VALIDITY AND ENTAILMENT IN MODAL AND PROPOSITIONAL DEPENDENCE LOGICS

MIIKA HANNULA

Department of Computer Science, University of Auckland, New Zealand
Department of Mathematics and Statistics, University of Helsinki, Finland
e-mail address: miika.hannula@helsinki.fi

ABSTRACT. The computational properties of modal and propositional dependence logics have been extensively studied over the past few years, starting from a result by Sevenster showing \textsc{NEXPTIME}-completeness of the satisfiability problem for modal dependence logic. Thus far, however, the validity and entailment properties of these logics have remained mostly unaddressed. This paper provides a comprehensive classification of the complexity of validity and entailment in various modal and propositional dependence logics. The logics examined are obtained by extending the standard modal and propositional logics with notions of dependence, independence, and inclusion in the team semantics context. In particular, we address the question of the complexity of validity in modal dependence logic. By showing that it is \textsc{NEXPTIME}-complete we refute an earlier conjecture proposing a higher complexity for the problem.

1. INTRODUCTION

The notions of dependence and independence are pervasive in various fields of science. Usually these concepts manifest themselves in the presence of multitudes (e.g. events or experiments). Dependence logic \cite{Gottlob2008} is a recent logical formalism which, in contrast to others, has exactly these multitudes as its underlying concept. In this article we study dependence logic in the propositional and modal logic context and present a complete classification of the computational complexity of their associated entailment and validity problems.

In first-order logic, the standard formal language behind all mathematics and computer science, dependencies between variables arise strictly from the order of their quantification. Consequently, more subtle forms of dependencies cannot be captured, a phenomenon exemplified by the fact that first-order logic lacks expressions for statements of the form

”for all x there is y, and for all u there is v, such that $R(x, y, u, v)$”

where y and v are to be chosen independently from one another. To overcome this barrier, branching quantifiers of Henkin \cite{Henkin1961} and independence-friendly logic of Hintikka and Sandu

\textit{Key words and phrases:} dependence logic, inclusion logic, independenc logic, modal logic, propositional logic, complexity, validity, entailment.

This work was supported by the Marsden Fund grant UOA1628 and the Academy of Finland grant 308712.
suggested the use of quantifier manipulation. Dependence logic instead extends first-order logic at the atomic level with the introduction of new dependence atoms

\[\text{dep}(x_1, \ldots, x_n) \]

which indicate that the value of \(x_n \) depends only on the values of \(x_1, \ldots, x_{n-1} \). Dependence atoms are evaluated over teams, i.e., sets of assignments which form the basis of team semantics. The concept of team semantics was originally proposed by Hodges in refutation of the view of Hintikka that the logics of imperfect information, such as his independence-friendly logic, escape natural compositional semantics [17]. By the development of dependence logic it soon became evident that team semantics serves also as a connecting link between the aforementioned logics and the relational database theory. In particular, team semantics enables the extensions of even weaker logics, such as modal and propositional logics, with various sophisticated dependency notions known from the database literature [5, 7, 18, 19].

In this article we consider modal and propositional dependence logics that extend modal and propositional logics with dependence atoms similar to (1.1), the only exception being that dependence atoms here declare dependencies between propositions. We establish a complete classification of the computational complexity of the associated entailment and validity problems, including a solution to an open problem regarding the complexity of validity in modal dependence logic.

Modal dependence logic was introduced by Väänänen in 2008 [29], and soon after it was shown to enjoy a \textsc{NEXPTIME}-complete satisfiability problem [27]. Since then the expressivity, complexity, and axiomatizability properties of modal dependence logic and its variants have been exhaustively studied. Especially the complexity of satisfiability and model checking for modal dependence logic and its variants has been already comprehensively classified [3, 4, 9, 10, 12, 14, 18, 19, 22, 24]. It is worth noting here that satisfiability and validity are not dual to each other in the dependence logic context. Dependence logic cannot express classical negation nor logical implication which renders its associated validity, satisfiability, and entailment problems genuinely different. Entailment and validity of modal and propositional dependence logics have been axiomatically characterized by Yang and Väänänen in [32, 31, 33] and also by Sano and Virtema in [26]. Nevertheless, the related complexity issues have remained almost totally unaddressed. The aim of this article is to address this shortage in research by presenting a comprehensive classification with regards to these questions.

A starting point for our endeavour is a recent result by Virtema which showed that the validity problem for propositional dependence logic is \textsc{NEXPTIME}-complete [30]. In that paper the complexity of validity for modal dependence logic remained unsettled, although it was conjectured to be harder than that for propositional dependence logic. This conjecture is refuted in this paper as the same exact \textsc{NEXPTIME} bound is shown to apply to modal dependence logic as well. Furthermore, we show that this result applies to the extension of propositional dependence logic with quantifiers as well as to the so-called extended modal logic which can express dependencies between arbitrary modal formulae (instead of simple propositions). These complexity bounds follow as corollaries from a more general result showing that the entailment problem for (extended) modal dependence and propositional dependence logics is complete for \textsc{co-NEXPTIME} \textsc{NP}. We also consider modal logic extended with so-called intuitionistic disjunction and show that the associated entailment, validity, and satisfiability problems are all \textsc{PSPACE}-complete, which is, in all the three categories the complexity of the standard modal logic.
The aforementioned results have interesting consequences. First, combining results from this paper and [27, 30] we observe that similarly to the standard modal logic case the complexity of validity and satisfiability coincide for (extended) modal dependence logic. Secondly, it was previously known that propositional and modal dependence logics deviate on the complexity of their satisfiability problem (\textit{NP}-complete vs. \textit{NEXPTIME}-complete [22, 27], resp.) and that the standard propositional and modal logics differ from one another on both satisfiability and validity (\textit{NP}-complete/\textit{co-NP}-complete vs. \textit{PSPACE}-complete, resp. [2, 20, 21]). Based on this it is somewhat surprising to find out that modal and propositional dependence logics correspond to one another in terms of the complexity of both their validity and entailment problems.

We also establish exact complexity bounds for entailment and validity of quantified propositional independence and inclusion logics. These logics are extensions of propositional logic with quantifiers and either independence or inclusion atoms [8]. We obtain our results by investigating recent generalizations of the quantified Boolean formula problem. The validity and entailment problems for quantified propositional independence logic are both shown to be \textit{co-NEXPTIME}\textit{NP}-complete. For quantified propositional inclusion logic entailment is shown to be \textit{co-NEXPTIME}-complete whereas validity is only \textit{EXPTIME}-complete. Using standard reduction methods the examined quantified propositional logics can be interpreted as fragments of modal independence and inclusion logics. Our findings then imply that validity is harder for modal independence logic than it is for modal dependence logic (unless the exponential-time hierarchy collapses at a low level), although in terms of satisfiability both logics are \textit{NEXPTIME}-complete [18]. We refer the reader to Table 1 for a summary of our results.

\textbf{Organization.} This article is organized as follows. In Section 2 we give a short introduction to modal dependence logics, followed by Section 3 which proves \textit{co-NEXPTIME}\textit{NP}-membership for modal dependence logic entailment. In Section 4 we define (quantified) propositional dependence logics, and in Section 5 we show \textit{co-NEXPTIME}\textit{NP}-hardness for entailment in this logic. In Section 6 these findings are drawn together to establish exact complexity bounds. In Sections 7 and 8 we shift focus to validity and entailment of modal and quantified propositional logics defined in terms of independence and inclusion atoms, respectively. Finally, Section 9 is reserved for conclusions. Throughout the paper we assume that the reader is familiar with the basic concepts of propositional and modal logic, as well as those of computational complexity. All the hardness results in the paper are stated under polynomial-time reductions.

\section{Modal Dependence Logics}

In this section we introduce extensions of modal logic with dependencies and present some of their basic properties. Following the common convention in team semantics we restrict attention to formulae in negation normal form (NNF). Note that the concept of negation referred to here is not classical. In the team semantics context “\textit{¬}” is used to express that something is not true for all individual members of a team. Later in this section we also present an auxiliary relational variant of modal logic for pointed Kripke models to facilitate the upper bound proof of the next section. For this variant we employ negation classically and do not restrict its scope in formulae.

