a
morphism α : X → FX in C. The domain X of α is called carrier and the morphism α is
sometimes also called structure. A homomorphism from an F -coalgebra α : X → FX to
an F -coalgebra β : Y → FY is an arrow f : X → Y in C such that F (f) ◦ α = β ◦ f . The
category of all F -coalgebras and homomorphisms between them is denoted by Coalg(F ).
Many transition systems can be captured by the notion of coalgebra. The most important
from our perspective are listed below.

Let Σ be a fixed set and put Στ = Σ + {τ}. The label τ is considered a special label
called silent or invisible label.

Example 3.1 (Labelled transition systems). P(Στ × Id)-coalgebras are labelled transition
systems over the alphabet Στ [32, 38, 39]. Here, P denotes the powerset functor. In
this paper we also consider labelled transition systems with a monoid structure on labels,
i.e. coalgebras of the type P(M × Id), or even more generally, as coalgebras of the type
P(Στ ×M × Id) for a monoid (M, ·, 1).

Example 3.2 (Non-deterministic automata with ε-moves). P(Στ × Id+ 1)-coalgebras are
non-deterministic automata with ε-transitions [14]. Here, ε-moves are labelled with τ and
1 = {X} is responsible for specifying which states are final and which are not. To be more
precise, given ε-NA α : X → P(Στ ×X + 1) a state x ∈ X is final iff X ∈ α(x).

3.2. Monads and their Kleisli categories. A monad on a category C is a triple (T, µ, η)
where T is an endofunctor over C and µ : TT ⇒ T and η : Id ⇒ T are two natural
transformations with the property that they make the diagrams below commute:

T 3 T 2

T 2 T

µT

Tµ µ

µ

T T 2 T

T

ηT

Id

Tη

µ
Id

The natural transformations µ and η are called multiplication and unit of T , respectively.
Each monad (T, µ, η) gives rise to a canonical category called Kleisli category of T and

denoted by Kl(T ). This category has the same objects of the category C underlying T ; its
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hom-sets are given as Kl(T )(X,Y ) = C(X,TY ) for any two objects X and Y in C and its
composition as

X
f

TY
Tg

TTZ µZ
TZ

g ◦ f

for any two morphisms f and g with suitable domain and codomain. There is an inclusion
functor (−)] : C→ Kl(T ) that takes every object X to itself and every morphism f : X → Y
to ηY ◦ f . This functor admits a right adjoint UT that takes every object X to TX and
every morphism f : X → Y to its Kleisli extension µY ◦ Tf :

C Kl(T )

(−)]

UT

a
This adjoint situation identifies the monad T over C.

A monad (T, µ, η) on a cartesian closed category C is called strong if there is a natural
transformation lstrX,Y : X×TY → T (X×Y ) called tensorial strength satisfying the strength
laws listed in e.g. [24]. Existence of the transformation lstr is not a strong requirement. For
instance all monads on Set are strong.

Powerset monad. The powerset endofunctor P : Set→ Set is a monad whose multiplication
and unit are given on their X-components by: µX : PPX → PX;S 7→

⋃
S and ηX : X →

PX;x 7→ {x}. The category Kl(P) consists of sets as objects and maps of the form X → PY
as morphisms. For f : X → PY and g : Y → PZ the composition g ◦ f : X → PZ is as:

g ◦ f(x) =
⋃

(Pg)(f(x)) = {z | z ∈ g(y) & y ∈ f(x) for some y ∈ Y }.

For any two sets X,Y there is a bijective correspondence between maps X → PY and binary
relations between elements of X and Y . Indeed, for f : X → PY we put Rf ⊆ X × Y ,
(x, y) ∈ Rf ⇐⇒ y ∈ f(x) and for R ⊆ X × Y we define fR : X → PY ;x 7→ {y | xRy}. It
is now easy to see that the category Kl(P) is isomorphic to the category Rel of sets as
objects, binary relations as morphisms and relation composition as morphism composition.

LTS monad. Labelled transition systems functor PΣ = P(Στ × Id) carries a monadic
structure (PΣ, µ, η) [7], where the X-components of η and µ are:

ηX(x) = {(τ, x)} and µX(S) =
⋃

(σ,S′)∈S

{(σ, x) | (τ, x) ∈ S′} ∪
⋃

(τ,S′)∈S

S′.

For f : X → PΣY and g : Y → PΣZ the composition g ◦ f in Kl(PΣ) is

(g ◦ f)(x) = {(σ, z) | x σ−→f y
τ−→g z or x

τ−→f y
σ−→g z},

where x
σ−→f y denotes (σ, y) ∈ f(x).
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Remark 3.3. When seen as an object of Kl(P), any set Στ = Σ + {τ} can be endowed
with a monoid structure (Στ ,m, τ) where the multiplication m : Στ ×Στ → Στ is defined as:

m(σ, σ′) =


{σ} if σ′ = τ

{σ′} if σ = τ

∅ otherwise

The PΣ monad is equivalently defined as the composition of the canonical adjunction
(−)] a UP and the writer monad for (Στ ,m, τ).

ε-NA monad. As pointed out in [7, Example 4.5] the ε-NA functor PΣ
X = P(Στ × Id+ 1)

carries a monadic structure (PΣ
X, µ, η). The composition in the Kleisli category for this

monad is given as follows. For two morphisms f : X → PΣ
XY and g : Y → PΣ

XZ their

composition g ◦ f in Kl(PΣ
X) is:

(g ◦ f)(x) ={(σ, z) | x σ→f y
τ−→g z or x

τ−→f y
σ−→g z}∪

{X | X ∈ f(x) or x
τ−→f y and X ∈ g(y)}.

3.3. Coalgebras with internal moves. Originally [14, 42], coalgebras with internal moves
were introduced in the context of coalgebraic trace semantics as coalgebras of the type
T (F + Id) for a monad T and an endofunctor F on a common category. In [7] Brengos
showed that given some mild assumptions on T and F we may introduce a monadic structure
on T (F + Id).2 The LTS monad and ε-NA monad (as well as all examples in Section 7)
arise by the application this construction.

The trick of modelling the silent steps via a monad allows us not to specify the internal
moves explicitly. Instead of considering T (F + Id)-coalgebras we consider T ′-coalgebras for
a monad T ′. Unless otherwise stated, we assume that all types of coalgebras considered here
carry a monadic structure.

To give a T -coalgebra is to give an endomorphism in Kl(T ). We use this observation
and present our results in as general setting as possible. Hence, we will replace Kl(T ) with
an arbitrary category K and work in the context of endomorphisms of K bearing in mind
our prototypical example of K = Kl(T ).

3.4. Order enriched categories. An order enriched category is a category whose hom-sets
are additionally equipped with a partial order structure and whose composition preserves
the structure in the following sense:

f ≤ f ′ =⇒ g ◦ f ≤ g ◦ f ′ ∧ f ◦ h ≤ f ′ ◦ h.

In this paper, the ordering will naturally stem from the type of computational effects under
scrutiny and correspond to a notion of simulation between systems. For instance, in the case
of non-deterministic systems, the ordering is given by pointwise extension of the inclusion
order imposed by P. In this setting, adding transitions to a system respects the ordering.

2 If T and F do not meet the required assumptions but F admits a free monad F ∗ and F distributes
over T then, T (F + Id) can be embedded into TF ∗ which in turn can be given a monadic structure. When
both constructions are available, they are equivalent in the sense that they yield the same notion of weak
bisimulation [7].
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For some results, we will require that our categories admit arbitrary non-empty joins
and that they are preserved by composition (on the left or on the right) with morphisms
from a given subcategory—our prototypical scenario is a Kleisli category and its underlying
category. We refer to this property as left and right distributivity [10, Def. 2.10 and 3.2].

Definition 3.4. Let K be order enriched and let J : J→ K exhibit J as a subcategory of
K. The category K is called J-right distributive provided that it the following holds for any
non-empty family of morphisms {gi}i∈I and any morphism f ∈ J with suitable domain and
codomain: (∨

i

gi

)
◦ f =

∨
i

gi ◦ f . (J-RD)

The category K is called J-left distributive provided that it the following holds for any
non-empty family of morphisms {gi}i∈I and any morphism f ∈ J with suitable domain and
codomain:

f ◦

(∨
i

gi

)
=
∨
i

f ◦ gi. (J-LD)

We call any Id-left distributive (resp. Id-right distributive) category simply left dis-
tributive (resp. right distributive).

Objects in the image of the powerset monad P are naturally endowed with an order
structure given by subset inclusion. This order structure is extended to hom-sets of Kl(P)
in a pointwise manner. Formally, the order structure of any hom-set Kl(P)(X,Y ) is given
on any f and g as:

f ≤ g 4⇐⇒ ∀xf(x) ⊆ g(x)

and suprema of any non-empty family {fi}i∈I as:∨
i∈I

fi , λx.
⋃
i∈I

fi(x).

Composition in Kl(P) is monotone and preserves suprema of non-empty families (see e.g.
[9, 10]). It follows that for any J : J → Kl(P) that exhibits J as a wide subcategory of
Kl(P) (e.g. the inclusion (−)] : Set→ Kl(P)), the category Kl(P) is J-distributive.

3.5. Saturation-based behavioural equivalences. The notion of strong bisimulation has
been well captured coalgebraically [38, 46]. Weak bisimulation can be captured coalgebraically
as the combination of kernel bisimulation and saturation [10]. We briefly recall the relevant
definitions and refer the interested reader to loc. cit. for further details.

Following [10], we consider a formulation of coalgebraic bisimulation called kernel
bisimulation i.e. “a relation which is the kernel of a compatible refinement system” [46].
Formally, a kernel bisimulation (herein just bisimulation) for a coalgebra α : X → TX
is a relation R ⇒ X (i.e. a jointly monic span) in C provided that there is a coalgebra
β : Y → TY (the refinement system) and an arrow f : X → Y (called behavioural morphism)
for which R ⇒ X is the kernel pair in C and subject to the coalgebra homomorphism
compatibility condition:

Tf ◦ α = β ◦ f .

Since this identity can be restated in terms of composition in Kl(T ) as

f ] ◦ α = β ◦ f ],
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we can generalize the definition of bisimulation to the setting of endomorphisms as follows.
Let J : J→ K exhibit a wide subcategory of K. For an endomorphism α : X → X ∈ K we
say that a relation on X in J is a (strong) bisimulation for α if it is a kernel pair of an arrow
f : X → Y ∈ J for which there is β : Y → Y ∈ K satisfying

J(f) ◦ α = β ◦ J(f).

If we take the inclusion (−)] : Set → Kl(PΣ) as J then the notions of bisimulation for
coalgebras and on endomorphisms coincide. If we take the inclusion (−)] : Kl(P)→ Kl(PΣ

X)
as J then the above captures (finite) trace equivalence. Taking the source category of
behavioural morphisms to be different from Set, say Rel ∼= Kl(P), is akin to the classical
approach towards modelling coalgebraic finite trace equivalence in terms of bisimulation in
the Kleisli categories for a monadic part T of the type functor TF [14, 18] where behavioural
morphisms have underlying maps from Kl(T ).

In [7, 10] we presented a common framework for defining weak bisimulation and weak
trace semantics via saturation for coalgebras with internal moves which encompasses several
well known instances of this notion for systems among which we find labelled transition
systems and fully probabilistic systems. The basic ingredient of this setting was the notion
of the aforementioned saturation for order enriched categories. Henceforth, assume that K
is order enriched. An endomorphism α in K is called saturated whenever it holds that:

id ≤ α α ◦ α ≤ α.

