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ABSTRACT. We give a mathematical analysis of a new type of classical computer network
architecture, intended as a model of a new technology that has recently been proposed
in industry. Our approach is based on groubits, generalizations of classical bits based on
groupoids. This network architecture allows the direct execution of a number of protocols
that are usually associated with quantum networks, including teleportation, dense coding
and secure key distribution.

1. INTRODUCTION

Borrill and Karp have recently introduced the notion of timeless network [Borl6], a new
paradigm for distributed communication currently under commercial development by Earth
Computing'. Inspired by their proposal, we introduce a new network architecture based on
groubits—group-theoretical generalizations of classical bits, with similar behaviour to qubits
in quantum information—and go on to show that groubits can be manipulated to achieve a
wide range of surprising informatic tasks. We give a categorical syntax and semantics for
groubits, and develop a graphical calculus to prove correctness of groubit protocols.

Groubits. A groubit is a computational device storing two ordinary bits (Az, Ar), a logical
bit Ay, and an internal bit Ay, and supporting the primitive operations Init, Swap, Read,
Write and Tick. Some of these operations in turn make use of the procedure Rand, a
function with no arguments which returns either 0 or 1 nondeterministically. We describe
these procedures as follows. The Init operation takes no arguments, and creates a new
groubit in the following state:

e Init = (Rand,0)

Here and throughout, we intend that the Rand function is executed freshly each time. The
Swap operation acts on a groubit, exchanging the logical and internal bits:

e Swap(Ay,Ar) = (A1, Ar)

Conventional single bits [B] can be stored in groubits, using the following read and write
procedures:
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[ Read(AL,AI) = [AL]

e Write[B]| = (B,Rand)

The Read operation destroys a groubit and creates a conventional bit, while the Write
operation destroys a conventional bit and creates a new groubit. By ‘destroy’, we mean that
the corresponding structure is no longer available for interaction; of course, in a real-world
implementation, it may not be physically destroyed, but rather have its informational content
somehow rendered inaccessible. Pairs of groubits can also be connected by a link, enabling
the Tick operation, where A and B label the two connected nodes, and @ is addition
modulo 2:

e Tick((Ar,Ar),(Br,Br))=((AL,Ar®BL),(Br,Bi®AL))
Intuitively, for each node in the pair, we flip the internal bit just when the other node has
logical bit equal to 1. Nodes can belong to multiple links, forming a graph topology.

Assumptions. We make some assumptions about these groubit operations.

e Atomicity. The operations Init, Swap, Read, Write and Tick are atomic; that is,
they either succeed or have no effect at all, with the parties involved being aware which of
these two possibilities has occurred.

e Security. The state of a node cannot be accessed, except via Read.

We emphasize that claims we make about the functionality of groubit networks—in particular,
security properties—rest on the validity of these assumptions.? We suggest that these
assumptions are within the realm of technological plausibility; for example, separation
kernels [Zhal5] are a well-developed technology for guaranteeing strong security properties of
private memory states within embedded devices. Our focus here is on the logical properties
of these devices, rather than on questions of implementation, so we do not discuss these
aspects further. Note however that we do not assume that devices cannot fail; to satisfy the
assumptions, it would be valid for a device to self-destruct if tampering was detected.

1.1. Significance. We claim that groubits have exotic properties making them interesting to
study. In particular, they allow timeout-free atomic message routing (the origin of the term
‘timeless network’), and they have the ability to replicate a variety of quantum protocols.

Message routing. Linear chains of groubits allow message routing between nodes with
guaranteed message atomicity, and without timeouts (see Section 3.1). We understand that
developing this idea is the primary commercial interest of Earth Computing, with a focus
on high-resilience network architectures for data centres; this is potentially significant, since
the timeout properties of the standard TCP transport protocol [[AC99] can cause reliability
issues in a data centre environment [AM15, Borl6].

Quantum behaviour. A range of quantum protocols—entanglement creation, teleporta-
tion, dense coding, and secure key distribution—can be implemented on a groubit network,
almost without modification.

If groubit networks can be implemented at scale in the real world, this may prove
technologically significant, given the possibility that quantum computers may within decades
be able to break in polynomial time the RSA public-key encryption scheme which is currently
technologically dominant [Ber]. Should this possibility be realized, it has been suggested that

2For quantum protocols such as quantum key distribution, security is derivable from the laws of
physics [VV14]; this is not the case here.
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quantum key distribution could be used as an alternative technology to enable long-range
information—theoretically secure communication [eal4]; we suggest that key distribution
running on a large-scale groubit network may be an alternative worth investigating.

Some points must be made completely clear. Information—theoretically secure key
distribution is known to be impossible in a classical computation setting. Our claim that
it can be implemented using networks of groubits rests on the atomicity and security
assumptions given in Section 1, and will hold for any real-world implementation only to
some approximation. Also, we do not claim that all quantum protocols or algorithms can be
implemented on groubits; in particular, we expect no analogue of ‘quantum speedup’, and give
no classical model for important procedures such as the Grover or Shor algorithms [NC09].

Nonetheless, for those quantum protocols that we claim can operate on a groubit network,
we mean this in a strong sense. In Section 4.3, we present a quantization functor which
gives a structure-preserving mapping from our setting into quantum theory, sending groubit
protocols to quantum protocols, and sending a groubit to a Hadamard matrix [RV16, Vic12b].
In other words, groubits yield a local hidden variable model for the part of quantum theory
in the image of this quantization functor.

1.2. Overview. The structure of this article is as follows. In Section 2, we give the
definition of a groubit in terms of groupoids with extra structure. We define the 2-category
GpdActs of finite groupoids, free profunctors and spans, and in our central technical result,
show that groubits correspond precisely to biunitary connections in GpdActs3. We also
give a 2-dimensional graphical programming language for groubits, and give a thorough
development of its syntax and semantics. In Section 3 we give programs for state transfer,
entanglement creation, teleportation and dense coding on networks of groubits, and verify
these protocols using the rules of our abstract 2-dimensional syntax. We comment on the
potential applicability of these protocols for message transfer and key distribution within
networks of groubits. Further technical details on GpdActs and its quantization functor
are given in Section 4.

1.3. Related work. Timeless networks. The concept of timeless networking and the
possibility of timeout-free atomic message routing is due to Borrill and Karp [Borl6], who
also described the quantum properties of the technology. Our treatment here is inspired in
part by their ideas, but does not follow the technical details of their approach.

Spekkens’ toy model. A toy model for quantum phenomena has been developed by
Spekkens and others [Spe07, CES11, BD15, DM16, Pus12] based on the knowledge balance
principle, in which quantum-like effects arise by restricting an observer’s ability to gain
information about the state of a classical system. This principle can be seen as playing a role
here, since groubits exhibit precisely such a balance between observable and unobservable
states. Work on the toy model includes classical versions of several quantum procedures,
including teleportation and dense coding which we also analyze here; furthermore, the
low-level combinatorics are strongly similar in places (compare for example [Spe07, Section
I] with Figure 12 here.)

Our work goes beyond these results in a number of ways, including: identification
of biunitary structures in GpdActs as a mathematical foundation; classification of these
structures in terms of groubits; applications to timeless networks, key distribution and state

3See Section 1.3 for background on biunitaries.
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transfer; the 2-dimensional high-level language for designing and verifying groubit programs;
and the identification of a functorial mapping from our calculus to quantum theory. Also, we
have a fundamentally different perspective: while the work cited above studies the toy model
as a ‘foil theory’—an exercise in quantum foundations which sheds light on the distinction
between quantum and classical reality—our perspective is technological, focussed on writing
and verifying programs for these hypothetical devices, which may be implementable and
practically useful in the real world.