The syntax of \textit{modal logic} (ML) is generated by the following grammar:

$$\phi ::= p \mid \neg p \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \Box \phi \mid \Diamond \phi. \quad (2.1)$$
Extensions of modal logic with different dependency notions are made possible via a generalization of the standard Kripke semantics by teams. A Kripke model over a set of variables V is a tuple $M = (W, R, \pi)$ where W is a non-empty set of worlds, R is a binary relation over W, and $\pi : V \to \mathcal{P}(W)$ is a function that associates each variable with a set of worlds. A team T of a Kripke model $M = (W, R, \pi)$ is a subset of W. For the team semantics of modal operators we define the set of successors of a team T as $R[T] := \{w \in W \mid \exists w' \in T : (w', w) \in R\}$ and the set of successor teams of a team T as $R(T) := \{T' \subseteq R[T] \mid \forall w \in T \exists w' \in T' : (w, w') \in R\}$. The team semantics of modal logic is now defined as follows.

Definition 2.1 (Team Semantics of ML). Let ϕ be an ML formula, let $M = (W, R, \pi)$ be a Kripke model over $V \supseteq \text{Var}(\phi)$, and let $T \subseteq W$. The satisfaction relation $\mathcal{M}, T \models \phi$ is defined as follows:

- $\mathcal{M}, T \models p \iff T \subseteq \pi(p),$
- $\mathcal{M}, T \models \neg p \iff T \cap \pi(p) = \emptyset,$
- $\mathcal{M}, T \models \phi_1 \land \phi_2 \iff \mathcal{M}, T \models \phi_1$ and $\mathcal{M}, T \models \phi_2,$
- $\mathcal{M}, T \models \phi_1 \lor \phi_2 \iff \exists T_1, T_2 : T_1 \cup T_2 = T, \mathcal{M}, T_1 \models \phi_1$, and $\mathcal{M}, T_2 \models \phi_2,$
- $\mathcal{M}, T \models \Box \phi \iff \exists T' \in R(T) : \mathcal{M}, T' \models \phi,$
- $\mathcal{M}, T \models \Diamond \phi \iff \mathcal{M}, R[T] \models \phi.$

We write $\phi \equiv \psi$ to denote that ϕ and ψ are equivalent, i.e., for all Kripke models \mathcal{M} and teams T, $\mathcal{M}, T \models \phi$ iff $\mathcal{M}, T \models \psi$. Let $\Sigma \cup \{\phi\}$ be a set of formulae. We write $\mathcal{M}, T \models \Sigma$ iff $\mathcal{M}, T \models \phi$ for all $\phi \in \Sigma$, and say that Σ entails ϕ if for all \mathcal{M} and T, $\mathcal{M}, T \models \Sigma$ implies $\mathcal{M}, T \models \phi$. Let \mathcal{L} be a logic in the team semantics setting. The entailment problem for \mathcal{L} is to decide whether Σ entails ϕ (written $\Sigma \models \phi$) for a given finite set of formulae $\Sigma \cup \{\phi\}$ from \mathcal{L}. The validity problem for \mathcal{L} is to decide whether a given formula $\phi \in \mathcal{L}$ is satisfied by all Kripke models and teams. The satisfaction problem for \mathcal{L} is to decide whether a given formula $\phi \in \mathcal{L}$ is satisfied by some Kripke model and a non-empty team.

The following flatness property holds for all modal logic formulae. Notice that by \models_{ML} we refer to the usual satisfaction relation of modal logic.

Proposition 2.2 (Flatness [27]). Let ϕ be a formula in ML, let $M = (W, R, \pi)$ be a Kripke model over $V \supseteq \text{Var}(\phi)$, and let $T \subseteq W$ be a team. Then:

$$\mathcal{M}, T \models \phi \iff \forall w \in T : \mathcal{M}, w \models_{\text{ML}} \phi.$$

Team semantics gives rise to different extensions of modal logic capable of expressing various dependency notions. In this article we consider dependence atoms that express functional dependence between propositions. To facilitate their associated semantic definitions, we first define for each world w of a Kripke model \mathcal{M} a truth function $w_{\mathcal{M}}$ from ML formulae into $\{0, 1\}$ as follows:

$$w_{\mathcal{M}}(\phi) = \begin{cases} 1 & \text{if } \mathcal{M}, \{w\} \models \phi, \\ 0 & \text{otherwise}. \end{cases}$$

1) **Dependence.** Modal dependence logic (MDL) is obtained by extending ML with dependence atoms

$$\text{dep}(\overline{p}, q)$$

(2.2)

1The empty team satisfies all formulae trivially.
where \overline{p} is a sequence of propositional variables and q is a single propositional variable. Furthermore, we consider extended dependence atoms of the form

$$\text{dep}(\overline{\phi}, \psi)$$

where $\overline{\phi}$ is a sequence of ML formulae and ψ is a single ML formula. The extension of ML with formulae of the form (2.3) is called extended modal dependence logic (EMDL). Formulae of the form (2.2) and (2.3) indicate that the (truth) value of the formula on the right-hand side is functionally determined by the (truth) values of the formulae listed on the left-hand side. The satisfaction relation for both (2.2) and (2.3) is defined accordingly as follows:

$$\mathcal{M}, T \models \text{dep}(\overline{\phi}, \psi) \iff \forall w, w' \in T: w_M(\overline{\phi}) = w'_M(\overline{\phi}) \text{ implies } w_M(\psi) = w'_M(\psi).$$

Here and below we use $w_M(\theta)$ as a shorthand for $(w_M(\theta_1), \ldots, w_M(\theta_n))$ if θ is a sequence of formulae $(\theta_1, \ldots, \theta_n)$.

We also examine so-called intuitionistic disjunction \otimes defined as follows:

$$\mathcal{M}, T \models \phi_1 \otimes \phi_2 \iff \mathcal{M}, T \models \phi_1 \text{ or } \mathcal{M}, T \models \phi_2. \quad (2.4)$$

We denote the extension of ML with intuitionistic disjunction \otimes by ML(\otimes). Notice that the logics MDL and EMDL are expressively equivalent to ML(\otimes) but exponentially more succinct as the translation of (2.2) to ML(\otimes) involves a necessarily exponential blow-up [13]. These logics satisfy the following downward closure property which will be used in the upper bound result.

Proposition 2.3 (Downward Closure [3, 29, 31]). Let ϕ be a formula in MDL, EMDL, or ML(\otimes), let $\mathcal{M} = (W, R, \pi)$ be a Kripke model over $V \supseteq \text{Var}(\phi)$, and let $T \subseteq W$ be a team. Then:

$$T' \subseteq T \text{ and } \mathcal{M}, T \models \phi \implies \mathcal{M}, T' \models \phi.$$

2) Independence. Modal independence logic (MLInd) extends ML with independence atoms

$$\overline{q} \perp_{\overline{p}} \overline{r}$$

where $\overline{p}, \overline{q}, \overline{r}$ are sequences of propositional variables. Intuitively, (2.5) expresses that the values of \overline{q} and \overline{r} are independent of one another, given any value of \overline{r}. The associated satisfaction relation is defined as follows:

$$\mathcal{M}, T \models \overline{q} \perp_{\overline{p}} \overline{r} \iff \forall w, w' \in T: w_M(\overline{p}) = w'_M(\overline{p}) \text{ implies } \exists w'' \in T: w_M(\overline{q}) = w''_M(\overline{q}) \text{ and } w'_M(\overline{r}) = w''_M(\overline{r}).$$

The definition expresses that, fixing any values for \overline{p}, the values for \overline{q} and \overline{r} form a cartesian product defined in terms of the values for \overline{q} and \overline{r}. Furthermore, notice that MLInd subsumes MDL since (2.2) can be expressed by $q \perp_{\overline{r}} q$.

