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Abstract. We introduce a generalized notion of inference system to support more flexible
interpretations of recursive definitions. Besides axioms and inference rules with the usual
meaning, we allow also coaxioms, which are, intuitively, axioms which can only be applied
“at infinite depth” in a proof tree. Coaxioms allow us to interpret recursive definitions
as fixed points which are not necessarily the least, nor the greatest one, whose existence
is guaranteed by a smooth extension of classical results. This notion nicely subsumes
standard inference systems and their inductive and coinductive interpretation, thus allowing
formal reasoning in cases where the inductive and coinductive interpretation do not provide
the intended meaning, but are rather mixed together.

This is a corrected version of the paper (https://arxiv.org/abs/1808.02943v4) pub-
lished originally on 12 March 2019.

1. Introduction

Recursive definitions are everywhere in computer science. They allow very compact and
intuitive definition of several types of objects: data types, predicates and functions. Further-
more, they are also essential in programming languages, especially for declarative paradigms,
to write non-trivial programs.

Assigning a formal semantics to recursive definitions is not an easy task; usually, a
recursive definition is associated with a monotone function on a partially ordered set, or,
more generally, with a functor on a category, and the semantics is defined to be a fixed point
of such function/functor [JR97]. However, in general, a monotone function (a functor) has
several fixed points, hence the problem is how to choose the right one, that is, the fixed
point that matches the intended semantics.

The most widely known semantics for recursive definitions is the inductive one [Acz77],
which corresponds to the least fixed point/initial algebra. This interpretation works perfectly
in all cases where we can reach a base case in a finite number of steps, this is the case, for
instance, when we deal with well-founded (algebraic) objects (such as natural numbers, finite
lists, finite trees etc.).

Nevertheless, in some cases the inductive interpretation is not appropriate. This is
the case, for instance, when we deal with circular, or more generally non-well-founded
(coalgebraic) objects (graphs, infinite lists, infinite trees, etc.), where clearly we are not
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guaranteed to reach a base case. Here a possibility is to choose the dual to induction: the
coinductive semantics [Acz88, Rut00, Jac16], corresponding to the greatest fixed point/final
coalgebra.

Therefore we have two strongly opposite options to interpret recursive definitions: the
inductive (least) semantics or the coinductive (greatest) semantics. However, as we will see,
there are cases where neither of these two dual solutions is suitable, hence the need of more
flexibility to choose the desired fixed point.

On the programming language side, the most widely adopted semantics for recursive
definition is again the inductive one. However, the support for coinductive semantics have
been provided both in logic programming [SMBG06, SBMG07, KJ15] and in functional
programming [Hag87, BW88]. In both cases, the same dichotomy described above emerges,
hence, recently, some operational models to support more flexible definitions on non-well-
founded structures have been proposed: in the logic paradigm [Anc13], in the functional
paradigm [JKS13, JKS17] and in the object-oriented paradigm [AZ12, AZ13]

In this paper, we propose a framework to interpret recursive definitions as fixed points
that are not necessarily the least, nor the greatest one. More precisely, we will extend the
standard and well-known framework of inference systems, where recursive definitions are
represented as sets of rules, as we will formally define in the next section.

In order to illustrate the complexity of interpreting recursive definitions especially in
presence of non-well-founded structures, and to introduce the idea behind our proposal, let
us consider some examples on lists of integers. In the following, l will range over finite or
infinite lists and x, y, z over integers, Λ is the empty list and −::− is the list constructor.
We start with the simple predicate member(x, l) stating that the element x belongs to l,
defined as follows:

member(x, x::l)

member(x, l)

member(x, y::l)
x 6= y

The standard way to interpret an inference system is the inductive one, which consists of
the set of judgements having a finite derivation. For the above definition, the inductive
interpretation works perfectly in all cases, also for infinite lists. Intuitively, this is due to
the fact that in all cases, in order to establish that member(x, l) holds, we have to find x in
l, and, if x actually belongs to l, we find it in finitely many steps.

Let us consider another example: the predicate allPos(l) stating that l contains only
strictly positive natural numbers.

allPos(Λ)

allPos(l)

allPos(x::l)
x > 0

Here the inductive interpretation still works well on finite lists, but fails on infinite lists,
since, intuitively, to establish whether l contains only positive elements, we need to inspect
the whole list, and this cannot be done with a finite derivation for an infinite list.

Therefore, we have to switch to the coinductive interpretation, considering as semantics
the set of judgements having an arbitrary (finite or infinite) derivation. This is indeed the
correct way to get the expected semantics also on infinite lists.

We now consider a slight variation of these two examples. Let B = {T,F} be the set of
truth values, consider the judgements member(x, l, b) and allPos(l, b) with b ∈ B such that

• member(x, l, T) holds iff member(x, l) holds, and otherwise member(x, l, F) holds
• allPos(l, T) holds iff allPos(l) holds, and otherwise allPos(l, F) holds
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We can define these judgements by means of the following inference systems

member(x, Λ, F) member(x, x::l, T)

member(x, l, b)

member(x, y::l, b)
x 6= y

allPos(Λ, T) allPos(x::l, F)
x ≤ 0

allPos(l, b)

allPos(x::l, b)
x > 0

For both definitions, neither the inductive interpretation, nor the coinductive one works
well on infinite lists. For the judgement member(x, l, b), with the inductive interpretation
we cannot derive any judgement of shape member(x, l, F) where l is an infinite list and x
does not belong to l, while with the coinductive interpretation we get both member(x, l, F)
and member(x, l, T). For the judgement allPos(l, b), with the inductive interpretation we
cannot derive any judgement of shape allPos(l, T) where l is an infinite list containing only
positive elements, while with the coinductive interpretation we get both allPos(l, T) and
allPos(l, F).

We consider now a last example, defining the predicate maxElem(l, x) stating that x is
the maximum of the list l. The definition is given by the following inference system

maxElem(x::Λ, x)

maxElem(l, y)

maxElem(x::l, z)
z = max{x, y}

The inductive interpretation works well on finite lists, but does not allow to derive any
judgement on infinite lists, again, because, to compute a maximum, we need to inspect the
whole list. The coinductive interpretation still works well on finite lists, but, again, we can
derive too many judgements regarding infinite lists: for instance, if l is the infinite list of
1s, we can derive both maxElem(l, 1), which is correct, and maxElem(l, 2), that is clearly
wrong, since 2 does not belong to l.

All these examples point out that the inductive interpretation cannot properly deal with
non-well-founded structure, while the coinductive one allows the derivation of too many
judgements. Hence we need a way to “filter out” some infinite derivations, in order to
restrict the coinductive interpretation to the intended semantics. We make this possible by
introducing coaxioms.

Coaxioms are special rules that need to be provided together with standard rules in
order to control their semantics. Intuitively, they are axioms that can be only applied “at
infinite depth” in a derivation. From a model-theoretic perspective, coaxioms allow one to
choose as interpretation a fixed point that is not necessarily either the least or the greatest
one. For instance, in the last three examples, the intended semantics is always a fixed point
that lies between the least, that is undefined on infinite lists, and the greatest one, that
is undetermined on them. In addition, we will also show that inductive and coinductive
interpretations are particular cases of our extension, thus proving that it is actually a
generalization. Another important feature is that in this framework we can interpret also
inference systems where judgements that should be defined inductively and coinductively
are mixed together in the same definition.

The notion of coaxiom has been inspired by some of the operational models mentioned
above [AZ12, AZ13, Anc13] and, in our intention, this generalization of inference systems
will serve as an abstract framework for a better understanding of these operational models,
allowing formal reasoning on them.

The rest of the paper is organized as follows. In Section 2 we will recall some basic
concepts regarding inference systems and we will introduce inference systems with coaxioms,
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informally explaining their semantics with a bunch of examples. The fixed point semantics
for inference systems with coaxioms is formally defined in Section 3. There we will present
closure and kernel systems, which are well-known notions on the power-set, in the more
general setting of complete lattices, getting the definition of bounded fixed point, that will
represent the semantics induced by coaxioms for an inference system. In Section 4 we will
first formalize the notion of proof tree, which is the object representing a derivation, then
we will introduce several equivalent semantics based on proof trees, that is, proof-theoretic
semantics. Particularly interesting are the two characterizations exploiting the new concept
of approximated proof tree, that will allow us to provide the semantics in terms of sequences
of well-founded trees, without considering non-well-founded derivations. Proof techniques
for coaxioms to prove both completeness and soundness of definitions will be discussed
in Section 5. In particular, we will introduce the bounded coinduction principle, that is a
generalization of the standard coinduction principle, aimed to show the completeness of a
definition expressed in terms of an inference system with coaxioms. In Section 6, we will
illustrate weaknesses and strengths of our framework, using various, more involved, examples.
A straightforward and further extension of the framework is presented in Section 7, where we
introduce corules. Finally, in Section 8 related work is summarized and Section 9 concludes
the work.

This paper is extracted from my master thesis [Dag17], and presents in more detail
the work we have done in [ADZ17b]. Notably, here we discuss closures and kernels from a
more general point of view (see Section 3.1), in order to better frame the bounded fixed
point in lattice theory. Furthermore, thanks to a more formal treatment of proof trees, we
introduce an additional proof-theoretic characterization, using approximated proof trees
(see Theorem 4.17). We also present another example of application of coaxioms to graphs
(see Section 6.3). With respect to [Dag17], here we briefly present a straightforward further
extension of the framework, considering also corules (see Section 7). We only briefly mention
corules, because there are still few and quite involved examples where they seem to be really
needed (one can be found in [ADZ18]), hence restricting ourselves to coaxioms allows us to
provide a clearer presentation.

2. Inference systems with coaxioms

First of all, we recall some standard notions about inference systems [Acz77, San11]. In
the following, assume a set U , called universe, whose elements are named judgements. An
inference system I consists of a set of inference rules, which are pairs Pr

c , with Pr ⊆ U the
set of premises, c ∈ U the consequence (a.k.a. conclusion).

The intuitive interpretation of a rule is that if the premises in Pr hold then the
consequence c should hold as well. In particular, an axiom is (the consequence of) a rule
with empty set of premises, which necessarily holds.

A proof tree1 is a tree whose nodes are (labeled by) judgements in U , and there is a node
c with set of children Pr only if there exists a rule Pr

c ∈ I. We say that a judgement j ∈ U
has a proof tree if it is the root of some proof tree. The inductive interpretation of I is the
set of judgements having a well-founded proof tree, while the coinductive interpretation of
I is the set of judgements having an arbitrary (well-founded or not) proof tree. It can be

1See Section 4 for a more formal account of proof trees.
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a b c

b
?→N

a
?→{a} ∪ N

a
?→N

b
?→{b} ∪ N c

?→{c} a
?→∅ b

?→∅ c
?→∅

Figure 1: Concrete graph example

shown that these definitions are equivalent to standard fixed point semantics, which we will
discuss later.

2.1. A gentle introduction. We introduce now our generalization of inference systems.
An inference system with coaxioms is a pair (I, γ) where I is an inference system and γ ⊆ U
is a set of coaxioms. A coaxiom c ∈ γ will be written as

c
, very much like an axiom, and,

analogously to an axiom, it can be used as initial assumption to derive other judgements.
However, coaxioms will be used in a special way, that is, intuitively they can be used only
“at infinite depth” in a derivation. This will allow us to impose an initial assumption also
to infinite proof trees, that otherwise are not required to have a base case. We will make
precise this notion in next sections, now we will present some examples to illustrate how to
use coaxioms to govern the semantics of an inference system.

As we are used to doing for rules, we will express sets of coaxioms by means of meta-
coaxioms with side conditions.

Let us start with an introductory example concerning graphs, that are a widely used
non-well-founded data type. Consider a graph (V, adj) where V is the set of nodes and
adj : V→ ℘(V) is the adjacency function, that is, for each node v ∈ V, adj(v) is the set of

nodes adjacent to v. We want to define the judgement v
?→N stating that N is the set of

nodes reachable from v.
We define this judgement with the following (meta-)rule and (meta-)coaxiom:

v1
?→N1 . . . vk

?→Nk
v
?→{v} ∪ N1 ∪ . . . ∪Nk

adj(v) = {v1, . . . , vk}
v
?→∅

v ∈ V

To be more concrete, we consider the graph drawn in Figure 1, whose corresponding rules
are reported in the same figure.

Let us ignore for a moment coaxioms and reason about the standard interpretations.
It is clear that, if we interpret the system inductively, we will only prove the judgement

c
?→{c}, because it is the only axiom and other rules do not depend on it. In other words,

the judgement v
?→N , like other judgements on graphs, cannot be defined inductively by

structural recursion, since the structure is not well-founded. In particular, the problem
are cycles, where the proof may be trapped, continuously unfolding the structure of the
graph without ever reaching a base case. Usual implementations of visits on graphs rely on
imperative features and correct this issue by marking already visited nodes. In this way,
they avoid visiting twice the same node, actually breaking cycles.

On the other hand, if we interpret the meta-rules coinductively (excluding again the

coaxioms), then we get the correct judgements a
?→{a, b} and b

?→{a, b}, but we also get the
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wrong judgements a
?→{a, b, c} and b

?→{a, b, c}, as shown by the following derivations

...

a
?→{a, b}

b
?→{a, b}

a
?→{a, b}

...

b
?→{a, b}

a
?→{a, b}

b
?→{a, b}

...

a
?→{a, b, c}

b
?→{a, b, c}

a
?→{a, b, c}

...

b
?→{a, b, c}

a
?→{a, b, c}

b
?→{a, b, c}

As already said, coaxioms allow us to impose additional conditions on proof trees to be
considered valid: the semantics of an inference system with coaxioms (I, γ) is the set of the
judgements having

(1) an arbitrary (well-founded or not) proof tree t in I such that
(2) each node of t has a well-founded proof tree in Itγ
where Itγ is the inference system obtained enriching I by judgements in γ considered as
axioms. Hence, we can use coinduction thanks to 1, but we use coaxioms to restrict its
usage, by filtering out undesired proof trees.

Note that for nodes in t, which are roots of a well-founded subtree, the second condition
always holds (a well-founded proof tree in I is a well-founded proof tree in Itγ as well),
hence it is only significant for nodes which are roots of an infinite path in the proof tree.

For instance, in the example in Figure 1, the judgement a
?→{a, b} has an infinite proof

tree in I where each node has a finite proof tree in Itγ , as shown below.

I Itγ
...

a
?→{a, b}

b
?→{a, b}

a
?→{a, b}

a
?→∅

b
?→{b}

a
?→{a, b}

b
?→∅

a
?→{a}

b
?→{a, b}

On the other hand, the judgement a
?→{a, b, c} has no finite proof tree in Itγ , because c is

not reachable from a; hence such judgement is not derivable in (I, γ), as expected.
We mentioned before an alternative view of the condition imposed by coaxioms on

infinite proof trees: in an infinite derivation coaxioms can only be used “at infinite depth”.
The formal counterpart of this sentence is that the infinite proof tree can be approximated,
for all n ≥ 0, by a well-founded proof tree in Itγ where coaxioms can only be used at depth
greater than n. Hence, in a sense, the infinite proof tree is obtained by “pushing” coaxioms
to infinity.

For instance, the infinite proof tree in I for the judgement a
?→{a, b} shown above can

be approximated, for any n ≥ 0, by a finite proof tree in Itγ where coaxioms are used at
depth greater than n, as shown below.

a
?→∅

b
?→{b}

a
?→{a, b}

b
?→∅

a
?→{a}

b
?→{a, b}

a
?→{a, b}

a
?→∅

b
?→{b}

a
?→{a, b}

b
?→{a, b}

a
?→{a, b}

· · ·

This does not hold, instead, for a
?→{a, b, c}, since it has no finite derivation using coaxioms.
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As a second example, we consider the definition of the first sets in a grammar. Let
us represent a context-free grammar by its set of terminals T , its set of non-terminals N ,
and all the productions A ::= β1 | . . . | βn with left-hand side A, for each non-terminal A.
Recall that, for each α ∈ (T ∪N)+, we can define the set first(α) = {σ | σ ∈ T, α→?σβ}.
Informally, first(α) is the set of the initial terminal symbols of the strings which can be
derived from a string α in 0 or more steps.

We defines the judgement first(α,F) by the following inference system with coaxioms,
where F ⊆ T .

first(σα, {σ})
σ ∈ T first(A,F)

first(Aα,F)

A ∈ N
A 6→?ε

first(A,F) first(α,F ′)

first(Aα,F ∪ F ′)

A ∈ N
A→?ε

first(ε, ∅)
first(β1,F1) · · · first(βn,Fn)

first(A,F1 ∪ · · · ∪ Fn)
A ::= β1 | . . . | βn

first(A, ∅)
A ∈ N

The rules of the inference system correspond to the natural recursive definition of first.
Note, in particular, that in a string of shape Aα, if the non-terminal A is nullable, that is,
we can derive from it the empty string, then the first set for Aα should also include the first
set for α.

As in the previous example on graphs, the problem with this recursive definition is that,
since the non-terminals in a grammar can mutually refer to each other, the function defined
by the inductive interpretation can be undefined, since it may never reach a base case. That
is, a naive top-down implementation might not terminate. For this reason, first sets are
typically computed by an imperative bottom-up algorithm, or the top-down implementation
is corrected by marking already encountered non-terminals, analogously to what is done for
visiting graphs. Again as in the previous example, the coinductive interpretation may fail to
be a function, whereas, with the coaxioms, we get the expected result.