Groupoidification. Our work is close in spirit to the groupoidification programme devel-
oped by Baez, Morton and others [BD01, BHW10, Mor06, BLLR97] from the combinatorial
species of Joyal [Joy81]; as here, they develop a 2-categorical groupoid-based model for
quantum-like phenomena, equipped with a functorial mapping into traditional quantum
theory. Yet there is a surprising disconnect: their work is based on groupoids, spans, and
spans of spans, while ours is based on groupoids, free profunctors and spans. This technical
distinction seems mild, yet is essential for our results, and we are not aware of a direct
relationship between the settings.

Classical key distribution. Maurer [Mau93] has suggested classical procedures for secure
key distribution based on noisy communication channels. In his words, he drops the
“apparently innocent assumption that, except for the secret key, the enemy has access to
precisely the same information as the legitimate receiver”. This is fundamentally different
to our model, in which—just as in quantum key distribution—the “enemy” has access to
the entire apparatus.

Biunitaries. Our main proof technique is the technology of biunitaries (see Section 2.3.)
Introduced by Ocneanu [Ocn89] in 1989 and since developed by Jones, Morrison and
others [Jon99, JMS13, MP14], they are a central tool in the classification of subfactors,
a major research effort in pure mathematics. Biunitaries belong to the theory of planar
algebras, which studies the linear representation theory of algebraic structures in the plane.
The 2-dimensional syntax we use in this paper derives heavily from the work of this
community. These planar algebra techniques have been used by the present authors and
others [Vic12b, RV16, RV18, JLW16] to give a high-level language for quantum computation.

Unpublished work. Related ideas have been described by Bar and the second author in
an unpublished note [BV14].

1.4. Acknowledgements. We are grateful to Paul Borrill and Alan Karp for conversations
about timeless networking, Steve Vickers for many helpful comments on an earlier version of
this paper, and to Krzysztof Bar for substantial discussions about groupoid semantics and a
classical model for key distribution.

2. FOUNDATIONS

2.1. Groudits and dits. Groudits. We begin with the definition of a groudit. Here and
throughout, given a groupoid G with a chosen object a, we write Autg(a) for the set of
morphisms in G of type a — a.

Definition 2.1. A groudit G is a skeletal groupoid of the form G =[], G4, where G, are
finite groups, equipped for each a € Ob(G) with bijections €,, 7, : Autg(a) — Ob(G).
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Thinking about the consequences of this definition, we see that the underlying groupoid of a
groudit is a disjoint union of d finite groups for some d € N, each with d elements. Note that
the bijection data is not required to satisfy any properties, so groudits are easy to construct.

Our main result of this section is Theorem 2.8, where we show that groudits classify
biunitary structures in a 2-category of finite groupoids, free profunctors and invariant spans;
in particular, this theorem shows how for every groudit we can obtain analogues of the Swap
and Tick maps, which we preview here as follows, using a notation (a,b) where a € Ob(G)
and b:a — a:

Swapg(a, b) = (ea(b),fga}b)(a)) (2.1)
Tickg((a,b). (¢, )) = ((a, (5 ()) ), (e 77 (a)d) ) (2.2)

Much later, in Section 4.3, we show that groudits yield Hadamard matrices, quantum
combinatorial structures of deep importance in quantum information; in this sense, groudits
are the classical combinatorial analogues of Hadamard matrices.

Just as classical bits are special cases of dits, so groubits are special cases of groudits.

Definition 2.2. A groubit B is the groudit with identity bijections, and with underlying
groupoid B defined as follows, where s,t are the source and target functions:

Ob(B) := Zy Mor(B) := Zg x Zs s,t =T x Ty B Ly (2.3)
Composition is defined as follows: (a,b) o (a,c) := (a,b® c).

So for a,b € Zy, we write (a,b) to denote a morphism of type a — a. Using the terminology
of Section 1, we interpret a as the logical bit, and b as the internal bit. It follows from the
composition law that the identity morphisms are of the form (a,0). For the bijection data,
we exploit the fact that the groupoid is in a natural way the disjoint union of two copies of
Zs, and so the bijections have the type €;,7; : G; = Zos — Ob(B) = Zy. We choose all 4 of
these bijections to be the identity.

For every protocol we give in this paper, we describe an implementation for an arbitrary
groudit, and prove correctness at this general level. However, for informal discussions of
groudit phenomena, and for the explicit traces of each protocol that we give throughout
Section 3, we talk in terms of groubits.

Dits. We can also describe classical dits using groupoids.
Definition 2.3. A dit D is a discrete skeletal groupoid D with d morphisms.

We recall that a groupoid is discrete when every morphism is an identity. For a dit D, we
write [¢] to denote a morphism ¢ € Mor(D). An ordinary classical bit is a dit with d = 2.

States. A state of a groudit or dit is a morphism in the corresponding groupoid. Our
dynamics are nondeterministic, so after a protocol, the final state of a system is in general

(a,b) f-=-|- G

FiGURE 1. Notation for states of a groubit and a bit.
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a multiset drawn from the set of states. We indicate these multisets with a sum notation,
with coefficients drawn from N.

In our graphical calculus, a groudit is represented by a blue region, and a classical dit
by a yellow region. To indicate the state of the system at a given time, we draw a horizontal
dashed line, and write the state to the left; see Figure 1.

Operations. In our graphical calculus we define atomic operations, and also derived
operations which are built from the atomic operations. We summarize these here, and show
explicitly how they act on groubits and bits. This notation is all that is required to follow
the protocol traces illustrated in Section 3. In all our diagrams, time flows from bottom to
top. All operations listed here map every input state to a nonempty multiset, meaning that
they will not fail. That makes them suitable building blocks for a groudit programming
language.

Atomic operations. In Figure 2 we list the atomic operations involving a bit and a groubit.
Figure 2(a)—(c) shows the three groubit-only operations: Swap and Tick are deterministic,
while Init creates a groubit in a nondeterministic logical state. Figure 2(c) uses a rotated
and reflected letter to label the vertex, since it is represented algebraically by a rotated and
reflected version of Figure 2(b) under the dagger pivotal structure (see the discussion in
Section 2.2 — graphical calculus).

Note that the result of performing two successive Tick operations between neighboring
parties Alice and Bob, and Bob and Charlie, does not depend on the order of the operations;
there is no race condition. Using the expression in Figure 2(c) this becomes a simple isotopy,
a crucial feature of our 2-dimensional graphical calculus.

Figure 2(d)—(e) represents nondeterministic generation and erasure of a classical bit.
Figure 2(f)—(g) give the basic interactions between a groubit and a bit: Read depicts the
read-out of the logical state of a groubit, and Write depicts the initialization of a groubit
with given logical bit and random internal bit.

Derived operations. In Figure 3 we list the derived operations IRead, IWrite, CTick
and Split. Note that CTick comes in both left and right versions, distinguished by their
images. We will see how they are defined in terms of atomic operations later in this section.