Under mild conditions (see [10]), every endomorphism can be canonically saturated in
the sense that assigning endomorphisms to their saturation identifies a reflection between
certain categories of endomorphisms. Define End≤J (K) as the category whose objects are
endomorphisms in K and whose morphisms are arrows in the subcategory J that form a
lax commuting square between endomorphisms. Namely, a morphism from α : X → X to
β : Y → Y is any morphism f such that:

J(f) ◦ α ≤ β ◦ J(f).

Define End∗≤J (K) as the full subcategory of End≤J (K) of saturated endomorphisms. The
category K is said to admit saturation (w.r.t. J) whenever it holds that:

End≤J (K) End∗≤J (K)

(−)∗

a (3.1)

In this setting we refer to α∗ as the saturation of α.
A relation R⇒ X in J is a weak bisimulation on an endomorphism α : X → X in K if

it is a (strong) bisimulation for the saturation α∗ : X → X of α in K. As will be witnessed
in sections to come, different weak equivalences for timed systems will be defined in an
analogous manner.

Example 3.5. Let α : X → PΣX be a labelled transition system reported in Figure 2
on the left. In this case, if we put K to be Kleisli category for the LTS monad then the
saturated map α∗ is the LTS reported in Figure 2 on the right. Moreover, in general, if
K = Kl(PΣ) and J is put to be Set then weak bisimulations coincide with Milner’s weak
bisimulations for labelled transition systems [32].
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Figure 2: A labelled transition system (left) and its saturation (right).

4. General saturation and behavioural equivalences

The theory of saturation from the previous section offers a mechanism to compare system
behaviours abstracting over certain patterns of computational steps. In this section we
extend the theory of saturation to computations that may depend on aspects of their
environment such as time; we refer to this conservative extension of (special) saturation as
general saturation. General saturation provides two orthogonal abstraction dimensions that
may be arbitrarily combined:

• General saturation allows to abstract from effects of the computation like unobservable
steps (like special saturation);
• General saturation allows to abstract from aspects of the computation environment like

time flow.

As a consequence, a new orthogonal abstraction dimension is added to the spectrum of
saturation behavioural equivalences as shown e.g. in the spectrum of equivalences for timed
systems in Figure 1. A detailed construction of the spectrum is postponed to Section 6.

In the sequel let J : J → K be a functor that exhibits J as a wide subcategory of K
and let K be order enriched. As we will discuss in Section 6, our prototypical example of
J : J→ K is the inclusion (−)] : Set→ Kl(PΣ) when interested in bisimulations for TTSs,
(−)] : Set→ Kl(PΣ

X) when interested in bisimulations for TTSs with accepting moves, and

(−)] : Kl(P)→ Kl(PΣ
X) when interested in language equivalences for TTSs.

4.1. Lax functors. A lax functor from a category D to K is an assignment π for objects
and morphisms in D with the property that:

• idπD ≤ π(idD) for any object D in D,
• π(d1) ◦ π(d2) ≤ π(d1 ◦ d2) for any d1 and d2 in D with suitable domain and codomain.

Let π and π′ be two lax functors from D to K. A family f = {fD : πD → π′D}D∈D of
morphisms in K is called a lax natural transformation from π to π′ if the diagram below
holds for any d : D → D′ in D.

πD π′D

πD′ π′D′

fD

π(d) π′(d)

fD′

≥
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Oplax functors and oplax transformations are defined by reversing the order in the definitions
above. Note that in the more general 2-categorical setting an (op)lax functor and an (op)lax
natural transformation are assumed to additionally satisfy extra coherence conditions [26].
In the setting of order enriched categories these conditions are vacuously true, hence we
do not list them here. Let D be a small category, we write [D,K]J for the order enriched
category defined by the following data:

• lax functors from D to K as objects;
• oplax natural transformations with components laying in the image of J (hereafter just

“from J”) as morphisms;
• the pointwise extension of the order enrichment of K.

In particular, for any two morphism f and f ′ in [D,K]J(π, π′), it holds that f ≤ f ′ whenever
fD ≤ f ′D for any object D of D. Any functor q : D→ E between small categories induces
the change-of-base functor

[q,K]J : [E,K]J → [D,K]J

that takes any object π ∈ [E,K]J to [q,K]J(π) = π ◦ q and oplax transformation f =
{fE : π(E)→ π′(E)}E∈E between π, π′ ∈ [E,K]J to [q,K]J(f)D = fq(D).

To keep the paper more succinct, we only focus on D being a monoid category (i.e. a one-
object category). Let M = (M, ·, 1) be a monoid and write M for the corresponding category.
In this scenario, any lax functor π ∈ [M,K]J is equivalent to a family {πm : π(∗)→ π(∗)}m∈M
of endomorphisms in K over a common object π(∗) and with the following property:

idπ(∗) ≤ π1 and πm ◦ πn ≤ πm·n.

An oplax transformation from π to π′, both lax functors in [M,K]J , is an arrow f in J such
that the diagram below holds for any m ∈M .

π(∗) π′(∗)

π(∗) π′(∗)

J(f)

π(m) π′(m)

J(f)

≤

The curious reader is referred to [6] and Section 6 for examples of these categories.

4.2. Saturation. Building on Sobociński’s work on relational presheaves and weak bisimu-
lation for LTSs, [44], Brengos rediscovered (special) saturation in the setting of lax functors
in terms of the change-of-base functor induced by final monoid homomorphisms (seen as
functors between index categories) [6]. This section pushes this approach further by con-
sidering arbitrary monoid homomorphisms. The main advantage of this generalisation is
that different homomorphisms result in different aspects being abstracted by the saturation
process (e.g. internal moves, time durations).

In the sequel, let q : M → N be any monoid homomorphism and regard it as a functor
between the associated categories.

Definition 4.1. An order enriched category K is said to admit q-saturation (w.r.t. a wide
subcategory J : J→ K) whenever the change-of-base functor [q,K]J : [N,K]J → [M,K]J
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admits a left strict 2-adjoint (denoted as ΣJ
q or simply as Σq).

[M,K]J [N,K]J

ΣJ
q

[q,K]J

a (4.1)

This is indeed a generalisation of special saturation from [7, 10]: if we take as q the unique
morphism from the monoid (N,+, 0) of natural numbers under addition into the trivial one

object monoid then, [N,K]J ∼= End≤J (K), [1,K]J ∼= End∗≤J (K), and (3.1) becomes (4.1).
In order to prove q-saturation admittance below, we work with a stronger type of order

enrichment on K3. To be more precise we assume that K is left distributive order enriched
category with arbitrary non-empty joins. Under these assumption K admits q-saturation
w.r.t. J whenever q is a surjective monoid homomorphism i.e. whenever the corresponding
functor is full. The following theorem provides a direct construction for Σq.

Theorem 4.2. If q : M → N is a full functor and K a left distributive category with
arbitrary non-empty joins then, K admits q-saturation with respect to any J . The functor
Σq : [M,K]J → [N,K]J acts as the identity on morphisms and takes any π ∈ [M,K]J to
the lax functor given on the only object as

Σq(π)(∗) = π(∗)
and on any morphism n ∈ N as

Σq(π)n =
∨
i<ω

Πn,i

where Πn,i is inductively defined as

Πn,0 =
∨
{πm | q(m) = n}

Πn,i+1 =
∨
{Πn1,i ◦ . . . ◦Πnl,i |n1 · · · · · nl = n} .

Proof. At first we show that Σq(π) is a well defined lax functor in [N,K]J . Note that the
family Πn = {Πn,i}i<ω is an ascending family of sets, that Πn is, by surjectivity of q, a
non-empty directed set, and that Πn ◦Πn′ ⊆ Πn·n′ for any n, n ∈ N . As a consequence, it
holds that:

id ≤
∨

Π1 ≤ Σq(π)1

Σq(π)n ◦ Σq(π)n′ =
∨

Πn ◦
∨

Πn′
(†)
=
∨

Πn ◦Πn′
(‡)
≤
∨

Πn·n′ = Σq(π)n·n′

where (†) follows from left distributivity of K and (‡) from definition of lax functor and
construction of Πn,Πn′ ,Πn·n′ . This proves the first statement. Now, we will verify that any
oplax transformation in [M,K]J is mapped onto an oplax transformation in [N,K]J . Let

3In the conference version of the paper [9] we assumed the category K to admit finite joins, be DCpo-
enriched (i.e. each hom-set is a complete order with directed suprema being preserved by the composition)
and left distributive on finite joins. However, any such category admits arbitrary non-empty suprema and
preserves them by the composition on the left. Hence, we decided to simplify our assumptions. All Kleisli
categories considered in [9] and this paper satisfy these assumptions.
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f : π → π′ be a morphism in [M,K]J or, equivalently, a morphism f in J with the property
that J(f) ◦ πm ≤ π′m ◦ J(f) for any m in M. It follows from J-left distributivity and Scott
continuity of the composition that:

J(f) ◦ Σq(π)n = J(f) ◦
∨

Πn =
∨
J(f) ◦Πn ≤

∨
Π′n ◦ J(f) = Σq(π

′)n ◦ J(f).

To complete the proof we have to show that for any lax functor π ∈ [M,K]J and π′ ∈ [N,K]J

the poset [M,K]J(π, [q,K](π′)) is isomorphic to [N,K]J(Σq(π), π′). Indeed:

∀m ∈M J(f) ◦ πm ≤ π′q(m) ◦ J(f)
(†)⇐⇒

∀m,m1 . . .mk ∈M J(f) ◦ (πm1 ∨ . . . ∨ πmk) ≤ π′q(m) ◦ J(f) ∧ ∀i q(mi) = q(m) ⇐⇒

∀m ∈M J(f) ◦
∨

Πq(m),0 ≤ π′q(m) ◦ J(f)
(‡)⇐⇒

∀m ∈M ∀n < ω, J(f) ◦
∨

Πq(m),n ≤ π′q(m) ◦ J(f) ⇐⇒

∀m ∈M J(f) ◦
∨

Πq(m) ≤ π′q(m) ◦ J(f) ⇐⇒ ∀m ∈M J(f) ◦ Σq(π)q(m) ≤ π′q(m) ◦ J(f).

The equivalence (†) follows by J-left distributivity of K and (‡) by induction on n < ω.

If K is also right distributive (hence J-right distributive for any J) then, the formula
for Σq simplifies considerably as stated by Theorem 4.3 below.

Theorem 4.3. If the hom-posets of K admit arbitrary non-empty suprema and composition
preserves them then, for any π ∈ [M,K]J it holds that:

Σq(π)n =
∨
{πm | q(m) = n} .

Proof. Observe that Πn = Πn,0 and hence Σq(π)n =
∨

Πn =
∨

Πn,0 =
∨
m:q(m)=n πm.

Saturation is idempotent. The claim readily follows from the fact that the underlying
2-adjunction is a coreflection and splits the identity on the subcategory.

Proposition 4.4. The functor Σq ◦ [q,K]J is the identity on [N,K]J .

Proof. It is enough to show that for any π′ ∈ [N,K]J we have Σq(π
′ ◦q) = π′. Take π = π′ ◦q

and note that Πw,0 = {πm1 ∨ . . . ∨ πmk | q(mi) = w} = {π′w ∨ . . . ∨ π′w | q(mi) = w} = {π′w}
for w ∈ N . Moreover, since π′ is a lax functor we can easily prove by induction that t ≤ π′w
holds for any t ∈ Πw,n. Hence, Σq(π

′ ◦ q)w =
∨

Πw = π′w which proves the assertion.

