
Logical Methods in Computer Science
Volume 15, Issue 1, 2019, pp. 34:1–34:37
https://lmcs.episciences.org/

Submitted Jan. 24, 2018
Published Mar. 29, 2019

COMPUTER-ASSISTED PROVING OF COMBINATORIAL

CONJECTURES OVER FINITE DOMAINS: A CASE STUDY OF A

CHESS CONJECTURE

PREDRAG JANIČIĆ a, FILIP MARIĆ a, AND MARKO MALIKOVIĆ b

a Faculty of Mathematics, University of Belgrade, Serbia
e-mail address: {janicic,filip}@matf.bg.ac.rs

b Faculty of Humanities and Social Sciences, University of Rijeka, Croatia
e-mail address: marko@ffri.hr

Abstract. There are several approaches for using computers in deriving mathematical
proofs. For their illustration, we provide an in-depth study of using computer support
for proving one complex combinatorial conjecture – correctness of a strategy for the chess
KRK endgame. The final, machine verifiable result presented in this paper is that there is
a winning strategy for white in the KRK endgame generalized to n× n board (for natural
n greater than 3). We demonstrate that different approaches for computer-based theorem
proving work best together and in synergy and that the technology currently available is
powerful enough for providing significant help to humans deriving some complex proofs.

1. Introduction

Over the last several decades, automated and interactive theorem provers have made huge
advances which changed the mathematical landscape significantly. Theorem provers are
already widely used in many areas of mathematics and computer science, and there are
already proofs of many extremely complex theorems developed within proof assistants and
with many lemmas proved or checked automatically [25, 31, 33]. We believe there are changes
still to come, changes that would make new common mathematical practices and proving
process will be more widely supported by tools that automatically and reliably prove some
conjectures and even discover new theorems. Generally, proving mathematical conjectures
can be assisted by computers in several forms:

• for exhaustive analysis (e.g., for checking of all possible cases);
• for automated proving of relevant statements (e.g., by generic automated provers or by

solvers for specific theories);
• for interactive theorem proving (e.g., for proving correctness of exhaustive analysis algo-

rithms or for direct proving of relevant statements).

Key words and phrases: Chess, chess endgame, strategy, theorem proving, proof assistants, SAT, SMT,
constraint programming .

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(1:34)2019
c© Predrag Janičić, Filip Marić, and Marko Maliković
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

34:2 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

Each of the above forms of support provides different sorts of arguments, each has its
limitations, and its strengths and weaknesses. In this paper, we advocate that it is their
synergy that provides a way for proving some complex combinatorial conjectures. Namely,
in every proving process, a human mathematician experiments, analyses special cases, tries
to discover or prove simpler conjectures, etc. However, all these are typically hidden in
the final product and published mathematics is typically the art of polished proofs, rarely
the art of how to reach them. Computer support can be crucial in the demanding process
of seeking and proving new mathematical truths. However, for each computer-supported
proving approach, one has to consider the following key questions:

• What have we really proved?
• Is our proof a real mathematical proof, or just a supporting argument?
• How reliable is our proof?
• What was the level of automation and the level of human effort required to make the

proof?

As a case study, we use a conjecture from one of favourite domains for many AI
approaches – chess. We consider a conjecture that states correctness of a strategy for
one chess endgame. Endgame strategies provide concise, understandable, and intuitive
instructions for the player and correctness means that the strategy always leads to the best
possible outcome (under any play by the opponent). We show that both chess strategies and
proofs of their correctness can be rigorously formalized, i.e., expressed in pure mathematical
terms. Although a strategy for an endgame such as KRK (white king and white rook against
black king) is simple, its formalization has a number of details and it is not easy to prove
its correctness. One of our goals and contributions is modelling the chess rules and chess
endgames so that the correctness proofs can be made as automated, efficient and reliable as
possible.

Through this complex exercise, we will show that a real-world process of proving
conjectures such as correctness of a chess strategy can be naturally based on a synergy
between different computer-supported approaches and combines experimentation, testing
special cases, checking properties, exploring counterexamples for some conjectures, and,
at the end, proving conjectures within a proof assistant, using as much automation as
possible. Correctness of the strategy for the KRK endgame is just an example, and the
main purpose of this work is to illustrate a methodology that can be used in proving some
complex combinatorial conjectures in an efficient and a highly reliable way. In our previous
work, we proved the correctness of a very similar KRK strategy within a constraint solving
system URSA [30] and a proof assistant Isabelle/HOL[35]. In this paper, we give a unifying
perspective of proving conjectures like that one using three kinds of systems – a general
purpose programming language, a constraint solver, and a proof assistant, and we further
improve earlier proofs in terms of efficiency, reliability, understandability and generality.

Overview of the paper. In Section 2 we give some background on automated theorem proving,
SAT and SMT, constraint programming systems and URSA, interactive theorem proving
and Isabelle/HOL. In Section 3 we discuss formal representation of chess and chess endgames
in various logic and languages. In Section 4 we discuss different methods for reasoning about
chess endgames and proving their correctness. In Section 5 we discuss different methods to
make our proofs faster, and our conjectures higher-level and more general. In Section 6 we
discuss some related work and in Section 7 we draw final conclusions.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:3

2. Background

2.1. Automated and Interactive Theorem Proving.
Automated theorem proving, SAT and SMT. Modern automated theorem provers based
on uniform procedures, such as the resolution method, and also specific solvers, such as
SAT and SMT solvers, can decide validity of huge formula coming a wide spectrum of areas
including software and hardware verification, model checking, termination analysis, planning,
scheduling, cryptanalysis, etc. [7]. One of the most widely used SMT theories is linear
arithmetic, a decidable fragment of arithmetic (over integers – LIA, or reals – LRA) that
uses only addition – multiplication is only allowed by a constant number, and nx is just a
shorthand for x+ x+ . . .+ x where x occurs n times. Linear arithmetic is rather simple,
but expressible enough to be widely used in applications in computer science [7]. There are
several decision procedures for variants of linear arithmetic and they are widely available
through modern SMT solvers [20].

Constraint programming systems and URSA. Constraint programming systems allow spec-
ifying problems and searching for models that meet given conditions, by using various
approaches (e.g., constraint logic programming over finite domains, answer set programming,
disjunctive logic programming). Some constraint systems, such as URSA [30], are based on
reduction to propositional satisfiability problem (SAT). In URSA, the problem is specified in
a language which is imperative and similar to C, but at the same time, is declarative, as the
user does not have to provide a solving mechanism for the given problem. URSA allows two
types of variables: (unsigned) numerical (with names beginning with n, e.g., nX) and Boolean
(with names beginning with b, e.g., bX), with a wide range of C-like operators (arithmetic,
relational, logical, and bitwise). Variables can have concrete (ground) or symbolic values (in
which case, they are represented by vectors of propositional formulae). There is support for
procedures and there are control-flow structures (in the style of C). Loops must be with
known bounds and there is no if-else statement, but only ite expression (corresponding
to ?: in C). An URSA specification is symbolically executed and the given constraint
corresponds to one propositional formula. It is then transformed into CNF and passed to
one of the underlying SAT solvers. If this formula is satisfiable, the system can return all its
models.

Interactive theorem proving and Isabelle/HOL. Interactive theorem provers or proof assistants
are systems used to check proofs constructed by the user, by verifying each proof step with
respect to the given underlying logic [48]. Proofs written within proof assistants are typically
much longer than traditional, pen-and-paper proofs [5] and are considered to be very reliable
[4]. Modern proof assistants support a high-level of automation and significant parts of proofs
can be constructed automatically. Some proof assistants are also connected to powerful
external automated theorem provers and SMT solvers, and thanks to that are now capable
of proving very complex combinatorial conjectures.

Isabelle [38] is a generic proof assistant, but its most developed application is higher
order logic (Isabelle/HOL). Formalizations of mathematical theories are made by defining
new notions (types, constants, functions, etc.), and proving statements about them (lemmas,
theorems, etc.). This is often done using the declarative proof language Isabelle/Isar [47].
Isabelle/HOL incorporates several automated provers (e.g., classical reasoner, simplifier)

34:4 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

and it has been connected to SMT solvers [9], enabling users to employ SMT solvers to
discharge some goals that arise in interactive theorem proving.

2.2. Chess Endgame Strategies. Techniques used by computer programs for chess in
midgames (minimax-style algorithms) are often not appropriate for endgames and then other
techniques have to be used. One such technique is based on lookup tables (i.e., endgame
databases) with pre-calculated optimal moves for each legal position. However, such tables
for endgames with more chess pieces require a lot of memory and, in addition, they are
completely useless for human players.1. One alternative to huge lookup tables, usable both
to human and computer players, are endgame strategies. Endgame strategies are algorithms
that provide concise, understandable, and intuitive instructions for the player. Endgame
strategies do not need to ensure optimal moves (e.g., shortest path winning moves), but
must ensure correctness – i.e., if a player A follows the strategy, he/she should always reach
the best possible outcome. The main focus of our work is formal analysis of combinatorial
algorithms, so we will consider only endgame strategies (and not endgame databases).

One of the simplest chess endgames is the KRK endgame. There are several winning
strategies for white for this endgame. Some of these were designed by humans, while some
are generated semi-automatically or automatically, using endgame databases, certain sets of
human advices, and approaches such as inductive logic programming, genetic programming,
neural networks, machine learning, etc. However, only a few of them are really human-
understandable. Some strategies for white were proposed by Zuidema [49] (a strategy
based on a high-level advice instead of search), Bratko [13, 15, 14] (an advice-based strategy
consisting of several sorts of strategic moves), Seidel [42] (a strategy using the ring structure of
the chessboard), Morales [36, 37] (short strategies produced by inductive logic programming
assisted by a human), etc.

2.2.1. Bratko-Style Strategy for White for the KRK Endgame. In the rest of the paper, we
will consider one strategy for white for KRK: it is a variation of Bratko’s strategy and
slightly modified with respect to the version published earlier [32].

We assume standard chess notions such as legal moves, mate, stalemate, etc. (as defined
in the FIDE Handbook [22]). Legal KRK positions contain three pieces: the white king
(WK), the white rook (WR), and the black king (BK). On the 8× 8 board, there are 399 112
such positions, while the strategy is applied only to 175 168 of them – those with white on
turn.

Auxiliary Notions. In the following text, we assume that files (columns) and ranks (rows) of
the chessboard are associated with the numbers 0, 1, . . . , 7, and the squares are represented
by (x, y) pairs of natural numbers between 0 and 7. For formulating the strategy, we use
several auxiliary notions (standard notions or notions introduced by Bratko):
Manhattan distance: For two squares of the chessboard (x1, y1) and (x2, y2), the Man-
hattan distance equals |x1 − x2|+ |y1 − y2|.

1The Lomonosov Endgame Tablebases that contain optimal play for all endgames with seven or less pieces,
generated by Zakharov and Makhnichev (http://tb7.chessok.com/) have around 140 Terabytes. It was
shown that there is a position with seven pieces such that black can be mated in 545 moves but not in less
moves, if she/he plays optimally

http://tb7.chessok.com/

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:5

Chebyshev distance: For two squares of the chessboard (x1, y1) and (x2, y2), the Cheby-
shev distance is the minimal number of moves a king requires to move between them, i.e.,
max(|x1 − x2|, |y1 − y2|).
Room: Following the strategy, white tries to squeeze the rectangular space available to
black king – that space is called the room (Figure 1) and is measured by its half-perimeter.
When the black king and the white rook are in line, the black king is not confined (not
restricted to a rectangular area), and the room takes the value 15 (whenever the black king
is confined, the half-perimeter of the guarded space is at most 14)2. Therefore, if the rook is
on the square (wrx,wry) and the black king on the square (bkx, bky), then room equals:{

15, if wrx = bkx or wry = bky
x+ y, otherwise

where x and y are lengths of sides of the guarded space (it holds that x = wrx if wrx > bkx
and x = 7− wrx if wrx < bkx, and analogously for y).
Critical square: The critical square is the square adjacent to the square of the rook in the
direction of the black king; if the rook and the black king are in the same column or the
same row, then the critical square is between them, otherwise, it is diagonal to the square
of the rook (Figure 1). More precisely, if the rook is on (wrx,wry) and the black king on
(bkx, bky), then the coordinates (x, y) of the critical square are given as follows:

x =

wrx, if wrx = bkx
wrx − 1, if wrx > bkx
wrx + 1, if wrx < bkx

y =

wry, if wry = bky
wry − 1, if wry > bky
wry + 1, if wry < bky

Figure 1: From left to right: illustration of the notion of room, of the notion of critical
square, of the notion of L-pattern, and of a position in which the ReadyToMate
move is possible

Rook exposed: The rook is exposed if white king cannot reach it fast enough to protect it,
i.e., if white (black) is on turn and the Chebyshev distance between the rook and the white
king is greater by at least 2 (by at least 1) than the Chebyshev distance between the rook
and the black king.
Rook divides: The white rook divides two kings if its x coordinate is (strictly) between x
coordinates of the two kings, or if its y coordinate is (strictly) between y coordinates of the
two kings (or both).

2On the n× n board, the half-perimeter is at most 2n− 2, and when the black king is not confined, the
room is 2n− 1.

34:6 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

L-pattern: Three KRK pieces form an L-pattern if the kings are in the same row (column),
at the distance 2, and if the rook and the white king are in the same column (row) and at
the distance 1 (Figure 1).
Kings on a same edge: The two kings are on a same edge if their files or ranks are both
equal to 0 or 7.
Towards black king’s edge move: If the black king is on an edge, then the white king
moves towards that edge.