2.2. Graphical calculus. Definition. Our graphical calculus represents groupoids, free
actions and spans. We begin with an informal definition of the 2-category formed by these

(a,b%c)(c, add) -
Tick
(a,b)(c,d) - - - -

(d) Rand (e) Erase (f) Read

FIGURE 2. Atomic groubit and bit operations.
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structures. Throughout, we write ‘2-category’ to refer to the weak structure, which is
sometimes called ‘bicategory’. Similarly, we write ‘2-functor’ to refer to a weak 2-functor,
which is sometimes called a ‘pseudofunctor’.

Definition 2.4. The 2-category GpdActs is built from the following structures:

e objects are finite skeletal groupoids G, H, ...;

e a morphism S : G - H comprises, for any a € Ob(G) and b € Ob(H), a finite set
Sap equipped with commuting free* left- and right-actions of Autg(a) and Autg(b)
respectively;

e for morphisms S,T : G - H, a 2-morphism o : S = T is an equivariant span, comprising
for all @ € Ob(G) and b € Ob(H) a function oqp @ Sup X Typ — N, such that for all
g € Autg(a), h € Autgz(b), s € Sqp and t € Ty, we have o4 4(s,t) = 045(9.5.h, g.t.h).

For the definition of composition, see Section 4.1.

Here g.s.h € S, denotes the action on s by g on the left and h on the right; since these
actions commute, this is well-defined. Note the requirement that these left- and right-actions
are free, which is important for guaranteeing that our constructions are well-defined. In
the main part of this paper we will work with these structures informally; we give a formal
2-categorical analysis in Section 4.

Definition 2.5. For an equivariant span o : S = T, we define its dagger o' : T => S as the
converse: al p(L8) == 0qp(s,1).

Graphical calculus. We use a 2-dimensional graphical calculus (see Figure 4(a)) to denote
a 2-morphism o in GpdAct¢. This is the standard graphical calculus for 2-categories [Sel10]:
objects G, H label the regions, morphisms S,T : G + H label the wires, and 2-morphisms o :
S = T label the vertices. We often drop the labels; also, white regions will always correspond
to the trivial groupoid 1 with one morphism. Stacking these pictures vertically performs
composition of spans, stacking them horizontally performs bimodule composition, and
reflecting them about a horizontal axis corresponds to the dagger operation of Definition 2.5.
In fact, GpdActs is a dagger pivotal 2-category [CR16, Section 2.1], giving immense freedom
in the graphical calculus: one may reflect, rotate and deform the pictures arbitrarily (holding
the boundaries fixed), and these manipulations preserve equality of the diagram. For

4An action of a group H on a set X is free, if for any x € X, h.x = x implies that h = ep.

(a) IRead (b) IWrite

(a,b®c)[c] -} --
CTick
(a,b)[c] ---F ==

(d) CTick (e) Split

FicURE 3. Derived groubit and bit operations.
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example, since the images of Figure 4(a) and (b) are deformations of each other with
constant boundary, they represent equal 2-morphisms.

Boundaries. For every shaded region labelled by a skeletal groupoid G, we have canonical
boundaries drawn as follows:

(2.4)

L¢:1+ G RS:G—+1
We define these as the following sets with free right (or left) Autg(a)-action, for all objects
acG:
L¢, = Autg(a) (*,9,9") = g4’ (2.5)
RE, = Autg(a) (d.9,%) — d'g (2.6)

Here, @ and * denote the unique object and morphism of the terminal groupoid 1, respectively.
That is, these boundaries are defined as the groupoid acting on itself, by left or right action.
Using the pivotal structure, these boundaries give rise to the operations Init, Erase and
Split as presented in Section 2.1.

2.3. Biunitaries. Biunitaries are important structures from the theory of planar algebras
(see Section 1.3) which play an essential role in our calculus.

Definition 2.6. In GpdActy, a biunitary on a skeletal groupoid G is a unitary 2-morphism
(2.7)

fulfilling the equations depicted in Figure 5.

The source and target of the biunitary is the composite 1-morphism RS o LG : 1 + 1 which
evaluates to the set Mor(G) of morphisms of the skeletal groupoid. Concretely, therefore, a
biunitary is an automorphism of Mor(G) satisfying an algebraic condition; it plays the role
of a generalized Swap map in our groudit programming language. The following theorem
determines this condition precisely.

T
G (@ H
S
(a) A 2-morphism (b) A deformation

FIGURE 4. Examples of the graphical calculus.
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(a) Vertical unitarity (b) Horizontal unitarity

FiGURE 5. The biunitarity equations.

Theorem 2.7 . A biunitary on a skeletal groupoid G is a bijection F : Mor(G) — Mor(G)
such that for all a,b € Ob(G), we have:

|F(Autg(a)) N Autg (b)] = 1 (2.8)

Proof. The equations of Figure 5(a) say that F' is unitary, which means precisely that it
acts as a permutation on Mor(G). The equations of Figure 5(b) are equivalent to the
composite of Figure 6 being the identity. This holds just when, for all a,b € Ob(G) and
for all g € Autg(a) and ¢’ € Autg(b), there are unique h € Autg(a), r € Autg(b) with
s(F(h)) = b and s(F~!(r)) = a satisfying the following conditions:

gh™'F 7 (r) =g rF(h)g =4
In other words for any two objects a,b in the groupoid there is a unique pair (h,r) €
Autg(a) x Autg(b) such that F(h) = r. More concisely, |F(Autg(a)) N Autg(b)| = 1. [
Classification. We now classify biunitaries in terms of groudits. This shows that biunitaries

are tractable algebraic objects.

Theorem 2.8 . For a skeletal groupoid G, groudits on G are in bijective correspondence
with biunitaries on G.

Zhes(g),res(g’) s.t. (ghilFil(r))(TilF(h)g,) ,,,,,,,,,,,,,,,,
S(F)=s(g ) s )=sle) |
hes(g),res(g’) s.t. (gh )(F (T))(7 F(h)g)
s(F(h)=s(9")
Z}LGS(g),rEs(g’) s.t. (gh‘il)(r)(rilF(h‘)g/) ,,,,,,,,,
s(F(h)=s(g")
ZhEs(g) s.t. (ghil)(F(h)gl) ,,,,,,,,,,,,
s(F(h))=s(g")
2 hes(o) (gh™)(FM)(g) —-------==~
Shes () () (g) e

FI1GURE 6. Verifying the action of a biunitary.
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Proof. Define a balancer € for G to be a choice for all objects a € Ob(G) of a bijection
€q : Autg(a) — Ob(G). Clearly for any b € Ob(G) we have

s(e;1(b)) = a. (2.9)

It is easy to see from the definition that a groudit is precisely a skeletal groupoid equipped
with a pair of balancers. Given a balancer €, we define functions €1, €5 as follows:
€1 : Mor(G) — Ob(G)xOb(G) €1(g9) :== (s9,€s4(9)) (2.10)
€2 : Ob(G)xOb(G) — Mor(G) e2(a,b) := €, 1(b) (2.11)

We can show that ¢; and €5 are inverse:
(2.9)

e1(e2(a, b)) = (s(ez (1)), € 1y (e (0)) = (a, €ale ' (b)) = (a,b)

-1
e2(€1(9)) = Es(g)(fs(g) (9) =9
We now give the first direction of the main bijective correspondence. Suppose €, 7 are

balancers for G. Then we define a biunitary F¢,: Mor(G) — Mor(G) as the following
composite, where v is the swap map for the cartesian product:

Mor(G) 2 Ob(G)xOb(G) & Ob(G)xOb(G) B3 Mor(G)
Then a simple calculation shows the following;:
Ferlg) =771 ) (5(0)) € Auta(exg)(9)) (2.12)

By construction, F¢ , is unitary, since it is a composite of bijections. To show it is biunitary,
suppose now that g, ¢’ € Autg(a) such that s(Fe+(g)) = s(Fe+(¢')). Then by equation (2.9),
we have €,(4)(9) = €5(¢)(g'), and since s(g) = s(g’) = a we therefore have ¢,(g) = €a(g’), and
since €, is a bijection we have g = ¢'.