Saturation is compositional in the sense that q2 ◦ q1-saturation can be staged in terms
of q1-saturation and q2-saturation.

Proposition 4.5. The functor Σq2 ◦ Σq1 is (naturally isomorphic to) Σq2◦q1.

Proof. This statement follows directly from the fact that Σq1 and Σq2 are left adjoints and
that [q1,K]J ◦ [q2,K]J = [q2 ◦ q1,K]J .

Natural transformations are indeed oplax transformations hence a special class of
morphisms between lax functors. This class of morphisms is preserved by saturation
whenever composition with morphisms from J preserves non-empty joins.

Proposition 4.6. Assume that K is J-left and J-right distributive. For any f : π → π′ in
[N,K]J , if f is a natural transformation then, so is f : Σq(π)→ Σq(π

′).
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Proof. Recall that to be (ordinary) natural transformation means that f ◦ πm = π′m ◦ f and
f ◦ Σq(π)n = Σq(π

′)n ◦ f for any m ∈M and n ∈ N . Observe that:

f ◦(πm1∨. . .∨πmk)
J-LD
= f ◦πm1∨. . .∨f ◦πmk = π′m1

◦f∨. . .∨π′mk ◦f
J-RD

= (π′m1
∨. . .∨π′mk)◦f .

Hence, for any n ∈ N it holds that J(f) ◦ Πn,0 = Π′n,0 ◦ J(f) and, by induction on i,

J(f) ◦ Πn,i = Π′n,i ◦ J(f). We conclude that J(f) ◦ Πn = Π′n ◦ J(f) which proves the
thesis.

Let I : I → J exhibit I as a wide subcategory of J and observe that hom-posets of
[M,K]J◦I are included in those of [M,K]J . As a consequence, there is an obvious inclusion
2-functor ΥI

M : [M,K]J◦I → [M,K]J . Saturation commutes with the “change of hom-posets”
induced by I.

Proposition 4.7. The following is a morphism of strict 2-adjunctions.

[N,K]J◦I

[M,K]J◦I

[N,K]J

[M,K]J

[q,K]J◦IΣJ◦I
q a [q,K]JΣJ

q a

ΥI
N

ΥI
M

∼=

Proof. Observe that [q,K]J◦I is the restriction of [q,K]J to the wide subcategories identified
by ΥI

M and ΥI
N and recall from Proposition 4.4 that both adjunctions are coreflections.

Theorem 4.8. If K admits q-saturation with respect to J then, it admits q-saturation with
respect to J ◦ I.

Proof. Follows directly from Theorem 4.2 and Proposition 4.7.

4.3. Behavioural equivalences. In this section we extend the theory of saturation-based
behavioural equivalences from special to general saturation.

Recall from Section 3.5 that saturation-based equivalences are defined as kernel pairs
of behavioural morphisms i.e. endomorphism whose domain is the saturation of the system
under scrutiny. Definition 4.9 below is a generalisation of this notion where special saturation
is replaced with general saturation. As in the previous section, we assume that K is a left
distributive, order enriched category with arbitrary non-empty joins, that J exhibits a wide
subcategory J of K, and that q : M → N is a surjective homomorphism of monoids.

Definition 4.9. A q-behavioural morphism for π ∈ [M,K]J is any morphism f from J that

carries a (strict) natural transformation with domain ΣJ
q (π) ∈ [N,K]J i.e. any f with the

property that there is π′ ∈ [N,K]J such that the diagram below commutes for any n ∈ N:

π(∗) π′(∗)

π(∗) π′(∗)

J(f)

ΣJ
q (π)n π′n

J(f)
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A q-bisimulation for π is a relation R ⇒ π(∗) from J that is also the kernel pair of some
q-behavioural morphism for π.

If K is the category of T -coalgebras then, the notion of id-bisimulation coincides with
that of kernel bisimulation for T -coalgebras. We adopt the term “refinement system”, used
to denote to the codomain of the behavioural morphism associated with a kernel bisimulation,
to denote the codomain (π′ in Definition 4.9) of a q-behavioural morphism.

It follows from the idempotency property of saturation that q-bisimulation can be
equivalently stated in terms of refinement systems from the original category (i.e. from

[M,K]J instead of [N,K]J): it suffices to take their saturation.

Proposition 4.10. A morphism f from J is a q-behavioural morphism for π ∈ [M,K]J if
and only if there is π′ ∈ [M,K]J such that the diagram below commutes for any m ∈M′.

π(∗) π′(∗)

π(∗) π′(∗)

J(f)

ΣJ
q (π)m Σq(π′)m

J(f)

Proof. By Proposition 4.4.

Each notion of q-bisimulation for systems modelled in [M,K]J arises from some congru-
ence for M and, vice versa, each congruence defines a notion of q-bisimulation. Theorem 4.11
and Corollary 4.12 below state that that coarser congruences define coarser notions of
bisimulations. A prototypical example are strong/weak equivalences and time/time-abstract
ones (see Section 6 and Figure 3).

Theorem 4.11. Every q-behavioural morphism for π is a (q′ ◦ q)-behavioural morphism
for π.

Proof. Follows directly from Propositions 4.5 and 4.6.

Corollary 4.12. Every q-bisimulation for π is a (q′ ◦ q)-bisimulation for π.

Theorem 4.13 and Corollary 4.14 below state that behavioural equivalences are preserved
under “change of hom-sets”. A prototypical instance is offered by bisimulations and
language equivalences: since the former will be captured using the canonical inclusion
(−)] : Set→ Kl(PΣ

X) and the latter using the canonical inclusion (−)] : Kl(P)→ Kl(PΣ
X),

it follows from Corollary 4.14 that bisimulations are always language equivalences.

Theorem 4.13. Every q-behavioural morphism for π ∈ [M,K]J◦I is a q-behavioural morph-

ism for π ∈ [M,K]J .

Proof. Follows directly from Propositions 4.6 and 4.7.

Corollary 4.14. A q-bisimulation for π ∈ [M,K]J◦I is a q-bisimulation for π ∈ [M,K]J .
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5. Functor models of timed transition systems

To develop a behavioural theory for timed transition systems based on the framework we
introduced in Section 4 one only needs to model TTSs as (lax) functors where the index
monoid category (M) models abstract executions (e.g. sequences of timed steps) and the
base category (K) models the effects associated with each abstract execution (e.g. the set of
states reachable with a certain sequence of timed steps). Then one can readily instantiate
our framework as we illustrate in Section 6.

Recall from Section 2 that timed transition system are essentially transition systems
whose transitions are labelled with symbols from Στ and time durations from T (with some
definitions imposing additional constraints). There is bijective correspondence between
transition systems with labels from Στ × T and time-indexed families of transition systems
with labels Στ and the same state space:

X → P(Στ × T×X)

T→ P(Στ ×X)X
(5.1)

Observe that the first are coalgebras of type P(Στ×T×−) and that the second are T-indexed
families of endomorphisms from Kl

(
PΣ
)

since Kl(PΣ)(X,X) = P(Στ ×X)X . Let T∗ be

the category associated to the free monoid T∗ and J the inclusion (−)] : Set → Kl(PΣ).
The correspondence extends to an isomorphism

Coalg(P(Στ × T×−)) ∼= Cat
(
T∗,Kl

(
PΣ
))
J

between the categories of P(Στ × T×−)-coalgebras and the subcategory of
[
T∗,Kl

(
PΣ
)]
J

given by (strict) functors and (strict) natural transformations. Thus we have that:

Coalg(P(Στ × T×−)) ∼= Cat
(
T∗,Kl

(
PΣ
))
J ↪→

[
T∗,Kl

(
PΣ
)]
J .

We model TTSs as ordinary (i.e. not lax) functors in
[
T∗,Kl

(
PΣ
)]
J (or

[
T∗,Kl

(
PΣ
X

)]
J

when discussing language equivalences) and write α and α for the functor model and the
coalgebra model of a TTS α whenever the distinction is not clear from the context.

Besides fitting into our framework, modelling timed transition systems as functors allow
us to extend our approach to timed behaviours that do not have a direct coalgebra model (or
an equivalent of (5.1)) as it happens for timed Segala automata [25]. In fact, a single entry
of a timed transition table can easily yield uncountably many transitions in the associated
TTS whereas the semantics of Segala systems based on compound steps (also called convex
semantics after the use of convex closures, cf. [41, 48]) assumes that probability distribution
supports are (finitely) bounded (cf. [5, 17]). Instead, we are able to derive the behavioural
theory of timed Segala systems using the standard convex semantics without modifications
(cf. Section 7.2).

A general construction for defining functor models for timed calculi and timed automata
is out of the scope of this work. We refer the interested reader to [20] for a coalgebraic
account of timed calculi and to [9] an account of timed automata in terms for lax functors.

6. Behavioural equivalences for timed transition systems

In this section we apply the general framework developed in Section 4 to timed transition
systems systems and show that equivalences of interests are all instances of the general
notion of q-bisimulation; In particular, we rediscover the eight combinations of:

• timed or time-abstract,
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weak time-abstract
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ε1

!∗T

!T

Figure 3: Monoid morphisms (right) and the corresponding spectrum of saturation-based
timed behavioural equivalences (left).

• strong or weak, and
• bisimulation or (finite) language equivalence

Each pair in the list above corresponds to one of three orthogonal abstraction dimensions:

• abstraction over time arises from the unique homomorphism !T going from the monoid T
modelling time (cf. Section 2) to the trivial monoid 1;
• abstraction over unobservable moves arises from components of the counit ε of the free

monoid adjunction;
• abstraction over branching arises from the fact that the inclusion Set→ Kl(PΣ

X) factors

through Kl(P)→ Kl(PΣ
X) by construction of PΣ

X.

The first two dimensions define four types of equivalence that, as a consequence of Corol-
lary 4.12, are organised with respect to their discriminating power in the spectrum depicted
in Figure 3 together with the corresponding monoid homomorphisms. These equivalences are
always organised in this spectrum independently from any specific choice made for the sub-
category J sourcing behavioural morphisms. This means that spectra for bisimulations and
their language equivalent counterpart are alike. The third dimension defines a bisimulation
equivalence and a language equivalence counterpart for each combination of abstraction over
the first and second aspect where, as a consequence of Corollary 4.14, the former is always
more discriminating that the later. It follows that the above spectra for bisimulations and
language equivalences are actually two opposing faces in the spectrum depicted in Figure 1.

For exposition convenience, in the sequel we shall use the term q-language equivalence
instead of q-bisimulation to signal that K and J are put to be Kl(PΣ

X) and Kl(P), and

otherwise use q-bisimulation in the setting where K and J are put to be Kl(PΣ) and Set.
Although we focus on non-determinism, constructions described in this section apply to

other computational effects modelled by suitable monads as we will discuss in the second
part of this work.

6.1. Timed bisimulation. Recall from Section 5 that a ordinary functor π over a free
monoid like T∗ describes the transitions of a system together with all their self-compositions.
A idM -behavioural morphism for π is a morphism f with the property that

f ◦ πm = π′m ◦ f
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for some π′ and every m ∈M since id-saturation acts as the identity. When all components
of π and π′ are coalgebras a relation R ⇒ π(∗) is a id-bisimulation for π if and only if
it is a (kernel) bisimulation for every component of π. Thus, we obtain the notion timed
bisimulation for TTSs as that of idT∗-bisimulation for their associated functor model.

