
Logical Methods in Computer Science
Volume 15, Issue 1, 2019, pp. 36:1–36:50
https://lmcs.episciences.org/

Submitted Aug. 09, 2017
Published Mar. 29, 2019

ABSTRACT HIDDEN MARKOV MODELS:

A MONADIC ACCOUNT OF QUANTITATIVE INFORMATION FLOW

ANNABELLE MCIVER a, CARROLL MORGAN b, AND TAHIRY RABEHAJA a

a Dept. Computing, Macquarie University., Sydney, Australia
e-mail address: {annabelle.mciver,tahiry.rabehaja}@mq.edu.au

b School of Comp. Sci. and Eng., Univ. New South Wales, and Data61., Sydney, Australia
e-mail address: carroll.morgan@unsw.edu.au

Abstract. Hidden Markov Models, HMM ’s, are mathematical models of Markov processes
with state that is hidden, but from which information can leak. They are typically
represented as 3-way joint-probability distributions.

We use HMM ’s as denotations of probabilistic hidden-state sequential programs: for
that, we recast them as “abstract” HMM ’s, computations in the Giry monad D, and we
equip them with a partial order of increasing security. However to encode the monadic
type with hiding over some state X we use DX→D2X rather than the conventional X→DX
that suffices for Markov models whose state is not hidden. We illustrate the DX→D2X
construction with a small Haskell prototype.

We then present uncertainty measures as a generalisation of the extant diversity of
probabilistic entropies, with characteristic analytic properties for them, and show how
the new entropies interact with the order of increasing security. Furthermore, we give a
“backwards” uncertainty-transformer semantics for HMM ’s that is dual to the “forwards”
abstract HMM ’s — it is an analogue of the duality between forwards, relational semantics
and backwards, predicate-transformer semantics for imperative programs with demonic
choice.

Finally, we argue that, from this new denotational-semantic viewpoint, one can see that
the Dalenius desideratum for statistical databases is actually an issue in compositionality.
We propose a means for taking it into account.

1. Introduction

1.1. Setting and overview. We can represent probabilistic sequential programs with
hidden state as Hidden Markov Models, i.e. HMM ’s 1 formulated as probabilistic mechanisms
that take prior, input probability distributions and give posterior distributions over (leaked)
observations and final state. Here, however, we recast HMM ’s as computations over the
Giry monad, making them more suitable for denotational semantics. Indeed the monadic
view of simple Markov processes in particular is well established [1, 2], using X→DX where

Key words and phrases: Abstract Hidden Markov Models, Giry Monad, Quantitative Information Flow.
1We use apostrophe uniformly between acronyms and suffixes, even when they are not possessive.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(1:36)2019
c© A. McIver, C. Morgan, and T. Rabehaja
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

36:2 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

type-constructor D makes distributions on its base type X ; the Kleisli extension is then of
type DX→DX , representing the action of multiplying an initial-state-distribution vector by
a Markov matrix. But that simplicity cannot account for hidden state and information flow.

We treat hidden state by beginning with DX (not X): the computation type we obtain
is then “one level up”, of type DX→D2X , the Kleisli extension is D2X→D2X ; and we call
the double-distribution type D2X hyper-distributions, or “hypers” for short.

Although the Giry monad is formulated in terms of general measures [2], we will need only
discrete distributions for matrix-based HMM ’s. Nevertheless, we give our constructions and
results in more general terms, anticipating e.g. infinite sequences of HMM ’s, nondeterminism,
and iterations for which proper measures will be necessary [3].

In earlier work, we have used the hypers D2X , equipped with a partial order of increasing
security, to establish compositionality results [4], to explore the effect of including demonic
nondeterminism [5] and to give an abstract treatment of probabilistic channels [6, 7]. A
second earlier theme has been the generalisation of entropies (such as Shannon) to a more
abstract setting where only their essential properties are preserved [4,5, 7, 8]. Here we use
monads to bring all those separate strands together and to go further.

One major further step is to show that there is a dual, backwards view for abstract
HMM ’s, based on “uncertainty” transformers that transform post- uncertainty measures
into pre- uncertainty measures where, in turn, uncertainty measures generalise probabilistic
entropies.

We and others have argued that specific entropies (e.g. Shannon) have limitations in
security work generally [4,9]. Therefore we focus here on their essential properties: continuity
and concavity. That view is supported by powerful theorems that such a generalisation
supports, and a methodological criterion that uncertainty measures capture contexts in a
way that individual styles of entropy cannot.

A second further step is to extend our recent treatment [7] of the Dalenius Desideratum,
the “collateral” leakage of information due to unknown correlations with third-party data,
from merely channels (a “read only” scenario [10,11], such as access to a statistical database)
to programs that might alter the database (thus “read/write” as well). The Dalenius
perspective here is the fact that care must be taken wrt. compositionality in a context
containing extra variables even when a program fragment does not explicitly refer to them[4].

To remain accessible to a broader security community, we do not begin from Giry: rather
we first work in elementary terms. In §7 the monadic structures will be seen to have informed
our earlier definitions and theorems.

1.2. Principal contributions and aims: summary. Our principal contributions are
these, in which the new constructions and results are given in bold:

• We note that (finite) classical HMM ’s are a model for straight-line sequential probabilistic
programs with hidden state
• We formulate abstract HMM’s over a state as a monadic model for HMM ’s over that same

state, and give their characteristic properties.
• We formulate uncertainty measures as a generalisation of diverse entropies (top centre),

and give their characteristic properties. 2

• We note that uncertainty measures have a complete representation based on real-valued
functions of state and adversarial strategy.

2They were studied, but less extensively, as “disorders”, in [5].

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:3

• We give a dual, uncertainty-transformer semantics of HMM ’s and prove the duality.
• We show how all of the above is an instance of the general Giry monad as a computation,

of which (finite) HMM ’s use a discrete portion.
• We explain how the “Dalenius effect” is manifested as a compositional issue in this

framework, and how it can be treated.

In other sections we review abstract channels (§2.2), hyper-distributions (§2.3) and the
security order (§6) on hypers.

We believe that Thm. 9.8, in particular its assumptions and proof, is a significant new
result.

Our principal aims are these:

• (More abstract) To construct forward- and dual backward semantic spaces for probabilistic
sequential computations over hidden state, using monadic computations and partial
(refinement) orders in this new context, and we formulate and prove the general properties
that make them suitable for embedding finite (for the moment) HMM ’s.
• (More concrete) To provide the basis for a source-level reasoning method, analogous

to Hoare logic or weakest preconditions, for quantitative non-interference in sequential
programs. For this, the dual, transformer semantics for HMM ’s seems to be a necessary
first step, together with a link between the social aspects of security and the mathematical
behaviour of a program (§11).

The conclusion §14 discusses the benefits of doing this.

1.3. General notations — see also §A. Application of function f to argument x is
written f.x to reduce parentheses. It associates to the left.

Although a matrix M with rows, columns indexed by R,C is a function R×C→ R, we
avoid constant reference to the reals R by writing just R_C for that type; similarly we
write the type of a vector over X as

_
X . We write Mr,c for the element of matrix M indexed

by row r and column c; then the r-th row of M is Mr,−; and the c-th column is M−,c, of

types
_
Y ,

_
X resp. For row- or column vector v:

_
I we write vi for its i-th element. Thus e.g.

we have (M−,c)r=Mr,c.
When multiplying vectors and matrices we assume without comment that the vector

has been oriented properly, i.e. as a row or column as required. Thus v acts as a row in
v·M but as a column in M ·v. Thus for v:

_
X and M :X_Y the matrix product v·M is in_

Y , where here we are using dot (·) for matrix multiplication. Multiplication of scalars will
usually be juxtaposition, but occasionally × when we are avoiding ambiguity.

We write for example x:X, i.e. with a colon, when we are introducing a fresh variable x
into the discussion at that point; with x∈X we are instead stating a property of some x and
X that have been already introduced at some earlier point. 3 That means in the former case
that one need not search backwards to see what x is being referred to (and in the latter
case, one might).

Other specific notations are explained at first use, and (as noted above) a full glossary
in occurrence order is given in §A.

3For example we could write “Because we have already established that s∈PX, we know that for any x: s
we have x∈X.” Both s,X are defined in the surrounding text, but x here is a local (i.e. bound) variable just
used temporarily.

36:4 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

2. Abstract channels and hyper-distributions

We now review abstract channels as a conceptual stepping-stone to hyper-distributions —
recall they are “hypers” for short. (Channels are the special case of HMM ’s where the state
is not updated.)

2.1. Channels and distributions as matrices and vectors. A channel is a (stochastic)
matrix of non-negative reals with 1-summing rows; we use upper-case Roman letters like
C for them. The rows are labelled with elements from some set X ; and the columns from
some set Y. Thus a channel typically has type X_Y; here, both X and Y will be finite.

A distribution in DX can be presented as a 1-summing vector in
_X , usually lower-case

Greek: generally δ for “distribution”, but especially π for prior and sometimes ρ for posterior.

Definition 2.1 (Weight). Let M or v be a matrix or vector resp. Then ΣM or Σv is its
weight, the sum Σx,yMx,y or Σxvx taken over all its indices.

Thus e.g. we have ΣMx,− = ΣyMx,y and that M is stochastic (i.e. represents a channel)
just when ΣMx,− is 1 for all x.

Each row Cx,− of a channel C is a conditional probability distribution over Y given that
particular x:X . That is, the y-th element Cx,y of Cx,− is the probability that C takes input
x to output y.

2.2. Informal channel semantics: abstract channels. A (1-summing) prior π and
(stochastic) channel C together determine a joint distribution as follows.

Definition 2.2 (Channel applied to prior). Given a prior π:
_X and channel C:X_Y we

write π�C for the joint-distribution matrix of type X_Y resulting from applying the channel
to the prior, defined (π�C)x,y:=πxCx,y. (Here juxtaposition is ordinary multiplication of
reals.)

Note that matrix π�C is not stochastic: rather because C itself is stochastic we have
Σ(Σ(π�C)x,−) = Σπx = 1.

A non-zero vector is normalised as follows.

Definition 2.3 (Normalisation). Let δ:
_X be such that 0 6=Σδ. Then the normalisation bδc

of δ is given by bδcx:= δx/Σδ for each x:X .

Now for some π:
_X and channel C:X_Y define joint distribution J :X_Y by J=π�C.

The (marginal) probability of each output y:Y is ΣJ−,y and, associated with each J , there
is a posterior distribution bJ−,yc on X .

Abstracting from the y-values, but retaining the link between the marginal probabilities
and the posterior distributions, gives an informal description of our intended “abstract
channel” semantics [6]. We make this precise in §2.4.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:5

2.3. Hypers abstract from joint distributions. The joint-distribution matrix J=π�C
contains “too much” information if we do not need the actual value of y that led to a
particular posterior. Abstracting from those output values leads us to a representation of the
possible posteriors on their own, retaining however the probability with which they occur
(in fact the marginal probability of the value y that produced each one). The advantage
we take from that is that HMM ’s acquire a monadic structure, acting as Kleisli maps, and
furthermore can express other probabilistic notions in a way more suited to calculation: for
example, conditional entropies become expected values (of the entropies) over the distribution
of posteriors.

More intuitive reasons for the abstraction include that it is appropriate in security to
consider the information leakage of a channel C wrt. a prior π to concern only what an
adversary can discover about π, and not the actual observations that led to that discovery:
whether a spy’s vocabulary is “da/nyet” or “yes/no”, or indeed whether “yes” means “it’s
zero” or “it’s one”, does not affect the information-theoretic threat that spy represents,
provided of course that the spy and her controller have agreed on the vocabulary beforehand.

We can abstract from the observations in π�C as follows. If column y of J = π�C is
all zero, then that y will never occur (for any prior); thus we can omit that column.

And if two columns y1,2 of J are proportional to each other, i.e. are similar (as for
triangles), then we can add them together, since for a given prior the same posterior will be
inferred for y1 as for y2 and the overall probability of inferring that posterior will be the
sum of the marginal probabilities for y1,2. 4

Finally, a 1-1 renaming of the y-values has no effect on the posteriors and their respective
probabilities; so we can remove those names as long as we retain the distinction between
separate (non-zero, non-similar) columns.

Abstracting from all that arguably inessential information (about y) leaves only a
distribution of posteriors on X and, for us, this is the semantic view. Writing in general DX
for 1-summing functions of type X→R≥, a discrete distribution over X has type DX and so
a discrete distribution of such distributions has type D(DX) that is D2X . Those latter are
our hypers, and they are our abstraction of joint distributions X_Y.

The values of type DX are called the inners of a hyper, and the outer distribution
of a hyper is its distribution over those inners: that is, a hyper on X is a (single) outer
distribution over (possibly many) inners, and each inner is a (single) distribution over X
itself.

As an example, recall the famous puzzle of Bertrand’s Boxes. Three identical boxes
contain two balls each: one has two white balls; one has two black balls; and the remaining
box has one of each. It is not known which box is which; and one of them is chosen randomly.
A ball is drawn at random from it, and it is white. What is the probability that the other
ball in that box is also white? We reason as follows.

The state space is X={0, 1, 2}, referring to the number of white balls in each box.
The prior distribution in DX is uniform, which we can write (1/3, 1/3, 1/3). The HMM is
a channel that takes input x to the distribution (white 7→ x/2, black 7→ 1−x/2). The joint
distribution p say, of type D(X×{white, black}), would be such that p(1,white) = 1/3×1/2 =
1/6, the probability that Box 1 was chosen and that the ball taken from it was white. The
overall probability that a white ball is taken (from whichever box) is the white-marginal
0+1/6+1/3 = 1/2 (which is obvious from symmetry anyway), and the posterior distribution

4For brevity we write y1,2 rather than y1, y2.

36:6 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

on X is in that case (0, 1/3, 2/3) — which nicely solves the puzzle. The posterior probability
that x=2 is 2/3 given that a white is taken and, by the way, a white is taken with overall
probability 1/2 (the marginal). And for that reasoning of course the value of the observation,
the colour of the drawn ball, is used.

But now suppose instead you wanted to know only the decrease in Shannon entropy
resulting from that experiment. Beforehand the entropy is H(1/3, 1/3, 1/3) = log2 3 = 1.58
(approximately). Afterwards, it will be the conditional Shannon entropy of the distribution of
posteriors, calculated by taking the expected value of H() over the distribution of posteriors:
and that is approximately

1/2×H(0, 1/3, 2/3) + 1/2×H(2/3, 1/3, 0) = 1/2×0.92 + 1/2×0.92 = 0.92 , (2.1)

so that 1.58−0.92 = 2/3 (exactly) of a bit has been leaked. And we did not need colours for
that: the calculation is done entirely with the hyper-distribution, that is with the distribution

the outer

{
1/2 7→ (0, 1/3, 2/3)
1/2 7→ (2/3, 1/3, 0)

}
the inners

of distributions, i.e. of posteriors: a hyper-distribution. The 1/2’s are the marginals, and the
(· · ·) are the posteriors associated with each. We call the channel-output marginal the outer,
and the posteriors the inners.

Seeing this example as a security leak, we might imagine that the adversary is trying
to guess the colour of the other ball in the box: in that case she would look at the colour
she took and then guess that same colour. To describe that we use a different entropy V1,
called Bayes Vulnerability, which is the probability the secret can be guessed in one try by
an optimal adversary. Obviously she will guess the x-value with the largest probability in
the posterior (the inner), and her conditional probability of guessing correctly is

1/2×V1(0, 1/3, 2/3) + 1/2×V1(2/3, 1/3, 0) = 1/2×2/3 + 1/2×2/3 = 2/3 .

That’s no surprise — but what is worth noting is that we used the same hyper-distribution
for the V1 calculation just above as for the H calculation at (2.1). That is the utility of
the abstraction: that the hyper contains enough information to handle many entropies one
might use to measure leakage.

2.4. The semantic function from joints to hypers. In this section we define precisely
the denotation [[J]] in D2X of a joint-distribution matrix J :X_Y.

Definition 2.4 (Sub-distribution, sup-hyper). A discrete sub-distribution over a set X is a
function of type X→[0, 1] that sums to no more than 1 ; we write that type as DX . (Recall
that a proper distribution in DX sums to exactly 1, and thus DX ⊆ DX .)

Similarly a discrete sub-hyper over a set X is a sub-distribution over the (proper, inner)
distributions DX , thus of type D(DX); only the outer of a sub-hyper can sum to less than 1.
We write that type as D2X . (Note that the inners of a sub-hyper are proper distributions.)

Definition 2.5 (One- and two-point distributions). For z, z′:Z in general we write [z] for
the point distribution on z, viz. assigning probability 1 to z and 0 to all other elements of
Z. 5 We write zp⊕z′ for the two-point distribution that assigns p to z and 1−p to z′ and 0
to everything else in Z.

Thus z 1⊕ z′ = [z] and z 0⊕ z′ = [z′].