We now give the reverse direction of the main bijective correspondence. Given a biunitary
F : Mor(G) — Mor(G), we define balancers e/, 7¥" for all @ € Ob(G) and g € Mor(G) as

ca (9) = s(F(9)) 7o (9) = s(F~'(9)) (2.13)
We must show that for all a € Ob(G), €&, 7F' : Autg(a) — Ob(G) are bijections. First,

a’'a
surjectivity. For any b € Ob(G), using the biunitarity property (2.8), pick the unique mor-
phism g € F(Autg(a))NAutg(b). Then F~1(g) € Autg(a) and b = s(g) = s(F(F~1(g))) =
el (F~1g). A similar proof shows surjectivity of 7£. Next, injectivity. Suppose that ¢, h €
G

a

Autg(a) with € (g) = ¢ (h); then s(F(g)) = s(F(h)). Then F(g), F(h) € F(Autg(a)) N

S ISR [ O

(d) = (e) = |Ob(G) (f) =

F1GURE 7. Building blocks for the measurement calculus.
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Aute(s(F(g))). Then by the biunitarity property (2.8), we conclude that F'(g) = F(h) and
therefore that g = h.

Finally, we show that the main correspondence is indeed bijective. In one direction, for
a pair of balancers (e, 7) with associated biunitary Fi , and g € Autg(a), then by (2.9) we

have ef”(g) = 5(Fe+(9)) = €qa(g) and similarly Tfe’T(g) =s(F-}g)) = 7F(g). In the other

€,T
direction, given a biunitary F and g € Autg(a), we observe that F.r .r(g) = (Tg(g))*l(a).

To show that this equals F'(g), we have to show that Tg(g)(F(g)) = a. And indeed, we have
Thr (g (F(9)) = s(F7H(F(g))) = 5(g) = a. u

2.4. Measurements. In Section 2.1 we described classical dits using discrete groupoids.
In the graphical calculus we draw them as yellow regions, to distinguish them from groudits
which we draw in blue. There is an important difference: while blue regions are equipped
with a biunitary of the form (2.7), yellow regions are not equipped with any such structure.
Every groudit has its associated dit, with the logical states of the groudit corresponding
to the elements of the dit. They interact via the 2-morphisms depicted in Figure 7(a) and
(b). These are not physical elements of the groudit programming language (explaining why
they do not appear in Section 2.1), but auxiliary mathematical structures that we will use

KRB KR E
KB R

FiGURE 8. Yellow-blue and yellow-yellow versions of the biunitary.

U U

Zc,d(b@cﬁ 0) (b®d7 0)(0'7 b)
Tick

Swap, Swap

Zc,d(b@cv 0) (0’7 b@d)(dv a)
Tick, Tick

S a(be a) (@, )(d0) -~ - N\
Swap, Swap
Zc,d(a” b@(;) (Cv a) (d7 0) **********
Tick
Zc,d(av b)((ﬁ, 0) (d 0) *************

Init, Init

Alice Bob Charlie Alice Bob Charlie

FIGURE 9. State transfer.
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to verify our groudit programs. In Figure 7(a) we begin with a groudit, and we read it to
extract some classical data indicated by the yellow region; the groudit itself still exists.

Semantically, the blue region represents a groudit G with underlying groupoid G, and
the yellow region represents a classical dit B with underlying groupoid B, such that B is a
discrete groupoid with the same set of objects as G. We define the yellow-blue morphism
S : B + G as follows, where the set () is the empty set, and where S, ; are equipped with
the ‘empty action’ and the right action of Autg(g) on itself, respectively:

Autg(g) ifb=g
Sp g = 2.14
b.g { 0 otherwise ( )

The blue-yellow morphism S* : G -+ B is defined similarly. We define Figure 7(a) as follows,
for all a € Ob(G) = Ob(B) and g € Autg(a):

Figure 7(a) g+ (a,9) (2.15)

The span (2.15) is unitary, and hence satisfies equations Figure 7(d) and (f); equation
Figure 7(e) can be verified analogously. By way of warning, Figure 7(c) shows a nonequation
that is not satisfied in general.

Given the topological behaviour encoded in Figure 7(b), we can be relaxed about how
we draw the interface between yellow and blue regions:

AT

This gives us our composite Write operation; Read is the dagger of this. We also use this
to define yellow-blue and yellow-yellow versions of the biunitary in Figure 8(a)—(c).

Proposition 2.9. Equation Figure 8(d) is fulfilled by the biunitary associated to any groudit.

Proof. The composite 2-morphism on the left hand side of Figure 8(d) maps a dit [a]
to the multiset }°, cpyq(a)[S(Fer(2))], where F; is the function (2.12) and s denotes
the source of the morphism F, ,(z). It follows from the explicit expression (2.12) that
s(Fer(z)) = €q(z). Since ¢, : Autg(a) — Ob(G) is a bijection, [a] is mapped to the multiset
> zeAuta (a)€a(@)] = 2peon(q)[b] which is the right hand side of Figure 8(d). []

Equation Figure 8(e) is a direct consequence of horizontal unitarity of F'. These structures
yield our composite operations IRead, IWrite, LRead, RRead and CTick.

(bebe, d)(deba, b)
Tick

Swap, Swap
(a,b®c)(c, dda)
Tick

(a7 b) (C7 d) 7777777777777777777777777

Alice Bob

F1GURE 10. The basic state transfer repeating block.
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3. PrRoTOCOLS

3.1. State transfer (Figures 9 and 10). Overview. The state transfer protocol com-
municates a groubit down a linear chain of nodes, such that each node is connected to its
neighbour with a link. Our mathematical treatment is closely related to a state transfer
protocol for cluster-based quantum computers proposed previously by the authors [RV18].
The adjective timeless arises from a specific property of this protocol, which we examine
below.

Program. The state transfer program is illustrated in Figure 9(b) for three parties, Alice,
Bob and Charlie, arranged in a linear chain. Each party has a node, and separate links
connect Alice and Bob, and also Bob and Charlie, enabling Tick operations between
connected parties. Alice has a groubit, which she would like to transfer to Charlie coherently;
that is, preserving the internal state. The protocol is formed from repetitions of the basic
scheme (see Figure 10), involving a Tick operation, two Swap operations, and a final Tick.
In Figure 9(a) we use 2 copies of this basic building block, one between Alice and Bob, and
one between Bob and Charlie. The generalization to arbitrary linear chains is clear.

Verification. The protocol is verified in the general case by observing that Figure 9(a) can
be transformed into Figure 9(b) by applying the equations of Figure 5. On the left-hand side
of Figure 9(a) we give an explicit program trace for the case of a Zg Ll Zy groubit, based on
the lookup table in Section 2.1. The final state is chdeﬁ(b@c, 0)(bd, 0)(a,b); by a simple
change of variables it is clear that this equals . ;7. (c,0)(d,0)(a,b) as required.