Basic Strategy. The strategy can be defined as follows:

1. ImmediateMate: If there is a mating move, play it;
2. ReadyToMate: If the above is not possible and there is a move that leads to mate in

the next move, play it (Figure 1).
3. Squeeze: If none of the above is possible, make a move (by the rook) that reduces the

room and in the reached position it holds that: (i) the rook is not exposed, (ii) the rook
divides the kings and (iii) it is not stalemate.

4. Approach: If none of the above is possible, then approach the critical square, i.e., move
the king so the Manhattan distance between the king and the critical square is decreased;
in the reached position, the following has to hold: (i) the rook is not exposed, (ii) the
rook divides the kings or there is a L-pattern, (iii) if the room is less than or equal
to 3, then the following holds: the white king is not on an edge and if its Chebyshev
distance from the rook is 1, then it does not make a move towards the black king’s
edge, and (iv) it is not stalemate. Play the approach move in a non-diagonal direction
(ApproachNonDiag) only if no diagonal approach move (ApproachDiag) is possible.

5. KeepRoom: If none of the above is possible, then keep the room, i.e., move the king if
that does not increase the Chebyshev distance from the rook; in the reached position,
the following has to hold: (i) the rook is not exposed and divides the kings, and (ii) if
the room is less than or equal to 3, then the following holds: the white king is not on
an edge and if its Chebyshev distance from the rook is 1, then it does not make a move
towards the black king’s edge, and (iii) it is not stalemate. Play the keep room move
in a non-diagonal direction (KeepRoomNonDiag) only if no diagonal keep room move
(KeepRoomDiag) is possible.

6. RookHome: If none of the above is possible, then move the rook to be horizontally or
vertically adjacent to the white king; in the reached position the following has to hold:
(i) the rook is adjacent to the black king only if it is guarded by the white king and (ii)
it is not stalemate.

7. RookSafe: If none of the above is possible, then move the rook to some edge (other than
the edge it is possibly is on); in the reached position the following has to hold: (i) either
both kings are next to the rook or the Chebyshev distance between the rook and the
black king is greater3 than 2, and (ii) it is not stalemate.

On the 8× 8 board, the above steps are used in the following number of positions (in
total 175168): 1512 (ImmediateMate), 4676 (ReadyToMate), 116504 (Squeeze), 12160+4020
(ApproachNonDiag + ApproachDiag), 3160+184 (KeepRoomNonDiag + KeepRoomDiag),
32520 (RookHome), 432 (RookSafe). Note that some kinds of strategy moves can be played
in different ways. For example, when the Squeeze move is applicable, there are often several

3If the distance would be equal to 2, then the black king could approach the rook, so the rook would have
to make the rook safe move again and again.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:7

possibilities to play it. Although it is not necessary for correctness (as we will show), for
efficiency reasons (i.e., for reaching mate faster) Squeeze should be maximal – it should be
played so that the black king is confined to the smallest possible room. Also, if there are
more RookHome moves applicable, the one with the smallest Manhattan distance between
the rook and the black king should be chosen. For other moves for which there are more
options, it does not matter which of them will be selected.

For the sake of formal analysis, the above strategy differ to some extent from Bratko’s
strategy, but still keeps its spirit [32].

3. Problem Representation

The FIDE Handbook [22] is the authoritative account of the laws of chess, but it specifies
chess only informally and is suitable only for informal reasoning. For more rigorous reasoning,
the chess notions have to be specified formally, in some strict framework. In the rest of this
section, we will discuss central issues in representing general chess rules and notions in various
computer based frameworks. We will discuss three concrete examples – representation within
the general purpose programming language C, within the constraint solver URSA and within
the proof assistant Isabelle/HOL.4

3.1. General Chess Rules. General chess notions can be strictly defined, for example, in
terms of the structure of natural numbers, or within Zermelo-Fraenkel set theory (ZFC), or
given axiomatically, via axioms in first order logic (FOL), or even using a general-purpose
programming language (such as C or Haskell). For computer-supported reasoning about
chess, the most reliable approach is to have explicit definitions of chess within a rigorous
logical framework of some proof-assistant, which is usually some variant of higher-order logic
(HOL) or type theory.

Chess is a complex game, with many rules, but it turns out that there are not many
central notions that have to be used to state the properties like correctness of strategies for
chess endgames that we are primarily concerned about. The chess game starts in an initial
position, then two players play after each other and the game proceeds through a series of
legal positions until one player wins or the game is drawn. Transitions between positions
are made by legal moves played by the players. Therefore, to formally specify a chess game,
one must represent arbitrary chess positions, the initial position, legal positions, legal moves,
positions won for a player (its opponent is checkmated) and positions that are drawn (it is
stalemate or a checkmate cannot be reached). Other specific definitions (e.g., the capture
rules, or the promotion rules for a pawn) are just building blocks used to define the central
notions.

We will follow Hurd[28] and make some important simplifications (since we are primarily
focused on endgames). First, only pawnless games with no castling are considered. We also
do not formalize three-fold repetition of positions, and fifty-move rule.5 Also, the FIDE
rules state that a position is legal if it is reachable from the initial position by a sequence
of legal moves, but in the definition of legal positions (i.e., in the lgl pos predicate) we
omit this condition and the definition of the initial position. Namely, all positions legal in

4All formalizations, programs and proofs discussed in this paper are available online from http://argo.

matf.bg.ac.rs/downloads.
5These two rules are not relevant for the strategy that we analyze: as it will be shown, it does not allow

repetitions of positions, and it leads to a mate in 33 moves at most.

http://argo.matf.bg.ac.rs/downloads
http://argo.matf.bg.ac.rs/downloads

34:8 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

the strict FIDE sense will satisfy the conditions of our definition (there might exist some
positions that satisfy our definition, but are not legal in the strict FIDE sense). So, since we
show correctness of endgame strategies for all positions legal in a weaker sense, our proofs
will be valid also wrt. the FIDE definition. Although a number of specific chess rules are
missing and our theory is not a fully developed theory of the general chess, it still precisely
defines notions relevant for pawnless endgames and gives us means to formally prove that
our specific endgame definitions are in accordance with the general chess rules.

Instead of full details of a general chess formalization [28, 35], we will give only a rough
outline. Since it needs to be strict and formal, we will present it in the style of the proof
assistant Isabelle/HOL. The basic notions are the following.6

• The side is a datatype denoting two players (White and Black).
• Positions are represented by a type pos, characterized by the following components.

– A function on turn : pos ⇒ side gives the player that is on turn in the given position.
– A function on square : pos ⇒ square ⇒ (side × piece) option gives the piece on the

given square in the given position (or returning the special value None if the square is
empty). In the above, the datatype piece contains the chess pieces King , Queen, Rook ,
Bishop, Knight (note that we do not consider pawns) and the datatype square contains
the squares on the board. The function implicitly ensures that there cannot be more
than one piece on a square.

The above notions are used in definitions of the following basic functions.

• The function lgl pos : pos ⇒ bool checks if the given position is legal.
• The function lgl move : pos ⇒ pos ⇒ bool checks if the second given position can be

reached from the first given one by a legal chess move.
• The function mate : pos ⇒ bool checks if the player on turn is checkmated in the given

position.

The above notions for chess need to meet some conditions. For example, concrete
definitions for lgl pos and lgl move have to ensure that legal moves can only be made
between legal positions, so the following holds: lgl move p1 p2 −→ lgl pos p1 ∧ lgl pos p2
(which we can prove as a lemma).7 Also, after a legal move, the opponent is on turn,
lgl move p1 p2 −→ on turn p2 = opp (on turn p1) must hold (where opp denotes the
opponent side).

Some details of implementation in Isabelle/HOL. For illustration, we show some auxiliary
definitions from our Isabelle/HOL formalization (that follows Hurd [28]) that are used in
definitions of lgl pos, lgl move, and mate.

The square type is implemented as a pair of integers8 – this enables to express many
chess definitions succinctly, using arithmetic. lgl pos definition must ensure that all pieces
are within the board bounds, for which the function on board (f , r)←→ 0 ≤ f ∧ f < F ∧0 ≤
r ∧ r < R is used (global constants F = 8 and R = 8, for files and ranks, determine the size
of the board). We also define functions that for a given position p and a square sq check if

6Following the spirit of given representation, a general theory of two player strategic games (including
chess) could be defined.

7Notice that such conditions hold for most (if not all) two player strategic games, so if we build a general
theory of two player games, formulae like the given two would have a role of axioms.

8Instead of integers, natural numbers could have been used. However, integers allow expressing some
properties using subtraction more easily.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:9

sq is empty (empty p sq ←→ on square p sq = None), or occupied by a piece of a given
side sd (occupies p sd sq ←→ (∃pc. on square p sq = Some (sd , pc))).

Next we define scope of each piece. For instance:

rook scope (f1, r1) (f2, r2)←→ (f1 = f2 ∨ r1 = r2) ∧ (f1 6= f2 ∨ r1 6= r2)

In a position p, a square sq1 attacks sq2 if the line between them is clear (clear line p sq1
sq2 ←→ (∀sq . sq btw sq1 sq sq2 −→ empty p sq))9, and if there is a piece on sq1 such that
sq2 is in its scope.

attacks p sq1 sq2 ←→ clear line p sq1 sq2 ∧
(case on square p sq1 of

None ⇒ False
| Some (, King) ⇒ king scope sq1 sq2
| Some (, Rook) ⇒ rook scope sq1 sq2 ...)

A side sd is in check in a position p if its king is on a square sq1 , and there is an
opponent’s piece on some square sq2 such that it attacks the king on sq1 .

in chk sd p ←→ (∃ sq1 sq2 . on square p sq1 = Some (sd, King) ∧
occupies p (opp sd) sq2 ∧ attacks p sq2 sq1)

Finally, a position is legal (denoted by the function lgl pos) if the opponent of the player
on turn is not in check, and, since we represent squares as pairs of integers, if all pieces are
within the board bounds (coordinates of their squares are between 0 and 7, which is checked
by the on board function defined above).10

The notions of legal move and checkmate (i.e., the functions lgl move and mate) are
defined in a similar fashion. Since we will prove that our endgame strategy will always
succeed in checkmating the opponent, we do not need to formalize the definition of a draw.

3.2. Chess Endgames. An alternative definition of the chess game can be given for a
specific endgame, and the relevant chess rules can be described in simpler terms, leading to
an chess endgame definition.

The type pos representing general chess positions can be significantly simplified if only
the positions reachable during a specific endgame need to be considered (e.g., in a KRK
endgame, only the rules for King and Rook are relevant and all other pieces and conditions
describing their moves can be omitted). Simpler and more compact representations lead to
more efficient reasoning.

Additionally, the functions on the type pos that formally describe the general chess
notions (e.g., functions lgl pos , lgl move and mate) need not be executable (e.g., if definitions
of those functions contain quantifiers, the computer framework need not be able to effectively
compute if there is a checkmate in a given position). However, to aid some automatic
reasoning approaches, it is desirable to have an executable representation at least for
the endgame definition (e.g., it should be possible to compute effectively if a position is
checkmate, if a move is legal, or to enumerate effectively all legal positions satisfying some
given property).

9Since squares that a knight attacks are not on the same line with the square that it is on, the clear line
condition is always satisfied.

10It may seem that the definition of legal position should require that the kings are not on adjacent
squares. However, that condition is not necessary: if the two kings are on adjacent squares then, following
Hurd’s definitions, the player who is not on turn would be in check (his/her king would be attacked by the
other king), which is not legal by the above definition.

34:10 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

In the ideal case, both simplified and general chess representation (and all corresponding
definitions) should be described within the same computer framework (e.g., proof assistant).
In that case, some morphism between the two representations can be defined, and the
relationship between them can be formally shown. Further, all reasoning about the endgame
properties should be done within the proof assistant leading to highest possible reliability.
Reasoning about the endgame properties can also be done in some other systems (e.g., it can
be done by using a constraint solver or some custom-designed C programs). In that case, the
specific, simplified representation of endgame positions and rules have to be implemented in
that system, but the relationship of such implementation with the general rules of chess can
be shown only informally, leading to a lower degree of confidence.

In either case (a proof assistant, or some other system), the following notions can be
used to represent the endgame rules.

• A type JEGK.pos represents chess positions encountered during a specific endgame.11 It
should be able to represent all chess positions that contain pieces relevant for the specific
endgame (e.g., in the KRK case, two kings and the white rook) and all positions that can
be reached from those during a play based on the strategy. Therefore, there can be a
function ̂ : JEGK.pos⇒ pos that is a bijection between JEGK.pos and this subset of pos i.e.,
a function such that each position p from JEGK.pos represents some such position p = p̂

from pos . The endgame domain should be closed under legal moves in the general domain,
i.e., ∀ p1, p2 . lgl move p̂1 p2 −→ (∃ p2. p2 = p̂2).
• The set JEGK.inital positions : JEGK.pos set is the set of possible initial positions for

the endgame, i.e., the set of all legal positions in JEGK.pos that contain all pieces relevant
for the endgame (note that JEGK.pos can contain some positions where some pieces have
been captured). It must hold that this set represents exactly all legal positions from pos
that contain all relevant pieces (correctness of the endgame strategy is usually formulated
for all plays that start in a position from this set).
• The function JEGK.lgl pos : JEGK.pos⇒ bool checks if the given position is legal. For any

position p of type JEGK.pos it must hold that JEGK.lgl pos p ←→ lgl pos p̂.
• The function JEGK.lgl move : JEGK.pos ⇒ JEGK.pos ⇒ bool checks if the second given

position can be reached from the first given position by a legal move. It must hold that
for any given positions p1 and p2 of type JEGK.pos it holds that JEGK.lgl move p1 p2 ←→
lgl move p̂1 p̂2.
• The function JEGK.mate : JEGK.pos ⇒ bool checks if the player on turn is checkmated

in a given position. It must hold that for any position p of type KRK.pos it holds that
JEGK.mate p←→ mate p̂.