5Function [·] is the unit η of the D-monad: see §7.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:7

Definition 2.6 (Point sub-hyper). For sub-distribution δ:DX the point sub-hyper [δ] in

D2X has weight Σδ concentrated on the single (inner) distribution bδc, provided of course
that Σδ 6=0. If Σδ=0 then [δ] is the (unique) weight-zero sub-hyper.

That is, the argument δ is normalised to make the inner, and its weight becomes the
(one-point) sub-outer on that inner.

Note that when Σδ = 1 we have [δ] = [δ].
We now define the semantic function itself:

Definition 2.7 (Joint-distribution denotes hyper). Let J :X_Y satisfy 1=ΣJ so that it
describes a discrete (proper) joint distribution in D(X×Y). Then its abstraction [[J]] to a
hyper in D2X is given by

[[J]] =
∑
y∈Y

[J−,y] ,

with summation Σy∈Y therefore being an addition of sub-hypers, i.e. sub-distributions on
DX . Each column J−,y is regarded as a sub-distribution in DX , and then [−] converts it to
a sub-point hyper.

Note that in Def. 2.7 any all-zero columns in J are automatically ignored, since they
become zero-weight sub-hypers in the sum and drop out automatically. If however all columns
of J are zero, then its denotation [[J]] becomes automatically the weight-zero sub-point
hyper.

2.5. Abstract channels — review. In earlier work [6] we described an “abstract channel”
as a function from prior distributions to hypers. We restate that here in our current
denotational style:

Definition 2.8 (Denotation of channel). Let C:X_Y be a channel matrix. Its denotation,
of type DX→D2X , is called an abstract channel and is defined for π:DX by

[[C]].π:= [[π�C]] ,

where the [[·]] on the left is the denotational function for channels, being defined here; and
on the right it is the denotational function on joint distributions that we have already from
Def. 2.7. (We use [[−]] uniformly for denotation functions, relying on context instead of e.g.
using subscripts like [[−]]chan on the left and [[−]]joint on the right.)

In fact the prior π can be recovered from π�C, as this definition shows:

Definition 2.9 (Support of a distribution). Given discrete distribution δ:DZ, we write dδe
for the support of δ, the set of elements z:Z for which δ.z, the probability assigned by δ to
z, is not zero. Obviously δ∈DZ implies dδe⊆Z; if in fact dδe=Z then we say that δ is full
support.

Definition 2.10 (Average of a hyper). For hyper ∆:D2X define its average avg.∆ in DX
by

avg.∆.x :=
∑
δ: d∆e

(∆.δ)(δ.x) for all x:X , 6

where we use upper-case Greek for hypers.

36:8 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

x:X

y1:Y

x00:X x0:X

y2:Y

HMM HMM
incoming

state
intermediate

state
outgoing

state

first
observation

second
observation

H1 H2

C2C1

M1 M2

Each step H1,2 takes an input- to an output state in X ; the observations y1,2:Y are
accumulated. In each step H1,2 the output state is determined by a markov M1,2 on the
input to that step, and the observation is determined independently by a channel C1,2 on
the same input, i.e. before application of the markov.

Figure 1. Two successive steps H1 and H2 of a heterogeneous HMM.

We then have avg.([[C]].π) = π, because

(avg.([[C]].π))x = (avg.[[π�C]])x = Σ(π�C)x,− = πx .

In fact avg.[[J]] for any J in X_Y is J ’s X marginal in DX .

3. Classical- vs. abstract HMM ’s

3.1. Classical HMM ’s, and single HMM -steps as matrices. Classically a Hidden
Markov Model comprises a set X of states, a set Y of observations and two stochastic
matrices C,M that give resp. the emission probabilities Cx,y that x will emit observation y
and the transition probabilities Mx,x′ that x will change to x′ [12]. Usually, the homogeneous
case, computation evolves in (probabilistic) steps each determined by the same C,M , with
each output state x′ becoming the following input x and with the emissions y accumulating.
In our case however, heterogeneous, we can vary the matrices from step to step, each standing
for various (different) program fragments.

We show two computations in Fig. 1. If π is the distribution of incoming x, the
distribution π′′ of intermediate x′′ is π·M1. The distribution of observations y1 is π·C1. The
second step’s input x′′ is the output of the first step.

A classical HMM hides all of three of x, x′′, x′, but still the observations y1,2 tell us
something about each of them provided we know π,M1,2, C1,2. (This is analogous to knowing
the source code of a program, but not being able to observe its variables as it executes.)

From now on we call the emission part of an HMM the channel and the transition part
the markov (lower case).

Definition 3.1 (Single HMM -step). Given channel C:X_Y and markov M :X_X , define
the HMM -matrix (C;M) of type X_Y×X by

(C;M)x,y,x′ := Cx,y ×Mx,x′ .

6This avg is multiplication µ from the Giry monad: see §7.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:9

// xs is initialised uniformly at random.

xs:= xs 1/2⊕ -xs

// What does an attacker guess for xs finally?

The secret two-bit bit-string xs is set initially from {00, 01, 10, 11} with equal prob-
ability 1/4 for each; the following assignment either leaves xs unchanged (probability
1/2) or bit-wise inverts both components.

Figure 2. Pure-markov HMM program

This (row-1-summing) matrix (C;M) produces a joint distribution of type D(X×Y×X), as
top-left in Fig. 6, once applied to a prior (Def. 2.2).

Note that in (C;M) the probabilistic choices in C (of y) and M (of x′) are made
independently; although indeed (C;M) has the property that for each x:X the (remaining)
joint distribution (C;M)x,−,− is independent in y, x′, this property is not preserved once
steps are composed (§4).

3.2. Abstract HMM ’s represent classical HMM ’s. For abstract channels (§2.5) we
focussed on the hyper of posteriors on the input ; for HMM ’s we focus on the hyper of
posteriors on the output, because HMM ’s are computations and so it is over their outputs
we wish to reason. (The prior on the output would be our calculation from the input prior
and the markov of what the output distribution would be, but before running the program
and making observations in the type Y.)

Definition 3.2 (Matrix HMM denotes abstract HMM). Let H:X_Y×X be an HMM
presented as a matrix (stochastic in y, x′). Its denotation, of type DX→D2X , is called an
abstract HMM and is defined [[H]].π:= [[J]], where π:DX and the joint-distribution matrix
J :X_Y is given by Jx′,y:= ΣxπxHx,y,x′ .

In §12 we discuss the (Dalenius) implications of having abstracted from the HMM ’s
input (with the Σx just above) — it is not always appropriate.

3.3. Special cases of HMM -steps: pure markovs. Markovs are the special case of
HMM where the channel-part effectively outputs nothing. If an HMM -step (C;M) has for
its channel C an all-one column vector nc, where nc stands for “null channel”. Then Y is
a singleton and J becomes a column vector: i.e. Jx′ = ΣxπxMx,x′ , so that in fact J is the
usual matrix product π·M .

Taking nc as the default channel gives [[:M]].π = [[nc:M]].π = [π·M], the point hyper on
π·M . This more general framework simply “wraps” a [−] around the final distributions; but
it’s that wrapping that enables treating markovs and channels within the same type. A
general H is a markov just when Σx′Hx,y,x′ is nc.

36:10 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

// xs is initialised uniformly at random.

leak xs[0]1/2⊕ xs[1]

The value of either bit 0 or bit 1 of xs is revealed; the attacker learns that value,
but does not know which bit it came from.
What should he guess for xs after execution in this case?

Figure 3. Pure-channel HMM program.

Consider the program of Fig. 2 whose single variable is a two-bit string xs. We model it
with X={00, 01, 10, 11}; prior π:DX is uniform, and its markov M is as just below:

00 01 10 11

00:


1/2 0 0 1/2
01: 0 1/2 1/2 0

10: 0 1/2 1/2 0
11: 1/2 0 0 1/2

The output distribution is of course π′=π·M=π, and so the attacker’s guess of the final
state is optimally any of the four values in X : they are equally good.

This system viewed as an abstract HMM would give output hyper ∆′ = [[:M]].π = [π],
in fact the point hyper on π indicating that the attacker is certain (point-probability 1) that
the posterior distribution π′ on the final value of xs is equal to the prior π in this case, i.e.
it is still uniform.

3.4. Special cases of HMM -steps: pure channels. Channels are the special case where
the input- and the output state are the same. If (C;M) has markov M as the identity id,
then it is a “pure channel” with output the same as its input. In that case Def. 3.2 gives
Jx′,y =

∑
x πxCx,y idx,x′ = (π�C)x′,y, and so [[C:id]] from Def. 3.2 is just [[C]] from Def. 2.8.

With id as the default markov, we have [[C:]] = [[C]].
Now consider Fig. 3 where some of xs is leaked, but xs itself is not changed. Thus our

state X and prior π are as before, the observation space is Y={0, 1} and the channel C
representing this program is here at left:

C =

0 1

00:


1 0
01: 1/2 1/2

10: 1/2 1/2

11: 0 1

J =

0 1

00:


1/4 0
01: 1/8 1/8

10: 1/8 1/8

11: 0 1/4

The joint distribution in x′, y is J=π�C. The construction of Def. 2.7 gives us a hyper ∆′

as
inner distributions outer distribution

(1/2, 1/4, 1/4, 0) @ 1/2

(0, 1/4, 1/4, 1/2) @ 1/2 ,
(3.1)

where in general we write z1@p1, z2@p2, · · · for the discrete distribution that assigns proba-
bility p1 to z1 etc. In (3.1) the values z1, z2 are themselves (inner, posterior) distributions.
This hyper shows that with probability 1/2 an optimal attacker will guess 00 (because she

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:11

saw a 0 leaked, and deduces a posteriori that 00 now has the highest probability, twice
either of the others); and with probability 1/2 the attacker will guess 11 (because she saw
a 1).

4. Beyond steps: HMM programming and sequential composition

4.1. Classical HMM composition: matrices. Let H1, H2:X_Y×X be two HMM ’s.
Their sequential composition H = H1;H2 describes the distribution on x, and y1,2 together,
and x′ as

(H1;H2)x,(y1,y2),x′ :=
∑
x′′

H1
x,y1,x′′H

2
x′′,y2,x′ . (4.1)

Note how the set of observables is now Y×Y, compounding the observations Y from each
component. (This is why infinite composition of HMM ’s cannot easily be represented as a
finite matrix.)

Remarkably, the action of HMM -composition on pure-markovs HMM ’s is effectively
their matrix multiplication, yet its action on pure channels is effectively their “parallel
composition”: thus a single general definition of composition specialises automatically to
the two principal sub-cases, as we now show. First, we give the details for classical HMM ’s;
then Thm. 4.3 shows that the same holds for abstract HMM ’s.

4.1.1. Composition of pure markovs. The usual composition of Markov matrices M1,2:X_X
is via matrix multiplication M1·M2, and the result is of the same type X_X . If we do it at
the HMM -level, we find

(;M1);(;M2) x,(y1,y2),x′

=
∑

x′′(;M
1)x,y1,x′′(;M2)x′′,y2,x′

= ncx,(y1,y2)

∑
x′′M

1
x,x′′M

2
x′′,x′ “Recall from §3.3 that channel nc reveals nothing.”

= (; M1·M2) x,(y1,y2),x′ ,

so that indeed (;M1);(;M2) = (; M1·M2).

4.1.2. Composition of pure channels. Parallel composition of channels, which we write
C1‖C2, models applying both channels to the same input and observing both outputs. Thus

C1‖C2
x,(y1,y2) = C1

x,y1 × C2
x,y2 .

This is different from channel cascading, which applies the second channel C2 to the
observations of the first channel C1 via matrix multiplication. A striking distinction is that
the cascade of C1 into C2 releases no more information that C1 alone (the Data-Processing
Inequality [13]), whereas C1‖C2 releases no less information that either of C1,2 alone. In
this latter case we find

(C1;);(C2;) x,(y1,y2),x′

=
∑

x′′(C
1;)x,y1,x′′(C

2;)x′′,y2,x′
=

∑
x′′ C

1
x,y1 idx,x′′C

2
x′′,y2

idx′′,x′ “Recall from §3.4 markov id is the identity.”

= C1
x,y1C

2
x,y2 idx,x′

= (C1‖C2)x,(y1,y2)idx,x′
= (C1‖C2 ;) x,(y1,y2),x′ ,

36:12 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

so that indeed again (C1;);(C2;) = (C1‖C2 ;).

4.1.3. Pure channel followed by pure markov. Finally, note that a general HMM -step (§3.1)
is a pure channel followed by a pure markov. Let ncx,y2 be (1 if y2=ŷ else 0) for some fixed
ŷ in Y, and calculate

(C;);(;M) x,(y1,y2),x′

=
∑

x′′(C;)x,y1,x′′(;M)x′′,y2,x′
=

∑
x′′ Cx,y1 idx,x′′ncx′′,y2Mx′′,x′

= Cx,y1Mx,x′ncx,y2 “idx′′,x′ , 1-point rule”

= Cx,y1Mx,x′ if y2=ŷ else 0 “above”

= (C;M)x,(y1,y2),x′ ,

so that (C;) ; (;M) = (C;M).
The reason that (C;);(;M) and (;M);(C;) differ in general is that in the (mathematical)

definition of an HMM -step (e.g. Fig. 1) the emissions are determined by the input, initial
state (rather than the output, final state). Had that original definition been the other way
around, then we’d have had (;M);(C;) as an HMM -step.

4.1.4. Pure markov followed by pure channel. This cannot, in general, be reduced to a
single HMM -step. In (;M); (C;) let both C,M be the identity. Then the observations and
final state will be perfectly correlated, something that is not possible for single HMM -step
(C ′;M ′).

4.2. Abstract HMM ’s: Kleisli composition. Now we consider h1;h2 where h1,2 are
abstract HMM ’s. (We use upper-case for matrices and lower-case for denotations.) Because
the components’ types DX→D2X do not match directly, i.e. the co-domain D2X from the
left is not the domain DX required on the right, we use Kleisli composition for that. 7

Definition 4.1 (Push-forward of a function). Given sets Z,Z ′ and function f :Z→Z ′, we
write Df for the push-forward of f , a “lifted” function of type DZ→DZ ′ [14]. For z′:Z ′ and
δ:DZ we have 8

Df.δ.z′ :=
∑
z:Z
f.z=z′

δ.z . 9

Definition 4.2 (Kleisli composition of abstract HMM ’s).
Given two abstract HMM ’s h1,2:DX→D2X , their Kleisli composition is defined

(h1;h2).π := avg.(Dh2.(h1.π))

for π:DX , where Dh2 is as above the push-forward of h2. Using functional composition,
equivalently h1;h2:= avg ◦ Dh2 ◦ h1.

7This is the usual composition in a Kleisli category. See §7.
8Lifting, as in Df , binds tightest: the conventional notation for Df.δ.z′ would be (Df)(δ)(z′), so that

(Df)(δ)∈DZ ′.
9Df is the action of functor D on arrow f : see §7.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:13

That is, the lifting inherent in Kleisli-composition applies the right-hand abstract HMM
h2 to each inner (i.e. posterior) produced by the left-hand h1 from prior π, preserving the
way in which they are all combined together by the outer distribution. Then the intermediate
result, of type D3X , is averaged to bring it back to the required type D2X .

4.3. Proof that composition is faithfully denoted. It is important (though unsurpris-
ing) for our interpretation that composition of HMM ’s as matrices (4.1) is correctly mapped
by [[·]] to their Kleisli composition as abstract HMM ’s (Def. 4.2). That is, we expect

Theorem 4.3 (Composition faithfully denoted). Let H1,2:X_Y×X be HMM’s as matrices.
Then we have

[[H1;H2]] = [[H1]]; [[H2]] ,

where (4.1) is used on the left and Def. 4.2 on the right.

Proof. We reason as follows for any π.

([[H1]]; [[H2]]).π
= avg.(D[[H2]].([[H1]].π))
= avg.(D[[H2]].[[[[π]]H1]])
= avg.(D[[H2]].(

∑
y1 [([[π]]H1)y1,−]))

= (
∑

y1 [[H2]].([[π]]H1)y1,−) “Df distributes f through inners.”

= (
∑

y1 [[[[([[π]]H1)y1,−]]H2]])

= (
∑

y1(
∑

y2 [([[([[π]]H1)y1,−]]H2)y2,−]))

= (
∑

y1,y2 [([[π]](H1;H2))(y1,y2),−]) “Lem. 4.4”

= [[H1;H2]].π ,

as required.

Lemma 4.4 (Double application of HMM matrix). We have

([[π]](H1;H2))(y1,y2),− = ([[([[π]]H1)y1,−]]H2)y2,−
from this calculation for any x′ that

([[π]](H1;H2))(y1,y2),x′

= (
∑

x πx (H1;H2)x,(y1,y2),x′)
= (

∑
x πx (

∑
x′′ H

1
x,y1,x′′H

2
x′′,y2,x′))

= (
∑

x,x′′ πxH
1
x,y1,x′′H

2
x′′,y2,x′)

= (
∑

x′′(
∑

x πxH
1
x,y1,x′′)H

2
x′′,y2,x′)

= (
∑

x′′([[π]]H1)y1,x′′H
2
x′′,y2,x′)

= ([[([[π]]H1)y1,−]]H2)y2,x′ ,

as required.