Proposition 6.1. For a TTS α, α its functor model, and R an equivalence relation on its
carrier: R is a timed bisimulation for α iff it is a idT∗-bisimulation for α.

6.2. Abstraction over time. Abstraction over time is captured via saturations that
forget some of the time information attached to steps like the !∗T : T∗ → 1∗ (which forgets
durations entirely). In general, forgetting some of the information attached to steps while
preserving the steps corresponds to q∗ : M∗ → N∗ for some q : M → N . The functor
Σq∗ : [M∗,K]J → [N∗,K]J is given on a objects as:

Σq∗(π)n1...nk =
∨

ni=q(mi)

πm1...mk =
∨

ni=q(mi)

πm1 ◦ · · · ◦ πmk .

Steps in the saturated system are combinations of all steps associated to a pre-image through
q; in particular, Σq∗(π)n =

∨
n=q(m) πm. If q is !∗T, steps that differ only for their duration

are combined allowing thus to rediscover time-abstract bisimulation as !∗T-bisimulation.

Proposition 6.2. For a TTS α, α its functor model, and R an equivalence relation on its
carrier: R is a time-abstract bisimulation for α iff it is a !∗T-bisimulation for α.

6.3. Abstraction over unobservable moves. Abstraction over unobservable moves
arises from components of the counit ε : (−)∗ → Id of the free monoid adjunction i.e.
arrows εM : M∗ → M taking (m1, . . . ,mn) to m1 · . . . · mn where · is the monoid opera-
tion. By Theorem 4.3, if K admits and preserves arbitrary non-empty joins the functor
ΣεM : [M∗,K]J → [M,K]J is given every π as follows:

ΣεM (π)m =
∨

εM (~m)=m

π~m =
∨

m1·...·mk=m

πm1 ◦ · · · ◦ πmk .

Steps in the saturated system are combinations of all sequences in the original one associated
with any decomposition of the stage m. In particular, when K models unobservable moves,
εM -bisimulation can be seen as the weak counterpart of strong behavioural equivalence for
systems modelled in [M∗,K]J , i.e., idM∗-bisimulation.

Let M be a monoid T modelling time and let q be εT. The resulting notion of q
bisimulation saturates a sequence of timed steps into one whose duration is the total
duration of the sequence thus abstracting from intermediate steps division only.

Proposition 6.3. For a TTS α, α its functor model, and R an equivalence relation on its
carrier: R is a weak timed bisimulation for α iff it is a εT-bisimulation for α.

Let M be the trivial monoid 1 and observe that 1∗ is isomorphic to the monoid N
of natural numbers under addition. In this setting, system steps are essentially devoid
of any time information, step sequences are associated only with their length, and the
corresponding component of ε, !N : N → 1, simply forgets lengths. This instance of q-
bisimulation corresponds exactly to the construction used by Brengos in [6] to capture
(untimed) weak bisimulation: in loc. cit. systems are modelled as lax functors over the
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monoid N of natural numbers under addition and saturation is defined in terms of a strict
2-adjunction to the category of lax functors over the trivial monoid 1.

We can combine abstraction over time and abstraction over unobservable moves we
simply by composing their defining monoid morphisms as εN ◦ q∗ or as q ◦ εM ; by naturality
of ε the notions of saturation coincide:

ΣεN◦q∗(π)n = Σq◦εM (π)n =
∨

n1·...·nk=n
ni=q(mi)

πm1 ◦ · · · ◦ πmk =
∨

n=q(m)
m1·...·mk=m

πm1 ◦ · · · ◦ πmk .

In particular, when modelling timed transition systems, we have that

T∗

T1∗

1

εT

ε1

!∗T

!T

!T∗

and we rediscover weak time-abstract bisimulation as !T∗-bisimulation.

Proposition 6.4. For a TTS α, α its functor model, and R an equivalence relation on its
carrier: R is a weak time-abstract bisimulation for α iff it is a !T∗-bisimulation for α.

6.4. Abstraction over branching. We capture abstraction over branching by replacing
the canonical inclusion Set → Kl(PΣ

X) with Kl(P) → Kl(PΣ
X) as J : J → K. Taking the

source category of behavioural morphisms to be different from Set is somewhat akin to
the classical approach towards modelling coalgebraic finite trace equivalence in terms of
bisimulation for base categories given by the Kleisli categories for a monadic part of the
type functor [14, 18]. Our approach of replacing Set→ Kl(PΣ

X) with Kl(P)→ Kl(PΣ
X) was

successfully used to recover weak trace semantics for non-deterministic automata in terms of
weak bisimilarity via saturation in [7, Example 7.3]. If applied here, we obtain the notions
of strong/weak timed/time-abstract language for TTSs as instances of that of q-bisimulation
for q discussed discussed above.

Proposition 6.5. For a TTS α, α its functor model, and R an equivalence relation on its
carrier:

(1) R is a timed language equivalence for α iff it is a idT∗-language equivalence for α;
(2) R is a time-abstract language equivalence for α iff it is a !∗T-language equivalence for α;
(3) R is a weak timed language equivalence for α iff it is a εT-language equivalence for α;
(4) R is a weak time-abstract language equivalence for α iff it is a !T∗-language equivalence

for α;

6.5. Spectrum of equivalences. By recovering notions of behavioural equivalences as
instances of q-bisimulation, we can now apply Corollaries 4.12 and 4.14 to organise them by
their discriminating power.
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Proposition 6.6. The diagram below describes the spectrum of equivalences for TTSs,
ordered from more (bottom) to less (top) discriminating.

strong timed
bisimulation

weak timed
bisimulation

strong time-abstract
bisimulation

weak time-abstract
bisimulation

strong timed
language equivalence

weak timed lan-
guage equivalence

strong time-abstract
language equivalence

weak time-abstract
language equivalence

Proof. The thesis follows from the commuting diagram of monoid morphisms in Figure 3,
the fact that the canonical inclusion Set → Kl(PΣ

X) factors as Set → Kl(P) → Kl(PΣ
X),

Propositions 6.1 to 6.5 and Corollaries 4.12 and 4.14.

7. Beyond timed transition systems

In this section we illustrate the generality of the results presented by listing some repres-
entative examples of timed behavioural models fitting our framework besides our running
example of timed transition systems.

7.1. Quantalic systems. Quantalic systems are a generalisation of non-deterministic ones
where non-deterministic features are extended with some quantitative ones to describe e.g.
the maximal cost of a computation.

7.1.1. Model. Let (Q, ·, 1,≤) be a unital quantale, i.e. a relational structure such that:

• (Q, ·, 1) is a monoid,
• (Q,≤) is a complete lattice,
• arbitrary suprema are preserved by the monoid multiplication.

In other words, a unital quantale is a monoid in the category Sup of join-preserving
homomorphisms between complete join semi-lattices. In the sequel we will often write ⊥Q
or simply ⊥ for the supremum of the empty set and denote a quantale (Q, ·, 1,≤) by its
carrier set Q, provided the associated structure is clear from the context.

Quantale monad. An arbitrary unital quantaleQ gives rise to the monadQ(−) over Set, called
quantalic monad. The functor carrying this monad which assigns to any set X the set QX
of all functions from X to Q and to any map f : X → Y the map Qf : QX → QY given by:

Qf (φ)(y) =
∨

x:f(x)=y

φ(x).

Multiplication µ and unit η of Q(−) are given on each set X by the functions:

µX(ψ)(x) =
∨

φ∈QX
φ(x) · ψ(φ) and ηX(x)(y) =

{
1 if x = y

⊥ otherwise
.
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The powerset monad P is a special case of the above where the chosen quantale is the
boolean one. The quantalic monad can be equipped with left, right double strengths for
the structure (Set,×, 1); these are given on each component as follows:

lstrX,Y (x, φ)(x′, y′) = ηX(x)(x′) · φ(y′) rstrX,Y (ψ, y)(x′, y′) = ψ(x′) · ηY (y)(y′)

dstrX,Y (ψ, φ)(x, y) = ψ(x) · φ(y).

The quantalic monad is thus strong and monoidal but not necessary commutative. Com-
position in Kl(Q(−)) is defined, for any f and g with suitable domain and codomain, as:

(g ◦ f)(x)(z) =
∨
y

f(x)(y) · g(y)(z).

The tensor of the monoidal structure (Kl(Q(−)), × , 1) takes every pair of morphisms
f : X → Y and f ′ : X ′ → Y ′ to the arrow given by the function:

(f × f ′)(x, x′)(y, y′) = f(x)(y) · f ′(x′)(y′).
The category Kl(Q(−)) is isomorphic to the category Mat(Q) of Q-valued matrices [37].
In this sense, Rel is a special case of the above where the chosen unital quantale is the
boolean one. Another example of quantale is the set of all languages for a given alphabet Σ
equipped with the pointwise extension of string concatenation as the monoidal structure and
set inclusion as the order. More generally, for a monoid (M,�, e) equipped with an order
≤ that is preserved by ·, the set P↓M of downward closed subsets of M carries a unital
quantale structure (P↓M, ·, 1,⊆) where 1 is the downward cone with cusp e:

1 = {m ∈M | m ≤ e}
and · is the downward closure of the pointwise extension of � to subsets of M :

X · Y = {m | ∃x ∈ X,∃y ∈ Y (m ≤ x� y)}.
Positive arithmetic monoids such as natural and real numbers under addition are source
of examples of interest for modelling computations with quantitative aspects.

Example 7.1 (Resource use). Consider (N,+, 0) equipped with the natural order. Because
the order is total and has 0 as its least element, P↓N is isomorphic to N+ {∞}; the resulting
quantale structure is that of natural numbers with addition and the natural order extended
with infinity. If we regard numbers attached to computations weighted using this quantale
as costs then, the cost of sequential steps is the sum of the cost of each step and the cost of
branching points is the maximum of the cost of each branch.

Example 7.2 (Least likelihood). Consider ([0, 1], ·, 1) equipped with the inverted natural
order on the real interval [0, 1]. The order is total, has 1 as its least element, 0 as its greatest
element, and P↓[0, 1] is isomorphic to [0, 1]. If we regard numbers attached to computations
weighted using this quantale as probability estimates then, the estimate of sequential steps
is the product of the probabilities of each step and the cost of branching points is the least
(in the natural order) of the estimates for each branch.
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Unobservable and accepting moves. Consider the monad QΣ (carried by Q(Στ×Id)) obtained
by equipping the quantale monad with labelled and unobservable moves as described above.
We will refer to this monad as the quantalic system monad since coalgebras for its endofunctor
Q(Στ×Id) are quantalic labelled transition systems with unobservable moves. These systems
are endomorphisms of the Kleisli category of QΣ. In particular, composition in Kl(QΣ)
assigns to every f : X → Y and g : Y → Z the composite map:

(g ◦ f)(x)(σ, z) =
∨
{f(x)(σ1, y) · g(y)(σ2, z) | {σ1, σ2} = {σ, τ} and y ∈ Y } .

The monad QΣ is equipped with the left, right, and double strengths below:

lstrX,Y (x, φ)(σ, x′, y′) = ηX(x)(τ, x′) · φ(σ, y′)

rstrX,Y (ψ, y)(σ, x′, y′) = ψ(σ, x′) · ηY (y)(τ, y′)

dstrX,Y (ψ, φ)(σ, x, y) =
∨
{ψ(σ1, x) · φ(σ2, y) | {σ1, σ2} = {σ, τ}} .