The above conditions are necessary (and sufficient) to prove in order to show that if we
prove some property for the endgame then that property holds wrt. the general chess rules,
too.

3.2.1. A Case Study of KRK. We will present several instances of the KRK endgame
definition. The relevant pieces are the two kings and the white rook (that could be captured
and our representation needs to cover that situation, too).

11Note that we will use typewriter font for the endgame definition related notions (e.g., JEGK.pos or
KRK.pos) and normal italic font for general chess notions (e.g., pos).

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:11

Isabelle/HOL and Records. The most natural way of representing the position is to pack all
relevant information into a record (a structure) or an array. In Isabelle/HOL we define the
following record.

record KRKPosition =

WK :: "square" (* position of white king *)

BK :: "square" (* position of black king *)

WRopt :: "square option" (* position of white rook (None if captured) *)

WhiteTurn :: "bool" (* Is white on turn? *)

In order to represent a chessboard position, such record has to meet several conditions.
First, the following condition checks whether all pieces are within the board bounds:

on board (WK p) ∧ on board (BK p) ∧ (¬WRcapt p −→ on board (WR p))

WRcapt p denotes that the rook is captured in position p, i.e., that WRopt p = None.
The following condition checks whether pieces are on different squares

WK p 6= BK p ∧ (¬WRcapt p −→ WR p 6= WK p ∧ WR p 6= BK p)

Note that this definition uses the notion of square, and the on board predicate which are
also used in the definition of the general chess rules. Since both the general chess definition
and the endgame definition are given in the same system (proof assistant), we could reuse
such definitions.

KRK.pos is the type consisting of all KRKPosition records that satisfy the two conditions
given above. The abstraction function (̂) that maps KRK positions to general chess positions
that they represent is defined as follows:

on square p = λ sq. (if WK p = sq then Some (White,King)
else if BK p = sq then Some (Black ,King)
else if WRopt p = Some sq then Some (White,Rook)
else None)"

Auxiliary functions that lead to the KRK.lgl pos and KRK.lgl move definitions are
reformulated for the endgame. The following function checks if the black king is attacked, and
is used in the definition of checkmate, along with the KRK.lgl pos and KRK.BK cannot move

definitions (that are not shown here, but are available in the formal proof documents).
KRK.WR attacks BK p ←→
¬ WRcapt p ∧ rook scope (WR p) (BK p) ∧ ¬ sq btw hv (WR p) (WK p) (BK p)

KRK.mate p ←→ KRK.lgl pos p ∧ KRK.BK cannot move p ∧ KRK.WR attacks BK p

The rook scope definition is taken from the general chess formalization, but the notion
of the black king being attacked is specific to KRK (sq btw hv call checks only if the white
kings blocks the line between the rook and the black king horizontally or vertically) and
such simple way is not correct wrt. the general chess rules (in general chess other pieces
must be taken into account). Because of such differences, it is essential to have a formal link
between the two layers.

C and Structures. In C, it is natural to represent squares by two integer coordinates. Also,
there is no built-in option type in C so, for simplicity, we just add a flag that tells if the
rook has been captured (if the rook is captured then its two coordinates become irrelevant).
The type KRK.pos is the following:
typedef struct pos {

bool bWhiteOnTurn;

bool bRookCaptured;

unsigned char WKx, WKy, WRx, WRy, BKx, BKy;

34:12 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

} KRKPosition;

For efficient storing, we represent each position by a bitvector of length 20: each of the
three pieces by two triples of bits (as a triple of bits gives 8 possible values, corresponding
to the default chessboard size) and two bits for representing which player is on turn and
whether the rook has been captured. For instance, the position shown left in Figure 1, with
white on turn, is represented by the numbers (3, 2) − (5, 4) − (2, 6) − 1 − 0, i.e,. by the
following bitvector: 01101010110001011010. We implemented functions for transforming the
above structure into bitvectors and back.

Unlike Isabelle/HOL, where the conditions that the record must satisfy are explicit, in
C these conditions are ensured by additional functions.

It is easy to formulate all relevant chess notions and rules. For instance, the definition
of mate is formulated in C as follows.12

bool Mate(KRKPosition p) {

return LegalPositionBlackToMove(p) && BlackCannotMove(p) && WRAttacksBK(p);

}

URSA Constraint Solver, Bitvectors, and SAT. The URSA constraint solver is based on
bitvectors and reduction (“bit-blasting”) to SAT. In URSA, a position can be conveniently
and naturally specified by six triplets of bits (two for each of the three pieces) plus bits for
representing which player is on turn and whether the rook has been captured (as in the C
version). Therefore, in URSA we represent positions with 20-bit numbers, and we developed
procedures for transformation from individual pieces of information to 20-bit numbers and
back.

Since the URSA language is C-like, it is easy to formulate all relevant chess notions and
rules, very similarly as in the C version. For instance:
procedure Mate(nPos, bMate) {

call LegalPositionBlackToMove(nPos, bLegalPositionBlackToMove);

call BKCannotMove(nPos, bBKCannotMove);

call WRAttacksBK(nPos, bBKAttacked);

bMate = bLegalPositionBlackToMove && bBKCannotMove && bBKAttacked;

}

Once the URSA specification is made, by merits of the URSA system, we can immediately
get a representation of properties of the KRK endgame in the language of SAT – bitvectors
are vectors of Boolean variables and each URSA procedure call generates a Boolean formula
constraining the parameters.

Linear Integer Arithmetic (LIA). Another possibility is to represent KRK positions and all
relevant predicates using the language of linear integer arithmetic (LIA). The type KRK.pos
then consists of integers wkx, wky, bkx, bky, wrx, and wry, the Boolean WhiteOnTurn, and
the Boolean WRCaptured. We constructed such specification in terms of LIA within the
Isabelle/HOL proof assistant. Here is an example definition.
LIA.rook scope f1 r1 f2 r2 ←→ (f1 = f2 ∨ r1 = r2) ∧ (f1 6= f2 ∨ r1 6= r2)

Note that these definitions are very similar to the ones based on records and the option
type, but they use only LIA constructs. Because of that, the Isabelle/HOL system can

12Presented specifications in different frameworks are equivalent and substantially the same. However,
there are still some minor differences (e.g., in naming conventions, in grouping of some conditions into
predicates, etc), just as there are different programming styles.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:13

automatically transform such definitions to the SMT-LIB input format and apply SMT
solvers, which is the main method that we will use for reasoning in Isabelle/HOL.

3.3. Chess Endgame Strategies. Given the representation of the chess (endgame) rules,
endgame strategies can be represented. Without loss of generality, we can only consider
strategies for the white player. We can think about a strategy as a function that maps a
given position to a position that is going to be reached after playing a strategy move. This
function does not need to be total (w.r.t. the set of all positions with the relevant pieces
on the board), for example, it need not be defined for positions that cannot be reached
during the endgame. Instead of functions, sometimes a better choice could be to allow
non-deterministic strategies and to model strategies by relations. Namely, non-deterministic
strategies can be underspecified and can have much simpler definitions than corresponding
deterministic functions – relations should describe only those aspects that are necessary
for correctness, while aspects related to efficiency could be omitted from the specification
and postponed (see Section 5.1). Therefore, we have the following choices for the strategy
definition.

• A relation WS rel : pos ⇒ pos ⇒ bool. There can be more than one position reachable by
a strategy from a given position in one ply. The strategy must be legal i.e., it must give
only legal moves:

WS rel p1 p2 ⇒ lgl move p1 p2
• A deterministic-function WS fun : pos ⇒ pos opt (opt denotes the option type, like in

Isabelle/HOL). This function corresponds to one specific instance of the strategy and
returns the (single) move that white following the strategy should play in the given position
(or the special value None, if the strategy is undefined for the given position).

If both the relation WS rel and the function WS fun are defined, then it is natural to
require that they agree:

WS fun p = p′ −→WS rel p p ′.

We also consider a non-deterministic function WS set : pos ⇒ pos set, defined as
WS set p = {p′ | WS rel p p ′}. Note that given the implementation of WS rel, it can still be
non-trivial to obtain an implementation of WS set.

We will also consider the following relation:

• Brel : pos ⇒ pos ⇒ bool is a relation such that Brel p p ′ holds whenever a position p′ can
be reached from the position p by a legal move of black. Note that this is just a restriction
of the relation lgl move on the set of positions in which black is on turn.

Since the play of black is not restricted, we can’t consider Bfun that would be analogous
to WS fun.

Although we assume strategies on the general chess position type pos, it suffices to
define them only on the endgame type KRK.pos (e.g., we consider the relation KRK.WSrel :
KRK.pos ⇒ KRK.pos ⇒ bool). Every strategy definition on the type KRK.pos can naturally
be lifted and yields a strategy on the type pos. Namely, given a strategy relation KRK.WSrel
defined in the endgame terms, two positions p1 and p2 of the type pos are connected by
the strategy relation WS rel defined in the general chess terms, i.e., WS rel p1 p2 if and only
if both can be represented by the type KRK.pos i.e., if there are positions p1 and p2 of the
type KRK.pos such that p̂1 = p1 , p̂2 = p2 and KRK.WSrel p1 p2 holds. If a strategy function is

34:14 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

lifted, then it returns None for all positions that cannot be represented by the type KRK.pos.
Again, this is important for maintaining the link with the general chess game.

3.3.1. A Case Study of the Strategy for KRK. We have developed several implementations
of the KRK endgame strategy described in Section 2.2.1, and then proved its correctness.
Each implementation relies on some previously described KRK endgame representation.

Defining strategy conditions. For illustration, we show some auxiliary definitions that lead
to the strategy definition. For example, in Isabelle/HOL the function that checks if a
position p′ can be reached from a position p by an ImmediateMate move is formalized as
follows (assuming that auxiliary predicates KRK.BK cannot move and KRK.WR attacks BK

were previously defined).
KRK.immediate mate cond p p′ ←→ KRK.BK cannot move p′ ∧ KRK.WR attacks BK p′

Similarly, the RookHome condition is formalized as follows (the divide attempt requires
that the white rook is in a file or rank next to the white king):
KRK.rook home cond p p′ ←→

KRK.divide attempt p′ ∧
(king scope (BK p′) (WR p′) −→ king scope (WK p′) (WR p′)) ∧
(KRK.BK cannot move p′ −→ KRK.WR attacks BK p′)

The corresponding definition in URSA is very similar13

procedure RookHomeCond(nPos1, nPos2, bRookHomeCond) {

call LegalMoveWR(nPos1, nPos2, bLegalMoveWR);

call DivideAttempt(nPos1, nPos2, bDivideAttempt);

call BKNextWR(nPos2, bBKNextWR);

call WKNextWR(nPos2, bWKNextWR);

call Stalemate(nPos2, bStalemate);

bRookHomeCond = bLegalMoveWR && bDivideAttempt && (!bBKNextWR || bWKNextWR) && !bStalemate;

}

The corresponding definitions in C and LIA are also very similar.

Defining the strategy relation. The applied move must be the first one whose condition
holds. Therefore, for each move we must have a function that checks if that move links
the two given positions, and a function that checks if the strategy move is not applicable
in a given position. Notice that these two are not just opposites of each other, since the
latter requires rejecting all possibilities for this strategy move to be played from the given
position. In Isabelle/HOL, we introduce the function KRK.kings move (f, r) k that for an
index k between 1 and 8, gives coordinates of 8 squares that surround the given central
square (f, r). Similarly, the function KRK.rooks move (f, r) k for k between 1 and 16 gives
all squares that are in line with the rook (first horizontally, and then vertically). Combined,
these give the enumeration of all possible moves of white (indices from 1 to 8 correspond to
the king moves, and from 9 to 24 to the rook moves). We show this only for ImmediateMate
in Isabelle/HOL, as other moves follow a similar pattern.

13 The condition that the position is not stalemate makes one of small differences between the URSA
and Isabelle/HOL specifications. In Isabelle/HOL, repeating the constraint on stalemate in conditions for
all move kinds would give very large formulae, so in the definition of the strategy relation that condition is
factored out and included only once, globally. On the other hand, URSA implements subformula sharing, so
no significant overhead is incurred if a constraint is repeated several times.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:15

Since we want to have all our definitions executable and we want to deal only with
quantifier-free SMT formulae, we must introduce bounded quantification (that is unfolded
into a finite conjunction). Then we can define predicates that encode that a certain kind of
move cannot be applied.

all n P n ←→ ∀ i. 1 ≤ i ∧ i ≤ n −→ P i

KRK.no mate WK p ←→ all n 8 (λ k. let sq = KRK.kings move (WK p) k in

KRK.WK can move to p sq −→ ¬ KRK.immediate mate cond p (KRK.move WK p sq))

KRK.KRK.no mate WR p ←→ all n 16 (λ k. let sq = KRK.rooks move (WR p) k in

KRK.WR can move to p sq −→ ¬ KRK.immediate mate cond p (KRK.move WR p sq))

KRK.no immediate mate p ←→ KRK.no mate WK p ∧ KRK.KRK.no mate WR p

Note that the mating move can be performed only by the rook, and we have formally
proved that in Isabelle/HOL, so the search for a mating move does not need to consider the
moves of the king.