36:14 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

// xs is set uniformly at random.

leak xs[0] 1/2⊕ xs[1] ;

xs:= xs 1/2⊕ -xs

The value of either bit 0 or bit 1 of xs is revealed; the attacker learns that value,
but does not know which bit it is. Then xs is either unchanged or inverted, but the
attacker does not know which.
What’s his best guess now for the final value of xs?

Figure 4. HMM program as sequential composition.

4.4. Channel/markov together: two examples of composition. For an example of
sequential composition we return to xs and consider Fig. 4 where the state is both leaked
and (possibly) changed. The final hyper ∆′ in this case is obtained by applying the markov
M to the inners generated by C in §3.3 while retaining their outers: that gives

(1/2×1/2 + 1/2×0,
1/2×1/4 + 1/2×1/4,
1/2×1/4 + 1/2×1/4,

1/2×0 + 1/2×1/2)@ 1/2

(1/2×0 + 1/2×1/2,
1/2×1/4 + 1/2×1/4,
1/2×1/4 + 1/2×1/4,

1/2×1/2 + 1/2×0)@ 1/2

which is simplified first to this

(1/4, 1/4, 1/4, 1/4) @ 1/2

(1/4, 1/4, 1/4, 1/4) @ 1/2

and then, since the two inners are the same, as a hyper-distribution is collapsed to just the
singleton hyper [π], where we are using an explicit (×) for multiplication of specific numbers.

Thus the program of Fig. 4 reveals nothing about the final value of xs when the initial
distribution was uniform. Informally we would explain this by noting that the information
about xs released by the leak becomes “stale”, irrelevant once we do not know whether xs
has subsequently been inverted or not. (See §12 however for a discussion of why the initial
value of xs might in some cases still be important.)

It would be wrong however to conclude, from ∆′=[π] in this specific case, that the
program is secure for xs in general — for when the initial distribution is not uniform, the
final value of xs can be less secure than the initial. This illustrates the danger in assuming
something is uniformly distributed simply because we know nothing about it. (See §4.4.)

We now reconsider Fig. 4 but with a non-uniform prior, showing that indeed the
conclusion that the program was (wrt. the final state) “leak free” is unjustified. In Fig. 5
the initial hyper is “skewed”, i.e. it is not uniform over the whole type XS of xs, but rather
is concentrated on only three of its values:

(0, 1/3, 1/3, 1/3) @ 1 , (4.2)

so that with certainty (@1) it is known that the initial distribution is (0, 1/3, 1/3, 1/3). Via
the first statement leak xs[0] 1/2⊕ xs[1] an attacker will with probability 1/3 (resp. 2/3)
observe 0 (resp. 1) and revise his belief of xs’s distribution as in the first (resp. second) row
here:

(0, 1/2, 1/2, 0) @ 1/3

(0, 1/4, 1/4, 1/2) @ 2/3

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:15

// xs is set uniformly from {01,10,11}.
leak xs[0] 1/2⊕ xs[1] ;

xs:= xs 1/2⊕ -xs

This system is as in Fig. 4 except that the prior initial distribution differs: at least
one bit of xs is known to be 1.

Figure 5. Simple-channel program excluding xs=00 initially.

And after the second statement xs:= xs 1/2⊕ -xs the hyper for the current (and final)
distribution of xs will have become

(0, 1/2, 1/2, 0) @ 1/3

(1/4, 1/4, 1/4, 1/4) @ 2/3 ,
(4.3)

where in the 1/3-case he is better off finally than initially (since he knows xs cannot be 00 or
11), but in the other case he is worse off (since xs=00 has become possible). Thus if the
attacker’s choice is either to guess xs’s initial value or to run the program and guess xs’s final
value, he can use these hypers to help make up his mind depending on his own criteria for
the utility of his planned theft, that is the social context in which he is operating. Compare
for example a thief’s two alternatives for stealing a credit card: she might “Steal it now,
since the wallet is just sitting there.” or she might “Steal it after the card is used at an ATM
where she can see some digit of the PIN.” But in the second case there is a risk her victim
will notice her, and choose a new PIN.

For example, the Shannon entropy of xs is initially lg(3)∼1.6, but finally, it is condition-
ally 1/3×1 + 2/3×2 = 2/3>1.6: if the attacker is using Shannon entropy to make his decision,
he should act sooner rather than later.

On the other hand, the one-guess probability (Rényi min-entropy) of xs is initially 1/3;
and finally it is the same, at 1/3×1/2 + 2/3×1/4 = 1/3. If the attacker is using this criterion, it
does not matter when he acts.

In either case, the hypers (4.2) and (4.3) contain all the information necessary for his
decision: the bit-values printed are themselves not important for his decision, which is why
we can quotient our semantics by abstracting from them. (He does, however, need those
values when he makes his attack if indeed he decides “later”.)

These calculations are confirmed in the next section.

5. Overview of Haskell-monadic prototype

A Haskell prototype of our hyper-based monadic model has been constructed for discrete,
finite HMM ’s, and it has been applied to our examples of Figs. 2–5 [15]. We give a brief
summary here.

A discrete probability distribution on a set X is modelled as a monadic type Dist x that
is effectively a list [(x,Rational)] of elements from X and their associated probabilities.
The type of (discrete) hypers D2X is then Dist(Dist x).

A Markov “matrix” on X is of type x->Dist x, in fact encoding the matrix as a function
from row-indices to distributions DX ; a channel matrix is of type x->Dist y for any type Y
of observations whatever.

36:16 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

The mini- programming language has two elementary statements: to use a markov mm

we have an update mm that updates the state according to mm. Note that mm is a Markov
matrix, but update mm is a markov HMM that is constructed from mm, i.e. implements it.

To use a channel cm we have a reveal cm that emits (e.g. prints) the channel’s output
wrt. the hidden state at that point: the state is not changed and, in particular, the
output is not assigned to anything. It is merely observed. Both of these statements are
of type Dist x->Dist(Dist x), modelling our DX→D2X . In fact they are in HX , as
Lemmas 8.1,8.3 show.

Sequential composition (;) of programs is the Kleisli composition >=> provided by
Haskell’s conventions for monads, in this case the monad Dist. Using that, and relying on
§4.3 and §4.1.3, we can define an elementary HMM -step (§3.1) as

hmmStep cm mm

= reveal cm >=> update mm .

Thus hmmStep does not have to be primitive.
Our example space X is (Bool,Bool), representing the bit-pair xs, and our two example

(input) priors are

uniform = [((False,False),1%4),

((False,True),1%4),

((True,False),1%4),

((True,True),1%4)

]

and from §B
skewed = [((False,False),0),

((False,True),1%3),

((True,False),1%3),

((True,True),1%3)

]

Our example observation space Y is Bool.
With suitable definitions typed as above for channel oneBit that outputs one of xs’s two

bits, uniformly at random, and invert that either inverts xs or does not, again uniformly
at random, the four programs are then

fig2 = update invert

fig3 = reveal oneBit

fig4 = -- Uniform prior.

reveal oneBit

>=> update invert

fig5 = -- Skewed prior.

reveal oneBit

>=> update invert

The programs are run using the function

runOn prior prog

= pretty (prog prior)

where pretty is an output-formatting function that prints hypers in a readable way.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:17

The results of running the programs are as follows, where the third column gives the outer
probabilities of the resulting hyper, and the first two columns give the corresponding inner
distributions. We print True,False as 1,0 respectively: (The prototype prints probabilities
as fractions; but here they are printed as reals, for neatness.)

runOn uniform fig2 = 00 0.25 1.0 point hyper
01 0.25

10 0.25

11 0.25

runOn uniform fig3 = 01 0.25 0.5 Half the time. . .
10 0.25

11 0.5 11 is most likely, and

00 0.5 0.5 the other half it’s 00.
01 0.25

10 0.25

runOn uniform fig4 = 00 0.25 1.0

01 0.25

10 0.25

11 0.25

runOn skewed fig5 = 00 0.25 0.67

01 0.25

10 0.25

11 0.25

01 0.5 0.33

10 0.5

The prototype contains also a repeat feature: for example repeat 10 (reveal oneBit)

is a program that reveals a random bit of xs 10 times independently. (Such an iteration of
parallel compositions is sometimes called “repeated independent runs.”) With the uniform
prior we would expect that the resulting hyper would have three inners: one of them,
occurring with probability approximately 1/2, would correspond to the case where the input
bits of xs differed, in which case with overall probability 1023/1024 there would be two different
revelations among the 10 instances — thus showing that indeed the bits differed. But we
would still have no (more) information about whether the input was 01 or 10.

The remaining 1/1024 would be split between two cases: bit xs[0] was revealed every
time, or xs[1] was; and those outcomes would contribute to the other two inners.

Those other two inners would have probability approximately 1/4 each, corresponding to
input 00 or 11 where the two bits are the same. The program confirms this, giving

runOn uniform

(repeat 10 (reveal oneBit)) =

36:18 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

01 1/1026 513/2048 outer is about 1/4

10 1/1026

11 512/513 inner is “almost certainly 11”

01 1/2 511/1024 about 1/2

10 1/2

00 512/513 513/2048 about 1/4

10 1/1026

11 1/1026

(where this time we preserve the fractions). The small perturbations away from 1/4 etc.
reflect the small chance, mentioned above, that even when the inputs differ the random
oneBit reveals the same bit 10 times in a row.

Finally, if we run the same program but with the final probabilistic inversion included,
we get

runOn uniform

(repeat 10 (reveal oneBit)

>=> update invert) =

00 256/513 513/1024 two inners merged
01 1/1026

10 1/1026

11 256/513 about 1/2

01 1/2 511/1024 about 1/2

10 1/2

in which the two “bits equal” inners from just above have merged: although the probabilistic
inversion preserves the information concerning whether the bits are equal, it conceals in the
equals case whether they were both 00 or both 11.

6. The structure of hyper-space

Our hyper-space D2X has been synthesised by abstraction from the classical “matrix style”
description of HMM ’s. We now recall that there is a partial order (v) of refinement on
hypers, where for two hypers ∆S,I :D2X we say that ∆S (a specification) is “refined by” ∆I

(implementation) when, in a sense we make precise below, the implementation ∆I releases
no more information than the specification ∆S does [3–5,8]. That order lifts pointwise to
DX→D2X , i.e. that hSvhI just when hS .π v hI .π for all π:DX , thus giving a new refinement
order for (abstract) HMM ’s. We write ∆Sv∆I , and call it “uncertainty refinement” if we
need to distinguish it from other kinds of refinement. Its ultimate antecedent is the lattice
of information [16] — but it generalises those seminal ideas significantly.

Definition 6.1 (Uncertainty refinement [3,5]). Let ∆S,I :D2X be two hypers on X . We say
that ∆S is refined by ∆I just when there is a distribution ∆:D3X , that is a distribution of
hypers, such that

∆S = avg.∆ and (Davg).∆ = ∆I .

Recall that Davg is the push-forward of avg (Defs. 4.1,2.10).
The advantage of the abstract formulation in Def. 6.1 is that it is defined on hypers

directly, and can be generalised to proper measures, thus extending discrete distributions [5].

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:19

But in the case (as here) where we remain discrete, there is an equivalent matrix-style
characterisation:

Lemma 6.2 (Refinement of joint-distributions [4, 8]). Let JS :X_YS and JI :X_YI be
joint-distribution matrices such that [[JS,I]]=∆S,I resp. 10 Then

∆S v ∆I iff JS ·R = JI (6.1)

for some stochastic refinement matrix R:YS_YI . Note that the state-spaces of ∆S,I are the
same, but their observation spaces YS,I can differ.

Proof. Illustrated in §C; sketch proof in §D.

With Lem. 6.2 the reflexivity and transitivity of relation (v) is clear from elementary
matrix properties. For anti-symmetry we refer to [6, Thm 6], whose supporting Lemma 1
there is adapted to suit our purposes here:

Definition 6.3 (Expected value). For distribution δ:DZ and function f :Z→V for vector
space V , the expected value of f on δ is Eδ f :=

∑
z:Z δz×f.z, where

∑
and (×) are taken

in the vector space. 11

We will be using E principally over hypers, i.e. the case Z = DX in the definition.

Lemma 6.4 ((Strict) monotonicity). Given are two hypers ∆S,I :D2X and a strictly concave
function f :DX→R≥.

If ∆S<∆I then E∆S
f < E∆I

f . And if f is (non-strictly) concave, then ∆Sv∆I implies
E∆S

f ≤ E∆I
f .

Proof. Proved for abstract channels in [6, Lem 1]; the proof for hypers is essentially identical.

We now have antisymmetry, because ∆Sv∆Iv∆S and ∆S 6=∆I implies ∆S<∆I<∆S

whence we have from Lem. 6.4 the contradiction E∆S
f < E∆I

f < E∆S
f for any strictly

concave f :DX→R≥ of our choice (for example Shannon entropy).
Hyper-space D2X also admits a metric, the Kantorovich metric [17] based on the

Manhattan metric on DX (§7). It is used for continuity properties (as we will see in §8.1),
and is chosen because of its hierarchical properties, i.e. that the Kantorovich metric on say
X induces a metric on DX and D2X etc. [17].

7. Monads: Giry, Kleisli and Kantorovich

With DX→D2X we have given a discrete model of abstract HMM ’s, suitable for interpreting
probabilistic sequential programs with hidden state, together with concrete programming
examples (Figs. 2–4). We now provide a brief overview about how our setup embeds into
structures based on a Giry monad.

The Giry monad over the category of Polish spaces and continuous functions comprises
an endofunctor Π and two natural transformations η (unit) and µ (multiply) [2]; following
[1] we take that as a basis for the denotation of computations. More precisely, we restrict

10Recall that the X here in type X_YS is the final-, not the initial state.
11More generally it is

∫
f dδ and requires measurability of f . One reason we do not use the standard

notation E(X) for the expected value of random variable X is that the distribution over which X is taken is
implicit. In the calculations our HMM -semantics entails, we often need to make it explicit.

36:20 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

ourselves to the category Comp of compact metric spaces and continuous functions. We
have been using D as a specialisation of Π to this case. The object DS is the set of Borel
probability measures over the compact metric space S which is indeed a compact metric
space [18, Thm 6.4]. To form a monad on Comp, we have provided the unit-function [·]
specialising η that makes a point measure, and multiply-function avg specialising µ that
takes the average of a distribution (of distributions). Typically we have [·]DX∈DX→D2X
and avgX∈D2X→DX where the subscripts are left implicit when they are clear from the
context.

From Giry’s construction, the arrows [·]S and avgS are continuous with respect to the
weak topology on DS but, in this paper, we are dealing with compact metric spaces. Fortu-
nately, for compact metric spaces, the Kantorovich distance metrizes the weak topology [19].
This implies that the triple (D, [·], avg) is indeed a monad on the category Comp.

Monadic constructions based on the Kantorovich metric are not new. In [17], Van
Breugel construct monads on the category Comp* of compact metric spaces and 1-Lipschitz
functions. His functor B coincides with our D on objects and he shows that Bf , [·]S and
avgS are 1-Lipschitz; whenever f is 1-Lipschitz and S is a compact metric space. Thus
(B, [·], avg) is a monad on the category Comp* 12. In that work, the metric is crucial since
the notion of 1-Lipschitzness is not a topological property. In fact, Van Breugel shows that
the Kantorovich metric is the right metric to construct probabilistic monads out of metric
spaces. Such a construction does not necessarily work with other metrics that metrizes
the weak topology (e.g. Prohorov metric which is equivalent to the Kantorovich metric
from compact spaces). However, arrows in the category Comp* are insufficient to denote
probabilistic programs with hidden states because [[C]] is not necessarily 1-Lipschitz for some
channel matrix C. This drives our choice of the Giry monad (D, [·], avg) on the category
Comp of compact metric spaces and continuous functions.

Our construction of the Kantorovich metric begins with a finite set X endowed with the
discrete metric d1 (i.e. d1(x, x′):= 0 if x=x′ else 1). This is trivially a compact metric space.
The space DX of discrete distributions on X is endowed with the Kantorovich metric based
on d1 which coincides with the total variation metric on DX . At this level, the Kantorovich
metric reduces to dK(δ1, δ2) = 1

2

∑
x |δ1

x−δ2
x|. At the next level, our hyper-space D2X has

the Borel algebra generated by D from DX , which is in turn determined by the Kantorovich
metric derived from dK which we will also denote by dK . These metrics are distinguished in
terms of the arguments they are applied on, i.e. dK(δ1, δ2) is the Kantorovich metric on DX
while dK(∆1,∆2) is the Kantorovich metric on D2X .

8. Characteristics of HX , the abstract HMM ’s

8.1. Continuity and super-linearity. The semantic function [[·]] (Def. 3.2) takes HMM
matrices in X_Y×X to functions in DX→D2X ; but not all of those functions are denotations
[[H]] of some H. We now describe two important characteristics satisfied by [[H]] as H ranges
over HMM ’s: they are continuity and super-linearity. We will define abstract HMM ’s HX
to be just the functions satisfying those conditions.