Discussion. This protocol has certain limitations. While multiple messages can be sent
from left-to-right along such a linear chain of nodes, if one attempts to send a message from
right-to-left at the same time using a reflected version of the protocol, then both messages
will be corrupted. Of course, this could be overcome by having a pair of parallel chains,
keeping left-to-right and right-to-left communications on separate tracks. Furthermore, we
do not have a clear analysis of communication on a network with a more interesting topology.

Timelessness. A key property of this protocol is that it makes no use of timeouts,
thanks to atomicity properties that are part of our basic assumptions (see Section 1.)
This is desirable, since timeouts are a basic feature of the dominant TCP protocol for
internet communication [TAC99] which are the source of reliability issues in data centre
environments [Borl6, AM15]. If the final Tick event of the scheme given in Figure 10
succeeds, then Bob assumes ownership of the message and continues to propagate it.
Otherwise, if the final Tick is not successful—which could be because one of the 3 earlier
events were not successful—Alice maintains ownership of the message, and is free to direct
it by another route, or to return it as undeliverable to the sender.

3.2. Entanglement creation (Figure 11). Overview. This is a procedure to create
an ‘entangled pair’ of groubits. Entangled groubits are required for the dense coding and
teleportation protocols described later.

Program. Alice and Bob each initialize a groubit. They then perform a Tick operation
involving both their groubits. Finally, Bob performs a Swap operation.

Verification. Immediate by Figure 5(a).
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Discussion. To implement this protocol, Alice and Bob must be connected by a link
enabling the Tick operation.

3.3. Dense coding (Figure 12). Overview. The dense coding procedure allows 2 classical
bits to be transmitted between two parties, by transferring only 1 groubit. The parties
must share an entangled pair of groubits, which could have been generated by the procedure
discussed in Section 3.2.

Program. Alice begins with two classical bits, and Alice and Bob share an entangled pair
of groubits. Alice begins by performing CTick operations (see Section 2.1) between her
classical bits and her groubit, with a Swap operation in between. She then transfers the
groubit to Bob, who performs a Tick operation between his two groubits, and then IRead
operations on both groubits.

Verification. To verify correctness of the program for general groudits, substitute the
definitions of IRead and CTick in terms of the basic syntax, then apply equations from
Figure 5 to cancel 3 pairs of adjacent F' nodes.

Discussion. It may seem surprising that dense coding is possible, since although a groubit
has 2 classical bits of memory, they cannot both be directly accessed; applying the Read
operation (see Section 2.1) reveals the logical bit, but destroys the internal bit. The program
requires passing a groubit from one agent to another; to implement this, agents could use
the state transfer program described in Section 3.1.

Dense coding allows agents connected by a groubit network to double their effective
data transfer rate, at the expense of consuming shared entanglement. It may be possible to
use this for temporal load-balancing in a groubit data center. During times of low utilization,
agents in the network perform entanglement creation (Section 3.2) to generate substantial
numbers of shared entangled groubits. Later, when utilization of the data centre becomes
high, these entangled groubits can be consumed to double the effective rate of data transfer.

3.4. Teleportation (Figure 13). Overview. The teleportation procedure allows a groubit
to be transported from one location to another, as long as those locations share an entangled
groubit pair (see Section 3.2.)

Program. There are two parties, Alice and Bob. Alice starts with a groubit to be teleported,
and Alice and Bob share between them an entangled pair of groubits. First, Alice performs
a Tick operation on the groubit to be teleported. She then performs Swap operations on
both of her groubits, then converts them into classical bits, which are transmitted to Bob

\J

Alice Bob

FIGURE 11. Entanglement creation.
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(i) ------------ERSSESEESESEEE G W
IRead, IRead

Zc,d(b@d, a)(c, b) - — — — — [
Tick
Yeab®d, ca)(c,d) —— -
Erase

chd[a] (bpd, c®a)(c, d)
CTick

Soalavad, e d)
Swap
S alal(e,bad)(e,d) - foe
Erase
> ealalbl(e,bdd)(c,d) - - -~ f - -~ [~ =
CTick

S, alallbl(e, d)e,d) ———— A -/
Split
S lalbl(e,0) —— - fpf ]
Init

R e o T R

Alice Bob Alice Bob

FiGURrE 12. Dense coding.

by conventional means (for example, over the internet.) Bob then performs two CTick
operations (see Figure 7), and performs Erase on the classical data received from Alice.
The result is that Bob’s groubit is now in the same state as Alice’s was originally, both with
respect to its logical and internal data.

Verification. To verify the protocol in the general case, expand the CTick operations
using the definitions from Figure 8(a) and (b), then apply equation Figure 8(e) twice. The
result is the identity, up to two yellow bubbles, which count the different classical bits that
Alice could have obtained.

Discussion. Teleportation may have an application for transferring groubits between
separate groubit networks, which may only be connected via the internet. Of course, these
data centres would have to be furnished with a sufficient supply of entangled groudits.

3.5. Key distribution (Figures 14 and 15). Overview. Quantum key distribution
(QKD) [eal4] is one of the most important protocols in quantum information. Here we
describe a classical analogue which can operate on networks of groudits. The inability of the
eavesdropper to read both the logical and internal state of a groubit is exploited to enable
the effect. An analysis of QKD using a related graphical calculus has also been performed by
Coecke and Perdrix [CP12]. We focus here on BB84-style QKD [BB85]; by dagger pivotality,
the E91 variant [Eke91] has a similar analysis (see Figure 15.)

Program. The basic setup of our key distribution protocol is given in Figure 15(a), and
is similar to the BB84 QKD protocol [BB85]. Alice and Bob have an authenticated public
classical channel, and a groubit channel, which are both accessible by an adversary Eve.
Alice begins with a classical bit, and chooses at random to encode it into a groubit using
a = Write or @« = IWrite. She sends the groubit to Bob, perhaps using a state transfer
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Erase
23 (6] (0B~~~ -~~~
CTick
2y bed(a,c) —— -~~~
Swap
25 [b@c](c,a) -~~~ - - ===
Erase
2 lb@c]lasd](ca) - - - - - - -+
CTick

> alb®clladd](c, d)
IRead, IRead
Zc,d(av bEBC) (Cv (LEBd)(C, d)
Tick
Zc,d(a’7 b)(cv d)(C, d) ***********
Split
Zc(a7 b)(C, 0) *************
Init
(@b - -

Alice Bob

Alice Bob

FiGure 13. Teleportation.

algorithm (see Section 3.1), but it is intercepted by Eve, who chooses to decode the message
using either n = Read or n = IRead; having received a classical bit she copies it, and
re-encodes a groubit using n', which she sends to Bob. When Bob receives the groubit, he
decodes it using 8 = Read or = IRead.

Verification. The analysis proceeds in just the same way as for the traditional BB84
procedure. If Alice, Bob and Eve all choose the same operation (o = 1t = 87), then it
is as if Alice’s choice of initial bit is copied to Eve and Bob. We analyze this scenario in
Figure 14(a), where we choose a = n' = g = Write; using the equations of Figure 7, the
equation can be verified. On the other hand, if any of the 3 parties do not choose the same

Alice Eve Bob Alice Eve Bob Alice Eve Bob Alice Eve Bob Alice Eve Bob

(a) All agents choose the same operation.  (b) Some agents choose a different operation.