Since URSA, C and the quantifier-free fragment of LIA do not support quantifiers,
conditions like the above are expressed by a finite conjunction or a loop.

Finally, we can introduce the relation KRK.st wht move p p′ m, encoding that a position
p′ is reached from a position p after a strategy move of a kind m. We show only a fragment
of the definition in Isabelle/HOL (the C, URSA and LIA definitions are very similar).
MoveKind = ImmediateMate | ReadyToMate | Squeeze | ApproachDiag |

ApproachNonDiag | KeepRoomDiag | KeepRoomNonDiag | RookHome | RookSafe

KRK.st wht move p p′ m ←→
(if m = ImmediateMate then

KRK.lgl move WR p p′ ∧ KRK.immediate mate cond p p′

else

KRK.no immediate mate p ∧
if m = ReadyToMate then

KRK.lgl move white p p′ ∧ KRK.ready to mate cond p p′

else

KRK.no ready to mate p ∧
...

if m = RookSafe then

KRK.lgl move WR p p′ ∧ KRK.rook safe cond p p′

else False)

Note that this is our strategy relation KRK.WSrel, but it is parametrized by a move type
(therefore, we can consider the relation KRK.WSrel

m, where m is ImmediateMate, ReadyToMate,
etc.).

Defining the strategy function. Although the strategy relation permits to play several different
moves in some position, the ultimate goal is usually to reduce that to an executable function
that calculates a single white player move for each position when it is on turn.

Defining deterministic strategy function KRK.WSfun requires a bit more effort. A function
can iterate through all legal moves of white pieces until it finds a first move that satisfies the
relational specification. An interesting exception is the Squeeze move. To make the strategy
more efficient, the maximal Squeeze (the one that confines the black king the most) is always
played (if there are several such moves, the first one found in the iterating process is used).

The strategy function definition in Isabelle/HOL uses several auxiliary functionals. The
functional KRK.first move WK p cond takes a position p and a condition cond (a unary

34:16 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

predicate formulated on the set of all positions), iterates through all possible moves of the
white king (using the function KRK.kings move), and returns the index (a number between 1
and 8) of the first legal move (i.e., the move with the minimal index) that leads to a position
that satisfies the given condition cond, or zero if there is no such move. The functionals
KRK.first move WR and KRK.first move white are defined similarly. For example, the value
of the expression KRK.first move WR p KRK.immediate mate cond is the index of the first
mating move by the white rook starting from the position p, or zero if the black cannot be
mated in one move. We also introduce the functional KRK.min move WR p cond score, that
takes a position p, a condition cond and a function that assigns penalty scores to positions.
The functional KRK.min move WR returns the index of the move of the white rook (a number
between 1 and 16) that leads into the position that has the minimal penalty score among all
such positions that satisfy the given condition cond (if there is more than one such move,
the first one i.e., the minimal index is returned).

Using these auxiliary functions, the strategy function is defined in Isabelle/HOL as
follows.

"KRK.st wht move fun p =

(let i = KRK.first move WR p KRK.immediate mate cond

in if i > 0 then (KRK.move white p (i+8), ImmediateMate)

else let i = KRK.first move white p KRK.ready to mate cond

in if i > 0 then (KRK.move white p i, ReadyToMate)

else let i = KRK.min move WR p (KRK.squeeze cond p) KRK.room
in if i > 0 then (KRK.move white p (i+8), Squeeze)

...

This definition always gives the Squeeze that maximally reduces the room.
This definition can be executed from within Isabelle/HOL (by means of value command)

or its code can be exported in one of the supported functional languages (e.g., Haskell).
In URSA, the function is implemented similarly. A loop through all possible move

indices is used to find the one that satisfies the current move condition.

4. Reasoning Methods

In this section we will describe several approaches for proving correctness of a given chess
endgame strategy, i.e., for proving that the strategy for white is winning starting from any
of relevant legal positions. We define that WS rel is a winning strategy for white on a set of
positions I with white on turn if all positions in I are WS -winning positions for white. A
position is WS -winning for white if each play starting from it terminates in a position where
black is checkmated, given that white follows the strategy.14 More formally, WS -winning
positions can be defined inductively: (i) A position is WS -winning, if white, following the
strategy WS , immediately mates; (ii) A position is WS -winning if each strategy move by
white followed by any legal move of black leads into a WS -winning position.

It is suitable, and sometimes even necessary to use computer support with chess rules
and the strategy explicitly defined within a strict environment (proof assistant, theorem
prover, constraint solving system, programming language etc.). Some of these proving
approaches require that the implementation of the strategy is executable (i.e., that functions
KRK.WSrel, KRK.WSset, or KRK.WSfun are implemented and used). We will assume that the

14Note that every WS-winning position is a winning position (assuming perfect play), but the opposite
does not necessarily hold.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:17

reasoning will be performed on the endgame level, while the link to the general chess rules
should be ensured as discussed previously. Two approaches can be used.

Exhaustive retrograde analysis.: This approach assumes that the strategy is represented
by a lookup table (endgame database) that assigns a strategy move to each relevant
position. Then, using a retrograde procedure (in the style of Thompson’s work [46]), it is
verified that the endgame lookup table ensures win for white. If the strategy is represented
algorithmically (e.g., by the function KRK.WSfun), then the strategy move for each position
is computed and stored into the lookup table. This approach is straightforward, but
it does not provide a high-level, understandable and intuitive, argument on why the
strategy really works.

High-level conjectures.: Within this approach, correctness of the strategy relies on several
conjectures (e.g., invariants for various strategy moves, termination conditions) which,
when glued together, imply that the strategy is winning. Conjectures can be proved
either by enumerating all possibilities or by some more sophisticated reasoning methods,
either manually or by using computer support. In the latter case, the conjectures can be
proved either formally, within a proof assistant, or informally checked using a general
purpose programming language or a constraint solver.

4.1. Retrograde Analysis. In this section we present a retrograde-style, enumeration-
based procedure that can be used for showing correctness of a strategy15.

Let I denote a set of all initial positions for which we claim that every play (with white
following the strategy) starting from them will terminate with black checkmated. To apply
the procedure, the set I must be closed under strategy moves of white followed by arbitrary
legal moves of black, so every strategy play that starts from a position in I always remains in
I . In the case of KRK we will assume that I equals the set KRK.inital positions defined
in Section 3.2 as a set of all legal positions with only the three relevant pieces on the board
(for the strategy that we consider, the condition on I is met, which can be easily proved).
Correctness of the strategy can be proved by showing that each position from I is a winning
position.

WS-winning positions could be calculated by using a direct recursion, but it is much
better to apply dynamic programming. For simplicity, we will assume that a deterministic
strategy WS fun is given, and defined for all positions p reachable from I and that functions
mate, Bset, and WS fun are executable. At the beginning of the procedure it is checked that
I is closed in the above sense, i.e., that Bset (WS fun I) ⊆ I. The set Winning will contain
positions determined to be winning. It will be initialized to all positions from which white
following the strategy immediately mates, and those positions will be removed from the set
I . After that, the following is repeated. Among the remaining positions (which are not yet
in the set Winning), the set S is found, containing all positions p such that: after a strategy
move by white from p to p′, it is not stalemate and all possible moves of black in p′ lead to
positions already in Winning . These are also the winning positions and we transfer them
from the set I to the set Winning . The process terminates if all positions are determined to
be winning (in that case, the set of remaining positions I is empty), or if there is no change
made by the current iteration (in that case, the set S is empty). This procedure can be
implemented within a function retrograde : P set⇒ bool:

15A slightly modified algorithm can be used for computing look-up table for optimal play, as Thompson
did [46].

34:18 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

function retrograde(I)
begin

S := {p ∈ I | mate (WS fun p)}
Winning := S , I := I \ S
repeat

S = {p ∈ I | Bset (WS fun p) 6= ∅ ∧ Bset (WS fun p) ⊆Winning}
Winning := Winning ∪ S , I := I \ S

until I = ∅ ∨ S = ∅
return I = ∅

end

The procedure runs in a BFS fashion and positions are added to the set Winning in
increasing order of the number of moves needed to checkmate black. The central loop
invariant is that after k iterations of the loop the set Winning contains all positions from I
for which white that follows the strategy mates the black is mated after at most k moves of
the black. From that, it can be easily proved that the strategy WS fun is winning strategy
on the set I iff the function retrograde returns true.

The procedure can also provide the longest possible game length, given that white
follows the strategy.

Note that the analysis could be easily modified to use the non-deterministic definition
of the strategy WS set instead of the deterministic version WS fun.

Note that although we have defined the function retrograde in the general chess terms,
it can be implemented in chess-endgame terms.

4.1.1. A Case Study of the Strategy for KRK. Given the strategy implementation, it was
rather straightforward to implement the above function in Isabelle/HOL and in C (the
relevant part of the code was only around a hundred lines of code and took only half a day
to write).

The retrograde analysis revealed some bugs in the initial implementation, and once they
were fixed, confirmed that the strategy is correct. Therefore, this approach proved to be
very suitable for rapid detection of bugs in the strategy implementation, without going into
any deeper analysis of its properties.

There are 175 168 legal KRK positions with the three pieces on board and white on
turn. It turns out that white always reaches win within 33 moves (i.e., within 65 plies).
Due to the large number of positions and plies, this approach is hardly applicable without
computer support. The check of correctness of the given KRK strategy using the C program
is done in around 5s.16

4.2. High-Level Conjectures. Correctness of a strategy can be proved using a more
abstract approach. The central statement can rely on a number of auxiliary, high-level
conjectures (lemmas) that combined together lead to the correctness arguments (that the
strategy WS rel, i.e. its counterpart JEGK.WSrel, is winning), but also provide insights into

16All running times are obtained on a cluster with 32 dual core 2GHz Intel Xeon processors with 2GB
RAM per processor. All the tests were run sequentially, and no parallelism was employed. The URSA
system was used with its default SAT solver – clasp (http://www.cs.uni-potsdam.de/clasp/). Although
the solving process is deterministic, the running times can vary to some extent (no more than 10%), but
since the exact information on time spent is not critical, we kept the experiment simple and performed all
measurements only once.

http://www.cs.uni-potsdam.de/clasp/

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:19

why the strategy really works. Such auxiliary conjectures can be proved in different ways.
In the following we will focus on the KRK strategy KRK.WSrel, but the method can be easily
applied to other strategies.

Many properties of the strategy can be formulated by lemmas of the following form (pi are
positions with white on turn, p′i are positions with black on turn, and mi are move types, e.g.,
ImmediateMate; a notation ∀

i∈{0..k}
pi mi p

′
i is just a shorthand for ∀p0 m0 p′0 p1 . . . pk mk p′k pk+1):

∀
i∈{0..k}

pi mi p
′
i. Pre p0 ∧ Seq

i∈{0..k}
pi mi p

′
i pi+1 −→ Post

i∈{0..k}
pi mi p

′
i

The predicate Pre denotes preconditions for p0. For example, it could express that a
position p0 is legal, or that all relevant pieces are on the board, but it could also give some
additional constraints (for example, that the white king is closer to the white rook than the
black king).

The predicate Seq denotes a sequence of strategy moves of white followed by legal moves
of black. Again, Seq

i∈{0..k}
pi mi p

′
i pi+1 is just a shorthand notation:

Seq
i∈{0..k}

pi mi p
′
i pi+1 ≡

∧
i∈{0..k}

(
KRK.WSrel

mi pi p
′
i ∧ Mi mi ∧ KRK.Brel p

′
i pi+1

)
Recall that the parameter m in the KRK.WSrel

m relation denotes the type of the move
played (e.g., KRK.WSrel

ImmediateMate p p′ denotes that there is an immediate mate in position
p, leading to the position p′). Predicates Mi additionally constrain the strategy move types
played by white (e.g., some Mi can require that mi belongs or does not belong to some set of
move types).

Finally, Post
i∈{0..k}

pi mi p
′
i is just a shorthand for a postcondition that relates all positions

and move types encountered during such a sequence of moves, i.e.,

Post
i∈{0..k}

pi mi p
′
i ≡ Post p0 m0 p′0 p1 . . . pk mk p′k pk+1

In most of useful statements, the postcondition is just a relation between the starting
and the ending position i.e., it is of the form Post p0 pk+1.

Some variations of the above general form are allowed, and the series can end either by
a black move (as given above), or by a white move.

Statements of the above form can express that some invariant is preserved or that some
measure decreases after a series of moves (so it is a termination measure), or that some
kinds of moves cannot or must be played after a series of moves, or that some series of moves
leads to checkmate, and so on.

Note that we have assumed that lemmas are expressed in terms of the strategy relation
KRK.WSrel

mi . However, we could use the function KRK.WSfun
mi if it is available and we want to

reason directly about it.
All central lemmas used in several available correctness proofs for Bratko’s KRK

endgame strategy [13, 32, 35] fit into the above form. For example, one of those lemmas
claims that after a basic move (Squeeze, Approach or KeepRoom), only a basic or a mate
move (ReadyToMate, ImmediateMate) can be played.

34:20 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

∀p0 p′0 m0 p1 p′1 m1. ¬WRcapt p0 ∧
KRK.WSrel

m0 p0 p′0 ∧ m0 ∈ KRK.BasicMoves ∧ KRK.B p′0 p1 ∧
KRK.WSrel

m1 p1 p′1
−→ m1 ∈ KRK.BasicMoves ∨ m1 ∈ KRK.MateMoves

Methods for proving lemmas. Although, in principle, statements of the above form can be
proved manually (usually, only informally), we are interested in fully or semi-automated
proofs within some computer system. Therefore, the statements have to be given in terms
of the endgame definitions. Note that Pre, all Mi, and Post should have an executable
implementation.