Let us now consider some examples of judgements concerning lists. We consider arbitrary
(finite or infinite) lists of integers and denote by L∞ the set of such lists. We first consider
the judgement maxElem(l, x), with l ∈ L∞ and x ∈ Z, stating that x is the maximum
element that occurs in l. This judgement has a natural definition by structural recursion
we have discussed in Section 1 where we have shown that neither inductive nor coinductive
interpretations are able to capture the expected semantics. Therefore, in the following
definition we have added a coaxiom to the inference system from Section 1 in order to restrict
the coinductive interpretation.

maxElem(x::Λ, x)

maxElem(l, y)

maxElem(x::l, z)
z = max{x, y}

maxElem(x::l, x)

Recall that the problem with the coinductive interpretation is that it accepts all judgements
maxElem(l, x) where x is an upper bound of l, even if it does not occur in l. The coaxiom,
thanks to the way it is used, imposes that maxElem(l, x) may hold only if x appears
somewhere in the list, hence undesired proofs are filtered out.

A similar example is given by the judgement elems(l, xs) where l ∈ L∞ and xs ⊆ Z,
stating that xs is the carrier of the list l, that is, the set of all elements appearing in l. This
judgement can be defined using coaxioms as follows:

elems(Λ, ∅)
elems(l, xs)

elems(x::l, {x} ∪ xs) elems(l, ∅)
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If we ignore the coaxiom and interpret the system coinductively, then we can prove elems(l, xs)
for any superset xs of the carrier of l if l is infinite. The coaxioms again allow us to filter out
undesired derivations. For instance, for l the infinite list of 1s, any judgement elems(l, xs)
with 1 ∈ xs can be derived. Indeed, for any such judgement we can construct an infinite
proof tree which is a chain of applications of the last meta-rule. With the coaxioms, we only
consider the infinite trees where the node elems(l, xs) has a finite proof tree in the inference
system enriched by the coaxioms. This is only true for xs = {1}.

Using coaxioms, we can get the right semantics also for other examples on lists discussed
in Section 1, in particular definitions for predicates member(x, l, b) and allPos(l, b) are
reported below.

member(x, Λ, F) member(x, x::l, T)

member(x, l, b)

member(x, y::l, b)
x 6= y

member(x, l, F)

allPos(Λ, T) allPos(x::l, F)
x ≤ 0

allPos(l, b)

allPos(x::l, b)
x > 0

allPos(l, T)

In Section 1 we said that the standard coinductive interpretation allows us to prove too
many judgements. For instance, if l is the infinite list of 1s, hence l = 1::l2, the following
are valid infinite derivations, obtained repeatedly applying the only rule with non-empty
premises

...

member(2, l, T)

member(2, l, T)

...

member(2, l, F)

member(2, l, F)

...

allPos(l, T)

allPos(l, T)

...

allPos(l, F)

allPos(l, F)

In the semantics induced by coaxioms, only the second and the third proof trees are valid,
since their nodes are derivable by a finite proof tree using also coaxioms, while this fact is
not true for the other derivations.

2.2. Semantics. We now define the model-theoretic semantics for inference systems with
coaxioms. First of all we recall some notions for standard inference systems. Consider an
inference system I; the (one step) inference operator FI : ℘(U)→ ℘(U) associated with I is
defined by

FI(S) =

{
c ∈ U | Pr ⊆ S, Pr

c
∈ I
}

That is, FI(S) is the set of judgements that can be inferred (in one step) from the judgements
in S using the inference rules in I. Note that this set always includes axioms.

A set S is closed if FI(S) ⊆ S, and consistent if S ⊆ FI(S). That is, no new judgements
can be inferred from a closed set, and all judgements in a consistent set can be inferred from
the set itself.

The inductive interpretation of I, denoted Ind(I), is the smallest closed set, that is, the
intersection of all closed sets, and the coinductive interpretation of I, denoted CoInd(I),
is the largest consistent set, that is, the union of all consistent sets. Both interpretations
are well-defined and can be equivalently expressed as the least (respectively, the greatest)
fixed point of the inference operator. These definitions can be shown to be equivalent to the
proof-theoretic characterizations introduced before, see [LG09, Dag17].

2It is well-known that an infinite term can be represented by a set of recursive equations, see, e.g., [AMV06].
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For particular inference systems, we can also compute Ind(I) and CoInd(I) iteratively,
see e.g. [San11]. More precisely, if all rules in I have a finite set of premises, then Ind(I) =⋃
{FnI(∅) | n ∈ N}, and, if for each judgement c there is a finite set of rules having c

as conclusion, then CoInd(I) =
⋂
{FnI(U) | n ∈ N}. This happens because, under the

former condition, FI is upward continuous, and, under the latter condition, FI is downward
continuous (see page 14 for a formal definition of upward/downward continuity).

Given an inference systems with coaxioms (I, γ), we can construct the interpretation
generated by coaxioms, denoted by Gen(I, γ), by the following two steps:

(1) First, we consider the inference system Itγ obtained enriching I by judgements in γ
considered as axioms, and we take its inductive interpretation Ind(Itγ).

(2) Then, we take the coinductive interpretation of the inference system obtained from I by
keeping only rules with consequence in Ind(Itγ), that is, we define

Gen(I, γ) = CoInd(IuInd(Itγ))

where IuS , with I inference system and S ⊆ U , denotes the inference system obtained from
I by keeping only rules with consequence in S, that is, IuS = {Prc ∈ I | c ∈ S}.

If we consider again the example of the graph in Figure 1, since the universe is finite, every
monotone function is continuous, hence we can compute fixed points iteratively. Therefore,
in the first phase, we obtain the following judgements (the number at the beginning of each
line indicates the iteration step):

(1) a
?→∅, b ?→∅, c ?→∅, c ?→{c}

(2) a
?→∅, b ?→∅, c ?→∅, c ?→{c}, a ?→{a}, b ?→{b}

(3) a
?→∅, b ?→∅, c ?→∅, c ?→{c}, a ?→{a}, b ?→{b}, a ?→{a, b}, b ?→{a, b}

The last set is closed, hence it is Ind(Itγ).
For the second phase, first of all we have to construct the inference system IuInd(Itγ),

whose rules are those of I (in Figure 1) with conclusion in Ind(Itγ), computed above. Hence,
they are the following:

b
?→N

a
?→{a} ∪ N

c /∈ N a
?→N

b
?→{b} ∪ N

c /∈ N
c
?→{c}

These rules have to be interpreted coinductively, hence each iteration of the inference
operator removes judgements which cannot be inferred from the set obtained from the
previous iteration step, that is, we get:

(1) c
?→{c}, a ?→{a}, b ?→{b}, a ?→{a, b}, b ?→{a, b}

(2) c
?→{c}, a ?→{a, b}, b ?→{a, b}

This last set is consistent, hence it is Gen(I, γ), and it is indeed the expected result.
In next sections, we will study properties of Gen(I, γ) in a more formal way, notably,

we will show that it is actually a fixed point of the inference operator FI as expected (see
Section 3). Such a fixed point will be constructed by taking the greatest consistent subset
of the smallest closed superset of the set of coaxioms. Then, we will also prove that such
semantics corresponds to the proof-theoretic characterization informally introduced at the
beginning of this section (see Section 4).



26:10 F. Dagnino Vol. 15:1

3. Fixed point semantics for coaxioms

As mentioned in Section 2.2, we can associate with an inference system I a monotone
function FI on the power-set lattice. We always require the semantics of I to be a fixed
point of FI , hence we aim to show that this property indeed holds for Gen(I, γ).

In this section, we will develop the theory needed for this result and some important
consequences. In order to construct the fixed point we need, we work in the general
framework of lattice theory [Nat98, DP02], so that we can highlight only the essential
structure. More precisely, in Section 3.1 we discuss closure and kernel operators, presenting
almost standard results, for which, however, we have not found a complete enough discussion
in literature [Nat98, DP02]. Then, in Section 3.2 and Section 3.3, we define the bounded fixed
point, showing it corresponds to the interpretation generated by coaxioms and it subsumes
both inductive and coinductive interpretations.

Let us start by recalling some basic definitions about lattices. A complete lattice is a
partially ordered set (L, v) where all subsets A ⊆ L have a least upper bound (a.k.a. join),
denoted by

⊔
A. In particular, in L there are both a top element > =

⊔
L and a bottom

element ⊥ =
⊔
∅. Furthermore, it can be proved that in L all subsets A ⊆ L have also

a greatest lower bound (a.k.a. meet), denoted by
d
A. In the following, for all x, y ∈ L,

we will write x t y for the binary join and x u y for the binary meet, that is, respectively,⊔
{x, y} and

d
{x, y}, respectively.

Given a function F : L→ L and an element x ∈ L, we say that

• x is a pre-fixed point if F (x) v x
• x is a post-fixed point if x v F (x)
• x is a fixed point if x = F (x)

We will denote by pre(F ), post(F ) and fix(F ), respectively, the sets of pre-fixed, post-fixed
and fixed points of F .

We also say that F is monotone if, for all x, y ∈ L, if x v y then F (x) v F (y). Monotone
functions over a complete lattice are particularly interesting since, thanks to the Knaster-
Tarski theorem [Tar55, LNS82], we know that they have both the least and the greatest
fixed point, that we denote by µF and νF , respectively.

In the following we will assume a complete lattice (L, v) and a monotone function
F : L→ L.

3.1. Closures and kernels. We start by introducing some notions which are slight gener-
alizations of concepts that can be found in [AJ94, Nat98].

Definition 3.1. Let (L, v) be a complete lattice. Then

(1) a subset C ⊆ L is a closure system if, for any subset X ⊆ C ,
d
X ∈ C

(2) a subset K ⊆ L is a kernel system if, for any subset X ⊆ K ,
⊔
X ∈ K

Note that, with the usual convention that
⊔
∅ = ⊥ and

d
∅ = >, we have that, for all

closure systems C ⊆ L, > ∈ C , and, for all kernel systems K ⊆ L, ⊥ ∈ K .
This definition provides a general order-theoretic account of a kind of structures that

are very frequent in mathematics, in particular considering the complete lattice carried by
the power-set. For instance, given a group G, the set Sub(G) ⊆ ℘(G) of all subgroups of G
is closed under arbitrary intersections, that is, under the meet operation in the power-set
lattice (℘(G), ⊆). Hence, Sub(G) is a closure system in the complete lattice (℘(G), ⊆),
according to the above definition. It is easy to see that this fact also holds for any algebraic
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structure. Another example comes from topology. Indeed, given a topological space (X, τ),
by definition τ ⊆ ℘(X) and is closed under arbitrary unions, hence τ is a kernel system with
respect to the complete lattice (℘(X), ⊆). Moreover, the set of closed sets in the topological
space (X, τ), that is, the set {X \A | A ∈ τ}, is closed under arbitrary intersections, hence
it is a closure system in (℘(X), ⊆). Actually this is a general fact: if K ⊆ ℘(X) is a kernel
system, then {X \A | A ∈ K} is a closure system. Also the converse is true.

It is quite easy to check that the following proposition holds

Proposition 3.2. Let (L, v) be a complete lattice and F : L → L a monotone function.
Then

(1) pre(F ) is a closure system
(2) post(F ) is a kernel system

Proof. We only prove 1, since 2 can be obtained by duality.
Let A ⊆ pre(F ) be a set of pre-fixed points of F . We have that, for all x ∈ A,

d
A v x (by

definition of greatest lower bound), then F (
d
A) v F (x) v x (since F is monotone and x is

pre-fixed), hence, finally, F (
d
A) v

d
A (by definition of greatest lower bound).

This observation provides us with a canonical way to associate a closure and a kernel
system with a monotone function. Let us introduce another notion.

Definition 3.3. Let (L, v) be a complete lattice. Then

(1) A monotone function ∇ : L → L is a closure operator if it satisfies the following
conditions:
• for all x ∈ L, x v ∇(x)
• for all x ∈ L, ∇(∇(x)) = ∇(x)

(2) A monotone function ∆ : L→ L is a kernel operator if it satisfies the following conditions:
• for all x ∈ L, ∆(x) v x
• for all x ∈ L, ∆(∆(x)) = ∆(x)

Note that, since a closure operator ∇ : L→ L is a monotone function, we can associate with
it both a closure and a kernel system, pre(∇) and post(∇). However, by the first condition
of the definition of closure operator, we get that post(∇) = L, hence it is not interesting,
and pre(∇) = fix(∇). Dually, for a kernel operator ∆ : L → L, only post(∆) = fix(∆) is
interesting, because pre(∆) = L. Therefore, we can say that every closure operator naturally
induces a closure system and every kernel operator naturally induces a kernel system.

The next result shows how we can build, in a canonical way, a closure/kernel operator
from a closure/kernel system.

Theorem 3.4. Let (L, v) be a complete lattice. Then

(1) given a closure system C ⊆ L the function

∇C (x) =
l
{y ∈ C | x v y}

is a closure operator such that fix(∇C ) = C
(2) given a kernel system K ⊆ L the function

∆K (x) =
⊔
{y ∈ K | y v x}

is a kernel operator such that fix(∆K ) = K
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Proof. We prove only point 1, the point 2 can be obtained by duality. We first prove that ∇C

is monotone. Consider x, y ∈ L such that x v y, hence {z ∈ C | y v z} ⊆ {z ∈ C | x v z},
thus ∇C (x) v ∇C (y), since the greatest lower bound is a monotone operator.3

The fact that x v ∇C (x) for all x ∈ L follows from the fact that x is a lower bound of the
set {y ∈ C | x v y}.
Finally, note that by definition, for all x ∈ L, ∇C (x) ∈ C , because C is a closure system,
hence in order to show that ∇C (∇C (x)) = ∇C (x) it is enough to show that, for all z ∈ C ,
∇C (z) = z, namely, C ⊆ fix(∇C ). So consider z ∈ C , we have already shown that z v ∇C (z),
thus we have only to show the other inequality. Since z ∈ C , z ∈ {y ∈ C | z v y}, and this
implies that ∇C (z) v z.

This shows that∇C is a closure operator. Actually we have also proved that C ⊆ fix(∇C ).
Therefore, to conclude the proof it remains to show that fix(∇C ) ⊆ C , but this is trivial,
since if z = ∇C (z), then z ∈ C by definition.

The above theorem, considered for instance for closure systems, states that each closure
system induces a closure operator having as (pre-)fixed points exactly the elements in the
closure system. Actually, we can say even more: each closure system induces a unique
closure operator, that is, each closure operator is uniquely determined by its (pre-)fixed
points.

Theorem 3.5. Let (L, v) be a complete lattice. Then

• if ∇ : L→ L is a closure operator then ∇fix(∇) = ∇
• if ∆ : L→ L is a kernel operator, then ∆fix(∆) = ∆.

Proof. We prove only point 1, the point 2 can be obtained by duality.
We have to show that ∇(x) = ∇fix(∇)(x) for all x ∈ L. By definition, ∇fix(∇) =

d
A with

A = {y ∈ fix(∇) | x v y}, hence, since x v ∇(x), ∇(x) ∈ A. In order to conclude the proof
we have to show that ∇(x) is the least element of A. To this aim, consider y = ∇(y) ∈ A and
prove that it is above ∇(x). Note that x v y, hence, by monotonicity of ∇, ∇(x) v ∇(y) = y,
as needed.

In other words, the above theorem states that to define a closure or kernel operator it is
enough to specify a closure or a kernel system. For instance, the closure system Sub(G),
where G is a group, induces the closure operator 〈−〉 : ℘(G)→ ℘(G), that computes for any
set X ⊆ G the subgroup generated by X. For a topological space (X, τ) we have that the
topology τ induces a kernel operator that, for any set A ⊆ X, computes its interior, and the
set of closed sets {X \A | A ∈ τ} induces the topological closure operator.

3.2. The bounded fixed point. Let us now consider a monotone function F : L → L.
As we have seen, we can associate with F both a closure and a kernel system, pre(F ) and
post(F ) respectively. Thanks to Theorem 3.4 and Theorem 3.5 we know that these systems
induce a unique closure and kernel operator respectively, defined below

∇F (x) = ∇pre(F ) =
l
{y ∈ pre(F ) | x v y}

∆F (x) = ∆post(F ) =
⊔
{y ∈ post(F ) | y v x}

We call ∇F the closure of F and ∆F the kernel of F . Intuitively, ∇F (x) is the best pre-fixed
approximation of x (the least pre-fixed point above x), while ∆F (x) is the best post-fixed

3We are considering the function A 7→
d

A from ℘(L) to L
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approximation of x (the greatest post-fixed point below x). In this part of the section we
will study some properties of these operators related to fixed points constructions.