3) Inclusion. Modal inclusion logic (MLInc) extends ML with inclusion atoms

$$\overline{p} \subseteq \overline{q}$$

where \overline{p} and \overline{q} are sequences of propositional variables of the same length. This atom indicates that the values of \overline{q} subsume all the values of \overline{p}. The satisfaction relation for (2.6) is defined as follows:

$$\mathcal{M}, T \models p \subseteq \overline{q} \iff \forall w \in T \exists w': w_M(\overline{p}) = w'_M(\overline{q}).$$
For the sake of our proof arguments, we also extend modal logic with predicates. The syntax of relational modal logic (RML) is given by the grammar:

\[\phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid \Box \phi \mid S(\phi_1, \ldots, \phi_n). \]

The formulae of RML are evaluated over a world \(w \in W \) in a relational Kripke model \(\mathcal{M} = (W, R, \pi, S^M_1, \ldots, S^M_n) \) where each \(S^M_i \) is a set of binary sequences of length \(\#S_i \), that is, the arity of the relation symbol \(S_i \). We denote by \(\mathcal{M}, w \models_{RML} \phi \) the satisfaction relation obtained by extending the standard Kripke semantics of modal logic as follows:

\[\mathcal{M}, w \models_{RML} S(\phi_1, \ldots, \phi_n) :\iff (w_{\mathcal{M}}(\phi_1), \ldots, w_{\mathcal{M}}(\phi_n)) \in S^M_n. \]

In particular, this means that negation is treated classically:

\[\mathcal{M}, w \models_{RML} \neg \phi :\iff \mathcal{M}, w \not\models_{RML} \phi. \]

We also employ the usual shorthands \(\phi \lor \psi := (\neg \phi \land \neg \psi) \) and \(\Box \phi := \neg \Box \neg \phi \) in RML.

We can now proceed to the upper bound result which states that the entailment problem for EMDL is in \textbf{co-NEXPTIME}^{NP}.

3. Upper Bound for EMDL Entailment

In this section we show that EMDL entailment is in \textbf{co-NEXPTIME}^{NP}. The idea is to represent dependence atoms using witnessing functions guessed universally on the left-hand side and existentially on the right-hand side of an entailment problem \(\{ \phi_1, \ldots, \phi_{n-1} \} \models \phi_n \). This reduces the problem to validity of an RML formula of the form \(-\phi^*_1 \lor \ldots \lor -\phi^*_{n-1} \lor \phi^*_n \) where \(\phi^*_i \) is obtained by replacing in \(\phi_i \) all dependence atoms with relational atoms whose interpretations are bound the guessed Boolean functions. We then extend an Algorithm by Ladner that shows a \textbf{PSPACE} upper bound for the validity problem of modal logic [20]. As a novel algorithmic feature we introduce recursive steps for relational atoms that query to the guessed functions. The \textbf{co-NEXPTIME}^{NP} upper bound then follows by a straightforward running time analysis.

We start by showing how to represent dependence atoms using intuitionistic disjunctions defined over witnessing functions. We use \(\phi^\bot \) to denote the NNF formula obtained from \(\neg \phi \) by pushing the negation to the atomic level, and \(\phi^\top \) to denote \(\phi \). Let \(\overline{\alpha} = (\alpha_1, \ldots, \alpha_n) \) be a sequence of ML formulae and let \(\beta \) be a single ML formula. Then we say that a function \(f : \{ \top, \bot \}^n \rightarrow \{ \top, \bot \} \) is a witness of \(d := \text{dep}(\overline{\alpha}, \beta) \), giving rise to a witnessing ML formula

\[D(f, d) := \bigvee_{a_1, \ldots, a_n \in \{ \top, \bot \}} \alpha_1^{a_1} \land \ldots \land \alpha_n^{a_n} \land \beta^{f(a_1, \ldots, a_n)}. \]

The equivalence

\[d \equiv \bigvee_{f : \{ \top, \bot \}^n \rightarrow \{ \top, \bot \}} D(f, d) \]

has been noticed in the contexts of MDL and EMDL respectively in [29, 3].

To avoid the exponential blow-up involved in both (3.1) and (3.2), we instead relate to RML by utilizing the following equivalence:

\[(W, R, \pi), w \models_{ML} D(f, d) \iff (W, R, \pi, S^M), w \models_{RML} S(\overline{\alpha} \beta), \]

where \(S^M := \{(a_1, \ldots, a_n, b) \in \{0, 1\}^{n+1} \mid f(a_1, \ldots, a_n) = b\} \). Before proceeding to the proof, we need the following simple proposition, based on [30, 31] where the statement has been proven for empty \(\Sigma \).
Proposition 3.1. Let Σ be a set of ML formulae, and let $\phi_0, \phi_1 \in \text{ML}(\Box)$. Then $\Sigma \models \phi_0 \Box \phi_1$ iff $\Sigma \models \phi_0$ or $\Sigma \models \phi_1$.

Proof. It suffices to show the only-if direction. Let M_0, T_0 and M_1, T_1 be counterexamples to $\Sigma \models \phi_0$ and $\Sigma \models \phi_1$, respectively. W.l.o.g. we may assume that M_0 and M_1 are disjoint. Since the truth value of an ML(\Box) formula is preserved under taking disjoint unions of Kripke models (see Theorem 6.1.9 in [31], also Corollary 5.7 in [30]) we note that M, T_0 and M, T_1 are also counterexamples to $\Sigma \models \phi_0$ and $\Sigma \models \phi_1$, respectively. Let $T := T_0 \cup T_1$. By the flatness property of ML (Proposition 2.2) $M, T \models \Sigma$, and by the downward closure property of ML(\Box) (Proposition 2.3) $M, T \not\models \phi_i$ for $i = 0, 1$. Consequently, $\Sigma \not\models \phi_0 \Box \phi_1$ which concludes the proof. □

The proof now proceeds via Lemmata 3.2 and 3.3 of which the former constitutes the basis for our alternating exponential-time algorithm. Note that if ϕ is an EMDL formula with k dependence atom subformulae, listed (possibly with repetitions) in d_1, \ldots, d_k, then we call $f = (f_1, \ldots, f_k)$ a witness sequence of ϕ if each f_i is a witness of d_i. Furthermore, we denote by $\phi(f/d)$ the ML formula obtained from ϕ by replacing each d_i with $D(f_i, d_i)$.

Lemma 3.2. Let ϕ_1, \ldots, ϕ_n be formulae in EMDL. Then $\{\phi_1, \ldots, \phi_n\} \models \phi_n$ iff for all witness sequences f_1, \ldots, f_{n-1} of $\phi_1, \ldots, \phi_{n-1}$ there is a witness sequence f of ϕ_n such that

$$\{\phi_1(f_1/d_1), \ldots, \phi_{n-1}(f_{n-1}/d_{n-1})\} \models \phi_n(f_n/d_n).$$

Proof. Assume first that ϕ is an arbitrary formula in EMDL, and let $d = \text{dep}(\alpha, \beta)$ be a subformula of ϕ. It is straightforward to show that ϕ is equivalent to

$$\bigvee_{f : \{T, \bot\} \models \phi} \phi(D(f,d)/d).$$

This follows from the fact that all \lor, \land, \Box, \Box distribute over \Box, note especially that $(\phi \Box \psi) \lor \theta$ is equivalent to $(\phi \lor \theta) \Box (\psi \lor \theta)$.