FI1GURE 14. Verification of BB84 quantum key distribution.
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operation, the diagram disconnects. We analyze this in Figure 14(b); using the equations of
Figures 7 and 8, and in particular Figure 8(d), this chain of equalities can also be shown,
leading us to conclude that all parties receive uncorrelated random bits. Although it matches
the structure of the traditional quantum analysis, in this case it is incomplete, since we
do not consider all possible actions by Eve; a deeper theory quantifying information flow
through groubit networks would be needed to make a stronger statement.

Discussion. This protocol may have real-world relevance, either for key distribution within
an insecure data centre based on groubit networks, or on a larger scale. Our analysis here
cannot be considered a full security proof; just as with genuine quantum key distribution,
there are many compounding details that would affect the real security of the procedure.

4. MATHEMATICAL FOUNDATIONS

4.1. Definition of GpdActs. Here we give a precise definition of the 2-category GpdActs.
We assume some familiarity with the theory of 2-categories. For a good introduction
see [Bor94, Chapter 7].

For any category C, we write N : C — Set for the constant functor that sends all
morphisms to the identity on the set of natural numbers. Also, for any two functors
S, T : C — Set, we write S x T for their product in the functor category.

For a groupoid G, we say that a functor S : G — FinSet is free if for any f, f': g — ¢
for which there is an z € S(g) with S(f)(z) = S(f')(x) it follows that f = f'. We
say that a functor S : H°® x G — FinSet is free if both S(h,—) : G — FinSet and
S(—,g) : H°® — FinSet are free for arbitrary objects h € Ob(H), g € Ob(G).

Definition 4.1. The 2-category GpdActy is built from the following structures:

e objects are finite groupoids G, H, ...;
e morphisms S : G = H are free functors S : H® x G — FinSet;
e 2-morphisms o : S = T are natural transformations ¢ : S x T"= N.

Composition of morphisms and 2-morphisms is defined below.

Alice Eve Bob Alice Eve Bob
(a) BB84-like protocol. (b) E91-like protocol.

FiGure 15. Key distribution protocols.
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It is clear that this is equivalent to the restriction to skeletal groupoids, which for simplicity
we use in the main body of the paper.

The morphisms of this 2-category are also known as profunctors or distributors, and
there is a standard way to compose them [Bor94, Proposition 7.8.2] which we define below.
The 2-morphisms can be considered as families of spans of sets® which are compatible with
the groupoid actions; we will refer to them as protransformations.

Spelled out explicitly, a profunctor P: A - B is a family of sets (P )

beobB,acobA
equipped with functions

HOIHA((I, a') X Pbﬂ X HOInB(b/, b) — Pb’,a/ (4.1)
(fa'rvg) ’—>f$‘g
for each a,a’ € obA,b,b’ € obB such that for all z € P, and all f:a — d, f':d’ — d”,
g:b —b, g : 0" — 1V, we have the following:
idg.z.idy = x (f'f)a(99") = f'.(f-2.9).9
A profunctor is free just when all groups Auta(a) and Autg(b) act freely on P, ,. This
structure induces obvious separate left and right actions on P, , which we will also make use
of.
A protransformation o : P = @ corresponds to a family of functions P, , X Qp 4 e N

such that the following holds, for all p € Py 4,q € Qpq, @ I d and v % b
oy (f0-9: f-4.9) = 0ba (P, q) (4.2)
From now on we will omit the subscripts of protransformations.

Horizontal composition. The composite Qo P of profunctors P: A + Band Q : B + C

corresponds to the family of sets (Q oP)c,a = lpeorB Pha X Qc,b/w with equivalence
relation as follows, for any © € Py 4, ¥ € Qcp, f:b— 1"
(z.f,y) ~ (z, f-y) (4.3)

Given profunctors S, 5" : A -+ B, T,7" : B -+ C and protransformations ¢ : S = S’ and
7:T = T’, the horizontal composite Too : T oS = T’ 0o S’ corresponds to the family of

functions
(T o U)c,a : (Hb SbvaXchb/N) X (Hb/ SZ/",@XTC/,U/N) - N
defined as follows, for a € Ob(A), b,b' € Ob(B), ¢ € obC and s € Spq4, t € Ty, s' €5,
t' e Té’b,: 7
ToO ([s, t], s, t']) = Zf:b—)b’ a(s,s.f)r(f.t,t) (4.4)

Here [s,t] and [¢, ] denote equivalence classes under (4.3). In the proof of Theorem 4.5 we
show that this is well defined.

5If G and H are both the terminal groupoid 1, then morphisms S,7 : 1 + 1 are finite sets and a
natural transformation o : S = T is a function o : S X T' — N, or equivalently a (bijection class of) span
of sets S + Uses,ter|o(s,t)] — T, where [o(s,t)] is a finite set with o(s,¢) € N elements. Analogously,
a protransformation between profunctors ¢ : S = T can be considered as a family of spans of sets
Sg.n  Xgn — Ty n, indexed by g € Ob(G) and h € Ob(H), that is compatible with the actions of G and
H.



Vol. 15:1 A CLASSICAL GROUPOID MODEL FOR QUANTUM NETWORKS 32:19

Vertical composition. Given profunctors P,Q, R : A -+ B and protransformations
o:P= (@ and 7:Q = R, the vertical composite 7o corresponds to the family of functions
(Ta)lm : Py X Ry o — N defined as follows, for a € Ob(A), b€ Ob(B),p € Py, and r € Ry ,:

TO'(p, T) = quQb,a U(pa Q)T(q’ T) (45)
Theorem 4.2 . GpdActs is a 2-category.

For Theorem 4.2 to hold, the 1-morphisms of GpdActs have to be free profunctors. Without
the freeness condition, the horizontal and vertical composite of 2-morphisms (4.5) and (4.4)
would not fulfill the interchange law. Indeed, for non-free profunctors, expression (4.4)
overcounts, and would need to be normalized by a factor WM, where Stab(s’,t’)
denotes the stabilizer of (s',¢) € Sy, , x T/}, under the action of Homg(b,?'). The resulting
2-category would extend GpdAct¢ to non-free profunctors, would still contain the 2-category
of finite groupoids, profunctors and natural transformations as a subcategory, but would not
admit a dagger structure anymore.

4.2. Dagger pivotality. We defined the dagger of a protransformation in Definition 2.5.
If o is interpreted as a computational process, then o' is interpreted as its time-reversal.

Definition 4.3. For any profunctor P : A - B, its adjoint is the profunctor P*: B -+ A
given by

A®P x B DX, A o Bor 2P, Bop o A P FinSet (4.6)
where inv : A’ — A is the canonical isomorphism mapping every morphism to its inverse.
In terms of bimodules, given a A—B bimodule (vaa)a,b’ its adjoint is defined to be the B—A
bimodule (Fq),, , with action (f,z,g) — g ta.f b

Definition 4.4. Given a profunctor P : A -» B, we define its cap to be the pro-
transformation € : P* o P = 1 defined as follows, for a,a’ € Ob(A), b € Ob(B),
pE Py, 0 € Py, feHom(d,a):

6([p7p/]7 f) = 6f*1,p7p’ (47)
We define its cup to be the protransformation n : 1g = P o P* defined as follows, for
a,a’ € obA,b € obB,p’ € Py, p € Pyyp and f € Hom(a, d'):

ﬂ(f7 [p/’p]) = Op/ p.f-1 (48)

Theorem 4.5 . The structures defined above yield a dagger pivotal structure [CR16, Section
2.1] for the 2-category GpdActs.