Sometimes called “healthiness conditions”, these are essentially technical results giving
general properties that are to hold for the denotation of any program. They are used for the

12Note that Van Breugel’s construction is more general than this since he also considers complete metric
spaces and tight probability measures over them.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:21

proof of other, more specific properties of programs. Here we use them to define a subset
HX of DX→D2X , and we prove that [[H]]∈HX for all classical HMM’s H.

Our first condition concerns continuity wrt. the Kantorovich metrics on DX and D2X .

Lemma 8.1 (Denotations of HMM ’s are continuous). For all H:X_Y×X we have that
[[H]] is a continuous function in DX→D2X wrt. the Kantorovich metrics.

Proof. We recall from Def. 3.2 that [[H]].π = [[π�J]] where Jx′,y =
∑

xHx,y,x′ . We consider
this as the composition of the two functions π 7→(π�J) and [[·]], with the metric on the
intermediate space X_Y (of matrices) being the Kantorovich metric dK on D(X×Y) which is
dK(J1, J2) = 1

2

∑
(x,y) |J1

x,y−J2
x,y|. Furthermore, since π 7→(π�J) comprises only elementary

arithmetic operations, and dK is topologically equivalent to the Euclidean distance, the
continuity is clear. Thus we concentrate on the continuity of [[·]] at an arbitrary joint
distribution J :D(X×Y).

Let ε>0. We denote [[J]] = ∆ and let J ′:D(X×Y) with [[J ′]] = ∆′. Since J and J ′ are
matrices, we can write ∆ =

∑
y ay[δ

y] and ∆′ =
∑

y a
′
y[δ
′y] with δy, δ′y:DX . These are sums

over the full set Y so if ay = 0 (resp. a′y = 0) then we define δy:= δ′y (resp. δ′y:= δy). Let
us define ∆′′ =

∑
y ay[δ

′y] which combines the coefficients of ∆ with the inners of ∆′. The
triangular inequality tells us that

dK(∆,∆′) ≤ dK(∆,∆′′) + dK(∆′′,∆′) .

On the one hand,

dK(∆′′,∆′)
= 1

2

∑
y

∣∣ay − a′y∣∣ “∆′′ and ∆′ have finite supports”

= 1
2

∑
y

∣∣∑
x Jx,y −

∑
x J
′
x,y

∣∣ “Defn. ay and a′y”

≤ 1
2

∑
y,x

∣∣Jx,y − J ′x,y∣∣ “|∑x f.x| ≤
∑
x |f.x|”

= dK(J, J ′) “Defn. dK(J, J ′)”

On the other hand, for every y, the function which maps J to δy is continuous at J
since it is a composition of a y-projection and normalisation. Therefore, there exists αy>0
such that for every J ′:D(X×Y) with dK(J, J ′)<αy, we have dK(δy, δ′y)< ε

2 . But we have

dK(∆,∆′′)
≤ ∑

y aydK(δy, δ′y) “Kantorovich-Rubeinstein Theorem [19, Pg. 8]”

≤ maxy dK(δy, δ′y) “
∑
y ay = 1 and ay≥0 for all y”

Therefore, we choose β = min(miny αy,
ε
2) and for every J ′ such that dK(J, J ′) < β, we

have
dK(∆,∆′)<

ε

2
+
ε

2
= ε .

Hence, [[·]] is continuous at J .

Our second condition concerns linear combinations.

Definition 8.2 (Weighted sum). For δ1,2:DX we write δ1p+δ2 for the weighted sum of the
two distributions, so that (δp+δ

′)x = pδx + (1−p)δ′x. Note that δp+δ
′ defined here and the

δp⊕δ′ of Def. 2.10 differ: the former is a single distribution made from p-merging δ, δ′; the
latter is a hyper whose support is just the two elements δ, δ′.

36:22 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

Lemma 8.3 (Denotations of HMM ’s are super-linear). For all H:X_Y×X we have

[[H]].π1 p+ [[H]].π2 v [[H]].(π1 p+ π2) , (8.1)

where (v) is refinement as defined in Def. 6.1. 13

Proof. Take any reduced J1,2:X_Y, and argue first that for any 0≤p≤1 we have

[[J1]] p+ [[J2]] v [[J1
p+ J2]] , (8.2)

since the horizontal concatenation J of the two (scaled) matrices p×J1 and (1−p)×J2

satisfies [[J]] = [[J1]]p+[[J2]], and J itself is refined to J1 p+ J2 (in the sense of Lem. 6.2) by
the refinement matrix

R :=



1 0 · · · ←− corresp. to first col. of J1

0 1 · · · ←− corresp. to snd. col. of J1

...
...

...
1 0 · · · ←− corresp. to first col. of J2

0 1 · · · ←− corresp. to snd. col. of J2

...
...

...


,

that simply sums corresponding columns. Now we observe that

[[H]](π1 p+ π2)
= [[(π1 p+ π2)�H)]]
= [[π1�H p+ π2�H]]
w [[π1�H]] p+ [[π2�H]] “(8.2) just above”

= [[H]].π1 p+ [[H]].π2 ,

as required.

Motivated by those two lemmas, we now define

Definition 8.4 (The space HX of abstract HMM ’s). We write HX for those h in DX→D2X
satisfying Lemmas 8.1,8.3, i.e. that are Kantorovich-continuous and super-linear.

Thus our two lemmas above establish that [[H]]∈HX for any classical HMM H.
Since we will therefore be restricting our denotations to HX , a subset of the arrows in

the category Comp, we expect HX to be closed under composition.

Lemma 8.5 (Abstract HMM ’s closed under composition). For any two h1,2:HX we have
h1;h2 ∈ HX as well, where (;) is as in Def. 4.2.

Proof. Although a direct proof is possible, the result is much easier once we have introduced
“uncertainty” transformers (§9), because it is then a consequence of Thm. 9.8 and in particular
its Cor. 9.9, which depends crucially on the dual view we develop in §9.

It is shown in §E.2 that composition in HX is monotonic with respect to the refinement
order (v). This completes our construction of our forward, abstract semantics for HMM ’s.
We now propose a dual view.

13Super-linearity can also be seen as a form of monotonicity. See §E.1.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:23

9. A dual view: uncertainty measures, and their transformers

9.1. Uncertainty measures, and their relation to refinement. “Uncertainty measures”
generalise the diversity of entropy measures (including e.g. Shannon), the functions from
distributions to reals that measure increasing disorder.

Definition 9.1 (Uncertainty measure). An uncertainty measure over X is a Kantorovich-
continuous- and concave function in DX → R≥, i.e. one taking distributions (on X in this
case) to non-negative reals. It is intended that a distribution’s greater uncertainty indicates
more resilience (less vulnerability) to the distribution’s being exploited by an adversary. 14

We write UX for the uncertainty measures over X , and call them “UM ’s” in the text
for brevity.

A typical example of a UM applied to a hyper is as follows. Given prior π:DX and
channel C:X_Y, the resulting hyper is ∆:= [[π�C]] and the “conditional u uncertainty”
of that (compare conditional Shannon entropy) would be E∆ u. We write E∆ u because it
makes explicit that the conditional uncertainty is an expected value and, as such, we can
calculate with it. (More conventional notations such as H(y|x) –in the Shannon case– make
those calculations more difficult.) This could be compared to the uncertainty u.π of the
prior, to give a “u-leakage” of the channel on that prior.

There is a compelling connection between UM ’s (Def. 9.1) and refinement (Def. 6.1,
Lem. 6.2): we have

Lemma 9.2 (Soundness and completeness of uncertainty measures [6]). For any hypers
∆1,2:D2X we have

∆1 v ∆2 iff E∆1u ≤ E∆2u for all u:UX .

We regard “only if” as soundness in the sense that if we have a witness to the refinement
relation ∆1v∆2, i.e. either ∆ (Def. 6.1) or R (Lem. 6.2), then no UM can show ∆2 to be
less uncertain than ∆1. It is related to the Data-Processing Inequality, as explained in [6].

We regard “if” as completeness in the sense that if refinement fails, that is if ∆1 6v∆2,
then there is a UM demonstrating the failure [4–6,8].

In §E.5 is background on the proof of Lem. 9.2, whose completeness part was originally
called “Coriaceous” because it was hard to prove [8].

9.2. Abstract HMM ’s to UM -transformers. In §3 we introduced a “forward” denota-
tional view of HMM ’s that takes initial distributions to final hypers. Here we take the dual
view, where an HMM takes a “post-uncertainty” to a “pre-uncertainty”.

Definition 9.3 (Uncertainty-measure transformers). Take h:HX and u:UX . Define the
uncertainty transformer wp.h of type UX→UX so that for any u:UX and π:DX we have

wp.h.u.π := Eh.π u ,
where on the right we are taking the expected value of u on the hyper h.π. (Because u is
continuous, it is measurable.)

14Smith’s “vulnerability measure” based on Bayes Risk [9] is an uncertainty measure except that it goes
in the opposite direction.

36:24 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

By analogy with weakest preconditions for ordinary sequential programming [20], a UM -
transformer wp.h takes a UM to be applied after h and produces a UM that equivalently can
be applied before h. (Compare also [21–23] for probabilistic/demonic sequential programs.)
The idea (and utility) is in goal-directed reasoning: if one knows the program, and knows
also the uncertainty that it must achieve, with the uncertainty transformer one determines
the minimum uncdertainty that is necessary before the program begins its execution.

In Lem. 9.4 we show well definedness of Def. 9.3, that is that wp.h.u is indeed in UX .

Lemma 9.4 (Well-definedness of Def. 9.3). If h:HX is an abstract HMM and u:UX is a
UM, then wp.h.u is in UX .

Proof. See §F.

9.3. Characteristic properties of wp.h. For h:HX the UM -transformer wp.h has a
number of characteristic properties.

Lemma 9.5 (wp.h is linear and total). For every h:HX and t = wp.h we have that t is:

(1) linear so that for a1,2:R≥ and u1,2:UX we have

t.(a1u1 + a2u2) = a1t.u1 + a2t.u2 ;

(2) monotonic, so that t.u1.δ ≥ t.u2.δ for every u1≥u2 with u1,2:UX and δ:DX , where we
lift (≥) pointwise; and

(3) total, so that t.1=1 where 1.δ:= 1 for all δ:DX .

Proof. These properties are immediate from Def. 9.3.

A further property of UM -transformers is that they are 1-Lipshitz in a certain sense:

Lemma 9.6 (wp.h is 1-Lipschitz). Take h:HX and define t:= wp.h. Let |·| be absolute value.
Then t is 1-Lipschitz in the sense that

sup
δ:DX

|t.u1.δ − t.u2.δ| ≤ sup
δ:DX

|u1.δ − u2.δ| .

Proof. Consider arbitrary u1,2:UX . We reason

supδ:DX |wp.h.u1.δ − wp.h.u2.δ|
= supδ:DX |Eh.δ u1 − Eh.δ u2|
≤ supδ:DX Eh.δ |u1−u2| “property of | · |”
≤ supδ:DX Eh.δ (supδ′:DX |u1.δ

′ − u2.δ
′|) “E monotonic”

= supδ:DX |u1.δ − u2.δ| . “Eh.δ 1 = 1 and rename δ′ to δ”

Motivated by those lemmas, we define uncertainty transformers to be exactly the
functions in UX→UX that satisfy the properties listed.

Definition 9.7 (The uncertainty transformers TX). The uncertainty transformers TX are
the functions in UX→UX that satisfy Lems. 9.5,9.6.

We note that transformers TX are closed under composition. In §E.3 we show that
refinement for TX is pointwise (≤).

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:25

9.4. UM -transformers back to abstract HMM ’s. The function wp.(·) has been shown
to be of type HX→TX . Here we show that this correspondence is exact, i.e. that for every
t:TX there is an h:HX such that t=wp.h and, moreover, that the h is unique.

The following theorem thus establishes the exact correspondence between HX and TX ,
giving an analogue for hidden-state probabilistic programs to the well-known correspondence
between demonic relations and conjunctive predicate transformers [20] that the former corre-
spond exactly to those functions from predicates to predicates that distribution conjunction.
(A further example, generalising that, is the correspondence between demonic/probabilistic
programs and super-linear expectation transformers [22,24].)

Theorem 9.8 (Characterisation of transformers). For any t:TX there is a unique h:HX
such that t=wp.h.

Proof. Let t:T. The construction of h starts by showing that the transformer t can be
extended into a linear function over the space CX of continuous functions from DX to itself.
This extension is executed in two phases. Firstly, we show that the set UX of continuous,
concave and non-negative function over DX generates a sub-vector space of CX . Thus,
the first stage is an algebraic extension of t to that generated sub-space. This extension is
necessarily unique by linearity (Lem. 9.5). The second stage is a topological extension where
CX is endowed with the norm uniform making it a Banach space. In fact, we show that the
sub-vector space generated by UX is a dense sub-algebra of CX using the Stone-Weierstrass
Theorem [25, Thm. 5]. Thus the second stage of the extension is also unique by continuity.
Full technical details of these extensions are given in §G.

We now have a unique continuous linear function t̂ from CX to itself which coincides
with t on UX . We shall construct an h such that wp.h = t.

Fix δ:DX . The function
f 7→ t̃.f.δ

maps each continuous function f :CX to t̃.f.δ is a positive linear functional on CX ; moreover
t̃.1.δ = t.1.δ = 1, thus 1 7→ 1. Therefore, the Riesz Representation Theorem for linear
functionals [18, Ch. 2 Thm. 5.8] implies that there exists a unique Borel probability measure
∆δ on DX such that t̃.f.δ = E∆δ

f , for every f :CX .
Define h.δ:= ∆δ for each δ:DX . We now check that h has the required properties

demanded by Lemmas 8.1,8.3.

Continuity: For the continuity assumption in Lem. 8.1, we let δn be a sequence of
distributions in DX converging to δ:DX with respect to the Kantorovich metric on DX .
It suffices to show that the limit of dK(h.δn, h.δ) is 0, as n goes to infinity. Since DX is
compact, the Kantorivich metric metrizes the weak topology and it suffices to show that
h.δn converges weakly to the Borel measure h.δ. Let f :CX , we have

Eh.δn f = t̃.f.δn

Since t̃.f is also continuous, the sequence t̃.f.δn converges to t̃.f.δ and thus, h.δn coverges
weakly to h.δ. 15

Super-linear: For the super-linearity assumption in Lem. 8.3, suppose that t=wp.h is in
TX and take arbitrary δ1,2:DX . Then we reason

15This proof crucially depends on the compactness of DX . For Polish spaces, we can achieve the same
result but using a more general result by Rao [26, Thm. 3.1].

36:26 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

h.δ1p+h.δ2 v h.(δ1p+δ2)
if E(h.δ1p+h.δ2) u ≤ Eh.(δ1p+δ2) u “for all u:UX Lem. 9.2 Coriaceous”

if wp.h.u.δ1p+wp.h.u.δ2 ≤ wp.h.u.(δ1p+δ2) “Defn. wp.()”

if wp.h.u ∈ UX , “Defn. UX”

which was our assumption.

With these characterisations, we now can prove two technical facts. In the discrete case
(as earlier) they seem self-evident. In the more general setting, however, the work is mainly
in ensuring well definedness (e.g. that only measurable functions are integrated, etc.) The
first establishes the usual connection between composition, this time between the forward-
and backward semantics; the second confirms that HX is closed under composition (i.e.
preserves continuity and super-linearity, as claimed in Lem. 8.5).

Corollary 9.9 (Transformer composition). For any h1,2:HX we have that also h1;h2∈HX ,
and furthermore that wp.(h1;h2) = wp.h1 ◦ wp.h2.

Proof. Direct calculation shows that wp.(h1;h2) = wp.h1 ◦ wp.h2, although the working
is intricate in the general (Giry) case. Well definedness of h1;h2 itself uses the simpler
properties of (functional) composition on the transformer side. See §H.

Also, transformer composition respects refinement (§E.4).

10. Gain- and loss functions define uncertainty measures

10.1. Gain- and loss functions. Although Def. 9.1 of uncertainty measures is abstract,
they can be made concrete via “gain functions” [8] or equivalently “loss functions” [4, Eqn. (5)]
that encode an attacker’s (e.g.) economic interest in the secrets and the cost of obtaining
them. We use loss functions here.

Definition 10.1 (Loss function determines uncertainty measure). A loss function ` is of
type I→X→R≥ for some index set I, with the intuitive meaning that `.i.x is the cost to
the attacker of using “attack strategy” i when the hidden value turns out actually to be x.
Her expected cost for an attack planned but not yet carried out is then Eδ (`.i) if δ is the
distribution in DX she believes to be governing x currently.

From such an ` we define an uncertainty measure

U`.ρ := inf
i: I
Eρ (`.i) . (10.1)

When I is finite, the inf can be replaced by min.

The inf represents a rational strategy of minimising cost or risk, and a typical attacker
will act as follows: she chooses the attack strategy (i.e. he chooses i) whose expected cost
Eρ (`.i) to her, where ρ is the posterior in DX she infers from her observations in Y, will be
the least.