Iterating these substitutions we obtain that $\{\phi_1, \ldots, \phi_{n-1}\} \models \phi_n$ iff

$$\{\bigvee_{f_1} \phi_1(f_1/d_1), \ldots, \bigvee_{f_{n-1}} \phi_{n-1}(f_{n-1}/d_{n-1})\} \models \bigvee_{f_n} \phi_n(f_n/d_n),$$

where f_i ranges over the witness sequences of ϕ_i. Then (3.4) holds iff for all $f_1, \ldots, f_{n-1},$

$$\{\phi_1(f_1/d_1), \ldots, \phi_{n-1}(f_{n-1}/d_{n-1})\} \models \bigvee_{f_n} \phi(f_n/d_n).$$

Notice that each formula $\phi_i(f_i/d_i)$ belongs to ML. Hence, by Proposition 3.1 we conclude that (3.5) holds iff for all f_1, \ldots, f_{n-1} there is f_n such that

$$\{\phi_1(f_1/d_1), \ldots, \phi_{n-1}(f_{n-1}/d_{n-1})\} \models \phi(f_n/d_n).$$

The next proof step is to reduce an entailment problem of the form (3.6) to a validity problem of an RML formula over relational Kripke models whose interpretations agree with the guessed functions. For the latter problem we then apply Algorithm 1 whose lines 1-14 and 19-26 constitute an algorithm of Ladner that shows the PSPACE upper bound for modal logic satisfiability [20]. Lines 15-18 consider those cases where the subformula is relational. Lemma 3.3 now shows that, given an oracle A, this extended algorithm yields a PSPACEA decision procedure for satisfiability of RML formulae over relational Kripke
models whose predicates agree with \(A \). For an oracle set \(A \) of words from \(\{0,1,\#\}^* \) and \(k \)-ary relation symbol \(R_k \), we define \(R_k^A := \{(b_1, \ldots, b_k) \in \{0,1\}^k \mid \text{bin}(i) \# b_1 \ldots b_k \in A\} \).

Note that \(a \# b \) denotes the concatenation of two strings \(a \) and \(b \).

\[
\text{Input : } (A, B, C, D) \text{ where } A, B, C, D \subseteq \text{RML}
\]

\[
\text{Output : } \text{Sat}(A, B, C, D)
\]

\begin{algorithm}
1 if \(A \cup B \not\subseteq \text{Prop} \) then
2 \hspace{1em} choose \(\phi \in (A \cup B \setminus \text{Prop}) \);
3 \hspace{1em} if \(\phi = \neg \psi \) and \(\psi \in A \) then
4 \hspace{2em} return \(\text{Sat}(A \setminus \{\phi\}, B \cup \{\psi\}, C, D) \);
5 \hspace{1em} else if \(\phi = \neg \psi \) and \(\psi \in B \) then
6 \hspace{2em} return \(\text{Sat}(A \cup \{\psi\}, B \setminus \{\phi\}, C, D) \);
7 \hspace{1em} else if \(\phi = \psi \land \theta \) and \(\psi \in A \) then
8 \hspace{2em} return \(\text{Sat}((A \cup \{\psi, \theta\}) \setminus \{\phi\}, B, C, D) \);
9 \hspace{1em} else if \(\phi = \psi \land \theta \) and \(\psi \in B \) then
10 \hspace{2em} return \(\text{Sat}(A, (B \cup \{\psi\}) \setminus \{\phi\}, C, D) \lor \text{Sat}(A, (B \cup \{\theta\}) \setminus \{\phi\}, C, D) \);
11 \hspace{1em} else if \(\phi = \Box \psi \) and \(\psi \in A \) then
12 \hspace{2em} return \(\text{Sat}(A \setminus \{\phi\}, B, C \cup \{\psi\}, D) \);
13 \hspace{1em} else if \(\phi = \Box \psi \) and \(\psi \in B \) then
14 \hspace{2em} return \(\text{Sat}(A, B \setminus \{\phi\}, C, D \cup \{\psi\}) \);
15 \hspace{1em} else if \(\phi = S_i(\psi_1, \ldots, \psi_k) \) and \(\psi \in A \) then
16 \hspace{2em} return \(\bigvee_{(b_1, \ldots, b_k) \in S_i^A} \text{Sat}((A \cup \{\psi_j : b_j = 1\}) \setminus \{\phi\}, B \cup \{\psi_j : b_j = 0\}, C, D) \);
17 \hspace{1em} else if \(\phi = S_i(\psi_1, \ldots, \psi_k) \) and \(\psi \in B \) then
18 \hspace{2em} return \(\bigvee_{(b_1, \ldots, b_k) \in S_i^A} \text{Sat}(A \cup \{\psi_j : b_j = 1\}, (B \cup \{\psi_j : b_j = 0\}) \setminus \{\phi\}, C, D) \);
19 \hspace{1em} end
20 \hspace{1em} end
21 \hspace{1em} if \(A \cap B \neq \emptyset \) then
22 \hspace{2em} return false;
23 \hspace{1em} else if \(A \cap B = \emptyset \) and \(C \cap D \neq \emptyset \) then
24 \hspace{2em} return \(\bigwedge_{D \in D} \text{Sat}(C, \{D\}, \emptyset, D) \);
25 \hspace{1em} else if \(A \cap B = \emptyset \) and \(C \cap D = \emptyset \) then
26 \hspace{2em} return true;
27 \hspace{1em} end
28 end
\end{algorithm}

\textbf{Algorithm 1: PSPACE}^A algorithm for deciding validity in RML. Notice that queries to \(S_i^A \) range over \((b_1, \ldots, b_k) \in \{0,1\}^k \).

\textbf{Lemma 3.3.} Given an RML formula \(\phi \) over a vocabulary \(\{S_1, \ldots, S_n\} \) and an oracle set of words \(A \) from \(\{0,1,\#\}^* \), Algorithm 1 decides in PSPACE\(^A\) whether there is a relational Kripke structure \(\mathcal{M} = (W, R, \pi, S^A_1, \ldots, S^A_n) \) and a world \(w \in W \) such that \(\mathcal{M}, w \models_{\text{RML}} \phi \).

\textit{Proof.} We leave it to the reader to show (by a straightforward structural induction) that, given an input \((A, B, C, D) \) where \(A, B, C, D \subseteq \text{RML} \), Algorithm 1 returns \(\text{Sat}(A, B, C, D) \) true iff there is a relational Kripke model \(\mathcal{M} = (W, R, \pi, S^A_1, \ldots, S^A_n) \) and a world \(w \) such that
Vol. 15:2 VALIDITY AND ENTAILMENT IN MODAL AND PROPOSITIONAL DEPENDENCE LOGICS 4:9

- \(M, w \models_{\text{RML}} \phi \) if \(\phi \in A \);
- \(M, w \not\models_{\text{RML}} \phi \) if \(\phi \in B \);
- \(M, w \models_{\text{RML}} \Box \phi \) if \(\phi \in C \); and
- \(M, w \not\models_{\text{RML}} \Box \phi \) if \(\phi \in D \).

Hence, \(\text{Sat}(\{ \psi \}, \emptyset, \emptyset, \emptyset) \) returns true iff \(\psi \) is satisfiable by \(M, w \) with relations \(S_i^M \) obtained from the oracle. Note that the selection of subformulas \(\phi \) from \(A \cup B \) can be made deterministically by defining an ordering for the subformulas. Furthermore, we note, following [20], that this algorithm runs in \(\text{PSPACE}^4 \) as it employs \(O(n) \) recursive steps that each take space \(O(n) \).

Size of each recursive step. At each recursive step \(\text{Sat}(A,B,C,D) \) is stored onto the work tape by listing all subformulae in \(A \cup B \cup C \cup D \) in such a way that each subformula \(\psi \) has its major connective (or relation/proposition symbol for atomic formulae) replaced with a special marker which also points to the position of the subset where \(\psi \) is located. In addition we store at each disjunctive/conjunctive recursive step the subformula or binary number that points to the disjunct/conjunct under consideration. Each recursive step takes now space \(O(n^2) \).

Number of recursive steps. Given a set of formulae \(A \), we write \(|A| \) for \(\Sigma_{\phi \in A} |\phi| \) where \(|\phi| \) is the length of \(\phi \). We show by induction on \(n = |A \cup B \cup C \cup D| \) that \(\text{Sat}(A,B,C,D) \) has \(2n + 1 \) levels of recursion. Assume that the claim holds for all natural numbers less than \(n \), and assume that \(\text{Sat}(A,B,C,D) \) calls \(\text{Sat}(A',B',C',D') \). Then \(|A' \cup B' \cup C' \cup D'| < n \) except for the case where \(A \cap B \) is empty and \(C \cap D \) is not. In that case it takes at most one extra recursive step to reduce to a length \(< n \). Hence, by the induction assumption the claim follows. We conclude that the space requirement for Algorithm 1 on \(\text{Sat}(\{ \phi \}, \emptyset, \emptyset, \emptyset) \) is \(O(n^2) \).