• Since the set of positions KRK.pos and the set of available move types are finite, then this
is a finite-domain conjecture that can be checked by an exhaustive enumeration. This
approach can be more efficient if the functions KRK.WSset and KRK.Bset defined in Section
3.3 are available so not all possible positions pi must be considered, but only their subsets.
Additionally, if the strategy is given by a function KRK.WSfun, then the search space (the
quantification domain) is smaller (branching occurs only with the black moves). This can
naturally be implemented in a language that enables iterating over sets of positions (so, it
is simple in C or in Isabelle/HOL, but not in URSA).
• Such statements can also be considered as constraint solving problems and constraint

solvers can be used to show that there are no positions and move types that would violate
the implication, i.e., to show that

Pre p0 ∧ Seq
i∈{0..k}

pi mi p
′
i pi+1 ∧ ¬ Post

i∈{0..k}
pi mi p

′
i

is unsatisfiable. It can be formulated in a language suitable for a constraint solver, given
the relations KRK.WSrel and KRK.Brel, and the conditions Pre, Mi and Post (not necessarily
effectively executable) can be formulated in the language of the constraint solver. In our
case, the formula was either a bitvector-arithmetic (BVA) formula that was bit-blasted to
SAT (via URSA) and solved by a SAT solver, or was a linear integer arithmetic (LIA)
formula formulated within Isabelle/HOL that was converted to SMT representation (via
Isabelle/HOL) and solved by an SMT solver.

Gluing lemmas together. Unlike lemmas, the central theorem often cannot be expressed in
the language of a decidable theory. Namely, proving the central theorem may require, for
instance, some inductive argument and using undecidable theories. In some computer-based
proving approaches (e.g., in a general-purpose programming language or in some constraint
systems) inductive arguments cannot be expressed, so the proof of the central statement
must remain informal. On the other hand, proof assistants allow such forms of reasoning,
so the central statement and its proof (using the lemmas) can be rigorously expressed and
mechanically verified within the system.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:21

4.2.1. A Case Study of the Strategy for KRK. In order to prove the central theorem, i.e.,
that the strategy for white is winning, we need to prove that it is terminating and partially
correct. In this section we list all lemmas that together show that the strategy is correct
(they are similar to lemmas given in [32], but somewhat improved, thanks to facts discovered
while formally proving that they can be glued together).

Lemma 4.1. After a strategy move by white, black cannot capture the white rook.

Lemma 4.2. After an ImmediateMate move, black is checkmated.

Lemma 4.3. ReadyToMate move leads to checkmate in the next move.

Lemma 4.4. RookHome and RookSafe are played only in the first three moves.

Lemma 4.5. Starting from a position with a room greater than 3, playing three full moves
where white plays only basic strategy moves (Squeeze, Approach or KeepRoom) reduces the
room or leaves the room the same, but decreases the Manhattan distance between the white
king and the critical square.

Lemma 4.6. When the room is less or equal to 3, after a three full moves where white
plays only basic strategy moves, the next move must be a mating move (ReadyToMate or
ImmediateMate).

All six lemmas can easily be formally stated in the general form described previously.
For example, Lemma 4.3 can be formalized as follows:

∀p0p′0m0p1p′1m1. ¬WRcapt p0 ∧
KRK.WSrel

m0 p0 p′0 ∧ m0 = ReadyToMate ∧ KRK.B p′0 p1 ∧
KRK.WSrel

m1 p1 p′1
=⇒ m1 = ImmediateMate ∧ KRK.mate p′1

We formulated the same set of above lemmas in three different systems: C, URSA and
Isabelle/HOL.

In Isabelle/HOL, encoding the lemmas is rather straightforward. For example, Lemma
4.3 is formulated as follows:

theorem ReadyToMateMove:

"∀ p0 p1 p1’ p2 t2. ¬ WRcapt p0 ∧
KRK.st wht move p0 p1 ReadyToMate ∧
KRK.lgl move BK p1 p1’ ∧
KRK.st wht move p1’ p2 t2 −→
t2 = ImmediateMate ∧ KRK.mate p2"

Lemmas are formulated over the record-based representation, and are converted to the
pure LIA and proved by applying SMT solvers. Translation is done manually, but could be
automated by implementing a suitable tactic.

In URSA, the quantification is implicit and the statement is proved by showing that the
negated statement is unsatisfiable:
call LegalPositionWhiteToMove(nPos1w, bLegalWhite1);

call IsRookCaptured(nPos1w, bRookIsCaptured1);

call StrategyRelation(nPos1w, nPos1b, bRel1, nsReadyToMate);

call LegalMoveBlack(nPos1b, nPos2w, bBlack1);

34:22 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

call StrategyRelation(nPos2w, nPos2b, bRel2, nStep2);

call Mate(nPos2b, bMate);

assert(bLegalWhite1 && !bRookIsCaptured1 && bRel1 && bBlack1 && bRel2 && !bMate);

In C, we used the brute-force enumeration-based approach to prove the lemmas. It
required using nested loops that correspond to quantification (we won’t further discuss this
C-based approach).

Expressing the lemmas is simple in each of the above approaches. In the enumeration-
based approach in C, proving lemma is actually execution of the code that expresses it.
In Isabelle/HOL, the user must provide a proof, but that proof just needs to provide a
boilerplate code that instructs the system to transform the lemma into the SMT-LIB form,
run the external SMT-solver (we used the Z3 solver), import the answer and, possibly, verify
it (in the case when proof-reconstruction is required and when the answer contains the
proof-certificate). In URSA, proving lemma is automatically delegated to the underlying
SAT solver by transforming the high-level specification into a propositional formula. The
specifications using three approaches (C, URSA, and Isabelle) are rather short, even including
formulations of lemmas – the C file has around 1000 lines, the URSA file around 2000 lines,
and the Isabelle files around 7800. Table 1 (and Table 4 in a summarized form) shows
statistics (the number of variables and clauses in the generated SAT instance and the running
time) for verifying the specification that uses the deterministic strategy function (with no
optimizations) using the constraint solver URSA.17

Lemma 1 Lemma 2 Lemma 3 Lemma 4 Lemma 5 Lemma 6 Total

variables 38778 38935 77552 146180 117039 146198 564682

clauses 150911 151795 302173 575404 455909 575645 2211837

time 56s 6s 20s 6107s 2060s 36s 8285s

Table 1: Deterministic strategy function with no optimizations (the URSA approach)

5. Steps Beyond: Citius, Altius, Fortius

After proving correctness of the basic version of the strategy using different approaches, we
want to make steps beyond, trying to perform proofs faster, to make them even higher-level,
and to reformulate conjectures to be more general and stronger. We will go through a series
of iterations using high-level statements and the constraint solver URSA. The culmination of
that is a machine verifiable correctness proof (in Isabelle/HOL) for the strategy generalized
to an n× n board, for arbitrary natural number n.18

5.1. Citius: Faster Computations and Efficiency Issues. There are several ways to
make checking and proving faster.

17The specification and the lemmas are slightly changed compared to the earlier version [32], thanks to
the influence of combination of different proving approaches. The size of formulae and the running times are
also slightly different.

18The strategy and the proof can be generalized to m× n case, but we will stick to the n× n case since it
is more interesting as it admits using more symmetries in reasoning.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:23

Using underspecifications. As discussed in Section 3.3, a non-deterministic strategy is
underspecified, and its deterministic version has to give specific choices for each strategy
move (there must be a way to choose if there are more than one move meeting the conditions).
If the retrograde analysis is used, then it is faster to verify the deterministic strategy definition,
than the non-deterministic one. However, the deterministic version becomes more difficult
for analysis by high-level conjectures (as it is more complex). In addition, if correctness
of the non-deterministic strategy has been previously shown, then it is sufficient to show
that the deterministic version just refines its non-deterministic counterpart. This brings us
to a more general and subtle idea, used often in interactive theorem proving (and actually
used in our Isabelle/HOL and URSA proofs). We can reason about strategy moves, not
only using their concrete definitions, but using only their preconditions and postconditions
(that do not necessarily cover all details of the moves), as announced in Section 3.3. This
way, our conjectures may be more general and much easier to verify (both in the constraint
solving and in the interactive proving setting). While the executable function is capable of
computing the single move that is played in each legal position and can effectively be used
in a chess playing system, the strategy expressed in terms of a relation is much more general
and covers various possible refinements.

For example, in the strategy in a form of a function, we used the maximal Squeeze move
– one that maximally reduces the room for the black king. This can enable white to more
quickly reach mate in some cases, but it affects the proving process. In the non-deterministic
version, we use a loosely specified Squeeze (guaranteed to reduce the room, but not necessarily
maximally).

The proving process is significantly more efficient when the relation is used, but the
determinism is lost. If correctness of the deterministic function is still to be considered, then
the total time should include time for the proof that the function meets the requirements of
the strategy relation – 638 seconds. The total proving time is, therefore, 1382s (744s+638s)
which is significantly smaller than 8285s, when only the function is considered (Table 4).

In the following, we will introduce some further optimizations, leading to new versions
of both the non-deterministic and the deterministic strategy.

Using equivalent specifications. One of our main goals in developing formalizations of chess
endgames (within different systems) is to have easily understandable, high-level descriptions
of relevant notions and strategy moves, and all definitions used so far were designed with
this goal in mind. However, they are often expressed in a way that, when unfolded, produces
huge corresponding formulae. Consider, for instance, a formalization of mate in URSA:
procedure Mate(nPos, bMate) {

call LegalPositionBlackToMove(nPos, bLegalPositionBlackToMove);

call BKCannotMove(nPos, bBKCannotMove);

call WRAttacksBK(nPos, bBKAttacked);

bMate = bLegalPositionBlackToMove && bBKCannotMove && bBKAttacked;

}

The above description is elegant and easily understandable. However, when unfolded, it
produces a huge corresponding formula. It can be described in a much more focused way.
Namely, white can actually mate black only within a few patterns (for example, in the KRK
endgame, the black king must be on one of the four edges). So, instead of the above general
and readable definition, we can describe these patterns, as given in the following URSA
specification (note that the condition that the position is legal can be dropped, since all
mating positions are explicitly represented):

34:24 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

procedure MateOpt(nPos, bMate) {

call Bitvector2Pos(nPos, nWKx, nWKy, nBKx, nBKy, nWRx, nWRy, bWhiteOnTurn);

call AbsDiff(nBKy, nWRy, nBKynWRy); call AbsDiff(nWKy, nBKy, nWKynBKy);

call AbsDiff(nBKx, nWRx, nBKxnWRx); call AbsDiff(nWKx, nBKx, nWKxnBKx);

bMate = !bWhiteOnTurn &&

(nBKx == 0 && nWRx == 0 && nWKx == 2 && nBKynWRy > 1 &&

((nBKy != 0 && nBKy != 7) || nWKynBKy <= 1) &&

((nBKy == 0 || nBKy == 7) || nWKy == nBKy)) ||

(nBKy == 0 && nWRy == 0 && nWKy == 2 && nBKxnWRx > 1 &&

((nBKx != 0 && nBKx != 7) || nWKxnBKx <= 1) &&

((nBKx == 0 || nBKx == 7) || nWKx ==n BKx)) ||

...

}

The above specification generates a smaller formula, easier to digest by the solving
process. However, there are still two major issues. First, while the former specification is
simple, understandable and very likely without errors, the latter is complex and prone to
errors. Here, the idea of refinement helps again: one first makes a specification in the style
of the former one, then a specification in the style of the latter one, and then checks (using
a constraint solver or a proof assistant) that these two are equivalent. Once this is done,
in the further proving process, only the more efficient one can be used. Such process of
refinement is often used in interactive theorem proving, but here we show that it is also
applicable within constraint solving systems (and possibly in other proving approaches).
The second issue is how the (optimized) specification can be derived in the first place. The
answer is: by a careful analysis and again using computer support. One can start by a first
incarnation of the optimized specification and check if it matches the high-level one. If it
does not, then a computer system (for instance, URSA) provides instances where the two
specifications do not match, the user fixes those differences and iterates the process. This
is often demanding, but also rewarding at the end: one has simplicity, understandability,
reliability, and efficiency.

The described approach was applied also to the stalemate definition, yielding additional
speed-ups.

The refinement approach was used in simplifying the strategy in one more way: strategy
moves specify what conditions should hold after the move, but not necessarily what piece
white should move. For example, it can be proven that black can be mated only by the
white rook, and not by the white king, and this fact can be used to simplify some definitions.

The alternative characterizations of mate and stalemate within URSA, gave a speed-up
(Table 4). Note that the total time should also include the 0.3s needed to prove that two
specifications for mate and that two specifications for stalemate are equivalent. It is not
necessary to verify that the function meets the requirements of this newer version of the
strategy relation – since the two relation-based specifications are proved to be equivalent.

Conditions that a certain move cannot be played in a given position, which are basic
building blocks for the strategy relation definition (described in Section 3.3.1), can also
be further refined and optimized (again carefully proving the equivalence with the original
formulations). For example, the KRK.no immediate mate condition can be optimized by
noticing that a mate move can be played only by moving the rook to an edge (where the
black king is).

Table 4 shows the gain of using the optimized NoMove conditions (except for the
KRK.no squeeze condition that will be discussed in Section 5.3.1). Again, the total proving

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:25

time should include proofs that original definitions are equivalent to the optimized ones:
under 5s altogether.