Lemma 10.2 (Well-definedness for Def. 10.1). For any loss function `: I→X→R≥ the
function U` in Def. 10.1 is continuous and concave.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:27

Proof. We give here the proof for the finite-I case. (The infinite case is considered in [7, Sec
III-B]; it might require further assumptions on I.) Let ` be a loss function and U` be the
associated uncertainty measure.

U` is concave: Take ρ1,2:DX and p: [0, 1]. We have

U`.(ρ1p+ρ2)
= mini: I (Eρ1p+ρ2 `.i) “definition U`”

= mini: I (Eρ1 `.ip+Eρ2 `.i) “λδ · Eδ u is linear”

≥ (mini: I Eρ1 `.i) p+ (mini: I Eρ2 `.i) “(min f)p+(min g) ≤ min(fp+g)”

= U`.ρ1p+U`.ρ2 . “definition U`”

Ul is continuous: Since I is finite and each function (λρ · Eρ `.i) = (λρ ·
∑

x:X ρx×`.i.x)
is continuous, the function U` is also continuous.

Remarkably, loss functions are complete for uncertainty measures: any uncertainty
measure in UX can be expressed as U` for some loss function ` in I→X→R≥, but possibly
requiring I to be infinite [27]. Roughly speaking, this is because of the way concave functions
can be expressed as the envelope of their tangential hyperplanes: the coefficients of the
hyperplanes’ normals are the loss functions. 16

It is compellingly shown elsewhere how versatile loss (equiv. gain) functions are [8].
Of particular interest is that Lem. 9.2 applies, both in the discrete [4] and the continuous
cases [5], even when uncertainties are restricted to those generated by loss functions: the
“distinguishing witness” constructed for completeness is in fact a loss function [4].

11. A UM -transformer example for §4.4

11.1. Profiling an attacker with a loss function. In the context of Fig. 4 we imagine
an attacker whose livelihood depends on her guessing whether xs[0]=xs[1] or not, finally.
If he guesses incorrectly he loses $1; if correctly, he breaks even (loses $0). This is as much a
mathematical- as a social issue: attacks will be discouraged if they are not worthwhile for
the attacker in terms of her own criteria. (See also §4.4 for this social aspect.)

In this example, following §10, we express the attacker’s criteria as two strategies “guess
same” and “guess different” (thus I = {same, diff}) and a loss function ` therefore defined

`.same.(00) = 0
† `.same.(01) = 1

`.same.(10) = 1
`.same.(11) = 0

`.diff.(00) = 1
`.diff.(01) = 0 ‡
`.diff.(10) = 0
`.diff.(11) = 1 ,

based on the informal description just above: for example if xs=01 but he guesses same, the
case indicated by †, then he loses $1; but if he guesses diff, he breaks even ‡. Using (10.1) we
define our UM as u.δ = U`.δ =

`.same.δ min `.diff.δ
= Eδ (`.same) min Eδ (`.diff)
= (δ00+δ11) min (δ01+δ10) .

16For example, Shannon entropy requires infinite I, and the encoding is then related to minimising the
Kullback-Leibler divergence.

36:28 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

11.2. Using UM ’s and transformers to plan an attack. We can use our transformer
semantics to answer u-dependent questions about Fig. 4 over all priors: we use the two we
chose earlier in §4.4 as examples.

Writing [[P]] for the abstract HMM denoted by the two lines of code in Fig. 4, we have
for any π that

wp.[[P]].u.π = π00 min (π01+π10)/2
+ π11 min (π01+π10)/2 .

(11.1)

(See §I below for how this wp.(·) is calculated.)
Now let π4 be the prior described by the initial comment in Fig. 4. The attacker’s

(expected) uncertainty wrt. the final hyper [[P]].π4 is given by wp.[[P]].u applied to that
initial (uniform) prior π4, that is wp.[[P]].u.π4 = 1/2 directly from (11.1). Since u.π4 is also
1/2, he is indifferent wrt. whether he should attack before or after P has been allowed to run.

Now suppose that xs[0]=1 is known initially, thus with prior π being (0, 0, 1/2, 1/2)
so that u applied initially gives u.π=1/2. But u applied finally would give wp.[[P]].u.π =
(0 min 1/4) + (1/2 min 1/4) = 1/4 < 1/2, so that it is better to attack later even though xs might
have been altered by P . This scenario confirms that in fact for some priors, the program in
Fig. 4 cannot be regarded as secure.

12. HMM ’s and the Dalenius Desideratum

Our abstracting from initial-state correlations allows a semantics for programs’ final states
alone. Sometimes, however, leakage from the initial state is important, even if that state
is overwritten by the markov part of the HMM : what the initial state was might reveal
information about what some other correlated state still is, even if that other state is not
mentioned in the program at all. This general concern was raised wrt. statistical databases
by Dalenius [10] who argued that it is inescapable; Dwork later gave a proof of this [11].
Here is an (edited) extract from her paper:

Suppose we have a statistical database that [records] average heights of population
subgroups, and suppose further that it is infeasible to learn this information (perhaps
for financial reasons) in any other way (say, by conducting a new study). Finally,
suppose that one’s true height is considered sensitive.

[An adversary having the] auxiliary information “Turing is two inches taller
than the average Lithuanian woman” [would, with access to the database, learn]
Turing’s height. In contrast, anyone without access to the database, knowing only
the auxiliary information, learns much less about Turing’s height.

With our constructions here, we are able to see the Dalenius effect in programming
terms. The program that allows access to Dwork’s database of Lithuanian heights (as above)
might itself, in isolation, have been analysed for security leaks. But if that program is run
in a larger programming context in which there is a (to be kept secret) variable tHeight

containing Turing’s height and there is program code (external to the database-access code)
that establishes a correlation between the two, then running the database-access program
reveals information about tHeight even though that variable is not mentioned anywhere in
the database program.

In more austere terms, we would explain the effect as follows. A “classical” sequential
program does not affect variables to which it does not refer; for example x:= E does not
affect some other variable y in any way. But the program leak x (recalling the notation

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:29

of Fig. 3) can affect what we know about variable y even though the program leak x does
not refer to y at all.

Consider for example an input distribution (0, 0)@1/2, (1, 1)@1/2 on two variables (x,y).
Its y-marginal distribution is uniform on {0, 1}. But the output hyper of that program,
projected onto y, is [0]@1/2, [1]@1/2, showing that the distribution on y is now a point, no
longer uniform: 17 with probability 1/2 that point will be [0], and with probability 1/2 that
point will be [1]. Reviewing the leaks of x tells us which point distribution on y we have,
and we see essentially the Dalenius effect between “database” x, “query” leak x and
“third-party data” y.

This effect is exacerbated when we include state updates, as we have done with our
abstract HMM ’s here. (Updates were not considered originally by Dalenius or by Dwork.)
For then the program leak x; x:= 0 and the program x:= 0 have the same abstract-
HMM semantics on state-space (just) x, but different semantics on state-space x,y. 18

The Dalenius effect has become, in programming terms, a failure of compositionality wrt.
unreferenced global variables.

We show in this section how to deal with that: in brief, we include both the initial- and
the final values of the state in our semantics. The crucial point is that we do not have to do
more than that, in particular that we do not have to consider “all possible third-party data
y of any type”.

We now address the details. Consider a “constant” overwrite-by-x markov M x
x,x′ =

1 if x′=x else 0 for some fixed x:X . Then [[C:M x]] = [[:M x]] for any channel C, because C
has no effect on our knowedge of the final state. We know already what it is going to be.

We now adjust the semantics so that leakage from the initial state is accounted for, even
if it is subsequently overwritten. Let C:X_Y be a channel and M :X_X a markov, as
usual, and let Z be fresh. Write C×Z in (X×Z)_Y for the expanded channel

(C×Z)(x,z),y := Cx,y ,

i.e. that C ignores z. Similarly M×Z : (X×Z)_(X×Z) is given by

(M×Z)(x,z),(x′,z′) := Mx,x′ if z=z′ else 0 ,

i.e. so that M does not change x. Thus these definitions ensure that for any π:D(X×Z)
neither π�(C×Z) nor π�(M×Z) depends on the Z component. Take for example Z:= {z0, z1}
consider C,M as below:

C =

y0 y1

x0:
(

1 0
)

x1: 1/4 3/4

M =

x0 x1

x0:
(

1/2 1/2
)

x1: 1/2 1/2

C×Z =

y0 y1

(x0, z0):


1 0
(x0, z1): 1 0

(x1, z0): 1/4 3/4
(x1, z1): 1/4 3/4

17Since the output is a hyper, if knowledge of y were unaffected we would have the point hyper on the
uniform distribution, that is [0@1/2, 1@1/2].

18On state-space x, both programs produce the output hyper [[0]] that denotes “x is certainly 0.” On x,y

however, the first might reveal something about y while the second cannot.

36:30 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

M×Z =

x0z0 x0z1 x1z0 x1z1

x0z0:


1/2 0 1/2 0
x0z1: 0 1/2 0 1/2

x1z0: 1/2 0 1/2 0
x1z1: 0 1/2 0 1/2

.

The definitions above show that in C×Z the rows of the original C are each repeated
2=#Z times; and the subsequent update by M×Z leaves Z unchanged. Observe that these
definitions now account for information flows with respect to initial distributions D(X×Z)
where, crucially, the Z component is merely “carried along”. But it captures the Dalenius
effect mentioned, as we now explain.

Consider an initial distribution π:D(X×Z) such that πxi,zj = 1 if and only if i=j, i.e.
that z is a copy of x’s initial value. We see that, even though Z is not accessed by the
program at all, if ever y1 is observed then the Z component must certainly be z1, and if y0

is observed then it is 4 times more likely to be z0 than z1.
Although Z is arbitrary, it can be shown that this Dalenius effect on any Z can be

determined by the HMM semantics specifically in the case where X=Z as just above. That
is, we do not have to consider “all Z’s”, which would be impractical. Note the construction of
a fully compositional semantics for programs with hidden states is requires further extensive
conceptual and technical work which we have developed elsewhere [28].

13. Related work

There is great diversity in approaches to information flow in (probabilistic) programs, which
we have surveyed in our own earlier work [4–7]. Here we have concentrated on general
techniques for semantic constructions, in particular those based on monads, duality and
refinement.

Refinement of probabilistic programs appeared in [29] where evaluations were used to
construct a powerdomain for probabilistic but possibly non-terminating computations; this
was extended to include demonic choice in the discrete case in [22, 24], and was significantly
generalised in [30]. Our “uncertainty refinement” that combines information flow with
functional properties first appeared for information flow in straight-line programs in [4], was
extended to general measure spaces [5] and appeared independently for the specific case of
channels [8]. Whereas Jones and Plotkin began with an underlying partial order over which
to construct a probability space, our uncertainty-refinement order begins “one level up”,
using hyper-distributions D2X to encode an “attack model” that accounts for information
flow.

Doberkat defines stochastic relations that correspond to forward-semantic functions of
type X→DX for Markov processes: these are what we generalise by going “one level up”.
The converse of those stochastic relations [31] might improve the presentation of our Def. 2.7,
where a hyper is extracted from a channel and a prior, i.e. from a joint distribution.

Dual models for program semantics include [20], then for probabilistic programs [21, 23]
in the purely probabilistic case. Subsequently [22] added demonic choice. And [30, 32] study
dual models for probability and nondeterminism using a version of Riesz’s representation
theorem.

In particular, Goubault-Larrecq’s approach [32] to combining probability and nonde-
terminism differs from our earlier work [22]. It uses general denotations for probabilistic
programs in which nondeterminism is introduced at the level of measures (by weakening the

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:31

DX

DX!R�

UX
Shannon

Rényi-min
Guessing

UX!UX

TXHX
DX_D2X

X_Y⇥XHMM as channel

D(X⇥Y⇥X)

D2X

abstract HMM's

Uncertainty measures

Uncertainty transformers

[[·]]

duality

=) hyper-distribution
GIry functor

distribution

I⇥X!R�

Loss functions

example uncertainties

...

resulting joint
distribution

Figure 6. Relationship between the semantic spaces.

modularity law) rather than as healthy sets of measures [22,24,30]. That leads naturally to a
backward semantics of probabilistic demonic programs because nondeterminism is captured
within integration. There is thus a strong analogy between our UM -transformers and
Goubault-Larrecq’s “previsions” because both are continuous functionals that act on some
set of tests (bounded continuous functions). The main difference is that our UM -transformers
are specifically tailored to capture security semantics, which is what leads to concavity on our
set of uncertainty measures. Notice moreover that Goubault-Larrecq encounters a difficulty
similar to our composition of HMM ’s, that the decomposition [[C:M]] (resp. collinearity) is
not preserved by Giry composition. Indeed, both difficulties are resolved by working in a
larger space, namely, the space of abstract HMM ’s (resp. not-necessarily-collinear continuous
previsions).

In [33] a dual model for Markov processes is used to prove properties about approxi-
mations of finite behaviours, and in [34] it is shown how expectation transformers relate to
explicit program models described by Markov processes.

Recently Jacobs and Hasuo have explored a general categorical construction of a backward
transformer semantics from a forward monadic model of probabilistic computations (discrete,
continuous and quantum) [35,36]. Their construction uses measurability as the underlying
feature of “predicates”, while the stronger condition of continuity is crucial for our uncertainty
measures. It would be interesting to see whether an instantiation of that categorical derivation
can provide more structure for what we have done.

The concave functions advocated here for analysing information-flow properties have
appeared in [5, 8] and have been identified in [37] as an ingredient in privacy analysis.

14. Conclusions and prospects

Our principal objective was to provide an abstract setting for HMM ’s based on well
understood principles of semantic spaces. We did that using Giry’s general monadic
framework applied at the level of DX (rather than X); the resulting structures include a
refinement order which is sensitive to both functional and information-flow properties, and
they lead to a dual, transformer space supported by theorems demonstrating the duality.
Fig. 6 summarises the results:

36:32 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

• Top-left Fig. 6 shows the three-way joint distribution D(X×Y×X) produced by an HMM
applied to a prior of type DX : recall §3.1.
• At bottom-left we formulate abstract HMM’s over a state X , a type HX , as a monadic

model for HMM ’s over X , and give their characteristic properties: recall §3.2,6,8.
• At top-right we have uncertainty measures UX as a generalisation of diverse entropies

(top centre), and we gave their characteristic properties: recall §9.1.
• We showed (centre right) that uncertainty measures have a complete representation

as loss functions; recall §10.
• We gave a dual, uncertainty-transformer semantics TX of HX , stating its characteristic

properties (bottom right) and proved that they enable the duality with HX (centre):
recall Thm. 9.8 in §9.2.
• We showed how all of that is an instance of the general Giry monad as a computation, of

which (finite) HMM ’s use a discrete portion (bottom centre): recall §7.
• We explained how the “Dalenius effect” is manifested as a compositional issue in this

framework, and suggested how it can be treated: recall §12.
• We stated and proved Thm. 9.8, which we believe is a significant new result, in particular

its assumptions and proof.

More abstractly (recall §1.2), we aimed to profit by joining two ideas: the established
use of HMM ’s as descriptions of probabilistic mechanisms having hidden state, and the
established use of monads for modelling computations. Our novel use of DX in the monad,
rather than the state X itself, is the principal innovation that allowed this; and the synthesised
hyper-distribution space that results leads to other advantages (the two †’s below).

An immediate benefit accrues because, in monad-enabled programming languages,
probabilistic-programming packages can be built very quickly and e.g. [38] is just one of
many examples. Indeed the translation into real programs is almost elementary because of
the powerful and general structures available: the Haskell prototype independently verifies
the examples in Figs. 2–5. (See §5 for an overview.)

More importantly, any monad brings with it both general equational properties and
specific properties applying to the monad in question (such as those in [2]). These conceptual
tools allow reasoning about the structures modelled (HMM ’s in this case) in ways that
would be obscured by their more direct operational representation (e.g. as matrices).

• The other advantages of hypers are several: one is that they abstract from differences
between entropies in a way that allows all of the entropies to be used uniformly. For
example, a hyper contains all the information necessary to calculate the information
leakage of a particular program fragment (typically, in the security literature, a pure
channel §3.4), as shown in [6], and furthermore the Kantorovich-metric structure of DX
we used earlier for channels [7] now carries over to HMM ’s.
• Another advantage of hypers is that their partial-order enables semantics for “looping

HMM ’s” in the standard way (least fixed-point) for computer science, rather than a direct
ad-hoc definition based on matrices. Indeed a typical use of HMM ’s is to run a single
HMM -step (§3.1) repeatedly and then to make statistical deductions about its hidden
features: sophisticated mathematical tools are available for this special case [12]. Via
abstract HMM ’s we can however, in principle, handle complex, heterogeneous systems
beyond (what amounts to, in the special case just above) a single loop containing just a
single statement.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:33

Our more concrete aim (again §1.2) was to allow source-level reasoning about probabilistic
programs with hidden state. Historically at the source level this works best with backwards
reasoning based on predicates (or similar) that can be embedded between program statements
rather than forwards reasoning which, here, would be calculations using DX→D2X directly.