Using Lemmata 3.2 and 3.3 we can now show the \(\text{co-NEXPTIME}^{\text{NP}} \) upper bound. In the proof we utilize the following connection between alternating Turing machines and the exponential time hierarchy at the level \(\text{co-NEXPTIME}^{\text{NP}} = \Pi_2^{\text{EXPT}} \).

Theorem 3.4 [1, 23]. \(\Sigma_k^{\text{NP}} \) (or \(\Pi_k^{\text{EXPT}} \)) is the class of problems recognizable in exponential time by an alternating Turing machine which starts in an existential (universal) state and alternates at most \(k - 1 \) many times.

Theorem 3.5. The entailment problem for EMDL is in \(\text{co-NEXPTIME}^{\text{NP}} \).

Proof. Assuming an input \(\phi_1, \ldots, \phi_n \) of EMDL formulae, we show how to decide in \(\Pi_2^{\text{EXPT}} \) whether \(\{ \phi_1, \ldots, \phi_{n-1} \} \models \phi_n \). By Theorem 3.4 it suffices to construct an alternating exponential-time algorithm that switches once from an universal to an existential state. By Lemma 3.2, \(\{ \phi_1, \ldots, \phi_{n-1} \} \models \phi_n \) iff for all \(\overline{f}_1, \ldots, \overline{f}_{n-1} \) there is \(\overline{f}_n \) such that

\[
\{ \phi_1(\overline{f}_1/\overline{d}_1), \ldots, \phi_{n-1}(\overline{f}_{n-1}/\overline{d}_{n-1}) \} \models \phi(\overline{f}_n/\overline{d}_n).
\]

Recall from the proof of Lemma 3.2 that all the formulae in (3.7) belong to ML. Hence by the flatness property (Proposition 2.2) \(\models \) is interchangeable with \(\models_{\text{ML}} \) in (3.7). It follows that (3.7) holds iff

\[
\phi := \phi_1(\overline{f}_1/\overline{d}_1) \wedge \cdots \wedge \phi_{n-1}(\overline{f}_{n-1}/\overline{d}_{n-1}) \wedge \neg \phi(\overline{f}_n/\overline{d}_n)
\]

is not satisfiable with respect to the standard Kripke semantics of modal logic. By the equivalence in (3.3) we notice that (3.8) is not satisfiable with respect to \(\models_{\text{ML}} \) iff \(\phi^* \) is not satisfiable over the selected functions with respect to \(\models_{\text{RML}} \), where \(\phi^* \) is obtained from \(\phi \) by
replacing each $D(f, \overline{\alpha}, \beta)$ of the form (3.1) with the predicate $f(\overline{\alpha}) = \beta$. The crucial point here is that ϕ^* is only of length $O(n \log n)$ in the input.

The algorithm now proceeds as follows. The first step is to universally guess functions listed in $f_1 \ldots f_{n-1}$, followed by an existential guess over functions listed in f_n. The next step is to transform the input to the described RML formula ϕ^*. The last step is to run Algorithm 1 on $\text{Sat}(\phi^*, \emptyset, \emptyset, \emptyset)$ replacing queries to the oracle with investigations on the guessed functions, and return true iff the algorithm returns false. By Lemma 3.3, Algorithm 1 returns false iff (3.7) holds over the selected functions. Hence, by Lemma 3.2 we conclude that the overall algorithm returns true iff $\{\phi_1, \ldots, \phi_{n-1}\} = \phi_n$.

Note that this procedure involves polynomially many guesses, each of at most exponential length. Also, Algorithm 1 runs in exponential time and thus each of its implementations has at most exponentially many oracle queries. Hence, we conclude that the given procedure decides EMDL-entailment in $\text{co-NEXPTIME}^{\text{NP}}$.

Notice that the decision procedure for $\models \phi$ does not involve any universal guessing. Therefore, we obtain immediately a NEXPTIME upper bound for the validity problem of EMDL.

Corollary 3.6. The validity problem for EMDL is in NEXPTIME.

4. Propositional Dependence Logics

Before showing that $\text{co-NEXPTIME}^{\text{NP}}$ is also the lower bound for the entailment problem of the propositional fragment of MDL, we need to formally define this fragment. We also need to present other propositional variants that will be examined later in this article. Beside extending our investigations to propositional independence and inclusion logics, we will also study the extensions of these logics with additional universal and existential quantifiers. This section is divided into two subsections. Sect 4.1 introduces different variants of propositional dependence logic. Sect 4.2 shows that decision problems for quantified propositional dependence logics can be reduced to the same problems over modal dependence logics.

4.1. Introduction to Propositional Dependence Logics. The syntax of propositional logic (PL) is generated by the following grammar:

$$\phi ::= p \mid \neg p \mid (\phi \land \phi) \mid (\phi \lor \phi) \quad (4.1)$$

The syntaxes of propositional dependence, independence, and inclusion logics (PDL, PLInd, PLInc, resp.) are obtained by extending the syntax of PL with dependence atoms of the form (2.2), independence atoms of the form (2.5), and inclusion atoms of the form (2.6), respectively. Furthermore, the syntax of $\text{PL}(\emptyset)$ extends (4.1) with the grammar rule $\phi ::= \phi \emptyset \phi$.

The formulae of these logics are evaluated against propositional teams. Let V be a set of variables. We say that a function $s : V \rightarrow \{0, 1\}$ is a (propositional) assignment over V, and a (propositional) team X over V is a set of propositional assignments over V. A team X over V induces a Kripke model $\mathcal{M}_X = (T_X, \emptyset, \pi)$ where $T_X = \{w_s \mid s \in X\}$ and $w_s \in \pi(p) \iff s(p) = 1$ for $s \in X$ and $p \in V$. The team semantics for propositional formulae is now defined as follows:

$$X \models \phi :\iff \mathcal{M}_X, T_X \models \phi,$$
where $M_X, T_X \models \phi$ refers to the team semantics of modal formulae (see Sect. 2). If ϕ^*
is a formula obtained from ϕ by replacing all propositional atoms p (except those inside a
dependence atom) with predicates $A(p)$, then we can alternatively describe that $X \models \phi$
iff $M = (\{0, 1\}, A := \{1\})$ and X satisfy ϕ^* under the lax team semantics of first-order
dependence logics [5].

Quantified propositional logic (QPL) is obtained by extending that of PL with universal
and existential quantification over propositional variables. Their semantics is given in terms
of so-called duplication and supplementation teams. Let p be a propositional variable and s
an assignment over V. We denote by $s(a/p)$ the assignment over $V \cup \{p\}$ that agrees with s
everywhere, except that it maps p to a. Universal quantification of a propositional variable
p is defined in terms of duplication teams $X[\{0, 1\}/p] := \{s(a/p) \mid s \in X, a \in \{0, 1\}\}$
that extend teams X with all possible valuations for p. Existential quantification is defined in
terms of supplementation teams $X[F/p] := \{s(a/p) \mid s \in X, a \in F(s)\}$ where F is a mapping
from X into $\{\{0\}, \{1\}, \{0, 1\}\}$. The supplementation team $X[F/p]$ extends each assignment
of X with a non-empty set of values for p. The satisfaction relations $X \models \exists p \phi$ and $X \models \forall p \phi$
are now given as follows:

\[
\begin{align*}
X \models \exists p \phi & \iff \exists F \in X[\{0\}, \{1\}, \{0, 1\}] : X[F/p] \models \phi, \\
X \models \forall p \phi & \iff X[\{0, 1\}/p] \models \phi.
\end{align*}
\]

We denote by QPDL the extension of PDL with quantifiers and define QPLInd, QPLInc,
and QPL(\otimes) analogously. Observe that the flatness and downward closure properties of
modal formulae (Propositions 2.2 and 2.3, resp.) apply now analogously to propositional
formulae. We also have that QPLInc is closed under taking unions of teams. Note that \models_{PL}
here refers to the standard semantics of propositional logic. Furthermore, $\text{Var}(\phi)$ refers to the
set of variables appearing in ϕ, and $\text{Fr}(\phi)$ to the set of free variables appearing in a
formula ϕ, both defined in the standard way. Sometimes we write $\phi(p_1, \ldots, p_n)$ instead of ϕ
to emphasize that $\text{Fr}(\phi) = \{p_1, \ldots, p_n\}$.