First of all, we note that from the definitions of the closure and the kernel of F we can
immediately derive a generalization of both the induction and the coinduction principles.
Given γ, β ∈ L, for all x ∈ L we have

(Ind) if F (x) v x (x pre-fixed) and γ v x, then ∇F (γ) v x
(CoInd) if x v F (x) (x post-fixed) and x v β, then x v ∆F (β)

These two principles are a generalization of standard induction and coinduction principles,
because we can retrieve them through particular choices for γ and β. Indeed, if γ = ⊥,
the condition γ v x is trivially always true, and we have ∇F (⊥) =

d
pre(F ) = µF by

Knaster-Tarski fixed point theorem [Tar55], hence (Ind) allows us to conclude µF v x like
standard induction, requiring the same hypothesis. Dually, if β = >, again the condition
x v β is trivially always true, and ∆F (>) =

⊔
post(F ) = νF , again by Knaster-Tarski,

hence (CoInd) allows us to conclude x v νF like standard coinduction, requiring the same
hypothesis.

We now prove a result ensuring us that under suitable hypotheses we can use the closure
and the kernel of a monotone function to build a fixed point of that function. We will denote
by ↓x and ↑x respectively the set of lower bounds of x and the set of upper bounds of x.

Proposition 3.6. Let γ, β ∈ L. Then

(1) if β is a pre-fixed point of F , then ∆F (β) is a fixed point
(2) if γ is post-fixed point of F , then ∇F (γ) is a fixed point

Proof. We will prove only point 1, the point 2 can by obtained by duality.
Note that ↓β is a complete lattice and the function F : ↓β → ↓β (obtained by restricting
F to ↓β) is well-defined and monotone, since β is a pre-fixed point. Therefore, ∆F (β) is the
join of all post-fixed points of F in the complete lattice ↓β, hence by Knaster-Tarski it is a
fixed point.

Therefore, we now know that if β is pre-fixed ∆F (β) is the greatest fixed point below β,
and, if γ is post-fixed, then ∇F (γ) is the least fixed point above γ.

We are now able to define the bounded fixed point.

Definition 3.7 (Bounded fixed point). Let γ ∈ L. The bounded fixed point of F generated
by γ, denoted by Gen(F , γ), is the greatest fixed point of F below the closure of γ, that is,
Gen(F , γ) = ∆F (∇F (γ)).

The bounded fixed point is well-defined since, thanks to Proposition 3.6, there exists
the greatest fixed point below β, provided that the bound β is a pre-fixed point. Since in
general γ might not be pre-fixed, we need to construct a pre-fixed point from γ, and this
is done by the closure operator ∇F . Note that the first step of this construction cannot
be expressed as the least fixed point of F on the complete lattice ↑ γ, since in general F
may fail to be well-defined (e.g., if F is the function which maps any element to ⊥ v γ with
γ 6= ⊥). Indeed, ∇F (γ) is not a fixed point in general, but only a pre-fixed point: we need
the two steps to obtain a fixed point.

Note also that the definition of bounded fixed point is asymmetric, that is, we take the
greatest fixed point bounded from above by a least pre-fixed point, rather than the other way
round. This is motivated by the intuition, explained in Section 2, that we essentially need a
greatest fixed point, since we want to deal with non-well-founded structures, but we want
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to “constrain” in some way such greatest fixed point. Investigating the dual construction
(∇F (∆F (γ))) is a matter of further work.

The following proposition states some immediate properties of the bounded fixed point.

Proposition 3.8.

(1) If z ∈ L is a fixed point of F , then Gen(F , z) = z.
(2) For all γ1, γ2 ∈ L, if γ1 v γ2, then Gen(F , γ1) v Gen(F , γ2).

Proof.

(1) If z is a fixed point, then it is both pre-fixed and post-fixed, hence ∇F (z) = z and
∆F (z) = z. Thus, we get that Gen(F , z) = ∆F (∇F (z)) = ∆F (z) = z.

(2) The statement can be rephrased saying that the function Gen(F ,−) : L→ L is monotone,
and this trivially holds since it is a composition of the monotone function∇F and ∆F .

Therefore, by Proposition 3.6 we already know that Gen(F , γ) is a fixed point for any γ ∈ L;
the first point of the above proposition says that all fixed points of F can be generated as
bounded fixed points. In other words, considering Gen(F ,−) as a function from L into itself,
the first point implies that the range of this function is exactly fix(F ). Moreover, the second
point states that Gen(F ,−) is a monotone function on L.

An important fact is that bounded fixed points are a generalization of both least and
greatest fixed points, since they can be obtained by taking particular generators, as stated
in the following proposition.

Proposition 3.9.

(1) Gen(F ,>) is the greatest fixed point of F
(2) Gen(F ,⊥) is the least fixed point of F

Proof.

(1) Note that ∇F (>) = >, since the only pre-fixed point above > is > itself, hence we get
Gen(F ,>) = ∆F (>) =

⊔
post(F ) = νF ,

(2) As already noted ∇F (⊥) = µF , in particular ∇F (⊥) is post-fixed, therefore we get
Gen(F ,⊥) = ∆F (∇F (⊥)) = ∇F (⊥), namely it is the least fixed point of F .

An alternative proof for the above proposition is possible by exploiting Proposition 3.8. We
preferred to give the above proof, since this follows the asymmetry of the definition of the
bounded fixed point.

We now present a result that will be particularly useful to develop proof techiques for
the bounded fixed point (see Section 5).

We first recall some standard notions. A chain C, is a totally ordered sequence (xi)i∈N,
we say that C is ascending if for all i ∈ N, xi v xi+1, and that C is descending if for all
i ∈ N, xi+1 v xi. A function F : L→ L is said to be upward continuous if for any chain C,
F (
⊔
C) =

⊔
F (C) and downward continuous if for any chain C, F (

d
C) =

d
F (C).

We will denote by IF ,x the set {Fn(x) | n ∈ N} where F 0 = idL and Fn+1 = F ◦ Fn. It
is easy to check that if x is either pre-fixed or post-fixed, IF ,x is a chain and in particular a
descending chain if x is pre-fixed.

Proposition 3.10. Let β ∈ L be a pre-fixed point of F . Then

(1) for all n ∈ N, ∆F (β) = ∆F (Fn(β))
(2) ∆F (β) = ∆F (

d
IF ,β)
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Proof. Note that, since β is pre-fixed, IF ,β is a descending chain, hence for all n ∈ N we
have Fn+1(β) v Fn(β), that is, Fn(β) is a pre-fixed point for all n ∈ N.

(1) We prove the statement by induction on n. If n = 0 there is nothing to prove.
Now, assume the thesis for n. By definition, ∆F (Fn(β)) is a post-fixed point, hence
∆F (Fn(β)) v F (∆F (Fn(β))). Since ∆F is a kernel operator, by Definition 3.3, we have
∆F (Fn(β)) v Fn(β), hence by the monotonicity of F , we get F (∆F (Fn(β))) v Fn+1(β).
Now, by transitivity of v we get ∆F (Fn(β)) v Fn+1(β). Therefore, by (CoInd) we
conclude ∆F (Fn(β)) v ∆F (Fn+1(β)).
On the other hand, since Fn(β) is pre-fixed, we have Fn+1(β) v Fn(β). Thus, by
the monotonicity of ∆F we get the other inequality, and this implies ∆F (Fn(β)) =
∆F (Fn+1(β)). Finally, thanks to the induction hypothesis we get the thesis.

(2) By point 1 we have ∆F (β) v Fn(β) for all n ∈ N, hence ∆F (β) v
d

IF ,β . Therefore, by
(CoInd) we get ∆F (β) v ∆F (

d
IF ,β). On the other hand, we have

d
IF ,β v β, hence,

by monotonicity of ∆F , we get the other inequality, and this implies the thesis.

Another way to read the above proposition is that, given a bound β which is pre-fixed, we
obtain the same greatest fixed point below β if we take as bound any element Fn(β) of
the descending chain IF ,β. Moreover, Proposition 3.10 says also that we obtain the same
greatest fixed point induced by β if we take as bound the greatest lower bound of that chain,
namely,

d
IF ,β.

We conclude this part of the section with a result that characterizes the closure and the
kernel of respectively a post-fixed and a pre-fixed point using chains in analogy with the
Kleene theorem [LNS82]

Proposition 3.11. Let β, γ ∈ L be a pre-fixed and a post-fixed point respectively. Then

(1) if F is downward continuous, then ∆F (β) =
d

IF ,β
(2) if F is upward continuous, then ∇F (γ) =

⊔
IF ,γ

Proof. We prove only point 1, the point 2 can by obtained by duality.
Note that ↓β is a complete lattice with top element β and the function F : ↓β → ↓β
(obtained by restricting F to ↓β) is well-defined and monotone, since β is a pre-fixed point.
In this case it is also downward continuous, because so is F . Therefore, by Proposition 3.6,
∆F (β) is the greatest fixed point of F in the complete lattice ↓β, hence, since F is downward
continuous, we get the thesis by the Kleene theorem.

Note that the above proposition requires an additional hypothesis on F , that is required
to be continuous, as happens for the Kleene theorem [LNS82]. Under this assumption the
above result immediately applies to the bounded fixed point, providing us with an iterative
characterization of it, as the following corollary shows.

Corollary 3.12. Let γ ∈ L and set β = ∇F (γ). If F is downward continuous, then
Gen(F , γ) =

d
IF ,β.

Proof. By Definition 3.7 we have Gen(F , γ) = ∆F (β). Since F is downward continuous, by
Proposition 3.11 we get the thesis.
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3.3. Coaxioms as generators. In this part of the section we come back to inference
systems and we show that the interpretation generated by coaxioms of an inference system
is indeed a fixed point of the inference operator. In Section 2 we have described two steps to
construct Gen(I, γ), the interpretation generated by coaxioms γ of an inference system I:

(1) First, we consider the inference system Itγ obtained enriching I by judgements in γ
considered as axioms, and we take its inductive interpretation Ind(Itγ).

(2) Then, we take the coinductive interpretation of the inference system obtained from I by
keeping only rules with consequence in Ind(Itγ), that is, we define

Gen(I, γ) = CoInd(IuInd(Itγ))

The definition of the bounded fixed point is the formulation of these two steps in the general
setting of complete lattices. Indeed, the inference operator FI is a monotone function on
the complete lattice (℘(U), ⊆) obtained by taking set inclusion as order, and specifying the
coaxioms γ corresponds to fixing an arbitrary element of the lattice as generator. Then:

(1) First, we construct the closure of γ, that is, the best closed approximation of γ. This
closure plays the role of the bound for the next step.

(2) Then we construct the greatest fixed point below such bound.

To show the correspondence in a precise way, we give an alternative and equivalent charac-
terization of both the closure and the kernel of an element in L.

Proposition 3.13. Let γ, β ∈ L.

(1) Consider the function Ftγ : L→ L defined by Ftγ(x) = F (x)tγ. Then, ∇F (γ) = µFtγ.
(2) Consider the function Fuβ : L→ L defined by Fuβ(x) = F (x)uβ. Then, ∆F (β) = νFuβ.

Proof. We prove only point 1, point 2 can be obtained by duality. First of all note that
Ftγ is a monotone function. By definition of ∇F , we have that F (∇F (γ)) v ∇F (γ) and
γ v ∇F (γ), hence ∇F (γ) is a pre-fixed point of Ftγ . Then, by (Ind), ∇F (γ) is the least
pre-fixed point of Ftγ , hence, by Knaster-Tarski, ∇F (γ) = µFtγ .

By this alternative characterization we can formally state the correspondence with the
two steps for defining Gen(I, γ).

Theorem 3.14. Let I be an inference system and γ, β ∈ ℘(U), then the following facts
hold:

(1) (FI)tγ = F(Itγ) (so we can safely omit brackets)
(2) (FI)uβ = F(Iuβ) (so we can safely omit brackets)

(3) ∇FI (γ) = Ind(Itγ)
(4) ∆FI (β) = CoInd(Iuβ)

Proof.

(1) We have to show that, for S ⊆ U , (FI)tγ(S) = F(Itγ)(S). If c ∈ (FI)tγ(S), then either
c ∈ γ or c ∈ FI(S); in the former case, there exists c ∈ Itγ by definition of Itγ , in the

latter, there exists Pr
c ∈ I such that Pr ⊆ S, and this implies Pr

c ∈ Itγ . Therefore, in
both cases c ∈ F(Itγ)(S).

Conversely, if c ∈ F(Itγ)(S), then there exists Pr
c ∈ Itγ such that Pr ⊆ S. By definition

of Itγ , either Pr
c ∈ I or c ∈ γ and Pr = ∅, therefore, in the former case c ∈ FI(S) and

in the latter c ∈ γ, thus in both cases c ∈ (FI)tγ(S).
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(2) We have to show that, for S ⊆ U , (FI)uβ(S) = F(Iuβ)(S). If c ∈ (FI)uβ(S), then we

have c ∈ β and c ∈ FI(S), hence there is Pr
c ∈ I such that Pr ⊆ S; therefore, by

definition of Iuβ, we get Pr
c ∈ Iuβ, and this implies that c ∈ F(Iuβ)(S).

Conversely, if c ∈ F(Iuβ)(S), then there exists Pr
c ∈ Iuβ such that Pr ⊆ S. By definition of

Iuβ , we have that Pr
c ∈ I and c ∈ β, therefore c ∈ FI(S) and c ∈ β, thus c ∈ (FI)uβ(S).

(3) By Proposition 3.13 we get that ∇FI (γ) = µFItγ , that corresponds to the inductive
interpretation of Itγ , Ind(Itγ), by point 1 of this theorem.

(4) By Proposition 3.13 we get that ∆FI (β) = νFIuβ, that corresponds to the coinductive
interpretation of Iuβ, CoInd(Iuβ), by point 2 of this theorem.

Thanks to Theorem 3.14, we can conclude that, given an inference system with coaxioms
(I, γ):

Gen(I, γ) = CoInd(IuInd(Itγ)) = ∆FI (∇FI (γ)) = Gen(FI , γ)

that is, the interpretation generated by coaxioms γ of the inference system I is exactly the
bounded fixed point of FI generated by γ.

Finally, applying Proposition 3.9 we get that the inductive and the coinductive interpre-
tations of I are particular cases of the interpretation generated by coaxioms. Indeed, we
get the inductive interpretation when γ = ∅ and we get the coinductive interpretation when
γ = U , as shown below.

Gen(I, ∅) = Gen(FI , ∅) = µFI = Ind(I)

Gen(I,U) = Gen(FI ,U) = νFI = CoInd(I)

4. Proof trees for coaxioms

In this section we formalize several proof-theoretic characterizations of the semantics of
inference systems with coaxioms, and prove their equivalence with the fixed point semantics
presented in Section 3. In order to discuss such proof-theoretic semantics in a rigorous way,
we need a more explicit and mathematically precise notion of proof tree than the one we
introduced in Section 2; therefore, we start by fixing some concepts on trees.

4.1. A digression on graphs and trees. Here we report some results about trees and
graphs. We essentially follow the approach adopted in [AAV01, AAMV03, ALM+15], with
few differences in the definition of trees: for us a tree will be labelled and unordered as
in [MP00, vdBM07]. The main theorem of this subsection (Theorem 4.3) is a weaker form
of results presented in [AAMV03, ALM+15], which, however, require additional conditions4

on trees, which we can ignore.
Along this section we denote by A? the set of finite strings on the alphabet A, which is

an arbitrary set of symbols. We use Greek letters α, β, . . . to range over strings and Roman
letters a, b, . . . to range over symbols in A and we implicitly identify strings of length one
and symbols. Moreover, we denote by juxtaposition string concatenation, and by |α| the
length of the string α. Finally, ε is the empty string. We also extend string concatenation to
sets of strings, denoting, for X,Y ⊆ A?, by XY the set {αβ ∈ A? | α ∈ X,β ∈ Y }; moreover
if either X or Y are singletons we will omit curly braces, namely αY = {α}Y .

4These conditions are needed since they want a final coalgebra for suitable power-set functors.
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On the set A? we can define the prefixing relation ≺ as follows: for any α, β ∈ A?, α ≺ β
if and only if there exists γ ∈ A? such that αγ = β. It can be shown that ≺ is a partial
order and thus, for any X ⊆ A?, the restriction of ≺ to X is well-defined and still a partial
order. We say that a subset X ⊆ A? is well-founded with respect to prefixing if any chain
C ⊆ X is finite.

A non-empty subset L ⊆ A? is a tree language if it satisfies the prefix property, that is,
if αa ∈ L then α ∈ L. In particular, ε ∈ L for any tree language L ⊆ A?. Now we are able
to define trees following [Cou83].

Definition 4.1. Let A be an alphabet, L ⊆ A? a tree language and L a set. A tree labelled
in L is a function t : L→ L. The element t(ε) is called the root of t.

The notion of tree in Definition 4.1 is essentially the same as standard ones, see,
e.g., [Cou83, AAV01]. The main difference is that we allow an arbitrary set to be taken as
alphabet. This is important because, as we will see, the branching of the tree is bounded by
the cardinality of the alphabet, and, since we have to use trees in the context of inference
systems, this cardinality cannot be bounded a priori.

If t : L → L is a tree, then, for any α ∈ L, the subtree rooted at α is the function
t|α : L|α → L, where L|α = {β ∈ A? | αβ ∈ L} and t|α(β) = t(αβ). This notion is well-
defined since L|α is a tree language, hence t|α is a tree. Note that t is itself a subtree, rooted
at ε. Subtrees rooted at α with |α| = 1 are called direct subtrees of t. Finally, a tree t is
well-founded if dom(t) is well-founded with respect to ≺.