The tensor of the resulting monoidal structure on Kl(QΣ) takes every pair of sets X and Y
to their cartesian product X×Y and every pair of morphisms f1 : X1 → Y1 and f2 : X2 → Y2

to the arrow given by the function:

(f1×f2)(x1, x2)(σ, y1, y2) =
∨
{f1(x1)(σ1, y1) · f2(x2)(σ2, y2) | {σ1, σ2} = {σ, τ}} .

Consider the monad QΣ
X (carried by Q(Στ×Id+{X})) obtained by equipping the quantale

monad with labelled, unobservable moves and accepting as described above. We will refer to
this monad as the quantalic automata monad since coalgebras for its endofunctor Q(Στ×Id)

are quantalic automata with ε-moves (we adopt the same notation used for ε-NA and PΣ
X).

Composition in the Kleisli category for this monad assigns to every f : X → Y and g : Y → Z
the composite map:

(g ◦ f)(x)(w) =


∨
{f(x)(X), f(x)(τ, y) · g(y)(X) | y ∈ Y } if w = X∨
{f(x)(σ1, y) · g(y)(σ2, z) | {σ1, σ2} = {σ, τ} and y ∈ Y } if w = (σ, z)

The monad QΣ
X is equipped the left, right, and double strengths given below:

lstrX,Y (x, φ)(w) =


φ(X) if w = X

φ(σ, y′) if w = (σ, x, y′)

⊥ otherwise

rstrX,Y (ψ, y)(w) =


ψ(X) if w = X

ψ(σ, x′) if w = (σ, x′, y)

⊥ otherwise

dstrX,Y (ψ, φ)(w) =

{
ψ(X) ∨ φ(X) if w = X∨
{ψ(σ1, x) · φ(σ2, y) | {σ1, σ2} = {σ, τ}} if w = (σ, x, y)

The tensor of the resulting monoidal structure on Kl(QΣ) takes every pair of sets X and Y
to their cartesian product X×Y and every pair of morphisms f1 : X1 → Y1 and f2 : X2 → Y2

to the arrow given by the function:

(f1×f2)(x1, x2)(w) =

{
f1(x1)(X) ∨ f2(x2)(X) if w=X∨
{f1(x1)(σ1, y1)f2(x2)(σ2, y2) | {σ1, σ2}={σ, τ}} if w=(σ, y1, y2)
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7.1.2. Behavioural equivalences. Let α be a timed quantalic system with carrier X and

inputs from the alphabet Στ . We write x
t−→ ψ for a timed step in α i.e.:

x
t−→ ψ

4⇐⇒ ψ = αt(x).

We write x
t

=⇒ ψ for a saturated timed step in α i.e.:

x
t

=⇒ ψ
4⇐⇒ ψ = λ(σ, x′).

∨{
φ(σ, x′)

∣∣∣x′ ∈ n < ω, X, and x
t

=⇒n φ
}

where the (functional) relation
t

=⇒n is given by recursion on the number n of underlying
steps as follows:

x
t

=⇒0 ψ
4⇐⇒ t = 0 and ψ(σ, x′) =

{
1 if σ = τ and x = x′

⊥ otherwise

x
t

=⇒n+1 ψ
4⇐⇒ ψ = λ(σ, x′).

∨{
φ1(σ1, x

′′) · φ2(σ2, x
′)

∣∣∣∣∣ x′′ ∈ X, {σ1, σ2} = {σ, τ},
x

t′−→ φ1, and x′′
t−t′

===⇒n φ2

}
For an equivalence relation R on the carrier X of α, we write ≡R for its lifting to QΣτ×X :

ψ ≡R φ
4⇐⇒ ∀C ∈ X/R

∨
x∈C

ψ(x) =
∨
x∈C

φ(x).

Definition 7.3. For a timed quantalic system α and an equivalence relation R on its carrier:

• R is a (strong) timed bisimulation for α if x R x′ and x
t−→ ψ implies that there are x′ and

ψ′ such that x′
t−→ ψ′ and ψ ≡R ψ′;

• R is a (strong) time-abstract bisimulation for α if x R x′ and x
t−→ ψ implies that there

are x′ and t′ such that x′
t′−→ ψ′ and ψ ≡R ψ′;

• R is a weak timed bisimulation for α if x R x′ and x
t

=⇒ ψ implies that there are x′ and ψ′

such that x′
t

=⇒ ψ′ and ψ ≡R ψ′;
• R is a weak time-abstract bisimulation for α if x R x′ and x

t
=⇒ ψ implies that there are x′

and t′ such that x′
t′

=⇒ ψ′ and ψ ≡R ψ′;

Timed quantalic systems are modelled in the lax functors framework by putting K to
be Kl(QΣ). Notions of behavioural equivalence for TQSs defined above are all instances of
q-bisimulation where behavioural morphisms are sourced from Set.

Proposition 7.4. For a timed quantalic system α with functor model α and an equivalence
relation R on the carrier of α:

(1) R is a (strong) timed bisimulation for α iff it is a idT∗-bisimulation for α;
(2) R is a (strong) time-abstract bisimulation for α iff it is a !∗T-bisimulation for α;
(3) R is a weak timed bisimulation for α iff it is a εT-bisimulation for α;
(4) R is a weak time-abstract bisimulation for α iff it is a !T∗-bisimulation for α;
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7.1.3. Language equivalences. Languages accepted by a timed quantalic systems are defined
as in the non-deterministic case except that acceptance is no longer a boolean property
but a weighted one i.e. functions from the set of all timed (resp. untimed) words to the set
carrying the given quantale Q. Let α be a timed quantalic system with accepting moves and
let X be its state space. Formally, the timed/untimed languages strongly/weakly accepted
by a state x0 of α are the functions:

tlα(x0)(t0 σ1 t1 σ1 . . . tn) ,
∨{(

n∏
i=1

ψi(σi, xi)

)
· ψn(X)

∣∣∣∣∣ x1, . . . , xn ∈ X and

xi
ti−→ ψi for i ≤ n

}
utlα(x0)(σ1 . . . σn) ,

∨{
tlα(x0)(t0 σ1 t1 . . . tn)

∣∣ t0, . . . , tn ∈ T
}

wtlα(x0)(t0 σ1 t1 σ1 . . . tn) ,
∨{(

n∏
i=1

ψi(σi, xi)

)
· ψn(X)

∣∣∣∣∣ x1, . . . , xn ∈ X and

xi
ti=⇒ ψi for i ≤ n

}
wutlα(x0)(σ1 . . . σn) ,

∨{
wtlα(x0)(t0 σ1 t1 . . . tn)

∣∣ t0, . . . , tn ∈ T
}

.

Definition 7.5. For a timed quantalic system α and an equivalence relation R on its carrier:

• R is a timed language equivalence for α if x R y implies that tlα(x) = tlα(y);
• R is a time-abstract language equivalence for α if x R y implies that utlα(x) = utlα(y);
• R is a weak timed language equivalence for α if x R y implies that wtlα(x) = wtlα(y);
• R is a weak time-abstract language equivalence for α if x R y implies that wutlα(x) =

wutlα(y).

Quantalic systems with accepting moves are modelled in the lax functors framework by
putting K to be Kl(QΣ

X). Notions of language equivalence for TQSs defined above are all

instances of q-bisimulation where behavioural morphisms are sourced from Kl(Q(−)).

Proposition 7.6. For a timed quantalic system α with functor model α and an equivalence
relation R on the carrier of α:

(1) R is a timed language equivalence for α iff it is a idT∗-language equivalence for α;
(2) R is a time-abstract language equivalence for α iff it is a !∗T-language equivalence for α;
(3) R is a weak timed language equivalence for α iff it is a εT-language equivalence for α;
(4) R is a weak time-abstract language equivalence for α iff it is a !T∗-language equivalence

for α;

It follows from Propositions 7.4 and 7.6 and Corollaries 4.12 and 4.14 that notions
of bisimulation and language equivalence for TQSs given in Definitions 7.3 and 7.5 are
organised in the spectrum shown in Figure 1.

7.2. Segala systems. Segala systems are systems whose computations express a combina-
tion of non-deterministic and probabilistic aspects. These systems are Segala who pioneered
their study [41].
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7.2.1. Model. Setting aside for a moment inputs, acceptance, and other aspects typical of
automata and focusing on the branching type of Segala systems, the computations expressed
by these systems can be ascribed to the functor PD where D is the probability distribution
monad [45]. Despite the fact that both functors carry monad structures, their composite does
not fail to be a proper monad [17, 48]. In order to compose single steps of these machines
into sequences and computations, Segala introduced the notion of combined step where non-
determinism is restricted to those subsets that are closed under convex combinations—hence
the term convex semantics (of Segala systems). This semantics is captured by the convex
combination monad4 [7, 12, 17, 33, 48].

Convex set monad. By [0,∞) we denote the semiring ([0,∞),+, 0, ·, 1) of non-negative real
numbers with ordinary addition and multiplication. By a [0,∞)-semimodule we mean the
commutative monoid with actions [0,∞)× (−)→ (−) satisfying axioms listed in e.g. [11].
For a set X and define MX as the set of finitely supported weight functions:

MX , {φ : X → [0,∞) | supp(φ) is finite}
where supp(φ) is the support of φ : X → [0,∞) i.e. the set {x | φ(x) 6= 0} of elements
assigned a non zero value by φ. We will often denote elements of MX using the formal
sum notation: for φ ∈MX we write

∑
x φ(x) · x or, given supp(φ) = {x1, . . . , xn}, simply∑

i=1,...,n φ(xi) · xi. Any function f : X → Y induces the action Mf : MX →MY defined
as follows:

M(f)(φ) =
∑

φ(x) · f(x) = λy.
∑

x∈f−1(y)

φ(x)

It is immediate to check that this data defines the (finite generalised) multiset functor. The
set MX carries a monoid structure via pointwise operation of addition, and [0,∞)-action
via

(a · φ)(x) , a · φ(x),

which turn MX into a free semimodule over X (see e.g. [7, 11, 17] for details). For a
non-empty subset U ⊆MX we define its convex closure as the set:

U =

{
a1 · φ1 + . . .+ an · φn

∣∣∣∣∣ φi ∈ U, ai ∈ [0,∞) such that

n∑
i=1

ai = 1

}
.

Call a subset U ⊆MX convex provided U = U and put

CMX = {U ⊆MX | U is convex and non-empty}.
Addition and [0,∞)-actions are extended to convex sets in a pointwise manner: for U, V ⊆
MX both convex and a ∈ [0,∞) we write U + V for the set {φ + ψ | φ ∈ U,ψ ∈ V } and
a · U for the set {a · φ | φ ∈ U}.

4 The convex combinations monad was first introduced in its full generality by Jacobs in [17] to study trace
semantics for combined possibilistic and probabilistic systems. Independently, Brengos [7] and Goncharov
and Pattinson [12] tweaked Jacobs’ construction slightly, so that the resulting monads are more suitable to
model Segala systems and their weak bisimulations. Jacobs’ monad, Brengos’ monad and Goncharov and
Pattinson’s monad identify Kleisli categories that are DCpo-enriched and whose hom-sets admit binary
joins. For the purposes of this paper we take the convex combinations monad CM : Set→ Set to be that
considered in [7, §8].
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Every function f : X → Y induces an action CM(f) : CMX → CMY given on each
convex subset U of semimodules on X as follows:

CM(f)(U) = {M(f)(φ) | φ ∈ U}.
The assignment CM : Set→ Set is a functor which carries a monadic structure [7] whose
multiplication and unit have as component at X the functions:

µX(U) ,
⋃
φ∈U

∑
V ∈CMX

{φ(V ) · ψ | ψ ∈ V } and ηX(x) , {1 · x}.