Proposition 4.1 (Flatness [28]). Let ϕ be a formula in QPL, and let X be a team over $V \supseteq \text{Fr}(\phi)$. Then:

\[
X \models \phi \iff \forall s \in X : s \models_{\text{PL}} \phi.
\]

Proposition 4.2 (Downward Closure [28]). Let ϕ be a formula in QPDL or QPL(\otimes), and
let X be a team over a set $V \supseteq \text{Fr}(\phi)$ of propositional variables. Then:

\[
Y \subseteq X \text{ and } X \models \phi \Rightarrow Y \models \phi.
\]

Proposition 4.3 (Union Closure [5]). Let ϕ be a formula in QPLInc, and let X and Y be
teams over a set $V \supseteq \text{Fr}(\phi)$ of propositional variables. Then:

\[
X \models \phi \text{ and } Y \models \phi \Rightarrow X \cup Y \models \phi.
\]

We denote the restriction of an assignment s to variables in V by $s \upharpoonright V$, and define
the restriction of a team X to V, written $X \upharpoonright V$, as $\{s \upharpoonright V \mid s \in X\}$. We conclude
this section by noting that, similar to the first-order case, quantified propositional dependence
logic satisfies the following locality property.

Proposition 4.4 (Locality [28]). Let ϕ be a formula in \mathcal{L} where $\mathcal{L} \in \{\text{QPDL, QPLInd, QPLInc, QPL(\otimes)}\}$, let X be a team over $V \supseteq \text{Fr}(\phi)$, and let V' be such that $\text{Fr}(\phi) \subseteq V' \subseteq V$. Then:

\[
X \models \phi \iff X \upharpoonright V' \models \phi.
\]
4.2. Reductions from Quantified Propositional to Modal Logics. In this section we show how to generate simple polynomial-time reductions from quantified propositional dependence logics to modal dependence logics with respect to their entailment and validity problem. First we present Lemma 4.5 which is a direct consequence of [6, Lemma 14] that presents prenex normal form translations in the first-order dependence logic setting over structures with universe size at least 2. The result follows by the obvious first-order interpretation of quantified propositional formulae: satisfaction of a quantified propositional formula \(\phi\) by a binary team \(X\) can be replaced with satisfaction of \(\phi^*\) by \(\mathcal{M} := (\{0, 1\}, P^\mathcal{M} := \{1\})\) and \(X\), where \(\phi^*\) is a formula obtained from \(\phi\) by replacing atomic propositional formulae \(p\) and \(\neg p\) respectively with \(P(p)\) and \(\neg P(p)\).

Lemma 4.5 [6]. Any formula \(\phi\) in \(L\), where \(L \in \{\text{QPDL}, \text{QPLInc}, \text{QPLInd}\}\), is logically equivalent to a polynomial size formula \(Q_1p_1 \ldots Q_np_n\psi\) in \(L\) where \(\psi\) is quantifier-free and \(Q_i \in \{\exists, \forall\}\) for \(i = 1, \ldots, n\).

Next we show how to describe in modal terms a quantifier block \(Q_1p_1 \ldots Q_np_n\). Using the standard method in modal logic we construct a formula \(\text{tree}(V, p_1, \ldots, p_n)\) that enforces the complete binary assignment tree over \(p_1, \ldots, p_n\) for a team over \(V\) where \(\{p_1, \ldots, p_n\}\) and \(V\) are disjoint [20]. The formulation of \(\text{tree}(V, p_1, \ldots, p_n)\) follows the presentation in [8]. We define \(\text{store}_n(p) := (p \land \Box^np) \lor (\neg p \land \Box^n\neg p)\), where \(\Box^n\) is a shorthand for \(\Box \cdots \Box\), to impose the existing values for \(p\) to successors in the tree. We also define \(\text{branch}_n(p) := \Diamond p \land \Diamond \neg p \land \Diamond \text{store}_n(p)\) to indicate that there are \(\geq 2\) successor states which disagree on the variable \(p\) and that all successor states preserve their values up to branches of length \(n\). Then we let

\[
\text{tree}(V, p_1, \ldots, p_n) := \bigwedge_{q \in V} \bigwedge_{i=1}^{n} \text{store}_i(q) \land \bigwedge_{i=0}^{n-1} \Box^i \text{branch}_{n-(i+1)}(p_{i+1}).
\]

Note that \(\text{tree}(V, p_1, \ldots, p_n)\) is an ML formula and hence has the flatness property by Proposition 2.2.

Theorem 4.6. The satisfiability, validity, and entailment problems for QPDL, QPLInc, or QPLInd are polynomial-time reducible to the satisfiability, validity, and entailment problems for MDL, MLInd, or MLInc, respectively.

Proof. Consider first the entailment problem, and assume that \(\Sigma \cup \{\phi\}\) is a finite set of formulae in either QPDL, QPLInd, or QPLInc. By Lemma 4.5 each formula in \(\theta \in \Sigma \cup \{\phi\}\) can be transformed in polynomial time to the form \(\theta_0 = Q_1p_1 \ldots Q_np_n\psi\) where \(\psi\) is quantifier-free. We may assume that the variable sequences \(p_1, \ldots, p_n\) corresponding to these quantifier blocks are initial segments of a shared infinite list \(p_1, p_2, p_3, \ldots\) of variables. Assume \(m\) is the maximal length of the quantifier blocks that appear in any of the translations, and let \(V\) be the set of variables that appear free in some of them. W.l.o.g. we may assume that \(\{p_1, \ldots, p_m\}\) and \(V\) are disjoint. We let \(\theta_1\) be obtained from \(\theta_0\) by replacing quantifiers \(\exists\) and \(\forall\) respectively with \(\Diamond\) and \(\Box\). It follows that \(\Sigma \models \phi\) iff \(\{\theta_1 \mid \theta \in \Sigma\} \cup \{\text{tree}(V, p_1, \ldots, p_n)\} \models \phi_1\).

\(\phi_1\) 2 For the validity problem, we observe that \(\models \phi\) iff \(\models \text{tree}(V, p_1, \ldots, p_n) \lor (\text{tree}(V, p_1, \ldots, p_n) \land \phi_1)\).

\(\Diamond\) and \(\Box\) range over individuals. These two logics are not downwards closed and the modal translation does not prevent the complete binary tree of having two distinct roots that agree on the variables in \(V\). The same proviso applies to the translations of validity and satisfiability.

\(^2\) Notice that the direction from left to right does not hold under the so-called strict team semantics where \(\exists\) and \(\Diamond\) range over individuals. These two logics are not downwards closed and the modal translation does not prevent the complete binary tree of having two distinct roots that agree on the variables in \(V\). The same proviso applies to the translations of validity and satisfiability.
Intuitively the formula on the right states that excluding those worlds which do not encode a complete binary tree that preserves V, the resulting worlds form a team that satisfies the encoding ϕ_1 of ϕ. Furthermore, for the satisfiability problem we have that ϕ is satisfiable iff $\text{tree}(V, p_1, \ldots, p_n) \land \phi_1$ is. Since the reductions are clearly polynomial, this concludes the proof. \qed

5. Lower Bound for PDL Entailment

In this section we prove that the entailment problem for PDL is co-NEXPTIMENP-hard. This result is obtained by reducing from a variant of the dependency quantified Boolean formula problem, which is, a complete problem for NEXPTIME extending the standard quantified Boolean formula problem by constraints. The variant we present was introduced in [8], and it gives complete problems for different levels of the exponential hierarchy. The following presentation follows mainly [8], deviating only in notation.