The notion of tree introduced in Definition 4.1 is mathematically precise, but not very
intuitive. A usual, and perhaps more natural, way to introduce trees is as particular graphs.
Intuitively, using a graph-like terminology, that we will make precise below, we can see the
elements in the tree language dom(t) as nodes. Actually, thanks to the prefix property,
a node α ∈ dom(t) represents also all nodes (its prefixes) we have to traverse to reach α
starting from the root ε. For instance, if α = abc, we know that ε, a, ab, abc ∈ dom(t), hence
they are nodes of t and they form the path from the root to α. Therefore, requiring t to
be well-founded is equivalent to require that any sequence of prefixes is finite, hence it is
equivalent to require that all paths in t are finite.

To formally show that indeed trees can be seen as particular graphs, we start by giving
a definition of graph.

Definition 4.2. A graph is a pair (V, adj) where V is the set of nodes and adj : V→ ℘(V)
is the adjacency function.

With this definition it is easy to assign a graph structure to (the domain of) a tree.
Let t : L→ L be a tree, we can represent it as a graph with set of nodes L and adjacency
function chlt(α) = {β ∈ L | ∃a ∈ A.β = αa} returning the children of a node α. In the
following we will omit the reference to t when it is clear from the context. Thanks to this
graph structure we justify terminology like node and adjacent for trees: a node is a string
α ∈ dom(t) and, given a node α, the set of its adjacents is chl(α). Furthermore, the depth
of a node α ∈ dom(t) is its distance, in a graph-theoretic sense, from the root, that is, |α|,
hence it is alway finite; the depth of the tree t is the least upper bound of the depth of all
its nodes, hence it can be infinite.

We now analyse the role of the alphabet A in the definition of tree (Definition 4.1). First,
note that its elements are essentially not relevant. What actually matters is the cardinality
of A, that determines the maximum branching of the tree, that is, the maximum number
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of children (hence subtrees) for each node α. In other words, we have |chl(α)| ≤ |A| for
all α ∈ L. For instance, we can build essentially the same trees if A is either {1, 2, 3} or
{a, b, c}. However, the fact that they have both cardinality 3 is relevant, since trees built on
A have for each node at most 3 children. Therefore, each cardinality λ determines a class
of trees, called λ-branching trees, that is, trees built on an alphabet of cardinality λ.

In the following, we will denote by Tλ(L) the set of all λ-branching trees, where λ is a
given cardinal. We will omit λ when not relevant. Since, as we have noticed, the elements of
the alphabet are irrelevant, we will say that two λ-branching trees are equal if, considering
them as functions, they are equal up to isomorphism on the alphabet5. Furthermore, a
tree t ∈ Tκ(L) with κ ≤ λ can be regarded as an element of Tλ(L) up to an inclusion of
the alphabet in a set of cardinality λ. We will leave implicit this inclusion and hence write
Tκ(L) ⊆ Tλ(L).

We now consider a special class of trees, suitable to model proof trees. As we will see,
proof trees are labelled by judgements, notably nodes are (labelled by) consequences of rules
and their children correspond to sets of premises, hence each child has a distinct label. Trees
of this kind can be represented in a more compact way, and enjoy an important property.

Let us introduce these trees formally. We say that a tree t : L→ L is children injective
if, for all α ∈ dom(t), the restriction of t to the set chl(α) is injective; more explicitly, for all
α ∈ dom(t), if αa, αb ∈ dom(t) and t(αa) = t(αb), then a = b. In other words, all children
of a node must have different labels. Note that all subtrees of a children injective tree are
themselves children injective.

The first property we observe is that a children injective tree is completely determined
by the label of its root and by the set of all paths of labels in it. Indeed, if t : L → L is
children injective, then we can define the following function:

ft : L→ L?
{
ft(ε) = ε

ft(αa) = ft(α)t(αa)

Intuitively, the function f maps each node α ∈ L to the string of labels encountered in the
path from the root to α. It is easy to see that f is injective and ft(L) is a tree language.
Hence, the pair (t(ε), ft(L)) conveys a complete description of t, that is, starting from it,
we can reconstruct t, up to a change of the alphabet. More precisely, we can define a tree
tL : ft(L)→ L such that t(α) = tL(ft(α)) as follows:{

tL(ε) = t(ε)

tL(αa) = a

As a consequence, a children injective tree t can always be equivalently represented as tL.
Finally, note that the subtree of t rooted at α, t|α, is represented by

(
t(α), f(L)|f(α)

)
.

We denote by T ci(L) the set of children injective trees labelled in L. From the construc-
tion just presented, we also get that the branching of a children injective tree t is bounded
by the cardinality λ of L, hence we have that T ci(L) ⊆ Tλ(L).

The main result of this subsection concerning children injective trees is Theorem 4.3.
Before stating it we need to briefly say something about paths in a graph. Let G = (V, adj) be
a graph, a path in G is a non-empty string v0 · · · vn ∈ V? such that, for all i ∈ {0, . . . , n− 1},
vi+1 ∈ adj(vi), that is, for all pairs of subsequent nodes the latter is adjacent to the former.

5Formally, we should define an equivalence relation on trees and then work in the quotient. Two trees
t, t′ ∈ Tλ(L) are equivalent iff t = t′ ◦ b where b is a bijection between the alphabet of t and that of t′.
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We say that v0 · · · vn is a path from v0 to vn. Note that the string v0 of length 1 is also a
path, from v0 to v0, that does not traverse any edge. We denote by path(G) the set of paths
in G.

Note that path(G) is closed under non-empty prefixes, that is, if αa is a path and α
is not empty, then α is a path too, and more generally, if αβ ∈ path(G) and α and β are
not empty, then α, β ∈ path(G). Therefore we can easily lift path(G) to a tree language, by
adding to it the empty string. From these observations immediately follows that, for each
α ∈ path(G), the set {β ∈ V? | αβ ∈ path(G)} ⊆ path(G) ∪ {ε} is a tree language.

It is also important to note that the sets Tλ(L) and T ci(L) both carry a graph structure
with the following adjacency function:

dsub(t) = {t|α | α ∈ dom(t), |α| = 1}
which returns the direct subtrees of t.

Thanks to this observation, we can now prove the following theorem, that will be
essential to give our proof of equivalence between the proof-theoretic and the fixed point
semantics for coaxioms (Theorem 4.6). Intuitively, this result allows us to associate with
any node in a graph, in a canonical way, a tree rooted in it, preserving the graph structure.

Theorem 4.3. Let G = (V, adj) be a graph, then there exists a function P : V → T ci(V)
such that the following diagram commutes:

V T ci(V)

℘(V) ℘(T ci(V))

adj

P

dsub

℘(P)

Proof. The function P computes for each node the path expansion starting from this node,
that is, it maps each node v to the set of all paths starting with v. More precisely, the set of
paths we compute for each node v is the following:

Lv = {α ∈ V? | vα ∈ path(G)}
Hence, using the representation of children injective trees as pairs (r, L) where r is a label
and L is a tree language, using nodes as alphabet, we have that

P(v) = (v, Lv)

Now we have to show that, for each node v, ℘(P)(adj(v)) = dsub(P(v)), that is, (u, L) ∈
dsub(P(v)) if and only if u ∈ adj(v) and P(u) = (u, Lu) = (u, L). The implication ⇒ holds
by construction. On the other hand, if (u, L) ∈ dsub(P(v)) then L = {α ∈ V? | uα ∈ Lv},
hence L = Lu, that is, (u, L) = P(u). Moreover, for all α ∈ L, uα ∈ Lv implies that vuα is a
path in G, hence u ∈ adj(v), and this shows the equality.

In the end, note that, if tv = P(v) for each v ∈ V, then P is the unique map making the
diagram commute and such that tv(ε) = v.
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4.2. Combining non-well-founded and well-founded proof trees. Before providing
the first proof-theoretic characterization, we give a more precise definition of proof tree,
which is a generalization of the notion of rule graph proposed in [Bro05].

Definition 4.4. Let I be an inference system, a proof tree in I is a children injective
tree t : L → U such that, for all α ∈ L, there is a rule Pr

c ∈ I such that t(α) = c and
t(chl(α)) = Pr.

In other words, a proof tree t is a tree labelled in U where each node α ∈ dom(t) is
labelled by the conclusion of a rule Pr

c ∈ I and children of α are bijectively labelled by
judgements in Pr. Since a proof tree t is children injective by definition, we can also represent
it as (t(ε), ft(dom(t))).

In the following, we will often represent proof trees using stacks of rules, that is, if
Pr
c ∈ I and T is a set of proof trees in bijection with Pr and such that for all t ∈ T , t(ε) ∈ Pr,

we denote by Tc the proof tree tc given by

dom(tc) = {ε} ∪
⋃
t∈T

t(ε)ft(dom(t))

{
tc(ε) = c

tc(αj ) = j

We say that a tree t is a proof tree for a judgement j ∈ U if it is a proof tree rooted in
j . Finally, note that all subtrees of a proof tree t are proof trees themselves for their roots.
With this terminology we can define our proof-theoretic semantics.

The first proof-theoretic characterization of the semantics of inference systems with
coaxioms is based on the following theorem which slightly generalizes the standard result
about the correspondence between the fixed point and the proof-theoretic semantics of
inference systems in the coinductive case (see [LG09]). We choose to do the proof from
scratch, even if it can be done relying on the standard equivalence (see [ADZ17b]), since
we have not found in literature a detailed enough proof for the standard equivalence, and,
in addition, the proof helps us to understand what happens on the proof-theoretic side, in
particular when we prove that a set is consistent. We begin proving a lemma.

Lemma 4.5. Let I be an inference system and S a consistent subset of U , then for each
j ∈ S there is a proof tree t for j such that, for all α ∈ dom(t), t(α) ∈ S

Proof. By hypothesis S is consistent, so for each judgement j ∈ S we can choose a rule
Prj
j ∈ I such that Prj ⊆ S. In other words, we can define the map adj : S → ℘(S) given by

adj(j ) = Prj , that turns S into a graph as in Definition 4.2. By Theorem 4.3, there exists a

map P : S → T ci(S) making the following diagram commute.

S T ci(S)

℘(S) ℘(T ci(S))

adj

P

dsub

℘(P)

Therefore, for each j ∈ S, P(j ) is a tree rooted in j and labelled in S, that is, for all
α ∈ dom(P(j )), P(j )(α) ∈ S ⊆ U . Set tj = P(j ) and note that by construction, for all
α ∈ dom(tj ), we have chl(α) = αadj(tj (α)) = αPrtj (α) and

Prtj (α)

tj (α)
∈ I
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hence tj is a proof tree in I as needed.

This lemma essentially ensures that all judgements in a consistent set S have an arbitrary
proof tree whose nodes are all (labelled) in S. The next theorem is a slight generalization of
the standard equivalence between proof-theoretic and fixed point semantics.

Theorem 4.6. Let I be an inference system and β ⊆ U a set of judgements. Then for all
j ∈ U the following are equivalent:

(1) j ∈ ∆FI (β)
(2) there exists a proof tree t for j in I such that each node of t is (labelled) in β

Proof. We prove separately the two implications.

1⇒ 2: By construction ∆FI (β) is a consistent set and ∆FI (β) ⊆ β, hence by Lemma 4.5
each judgement j ∈ ∆FI (β) has a proof tree in I whose nodes are all (labelled) in ∆FI (β),
hence they are (labelled) in β as needed.

2⇒ 1: Let S ⊆ U be the set of all judgements having a proof tree in I whose nodes are all
(labelled) in β. As a consequence, we immediately have that S ⊆ β, hence if we show
that S is consistent, we get the thesis by (CoInd). Consider j ∈ S, hence there is a proof
tree tj for j whose nodes are all (labelled) in β. Note that each t ∈ dsub(tj ) is a proof
tree like t, hence t(ε) ∈ S and, since tj is a proof tree,

{t(ε) | t ∈ dsub(tj )}
j

∈ I

and this shows that S is consistent as needed.

As a particular case we get our first proof-theoretic characterization of Gen(I, γ).

Corollary 4.7. Let (I, γ) be an inference system with coaxioms. Then the following are
equivalent:

(1) j ∈ Gen(I, γ)
(2) there exists a proof tree t for j in I such that each node of t has a well-founded proof

tree in Itγ
Proof. We have that Gen(I, γ) = ∆FI (Ind(Itγ)), hence by Theorem 4.6 we get that j ∈
Gen(I, γ) iff there is a proof tree t for j in I whose nodes are all (labelled) in Ind(Itγ).
Therefore, all nodes of t have a well-founded proof tree in Itγ by the standard equivalence
for the inductive case (see e.g., [LG09]).

4.3. Approximated proof trees. For the second proof-theoretic characterization, we need
to define approximated proof trees in an inference system with coaxioms.

Definition 4.8. Let (I, γ) be an inference system with coaxioms, the sets Tn of approximated
proof trees of level n in (I, γ), for n ∈ N, are inductively defined as follows:

t ∈ T0 if t well-founded proof tree in Itγ

T
c
∈ Tn+1 if

Pr

c
∈ I and T = (tj )j∈Pr and ∀j ∈ Pr. tj ∈ Tn and tj (ε) = j
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Note that an approximated proof tree is a proof tree, since the set T and the set Pr in
the inductive step are in bijection: elements tj in T are indexed by judgements in Pr, hence
there is a surjective map from Pr to T ; moreover, if tj = tj ′ , then j = tj (ε) = tj ′(ε) = j ′,
hence this map is also injective.

In other words, an approximated proof tree of level n in (I, γ) is a well-founded proof
tree in Itγ where coaxioms can only be used at depth ≥ n. Therefore, if t ∈ Tn is an
approximated proof tree of level n, then, for all α ∈ dom(t) with |α| < n, t(α) is the
consequence of a rule in I, more precisely

{t(β) | β ∈ chl(α)}
t(α)

∈ I

Another simple property of approximated proof trees is stated in the following proposi-
tion.

Proposition 4.9. If t ∈ Tn, α ∈ dom(t) and |α| = k ≤ n, then t|α ∈ Tn−k.

Proof. We proceed by induction on |α|. If |α| = 0, then α = ε, hence t|ε = t ∈ Tn. Assume
|α| = k + 1, hence α = βa, hence β ∈ dom(t) and |β| = k. Therefore, by induction
hypothesis t|β ∈ Tn−k, hence t|α = (t|β)|a ∈ dsub(t|β), and this implies, by Definition 4.8,
that t|α ∈ Tn−k−1.

The following theorem states that approximated proof trees of level n correspond to the
n-th element of the descending chain IFI ,β = {FnI(β) | n ∈ N}, with β = ∇FI (γ) = Ind(Itγ).

Theorem 4.10. Let (I, γ) be an inference system with coaxioms, and j ∈ U a judgement.
We have that, for all n ∈ N, the following are equivalent:

(1) j ∈ FnI(∇FI (γ))
(2) j has an approximated proof tree of level n in (I, γ)

Proof. Let β be ∇FI (γ). We prove the thesis by induction on n.

Base: If n = 0, then, by Theorem 3.14, β = ∇FI (γ) corresponds to the inductive in-
terpretation of Itγ , hence the the thesis reduces to the standard equivalence between
proof-theoretic and fixed point semantics in the inductive case (see [LG09]).

Induction: We assume the equivalence for n and prove it for n+ 1. We prove separately
the two implications.
1⇒ 2: If c ∈ Fn+1

I (β), then there exists Pr
c ∈ I such that Pr ⊆ FnI(β). Hence, by

induction hypothesis, each judgement in Pr has an approximated proof tree of level
n, that is, for all j ∈ Pr there is an approximated proof tree tj ∈ Tn rooted in j . Set

T = {tj ∈ Tn | j ∈ Pr}. Hence, t = T
c is a proof tree for c, and by Definition 4.8,

t ∈ Tn+1.
2⇒ 1: If t ∈ Tn+1 is an approximated proof tree for c ∈ U , then, by definition, there

exists Pr
c ∈ I such that t = T

c , T = (tj )j∈Pr and for all j ∈ Pr, tj ∈ Tn and tj (ε) = j .

By induction hypothesis we have Pr ⊆ FnI(β), and, by definition of FI , this implies
c ∈ Fn+1

I (β) as needed.

The second proof-theoretic characterization of the interpretation generated by coaxioms is
an immediate consequence of the above theorem.

Corollary 4.11. Let (I, γ) be an inference system with coaxioms, and j ∈ U a judgement.
Then the following are equivalent:
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(1) j ∈ Gen(I, γ)
(2) there exists a proof tree t for j in I such that each node of t has an approximated proof

tree of level n in (I, γ), for all n ∈ N.

Proof. By Theorem 3.14, Proposition 3.10, and Theorem 4.6, we get that, for all j ∈ U ,
j ∈ Gen(I, γ) iff there exists a proof tree t for j in I such that each node j ′ of t is in

⋂
IFI ,β

with β = ∇FI (γ). By Theorem 4.10, j ′ ∈
⋂

IFI ,β iff has an approximated proof tree of level
n, for all n ∈ N.

If the hypotheses of Corollary 3.12 are satisfied, namely, if the inference operator is
downward continuous, then we get a simpler equivalent proof-theoretic characterization.