The convex combination monad is equipped with strength, costrength and double strength
given on each component as:

lstrX,Y (x, U) =
{∑

φ(y) · (x, y)
∣∣∣φ ∈ U}

rstrX,Y (V, y) =
{∑

ψ(x) · (x, y)
∣∣∣ψ ∈ V }

dstrX,Y (V,U) =
{∑

(ψ(x) · φ(y)) · (x, y)
∣∣∣ψ ∈ V, φ ∈ U} .

Composition in Kl(CM) is given, for each f and g with compatible domains and codomains
as:

(g ◦ f)(x) =
⋃

φ∈f(x)

∑
y∈supp(φ)

{φ(y) · ψ | ψ ∈ g(y)}

where the underlying functions in Set have type f : X → CM(Y ), g : Y → CM(Z), and
g ◦ f Kl(CM). The tensor of the symmetric monoidal structure (Kl(CM), × , 1) takes every
pair of morphisms f : X → Y and f ′ : X ′ → Y ′ to the arrow

(f × f ′)(x, x′) =
{{∑

(φ(y) · φ′(y′)) · (y, y′)
∣∣∣φ ∈ U, φ′ ∈ U ′} ∣∣∣U ∈ f(x), U ′ ∈ f ′(x′)

}
.

Unobservable and accepting moves. Akin to PΣ and PΣ
X, we extend CM with unobservable

moves and acceptance via the general construction introduced in [7] and introduce the
Segala systems monad CMΣ and the Segala automata monad CMΣ

X over the endofunctors
CM(Στ × Id) and CM(Στ × Id+ {X}), respectively. Since we are interested in the Kleisli
categories of these monads, we omit an explicit derivation of their structure and instead
we describe directly Kl(CMΣ) and Kl(CMΣ

X). The Kleisli category Kl(CMΣ) has sets as

objects and maps X → CM(Στ × Y ) as morphisms from X to Y . For f : X → CMΣ(Y )
and g : Y → CMΣ(Z) the composite g ◦ f ∈ Kl(CMΣ) is the map:

(g ◦ f)(x) =
⋃

φ∈f(x)

∑
y∈Y
{φ(τ, y) · ψ | ψ ∈ g(y)}+

∑
σ∈Σ, y∈Y

{
n∑
i=1

φ(σ, y) · ri · (σ, zi)

∣∣∣∣∣
∑n+m

j=1 rj · (σj , zj) ∈ g(y) such that

σj = τ ⇐⇒ j ≤ n

}
=

 ∑
z∈Z,σ∈Στ

 ∑
y∈Y, {σ1,σ2}={σ,τ}

φ(σ1, y) · ψy(σ2, z)

 · (σ, z)
∣∣∣∣∣∣
φ ∈ f(x),
{ψy}y∈supp(φ),
ψy ∈ g(y)

 .

The above Kleisli category (see [7] for a discussion) lets us consider Segala systems with
unobservable moves as endomorphisms and allows their mutual composition. Likewise,
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the Kleisli category Kl(CMΣ
X) has sets as objects and maps X → CM(Στ × Y + {X})

as morphisms from X to Y . For f : X → CMΣ
X(Y ) and g : Y → CMΣ

X(Z) the composite

g ◦ f ∈ Kl(CMΣ
X) is the map:

(g ◦ f)(x) =
⋃

φ∈f(x)

{φ(X) ·X}+
∑
y∈Y
{φ(τ, y) · ψ | ψ ∈ g(y)}+

∑
y∈Y, σ∈Σ

{
n∑
i=1

φ(σ, y) · ri · (σ, zi)

∣∣∣∣∣
∑n+m

j=1 rj · (σj , zj) ∈ g(y) such that

σi = τ ⇐⇒ i ≤ n

}
=

 ∑
z∈Z, σ∈Στ

 ∑
y∈Y, {σ1,σ2}={σ,τ}

φ(σ1, y) · ψy(σ2, z)

 · (σ, z) +

φ(X) +
∑
y∈Y

φ(τ, y) · ψy(X)

 ·X
∣∣∣∣∣∣ φ ∈ f(x),
{ψy ∈ g(y)}y∈supp(φ)

 .

Akin to how endomorphisms in Kl(PΣ
X) model non-deterministic automata, endomorphisms

in Kl(CMΣ
X) are a model for Segala automata since CMΣ

X extends CMΣ with acceptance
mimicking the situation of PΣ

X and PΣ.

7.2.2. Behavioural equivalences. Let α be a timed Segala system with carrier X and inputs

from the alphabet Στ . We write x
t−→ ψ for a timed step in α i.e.:

x
t−→ ψ

4⇐⇒ ψ ∈ αt(x).

We write x
t

=⇒ ψ for a saturated timed step in α i.e.:

x
t

=⇒ ψ
4⇐⇒ ∃nx t,n

==⇒ ψ

where the relation
t,n

==⇒ is given by recursion on the number n of underlying steps as follows:

x
t

=⇒0 ψ
4⇐⇒ t = 0 and ψ = 1 · (τ, x),

x
t

=⇒n+1 ψ
4⇐⇒ ∃x t′−→

∑m
i=0 ri · (σi, x′i), ∀ i ∈ {1, . . . ,m}

∃x′i
t−t′

===⇒n
∑mi

j=0 r
′
i,j · (σ′i,j , x′′i,j), ∀j ∈ {1, . . . ,mi} ∃σ′′i,j ∈ Στ

s.t. {σ′′i,j , τ} = {σi, σ′i,j} and ψ =
∑m

i=0

∑mi
j=0

(
ri · r′i,j

)
· (σ′′i,j , x′′i,j).

For an equivalence relation R on the carrier X of α, we write ≡R for its D(Στ ×Id)-extension
i.e. the equivalence relation on D(Στ ×X) defined as follows:

ψ ≡R φ
4⇐⇒ ∀C ∈ X/R, ∀σ ∈ Στ

∑
x∈C

ψ(σ, x) =
∑
x∈C

φ(σ, x).

Definition 7.7. For a timed Segala system α and an equivalence relation R on its carrier:

• R is a (strong) timed bisimulation for α if x R x′ and x
t−→ ψ implies that there are x′ and

ψ′ such that x′
t−→ ψ′ and ψ ≡R ψ′;
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• R is a (strong) time-abstract bisimulation for α if x R x′ and x
t−→ ψ implies that there

are x′ and t′ such that x′
t′−→ ψ′ and ψ ≡R ψ′;

• R is a weak timed bisimulation for α if x R x′ and x
t

=⇒ ψ implies that there are x′ and ψ′

such that x′
t

=⇒ ψ′ and ψ ≡R ψ′;
• R is a weak time-abstract bisimulation for α if x R x′ and x

t
=⇒ ψ implies that there are x′

and t′ such that x′
t′

=⇒ ψ′ and ψ ≡R ψ′;

Timed Segala systems are modelled in the lax functors framework by putting K to be
Kl(CMΣ). Notions of behavioural equivalence for TSSs defined above are all instances of
q-bisimulation where behavioural morphisms are sourced from Set.

Proposition 7.8. For a timed Segala system α with functor model α and an equivalence
relation R on the carrier of α:

(1) R is a (strong) timed bisimulation for α iff it is a idT∗-bisimulation for α;
(2) R is a (strong) time-abstract bisimulation for α iff it is a !∗T-bisimulation for α;
(3) R is a weak timed bisimulation for α iff it is a εT-bisimulation for α;
(4) R is a weak time-abstract bisimulation for α iff it is a !T∗-bisimulation for α;

7.2.3. Language equivalences. A (timed) language accepted by a (timed) Segala system is
a convex set of distributions over (timed) words. Let α be a timed Segala system with
accepting moves and let X be its state space. Formally, the timed/untimed languages
strongly/weakly accepted by a state x of α are the convex sets defined below.∑m

i=1 ri · wi ∈ tlα(x)
4⇐⇒ ∀i ∃a0, . . . , ap, u0, . . . , up s.t.

∑
aj = 1,

∑
ajuj = ri, and

if wi = t then ∀j ≤ p ∃φ ∈ CMΣ(X) s.t. x
t−→ uj ·X+ φ

if wi = tσw′ then ∀j ≤ p ∃φ, y0, . . . , yq, ψ0, . . . , ψq s.t.

∀k ≤ q ψk ∈ tlα(yk), ∀z /∈ {y0, . . . , yq} φ(σ, z) = 0,

uj =
∑q

k=0 φ(σ, yk)ψk(w
′), and x

t−→ φ∑m
i=1 ri · wi ∈ utlα(x)

4⇐⇒ ∀i ∃t0σ1t1 . . . σntn ∈ tlα(x) s.t. wi = σ1 . . . σn∑m
i=1 ri · wi ∈ wtlα(x)

4⇐⇒ ∀i ∃a0, . . . , ap, u0, . . . , up s.t.
∑
aj = 1,

∑
ajuj = ri, and

if wi = t then ∀j ≤ p ∃φ ∈ CMΣ(X) s.t. x
t

=⇒ uj ·X+ φ

if wi = tσw′ then ∀j ≤ p ∃φ, y0, . . . , yq, ψ0, . . . , ψq s.t.

∀k ≤ q ψk ∈ tlα(yk), ∀z /∈ {y0, . . . , yq} φ(σ, z) = 0,

uj =
∑q

k=0 φ(σ, yk)ψk(w
′), and x

t
=⇒ φ∑m

i=1 ri · wi ∈ utlα(x)
4⇐⇒ ∀i ∃t0σ1t1 . . . σntn ∈ wtlα(x) s.t. wi = σ1 . . . σn

Definition 7.9. For a timed Segala system α and an equivalence relation R on its carrier:

• R is a timed language equivalence for α if x R y implies that tlα(x) = tlα(y);
• R is a time-abstract language equivalence for α if x R y implies that utlα(x) = utlα(y);
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• R is a weak timed language equivalence for α if x R y implies that wtlα(x) = wtlα(y);
• R is a weak time-abstract language equivalence for α if x R y implies that wutlα(x) =

wutlα(y).

Timed Segala systems with accepting moves are modelled in the lax functors framework
by putting K to be Kl(CMΣ

X). Notions of language equivalence for TSSs defined above are
all instances of q-bisimulation where behavioural morphisms are sourced from Kl(CM).

Proposition 7.10. For a timed Segala system α with functor model α and an equivalence
relation R on the carrier of α:

(1) R is a timed language equivalence for α iff it is a idT∗-language equivalence for α;
(2) R is a time-abstract language equivalence for α iff it is a !∗T-language equivalence for α;
(3) R is a weak timed language equivalence for α iff it is a εT-language equivalence for α;
(4) R is a weak time-abstract language equivalence for α iff it is a !T∗-language equivalence

for α;

It follows from Propositions 7.8 and 7.10 and Corollaries 4.12 and 4.14 that notions of
bisimulation and language equivalence for TSSs given in Definitions 7.7 and 7.9 are organised
in the spectrum shown in Figure 1.