Definition 5.1. A dependency quantified Boolean formula (DQBF) is a pair (ϕ, C) where $C = (\tau_1, \ldots, \tau_m)$ is a list of sequences of propositional variables from $\{p_1, \ldots, p_n\}$, and ϕ is a formula of the form

$$\exists f_1 \ldots \exists f_m \forall p_1 \ldots \forall p_n \theta$$

where p_1, \ldots, p_n are pairwise disjoint, f_1, \ldots, f_m are pairwise disjoint functional variables, and θ is a quantifier-free propositional formula in which only the quantified variables p_i and functional variables f_j with arguments τ_i may appear. The DQBF instance (ϕ, C) is true if there are functions $f_i: \{0,1\}^{|\tau_i|} \to \{0,1\}$ such that θ is true for each assignment $\varsigma: \{p_1, \ldots, p_n\} \to \{0,1\}$.

The true quantified Boolean formula problem, TRUE(DQBF), is now the problem of determining the truth value of a given DQBF instance.

Theorem 5.2 [25]. TRUE(DQBF) is NEXPTIME-complete.

We now generalize TRUE(DQBF) by introducing alternation to the quantifier block for functions.\footnote{Apart from notational differences, the following definition is from [8]. Here we use explicitly functional variables instead of proposition variables for quantification of functions. Furthermore, to improve the correspondence between syntax and semantics, the quantifier block $\forall p_1 \ldots \forall p_n$ for propositional variables is here written after the quantifier block for functional variables.}

Definition 5.3 [8]. A Σ_k-alternating dependency quantified Boolean formula (Σ_k-ADQBF) is a pair (ϕ, C) where ϕ is an expression of the form

$$\phi := (\exists f_1^1 \ldots \exists f_{j_1}^{I_1}) (\forall f_1^2 \ldots \forall f_{j_2}^{I_2}) (\exists f_1^3 \ldots \exists f_{j_3}^{I_3}) \ldots (Q f_1^k \ldots Q f_{j_k}^{I_k}) \forall p_1 \ldots \forall p_n \theta,$$

where $Q \in \{\exists, \forall\}$, $C = (\tau_1, \ldots, \tau_j)$ is a list of sequences of propositional variables from $\{p_1, \ldots, p_n\}$, and θ is a quantifier-free propositional formula in which only the quantified variables p_i and functional variables f_j with arguments τ_i may appear. Analogously, a Π_k-alternating dependency quantified Boolean formula (Π_k-ADQBF) is a pair (ϕ, C) where ϕ is an expression of the form

$$\phi := (\forall f_1^1 \ldots \forall f_{j_1}^{I_1}) (\exists f_1^2 \ldots \exists f_{j_2}^{I_2}) (\forall f_1^3 \ldots \forall f_{j_3}^{I_3}) \ldots (Q f_1^k \ldots Q f_{j_k}^{I_k}) \forall p_1 \ldots \forall p_n \theta.$$
The truth condition of a \(\Sigma_k \)-ADQBF or a \(\Pi_k \)-ADQBF instance is defined by a generalization of that in Definition 5.1 such that each \(Qf_j \) where \(Q \in \{\exists, \forall\} \) is interpreted as existential/universal quantification over functions \(f_j^Q : \{0,1\}^{|y_j|} \rightarrow \{0,1\} \). Let us now denote the associated decision problems by \(\text{TRUE}(\Sigma_k \text{-ADQBF}) \) and \(\text{TRUE}(\Pi_k \text{-ADQBF}) \). These problems characterize levels of the exponential hierarchy in the following way.

Theorem 5.4 [8]. Let \(k \geq 1 \). For odd \(k \) the problem \(\text{TRUE}(\Sigma_k \text{-ADQBF}) \) is \(\Sigma_k^{\text{EXP}} \)-complete. For even \(k \) the problem \(\text{TRUE}(\Pi_k \text{-ADQBF}) \) is \(\Pi_k^{\text{EXP}} \)-complete.

Since \(\text{TRUE}(\Pi_2 \text{-ADQBF}) \) is \(\text{co-NEXPTIME}^{\text{NP}} \)-complete, we can show the lower bound via an reduction from it. Notice that regarding the validity problem of PDL, we already have the following lower bound.

Theorem 5.5 [30]. The validity problem for PDL is \(\text{NEXPTIME} \)-complete, and for MDL and EMDL it is \(\text{NEXPTIME} \)-hard.

This result was shown by a reduction from the dependency quantified Boolean formula problem (i.e. \(\text{TRUE}(\Sigma_1 \text{-ADQBF}) \)) to the validity problem of PDL. We use essentially the same technique to reduce from \(\text{TRUE}(\Pi_2 \text{-ADQBF}) \) to the entailment problem of PDL.

Theorem 5.6. The entailment problem for PDL is \(\text{co-NEXPTIME}^{\text{NP}} \)-hard.

Proof. By Theorem 5.4 it suffices to show a reduction from \(\text{TRUE}(\Pi_2 \text{-ADQBF}) \). Let \((\phi, C)\) be an instance of \(\Pi_2 \text{-ADQBF} \) in which case \(\phi \) is of the form

\[
\forall f_1 \ldots \forall f_m \exists f_{m+1} \ldots \exists f_{m+m'} \forall p_1 \ldots \forall p_n \theta
\]

and \(C \) lists tuples \(\bar{c}_i \subseteq \{p_1, \ldots, p_n\}, \) for \(i = 1, \ldots, m+m' \). Let \(q_i \) be a fresh propositional variable for each functional variable \(f_i \). We define \(\Sigma := \{\text{dep}(\bar{c}_i, q_i) \mid i = 1, \ldots, m\} \) and

\[
\psi := \theta' \lor \bigvee_{i=m+1}^{m+m'} \text{dep}(\bar{c}_i, q_i),
\]

where \(\theta' \) is obtained from \(\theta \) by replacing occurrences of \(f_i(\bar{c}_i) \) with \(q_i \). Clearly, \(\Sigma \) and \(\psi \) can be constructed from \((\phi, C)\) in polynomial time. It remains to show that \(\Sigma \models \psi \) if \(\phi \) is true.

Assume first that \(\Sigma \models \psi \) and let \(f_i : \{0,1\}^{\bar{c}_i} \rightarrow \{0,1\} \) be arbitrary for \(i = 1, \ldots, m \). Construct a team \(X \) that consists of all assignments \(s \) that map \(p_1, \ldots, p_n, q_{m+1}, \ldots, q_{m+m'} \) into \(\{0,1\} \) and \(q_1, \ldots, q_m \) respectively to \(f_1(s(\bar{c}_1)), \ldots, f_m(s(\bar{c}_m)) \). Since \(X \models \Sigma \) we find \(Z, Y_1, \ldots, Y_{m'} \subseteq X \) such that \(Z \cup Y_1 \cup \ldots \cup Y_{m'} = X, \) \(Z \models \theta' \), and \(Y_i \models \text{dep}(\bar{c}_{m+i}, q_{m+i}) \) for \(i = 1, \ldots, m' \). We may assume that each \(Y_i \) is a maximal subset satisfying \(\text{dep}(\bar{c}_{m+i}, q_{m+i}) \), i.e., for all \(s \in X \setminus Y_i, \) \(Y_i \cup \{s\} \not\models \text{dep}(\bar{c}_{m+i}, q_{m+i}) \). Since \(X \) takes only Boolean values, the complement \(X \setminus Y_i \) is a maximal subset satisfying \(\text{dep}(\bar{c}_{m+i}, q_{m+i}) \), too. By downward closure (Proposition 4.2) we may assume that \(Z \) does not intersect any of the subsets \(Y_1, \ldots, Y_{m'} \). Consequently, \(Z \) is a maximal subset that satisfies all \(\text{dep}(\bar{c}_{m+i}, q_{m+i}) \) for \(i = 1, \ldots, m' \). It follows that there are functions \(f_i : \{0,1\}^{\bar{c}_i} \rightarrow \{0,1\}, \) for \(i = m+1, \ldots, m+m' \), such that

\[
Z = \{s(f_{m+1}(s(\bar{c}_{m+1}))/q_{m+1}, \ldots, f_{m+m'}(s(\bar{c}_{m+m'}))/q_{m+m'}) \mid s \in X\}.
\]