Corollary 4.12. Let (I, γ) be an inference system with coaxioms, and j ∈ U a judgement.
If FI is downward continuous, then the following are equivalent:

(1) j ∈ Gen(I, γ)
(2) j has an approximated proof tree of level n in (I, γ), for all n ∈ N.

Proof. Let β be the set∇FI (γ). By Theorem 3.14 and Corollary 3.12, we get that Gen(I, γ) =⋂
IFI ,β, therefore the thesis follows immediately from Theorem 4.10.

In order to define the last proof-theoretic characterization (Theorem 4.17), we need to
introduce a richer structure on trees. In particular, we will consider the partial order on
trees defined by Courcelle in [Cou83], adapted to our context.

Consider trees t, t′ ∈ T(L) we define

t / t′ ⇐⇒ dom(t) ⊆ dom(t′) and ∀α ∈ dom(t). t(α) = t′(α)

It is easy to see that / is a partial order, actually it is function inclusion. Indeed, reflexivity
and transitivity follow from the same properties of ⊆ and =, and antisymmetry can be
proved noting that if t / t′ and t′ / t we have that dom(t) = dom(t′) (by antisymmetry of ⊆)
and t(α) = t′(α) for all α ∈ dom(t), hence t = t′.

Intuitively, t / t′ means that t can be obtained from t′ by pruning some branches.
Alternatively, considering trees as graphs, t / t′ means that t is a subgraph of t′. In any case,
/ expresses a very strong relation among trees, actually too strong for our aims, hence we
need to relax it a little bit.

We relax the order relation by considering what we call its n-th approximation, defined
below. Given a tree t, we denote by domn(t) the set {α ∈ dom(t) | |α| ≤ n}. The n-th
approximation of /, denoted by /n, is defined as follows:

t /n t
′ ⇐⇒ domn(t) ⊆ domn(t′) and ∀α ∈ domn(t). t(α) = t′(α)

Intuitively /n is identical to /, but limited to nodes at level ≤ n. We call it the n-th
approximation of / since /n is coarser than /, namely, if t / t′ then t /n t

′ for all n ∈ N.
Actually we can say even more: t / t′ if and only if t /n t

′ for all n ∈ N. Moreover, if t /n t
′

then for all k ≤ n we have t /k t
′, that is, /n is a finer approximation than /k. Finally, note

that /n is reflexive and transitive, but it fails to be antisymmetric, because we compare only
nodes until level n, hence we cannot conclude an equality between the whole trees.

We now state a result that is crucial for our proof-theoretic characterization (Theo-
rem 4.17). Indeed, the following theorem shows that a collection of trees, behaving like a
sequence of more and more precise approximations, uniquely determines a tree, which can
be regarded as the limit of such sequence.
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Theorem 4.13. Let (tn)n∈N be a sequence of trees, such that, for all n ∈ N, tn /n tn+1.
Then, there exists a tree t such that ∀n ∈ N. tn /n t, and, for any other tree t′ such that
∀n ∈ N. tn /n t′, we have t / t′.

Proof. We define the function t : L → L where L =
⋃
n∈N domn(tn) and for all α ∈ L,

t(α) = tk(α)(α), where k(α) = minDα with Dα = {n ∈ N | α ∈ domn(tn)}. Note that k(α)
is well-defined, because Dα 6= ∅, since α ∈ L and, by construction of L, there is at least an
index n ∈ N such that α ∈ domn(tn). Moreover, L is a tree language, since if αa ∈ L, then
αa ∈ domn(tn) for some n ∈ N, that is a tree language, hence α ∈ domn(tn) ⊆ L. Therefore,
t is a tree.
Fix now n ∈ N, we have to show that tn /n t. By construction we have domn(tn) ⊆ domn(t),
and if α ∈ domn(tn), then by construction k(α) ≤ n. Therefore, we have that tk(α) /k(α) tn,
hence tk(α)(α) = tn(α), thus t(α) = tn(α) and this implies tn /n t.

Consider now a tree t′ such that ∀n ∈ N. tn /n t′. Therefore we have that for all n ∈ N,
domn(tn) ⊆ domn(t′) ⊆ dom(t′), hence dom(t) ⊆ dom(t′). Then, if α ∈ dom(t), there is
n ∈ N such that α ∈ domn(tn) and t(α) = tn(α). Since tn /n t

′, we have that tn(α) = t′(α),
hence t(α) = t′(α) and this implies t / t′.

It is easy to see that a tree t having the property expressed in the above theorem is
unique. Indeed, if t and t′ have that property for a sequence (tn)n∈N, then we have both
t / t′ and t′ / t, hence t = t′. Therefore we denote such a tree by

∨
n∈N tn.

The above theorem ensures the existence of a sort of least upper bound of an ascending
chain of trees:

∨
n∈N tn behaves like a least upper bound, but for approximations of a partial

order. However, since /n is an approximation of /, it can be shown that if (tn)n∈N is a chain
with respect to /, then

∨
n∈N tn is indeed the least upper bound of the chain, as stated in

the following corollary.

Corollary 4.14. Let (tn)n∈N be a sequence of trees, such that for all n ∈ N, tn / tn+1. Then,∨
n∈N tn is the least upper bound of the sequence (tn)n∈N with respect to /.

Proof. Since /n is an approximation of / we have that tn /n tn+1 for all n ∈ N. Setting
t =

∨
n∈N tn, by Theorem 4.13, we get tn /n t for all n ∈ N. We have to show that t is an

upper bound of (tn)n∈N, hence consider α ∈ dom(tn) and suppose |α| = k. We have two
cases:

• if k ≤ n, then α ∈ domn(tn), hence α ∈ domn(t) ⊆ dom(t) and tn(α) = t(α)
• if k > n, then, since tn / tk, α ∈ domk(tk) ⊆ domk(t) ⊆ dom(t), and tn(α) = tk(α) = t(α)

Therefore we get tn / t.
To show that t is the least upper bound, consider an upper bound t′, hence tn / t

′ for
all n ∈ N, and this implies that tn /n t

′ for all n ∈ N. Therefore, by Theorem 4.13, we get
t / t′.

We now consider the equivalence relations induced by each /n, defined as follows:

t ./n t
′ ⇐⇒ t /n t

′ and t′ /n t

or, more explicitly:

t ./n t
′ ⇐⇒ domn(t) = domn(t′) and ∀α ∈ domn(t). t(α) = t′(α)

These equivalence relations are an approximation of the equality relation, indeed t = t′ if
and only if t ./n t

′ for all n ∈ N.
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The relations /n and ./n look very similar: they are both an approximation of another
relation, they are both reflexive and transitive and they both do not care about levels higher
than n. However, the fact that ./n is an equivalence relation makes it different. Indeed, if
t ./n t

′, then the first n levels of t and t′ are forced to be equal, while, if t /n t
′, then the first

n levels of t′ must contain also those of t, but can have also additional branches. In other
words, with ./n we can change only the depth of the trees, while with /n we can change
both the depth and the breadth.

As a consequence of Theorem 4.13, we get the following theorem.

Theorem 4.15. Let (tn)n∈N be a sequence of trees, such that, for all n ∈ N, tn ./n tn+1.
Then, there exists a unique tree t such that ∀n ∈ N. tn ./n t.

Proof. By definition of ./n we have that tn /n tn+1 and tn+1 /n tn for all n ∈ N. Therefore,
by Theorem 4.13, we get that there is a tree t =

∨
n∈N tn such that, for all n ∈ N, tn /n t,

hence we have only to prove that t /n tn and that t is unique. Since we know that
domn(tn) ⊆ domn(t) and for all α ∈ domn(tn), tn(α) = t(α), it is enough to show that
domn(t) ⊆ domn(tn). Thus, consider α ∈ domn(t). By construction of t (see the proof of
Theorem 4.13), there is an index k ∈ N such that α ∈ domk(tk). We have two cases:

• If k ≤ n, then by hypothesis domk(tk) ⊆ domk(tn) ⊆ domn(tn), hence α ∈ domn(tn).
• Otherwise, that is, if n < k, since α ∈ domn(t), we have |α| ≤ n < k, hence α ∈

domn(tk) ⊆ domn(tn), because, by hypothesis tn ./n tk.

Therefore we have domn(t) ⊆ domn(tn) as needed.
To prove that t is unique, consider a tree t′ such that tn ./n t′ for all n ∈ N, by

transitivity we get t ./n t
′ for all n ∈ N, and this implies t = t′.

It is well known that trees carry a complete metric space structure [AN80, Cou83] and,
even if our notion of tree is more general than that adopted in these works, we can recover
the same metric on our trees, using the equivalence relations introduced earlier. The metric
is defined as follows:

d(t, t′) = 2−h h = min{n ∈ N | t 6./n t′}
with assumptions min ∅ =∞ and 2−∞ = 0. It is easy to see that a sequence (tn)n∈N such
that tn ./n tn+1, like that considered in Theorem 4.15, is a Cauchy sequence in the metric
space; indeed d(tn, tn+1) ≤ 2−n. Therefore, such sequences converge also in the metric space,
and the limit is the same. However, our notion of convergence seems to be more general:
sequences like those considered in Theorem 4.13 are not necessarily Cauchy sequences, but
they admit a limit in our framework. For instance, consider the sequence (tn)n∈N of children

injective trees labelled on N and rooted in 0 defined6 by

dom(t0) = {ε} dom(tn+1) = dom(tn) ∪ {n}
It is easy to check that tn /n tn+1, hence, by Theorem 4.13, it converges to

∨
n∈N tn. However,

it is not a Cauchy sequence, since d(tn, tn+1) = 2−1 for all n ∈ N, and
∨
n∈N tn is not a limit

of the sequence in the metric space. A deeper comparison between these relations and the
standard metric structure on trees will be matter of further work.

We can now introduce the concept that will allow the last proof-theoretic characterization.

Definition 4.16. Let (I, γ) be an inference system with coaxioms and j ∈ U a judgement.
Then:

6It is enough to provide a definition for the domains since trees are children injective.
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(1) An approximating proof sequence for j is a sequence of proof trees (tn)n∈N for j such
that tn ∈ Tn and tn /n tn+1 for all n ∈ N.

(2) A strongly approximating proof sequence for j is a sequence of proof trees (tn)n∈N for j
such that tn ∈ Tn and tn ./n tn+1 for all n ∈ N.

Obviously every strongly approximating proof sequence is also an approximating proof
sequence. Note also that all trees in these sequences are well-founded proof trees in Itγ .
Intuitively, both notions represent the growth of a proof for j in I approximated using
coaxioms. The difference is that trees in an approximating proof sequence can grow both in
depth and in breadth, while in a strongly approximating proof sequence they can grow only
in depth. We now prove our last theorem, characterizing Gen(I, γ) in terms of (strongly)
approximating proof sequences.

Theorem 4.17. Let (I, γ) be an inference system with coaxioms and j ∈ U a judgement.
Then the following are equivalent

(1) j ∈ Gen(I, γ)
(2) j has a strongly approximating proof sequence
(3) j has an approximating proof sequence (tn)n∈N such that

∨
n∈N tn is a proof tree in I.

Proof. We assume the canonical representation for children injective trees.

1⇒ 2: We define trees tj ,n for j ∈ Gen(I, γ) and n ∈ N such that tj ,n(ε) = j by induction
on n. By Corollary 4.7, we know that every judgement j ∈ Gen(I, γ) has a well-founded
proof tree in Itγ , that is, a proof tree in T0 rooted in j : we select one of these trees and
call it tj ,0. Furthermore, since Gen(I, γ) is a post-fixed point, for any j ∈ Gen(I, γ) we

can select a rule
Prj
j ∈ I with Prj ⊆ Gen(I, γ); hence tj ,n+1 can be defined as follows:

tj ,n+1 =
{tj ′,n | j ′ ∈ Prj }

j

Clearly, by construction for all j ∈ Gen(I, γ) and for all n ∈ N, tj ,n ∈ Tn. We show by
induction on n that for all n ∈ N and for all j ∈ Gen(I, γ), tj ,n ./n tj ,n+1.
Base: If n = 0, then dom0(tj ,0) = dom0(tj ,1) = {ε} and by construction tj ,0(ε) =

tj ,1(ε) = j , hence tj ,0 ./0 tj ,1.
Induction: We assume the thesis for n− 1 and prove it for n, hence we have to show

that tj ,n ./n tj ,n+1. By construction, we have

tj ,n =
{tj ′,n−1 | j ′ ∈ Prj }

j
tj ,n+1 =

{tj ′,n | j ′ ∈ Prj }
j

By induction hypothesis, we get tj ′,n−1 ./n−1 tj ′,n for all j ′ ∈ Prj . Therefore we have

domn(tj ,n) = {ε} ∪
⋃

j ′∈Prj

j ′domn−1(tj ′,n−1)

= {ε} ∪
⋃

j ′∈Prj

j ′domn−1(tj ′,n)

= domn(tj ,n+1)

Consider now α ∈ domn(tj ,n), we have two cases:

α = ε tj ,n(α) = j = tj ,n+1(α)

α = j ′β, j ′ ∈ Prj tj ,n(α) = tj ′,n−1(β) = tj ′,n(β) = tj ,n+1(α)
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and this shows tj ,n ./n tj ,n+1 as needed.
2⇒ 3: By hypothesis, j has a strongly approximating proof sequence (tn)n∈N and by

Definition 4.16 it is also an approximating proof sequence. We set t =
∨
n∈N tn and prove

that t is a proof tree in I for j . By Theorem 4.15, we have that tn ./n t for all n ∈ N,
hence, we get j = t0(ε) = t(ε). Consider α ∈ dom(t) and set n = |α|+ 1. By construction
of t, we have that α ∈ domn(tn) and chlt(α) = chltn(α) ⊆ domn(tn), as tn ./n t. Then,
since tn ∈ Tn and |α| < n the rule

{t(β) | β ∈ chlt(α)}
t(α)

is a rule in I by Definition 4.8, thus t is a proof tree in I.
3⇒ 1: Set t =

∨
n∈N tn, which, by hypothesis, is a proof tree in I for j . Consider a

node α ∈ dom(t), then there is k ∈ N such that α ∈ domk(tk), and so |α| ≤ k and
α ∈ domm(tm) for all m ≥ k, by Definition 4.16. We define the sequence (tαn)n∈N such
that tαn = tn+k |α. By Proposition 4.9, we get tαn ∈ Tn+k−|α| ⊆ Tn. This observation shows

that every node in t has an approximated proof tree of level n for all n ∈ N, hence by
Theorem 4.10 we get j ∈ Gen(I, γ).

The last condition in Theorem 4.17 requires to build an approximating proof sequence
(tn)n∈N and to check its limit

∨
n∈N tn is a proof tree. However, for a large class of inference

systems, this last requirement is always true, as formally proved below.
We say an inference system I is bounded if there exists a natural number b ∈ N such

that for each rule
Pr

c
∈ I, the cardinality of Pr is less than or equal to b. Note that most

common inference systems are bounded, since they are specified by a finite set of finitary
meta-rules. An inference system with coaxioms (I, γ) with I bounded enjoys the following
key property:

Proposition 4.18. Let (I, γ) be an inference system with coaxioms where I is bounded,
and consider an approximating proof sequence (tn)n∈N in (I, γ). Then

∨
n∈N tn is a proof

tree.

Proof. Set t =
∨
n∈N and consider α ∈ dom(t). By definition of t, there exists n > |α| such

that α ∈ domn(tn) and so chlt(α) =
⋃
k≥n chltk(α). Since domk(tk) ⊆ domk(tk+1) we have

chltk(α) ⊆ chltk+1
(α), and, since all tk are proof trees and I is bounded, we get that chlt(α)

is finite. As a consequence, we have that chlt(α) = chltk(α) for some k ≥ n, hence, since
|α| < k, the rule

{t(β) | β ∈ chlt(α)}
t(α)

is a rule in I, as tk ∈ Tk, thus t is a proof tree.

Therefore, thanks to this property, we can rephrase Theorem 4.17 under the boundedness
hypothesis as follows:

Corollary 4.19. Let (I, γ) be an inference system with coaxioms where I is bounded, and
j ∈ U a judgement. Then the following are equivalent

(1) j ∈ Gen(I, γ)
(2) j has a strongly approximating proof sequence
(3) j has an approximating proof sequence
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5. Reasoning with coaxioms

In this section we discuss proof techniques for inference systems with coaxioms.
Assume that D = Gen(I, γ) (for “defined”) is the interpretation generated by coaxioms

for some (I, γ), and that S (for “specification”) is the intended set of judgements, called
valid in the following.

Typically, we are interested in proving S ⊆ D (completeness, that is, each valid judgement
can be derived) and/or D ⊆ S (soundness, that is, each derivable judgement is valid). Proving
both properties amounts to say that the inference system with coaxioms actually defines the
intended set of judgements.