7.3. Fully probabilistic processes and beyond. The aim of this subsection is to show
how probabilistic systems (or more generally, weighted systems [10]) fit into the framework
presented in this paper. Weighted systems, unlike other systems presented in this section
tend not to satisfy one of the main assumptions of Theorem 4.2, namely, left distributivity.
There are two (essentially equivalent) workarounds to this problem known in the literature.
One is to consider the continuous continuation monad from [12] which is a natural extension
of the weighted systems type monad and whose Kleisli category satisfies left distributivity
(called algebraicity in [12]). The idea behind the second solution, which is given in [10], is
similar and formulated on the categorical level: given a suitably order enriched category

K which does not satisfy left distributivity we can embed it into K̂, a category with left
distributivity (which admits saturation). Although, the latter proposal seems to be more
general than the former, the first solution preserves the coalgebraic nature of systems, i.e.
systems of a type X → TX are extended to systems of a type X → T ′X, where T ′ is the
new, richer monad. The second embedding, if applied to K = Kl(T ) does not necessarily

yield a category K̂ which is a Kleisli category for some monad T ′. However, as shown

in [10], if we adopt the general embedding K ↪→ K̂ approach for saturation admittance,
weak behavioural equivalence for systems in K (as defined in loc. cit.) remains the same
regardless of the choice of the embedding. In other words, it is enough to embed K into
a left distributive category (with saturation) and not into any particular choice of the left
distributive category5. See [10] for a discussion.

We will recall some of the ingredients of the construction of a left distributive category

K̂ from [10] and elaborate more on how can this be used in order to define q-saturations
and q-behavioural morphisms. We start off with a general construction and then, in the
next paragraph, we instantiate it on probabilistic processes.

5This also means that if K is left distributive and satisfies all other required properties then we can embed
it into itself. Hence, using the guidelines of [10], it can be easily shown that the setting we present below in
Section 7.3.1 generalizes the one from Section 4.
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7.3.1. The embedding. The original construction of K̂ was presented in the context of
ω-Cpo∨-enriched categories. By ω-Cpo∨ we denote the category of posets which admit
binary joins and countable joins

∨
n<ω xn of ω-chains x1 ≤ x2 ≤ . . . with morphisms

preserving joins of ω-chains. Hence, a category is ω-Cpo∨-enriched if each hom-set is a poset
which admits binary joins and joins of ω-chains, and the composition preserves the latter.

Let K be a small6 ω-Cpo∨-enriched category. Following [10] we define K̂ to be the opposite

of the category [K, ω-Cpo∨]ω-Cpo∨ of lax functors and oplax natural transformations between

them. Taking any object X to its representable functor X̂ , K(X,−) and any morphism

f : X → Y to f̂ , K(f,−) defines the embedding (̂−) : K → K̂ into an ω-Cpo∨-enriched
category which is left distributive [10]. If, in the above, we replace ω-Cpo∨ with DCpo∨, i.e.
the category of complete orders which admit binary joins with directed suprema preserved
by the morphisms, then we also get a true statement (conf. loc. cit.). In this case, as noted

in the footnote under Theorem 4.2, the category K̂ satisfies the assumptions of this theorem.

Here, we need to point out an important property of the embedding (̂−) : K→ K̂ above.

Namely, for fixed objects X,Y ∈ K the hom-poset restriction (̂−) : K(X,Y )→ K̂(X̂, Ŷ ) of

(̂−) : K→ K̂ admits a left order adjoint Θ: K̂(X̂, Ŷ )→ K(X,Y ) which is given by [10]

Θ(φ : X̂ → Ŷ ∈ K̂) = Θ(φ : K(Y,−)→ K(X,−)) , φY (idY ).

We are now ready to define q-bisimulations for π ∈ [M,K]J .

7.3.2. q-saturations and q-bisimulations. Assume K is DCpo∨-enriched and J is a subcat-

egory of K. Take q : M → N an onto monoid homomorphism, and consider Ĵ : J→ K→ K̂.

By Theorem 4.2 and the above remarks, K̂ admits q-saturation w.r.t. Ĵ :

[M, K̂]Ĵ [N, K̂]Ĵ

ΣĴ
q

[q, K̂]Ĵ

a

Assume π ∈ [M,K]J . A q-behavioural morphism on π is any morphism f in J with domain

ΣĴ
q (π̂)(∗) such that there is π′n ∈ [N,K]J making

Θ
(
Ĵ(f) ◦ ΣĴ

q (π̂)n

)
= Θ(π̂′n ◦ Ĵ(f)) = π′n ◦ J(f). (7.1)

A q-bisimulation on π is a kernel pair of a q-behavioural morphism whose domain is π.
This generalization goes along the lines of the generalization of weak behavioural

equivalence via saturation proposed by us in [10]. The remaining part of this subsection will
focus on instantiating it on Markov chains.

6Smallness of K is required to guarantee K̂ is locally small [10]. However, our aim is to apply this approach
for K = Kl(T ) where T is a monad for weighted systems. Unfortunately, it is not a small category. The
simplest solution in this case is to take K as a suitable full subcategory of Kl(T ) that meets our requirements.
For example, if we are interested in T -coalgebras whose base category is Set and which have a carrier of
cardinality below κ then we can take K to have exactly one set of cardinality λ for any λ < κ. In particular,
if κ = ω then K is the dual category to the Lawvere theory for T (see e.g. [16]). See [10] for a thorough
discussion.
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7.3.3. Example: Markov chains. At first, we present basic categorical ingredients needed
to model Markov chains in the lax functorial setting. Consider the Set endofunctor F[0,∞]

given on any set X and on any function f : X → Y as follows:

F[0,∞]X , {φ : X → [0,∞] | |{x | φ(x) 6= 0}| ≤ ω} F[0,∞]f(φ)(y) ,
∑

x∈f−1(y)}

φ(x).

This functor extends to a monad whose multiplication µ and unit η are given on their
components by:

µX(φ)(x) ,
∑

ψ∈F[0,∞]X

φ(ψ) · ψ(x) ηX(x)(x′) ,

{
1 if x = x′

0 otherwise.

For any X,Y ∈ Set and f, g ∈ Kl(F[0,∞])(X,Y ) define:

f ≤ g 4⇐⇒ f(x)(y) ≤ g(x)(y) for any x ∈ X, y ∈ Y.
As pointed out in [10] the category Kl(F[0,∞]) is ω-Cpo∨-enriched. It is not left distributive

but it is Set-right distributive w.r.t. countable suprema [10]. The category K̂ we embed (a full
subcategory of) Kl(F[0,∞]) into by following the guidelines of [10] admits countable suprema,
is left distributive and Set-right distributive w.r.t. them. However, it does not admit arbitrary
non-empty suprema. Yet, if we carefully analyse the proof of Theorem 4.2 then it turns out

that the above assumptions suffice for !N : N→ 1-saturation Σ!N : [N, K̂]Set → [1, K̂]Set to
exist7.

Consider any ordinary functor π : N→ Kl(F[0,∞]) in [N,Kl(F[0,∞])]
Set and a Set-map

f whose domain is π(∗). We have the following statement (see also [6]).

Lemma 7.11.
Θ(f̂ ] ◦ Σ!N(π̂)) = µx.(f ] ∨ x ◦ π1), (7.2)

with the least fixpoint calculated in Kl(F[0,∞]) and (−)] : Set → Kl(F[0,∞]) the inclusion
functor.

Proof. Put Π =
∨
n<ω π̂n. By Theorem 4.2 we have:

(f̂ ] ◦ Σ!N(π̂)) = Θ(f̂ ] ◦
∨
l

(Π)l) = Θ(
∨
l

f̂ ] ◦ (Π)l)
†
=
∨
l

Θ(f̂ ] ◦ (Π)l)
�
=

∨
l

Gl(f ])
�
= µx.(f ] ∨ x ◦ π1).

The equation (†) follows from the fact that Θ preserves arbitrary suprema (as it is a left
adjoint). If we put G(x) = f ] ∨

∨
n x ◦πn then (�) holds, which follows by induction. Indeed,

for l = 0 we vacuously have: G0(f ]) = Θ(f̂ ]◦(Π)0). Assume the identity Gl(f ]) = Θ(f̂ ]◦(Π)l)
holds for l and consider:

Θ(f̂ ] ◦ (Π)l+1) = Θ(f̂ ] ◦ (Π)l ◦Π) = Θ(f̂ ] ◦ (Π)l ◦
∨
n<ω

π̂n) =
∨
n<ω

Θ(f̂ ] ◦ (Π)l ◦ π̂n) =∨
n<ω

Θ(f̂ ] ◦ (Π)l) ◦ πn =
∨
n

Gl(f ]) ◦ πn = f ] ∨
∨
n

Gl(f ]) ◦ πn = Gl+1(f ]).

7Indeed, in this case only countable suprema are considered in the definition of Σ!N .
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Finally, in order to see (�) holds consider H(x) = f ] ∨ x ◦ π1. Obviously H(x) ≤ G(x).
However, since π is an ordinary functor, we also have:

G(x) = f ] ∨
∨
n

x ◦ (π1)n.

Hence, if we take Gm(x) = f ] ∨
∨m
n=1 x ◦ (π1)n then by induction Gnm(f ]) ≤ Hm·n(f ]).

Therefore, ∨
n,m

Gnm(f ]) ≤
∨
n

Hn(f ]) ≤
∨
n

Gn(f ]).

Since
∨
nH

n(f ]) = µx.(f ] ∨ x ◦ π1), as our category is ω-Cpo∨-enriched, this proves the
assertion.

Hence, the identity (7.1) becomes: µx.(f ] ∨ x ◦ π1) = π′1 ◦ f ], where the least fix point and
the composition are calculated in Kl(F[0,∞]).

We are ready to elaborate more on a Markov chain example. We will now recall some
notions from Markov chain theory. The reader is referred to e.g. [35] for basic definitions
and properties.

Let (Xn)n≤ω be an Markov chain (or MC in short). We call the chain (Xn) homogeneous
whenever P(Xn = j | Xm = i) = P(Xn−m = j | X0 = i). Any homogeneous MC
(Xn) on a finite state space S gives rise to its transition matrix family, i.e. a family
{P (n) : S2 → [0, 1]}n≥0 whose ij-th entry pij(n) = P (n)(i, j) describes the conditional
transition probabilities:

pij(n) = P(Xn = j | X0 = i).

The transition matrix family satisfies P (0) = I and P (m + n) = P (m) · P (n), where I is
the identity matrix and · is the matrix multiplication. Hence, P (n) = P (1)n. The family
{P (n) = P (1)n}n<ω yields an assignment π : N→ Kl(F[0,∞]) given for any n ∈ N by:

π(∗) = S, πn : S → F[0,∞]S;πn(i)(j) = pij(n).

The assignment π = (πn) is an ordinary functor N→ Kl(F[0,∞]) and, hence, is a member of

[N,Kl(F[0,∞])]
Set and will be referred to as the transition functor of the chain (Xn).

Consider an equivalence relation R on the state space S. For an abstract class C of R
let us denote:

pni,C = P(Xm ∈ C for some m ≥ n | X0 = i) and pi,C = p0
i,C .

Lemma 7.12. The family {pi,C}i∈S satisfies:

pi,C =

{
1 if i ∈ C,

supn≥0

∑
j∈S pj,C · pi,j(n) otherwise.