Exploiting symmetries. Chessboard has a number of symmetries and this can be exploited to
(i) make the definitions simpler and more readable and (ii) to make reasoning more efficient.
Symmetries in chess endings have already been studied, for example by Bain [2].

There are three basic symmetries – horizontal, vertical, and diagonal. Reflection
functions map squares to squares: if F and R are global constants (denoting the numbers of
files and ranks)19 equal to 8, then the horizontal reflection Rh maps a square (x, y) to the
square (F − x− 1, y), the vertical reflection Rv maps it to (x,R − y − 1) and the diagonal
reflection Rd to (y, x) (the diagonal reflection is applicable only if the board is square). If a
position is specified by the squares assigned to pieces on the board, then its reflected image
is obtained by applying the reflection function to all those squares.

We define that a KRK position that has the black king on the square (bkx, bky), the
white king on the square (wkx,wky), and the white rook on the square (wrx,wry) is in
canonical form if the triple (2 · bkx + 1, 2 · wkx + 1, 2 · wrx + 1) is lexicographically smaller or
equal to the triple (F ,F ,F), if the triple (2 ·bky +1, 2 ·wky +1, 2 ·wry +1) is lexicographically
smaller or equal to the triple (R,R,R), and the triple (bkx,wkx,wrx) is lexicographically
smaller or equal to than the triple (bky,wky,wry) (if the rook has been captured, then the
third components are ignored). Essentially, in canonical positions the black king is confined
to be in a triangle that covers approximately one eighth of the board and the other two
pieces are relevant only on the boards with odd dimensions, when the black king is on the
central square or on the diagonal. If the black king is on the diagonal, then the white king
must be on the diagonal or below it, and if it is also on the diagonal, then the rook must be
on the diagonal or below it.

It is easy to define a function that checks if a position is in canonical form. Reflections
can be used to map any position into canonical form and a canonization function (e.g.,
the procedure Canonize in URSA) can be easily defined as a composition of reflections.
Canonization can be used to simplify definitions. For example, in URSA, the procedure
MateOpt that we have previously shown can be simplified to the following one.
procedure MateOptSym(nPos, bMate) {

call Canonize(nPos, nPosC);

call Bitvector2Pos(nPosC, nWKx, nWKy, nBKx, nBKy, nWRx, nWRy, bWRCaptured, bWhiteOnTurn);

call AbsDiff(nBKy,nWRy,nBKynWRy); call AbsDiff(nWKy,nBKy,nWKynBKy);

call AbsDiff(nBKx,nWRx,nBKxnWRx); call AbsDiff(nWKx,nBKx,nWKxnBKx);

bMate = !bWhiteOnTurn &&

(nBKx==0 && nWRx==0 && nWKx==2 && nBKynWRy > 1 &&

(nBKy!=0 || nWKynBKy <= 1) && (nBKy==0 || nWKy==nBKy)) ||

(nBKy==0 && nWRy==0 && nWKy==2 && nBKxnWRx > 1 &&

(nBKx!=0 || nWKxnBKx <= 1) && (nBKx==0 || nWKx==nBKx));

}

The stalemate definition in URSA is also very succinctly expressed using symmetries
and canonization. Some other predicates can also be reformulated in such manner, yielding
a more readable formalization. Table 4 shows the result of reformulating the definitions
of mate, stalemate and ReadyToMate step. Note that this does not have a significant
effect on the proving efficiency, but the main gain lies in readability and in conciseness

19Later we will also consider boards of other sizes than 8× 8, so we consider symmetries in a bit more
general framework.

34:26 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

of the specification. Again, the total time should also include 0.4s needed to prove that
specifications are equivalent.

Symmetries and canonical positions can also significantly improve efficiency if they are
used for the so called without loss of generality (wlog) reasoning [26]. The central lemma
for exploiting symmetries (formally proved in Isabelle/HOL) states that if there is some
property of chess positions invariant under all three kinds of reflections (if the property
holds for a position, then the same property holds for its reflected image), then, in order to
show that all positions satisfy that property, it suffices to show only that canonical positions
satisfy that property.

theorem symmetry:

fixes P :: "KRKPosition ⇒ bool"

assumes "∀ p. P (reflectx p p) −→ P p"

"∀ p. P (reflecty p p) −→ P p"

"∀ p. P (reflectdiag p p) −→ P p"

assumes "∀ p. is canon p −→ P p"

shows "∀ p. P p"

We have proved in Isabelle/HOL that all relevant notions are invariant under all three
types of reflections. For example, if the black king is checkmated in a given position, it is
also checkmated in its reflected image (e.g. KRK.mate (reflectx p p) ←→ KRK.mate p).

Since many notions are used, it is a tedious job to formulate all such lemmas in a
proof-assistant, but once they are formulated, they are all almost trivial to prove (and
almost all proofs can be obtained automatically). Therefore, any statement that has an
outermost quantifier that universally quantifies over all positions can be relaxed by adding
the condition that the position is canonical, which significantly reduces the search space.

Exploiting symmetries is formally justified in Isabelle/HOL (all described lemmas have
been formally proved), while in URSA and C approaches it is used without justification
within the system. Using the wlog symmetries in the URSA approach, led to additional
significant speed-up shown in Table 4.

Since this is the final version in our chain of refinements, in Table 2 we present its
detailed statistics.

Lemma 1 Lemma 2 Lemma 3 Lemma 4 Lemma 5 Lemma 6 Total

variables 28190 27964 55958 111946 85186 111947 421191

clauses 98948 98166 196467 393049 299472 393060 1479162

time 3s 3s 6s 218s 72s 14s 316s

Table 2: Final version of the non-deterministic strategy

With all the presented optimizations, we built a new (final) version of the strategy
function and again proved all the lemmas. The running times for proving lemmas are
presented in Table 3, showing significant speed-up compared to the initial version of the
deterministic strategy.

The presented optimizations affect the definition of the deterministic strategy as the
optimized predicates are used both in the relation and the function definition. Since it was
proved that the original function refines the basic strategy relation and that all reformulations
were justified, the basic function also refines the final, optimized relation. Also, it can be
separately proved that the optimized version of the function refines the optimized relation.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:27

Lemma 1 Lemma 2 Lemma 3 Lemma 4 Lemma 5 Lemma 6 Total

variables 33574 33718 67097 129518 101359 129536 494802

clauses 116391 116792 232535 450829 351951 450962 1719460

time 14s 3s 7s 2244s 1566s 15s 3849s

Table 3: Final version of deterministic strategy

This lemma (with 44668 variables and 154471 clauses) is proved in 559s, reducing the overall
proving time for the function from 8285s, to 316s+559s=875s (plus 6s in total for proving
the lemmas that justify the optimizations). This is still significantly less than 3849s needed
for directly proving the lemmas for final deterministic version, which illustrates the power of
the refinement used.

A summary of the effect of different optimizations in the URSA specification is given in
Table 4.

variables clauses time

Function (direct) 563872 2208153 8285s

Function (via relation) 626270 2448464 744+638s

Relation 394096 1480708 744s

optimizing Mate and Stalemate 380577 1374585 668s + 0s

optimizing NoMove 372987 1357965 569s + 5s

reformulations using symmetry 420987 1478400 524s + 0s

wlog reasoning 421191 1479162 316s

Optimized function (direct) 494802 1719460 3849s

Optimized function (via relation) 465859 1633633 316s + 559s

Table 4: Summary of the proving process for different version of URSA specification

Automation and efficient solvers/theories. Communication with external SAT/SMT solvers
significantly increases automation in Isabelle/HOL. However, this requires formulating
conjectures in appropriate theories. As we already noted, we were able to formulate all
central lemmas in the language of linear arithmetic and this enabled their efficient, automated
proofs using the Z3 solver integrated with Isabelle/HOL. This required to reformulate the
definition of room to avoid multiplication, as discussed in Section 2.2.1. Otherwise, the
theory of bit-vector arithmetic would have to be used, leading to less efficient proofs.

5.2. Altius: High-level Proofs and Understandability Issues. The understandability
of the correctness proofs comes from the formulation of the central high-level lemmas. For
example, in our current proof, there is a lemma that claims that RookHome and RookSafe
moves can be played only in the first three moves (Lemma 4.4). We have demonstrated that
this lemma can be formally expressed and proved fully automatically (for example, by using
SMT solvers). However, this lemma can be replaced by three simpler ones. The first one
claims that the RookSafe can be played only as a first move (the RookSafe cannot be played
immediately after any strategy move of white, followed by a legal move of the black king).
The second one claims that RookHome can be played only immediately after RookHome or

34:28 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

RookSafe. The third one claims that RookHome cannot be played immediately after two
RookHome moves. These three lemmas together imply our original lemma, but also give us a
higher-level understanding and more insight into the strategy details. Additionally, it turns
out that it is much faster to prove three simpler lemmas: in URSA, the original lemma is
proved in around 218s in the fastest variant, while the three simpler lemmas together require
only around 58s. One reason for that is that the original lemma is too coarse and requires
reasoning about 7 plies at the same time, while the simpler lemmas require reasoning about
only up to 5 plies at the same time.

Further insights can be obtained by formulating explicit moves’ preconditions, postcon-
ditions and invariants. Namely, in all previous approaches it remains only implicit what
relationship between the pieces has been established after the first three moves, and what
has exactly happened after the first, after the second, and after the third move. Finding
explicit characterizations (expressed only in terms of positions and not the strategy) is a
complicated task, but it would make the proof more understandable and would significantly
contribute to deeper understanding of the very finest details of the strategy.

For example, RookSafe can be played only when no other move can be played. This
condition is complicated (it takes into account the definitions of all moves in our strategy).
However, by inspection and analysis of the positions in which this move can be played,
we managed to characterize those positions explicitly by the following condition (shown in
Isabelle/HOL).
(let (WKx, WKy) = WK p; (BKx, BKy) = BK p; (WRx, WRy) = WR p;

CBR = KRK.chebyshev dist (BK p) (WR p); CBW = KRK.chebyshev dist (BK p) (WK p)
in (CBR = 1 ∧ CBW = 2 ∧ ¬KRK.WR divides p ∧

WRx 6= WKx ∧ WRy 6= WKy ∧ WKx 6= BKx ∧ WKy 6= BKy) ∨
(BKx = 0 ∧ BKx = 0 ∧ WKx = 0 ∧ WKy = 2 ∧ WRx < 2 ∧ WRy > 2) ∨
(KRK.room p = 2 ∧ WKy = 2 ∧ (WKx = 0 ∨ WKx = 2)))"

The first disjunct characterizes the positions where the white rook must escape towards
a far edge as all other moves would leave it exposed, and the second and the third conditions
characterize the positions where black must escape towards edge not to leave the black
in a stalemate position (the third condition characterizes only two very special positions
where the black king is confined to only a single square). A simple lemma is proved that
claims that after any strategy move followed by a legal move of black the above condition
for RookSafe cannot be satisfied, so RookSafe can be played only as a first move (when the
postconditions of all moves are examined, it is almost obvious why this is so). This lemma
ensures that RookSafe can be played only in the first move, but this time we have a rather
explicit explanation and this proof could be done even manually.

Next, a lemma is proved that claims that after any two RookHome moves the following
condition holds:20

¬KRK.WR exposed p ∧ KRK.WR divides p ∧ ¬KRK.in chk p ∧ KRK.room p > 2

We follow Bratko’s informal proof and prove that the following condition is preserved
by all moves of black and all moves of white (except ReadyToMate and ImmediateMate):21

¬ KRK.WR exposed p ∧ (KRK.WR divides p ∨ KRK.L pattern p)∧
20This condition is recognized by Bratko [13] (however, without the ¬ KRK.in chk p condition that turns

out to be necessary).
21In the white-to-move positions, the KRK.L pattern p condition should actually be KRK.L pattern′ p,

where KRK.L pattern′ is slightly changed condition KRK.L pattern′ [13].

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:29

¬ KRK.in chk p ∧ KRK.room p > 2

The former condition ensures that a basic or a mating move can be played.
It turns out that lemmas that use such explicitly formulated pre and post conditions

and invariants are much easier to prove than lemmas formulated only in terms of moves –
all these lemmas with explicit invariants are together proved in under 10s in URSA which
is a very significant speed-up compared to the 218s needed for the original lemma. Again,
such explicit conditions bring not only speed but higher-level understandability.

To conclude, pen-and-paper proofs (e.g., the one given by Bratko [13]) required simpler
lemmas, as complex lemmas are hard to prove manually. On the other hand, formulating
just a few very coarse lemmas leads to a simpler proving process (although such lemmas
can require higher proving time on the computer, they require less human time and effort
to formulate them, which is the most significant and most time consuming component), so
there is a trade off between the proof understandability and its efficiency.

5.3. Fortius: Stronger Conjectures and Scalability Issues. Having a conjecture and
its proof at hand, we can consider if we can prove a stronger, more general conjecture. For
instance, we can notice that the correctness of retrograde analysis is valid not only for chess,
but for a wide class of games that can be defined as a loosely axiomatized theory. In this
section we will focus on another sort of generalization — we will prove correctness of our
KRK strategy for generalized, n× n chessboards.

5.3.1. Generalization to n × n Chessboards. Although the standard chess game is played
on a 8× 8 board, we can consider the KRK endgame and the presented strategy on n× n
boards. This generalization, made in the spirit of mathematical generalizations, breaks
the connection with the classic chess game, but illustrates power of the presented proving
methodologies and also how they can be used for different games.