For what follows, recall that, given an inference system with coaxioms (I, γ), the
following identities hold:

Gen(I, γ) = CoInd(IuInd(Itγ)) = ∆FI (Ind(Itγ))

Completeness proofs. To show completeness, we can use (CoInd). Indeed, since D =
∆FI (Ind(Itγ)), if S ⊆ Ind(Itγ) and S is a post-fixed point of FI , by (CoInd) we get that
S ⊆ D. That is, using the notations of inference systems, to prove completeness it is enough
to show that:

• S ⊆ Ind(Itγ) and
• S ⊆ FI(S)

We call this principle the bounded coinduction principle.
We illustrate the technique on the inference system with coaxioms (I, γ) which defines

the judgement allPos(l, b). We report here the definition from Section 2, for the reader’s
convenience.

allPos(Λ, T) allPos(x::l, F)
x ≤ 0

allPos(l, b)

allPos(x::l, b)
x > 0

allPos(l, T)

Let SallPos be the set of judgements allPos(l, b) where b is T if all the elements in l are
positive, F otherwise. Completeness means that the judgement allPos(l, b) can be proved,
for all allPos(l, b) ∈ SallPos. By the bounded coinduction principle, it is enough to show
that

• SallPos ⊆ Ind(Itγ)

• SallPos ⊆ FI(SallPos)
To prove the first condition, we have to show that, for each allPos(l, b) ∈ SallPos, allPos(l, b)
has a finite proof tree in Itγ . This can be easily shown, indeed:

• If l contains a (first) non-positive element, hence
l = x1::. . .::xn::x::l′ with xi > 0 for i ∈ [1..n], x ≤ 0, and b = F
then we can reason by arithmetic induction on n. Indeed, for n = 0, allPos(l, b) is the
consequence of the second rule with no premises, and for n > 0 it is the consequence of
the third rule where we can apply the induction hypothesis to the premise.
• If l contains only positive elements, hence b = T , then allPos(l, b) is a coaxiom, hence it

is the consequence of a rule with no premises in Itγ .

To prove the second condition, we have to show that, for each allPos(l, b) ∈ SallPos,
allPos(l, b) is the consequence of a rule with premises in SallPos. This can be easily shown,
indeed:
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• If l = Λ, hence b = T , then allPos(Λ, T) is the consequence of the first rule with no
premises.
• If l = x::l′ with x ≤ 0, hence b = F , then allPos(l, F) is the consequence of the second

rule with no premises.
• If l = x::l′ with x > 0, and b = T , hence allPos(l′, T) ∈ SallPos, then allPos(l, T) is the

consequence of the third rule with premise allPos(l′, T), and analogously if b = F .

Soundness proofs. To show soundness, it is convenient to use the alternative characterization
in terms of approximated proof trees given in Section 4, as detailed below. First of all, from
Proposition 3.10, D ⊆

⋂
{FnI(Ind(Itγ)) | n ≥ 0}. Hence, to prove D ⊆ S, it is enough to show

that
⋂
{FnI(Ind(Itγ)) | n ≥ 0} ⊆ S. Moreover, by Theorem 4.10, for all n ∈ N, judgements

in FnI(Ind(Itγ)) are those which have an approximated proof tree of level n. Hence, to prove
the above inclusion, we can show that all judgements, which have an approximated proof
tree of level n for each n, are in S or equivalently, by contraposition, that judgements, which
are not in S, that is, non-valid judgements, fail to have an approximated proof tree of level
n for some n.

We illustrate the technique again on the example of allPos. We have to show that, for
each allPos(l, b) 6∈ SallPos, there exists n ≥ 0 such that allPos(l, b) cannot be proved by
using coaxioms at level greater than n. By cases:

• If l contains a (first) non-positive element, hence
l = x1::. . .::xn::x::l′ with xi > 0 for i ∈ [1..n], x ≤ 0, then, assuming that coaxioms can
only be used at a level greater than n+ 1, allPos(l, b) can only be derived by instantiating
n times the third rule, and once the second rule, hence b cannot be T.
• If l contains only positive elements, then it is immediate to see that there is no finite proof

tree for allPos(l, F).

6. Taming coaxioms: advanced examples

In this section we will present some more examples of situations where coaxioms can help to
define judgements on non-well-founded structures. These more involved examples will serve
for explaining how to use coaxioms, which kind of problems they can cope with, and how
complex can be the interaction between coaxioms and standard rules.

6.1. Mutual recursion. Circular definitions involving inductive and coinductive judge-
ments have no semantics in standard inference systems, because all judgements have to be
interpreted either inductively, or coinductively. The same problem arises in the context
of coinductive logic programming [SBMG07], where a logic program has a well-defined
semantics only if inductive and coinductive predicates can be stratified: each stratum defines
only inductive or coinductive predicates (possibly defined in a mutually recursive way), and
cannot depend on predicates defined in upper strata. Hence, it is possible to define the
semantics of a logic program only if there are no mutually recursive definitions involving
both inductive and coinductive predicates.

We have already seen that an inductive inference system corresponds to an inference
system with coaxioms where there are no coaxioms, while a coinductive one corresponds to
the case where coaxioms consist of all judgements in U ; however, between these two extremes,
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coaxioms offer many other possibilities thus allowing a finer control on the semantics of the
defined judgements.

There exist cases where two or more related judgements need to be defined recursively,
but for some of them the correct interpretation is inductive, while for others is coinduc-
tive [SMBG06, SBMG07, Anc13, BK16]. In such cases, coaxioms may be employed to
provide the correct definition in terms of a single inference system with no stratification.
However, the interaction between coaxioms and standard rules is not that easy, hence special
care is required to get from the inference system the intended meaning of judgements. In
order to see this, let us consider the judgement path0 (t), where t is an infinite tree7 over
{0, 1}, which holds iff there exists a path starting from the root of t and containing just 0s.
Trees are represented as infinite terms of shape tree(n, l), where n ∈ {0, 1} is the root of the
tree, and l is the infinite list of its direct subtrees. For instance, if t1 and t2 are the trees
defined by the syntactic equations

t1 = tree(0, l1) l1 = t2::t1::l1 t2 = tree(0, l2) l2 = tree(1, l1)::l2

then we expect path0 (t1) to hold, but not path0 (t2).
To define path0 , we introduce an auxiliary judgement is in0 (l) testing whether an

infinite list l of trees contains a tree t such that path0 (t) holds. Intuitively, we expect path0
and is in0 to be interpreted coinductively and inductively, respectively; this reflects the
fact that path0 checks a property universally quantified over an infinite sequence (a safety
property in the terminology of concurrent systems): all the elements of the path must
be equal to 0; on the contrary, is in0 checks a property existentially quantified over an
infinite sequence (a liveness property in the terminology of concurrent systems): the list
must contain a tree t with a specific property (that is, path0 (t) must hold). Driven by this
intuition, one could be tempted to define the following inference system with coaxioms for
all judgements of shape path0 (t), and no coaxioms for judgements of shape is in0 (l):

is in0 (l)

path0 (tree(0, l)) path0 (t)

path0 (t)

is in0 (t::l)

is in0 (l)

is in0 (t::l)

Unfortunately, because of the mutual recursion between is in0 and path0 , the inference
system above does not capture the intended behaviour: is in0 (l) is derivable for every
infinite list of trees l, even when l does not contain a tree t with an infinite path starting
from its root and containing just 0s. Indeed, the coaxiom we added is not really restrictive,
because it allows the predicate path0 to be coinductive, but, since is in0 directly depends
on path0 , it is allowed to be coinductive as well.

To overcome this problem, we can break the mutual dependency between judgements,
replacing the judgement is in0 with the more general one is in, such that is in(t, l) holds
iff the infinite list l contains the tree t. Consequently, we can define the following inference
system with coaxioms:

is in(t, l) path0 (t)

path0 (tree(0, l)) path0 (t) is in(t, t::l)

is in(t, l)

is in(t, t′::l)

Now the semantics of the system corresponds to the intended one, since now is in does
not depend on path0 , hence the coaxioms do not influence the semantics of is in, which
remains inductive as expected. Nevertheless, the semantics is well-defined without the need
of stratifying the definitions into two separate inference systems.

7For the purpose of this example, we only consider trees with infinite depth and branching.
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Following the characterization in terms of proof trees and the proof techniques provided
in Section 4 and Section 5, we can sketch a proof of correctness. Let S be the set where
elements have either shape path0 (t), where t represents a tree with an infinite path of just
0s starting from its root, or is in(t, l), where l represents an infinite list containing the tree
t; then a judgement belongs to S iff it can be derived in the inference system with coaxioms
defined above.

Completeness. We first show that the set S is a post-fixed point, that is, it is consistent
w.r.t. the inference rules, coaxioms excluded. Indeed, if t has an infinite path of 0s, then
it has necessarily shape tree(0, l), where l must contain a tree t′ with an infinite path of
0s. Hence, the inference rule for path0 can be applied with premises is in(t′, l) ∈ S, and
path0 (t′) ∈ S. If an infinite list contains a tree t, then it has necessarily shape t′::l where,
either t = t′, and hence the axiom for is in can be applied, or t 6= t′ and t is contained in l,
and hence the inference rule for is in can be applied with premise is in(t, l) ∈ S.

We then show that S is bounded by the closure of the coaxioms. For the elements of
shape path0 (t) it suffices to directly apply the corresponding coaxiom; for the elements of
shape is in(t, l) we can show that there exists a finite proof tree built possibly also with
the coaxioms by induction on the first position (where the head of the list corresponds to
0) in the list where t occurs. If the position is 0 (base case), then l = t::l′, and the axiom
can be applied; if the position is n > 0 (inductive step), then l = t′::l′ and t occurs in l′

at position n − 1, therefore, by induction hypothesis, there exists a finite proof tree for
is in(t, l′), therefore we can build a finite proof tree for is in(t, l) by applying the inference
rule for is in.

Soundness. We first observe that the only finite proof trees that can be derived for is in(t, l)
are obtained by application of the axiom for is in, hence is in(t, l) holds iff there exists a
finite proof tree for is in(t, l) built with the inference rules for is in. Then, we can prove
that, if is in(t, l) holds, then t is contained in l by induction on the inference rules for is in.
For the axiom (base case) the claim trivially holds, while for the other inference rule we
have that if t belongs to l, then trivially t belongs to t′::l.

For the elements of shape path0 (t) we first observe that by the coaxioms they all trivially
belong to the closure of the coaxioms. Then, any proof tree for path0 (t) must be infinite,
because there are no axioms but only one inference rule for path0 where path0 is referred in
the premises; furthermore, such a rule is applicable only if the root of the tree is 0. We have
already proved that if is in(t, l) is derivable, then t belongs to l, therefore we can conclude
that if path0 (t) is derivable, then t contains an infinite path starting from its root, and
containing just 0s.

6.2. A numerical example. It is well-known that real numbers in the closed interval [0, 1]
can be represented by infinite sequences (di)i∈N+ of decimal8 digits, where N+ denotes the
set of all positive natural numbers. Indeed, (di)i∈N+ represents the real number which is the

limit of the series
∑∞

i=1 10−idi in the standard complete metric space of real numbers (such
a limit always exists by completeness, because the associated sequence of partial sums is
always a Cauchy sequence). Such a representation is not unique for all rational numbers in
[0, 1] (except for the bounds 0 and 1) that can be represented by a finite sequence of digits

8Of course the example can be generalized to any base B ≥ 2.
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followed by an infinite sequence of 0s; for instance, 0.42 can be represented either by the
sequence 420̄, or by the sequence 419̄, where d̄ denotes the infinite sequence containing just
the digit d.

For brevity, for r = (di)i∈N+ , JrK denotes
∑∞

i=1 10−idi (that is, the real number
represented by r). We want to define the judgement add(r1, r2, r, c) which holds iff
Jr1K + Jr2K = JrK + c with c an integer number; that is, add(r1, r2, r, c) holds iff the addition
of the two real numbers represented by the sequences r1 and r2 yields the real number
represented by the sequence r with carry c. We will soon discover that, to get a complete
definition for add , c is required to range over a proper superset of the set {0, 1}, differently
from what one could initially expect.

We can define the judgement add by an inference system with coaxioms as follows. We
represent a real number in [0, 1] by an infinite list of decimal digits, which, therefore, can
always be decomposed as d::r, where d is the first digit (corresponding to the exponent −1),
and r is the rest of the list of digits. Hence, in the definition below, r, r1, r2 range over
infinite lists of digits, d1, d2 range over decimal digits (between 0 and 9), c is an integer and
÷ and mod denote the integer division, and the remainder operator, respectively.

add(r1, r2, r, c)

add(d1::r1, d2::r2, (s mod 10)::r, s÷ 10)
s = d1 + d2 + c

add(r1, r2, r, c)
c ∈ {−1, 0, 1, 2}

As clearly emerges from the proof of completeness provided below, besides the obvious
values 0 and 1, the values −1 and 2 have to be considered for the carry to ensure a complete
definition of add because both add(0̄, 0̄, 9̄,−1) and add(9̄, 9̄, 0̄, 2) hold, and, hence, should
be derivable; these two judgements allow the derivation of an infinite number of other valid
judgements, as, for instance, add(10̄, 10̄, 19̄, 0) and add(19̄, 19̄, 40̄, 0), respectively, as shown
by the following infinite derivations:

...

add(0̄, 0̄, 9̄,−1)

add(0̄, 0̄, 9̄,−1)

add(10̄, 10̄, 19̄, 0)

...

add(9̄, 9̄, 0̄, 2)

add(9̄, 9̄, 0̄, 2)

add(19̄, 19̄, 40̄, 0)

Also in this case we can sketch a proof of correctness: for all infinite sequences of decimal
digits r1, r2 and r, and all c ∈ {−1, 0, 1, 2}, add(r1, r2, r, c) is derivable iff Jr1K+Jr2K = JrK+c.

Completeness. By the coaxioms we trivially have that each element of shape add(r1, r2, r, c)
such that Jr1K + Jr2K = JrK + c with c ∈ {−1, 0, 1, 2} belongs to the closure of the coaxioms.

To show that the unique inference rule of the system is consistent with the set of all valid
judgements, let us assume that Jr′1K + Jr′2K = Jr′K + c′ with r′1 = d1::r1, r′2 = d2::r2, r′ = d::r
and c′ ∈ {−1, 0, 1, 2}. Let us set s = 10c′ + d, and c = s− d1 − d2, then s mod 10 = d and
s÷ 10 = c′, and we get the desired conclusion of the inference rule, and the side condition
holds; it remains to show that Jr1K + Jr2K = JrK + c with c ∈ {−1, 0, 1, 2}.

We first observe that by the properties of limits w.r.t. the usual arithmetic operations,
and by definition of J−K, for all infinite sequence r of decimal digits, if r = d::r′, then
JrK = 10−1(d+ Jr′K); then, from the hypotheses we get the equality d1 + Jr1K + d2 + Jr2K =
d+JrK+10c′, hence d1 +Jr1K+d2 +Jr2K = JrK+s, and, therefore, Jr1K+Jr2K = JrK+c; finally,
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c is an integer because it is an algebraic sum of integers, and, since c = Jr1K + Jr2K − JrK,
and 0 ≤ Jr1K , Jr2K , JrK ≤ 1, we get c ∈ {−1, 0, 1, 2}.

Soundness. Let r′1 = d1::r1, r′2 = d2::r2, and r′ = d::r be infinite sequences of decimal digits,
and c′ ∈ {−1, 0, 1, 2}; we note that the judgement add(r′1, r

′
2, r
′, c′) can only be derived from

the unique inference rule where the premise is the judgement add(r1, r2, r, c) with c equal to
10c′ + d− d1 − d2 and must range over {−1, 0, 1, 2}.

To prove soundness we show that if Jr′1K + Jr′2K 6= Jr′K + c′, then the judgement
add(r′1, r

′
2, r
′, c′) cannot be derived in the inference system. Let us set δ′ = | Jr′K + c′ −

Jr′1K − Jr′2K |; obviously, under the hypothesis Jr′1K + Jr′2K 6= Jr′K + c′, we get δ′ > 0. In
particular, the following fact holds: if δ′ ≥ 4 · 10−1, then 10c′ + d− d1 − d2 6∈ {−1, 0, 1, 2}.
Indeed, by the identity JrK = 10−1(d + Jr′K) already used for the proof of completeness,
we have that δ′ = 10−1δ with δ = | JrK + c − Jr1K − Jr2K |, with c = 10c′ + d − d1 − d2;
10−1(JrK + c − Jr1K − Jr2K) ≥ 4 · 10−1 implies c ≥ 3 (Jr1K , Jr2K , JrK ∈ [0, 1]), and, hence,
c = 10c′+d−d1−d2 6∈ {−1, 0, 1, 2}. On the other hand, 10−1(JrK+c−Jr1K−Jr2K) ≤ −4·10−1

implies c ≤ −2, hence c = 10c′ + d− d1 − d2 6∈ {−1, 0, 1, 2}.
By virtue of this fact, and thanks to the hypotheses, we can prove by arithmetic

induction over n that for all n ≥ 1, if δ′ ≥ 4 · 10−n, then there exist only finite proof trees
for add(r′1, r

′
2, r
′, c′) where the coaxioms are applied at most at depth n− 1. The base case

is directly derived from the previously proven fact. Indeed, for n = 1, we can only derive
add(r′1, r

′
2, r
′, c′) by directly applying the coaxiom. For the inductive step we observe that

all derivation of depth greater than 1 are built applying the inference rule as first step.
If such rule is applicable for deriving the conclusion add(r′1, r

′
2, r
′, c′), then we can apply

the inductive hypothesis for the premise add(r1, r2, r, c) since we have already shown that

δ′ = 10−1δ, therefore δ ≥ 4 · 10−(n−1).
We can now conclude by observing that if Jr′1K + Jr′2K 6= Jr′K + c′, then there exists n

such that δ′ ≥ 4 · 10−n, therefore, by the previous result, we deduce that it is not possible to
build a finite tree for add(r′1, r

′
2, r
′, c′) where the coaxioms are applied at arbitrary depth k

(in particular, k is bounded by n− 1); therefore add(r′1, r
′
2, r
′, c′) cannot be derived in the

inference system.