Here our “predicates” are UM ’s, which in this paper however are mathematical objects
unsuitable for embedding directly in program texts (see §I, last paragraph) As remarked
in §10.1, however, any UM can be expressed as Ul for some loss-function l which function
–crucially– is indeed an expression based on program variables [27]. The added complexity
introduced by the hidden state is that the program-logic based on that observation must
represent the index-set (I) of the loss function; that would most likely be done by adding a
special-purpose quantifier (since the loss-function index must be a bound variable within
the assertion, not appearing in the program proper).

Exploiting this opportunity for a source-level quantitative logic of probabilistic hidden
state is planned for future work.

Acknowledgements. We’re grateful for advice from Franck van Breugel, James Worrell, Tom
Schrijvers and other members of IFIP WG 2.1, and for inspiration and insight from the
INRIA Princess team. We acknowledge support from the Australian Research Council’s
grant DP120101413 and the INRIA équipe associée Princess; and Morgan acknowledges the
support of Data61.

References

[1] E. Moggi, “Computational lambda-calculus and monads,” in Proc. 4th IEEE Symp. LiCS, 1989, pp.
14–23.

[2] M. Giry, “A categorical approach to probability theory,” in Categorical Aspects of Topology and Analysis,
ser. Lecture Notes in Mathematics. Springer, 1981, vol. 915, pp. 68–85.

[3] A. McIver, L. Meinicke, and C. Morgan, “Hidden-Markov program algebra with iteration,” Mathematical
Structures in Computer Science, 2014.

[4] ——, “Compositional closure for Bayes risk in probabilistic noninterference,” in Proc. 37th Int. Colloq.
ICALP 2010, Part II, 2010, pp. 223–235.

[5] ——, “A Kantorovich-monadic powerdomain for information hiding, with probability and nondetermin-
ism,” in Proc. 27th Symp. LiCS, 2012, pp. 460–70.

[6] A. McIver, C. Morgan, G. Smith, B. Espinoza, and L. Meinicke, “Abstract channels and their robust
information-leakage ordering,” in Proc. 3rd Conf. PoST (ETAPS), ser. Lecture Notes in Computer
Science, M. Abadi and S. Kremer, Eds., vol. 8414. Springer, 2014, pp. 83–102.

[7] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan, C. Palamidessi, and G. Smith, “Additive and
multiplicative notions of leakage, and their capacities,” in Proc 27th IEEE Symp. CSF. IEEE, 2014, pp.
308–322.

[8] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Measuring information leakage using
generalized gain functions,” in Proc. 25th IEEE Symp. CSF, Jun. 2012, pp. 265–79.

[9] G. Smith, “On the foundations of quantitative information flow,” in Proc. 12th Conf. FoSSaCS (ETAPS),
ser. Lecture Notes in Computer Science, L. de Alfaro, Ed., vol. 5504, 2009, pp. 288–302.

[10] T. Dalenius, “Towards a methodology for statistical disclosure control,” Statistik Tidskrift, vol. 15, pp.
429–44, 1977.

[11] C. Dwork, “Differential privacy,” in Proc. 33rd Int. Colloq. ICALP, 2006, pp. 1–12.
[12] D. Jurafsky and J. Martin, Speech and Language Processing. Prentice Hall International, 2000.
[13] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John Wiley & Sons, Inc.,

2006.
[14] D. Fremlin, Measure Theory. Torres Fremlin, 2000.

36:34 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

[15] J. Gibbons, A. McIver, C. Morgan, and T. Schrijvers, “Quantitative information flow with monads in
haskell,” 2018, submitted for review.

[16] J. Landauer and T. Redmond, “A lattice of information,” in Proc. 6th IEEE CSFW’93, Jun. 1993, pp.
65–70.

[17] F. van Breugel, “The metric monad for probabilistic nondeterminism,” 2005, www.cse.yorku.ca/
∼franck/research/drafts/monad.pdf.

[18] K. R. Parthasarathy, Probability Measures on Metric Spaces. AMS Chelsea Publishing, 1967.
[19] A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics,” International Statistical

Review, vol. 70, no. 3, pp. 419–435, 2002. [Online]. Available: http://dx.doi.org/10.1111/j.1751-5823.
2002.tb00178.x

[20] E. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.
[21] D. Kozen, “A probabilistic PDL,” in Proc. 15th ACM Symp. Theory of Computing. ACM, 1983, pp.

291–7.
[22] C. Morgan, A. McIver, and K. Seidel, “Probabilistic predicate transformers,” ACM Trans Prog Lang

Sys, vol. 18, no. 3, pp. 325–53, 1996.
[23] C. Jones, “Probabilistic nondeterminism,” Edinburgh University, Monograph ECS-LFCS-90-105, 1990,

(Ph.D. Thesis).
[24] A. McIver and C. Morgan, Abstraction, Refinement and Proof for Probabilistic Systems, ser. Tech Mono

Comp Sci. Springer, 2005.
[25] M. H. Stone, “The generalized Weierstrass approximation theorem,” Math Magazine, vol. 21, no. 4, pp.

167–184, March 1948.
[26] R. Ranga Rao, “Relations between weak and uniform convergence of measures with applications,” Annals

of Mathematical Statistics, vol. 33, no. 2, pp. 659–680, January 1962.
[27] K. Chatzikokolakis, Private communications, 2014.
[28] A. McIver, C. C. Morgan, and T. M. Rabehaja, “Algebra for quantitative information flow,”

in Relational and Algebraic Methods in Computer Science - 16th International Conference,
RAMiCS 2017, Lyon, France, May 15-18, 2017, Proceedings, 2017, pp. 3–23. [Online]. Available:
https://doi.org/10.1007/978-3-319-57418-9 1

[29] C. Jones and G. Plotkin, “A probabilistic powerdomain of evaluations,” in Proc. 4th IEEE Symp. LiCS,
1989, pp. 186–95.

[30] R. Tix, K. Keimel, and G. Plotkin, “Semantic domains for combining probability and non-determinism,”
Electron. Notes Theor. Comput. Sci., vol. 222, pp. 3–99, 2009.

[31] E. Doberkat, “The converse of a stochastic relation,” in Proc. 6th Conf. FoSSaCS (ETAPS), ser. LNCS,
A. Gordon, Ed., vol. 2620. Springer-Verlag, 2003, pp. 233–49.

[32] J. Goubault-Larrecq, “Continuous previsions,” in Proc. 16th EACSL, ser. Lecture Notes in Computer
Science, vol. 4646. Springer, 2007, pp. 542–57.

[33] P. Chaput, V. Danos, P. Panangaden, and G. D. Plotkin, “Approximating Markov processes by averaging,”
J. ACM, vol. 61, no. 1, 2014.

[34] F. Gretz, J. Katoen, and A. McIver, “Operational versus weakest pre-expectation semantics for the
probabilistic guarded command language,” Perform. Eval., vol. 73, pp. 110–132, 2014.

[35] B. Jacobs, “Measurable spaces and their effect logic,” in Proc. 28th LiCS, 2013, pp. 83–92.
[36] I. Hasuo, “Generic weakest precondition semantics from monads enriched with order,” in Proc. CMCS,

ser. LNCS, M. Bonsangue, Ed., vol. 8446. Springer, 2014, pp. 10–32.
[37] D. Kifer and B.-R. Lin, “Towards an axiomatization of statistical privacy and utility,” 2010, Penn State

Technical report: CSE-10-002.
[38] M. Erwig and S. Kollmansberger, “Probabilistic functional programming in Haskell,” Journal of

Functional Programming, vol. 16, pp. 21–34, 2006.
[39] D. Blackwell, “The comparison of experiments,” in Proc. 2nd Berkely Symp. Mathematical Statistics

and Probability. Univ. Califormia Press, 1951, pp. 93–102.
[40] M. Bačák and J. M. Browein, “On difference convexity of locally Lipschitz functions,” Optimization: A

Journal of Math Prog and Oper Research, vol. 60, no. 8-9, pp. 961–978, 2011.
[41] L. H. Loomis and S. Sternberg, Advanced Calculus. Jones and Bartlett Publishers, 1990.

http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
https://doi.org/10.1007/978-3-319-57418-9_1

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:35

Appendix A. Summary of notations

These entries list in first-use order the points at which notation is introduced during the
exposition: a detailed explanation of each is given there.

−† Kleisli extension p.2

f.x vs. f(x) Function application is “.”, i.e. a dot. p.3

X_Y Type of a matrix. p.3

Cx,y, C−,y etc. Elements of vectors and matrixes by index; whole rows/-
columns.

p.3

_X Type of vector. p.3

(·) Matrix multiplication: vectors automatically taken as row- or
column- for conformity.

p.3

(:) vs. (∈) Declaration vs. property. p.3

u.c. Roman letter Matrices: C for channels; M for transformers; H for HMM ’s p.4

X Finite set of states. p.4

Y Finite set of observations. p.4

l.c. Greek letter Vectors, usually distributions over X : π for priors; ρ for
posteriors; δ for others.

p.4

Σ() Weight (sum of elements) of vector or matrix. p.4

π�C Channel applied to prior. p.4

b−c Normalisation of distribution. p.4

similar wrt. columns of joint matrix. p.5

y1,2 vs. y1, y2 Former abbreviates latter. p.5

D Discrete-distribution type constructor, a functor. p.5

D2 Distribution-of-distributions. p.5

hyper Abbreviation of “hyper-distribution”. p.5

inner Element of a hyper’s base type. p.5

outer Distribution of a hyper over its inners. p.5

[[·]] Semantic function for HMM ’s. p.6

D Sub-distribution. p.6

D2 Sub-hyper. p.6

xp⊕x′ The two-point distribution “x with probability p and x′ with
probability 1−p”.

p.6

[·] Point distribution. p.6

[−] Sub-point distribution. p.7

dδe The support of a distribution. p.7

avg Average (of hyper); multiply in monad. p.7

∆ Upper-case Greek for hypers. p.7

channel The emission part of an HMM -step. p.8

markov The transition part of an HMM -step. p.8

(C;M), (C;), (;M) One-step HMM defined by channel and markov. p.8

nc Channel that releases no information. p.9

id Identity (Markov) transform. p.10

@ Notation for specific hyper-distributions p.10

36:36 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

(;) Sequential composition of HMM ’s. p.11

(·‖·) Parallel composition of channels. p.11

Df Push-forward of f . p.12

(v) Refinement relation between hypers. p.18

∆ A distribution of hypers. p.18

Eδ f Expected value. p.19

Π, µ, η Giry/Lawvere functor etc. p.19

B Metric-monad functor. p.20

dK Kantorovich metric. p.20

d1 Discrete metric. p.20

(p+) Weighted sum of distributions. p.21

HX Abstract HMM ’s on X . p.22

UX , UM ’s Uncertainty measures on X . p.23

wp.h Uncertainty transformer (determined by h.) p.23

T The type of uncertainty transformers p.24

1 The everywhere-one function. p.24

Ul Uncertainty measure defined by loss-function l. p.26

H×Z Dalenius Z-extension (of HMM H). p.29

(◦) Functional composition. p.36

CX Continuous functions from DX to R. p.44

‖ · − · ‖∞ Uniform metric on UX and CX . p.44

(λ · · ·) Lambda abstraction. p.47

l�π π-skewed loss function. p.49

Appendix B. Characterisation of pure channels and pure markovs [§4.1]

B.1. Pure abstract markovs. Since a pure markov reveals nothing, a pure abstract
markov h:HX should produce only point hypers, i.e. have for all π:DX that h.π = [ρ] for
some ρ (depending on π).

From that we can deduce that for any pure abstract markov h the effect of avg ◦ h (on
some π) is matrix multiplication by some M (independent of π). That is, for any 0≤p≤1 we
have

(avg ◦ h).(π1p+π2) = (avg ◦ h).π1 p+ (avg ◦ h).π2 , (B.1)

which property characterises matrix multiplication. This is because h.(π1p+π2)=[ρ] and
h.π1,2=[ρ1,2] resp. for some ρ, ρ1,2, together with Lem. 8.3, gives

[ρ1]p+[ρ2] v [ρ] ,

and the only way that can hold is if ρ = ρ1p+ρ2, which is precisely the claim made at (B.1)
just above.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:37

B.2. Pure abstract channels. A pure channel is one that releases information about the
distribution on X but does not change it: one can think of the transformation part as the
identity matrix. Thus (B.1) above suggests that we should have that avg ◦ h is the identity
for a pure channel, i.e. that avg.(h.π)=π. This is necessary, but turns out not to be sufficient:
we explore a fuller characterisation of channels later (§J).

Appendix C. Equivalent presentations of refinement: Lem. 6.2 [§6]

Lem. 6.2 concerned two definitions of uncertainty refinement, showing them to be equivalent:
one was formulated for joint distributions (defined at (6.1) within the lemma), suitable for
discrete reasoning; and the other was formulated for hypers (Def. 6.1), suitable for extension
to more general reasoning (e.g. proper measures). We sketch the proof of that equivalence
in §D immediately below.

In this section however we present an example, two hypers ∆S,I shown to satisfy ∆Sv∆I

in both presentations (Def. 6.1, Lem. 6.2), with an explanation of how to move from one
presentation to the other.

As in (3.1) of §3.4, we use the following notation for discrete distributions where specific
values in the support are named: we write

x1 @ p1

x2 @ p2

etc...
(C.1)

If these are laid out horizontally, we enclose them in double set-brackets {{· · ·}} separated
by commas: thus {{H@2/3, T@1/3}} describes a coin twice as likely to give heads as tails.
If the double brackets are used without probabilities (and thus also without @’s) then the
intended distribution is uniform, so that {{H,T}} describes a fair coin; a convenient special
case of that is {{H}} for the point distribution on H, the coin that gives heads every time. 19

Let X be the set {H,T} of coin-flip results. We choose our two hypers as follows,
presenting them as at (C.1):

∆S =

[
H2/3⊕T @ 1/2

H1/3⊕T @ 1/2

]

∆I =

 H2/3⊕T @ 1/3

H1/2⊕T @ 1/3

H1/3⊕T @ 1/3 .


The first hyper ∆S represents choosing fairly between two biased coins and having the

chosen one secretly flipped: we know which coin was flipped, but we are not allowed to see
the outcome of the flip. In ∆I however we choose fairly between three coins: the two biased
coins from before, and a fair one. Again the chosen one is secretly flipped; again we are not
allowed to see the outcome.

We argue that in any reasonable measure of secrecy, it should in the second case ∆I

be harder to guess which of H,T resulted from the flip than in the first case ∆S . And it is

19In the semantic space we write [x] for that: here we are syntactic.

36:38 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

precisely that non-specific “in any reasonable measure” that uncertainty refinement ∆Sv∆I

attempts to capture. 20

In this case, and informally speaking, ∆I is more secure than ∆S because there is now
a third possible case that acts as a linear combination of the existing two. That is, some
of the separation between the inners H2/3⊕T and H1/3⊕T in the support of ∆S has been
merged together to become a single inner H1/2⊕T in the support of ∆I — and what makes
the observer more uncertain is that he doesn’t know how to pull that single inner apart
again.

Two (reduced) joint matrices JS,I that give ∆S,I resp. are

JS =

a b

H:
(

1/3 1/6
)

T : 1/6 1/3

JI =

c d e

H:
(

2/9 1/6 1/6
)

T : 1/9 1/6 2/9

where the observation spaces are YS={a, b} and YI={c, d, e} respectively. (the column
names are arbitrary.) Now the refinement matrix that establishes (according to Lem. 6.2)
that ∆Sv∆I is R:YS_YI given by

R =

c d e

a:
(

2/3 1/3 0
)

b: 0 1/3 2/3

which, read columnwise, says in its column c that to make Column c of JI you take 2/3 of
Column a of JS and none of Column b of JS . The middle column d of R is where the actual
refinement lies, that Column d of JI is made by adding 1/6 of each of Columns a, b of JS
together. This is where JI (equiv. ∆I) reveals less than JS (equiv. ∆S) does about the
distribution on X={H,T}. And, as the lemma suggests, we indeed have JS ·R = JI .

The alternative, more abstract presentation of this is in terms of Def. 6.1, i.e. where
the ∆ we are looking for, that establishes ∆Sv∆I at the hyper-level directly, can be given
as (the denotation of) a joint distribution J :DX_YI itself: we will have ∆:= [[J]] which,
because J ’s source type is DX , will have type D2(DX) = D3X as we expect from [[·]]. The
rows of J will be labelled by the support of ∆S , i.e. it will have only two rows so that we
have

J =

c d e

H2/3⊕T :
(

1/3 1/6 0
)

H1/3⊕T : 0 1/6 1/3

. (C.2)

If on the other hand we were to write ∆=[[J]] as a hyper directly (performing the various
normalisations etc.) we would have

∆ =

 [H2/3⊕T] @ 1/3

(H2/3⊕T)1/2⊕(H1/3⊕T) @ 1/3

[H1/3⊕T] @ 1/3

 ,

with each inner here corresponding to a row of (C.2).
Now avg.∆ is given by the calculation

20Furthermore, the powerful “Coriaceous” completeness property (Lem. 9.2) shows the dual result: if
some ∆S ,∆I are not in the refinement relation, that is ∆S 6v∆I , then there is guaranteed to be a uncertainty
measure wrt. to which ∆I is not more secure than ∆S .