4.3. Quantization. Here we describe a quantization procedure, in the form of a dagger
2-functor
Q@ : GpdActy — 2Hilb,

where 2Hilb is a 2-category that is suitable for the description of quantum computational
processes [Bae97, Vicl2b, Vicl2a, RV16]. For this quantization procedure to be functorial,
it is essential that the group actions arising from the 1-morphisms of GpdActs are free.

We take the perspective on higher vector spaces arising from algebras, bimodules and
intertwiners [BBFW12, BDSPV15]|. The 2-functor

Rep : C*Alg — 2Hilb (4.9)
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from the 2-category C*Alg of finite dimensional C*-algebras, Hilbert bimodules and in-
tertwiners [BMZ12] to the 2-category 2Hilb of finite dimensional 2-Hilbert spaces, linear
functors and natural transformations is a dagger equivalence.

In the following, we will construct a quantization 2-functor @) : GpdActy — C*Alg.

Definition 4.6. Given a finite groupoid G, its groupoid algebra (or convolution algebra)
CG is the vector space freely generated by all morphisms in G with algebra structure
f*g:= fg when f, g are composable, and 0 otherwise, and f* := f~!.

The groupoid algebra CG generalizes the notion of a group algebra - for a skeletal
groupoid G it is P, g Aut(a). In general, groupoid algebras are finite direct sums
of tensor products of group algebras and matrix algebras. In particular, they are finite
dimensional C*-algebras.

Definition 4.7. The quantization dagger 2-functor
Q : GpdActy — C*Alg
is defined as follows:
e on objects, for a groupoid A, we have Q(A) := CA;
e on morphisms, for a profunctor P : A - B, we define Q(P) to be the bimodule

®b€0bB,a€0bA CPb,a;
e on 2-morphisms, for a protransformation o : P = @, we define Q(o) as the intertwiner

Dr.a CPra = Dy o CQy .
defined at stage (b,a) as the linear map extending
Q(0)b,a(P) = 2 4eq,. P 0)4 P E Pra
In particular, composing this functor with the equivalence (4.9) we obtain a 2-functor
Q' : GpdAct; — 2Hilb
mapping groupoids G to their representation categories Rep(CG) = Rep(G) = [G, Hilb].
Theorem 4.8 . Definition 4.7 defines a dagger 2-functor.

We can use these quantization results to explain the connection of our work to Hadamard
matrices®: under the image of the quantization functor @', every groubit yields a Hadamard
matrix. To show this, we assume some knowledge of the 2-category 2Hilb, as can be found
in the references at the start of this section.

In this 2-category, a 1-morphism can be regarded as a matrix of Hilbert spaces, and
we call a 1-morphism nondegenerate when all these Hilbert spaces are 1-dimensional. It
was first shown by Jones [Jon89], and explored in more detail by the second author [Vic12b,
Theorem 4.6], that when restricting to nondegenerate 1-morphisms, and where the blank
region labels the 1-dimensional 2—Hilbert space, biunitaries of the form (2.7) correspond
exactly to Hadamard matrices. When the groupoid G is abelian (that is, a union of abelian
groups), it can be checked that the boundaries (2.4) become nondegenerate 1-morphisms
under the action of the quantization functor )’. Furthermore, it is clear that dagger
2-functors preserve biunitary structures, since biunitarity is an equational property involving
composition and the dagger.

6A Hadamard matrix is a unitary matrix for which every coefficient has the same absolute value; such a
matrix contains the same information as a pair of mutually unbiased bases.
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With these pieces in place, the result follows: for any groubit defined over an abelian
groupoid G, its image in 2Hilb under the quantization functor @)’ yields a Hadamard matrix,
acting on a Hilbert space given by the groupoid algebra of G. For example, for the groubit
described in Definition 2.2, this yields the following Hadamard matrix:

1 1 1 1
, I S |
Q(Swap)= |, | | _j (4.10)

1 -1 -1 1

This operates on a 4-dimensional Hilbert space, the groupoid algebra of Zs + Zo, and the
matrix is written in the character basis.

APPENDIX A. OMITTED PROOFS
Theorem 4.2 . GpdActs is a 2-category.

Proof. We first observe that a natural transformation o : P = @ corresponds to a family of
functions P, , RN Qp,q such that

ay o (f-0-9) = fapa(p).g

for all p e Py, and a ER b % b. Every natural transformation « induces a protransforma-
tion a«(p, ¢) = Sa(p).q-

Vertical composition. Vertical composition (4.5) is clearly associative with unit 1p(z,y) =
0z,y, and it extends the vertical composition of natural transformations.

Horizontal composition. Claim. The composite of free profunctors is free.

Proof. The composite of free profunctors P : A - B and Q : B + C is given by the
bimodule [[pcopp Poa X Qe / ~ quotiented by (4.3) with the obvious left and right action.
Let [p,q] be an equivalence class in this set and let f € Aut(a) with f.[p,q] = [p,q] or
equivalently (f.p,q) ~ (p,q). Thus, there is a g € Aut(b) such that (f.p,q) = (p.g,9'.q).
Since Aut(b) acts freely on Q. it follows that g = 1, and thus that f.p = p. Since Aut(a)
acts freely on Py, it follows that f = 1,. In particular, Aut(a) acts freely on (Q o P) ca
The proof that Aut(c) acts freely is analogous.

Claim. Expression (4.4) is well defined. B o,
Proof. We show that (4.4) descends to a map on the quotient. Let b % b and b <5 ¥ be
arbitrary morphisms. Then

roo([s.g,g 4], [s g g )
= Z o(s.9,8.g [)r(fg~t, g .t
7L
DN o(s, 59 Fg (g Fo bt
7L
= a(s,s . H)r(ft,t) =T1o0a(st],[s,1]).

Y
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Horizontal composition of protransformations extends the horizontal composition of natural
transformations.

The interchange law. We show that composition of morphisms is functorial. Clearly,
1polg = 1pog. Claim. For protransformations

/5‘\/1”\
\/\*ﬁy

it holds that (v o7)(uoo) = (vu) o (o).
Proof. For a class [¢/,t'] € (T" 0 5")¢qo we define
(s )y ={(s,) € SpaxTiy | (5,7) ~(s,t")}
- {(Ts’,?) 1 Lb: Gf ) = (s’,t’)} (A1)
=[] (Spa x T7p)

By the orbit-stabilizer theorem and the fact that our profunctors act freely we can express
horizontal composition (4.4) as follows:

Too ([s,t],[s,t]) == Z o(s,s)7(t1). (A.2)
(s,0)€(s",t")s
Then, for s € Spe,,t € Tep, " € Sy ,,t" € Ty, the following holds:

(vor)(uoa)(ls,t),[s",1"])
CST (woo) (st [ U)o r)([8, 1, [8", 1))

classes
[s",t'1€(T"05)¢,a

N (s st Do) (st 5" )
classes
[s’f’LE(T’oS’)C,a
(5 7t)6<5/1t/>b
= Z U(S7g)u(tv?)(y ° T)(E?ﬂ? [3”7 t//])
S€Sp.at €Top

ST (s, 5)u(t) r(3,3)vE,7)

$E€Spast €ETep (;E)e<5”7t">b

N ro(s, s vult?)