From the proof of soundness we can also deduce that if we let c range over Z, then the
inference system becomes unsound; for instance, it would be possible to build the following
infinite proof for add(0̄, 0̄, 0̄, 1) where all nodes clearly belong to the closure of the coaxioms,
and, hence, add(0̄, 0̄, 0̄, 1) would be derivable, but J0̄K + J0̄K 6= J0̄K + 1:

...

add(0̄, 0̄, 0̄, 101)

add(0̄, 0̄, 0̄, 100)

6.3. Distances and shortest paths on weighted graphs. As we already said, another
widespread non-well-founded structure are graphs. In Section 2, we have shown a first

examples concerning graphs, defining the judgements v
?→N , stating that N is the set of

nodes reachable from v in the graph. Essentially, the proposed definition performs a visit
of the graph, keeping track of all encountered nodes. The same pattern can be adopted
to solve more complex problems. For instance, in this section we will deal with distances
between nodes in a weighted graph.
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dist(e, e, 0)

...

dist(b, e, δ1)

dist(a, e, δ1)
δ1 ≤ 5

dist(c, e, 1 + δ1)

dist(e, d, ∞)

...

dist(b, e, δ2)

dist(a, d, δ2)

Figure 2: Infinite proof trees for dist(c, e, 1 + δ1) and dist(a, d, δ2)

Let us introduce the notion of weights for graphs. In a graph (V, adj) the set of edges
is the set E ⊆ V× V defined by E = {(v, u) ∈ V× V | u ∈ adj(v)}. We will often write vu
for an edge (v, u) ∈ E. A weight function is a function w : E→ N. Here we consider natural
numbers as codomain, however we could have considered any other set of non-negative
numbers. Hence, a weighted graph is a graph (V, adj) together with a weight function w.

In a weighted graph G, the weight of a path α is the sum of the weights of the edges
(counting repetitions) determined by α, we denote this by w(α). Note that in general the
weight of a path α is different from its length, defined as the number of edges (counting
repetitions) determined by the path and denoted by ‖α‖. The distance between nodes v
and u is defined as the minimum weight of a path connecting v to u, it is infinite if no such
path exists. Below we show the inference system with coaxioms defining the judgement
dist(v, u, δ) on a weighted graph, where δ ∈ N ∪ {∞}.

dist(v, v, 0) dist(v, u, ∞)

v 6= u
adj(v) = ∅ dist(v, u, ∞)

v 6= u

dist(v1, u, δ1) . . . dist(vk, u, δk)

dist(v, u, δ)

v 6= u
adj(v) = {v1, . . . , vk} 6= ∅
δ = min{w(vv1) + δ1, . . . , w(vvk) + δk}

In order to show that we cannot simply consider the coinductive interpretation of the above
inference system, and therefore we need coaxioms, let us consider the following weighted
graph:

e b

d a c

0

2

0
5

1

If we would interpret the inference system coinductively we can derive judgements like
dist(c, e, δ) for any δ ∈ [1..5] or dist(a, d, δ) for any δ ∈ N∪{∞}, as shown in Figure 2. The
issue here is the cycle that, having total weight equal to 0, allows us to build cyclic proofs
without increasing the value of δ. Therefore, the coaxiom is needed to filter out such proofs.
Indeed, it is easy to see that it is not possible to build a finite proof tree for judgements
proved in Figure 2 starting from the coaxiom.

Now we will sketch a proof of correctness. We can formulate the correctness statement
as follows: dist(v, u, δ) is derivable iff δ is the minimum of w(α) for all paths α from v to u.

Completeness. Let us consider a judgement dist(v, u, δ) where δ is the minimum of w(α)
for α a path from v to u. If v = u, then δ = 0 and so the judgement is the consequence of
the first axiom. If adj(v) = ∅, then δ =∞ and so the judgement is the consequence of the
second axiom. Otherwise, note that α = vβ where β is a path from a node v′ ∈ adj(v) to
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u, hence w(α) = w(vv′) + w(β). Furthermore, if there were another path β′ from the node
v′ to u with w(β′) < w(β), then the path vβ′ would be such that w(vβ′) < w(α) = δ, that
is absurd, hence dist(v′, u, w(β)) is a valid judgement. Moreover, note that for any other
vi ∈ adj(v), with dist(vi, u, δi) a valid judgement, we have δ ≤ w(vvi) + δi, since, otherwise,
we could build a path from v to u with weight smaller than δ, that is absurd. Therefore,
dist(v, u, δ) is the consequence of the inference rule and its premises are valid judgements,
and this shows that the specification is a consistent set.

In order to show the boundedness condition, we have to build a finite proof tree for
dist(v, u, δ) (chosen as before) using coaxioms as axioms. If there is no path from v to u,
then v 6= u and δ = ∞, hence we can apply the coaxiom. Otherwise, there is a path α
from v to u with w(α) = δ. We proceed by induction on the length of α. If ‖α‖ = 0, then
v = u and δ = 0, hence we can apply the first axiom. If ‖α‖ = n+ 1, then α = vv′β with
‖v′β‖ = n, v′ ∈ adj(v), w(v′β) = δ′ and δ = w(vv′) + δ′. By induction hypothesis, we get
that dist(v′, u, δ′) is derivable, then we get a proof tree for dist(v, u, δ) by applying the
inference rule with consequence dist(v, u, δ) and for each v′′ ∈ adj(v) a premise dist(v′′, u, ∞)
if v′′ 6= v′ and v′′ 6= u, which is derivable by the coaxiom, dist(v′′, u, 0) if v′′ = u, which is
derivable by the first axiom, and dist(v′′, u, δ′) if v′′ = v′, which is derivable by induction
hypothesis.

Soundness. To proove soundness, we first show some useful facts.

Fact 6.1. For all proof trees t for a judgement dist(v, u, δ), there exists a path α from v to
u with ‖α‖ = n iff there exists a node in t at depth n labelled by dist(u, u, 0).

Proof. Let t be a proof tree for dist(v, u, δ). We prove separately the two implications.

⇒: Let α be a path from v to u. We proceed by induction on the length of α. If ‖α‖ = 0
(base case), then v = u, hence dist(v, u, δ) has been derived by applying the first axiom,
and this implies δ = 0. Therefore, the root of t (at depth 0) is labelled by dist(u, u, 0). If
‖α‖ = n+ 1 (inductive step), then α = vβ where β is a path from a node v′ to u of length
n. Therefore, dist(v, u, δ) has been derived by applying the inference rule, hence there is
a direct subtree of t rooted in dist(v′, u, δ′), where, by induction hypothesis, dist(u, u, 0)
occurs at depth n. Thus, in t that judgement occurs at depth n+ 1 as needed.

⇐: We proceed by induction on the depth n. If dist(u, u, 0) occurs at depth 0 (base case),
then it is the root of t, hence v = u and the searched path is the singleton path u. If
it occurs at depth n+ 1 (inductive step), then the depth of t is greater than 0, hence
dist(v, u, δ) has been derived by applying the inference rule. Therefore, dist(u, u, 0)
belongs to a direct subtree t′ of t rooted in dist(v′, u, δ′) with v′ ∈ adj(v), and it occurs
in t′ at depth n. Thus, by induction hypothesis, there is a path β from v′ to u of length
n, hence the path vβ of length n+ 1 connects v to u.

Fact 6.2. For all proof trees t, t is rooted in dist(v, u, ∞) iff all nodes in t are of shape
dist(v′, u, ∞).

Proof. Consider a proof tree t. The implication ⇐ is trivial. Let us prove the other one.
We can rephrase the thesis as follows: if the root of t is dist(v, u, ∞), then, for all n ∈ N,
all nodes of t at depth n have shape dist(v′, u, ∞). Thus, we can proceed by induction on
the depth n. If the depth is 0 (base case), then there is only one node at depth 0, which is
the root dist(v, u, ∞), hence the thesis follows immediately by hypothesis. If the depth is
n+ 1 (inductive step), then consider a node dist(v′, u, δ) at depth n+ 1. By definition, it
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is the child of a node at depth n, that, by induction hypothesis, is of shape dist(v′′, u, ∞).
Therefore, the inference rule has been applied, and, since the conclusion is dist(v′′, u, ∞), all
premises dist(v′i, u, δi) with i ∈ {1, . . . , k} are such that δi =∞, since min{δ1, . . . , δk} ≥ ∞.
Then, by construction, we have v′ = v′j and δ = δj for some j ∈ {1, . . . , k}, hence we get the
thesis.

Fact 6.3. If dist(v, u, δ) with δ ∈ N has an approximated proof tree (of any level), then
there exists a path α from v to u such that w(α) = δ.

Proof. Since approximated proof trees are well-founded by Definition 4.8, we can proceed by
induction on the tree structure. If the tree has a single node (base case), then, since δ ∈ N,
we have necessarily applied the first axiom, hence v = u and the searched path is the trivial
one, which has weight 0. If the tree is compound (inductive step), we have necessarily applied
the inference rule, hence there is a direct subtree rooted in dist(v′, u, δ′) with v′ ∈ adj(v)
and δ = w(vv′) + δ′. Then, by induction hypothesis, there is a path α′ from v′ to u with
w(α′) = δ′, hence the path α = vα′ from v to u is such that w(α) = w(vv′) + w(α′) = δ, as
needed.

Fact 6.4. If dist(v, u, δ) has an approximated proof tree of level n, then δ ≤ w(α) for all
paths α from v to u with ‖α‖ ≤ n.

Proof. First note that, if v = u, then the only applicable rule is the first axiom, hence δ = 0
and the thesis trivially holds, since 0 is the least possible weight. So, let us assume v 6= u
and proceed by induction on the level n. If the level is 0 (base case), then there is no
path from v to u with length 0, hence we have to show δ ≤ ∞, which is always true. If
the level is n+ 1 (inductive step), then, since the level is greater than 0, we have applied
either the second axiom or the inference rule. In the former case, there is no path from
v to u since adj(v) = ∅, hence the thesis trivially holds. In the latter case, assume that
adj(v) = {v1, . . . , vk}, hence the premises of the rule are dist(vi, u, δi) for i ∈ {1, . . . , k}
and δ = min{w(vv1) + δ1, . . . , w(vvk) + δk}. Now, consider a path α from v to u with
‖α‖ ≤ n+ 1, hence α = vαi with αi a path from vi to u for some vi ∈ adj(v) with ‖αi‖ = n.
Therefore, w(α) = w(vvi) + w(αi), and, by induction hypothesis, δi ≤ w(αi), hence we get
δ ≤ w(vvi) + δi ≤ w(vvi) + w(αi) = w(α) as needed.

To prove soundness, we have to show that each derivable judgement is valid. For
judgements of shape dist(v, u, ∞) the thesis follows immediately from Fact 6.1 and Fact 6.2.
Hence, let us assume δ ∈ N. By Corollary 4.11, the judgement has an approximated proof
tree for each level n ∈ N. Hence, by Fact 6.4, δ ≤ w(α) for all paths α from v to u with
‖α‖ ≤ n for each n ∈ N, that is, simply δ ≤ w(α) for all paths α from v to u. Furthermore,
by Fact 6.3, δ = w(β) for some path β from v to u, thus dist(v, u, δ) is valid.

The notion of distance is tightly related to paths in a graph G. Actually, from the above
proofs, it is easy to see that a proof tree for a judgement dist(v, u, δ) explores all possible
paths from v to u in the graph in order to compute the distance. Therefore, in some sense,
it also finds the shortest path from v to u. Hence, with a slight variation of the inference
system for the distance, we can get an inference system for the judgement spath(v, u, α, δ)
stating that α is the shortest path from v to u with weight δ. We add to paths a special
value ⊥ that represents the absence of paths between two nodes, with the assumption that
v⊥ = ⊥. The definition is reported in Figure 3.
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spath(v, v, v, 0) spath(v, u, ⊥, ∞)

v 6= u
adj(v) = ∅ spath(v, u, ⊥, ∞)

spath(v1, u, α1, δ1) . . . spath(vk, u, αk, δk)

spath(v, u, vαi, w(vvi) + δi)

v 6=u

adj(v)={v1,...,vk}6=∅

i=argmin{w(vv1)+δ1,...,w(vvk)+δk}

Figure 3: Inference system with coaxioms for spath(v, u, α, δ).

Syntax of terms and values

e ::= v | x | e e v ::= λx.e v∞ ::= v | ∞

Semantic rules

(coax)
e⇒∞

(val)
v ⇒ v

(app)
e1 ⇒ λx.e e2 ⇒ v e[x← v]⇒ v∞

e1 e2 ⇒ v∞

(l-inf)
e1 ⇒∞
e1 e2 ⇒∞

(r-inf)
e1 ⇒ v e2 ⇒∞

e1 e2 ⇒∞

Figure 4: Call-by-value big-step semantics of λ-calculus with divergence

6.4. Big-step operational semantics with divergence. It is well-known that divergence
cannot be captured by the big-step operational semantics of a programming language when
semantic rules are interpreted inductively (that is, in the standard way) [LG09, Anc12, Anc14].
When rules are interpreted coinductively some partial result can be obtained under suitable
hypotheses, but a practical way to capture divergence with a big-step operational semantics
is to introduce two different forms of judgement [CC92, LG09]: one corresponds to the
standard big-step evaluation relation, and is defined inductively, while the other one captures
divergence, and is defined coinductively in terms of the inductive judgement, thus requiring
stratification.

With coaxioms a unique judgement can be defined in a more direct and compact way.
Here we show how this is possible for the standard call-by-value operational semantics of the
λ-calculus, but other and more complex applications of coaxioms to model infinite behaviour
of programs can be found in [ADZ17c, ADZ18]. For soundness and completeness proofs of
this example we refer to [ADZ17c].

Figure 4 defines syntax, values, and semantic rules. The meta-variable v ranges over
standard values, that is, lambda abstractions, while v∞ includes also divergence, represented
by ∞. The evaluation judgement has the general shape e ⇒ v∞, meaning that either e
evaluates to a value v (when v∞ 6=∞) or diverges (when v∞ =∞).

For what concerns the semantic rules, only a coaxiom is needed, stating that every
expression may diverge. This ensures that ∞ is the only allowed outcome for the evaluation
of an expression which diverges; this can only happen when the corresponding derivation
tree is infinite. Rule (val) is standard. Rule (app) deals with the evaluation of application
when both expressions e1 and e2 do not diverge; the meta-variable v is required for the
judgement e2 ⇒ v to guarantee convergence of e2, while v∞ is used for the result of the
whole application, since the evaluation of the body of the lambda abstraction could diverge.
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As usual, e[x← v] denotes capture-avoiding substitution modulo α-renaming. Rules (l-inf)
and (r-inf) cover the cases when either e1 or e2 diverges when trying to evaluate application,
assuming that a left-to-right evaluation strategy has been imposed.

As a paradigmatic example, we consider the expression e∆ = (λx.x x)λx.x x and show
that the only judgement derivable for it is e∆ ⇒ ∞. To this end, we first disregard the
coaxiom and exhibit an infinite derivation tree for the judgement e∆ ⇒ v∞, which is valid
for all v∞:

(app)

(val)
λx.x x⇒ λx.x x

(val)
λx.x x⇒ λx.x x

(app)

...

(x x)[x← λx.x x]⇒ v∞

(x x)[x← λx.x x] = e∆ ⇒ v∞

In this particular case the derivation tree is also regular, but of course there are
examples of divergent computations whose derivation tree is not regular. The vertical dots
indicate that the derivation continues with the same repeated pattern. This derivation
shows that the coinductive interpretation of the rules in Figure 4 has a non-deterministic
behaviour, as happens for the coinductive interpretation of the standard big-step semantics
rules [LG09, Anc12]. However, here the coaxiom plays a crucial role: it allows us to filter
out all undesired values, leaving only the value ∞, which represents divergence. Indeed, if
we take into acount the coaxiom, we have also to construct finite derivations, where the
coaxiom can be used as an axiom.

For the expression e∆, we can build such finite derivations only for the judgement
e∆ ⇒ ∞. More precisely, we can easily prove by induction that, if e∆ ⇒ v∞ has a finite
proof tree, then v∞ =∞. Indeed, there are only two cases: if we have applied the coaxiom,
the thesis is immediate, and, if we have applied the rule (app), then there is a premise
e∆ ⇒ v∞, hence v∞ =∞ holds by induction hypothesis.

As a consequence, in the inference system with the coaxiom, the only derivable judgement
for e∆ is e∆ ⇒∞.

7. From coaxioms to corules

As already mentioned, the notion of coaxiom presented in this work has been inspired by
operational models for object-oriented and logic programming proposed in [AZ12, AZ13,
Anc13]. Intuitions behind such models lead us to develop a theory where rules added to
an inference system in order to control its semantics have no premises. In addition, this
restriction to coaxioms (rules with no premises) is also motivated by the fact that, in all
examples we have considered, they are enough to get the intended semantics.