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:39

[H2/3⊕T]×1/3

+ (H2/3⊕T)1/2⊕(H1/3⊕T)×1/3

+ [H1/3⊕T]×1/3

= H2/3⊕T)1/2⊕(H1/3⊕T)
= ∆S .

This can also be seen (indeed is easier to see) if we simply take the left-marginal of J , for
which you add the columns together: you get

c+d+e
= 1

H2/3⊕T :
(

1/2
)

H1/3⊕T : 1/2

,

which is again ∆S .
For the other direction we obtain (Davg).∆ by avg’ing each inner of ∆ while preserving

the (outer) probabilities. 21 That gives

(Davg).∆ =

 H2/3⊕T @ 1/3

H1/2⊕T @ 1/3

H1/3⊕T @ 1/3

 ,

because

avg.[H2/3⊕T] = H2/3⊕T
avg.(H2/3⊕T)1/2⊕(H1/3⊕T) = H1/2⊕T

avg.[H1/3⊕T] = H1/3⊕T
And so that the remaining question is “How do we get such a ∆ from a given R? ”

Remember that the support of ∆S is {H2/3⊕T,H1/3⊕T}. Make a distribution πS by
mapping those (inner) distributions of ∆S onto the labels in YS associated uniquely with
them in JS . (The association is unique because JS is reduced.) That gives us that πS is of
type DYS and has value a1/2⊕b.

Now form the joint-distribution matrix πS�R, i.e.

a:
(

1/2
)

b: 1/2
�

c d e(
2/3 2/3 0

)
0 1/3 2/3

=

c d e

a:
(

1/3 1/6 0
)

b: 0 1/6 1/3

which (like R itself) is of type YS_YI . (But note that R is a channel matrix, whereas πS�R
is a joint-distribution matrix.)

Now use the relabelling in the reverse direction on the rows of the joint distribution
above (as “new row-labels” at right above) to get a matrix with the same contents but now
of type DX_YI . It is

c d e

H2/3⊕T :
(

1/3 1/6 0
)

H1/3⊕T : 0 1/6 1/3

which is exactly the J we had at (C.2) above, and as above we get ∆ via ∆=[[J]].

21Recall that the inners of ∆ are themselves hypers, which is why they can be avg’d.

36:40 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

Thus in this example we have illustrated how one might move between the two equivalent
definitions of refinement. Each one has a witness: in the hyper-formulation it is the
distribution on hypers ∆; and in the matrix formulation is is a post-processing “refinement
matrix” R. The sketch proof (§D) shows how to obtain each from the other in general.

Appendix D. Monadic vs. matrix presentations of refinement [§6]

In §C we gave an example of the two equivalent presentations of refinement; here we give a
proof (sketch) that it can always be done.

Lemma 6.2: Refinement of joint-distribution matrices Let JS :X ′_YS and JI :X ′_YI
be joint-distribution matrices, both of them reduced in the sense of Def. 2.7, such that
[[JS,I]]=∆S,I resp. In this section only we use X ′ as a reminder that the input side of these
J ’s, their row-indices, is actually the output side of the HMM ’s from which they are derived,
i.e. that Jx′,y =

∑
xHx,y,x′ as in Def. 3.2.

We prove the equivalence

∆S v ∆I iff JS ·R = JI for some R

where R is a stochastic refinement matrix of type YS_YI (i.e. such that
∑
Ry,− = 1 for

each y:YS).

Proof. First we note that for any reduced joint distribution matrix J :Z_Z ′ there is a
one-one correspondence between J ’s column labels, i.e. elements of Z ′, and the support of

the hyper ∆=[[J]] that J defines: it is the function j:Z ′ 1-1←→ d∆e from Def. 2.7, injective

into DZ because J is reduced. We write (
1-1←→) to emphasise our one-one use of it below.

R makes ∆: We show first that for JS,I ,∆S,I and R as above we can construct a

suitable ∆. Let the relabelling associated with JS be jS :YS
1-1←→ d∆Se. Relabel ∆S so

that it is a distribution of support DYS , so that we can use Def. 2.7 to define ∆:= [[∆S�R]],
noting that the types of (relabelled) ∆S∈DYS and of R∈YS_YI are precisely what Def. 2.7
requires to produce a result of type D2YS . Now relabel this (back again) to make an element
of D2d∆Se, that is of D3X because d∆Se⊆DX .

We have ∆S=avg.∆ immediately, from the remark following Def. 2.8.
For (Davg).∆=∆I we first calculate

(Davg).[[∆S�R]]
= [[M ·(∆S�R)]] ,

where Mx,ρ:= ρ.x for x:X and ρ: d∆Se.
“Set D:= d∆Se in Lem. D.1 below”

Now for arbitrary x:X and yI :YI we continue

(M ·(∆S�R))x,yI
=

∑
ρ:DMx,ρ (∆S)ρRρ,yI

=
∑

ρ: d∆Se ρ.x (∆S)ρRρ,yI “Defn. M ; D=d∆Se”
=

∑
yS :YS (JS)x,yS Rρ,yI “d∆Se=YS ; ∆S=[[JS]]”

= JI , “JI=JS ·R”

whence (Davg).∆ = [[JI]] = ∆I as required.
∆ makes R: To show that from ∆ we can construct a suitable R, we do similar

calculations to the above, but in the reverse direction.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:41

Lemma D.1 (Technical lemma). Let D⊆DX be some finite set of distributions on X , and
let J :D_Y be a joint-distribution matrix between (those) distributions on X and some
observation space Y. Then Davg.[[J]] = [[M ·J]], where M :X_D is defined Mx,δ:= δ.x for
x:X and δ:D.

Proof. Let us match inners (and associated weight) of [[M ·J]] with that of Davg.[[J]]. These
are finitely supported distributions so the following sums are all finite.

Let y:Y. On the one hand, the y-inner δ of [[M ·J]] satisfies, for every x:X ,

δ.x =
(M · J)x,y∑
x(M · J)x,y

=

∑
ρMx,ρJρ,y∑

x

∑
ρMx,ρJρ,y

=

∑
ρ ρ.xJρ,y∑
ρ Jρ,y

and this inner has weight
∑

ρ Jρ,y.

On the other hand, the y-inner ∆ of [[J]] satisfies, for every ρ,

∆.ρ =
Jρ,y∑
ρ Jρ,y

.

This inner has weight
∑

ρ Jρ,y. Applying the avg, we get

avg.∆.x =
∑
ρ

ρ.x∆.ρ =

∑
ρ ρ.xJρ,y∑
ρ Jρ,y

Since Davg simply distributes through the inners of [[J]], we deduce that Davg.[[J]] has
the exact same inners as [[M · J]] with the exact same weights. That is, the two discrete
hyper-distributions are equal.

Appendix E. Properties of the refinement order (v)

E.1. Abstract HMM ’s are (v)-monotonic. [§8.1]
Super-linearity (Lem. 8.3) is equivalently (v)-monotonicity of the Kleisli-extension h† of any
h:HX ; that is, it is equivalent to the more general ∆1v∆2 ⇒ h†.∆1 v h†.∆2. Assuming (v)-
monotonicity and recalling that [·] is the point distribution, we have trivially the inequality
[π1]p+[π2] v [π1p+π2] and so

h.π1 p+h.π2

= h†.[π1] p+h†.[π2] “defn. h†”
= h†.([π1]p+[π2]) “h† linear”

v h†.[π1p+π2] “[π1]p+[π1] v [π1p+π2];
assumption that h† is monotonic”

= h.(π1p+π2) . “defn. h†”

For the other direction (sketch), in the discrete case we note that a proof of ∆1v∆2 can
be broken down into a succession of column-merges (in the matrix representation), each of
them being of the form “replace [π1]p+[π2] by [π1p+π2]”.

36:42 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

E.2. Composition of abstract HMM ’s respects the refinement order. [§8.1]
We show that sequential composition of abstract HMM ’s respects the refinement order (v)
on both sides, i.e. that for h, h1,2:HX we have both

h1 v h ⇒ h1;h2 v h;h2 (E.1)

and h2 v h ⇒ h1;h2 v h1;h . (E.2)

Although this can be argued directly in terms of abstract HMM ’s, it is easier if we use
the UM ’s defined later (§9). For (E.1) we have

h1 v h
iff wp.h1 ≤ wp.h “§E.3 just below”

implies
wp.h1 ◦ wp.h2 ≤ wp.h ◦ wp.h2

iff wp.(h1;h2) ≤ wp.(h1;h) “Cor. 9.9 in §H”

iff h1;h2 v h1;h . “§E.3”

And for (E.2) we have

h2 v h
iff wp.h2 ≤ wp.h “§E.3 just below”

implies
wp.h1 ◦ wp.h2 ≤ wp.h1 ◦ wp.h

“wp.h1 is (≤)-monotonic, Lem. 9.5(2)”

iff wp.(h1;h2) ≤ wp.(h1;h) “Cor. 9.9 in §H”

iff h1;h2 v h1;h . “§E.3”

E.3. Refinement of transformers. [§9.4]
Here we prove the correspondence between the forwards- and the backwards manifestations
of refinement (v), i.e. that we have

h1 v h2 iff wp.h1 ≤ wp.h2 ,

where on the rhs we have extended (≤) pointwise, i.e. meaning wp.h1.u.π ≤ wp.h1.u.π for
all u:UX and π:DX . We reason

h1 v h2

iff
h1.π v h2.π for all π:DX

“pointwise extension (v)”

iff
Eh1.π u ≤ Eh2.π u for all π:DX and all u:UX

“Lem. 9.2, soundness and completeness”

iff
wp.h1.u.π ≤ wp.h2.u.π for all π:DX

and for all u:UX

“defn. wp.()”

iff wp.h1 ≤ wp.h2 . “pointwise extension”

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:43

E.4. Composition respects transformer refinement. [§9.4]
For t1,2:UX we have defined t1vt2 to be simply that t1.u≤t2.u for all u:UX . Here we show
that functional composition of transformers respects that refinement order (v) on both sides,
i.e. that for t, t1,2:TX we have both t1vt⇒ t1◦t2 v t◦t2 and t2 v t⇒ t1◦t2 v t1◦t.

In fact it is trivial from the property (imposed by TX) that transformers are (≤)-
monotonic, that is Lem. 9.5(2).

E.5. Soundness and completeness: Lem. 9.2. [§9]
We mention soundness and completeness in this paper because it provides an important
justification for our definition and use of the general uncertainty measures and, in particular,
their transformers.

The soundness part of Lem. 9.2 is related to the Data-Processing Inequality, the DPI
[13] , which concerns two channels C:X_Y and R:Y_Z. (Note that the channel R here
takes the observations Y of Channel C as its input. Our HMM ’s do not take observations
as input.)

Informally stated, the cascade of C and R is the channel given by the matrix multiplica-
tion C·R, and the DPI states that the information leakage from C·R cannot be more than
the leakage from C alone: adding another child to the game “Chinese Whispers” cannot
make the eventual output less ridiculous.

We call this soundness because it states that a no-less-secure hyper wrt. our uncertainty
refinement order indeed cannot be less uncertain when tested with any uncertainty measure.
This result is proved in in [6, 8].

The completeness part of Lem. 9.2 is related to the “Coriaceous Conjecture” partially
proved in [8], which became the Coriaceous Property (CP) in [6] when its proof, for channels,
was presented in complete form based on McIver’s earlier, complete proof in [4] for hypers. 22

In [6] terms, the CP is that if there is no R such that C1·R=C2 then there is a “gain function”
(for us here, a loss function, which determines a special form of uncertainty measure in our
terms) that is witness to the non-existence of such an R. The importance of the CP for
quantitative information-flow security was explained in [8], and it was proved there to hold
for many interesting special cases of C1,2. But not for all of them.

The CP was proved to extend beyond the discrete case, to proper measure spaces, in [5].

Appendix F. Proof of Lem. 9.4 [§9.2]

This technical lemma assures the well definedness of our dual space: we have defined our
uncertainty measures UX as functions in DX→R≥ with certain properties; and we have stated
that wp.h.u is also an uncertainty measure. Thus we must show that wp.h.u ∈ DX→R≥
and that it satisfies the properties for membership of UX .

Lemma 9.4: Well-definedness of Def. 9.3 If h:HX is an abstract HMM and u:UX is
a UM, then wp.h.u is in UX .

Proof. Since h∈HX , we have h:DX→D2X satisfying Lems. 8.1,8.3. We must show for any
u:UX and δ:DX that δ 7→Eh.δ u is in UX , i.e. that it is in DX → R≥, is concave and is
continuous (Def. 9.1).

Membership of δ 7→Eh.δ u in DX → R≥ is trivial.

22Geoffrey Smith has since told us that it follows from a result of Blackwell [39].

36:44 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

For concavity: Because u∈UX we know it is itself concave; and we have that h satisfies
the properties in Def. 8.4. We now reason

wp.h.u.(π1 p+ π2)
= Eh.(π1p+π2) u “Def. 9.3”

≥

E(h.π1)p+(h.π2) u

“ Def. 8.4, hence (h.π1)p+(h.π2) v h.(π1p+π2)
u concave, hence Lem. 6.4 (non-strict) applies ”

= Eh.π1 u p+ Eh.π2 u “E is linear”

= wp.h.u.π1 p+ wp.h.u.π2 , “Def. 9.3”

as required.

For continuity: We must show that wp.h.u is continuous, given that both u, h are
themselves continuous. Because h itself is continuous, we need only show that in general the
function ∆7→E∆ u is continuous wrt. Kantorovich on the left, in ∆ for fixed continuous u.
This follows from the fact that DX is a compact metric space so that the Kantorovich metric
metrizes the weak topology on D2X . That is, E∆n u converges to E∆ u for every continuous
function u:DX→R≥ iff ∆n converges to ∆ wrt. Kantorovich metric.

Appendix G. Extension of transformers [§9.4]

The core ingredient in the proof of this theorem is the Riesz Representation Theorem for
linear functionals (linear maps from a normed vector space to R). A difficulty however
originates from the fact that the representation theorem is stated on the space of all
continuous functions CX (defined below), but our linear function t is defined only from the
subspace UX to itself.

Definition G.1 (Space of continuous functions). We define CX to be the set of all continuous
functions from DX (with the Kantorovich metric) to R (with the ordinary metric). This set
is endowed with the uniform metric ‖ · − · ‖∞, defined

‖u1−u2‖∞ := sup
δ:DX

|u1.δ − u2.δ| , (G.1)

that turns CX into a complete metric space.

Yet UX is a sub-metric space of CX under the uniform metric ‖·−·‖∞. More importantly,
we prove that the vector space generated by UX is dense in CX . (See Lem. G.2 and Fig. 7.)
This is essential to ensure that if t extends to a continuous linear function over CX , then
such an extension is necessarily unique. We will show in Thm. G.4 that such an extension
always exists.

Lemma G.2 (Concave density). The vector space generated by UX is dense in CX wrt.
‖ · − · ‖∞.

Proof. This result essentially follows from [40, Pro. 2.2]. We give the proof here for com-
pleteness.

Let 〈UX〉 be the set of functions that can be written as the difference of two positive
concave functions from DX to R. Then 〈UX〉 coincides with the real vector space generated

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:45

Every continuous piecewise-linear function can be expressed as the sum of finitely many
convex and concave functions using the construction shown in this figure. This provides a
geometrical view of the Concave Density Lem. G.2. By summing up concave and convex
functions, we get non concave (resp. convex) functions. In fact, the density theorem shows
that any arbitrarily shaped function can be approximated using finite sums and products
of scaled concave functions.

Figure 7. The sum of convex (red, upper) and concave (blue, lower) func-
tions gives a zig-zag (black, middle).

by UX (by grouping positively and negatively weighted components). Equivalently, every
function in 〈UX〉 is the difference of two positive continuous convex functions: if f = u1−u2

for u1,2:UX , then
f = (−u2 − c)− (−u1 − c)

where c = min(infδ:DX −u1.δ, infδ:DX −u2.δ). The constant c is finite because DX is compact.
The functions −u1,2 − c are positive, continuous and convex functions.

Now let us apply the Stone-Weierstrass Density Theorem [25, Thm. 5] on 〈UX〉 which
is a subset of CX .

To do that we need first to show that 〈UX〉 is an algebra (i.e. has a zero and unit,
is closed under scalar multiplication and addition and pointwise multiplication of f ’s).
In addition 〈UX〉 must “vanish nowhere” on DX and “separate points”. (See below for
explanations of those properties.)