(S ;tv) € <SN 7t”>b
(A2)

= ((vp) o (7)) ([s, 1], [s", "))
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Associator. Let P: A+ B, @ : B +» C, R: C + D be profunctors. It is well known
that there are natural isomorphisms (and hence proisomorphisms)
apgr:Ro(QoP)= (RoQ)oP

fulfilling the pentagon equation. In our notation,

apq,r(([p.4),7]) = [p,[g,7]] (A.3)
for p€ Py4,q € Qcp and r € Ry.. It remains to show that o remains natural in P,Q, R
after extending to GpdActs.
Claim. apg g is natural in P, Q, R.
Proof. Let 0 : P = P',7:Q = @ and u: R = R’ be protransformations. Then, the
following holds for p € Py q,q € Q7 € Rae, V' € Py o, ¢ € Qe .7 € Ry e

((nor)oa)arqr(lp,al,r], P[4, ]

o) o). la. 7)), ¥, ¢ 1))

WS et ) (o) (a7, £lds )
LS

b —»b
4 y 4,0 P-f.P)7(ag, f-d)ulr,g.1")
L
while
aprri (1o (70 @) ([[p.al. 7], [0 [+ 1)

Ao (ro o)) [lp.al 7] ¥ 1)

(4.4)

=29, (Too)(p.d.g. [, dDulr,g.r)

(4.4) / / /

=25, op.f,0)71(q.9, f-¢)p(r, g.r")
c’i>c

Unitors. For every groupoid A, we define the identity profunctor
I1a:A®° x A — Set a,d — Hom(a,d').
Let P : A - B be a profunctor. It is well known that there are natural isomorphisms

(and thus proisomorphisms) Ap : Po 1 = P and pp : 1g o P = P fulfilling the triangle
equations. In our notation

Ap([fip]) = fp  pp(lp.g)) =pg (A.4)
for f € Hom(a,d'), p € P4, g € Hom(V,b).
Claim. pp and A\p are natural in P.
Proof. Let o : P = @ be a protransformation. For f € Hom(a,a'),p € Py, and ¢ € Qp o we
have

oAp(lf,p),q) = o(f-p.q)
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and
Ao ola,)([f.pl,q)

S (oo 1) k9.4 Agllg. 1. )

, classes
[9.9'1€(QoLA)p o

(A.2) - ~ -

=" Lia(£,9)a(p,@) Me([5,7),9)
classes

[9,4']€(Qo1A)y o

(9:9)€(9:4")a

(A0) N
= Z 5f,§ U(}%g)ég.a,q
g€Hom(a,a’)

aeQb,a

1 \(42)
=o(p. f"q) =0o(fp.q) = orp([f.P],q)
A similar proof shows that pp is natural in P. []

Theorem 4.5 . The structures defined above yield a dagger pivotal structure [CR16, Section
2.1] for the 2-category GpdActs.

Proof. We first consider the dagger structure, then the pivotal structure.

Dagger. From the symmetry of the expressions (4.5) and (4.4) we conclude that (o7)! =
rfot and (6 07)" = of o 71. All invertible natural transformations and in particular all
coherence isomorphisms are unitary.

Pivotality. We show that for every profunctor P : A - B, the cup (4.8) and cap (4.7) are
well defined. We first show that e descends to a map on the quotient. Let p € Py 4,0 € Py o,
q € Pygq,q € Py and f € Hom(ad',a) and suppose that (p,p’) ~ (¢,¢'). Then, there is a
b5V st (pr,r~txp') = (q,¢), where 7~1 % p/ = p/.r is the dual action. Therefore

(0, q), 1) = 0140 =01 prprr = g1 pp0-

To show that € is an intertwiner we let p,p’ and f be as above and let a % @ and @ LS

Therefore,
e(g.[p,p')-h,gfh) = Op—1f1g-1gphtp = Of1 -
Using unitors and associators, we can show that the left transpose of any morphism p : P = S,
given by the composite
(6 © 1P*) (15* opo 1P*) (15* © 77) )
is equal to the protransformation p* : S* = P* defined by the functions

swa
Sa,b X Pa,b _p) Pa,b X Sa,b i) N.

For = 1p : P = P this implies the snake equation. A similar argument shows that the
right tranpose is given by the same equation. This proves that our 2-category is a dagger
pivotal 2-category. L]

Theorem 4.8 . Definition 4.7 defines a dagger 2-functor.

Proof (sketch). Here, we use the description of C*Alg in terms of symmetric separable
dagger Frobenius algebras, Frobenius bimodules and intertwiners [Vic10, HVW14, CR16].



Vol. 15:1 A CLASSICAL GROUPOID MODEL FOR QUANTUM NETWORKS 32:25

We first show that the data given in Definition 4.7 is well defined: Given a profunctor
P : A - B, the vector space @b,a CP,q4 is a CA—CB bimodule with action

CA®PCP,, 2 CB— HCPh,,
b,a b,a

induced from the action (4.1) of the morphisms on P, (again defined to be 0 on non-
compatible components).

Given a protransformation o : P = T, the linear map Q(o) is indeed an intertwiner:

ForpePb’a,aLa’,b’gb:

Q) (fpg)= Y olfpgtit= > olp ftg "t

tETb’a tETb’a
= > olpbftg=fQo)g
?ETbﬂa

By definition, () preserves the dagger structure.

The critical step in the proof of functoriality is showing that the horizontal composition
of 2-morphisms is preserved. Formally, we defined horizontal composition of profunctors
P:A -+ Band S:B -+ C and protransformations via the coequalizer of the maps

Hb,b’ Pb’,a X Hom(b, b/) X Sc,b — Hb Pbﬂ X SCJ,
(p’f78) '_> (p'f’s)
(0, f8) = (p, [-s)

leading to the equivalence relation (p,s) ~ (p.f, f~'.s). We denoted this coequalizer as
follows:

e: [[ PoaxSep—(SoP),, (p.s) = [p, 5]
beobB
In C*Alg, the horizontal composition of Q(P) and Q(S) are defined via the splitting

of the dagger idempotent [HVW14] X € End <®b,a Cho® ®CECSCZ> given at stage
((b,a,c,N), (b’,a’,c’,g')) as
(CPbya & (CScE — (CPb/,a/ ®CS,+

b
3,70, 704 0 0c.c!
bbb b Yasa’Ye,e _
(p,s) — Hom(/, b)] E (p-f, f71s)

Lo
To show that our functor preserves horizontal composition we thus have to show that the
quantization of the coequalizer Q(¢€) : (p, s) — [p, s] splits X (up to a constant). And indeed,

Q(6)'Q(e) € End | TP, ® CSey

a,b,c
is given at stage ((a,b,c), (a’,b', ) as
(Cpbﬂ X CSCJ, — (CPb/ﬂ/ X (CSC/,b/
(p, 5) = 5a,a’5c,c’ Z (ﬁv g)

(57§)e<p7s)b’
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:5aa CC’St |prf

b’—)b
where St(p, s) = {b b (pg,gts) = (p, s)} is the stabilizer of the joint action of Autg(b)

on Py g x Sep and in (p, s)y is defined in (A.1). Since all groupoids in GpdAct¢ act freely,
this stabilizer vanishes and Q(e)TQ(¢) is indeed proportional to X. Similarly Q(e)Q(e) is
proportional to 1o(gop)- L]
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