(7.3)

Proof. It is clear that if i ∈ C then pi,C = 1. For i /∈ C we have:

pi,C = sup
n≥0

pni,C = sup
n≥0

∑
j∈S

P(Xm ∈ C,m ≥ n | Xn = j,X0 = i) · P(Xn = j | X0 = i)
†
=

sup
n≥0

∑
j∈S

P(Xm ∈ C,m ≥ n | Xn = j) · P(Xn = j | X0 = i)
††
=
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sup
n≥0

∑
j∈S

P(Xm ∈ C,m ≥ 0 | X0 = j) · P(Xn = j | X0 = i) = sup
n≥0

∑
j∈S

pj,C · pi,j(n).

The identity (†) follows by (Xn) being markovian and (††) by homogeneity of the given
process.

Theorem 7.13. The relation R ⊆ S×S is a ! : N→ 1-bisimluation on the transition functor
π of a homogeneous MC (Xn)t≥0 provided that for any (i, j) ∈ R and any abstract class C
of R we have:

P(Xn ∈ C for some n ≥ 0 | X0 = i) = P(Xn ∈ C for some n ≥ 0 | X0 = j). (7.4)

Proof. Let f : S → S/R; i 7→ [i]/R. By Lemma 7.12 and (7.2) we have: µx.(f ]∨x◦π1)(i)(C) =
pi,C . Satisfaction of the identity (7.4) is equivalent to existence of a map β : S/R → F[0,∞]S/R
which makes µx.(f ] ∨ x ◦ π1) = β ◦ f ] hold. This proves the assertion.

8. Conclusion

In this paper we introduced a general definition of behavioural models with explicit time flow
and their behavioural theory. The framework is based on (lax) functors over order-enriched
categories, typically Kleisli categories. This approach allows us to encode in the index
category how computations are observed (e.g. if time durations are associated to single
steps or entire computations) while abstracting from other computational aspects which
are modelled in the base category. A key advantage of this separation is that we can fit
into our setting many models of interest using Kleisli categories for standard monads like:
the powerset monad, the quantalic monad, the convex set monad, the generalised multiset
monad, and many more (see [7, 10] for more examples of compatible monads).

Although the categories induced by these monads do not necessarily satisfy our main
assumptions, namely left distributivity, our framework is still applicable: we have shown that
one only needs an embedding into category a category that satisfies our main assumptions.
As an example we applied this approach to weighted transition systems thus covering fully
probabilistic systems and discrete Markov chains, among others. This technique builds
on our previous work on saturation and weak bisimulation: in [10] we provided a general
method for constructing such embeddings and identified the class embeddings compatible
with saturation. Notably, these results apply also to categories different from Set; in loc. cit.
we have also considered presheaves, compact Hausdorff spaces and measurable spaces.

Our results are built on lax functors and the theory of saturation which we introduced and
developed in a series of works [6, 7, 10] that provided a general coalgebraic characterisation
of weak behavioural equivalences covering many types of systems of interest. In this paper
(and its conference version, [9]) we extended the theory of saturation and saturation-based
behavioural equivalence developing the notion of general saturation for lax functors on a
monoid category and q-behavioural equivalence.

Our framework provides a rich behavioural theory that encompasses wide range of
behavioural equivalences found in the literature: we have shown that timed bisimulation,
timed language equivalence, as well as their weak and time-abstract counterparts, are
all instances of q-behavioural equivalence. Moreover, we proved that all these notions of
equivalences are naturally organised by their discriminating power to form a spectrum
(Figure 1) and that this result does not depend on the type of the systems under scrutiny.
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This is not the first work to consider timed behavioural models and their behavioural
theory from a categorical perspective. In [13], Gribovskaya and Virbitskaite present a
categorical view of timed weak bisimulation. Their approach is based on open-maps
bisimulation and is limited to non-deterministic timed transition systems. In [20], Kick
presents a coalgebraic framework for behavioural models that combine timed transitions
with discrete ones: time-dependent computations are modelled by a suitable comonad over
Set and then combined with other behavioural aspects by means of comonad products. The
approach is inherently limited to systems that can be modelled in Set, that distinguish
between timed and discrete actions (thus excluding timed automata and timed CSP), and
to strong timed bisimulation. The last observation is the main distinguishing point between
loc. cit. and this work: because of technical difficulties associated with comonad products,
this approach appears less flexible then ours when behavioural equivalences beside strong
timed bisimulation are considered.

The categorical characterization of timed behavioural models paves the way for further
interesting lines of research. One line is to extend our framework to support other index
categories besides monoids. This would allow us to study more structured state spaces
and computations like e.g. those found in alternating games. Another line is to extend
the framework with results from the rich theory of coalgebras such as ω-behaviours [8],
minimization [3], determinisation [43], and up-to techniques [4].
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Appendix A. Omitted proofs

Proof of Proposition 6.1. Let α be a TTS. Assume R ⊆ X2 is a timed bisimulation for α
and let f : X → Y ∼= X/R be the canonical projection in Set. Let β : T∗ → K be the lax
functor defined by the family {βt : Y → P(Στ × Y )}t∈T where:

βt(y) , {(σ, y′) | ∀x ∈ f−1(y) ∃x′ ∈ f−1(y′) s.t. x
(σ,t)−−−→ x′}.

From the definition of βt it is immediate to check that for any t ∈ T:

(σ, f(x′)) ∈ (β
t
◦ f)(x) ⇐⇒ (σ, x′) ∈ (αt)(x)

and hence that f ◦ ΣidT∗ (α) = β ◦ f . Therefore, the quotient map f induced by R extends
to a idT∗-behavioural morphism for α.

For the converse implication take R to be a idT∗-bisimulation for α. This means that
there is a lax functor β ∈ [T∗,K] whose carrier Y is given by the set of abstract classes of R
and such that the quotient map f : X → Y induced by R satisfies:

f ◦ ΣidT∗ (α) = β ◦ f .

In particular, for any (σ, t) ∈ Στ × T we have that (σ, f(x′)) ∈ (β
t
◦ f)(x) ⇐⇒ (σ, x′) ∈

(αt)(x) from which it immediately follows that R is a timed bisimulation for α.

Proof of Proposition 6.2. Let α be a TTS. Assume R ⊆ X2 is a weak timed bisimulation
for α and let f : X → Y ∼= X/R be the canonical projection in Set. Let β : T→ K be the
lax functor defined on each t ∈ T and y ∈ Y as:

βt(y) ,
⋃

t1...tn∈ε−1
T (t)

{
(σi, y

′)

∣∣∣∣∣ ∀x ∈ f−1(y) ∃x′ ∈ f−1(y′) such that

x
(σ1,t1)−−−−→ · · · (σi,ti)−−−−→ · · · (σn,tn)−−−−→ x′ and j 6= i =⇒ σj = τ

}
.

From the definition of βt it is immediate to check that for any t ∈ T and σ ∈ Στ :

(σ, f(x′)) ∈ (β
t
◦ f)(x) ⇐⇒ (σ, x′) ∈ ΣεT(α)t(x)

and hence that the quotient map f for R extends to a εT-behavioural morphism for α.
For the converse implication take R to be a εT-bisimulation for α. This means that

there is a lax functor β ∈ [T,K] whose carrier Y is given by the set of abstract classes of R
and such that the quotient map f : X → Y induced by R satisfies:

f ◦ ΣεT(α) = β ◦ f .
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In particular, for any t ∈ T and σ ∈ Στ we have that (σ, f(x′)) ∈ (β
t
◦ f)(x) iff (σ, x′) ∈∨

~t∈ε−1
T (t) α~t(x). By straightforward definition expansion we conclude that R is a weak timed

bisimulation for α.

Proof of Proposition 6.3. Assume R ⊆ X2 is a time-abstract bisimulation for α and let
f : X → Y ∼= X/R be the canonical projection in Set. Define β : Y → P(Στ × Y ) by:

β(y) = {(σ, y′) | ∀x ∈ y∃x′ ∈ y′ and ∃t s.t. (σ, t, x′) ∈ α(x)}.
Then the morphism f : X → Y in Set which maps any element to its abstract class
satisfies f ◦ Σ](α)1 = β ◦ f (here, ◦ denotes the composition in Kl(PΣ)). Note that
Σ!∗T

(α)n = (Σ!∗T
(α)1)n and put β ∈ [1∗,K] to be β

n
= βn. We have f ◦ Σ!∗T

(α)n = β
n
◦ f .

This proves that R is a !∗T-bisimulation.
For the converse implication take R to be a !∗T-bisimulation for α. This means that

there is a lax functor π′ ∈ [N,K] whose carrier Y is given by the set of abstract classes
of R for which the map f : X → Y which assigns any x to its abstract class satisfies
f ◦ Σ!∗T

(α)n = π′n ◦ f for n ∈ N. In particular the above equality holds for n = 1. By the

construction of Σ!∗T
(α)1 it instantly follows that R is a time-abstract bisimulation for α.

Proof of Proposition 6.4. Assume R ⊆ X2 is a weak time-abstract bisimulation for α and
let f : X → Y ∼= X/R be the canonical projection in Set. Let β ∈ K be the LTS given on
each y ∈ Y as:

β(y) ,
⋃

t1...tn∈T∗

{
(σi, y

′)

∣∣∣∣∣ ∀x ∈ f−1(y) ∃x′ ∈ f−1(y′) such that

x
(σ1,t1)−−−−→ · · · (σi,ti)−−−−→ · · · (σn,tn)−−−−→ x′ and j 6= i =⇒ σj = τ

}
.

From the definition of β it is immediate to check that for any σ ∈ Στ :

(σ, f(x′)) ∈ (β ◦ f)(x) ⇐⇒ (σ, x′) ∈ Σ!T∗ (α)(x)

and hence that the quotient map f for R extends to a !T∗-behavioural morphism for α.
For the converse implication take R to be a !T∗-bisimulation for α. This means that

there is a lax functor β ∈ [1,K] whose carrier Y is given by the set of abstract classes of R
and such that the quotient map f : X → Y induced by R satisfies:

f ◦ Σ!T∗ (α) = β ◦ f .

In particular, for any σ ∈ Στ we have that (σ, f(x′)) ∈ (β ◦ f)(x) ⇐⇒ (σ, x′) ∈
∨
~t∈T∗ α~t(x).

By straightforward definition expansion we conclude that R is a weak time-abstract bisimu-
lation for α.

Proof of Proposition 6.5. Here, we will only prove the last assertion as the remaining ones
are proved in an analogous manner (see also the proof of Propositions 6.2 to 6.4). Since we
will work with lax functors 1→ K = Kl(PΣ

X) we will simplify the notation and associate any

such assignment π : 1→ K with the endomorphism it is induced by π0 : π(∗)→ PΣ
X(π(∗))

which satisfies id ≤ π0 and π0 ◦ π0 ≤ π0.
For the functor α : T∗ → K the lax functor Σ!(α) : 1→ K = Kl(PΣ

X) is given in terms

of a single endomorphism Σ!(α) : X → PΣ
XX by:

x
σ−→Σ!(α) y whenever x

(σ,t)
===⇒α y and x ↓ whenever x

(τ,t)
===⇒α y and y ↓ for some t ∈ T.

A morphism f : X → PY is a weak behavioural morphism for α whenever there is a lax
functor β : 1 → K whose carrier is Y which makes: f ] ◦ Σ!(α) = β ◦ f ]. This equation
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turns f ] into a coalgebra homomorphism with the base category Kl(P). By applying the
guidelines of [7, Example 7.3] we get the desired conclusion.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany
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