〈UX〉 is an algebra: Since 〈UX〉 is a vector space, the constant functions 0,1 (identically

0 and 1 resp.) and the functions cf, f + g are in 〈UX〉 for every c:R and f, g: 〈UX〉.
Let f, g: 〈UX〉 be such that f = u1−u2 and g = v1−v2 where u1,2, v1,2 are positive

continuous convex functions. Notice that

f2 = 2(u2
1 + u2

2)− (u1 + u2)2

where u2
1,2 and (u1+u2)2 are positive convex functions (because the square of a non-negative

convex function is convex). That is, we have f2 ∈ 〈UX〉. Now

fg = (f + g)2 − (f2 + g2)

and thus fg∈〈UX〉, because we have just shown that all of (f + g)2, f2, g2 are in 〈UX〉.
〈UX〉 vanishes nowhere: We must show that for each δ:DX there is some f : 〈UX〉 such

that fδ 6= 0. But this is immediate since 1.δ 6= 0 for every δ:DX and 1∈〈UX〉.

36:46 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

〈UX〉 separates points: We must show that for every pair δ 6= δ′ there is some f ∈ 〈UX〉
such that f.δ 6= f.δ′. We argue as follows.

Given δ:DX (fixed) and define f δ.δ′:= dK(δ′, δ) for δ′:DX . Observe that for δ′ 6= δ we
have that 0 = f δ.δ < dK(δ′, δ) = f δ.δ′. Thus it suffices to show that f δ∈〈UX〉, and we
continue as follows.

For every δ1,2:DX , we have

f δ.(δ1p+δ2)
= dK((δ1p+δ2), δ) “dK is Kantorovich distance; Definition of fδ”

≤ dK(δ1, δ)p+dK(δ2, δ) “dK(δ′, δ) is convex, for fixed δ”

= f δ.δ1p+f
δ.δ2 “Definition of fδ”

That is 1− f δ ∈ UX and thus 〈UX〉 separates points.
By the Stone-Weierstrass Theorem [25, Thm. 5], we have 〈UX〉 is dense in CX .

The extension of a transformer t:UX→UX to a continuous linear function from CX to
itself is done in two stages. Firstly, t is extended linearly to a continuous linear function
t′: 〈UX〉→CX . This step is justified in Thm. G.4. Secondly, t′ is extended continuously to a
continuous linear function t̃:CX→CX . This step uses the density proven in Lem. G.2 and
is shown in Lem. G.3 below.

Lemma G.3 (Extension from 〈UX〉 to CX). Every continuous linear function t from 〈UX〉
to CX extends uniquely to a continuous linear function t̃ from CX to itself.

Proof. This result follows from the Continuous Linear Extension Theorem [41, Ch. 4
Thm. 10.1].

All we need to show is that the (Cauchy) completion of 〈UX〉 is CX , which follows from
the fact that 〈UX〉 is dense in CX (Lem. G.2) and that CX is a complete normed vector
space when endowed with the uniform norm ‖f‖∞:= ‖f−0‖∞.

Theorem G.4 (Extension from UX to CX). Every transformer extends uniquely to a
positive continuous linear function from CX to itself.

Proof. Let t:TX be a transformer. It suffices to prove that t has a positive continuous
extension t′ on the sub-vector space 〈UX〉. If such a t′ exists then a unique extension
t̃:CX→CX , which is positive 23 and continuous, can be deduced using Lem. G.3.

Let f : 〈UX〉, there exists u1,2 ∈ UX such that f=u1−u2. We define t′.f=t.u1 − t.u2.
t′ is well-defined: We must show that t′.f is independent of how f is written as the

difference of two uncertainty measures. Firstly, notice that if u1−u2 ∈ UX for some
u1,2 ∈ UX then t.(u1−u2) = t.u1 − t.u2. Secondly, let f = u1 − u2 = v1 − v2. Then
(u1 + v2)− (u2 + v1) = 0, which is in UX . Therefore, we have t.(u1 + v2)− t.(u2 + v1) = 0,
and that implies t.u1 − t.u2 = t.v1 − t.v2 by linearity of t.

t′ is linear and unique: Linearity is clear and it implies uniqueness of the extension t′

over 〈UX〉.
t′ is 1-Lipschitz: Let f, g: 〈UX〉 be such that we have f = u1−u2 and g = v1−v2.

Then

23For the positiveness of the continuous extension, if f is a positive continuous function that is the uniform
limit of a sequence of fn’s in 〈UX〉, then the sequence of positive continuous functions max(0, fn)∈〈UX〉 also
converges to f wrt. the uniform metric. The reason is |f.δ −max(0, fn.δ)| ≤ |f.δ − fn.δ|, for every δ:DX
and positive f . Thus t.f has to be positive.

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:47

‖t′.f−t′.g‖∞
= ‖(t.u1 − t.u2)−(t.v1 − t.v2)‖∞ “Definition of t′”
= ‖t.(u1 + v2)−t.(v1 + u2)‖∞ “t is linear, ui + vj∈UX”

≤ ‖(u1 + v2)−(v1 + u2)‖∞ “t is 1-Lipschitz”

= ‖f−g‖∞ . “Definition of f, g”

Therefore, t′ is also continuous.
t′ is positive: (i.e. it maps non-negative functions to non-negative functions). This

follows from monotonicity of t.
By Lem. G.3, the extension t′ further extends into a continuous positive linear function

t̃:CX→CX with t̃.u = t.u for every u:UX .

Appendix H. Proof of Cor. 9.9 [§9.4]

This proof is made easier by operating in a slightly more general space than HX , i.e. the
measurable subset of DX→D2X , not taking advantage of the stronger conditions that
characterise HX within it. In this section only we write wp. for the function defined as at
Def. 9.3 but over the larger space.

Lemma H.1 (Transformer composition). For any (measurable) h1,2:DX→D2X we have
that wp.(h1;h2) = wp.h1◦wp.h2.

Proof. wp.(h1;h2).u.π
= E(h1;h2).π u “Def. 9.3 extended to wp.()”

= Eavg.(Dh2.(h1.π)) u “h1;h2 is Kleisli composition”

= EDh2.(h1.π) (λ∆ · E∆ u) “Eavg.∆ u = E∆ (λ∆ · E∆ u) from (†) below
λ is lambda-abstraction”

= Eh1.π ((λ∆ · E∆ u) ◦ h2) “EDh2.∆ F = E∆ (F◦h2) from (‡) below”

= Eh1.π (λπ′ · ((λ∆ · E∆ u) ◦ h2).π′) “make π′ explicit”

= Eh1.π (λπ′ · Eh2.π′ u) “∆:=h2.π
′”

= wp.h1.(λπ
′ · Eh2.π′ u).π “Def. 9.3”

= wp.h1.(wp.h2.u).π . “Def. 9.3”

The identities (†) and (‡) were proven by Giry ([2, Sec. 3 p.70]). In (‡), F maps every
hyper ∆ to E∆ u.

Remarkably, it is quite easy to show that wp.() is an injection over all of DX→D2X .

Lemma H.2 (wp.() is an injection on DX→D2X). If wp.h1=wp.h2 for some (measurable)
h1,2:DX→D2X , then h1=h2.

Proof. We reason

h1 6= h2

⇒ h1.π 6= h2.π “for some π:DX”

⇒ h1.π 6v h2.π “wlog ; (v)-antisymmetry from §6”

⇒ Eh2.π u < Eh1.π u “Lem. 9.2 completeness (Coriaceous),for some u:UX”

⇔ wp.h2.u.π < wp.h1.u.π “Def. 9.3”

⇒ wp.h1 6= wp.h2 .

36:48 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

Our next step is to use Thm. 9.8 to show that indeed h1;h2∈HX , so that wp. can be
replaced by wp.() in Lem. H.1 just above. We have

Lemma H.3 (HX closed under composition). For h1,2:HX we have h1;h2∈HX .

Proof. If h1,2:HX then wp.h1,2∈TX from Lems. 9.5,9.6; and since those properties are closed
under composition, we have that wp.h1◦wp.h2∈TX as well.

From Thm. 9.8 there is then a unique h:HX such that wp.h = wp.h1◦wp.h2; but
examination of Lem. H.2 shows membership of HX is not necessary for that uniqueness: it
applies to the whole of (measurable) DX→D2X . That is, there no other measurable h in all
of DX→D2X such that wp.h = t.

From Lem. H.1 we know that wp.(h1;h2) = t, and so we must have h1;h2 = h ∈ HX .

Thus we can conclude
Corollary 9.9: Transformer composition For any h1,2:HX we have that also h1;h2∈HX ,

and furthermore wp.(h1;h2) = wp.h1◦wp.h2.

Proof. Lemmas H.1,H.3 just above.

Appendix I. Calculation of wp.[[P]] [§11.2]

In §11.2 a sample analysis was done on a very small program to show how, if the post-
uncertainty is fixed, a pre-uncertainty can be calculated once and for all; and that then that
pre-uncertainty can be used to investigate the security implications of a number of different
priors, without having to re-analyse the program for each one.

Here we give the calculations for wp.(·) in §11.2. We note below however that ideally
the pre-uncertainty would be calculated by source-level reasoning; but that is not what we
do here. (See also our “more concrete aim” in §14 concerning source-level reasoning.)

Let P be the program set out in Fig. 4 (and also Fig. 5 from §4.4). As usual for weakest
preconditions, we work from post- to pre-. Let u be the UM from §11.1, reflecting the
circumstances of an attacker whose principal concern is whether the two bits of xs are the
same.

Beginning with the second statement, since with transformers we work from the back
towards the front, we expect informally that wp.[[xs:= xs1/2⊕-xs]].u is just u again — since
the assignment does not affect xs[0]=xs[1], whichever branch is taken. Calculation confirms
that: for arbitrary π we have

wp.[[xs:= xs1/2⊕-xs]].u.π

= E [((π00+π11)/2, (π01+π10)/2,
(π10+π01)/2, (π11+π00)/2)]

u “semantics of xs:= xs1/2⊕-xs”

= u. ((π00+π11)/2, (π01+π10)/2,
(π10+π01)/2, (π11+π00)/2)

“expectation over point hyper”

= (π00+π11)/2 + (π11+π00)/2
min (π01+π10)/2 + (π10+π01)/2

“definition u from §11.2”

Vol. 15:1 ABSTRACT HIDDEN MARKOV MODELS 36:49

= (π00+π11) min (π01+π10)
= u , “definition u again”

as we expected.
Continuing towards the front of the program we now calculate again for arbitrary π,

but from just above able to use the same u that we started with, that

wp.[[leak xs[0] 1/2⊕ xs[1]]].u.π

= E (π00/s0, π01/2s0, π10/2s0, 0)

s0⊕ (0, π01/2s1, π10/2s1, π11/s1)

u “ semantics of print xs[0] 1/2⊕ xs[1]
define s0:=π00+(π01+π10)/2

s1:= (π01+π10)/2 + π11 ”

= u.(π00/s0, π01/2s0, π10/2s0, 0)

s0⊕ u.(0, π01/2s1, π10/2s1, π11/s1)
“E linear, applied to two-point hyper (Def. 2.5)”

= π00 min(π01+π10)/2 + (π01+π10)/2 minπ11 , “definition u
from previous calculation”

as claimed in §11.2.
We stress that calculating wp.() this way for any but the smallest programs is not

practical at all. For a practical calculus, instead the formulation of uncertainties as loss
functions would be used to write them as expressions at the source level, i.e. over program
variables, and then using formal manipulations in a quantitative program logic (extending
e.g. [21, 22]).

The issue of source-level reasoning is discussed further in the conclusion §14.

Appendix J. Using loss functions to characterise pure channels

With uncertainty transformers, we can be more precise about the properties satisfied by
pure-(abstract) channel HMM ’s specifically. As with markovs the mechanism by which
information is released is independent of the (probability) values associated with the prior;
in fact it only depends on the underlying state value, that is X . This property can be
described neatly in terms of a “multiplicative property” on transformers which, in addition,
provides a characterisation of transformers which correspond to channels. We begin with a
motivating example.

Take X={0, 1}. It’s easy to construct an h:HX with the property that for all π:DX we
have avg.(h.π) = π, which is to say that its markov is the identity, but it is still not a pure
channel: we simply “cheat” by using a different channel for each prior. Take for example
the π-indexed channels given by the matrix

Cπ :=

(
π0 π1

0 1

)
.

The function defined f.π:= [[π�Cπ]] does not satisfy f=[[C:]] for any single fixed C,
and this example provides the insight for characterising pure channels: they have a simple
multiplicative property, which we express using loss functions as follows.

36:50 A. McIver, C. Morgan, and T. Rabehaja Vol. 15:1

Definition J.1 (Multiplicativity of transformers). For loss-function l: I→X→R≥ and π:DX
define a π-skewed loss function (l�π).i.x:= l.i.x×π.x. We then say that transformer t:TX is
multiplicative if for any π1,2:DX and loss function l we have t.(Ul�π1).π2 = t.(Ul�π2).π1. 24

Lemma J.2 (Channels are multiplicative). Let C:X_Y be a channel matrix. Then wp.[[C:]]
is multiplicative.

Proof. This follows because the identity transformer is multiplicative, i.e. (Ul�π1).π2 =
(Ul�π2).π1, and that wp.() applied to a pure channel maps any given loss function to a sum
of loss functions “scaled” by the columns.

The following fact shows that this multiplicative property in fact characterises channels.

Lemma J.3. Let f :DX→D2X be such that f.π has finite support for every π:DX ; assume
it satisfies the pure-channel property from §B.2; and assume that wp.f is multiplicative
as just above. Then there is some set of observations Y and channel C:X_Y such that
f = [[C:]].

Proof. Let N be the size of X and let υ be the uniform distribution on X . 25 Define ∆:= f.υ
and let Y be the support of ∆, a finite set of distributions that will be used as column
indices. Then define C:X_Y by

Cx,y := N ×∆.y.x ,

so that f.υ = ∆ = [[C:]].υ. We now show that in fact f.π = [[C:]].π for all π:DX .
We have for any loss function l that

Ef.π Ul
= wp.f.Ul.π
= wp.f.Ul′�υ.π “define l′:=N×l”
= wp.f.Ul′�π.υ “assumption wp.f multiplicative”

= Ef.υ (Ul′�π)
= E[[C:]].υ (Ul′�π) “defn. C”

= E[[C:]].π Ul , “reverse steps above;
wp.[[C:]] multiplicative”

so f.π=[[C∆:]].π since hypers are determined by loss functions [4, 6], thus f=[[C∆:]] because
π was arbitrary.

24This notation is by analogy with π�C that “multiplies π in” from the X side of a matrix; in C�π the
π is multiplied in from the other side.

25It is upsilon for “uniform”.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. Setting and overview
	1.2. Principal contributions and aims: summary
	1.3. General notations — see also §??

	2. Abstract channels and hyper-distributions
	2.1. Channels and distributions as matrices and vectors
	2.2. Informal channel semantics: abstract channels
	2.3. Hypers abstract from joint distributions
	2.4. The semantic function from joints to hypers
	2.5. Abstract channels — review

	3. Classical- vs. abstract HMM's
	3.1. Classical HMM's, and single HMM-steps as matrices
	3.2. Abstract HMM's represent classical HMM's
	3.3. Special cases of HMM-steps: pure markovs
	3.4. Special cases of HMM-steps: pure channels

	4. Beyond steps: HMM programming and sequential composition
	4.1. Classical HMM composition: matrices
	4.2. Abstract HMM's: Kleisli composition
	4.3. Proof that composition is faithfully denoted
	4.4. Channel/markov together: two examples of composition

	5. Overview of Haskell-monadic prototype
	6. The structure of hyper-space
	7. Monads: Giry, Kleisli and Kantorovich
	8. Characteristics of HX, the abstract HMM's
	8.1. Continuity and super-linearity

	9. A dual view: uncertainty measures, and their transformers
	9.1. Uncertainty measures, and their relation to refinement
	9.2. Abstract HMM's to UM-transformers
	9.3. Characteristic properties of wp.h
	9.4. UM-transformers back to abstract HMM's

	10. Gain- and loss functions define uncertainty measures
	10.1. Gain- and loss functions

	11. A UM-transformer example for §??
	11.1. Profiling an attacker with a loss function
	11.2. Using UM's and transformers to plan an attack

	12. HMM's and the Dalenius Desideratum
	13. Related work
	14. Conclusions and prospects
	References
	Appendix A. Summary of notations
	Appendix B. Characterisation of pure channels and pure markovs [§??]
	B.1. Pure abstract markovs
	B.2. Pure abstract channels

	Appendix C. Equivalent presentations of refinement: Lem. ?? [§??]
	Appendix D. Monadic vs. matrix presentations of refinement [§??]
	Appendix E. Properties of the refinement order ()
	E.1. Abstract HMM's are ()-monotonic
	E.2. Composition of abstract HMM's respects the refinement order
	E.3. Refinement of transformers
	E.4. Composition respects transformer refinement
	E.5. Soundness and completeness: Lem. ??

	Appendix F. Proof of Lem. ?? [§??]
	Appendix G. Extension of transformers [§??]
	Appendix H. Proof of Cor. ?? [§??]
	Appendix I. Calculation of wp.[[P]] [§??]
	Appendix J. Using loss functions to characterise pure channels