However, as we will briefly sketch in this section, all the notions presented until now
smoothly generalize to the case where we can add to an inference system arbitrary rules,
with a meaning analogous to the one of coaxioms. For this reason such rules are named
corules, and are denoted in the same way as coaxioms. Furthermore, this extension seems to
be needed to deal with more complex examples like those we consider in [ADZ18].

Let us introduce the concept more formally.

Definition 7.1. An inference system with corules is a pair (I, Ico) where I and Ico are
inference systems. Elements of Ico are called corules.

The semantics is defined in two steps in analogy with coaxioms:
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(1) first we consider the inference system I ∪ Ico and take its inductive interpretation
Ind(I ∪ Ico)

(2) then, we take the coinductive interpretation of I restricted to rules having consequence
in Ind(I ∪ Ico)

Using a notation similar to the one used for coaxioms we have that

Gen(I, Ico) = CoInd(IuInd(I∪Ico))

It is easy to see that an inference systems with coaxioms is a inference system with
corules where all corules have no premises.

As we have done for coaxioms, in order to characterize Gen(I, Ico) as a fixed point of
FI , we study the analogous construction in the general framework of complete lattices.

Consider two monotone functions F ,G : L → L defined on a complete lattice (L, v).
We can consider the monotone function F tG defined as the pointwise join of F and G .
Then, we define the bounded fixed point of F generated by G , as Gen(F ,G) = ∆F (µ(F tG)).
This is a fixed point of F thanks to Proposition 3.6, since µ(F tG) is the least (pre-)fixed
point of F tG and it is easy to check that all pre-fixed points of F tG are pre-fixed point
of F .

Note that, in the case where G is the constant function x 7→ γ, we get F tG = Ftγ ,
hence we have Gen(F ,G) = Gen(F , γ), that is, this construction is a generalization of the
bounded fixed point generated by an element.

Then, it is easy to see that Gen(I, Ico) = Gen(FI ,FIco), because FI∪Ico = FI ∪ FIco .
Therefore Gen(I, Ico) is really a fixed point of FI as expected.

On the proof-theoretic side all notions smoothly generalize to this case, indeed, we have
that j ∈ Gen(I, Ico) if and only if there is an arbitrary proof tree in I for j , whose nodes
have a well-founded derivation in I ∪ Ico. Also the construction of approximated proof trees
is the same, only the starting point changes: this time we start from the set of well-founded
proof tree in I ∪ Ico.

Proof techniques introduced for coaxioms can be applied also to this more general case,
in particular the bounded coinduction principle can be formulated as follows: if S ⊆ U and

(1) S ⊆ Ind(I ∪ Ico) and
(2) S ⊆ FI(S)

then, S ⊆ Gen(I, Ico).
At this point a natural question arises: are corules more expressive than coaxioms?

Here more expressive means that they are able to capture more fixed points than coaxioms.
However, considering monotone functions F ,G : L→ L, we know from Proposition 3.8, that
all fixed points of F can be expressed as bounded fixed points generated by themselves, that
is, if z ∈ L is a fixed point, then z = Gen(F , z). Therefore, since Gen(F ,G) is a fixed point
of F , there must be z ∈ L, such that Gen(F ,G) = Gen(F , z), in particular we can choose
z = µ(F tG).

Therefore at this level, adding corules does not change the expressive power of our
framework. However, it seems that there are cases where corules are fundamental for
expressing some definitions, as in [ADZ18]. We think that this apparently inconsistency is
due to the fact that, in common practice, definitions are expressed through a finite set of
finitary meta-rules, while the theory is developed for plain rules (with no variables), and
the translation from meta-rules to rules is always left implicit. Hence, in order to better
understand the relationship between coaxioms and corules we need a formal treatment of
definitions given by meta-rules, like in [MT03, BS11], that is matter of further work.
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8. Related work

Inference systems [Acz77, San11] are widely adopted to formally define operational semantics,
language translations, type systems, subtyping relations, deduction calculi, and many
other relevant judgements. Although inference systems have been introduced to deal with
inductive definitions, in the last two decades several authors have focused on their coinductive
interpretation.

Cousot and Cousot [CC92] define divergence of programs by coinductive interpretation
of an inference system that extends the big-step operational semantics. The same approach
is followed by other authors [HM95, Sch98, LG09]. Leroy and Grall [LG09] analyse two kinds
of coinductive big-step operational semantics for the call-by-value λ-calculus, and study
their relationships with the small-step and denotational semantics, and their suitability for
compiler correctness proofs. Coinductive big-step semantics is used as well to reason about
cyclic objects stored in memory [MT91, LR98], and to prove type soundness in Java-like
languages [Anc12, Anc14]. Coinductive inference systems are also considered in the context
of type analysis and subtyping for object-oriented languages [AL09, AC14].

On the programming language side, coinduction is adopted to provide primitives help-
ing the programmer dealing with infinite objects. Examples can be found both in logic
programming [SMBG06, SBMG07, KJ15] and in functional programming [Hag87, BW88].
Recently, other approaches have been proposed to support coinduction in a more flexible
way. We can find contributions in all most popular paradigms: logic [Anc13, MRM14],
functional [JKS13, JKS17] and object-oriented [AZ12, AZ13]. As a consequence, these
proposals are more focused on operational aspects, and their corresponding implementation
issues. Here we discuss those approaches most closely related to coaxioms.

The logic paradigm naturally supports coinduction. Indeed, a logic program, like an
inference system, has an associated monotone function on a suitable power-set lattice, and its
declarative semantics is defined as a fixed point of such function [Llo87]; hence, considering
the greatest fixed point enables coinduction. To support non-well-founded objects, the
semantics is defined in the power-set of the complete Herbrand basis, which is the set of all
ground atoms built on finite and infinite terms for the program signature [Llo87].

In order to support at the same time both inductive and coinductive predicates,
in [SMBG06, SBMG07] a stratified semantics is proposed: essentially the semantics is
well-defined only if there is no mutual dependency beween inductive and coinductive predi-
cates.

On the operational side, two sound resolution strategies have been proposed: CoSLD
resolution [SMBG06, SBMG07, AD15] and structural resolution [KJ15]. The former strategy
represents infinite objects through regular terms, that is, terms that can be represented,
through unification, as a finite set of syntactic equations [AMV06], hence only cyclic objects
are supported. Then, the resolution is essentially based on a loop detection mechanism
and accepts all cyclic derivations. On the other hand, the latter adopts a lazy approach,
working with finite approximation of infinite objects, hence it requires programs to be
productive, in order to ensure it is able to construct such finite approximation. Differently
from CoSLD, structural resolution can accept also non-cyclic derivations, but cannot deal
with non-productive programs, while coSLD can.

Since coSLD aims to capture all coinductively derivable atoms, it accepts all cyclic
proofs, but in some cases this behaviour is too rigid. To allow more flexible behaviours,
in [Anc13, MRM14] other operational models are provided. In particular, the notion of
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finally clause, introduce by Ancona [Anc13], allows the programmer to specify a fact that
should be resolved when a cycle is detected, instead of simply accepting the atom. In this
way, predicates that are neither purely inductive nor purely coinductive can be defined and
used in a logic program.

The notion of finally clause has inspired coaxioms as described in the introduction.
However, despite the existing strong correlation with coaxioms, the semantics of finally
clauses does not always coincide with a fixed point of the inference operator induced by the
program. This is a relevant difference with coaxioms, that, instead, always generate a fixed
point.

To overcome this issue of the finally clause, we have designed an extension of coinductive
logic programming supporting coaxioms, in this context called cofacts [ADZ17a]. Here the
declarative semantics is based on the bounded fixed point, and the resolution procedure is a
combination of standard SLD and coSLD resolutions: when the latter discovers a loop, then
a standard SLD resolution is triggered, which takes into account also cofacts. We have also
implemented a prototype meta-interpreter in SWI-Prolog9.

In the object-oriented paradigm cyclic objects are usually managed relying on imperative
features, thus the language does not provide any native support for computing with such
objects. The programmer has to implement ad-hoc machinery to deal with cyclic objects in
an appropriate way, and this is often involved and error-prone.

In order to overcome these difficulties, Ancona and Zucca [AZ12, AZ13] have proposed
an extension of Featherweight Java (FJ) [IPW99]: corecursive Featherweight Java (coFJ).
This is a purely functional core calculus for Java-like languages supporting cyclic objects
and corecursive methods.

Cyclic objects are represented by syntactic equations. They cannot be directly written
by the programmer, but only built during the execution by corecursive methods. Analogously
to the coSLD, each corecursive call is evaluated in an environment associating to already
encountered calls a unique label. If the call is in the environment, then the associated label
is returned as result, otherwise a fresh label is associated to the current call, and the method
body is evaluated in the extended environment; finally, an equation for this new label is
returned as result.

To make the mechanism more flexible, like in the logic paradigm, the authors introduce
a with clause, which is an expression that will be evaluated when a cycle is detected, instead
of simply returning the label, and this provides support for methods that are neither purely
recursive nor purely corecursive. Again like in the logic paradigm, this feature has inspired
coaxioms and is strongly related to them, however the semantics of with clauses may not
always correspond to a fixed point, while coaxioms always generate a fixed point.

9. Conclusions

Inference systems are a general and versatile framework that is well-known and widely used.
They allow to define several kinds of judgements, from operational semantics to type systems,
from deduction calculi to language translations. They can also serve as theory to reason
about recursive definitions, providing a rigorous semantics in a quite simple way.

However, standard inference systems suffer from a strong rigidity: their interpretation
is dichotomous, either inductive (the least one) or coinductive (the greatest one), but what

9Available at http://www.disi.unige.it/person/AnconaD/Software/co-facts.zip

http://www.disi.unige.it/person/AnconaD/Software/co-facts.zip
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can we do if we need something in the middle? One may wonder whether this is a real issue,
but the examples we have provided shows that there are many interesting cases in which
we need a fixed point that is neither the least nor the greatest one, and standard inference
systems are not able to provide such flexibility. Therefore, in this paper we have proposed
an extension of inference systems, aimed to provide more flexibility in such cases, without
affecting standard behaviour.

The core of this paper is the concept of inference system with coaxioms, introduced
in Section 2: a generalized notion of inference system, that subsumes the standard one,
supporting more flexible interpretations.

Our work originates from the operational models, closely related to each other, introduced
by Ancona and Zucca [AZ12, AZ13] and Ancona [Anc13]. As already discussed, these
operational semantics introduce some flexibility for interpreting predicates and functions
recursively defined on non-well-founded data types. The initial objective of our work was to
provide a more abstract semantics for such operational models, hence we developed a first
model in [ADZ16] focused on this aim. However, the result was not satisfactory, since we
managed to capture the semantics of a restricted class of definitions, with a model that was
quite tricky.

Then, we decided to take a more abstract perspective, considering inference systems as
reference framework. In this context we discovered the notion of coaxioms, that convinced
us to be the right one. We firstly proposed it in [ADZ17b] and discussed it in more detail in
the master thesis [Dag17], from which this paper is extracted.

In order to finely describe coaxioms, we have generalized the meta-theory of inference
systems by providing two equivalent semantics, one based on fixed points in a complete
lattice, and the other on the notion of proof tree.

On the model-theoretic side (Section 3), we have defined the bounded fixed point of a
monotone function on a complete lattice generated by an element, which is the greatest
(post-)fixed point of the corresponding one step inference operator, below the least pre-fixed
point above the generator; this turned out to capture the semantics of inference systems
with coaxioms (Theorem 3.14). An important property is that the bounded fixed point
can be obtained as a combination of a least and a greatest fixed point of suitable functions
(Proposition 3.13).

From the proof-theoretic perspective, we have provided three different equivalent se-
mantics. All of them essentially impose a condition on coinductive proof trees10 to be
accepted, induced by coaxioms. In other words, all these conditions allow us to filter out
undesired derivations. Since in literature we have not found a rigorous enough (for our aims)
treatment of the standard proof-theoretic semantics of inference systems, we have developed
our proof-theoretic model in more detail, starting from a very precise notion of tree (see
Section 4.1).

The first characterization (Section 4.2) requires that each judgement in the tree is
derivable with a well-founded proof tree in the extended inference system (the inference system
where coaxioms are considered as axioms). The other two characterizations (Section 4.3)
are based on the notion of approximated proof trees of level n, that are well-founded proof
trees in the extended inference system where coaxioms can only be used at depth greater
than n. We have proved that all these proof-theoretic semantics are equivalent to each other
and to the fixed point semantics.

10Here we mean proof trees valid for the coinductive interpretation, hence both well-founded and non-well-
founded proof trees.
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We have also developed proof techniques to reason with coaxioms (Section 5). For
completeness proofs we have generalized the standard coinduction principle, taking into
account also coaxioms, while for soundness proofs we have described a technique based on
approximated proof trees and reasoning by contraposition.

Finally, in Section 7 we have defined a further extension of our framework, allowing
also corules, that is, rules used in the same way as coaxioms, but that can have non-empty
premises.

Further work. Starting from this work, we identify three main directions for further investi-
gations:

(1) deepening the theory of coaxioms,
(2) defining language constructs to support flexible (co)inductive definitions of data types,

predicates and functions,
(3) using coaxioms/corules to model and reason about infinite behaviours of programs and

systems.

In the first direction, a compelling topic for further developments is exploring other proof
techniques for coaxioms, trying to extend proof techniques known for coinduction to this gen-
eralized framework. Possible examples are techniques based on parametrization [HNDV13],
or up-to techniques [Pou07].

Another important goal we would like to pursue is to provide the support for coaxioms
in a proof assistant, such as Agda [Thea] or Coq [Theb], to have a tool to mechanize proofs.
In type theories supporting inductive and coinductive types [Hag87, APTS13, AP13, Bas18],
like the one at the basis of Agda, we can implement inference systems with coaxioms,
representing proof trees as a coinductive type, where each node is annotated by a finite proof
tree (given by an inductive type). What would be interesting is to hide this construction,
in such a way that the programmer has only to care about specifying rules and coaxioms,
leaving everything else to the engine.

An open problem concerning the interpretation generated by coaxioms is its computabil-
ity. It is quite obvious that in general this set is not decidable, however it could be interesting
to study conditions and/or restrictions that ensure at least that it is semi-decidable. To this
aim, it could be useful trying to provide another proof-theoretic characterization based on
partial proof trees, that are proof trees with assumptions, and form a complete partial order.

Another question concerns the expressive power of this framework. Here for expressive
power we mean how many fixed points of the inference operator we manage to capture using
coaxioms. As we noticed in Section 3, all fixed points can be generated by a set of coaxioms:
it is enough to take as generator the fixed point itself (Proposition 3.8). However, this sounds
not very relevant, since we get something that we already have. Actually inference systems,
and hence inference systems with coaxioms, are never used in the form they are regarded
in the development of the meta-theory, but, rather, they are expressed using a finite set
of meta-rules, leaving implicit the step from meta-rules to plain rules, which, instead, are
considered in the meta-theory. At this level, the above question becomes more interesting,
however, to deal with this problem, we first need to clarify what is an inference system in
terms of meta-rules, filling in the gap between them and plain rule. To this aim, interesting
starting points could be [MT03, BS11], which discuss proof systems for first-order logics
with a notion of inductive and/or coinductive definition. Then, in that setting, we would be
able to reason about the expressive power of the resulting framework.
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Another interesting development is to investigate a variant of the model able to directly
capture the definition of functions, rather than representing them as functional relations.
This would be relevant to more appropriately model language constructs to support flexible
corecursion in functional languages. This variant could also imply a change of framework,
moving from lattice theory to domain or category theory, where the semantics of (co)recursive
definitions of functions is better supported. Therefore a deeper comparison between coaxioms
and category-theoretic or type-theoretic models could be useful.

In the second direction, considering language support for flexible coinduction, we
have already taken the first steps by prividing a support for coaxioms in the logic para-
digm [ADZ17a].

Extending the notion of coaxioms to support more flexible semantics for recursively
defined functions in the object-oriented and functional paradigms is more challenging, due
to the gap between the underlying theories. The simplest idea would be to view functions
as relations, which are the entities managed by inference systems with coaxioms, however
we have always to ensure that the generated fixed point is actually a function, and this is
not always guaranteed.

For the object-oriented paradigm a starting point could be the revision of the operational
semantics of coFJ [AZ12, AZ13] on the basis of the abstract model provided by coaxioms; in
particular, to guarantee that the function denoted by a function definition in coFJ is actually
a fixed point of the induced monotone operator. For the functional paradigm the situation
is even more challenging, since we have to deal with more complex constructs such as higher
order functions and pattern matching. A similar problem is addressed in [JKS13, JKS17],
which could be an interesting starting point.

In the last direction, starting from the example in Section 6.4, it could be interesting to
better study the capabilities of coaxioms to model non-termination. We have already done a
first step in this direction in [ADZ17c], where we apply the approach sketched in Section 6.4
to an imperative FJ-like language, studying in particular application of proof techniques for
coaxioms to prove the soundness of predicates (such as typing relations) with respect to the
operational semantics.

A further extension in this direction would be applying coaxioms to define trace-based
operational semantics [NU09], that allow to capture finer characterizations of the behaviour
of non-terminating programs. In this context, corules seem to be needed to properly define
the semantics, as we started studying in [ADZ18].
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