We easily modified our programs to be able to represent boards of other sizes than
8× 8. Namely, bitvectors used for the board representation in URSA and in C can easily
be adapted to a variable board size, by changing the number of bits used to represent
coordinates. For example, in URSA, conversions from and to bitvectors can be modified to
include the dimensions of the board.

Modifying the strategy. Rapid testing of this generalized version using the C program quickly
revealed that the basic strategy does not define moves for all positions in the 4× 4 and 5× 5
cases. We made two adjustments to the strategy to cover those two cases.

First, in the Approach and KeepRoom moves of the original strategy it is required that
the white king does not move to an edge in order to keep the king out of the edge where the
black king is on, but, on small boards the white king might touch other edges. This does
not make any problems, so we reformulated this condition and explicitly required that two
kings are not on the same edge.

Second, the original strategy forbids making a RookSafe move such that the Chebyshev
distance between the two kings is exactly two (unless they are both next to the white rook).
This is needed to keep the black king from approaching the white rook in the next move, so
the white rook would need to run to a safe position again. However, in several positions on
the 4×4 and 5×5 boards it is not possible to make such RookSafe move (so it is not possible
to make any move, since RookSafe is the last possible move of our strategy). Because of that,
a new strategy move RookSafeSmallBoards (non-existent in the original Bratko’s strategy)

34:30 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

had to be introduced at the end of the current strategy and it needs to be used (in certain
positions) only in the 4× 4 and 5× 5 cases:

8. RookSafeSmallBoards: If none of the above is possible, then move the rook to an edge
where the white king is (if not already on that edge); in the reached position, the
Chebyshev distance between the white rook and the white king has to be 2.

The modified strategy is correct for all board sizes n ≥ 4 (the additional move kind will
be played only when n = 4 or n = 5).

We measured the total proving time needed for different chessboard dimensions and the
results are summarized in Table 5. The C program used a retrograde analysis, and URSA
was used to prove the lemmas about the correctness of the most optimized version of the
relation.22 Again, if correctness of the final strategy function is considered, then the total
proving times by URSA for each n should include proofs that the function refines the final
strategy relation. This additional time for n = 4 is 8s, for n = 7 exceeds the time used for
proving lemmas – 316s, and for n = 11 exceeds our time limit – 1h.

n No. of legal positions plies to win C URSA

4 1312 21 0s 37s

8 175168 65 5s 316s

12 2360160 109 194s 1250s

16 14241920 153 847s 2904s

Table 5: CPU time (in seconds) required by the C approach and the URSA approach for
proving strategy correctness for dimensions from n = 4 to n = 16

Reformulating the NoSqueeze condition. While the retrograde analysis proved its usefulness
in preliminary experimenting (for example, in showing incompleteness of the generalized
strategy for small boards), Table 5 shows that its running time grows quickly as n grows.
The URSA and Isabelle approaches also becomes practically unusable for higher dimensions.

Meeting the limit in proving correctness for larger dimensions by any of the approaches
needs new deep insights. For instance, a strategy move like Squeeze is played by the rook
and, within the strategy description, all possible 14 moves by the rook are covered. For the
8× 8 board, this approach does not do any harm. However, for the 1000× 1000 case, the
specification involves 999 + 999 possible rook moves, this condition explodes and, together
with other similar conditions, makes the conjecture impossible to resolve in a reasonable
time.

If the maximal Squeeze cannot be played, then no Squeeze at all can be played. A
deeper analysis reveals that any maximal Squeeze move fits into one of only 16 patterns,
independent of the dimensions of the chessboard. Assume that the position of the white
king, the white rook, and the black king after the Squeeze move are respectively (wkx,wky),
(wrx,wry), (bkx, bky). The rook must not be exposed after the move of white, so it must hold
that max(|wkx − wrx|, |wky − wry|) ≤ max(|bkx − wrx|, |bky − wry|). The maximal Squeeze,

22It is interesting that the total size of formulae for the lemma and the time needed was greater for n = 15
than for n = 16. This is because of the representation used: for n = 16, four bits are used for coordinates and
the conditions for ensuring that the coordinates are within the board disappear, contrary to, for instance, the
case n = 15.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:31

if it can be achieved, is played only in case of equality, i.e., if one of the following holds:
2wrx = wkx + bkx, 2wry = wky + bky, wrx + wry = bkx + wky, wrx + wry = wkx + bky,
wrx − wry = bkx − wky, wrx − wry = wkx − bky. Expressing wrx and wry gives all candidate
positions for the maximal Squeeze. If 2wrx = wkx + bkx, then wrx = (wkx + bkx)/2, but if
wkx +bkx is odd, then wrx = (wkx +bkx +1)/2 is played. Also, if wrx +wry = bkx +wky, then
either wrx = bkx + wky − wry0 and wry = wry0 or wrx = wrx0 and wry = bkx + wky − wrx0,
where (wrx0,wry0) is the position of the white rook before Squeeze. Also, in some maximal
Squeeze moves, the white rook moves to the file or rank next to one of wrx = bkx + 1,
wrx = bkx − 1, wry = bky + 1, wry = bky − 1. This gives 16 candidate positions.

We used the above approach in URSA and Isabelle/HOL and we have shown equivalence
between the optimized and the original definitions.

On the 8× 8 board, the number of 16 potential positions for Squeeze is larger than the
number of all possible positions for the rook (the rook can potentially move to one of the
14 squares). Therefore, we excluded this reformulation from our experiments for the 8× 8
chessboard. However, as the dimension of the board rises, the number of possible moves
by the rook increases, but the number of maximal Squeeze candidate positions remains the
same. This is vitally important and enables us to efficiently reason about arbitrarily large
boards, as it turns out that it is easy to characterize all move types with a number of possible
candidate positions that does not depend on the board size (for ImmediateMate there are 4
candidate positions, for ReadyToMate there are 12, for Squeeze there are 16, ApproachDiag,
ApproachNonDiag, KeepRoomDiag, and KeepRoomNonDiag are played by the king so there
are 8 candidate positions for them, and for both RookSafe and RookHome there are only 4
candidate positions for the rook).

This reformulation not only makes a significant leap in scalability and efficiency of the
proving, but it is also well-suited for communicating the strategy to human players (as they
must consider a smaller number of candidate moves).

Making the board size arbitrary. The above approach made proving strategy correctness
for large dimensions possible. But, still, these proofs are proofs for concrete, individual
dimensions and not for arbitrary dimension. So, now we need another deep insight: all
conditions used in specification of the strategy are expressed in terms of linear arithmetic,
not only in terms of coordinates of the pieces, but also if the dimension is treated as a
variable (and not as a constant)! This observation brings us to a general correctness theorem
expressible in terms of linear arithmetic and provable by a proof assistant equipped with a
support for SMT solving (for linear arithmetic). On the other hand, this technique is not
applicable within the SAT-based URSA approach.

Therefore, when using the system equipped with support for reasoning in linear arith-
metic, we can have a single theorem that shows that the strategy is correct for a chessboard
of any size n×n, for n ≥ 4. The times to prove the lemmas for this theorem for the strategy
relation in Isabelle/HOL are shown in Table 6.

We show the times for using Z3 in the oracle mode (without the proof reconstruction)
and also in the fully verified mode.23 Note that the proof reconstruction consumes most of
the time (but also gives a strongest guarantees). The time for verifying the whole theory
(everything except those six lemmas, including gluing them together) is around 259 seconds.

23The reported times are for Isabelle2015. The new SMT proof reconstruction module introduced in
Isabelle2016 is significantly less efficient in our case than the older one, since it is tailored towards simpler
and smaller proofs that occur in typical sledghammer tasks.

34:32 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

Lemma 1 Lemma 2 Lemma 3 Lemma 4 Lemma 5 Lemma 6 Total

oracle 1s 1s 2s 76s 38s 18s 136s

verified 2s 2s 3s 803s 816s 576s 2202s

Table 6: Isabelle proofs for symbolic n

6. Related Work

We are not aware of another complex conjecture proved using three different computer-
supported approaches. However, combining reasoning tools and approaches is present for
decades and is used in a number of contexts and application areas. In the following text, we
make just a brief selection of such works.

SAT solving has been used for solving very hard mathematical combinatorial problems
like the Boolean Pythagorean triples problem [27]. There are integrations of FOL provers
with SAT solvers [6]. SAT solvers can be used for solving CSP problems [45, 16, 43] and also
SAT/SMT solvers can be combined with constraint programming solvers [44, 3]. Computer
algebra systems have been plugged into SAT solver to provide a system that can be used as an
assistant in proving process for either finding counterexamples or finitely verifying universal
conjectures. This system has been used for proving a number of complex mathematical
conjectures such as conjectures from graph theory regarding properties of hypercubes [50].

SAT solvers were used from the Isabelle system in proving the Erdös-Szekeres conjecture
for convex polygons with at most 6 points [34]. SMT solver are interfaced to interactive
theorem provers [8, 1, 39] and successfully used for complex tasks, such as verification
of analog-mixed signal circuits [40]. FOL provers were used from the Isabelle system in
formalizing Tarski’s geometry [19].

A combination of constraint programming and theorem proving was used for software
verification [18]. Combination of interactive and automated proving for FOL was used for
reasoning about lazy functional programs [10]. Constraint programming is applied at the test
suite reduction problem [24]. There are systems that combine testing and interactive theorem
prover to reason about programs and to automatically generate concrete counterexamples
[17].

Experimental mathematics is an approach to mathematics in which computation and
experimentation are used to investigate mathematical objects and suggest conjectures,
properties and patterns. Experimental mathematics is frequently based on general purpose
computer algegra systems and on custom built software. There are research journals focused
on this approach to mathematics, such as the journal Experimental Mathematics.

There is also a long history of computer based analysis of games and strategies. Com-
puters have been often used for constructing chess endgame databases. Early programs for
retrograde analysis were implemented by Thompson [46] and Bramer [11, 12]. Databases for
a number of chess endgames are publicly available (e.g., the Lomonosov Endgame Tablebases,
generated by Zakharov and Makhnichev, contain optimal play for all endgames with seven
or less pieces).

Recently, computers have also been used to reason about endgame database correctness
(e.g., to construct endgame databases that are correct by construction). Reasoning is based
mainly on retrograde analysis and enumerations of positions and moves. Machine verifiable
proofs of database correctness for chess KRK endgame database were given by Hurd [28, 29].

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:33

A combination of binary decision diagrams (BDDs) for representing positions, model checking
tools for automation, and the proof-assistant HOL for high assurance were used.

Other games were also analyzed using computers. For example, Schaeffer et al. showed
that checkers game (on an 8 × 8 board) is a draw [41]. Their argument included a giant
endgame table, obtained by using massive computations combined with sophisticated search
algorithms. Neither a high-level nor a machine verifiable proof was produced. Edelkamp
applied BDDs to two-player games to improve memory consumption for reachability analysis
and game-theoretical classification [21]. Gasser [23] showed that the game of Nine Men’s
Morris is a draw, using a combination of endgame databases and search.

Only a very few high-level endgame strategies are accompanied by correctness proofs.
For instance, Zuidema [49] and Morales [36, 37] didn’t prove correctness of their strategies
for KRK. On the other hand, Bratko gave an informal, pen-and-paper proof for his KRK
endgame strategy [13]. There are only few direct, computer-supported correctness proofs of
strategies for chess endgames. A SAT-based constraint solver URSA was used by Maliković
and Janičić to prove correctness of a KRK strategy closely related to the one considered
in this paper [32]. Machine verifiable proofs were not provided and the lemmas cannot
be glued together into a single theorem. A similar approach was used by Marić, Janičić
and Maliković in Isabelle/HOL and automated SMT solvers were used to automatically
prove the conjectures [35], leading to a self-contained, fully machine verifiable proof of the
strategy correctness. We are not aware of other specifications of chess strategies within a
proof assistant or a constraint programming system (the aforementioned work on verifying
chess endgame databases [28, 29] does not deal with strategies understandable to humans).

7. Conclusions

In this paper we have shown how one can use computer support for proving correctness
of a chess endgame strategy, and we advocate that the same methodology could be used
for proving some other complex combinatorial conjectures (over finite domains). We have
presented a case study of one particular problem and shown how one can reason about
chess in a rigorous mathematical manner, supported by state-of-the-art computer tools.
We have shown that KRK chess endgame is strongly solved [41], i.e. it is win for white for
n× n chessboard, for each natural numbers n greater than 3. We revisit some key questions
and list some of the main lessons that we learnt and that can be used for proving other
combinatorial conjectures.

Specification language and verifiability.

• Proofs developed within proof assistants have the highest degree of confidence. Representing
the general chess rules and the endgame in Isabelle/HOL leads to highest possible reliability.
• Proof assistants have better expressive power than alternatives. For instance, we could

not glue the lemmas together (we could not even express the central theorem) in C and
URSA, but we did do it in Isabelle/HOL.
• Formalization should include an executable implementation of the analysed algorithm.

Defining an executable strategy function and relation enabled making various experiments
(e.g., URSA made possible to find all positions that satisfy some criteria), but also directly
enabled some reasoning methods (e.g, the retrograde analysis). Verified executable strategy
formalization can be exported to a general purpose programming language.

34:34 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

Convincibility, faithfulness, and understandability.

• Use a small set of basic definitions, separate basic and auxiliary definitions. The basic
definitions are cornerstones in any problem formalization and they must be concise,
clear, and carefully manually inspected since the proofs are checked only modulo these.
In our study, we invested a lot of effort in building a simple, understandable problem
representation (in different settings) based only on general chess rules.
• Introduce derived notions to speed up reasoning, but formally show connections with basic

definitions. We introduced many definitions specific for the KRK case, but we have always
formally shown that they are in accordance with the general chess rules.
• Introduce notions as abstractly as possible, so that they can be reused in other scenarios.

Identifying chess notions relevant for other two-player games can help analysing those
games.
• Use a problem representation understandable to humans, whenever possible. Instead of a

endgame tablebase, we focused on a strategy represented in a form of an algorithm, usable
both by humans and computers.
• Use symmetries as they can lead to more concise and understandable definitions, but also

to more efficient reasoning. Using symmetries should be justified by a meta-wlog theorem.
We used symmetries for deriving optimized definitions of mate and other notions.
• Clearly identify preconditions, postconditions and invariants. The best understanding of

algorithm comes by identifying the program state in all points of its execution, that can
be described by lemmas that formulate preconditions, postconditions and invariants.
• Optimized exhaustive search has both good and bad sides. Retrograde analysis was a very

efficient way to prove the strategy correctness both in C and Isabelle/HOL, but it did not
provide us with better understanding, and proved to be inapplicable to large board sizes.

Abstraction, refinement, and generalization.

• Use non-deterministic specification whenever possible and introduce deterministic spec-
ifications only when necessary. We first introduced strategy in form of a relation, and
defined the strategy function only in the end.
• Reason about the most abstract definition that guarantees correctness and only afterwards

introduce specific implementation details. It was much faster to prove correctness of the
strategy specification that leaves questions of choosing the squeeze move open.
• Try to make definitions independent of the problem dimensions. Finding only a finite

number of candidate positions for each move enabled us to prove the strategy correct for
arbitrary large boards.

Automation and efficiency.

• Whenever possible, express relevant notions and conjectures in terms of theories supported
by efficient automated theorem provers (for SAT, SMT, FOL, etc). We adapted all notions
so that they fit into QF-LIA (e.g., we had to change Bratko’s notion of room, and replace
quantifiers by finite conjunctions), which enabled us to heavily use automation: SMT
solvers via Isabelle/HOL and SAT solvers via URSA. We relied on available automated
procedures as much as possible, pushed them to their current limits and used human effort
only for tasks requiring real insights and ideas.
• Proofs by automated theorem provers have to be verified by proof assistants. Connection

between the URSA endgame definition and the exported SAT representation is not formally
shown (and relies on the correctness of the URSA system implementation). On the other

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:35

hand, in Isabelle/HOL, transformation from the record-based representation to LIA can
be implemented separately and LIA representation can then be automatically transformed
into SMT-LIB (due to the SMT support in Isabelle/HOL).
• If a candidate lemma cannot be proved by some computer tool, it is beneficial to get its

counterexamples. Counterexamples can give crucial hints on how to fix errors, and such
corrections took majority of our time and effort. We used SMT solver within Isabelle/HOL
that can give one counterexample (typically – a position that does not meet the statement),
and – URSA that can list them all.
• Use fast, even not maximally reliable tools for rapid testing of conjectures. Checking of

lemmas can be time-consuming and can take minutes. In contrast, the retrograde analysis
can check the overall correctness of the strategy in only seconds, and therefore is much
more suitable for rapid testing of variants of the strategy. However, the retrograde analysis
does not provide the explanations of why the strategy works when it does and why the
strategy does not work when it doesn’t.
• There is a trade-off between the coarseness of lemmas and time to prove them. Coarse

lemmas were easy to formulate, but required long time to prove. Splitting them to smaller
lemmas required much more effort but brings pay off in much faster automated proofs.
• Save time in proof evolution, not in the final formal proving. The final, central theorem,

within the Isabelle system, was proved in a few minutes. However, this time is not very
important: once the theorem is polished, the proof is generated and verified only once.
What is critical is that the road to this theorem requires checking and proving many
conjectures and it is critical that these steps can be performed reasonably fast, possibly
only in terms of seconds or minutes, so the proving process is really interactive. We
believe that the presented synergy of different approaches enable this seeking for the proof
approach practically usable in mathematical practice.

Our proofs are an illustration for a successful synergy among different computer-
supported proving approaches. Our experience is that computer tools available nowadays
provide a strong and reliable support for proving non-trivial conjectures from mathematics
and computer science. This modern support for formal reasoning is a big step forward,
analogous to a support for ground calculations that computers made available decades
ago. Most important attributes of this modern support for reasoning are reliability and
automation. Still, this support is far from being able to replace mathematician: it cannot
provide intuition, deep insights, or proof ideas and there is no magic computer button
for proving complex theorems. Rather, we show that one can use a mixture of proving
approaches, methods, tools, ideas, and tricks as extremely valuable help in filling technical
gaps in proofs and linking together a number of arguments.

Acknowledgement

The first and the second author are partly supported by the grant 174021 of the Ministry
of Science of Serbia. The authors are grateful to the anonymous reviewers for their very
detailed and helpful comments on this paper.

34:36 Predrag Janičić, Filip Marić, and Marko Maliković Vol. 15:1

References

[1] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A modular integration of
SAT/SMT solvers to Coq through proof witnesses. In Proceedings of CPP 2011, volume 7086 of LNCS.
Springer, 2011.

[2] M. Bain. Learning Logical Exceptions In Chess. PhD thesis, University of Strathclyde, Glasgow, 1994.
[3] M. Banković. Extending SMT solvers with support for finite domain alldifferent constraint. Constraints,

21(4), 2016.
[4] H. Barendregt and E. Barendsen. Autarkic computations in formal proofs. Journal of Automated

Reasoning, 28(3), 2002.
[5] H. Barendregt and F. Wiedijk. The challenge of computer mathematics. Philosophical Transactions of

the Royal Society, 363(1835), 2005.
[6] A. Biere, I. Dragan, L. Kovács, and A. Voronkov. Experimenting with SAT solvers in Vampire. In

Proceedings of MICAI 2014, volume 8856 of LNCS. Springer, 2014.
[7] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS Press, 2009.
[8] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending sledgehammer with SMT solvers. Journal of

Automated Reasoning, 51(1), 2013.
[9] S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In Proceedings of Interactive

Theorem Proving, volume 6172 of LNCS. Springer, 2010.
[10] A. Bove, P. Dybjer, and A. Sicard-Ramı́rez. Combining interactive and automatic reasoning in first

order theories of functional programs. In Proceedings of FOSSACS 2012, volume 7213 of LNCS. Springer,
2012.

[11] M. Bramer. Correct and optimal strategies in game playing programs. The Computer Journal, 23(4),
1980.

[12] M. Bramer. Machine-aided refinement of correct strategies for the endgame in chess. Advances in
Computer Chess, 3, 1982.

[13] I. Bratko. Proving correctness of strategies in the AL1 assertional language. Information Processing
Letters, 7(5), 1978.

[14] I. Bratko. PROLOG Programming for Artificial Intelligence (Third Edition). Addison-Wesley, 2001.
[15] I. Bratko, D. Kopec, and D. Michie. Pattern-based representation of chess end-game knowledge. The

Computer Journal, 21(2), 1978.
[16] M. Cadoli, T. Mancini, and F. Patrizi. SAT as an effective solving technology for constraint problems.

In Proceedings of Foundations of Intelligent Systems, volume 4203 of LNCS. Springer, 2006.
[17] H. R. Chamarthi, P. C. Dillinger, M. Kaufmann, and P. Manolios. Integrating testing and interactive

theorem proving. In Proceedings of ACL2 2011, volume 70 of EPTCS, 2011.
[18] H. Collavizza, M. Rueher, and P. V. Hentenryck. CPBPV: a constraint-programming framework for

bounded program verification. Constraints, 15(2), 2010.
[19] S. S. Djurdjević, J. Narboux, and P. Janičić. Automated generation of machine verifiable and readable

proofs: A case study of Tarski’s geometry. Annals of Mathematics and Artificial Intelligence, 74(3-4),
2015.

[20] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In Proceedings of CAV
18, volume 4144 of LNCS. Springer, 2006.

[21] S. Edelkamp. Symbolic exploration in two-player games: Preliminary results. In Proceedings of AI
Planning and Scheduling, Workshop on Model Checking, 2002.

[22] FIDE. The FIDE Handbook, chapter E.I. The Laws of Chess, 2004.
[23] R. Gasser. Solving Nine Men’s Morris. Computational Intelligence, 12, 1996.
[24] A. Gotlieb, M. Carlsson, M. Liaaen, D. Marijan, and A. Petillon. Automated regression testing using

constraint programming. In Proceedings of AAAI 2016. AAAI Press, 2016.
[25] T. Hales. Introduction to the Flyspeck Project. In Mathematics, Algorithms, Proofs, volume 05021 of

Dagstuhl Seminar Proceedings. (IBFI), Schloss Dagstuhl, 2006.
[26] J. Harrison. Without loss of generality. In Proceedings of Theorem Proving in Higher Order Logics,

volume 5674 of LNCS. Springer, 2009.
[27] M. J. H. Heule, O. Kullmann, and V. W. Marek. Solving very hard problems: Cube-and-conquer, a

hybrid SAT solving method. In Proceedings of IJCAI 2017. ijcai.org, 2017.
[28] J. Hurd. Formal verification of chess endgame databases. In Proceedings of Theorem Proving in Higher

Order Logics: Emerging Trends, number PRG-RR-05-02 in Oxford University CLR Report, 2005.

Vol. 15:1COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS34:37

[29] J. Hurd and G. Haworth. Data assurance in opaque computations. In Proceedings of Advances in
Computer Games, volume 6048 of LNCS. Springer, 2010.

[30] P. Janičić. URSA: A System for Uniform Reduction to SAT. Logical Methods in Computer Science,
8(3:30), 2012.

[31] C. Kaliszyk and J. Urban. Learning-assisted automated reasoning with Flyspeck. Journal of Automated
Reasoning, 53(2), 2014.

[32] M. Maliković and P. Janičić. Proving correctness of a KRK chess endgame strategy by SAT-based
constraint solving. ICGA Journal, 36(2), 2013.

[33] F. Marić. A survey of interactive theorem proving. Zbornik radova, Matematički institut SANU, Beograd,
18(26), 2015.

[34] F. Marić. Fast formal proof of the Erdös-Szekeres conjecture for convex polygons with at most 6 points.
Journal of Automated Reasoning, 2017.

[35] F. Marić, P. Janičić, and M. Maliković. Proving correctness of a KRK chess endgame strategy by using
Isabelle/HOL and Z3. In Proceedings of Conference on Automated Deduction, volume 9195 of LNCS.
Springer, 2015.

[36] E. Morales. Learning patterns for playing strategies. ICCA Journal, 17(1), 1994.
[37] E. Morales. Learning playing strategies in chess. Computational Intelligence, 12(1), 1996.
[38] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic,

volume 2283 of LNCS. Springer, 2002.
[39] Y. Peng and M. R. Greenstreet. Extending ACL2 with SMT solvers. In Proceedings of Workshop on the

ACL2 Theorem Prover and Its Applications, volume 192 of EPTCS, 2015.
[40] Y. Peng and M. R. Greenstreet. Integrating SMT with theorem proving for analog/mixed-signal circuit

verification. In Proceedings of NASA Formal Methods, volume 9058 of LNCS. Springer, 2015.
[41] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, and S. Sutphen. Checkers

is solved. Science, 317(5844), 2007.
[42] R. Seidel. Deriving correct pattern descriptions and rules for the KRK endgame by deductive methods.

In Advances in Computer Chess, volume 4. Pergamon Press, 1986.
[43] M. Stojadinović and F. Marić. meSAT: multiple encodings of CSP to SAT. Constraints, 19(4), 2014.
[44] P. J. Stuckey. Lazy clause generation: Combining the power of SAT and CP (and mip?) solving. In

Proceedings of CPAIOR 2010, volume 6140 of LNCS. Springer, 2010.
[45] N. Tamura, T. Tanjo, and M. Banbara. Solving constraint satisfaction problems with SAT technology.

In Proceedings of Functional and Logic Programming, volume 6009 of LNCS. Springer, 2010.
[46] K. Thompson. Retrograde analysis of certain endgames. ICCA Journal, 9(3), 1986.
[47] M. Wenzel. Isabelle/Isar — a generic framework for human-readable proof documents. In From Insight

to Proof — Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, volume
10(23). University of Bialystok, 2007.

[48] F. Wiedijk, editor. The Seventeen Provers of the World, volume 3600 of LNCS. Springer, 2006.
[49] C. Zuidema. Chess, how to Program the Exceptions? Afdeling Informatica: IW. Stichting Mathematisch

Centrum, 1974.
[50] E. Zulkoski, C. Bright, A. Heinle, I. S. Kotsireas, K. Czarnecki, and V. Ganesh. Combining SAT solvers

with computer algebra systems to verify combinatorial conjectures. Journal of Automated Reasoning,
58(3), 2017.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Background
	2.1. Automated and Interactive Theorem Proving
	2.2. Chess Endgame Strategies

	3. Problem Representation
	3.1. General Chess Rules
	3.2. Chess Endgames
	3.3. Chess Endgame Strategies

	4. Reasoning Methods
	4.1. Retrograde Analysis
	4.2. High-Level Conjectures

	5. Steps Beyond: Citius, Altius, Fortius
	5.1. Citius: Faster Computations and Efficiency Issues
	5.2. Altius: High-level Proofs and Understandability Issues
	5.3. Fortius: Stronger Conjectures and Scalability Issues

	6. Related Work
	7. Conclusions
	Acknowledgement
	References