Notice that \(Z \) is maximal with respect to \(p_1, \ldots, p_n \), i.e., \(Z \models \{p_1, \ldots, p_n\} = \{p_1, \ldots, p_n\}\{0,1\} \). Hence, by the flatness property (Proposition 4.1), and since \(Z \models \theta' \), it follows that \(\theta' \) holds for all values of \(p_1, \ldots, p_n \) and for the values of \(q_1, \ldots, q_{m+m'} \) chosen respectively according to \(f_1, \ldots, f_{m+m'} \). Therefore, \(\phi \) is true which shows the direction from left to right.
Assume then that ϕ is true, and let X be a team satisfying Σ. Then there are functions $f_i: \{0,1\}^{|\bar{\tau}|} \to \{0,1\}$ such that $f(s(\bar{\tau}_i)) = s(q_i)$ for $s \in X$ and $i = 1, \ldots, m$. Since ϕ is true we find functions $f_i: \{0,1\}^{|\bar{\tau}|} \to \{0,1\}$, for $i = m + 1, \ldots, m + m'$, such that for all $s \in X$:

$$s((f_{m+1}(s(\bar{\tau}_{m+1}))/g_{m+1}, \ldots, f_{m+m'}(s(\bar{\tau}_{m+m'}))/g_{m+m'}) \models \theta'. \quad (5.1)$$

Again, since X is Boolean, it follows that $Y_i := \{s \in X \mid s(q_i) \neq f(s(\bar{\tau}_i))\}$ satisfies $\text{dep}(\bar{\tau}_i, q_i)$ for $i = m + 1, \ldots, m + m'$. Then it follows by (5.1) and flatness (Proposition 4.1) that $X \setminus (Y_{m+1} \cup \ldots \cup Y_{m+m'})$ satisfies θ'. Therefore, $\Sigma \models \psi$ which concludes the direction from right to left.

6. Validity and Entailment in Modal and Propositional Dependence Logics

We may now draw together the main results of Sections 3 and 5. There it was shown that in terms of the entailment problem $\text{co-NEXPTIME}^{\text{NP}}$ is both an upper bound for EMDL and an lower bound for PDL. Therefore, we obtain in Theorem 6.1 that for all the logics inbetween it is also the exact complexity bound. Furthermore, Theorem 4.6 implies that we can count QPDL in this set of logics.

Theorem 6.1. The entailment problem for EMDL, MDL, QPDL, and PDL is $\text{co-NEXPTIME}^{\text{NP}}$-complete.

Proof. The upper bound for EMDL and MDL was shown in Theorem 3.5, and by Theorem 4.6 the same upper bound applies to QPDL and PDL. The lower bound for all of the logics comes from Theorem 5.6.

We also obtain that all the logics inbetween PDL and EMDL are NEXPTIME-complete in terms of their validity problem. The proof arises analogously from Corollary 3.6 and Theorem 5.5.

Theorem 6.2. The validity problem for EMDL, MDL, QPDL, and PDL is NEXPTIME-complete.

Recall that this close correspondence between propositional and modal dependence logics only holds with respect to their entailment and validity problems. Satisfiability of propositional dependence logic is only NP-complete whereas it is NEXPTIME-complete for its modal variant. It is also worth noting that the proof of Theorem 3.5 gives rise to an alternative proof for the NEXPTIME upper bound for MDL (and EMDL) satisfiability, originally proved in [27]. Moreover, the technique can be successfully applied to $\text{ML}(\mathcal{D})$. The following theorem entails that $\text{ML}(\mathcal{D})$ is no more complex than the ordinary modal logic.

Theorem 6.3. The satisfiability, validity, and entailment problems for $\text{ML}(\mathcal{D})$ are PSPACE-complete.

Proof. The lower bound follows from the Flatness property of ML (Proposition 2.2) and the PSPACE-hardness of satisfiability and validity problems for ML [20]. For the upper bound, it suffices to consider the entailment problem. The other cases are analogous. Analogously to the proof of Lemma 3.2 (see also Theorem 5.2 in [30]) we reduce $\text{ML}(\mathcal{D})$ formulae to large disjunctions with the help of appropriate witness sequences. Let θ be an $\text{ML}(\mathcal{D})$ formula that has m \mathcal{D}-disjunctions. Given a sequence $\pi = (s_1, \ldots, s_m) \in \{0,1\}^m$ we determine top-down recursively an ML formula η^π for each subformula η of θ in the following way. We let...
disjunctions appearing in \(\eta \) formulae. Analogously to the proof of \(\eta \) validity, and entailment can be decided in \(\text{PSPACE} \) can now determine whether model checking in \(\text{co-MC} \) returns 0 for \(\phi \) for team-based logics (see, e.g., [4]), adapted for to an existential state. This algorithm utilizes the standard model checking algorithm that recognizes the entailment problem for \(\text{QPLInd} \). Proof. By Theorem 3.4 it suffices to describe an exponential-time alternating algorithm that recognizes the entailment problem for \(\text{QPLInd} \) and switches once from an universal to an existential state. This algorithm utilizes the standard model checking algorithm for team-based logics (see, e.g., [4]), adapted for \(\text{QPLInd} \) in Algorithm 2. The input for Algorithm 2 is a propositional team \(X \) and a \(\text{QPLInd} \) formula \(\phi \), and the algorithm returns 1 for \(\text{MC}(X, \phi) \) iff \(X \) satisfies \(\phi \). Note that the running time for \(\text{MC}(X, \phi) \) is not bounded by a polynomial due to possible quantification in \(\phi \). Instead, the procedure takes time \(f(|X|)g(|\phi|) \) for some polynomial function \(f \) and an exponential function \(g \), and hence \(\text{MC}(X, \phi) \) can be determined in \(\text{NEXPTIME} \).

Let us denote by \(\text{co-MC}(X, \phi) \) the outcome of the non-deterministic algorithm obtained from Algorithm 2 by replacing existential selections with universal ones. This algorithm returns 0 for \(\text{co-MC}(X, \phi) \) iff \(X \) does not satisfy \(\phi \), and hence decides the complement of model checking in \(\text{co-NEXPTIME} \). Given a sequence \(\phi_1, \ldots, \phi_n \) of \(\text{QPLInd} \) formulae, we can now determine whether \(\{\phi_1, \ldots, \phi_{n-1}\} \) entails \(\phi_n \) in the following way. First universally guess a team \(X \) over variables that occur free in some \(\phi_1, \ldots, \phi_n \). Then for \(i = 1, \ldots, n-1 \),
if \(\text{co-MC}(X, \phi_i) \) is 0, then return true. If \(\text{co-MC}(X, \phi_i) \) is 1 and \(i < n - 1 \), then move to \(i + 1 \). Otherwise, if \(\text{co-MC}(X, \phi_i) \) is 1 and \(i = n - 1 \), then switch to existential state and return true iff \(\text{MC}(X, \phi_n) \) is 1. It is straightforward to check that the described algorithm returns true iff \(\{\phi_1, \ldots, \phi_{n-1}\} \models \phi_n \). Since the algorithm alternates once from universal to existential state and runs in exponential time, it follows that the procedure is in \(\Pi_2^{\text{EXP}} \).

\[
\text{Input} : (X, \phi) \text{ where } X \text{ is a propositional team over } \text{Fr}(\phi) \text{ and } \phi \in \text{QPLInd}\n\text{Output} : \text{MC}(X, \phi)
\]

1. if \(\phi = \exists p \psi \) then
2. \hspace{1em} existentially choose \(F : X \to \{0, 1\} \) and return \(\text{MC}(X[F/p], \psi) \);
3. else if \(\phi = \forall p \psi \) then
4. \hspace{1em} return \(\text{MC}(X[\{0, 1\}/p], \psi) \);
5. else if \(\phi = \psi \lor \theta \) then
6. \hspace{1em} existentially choose \(Y, Z \subseteq X \) such that \(Y \cup Z = X \) and return \(\text{MC}(Y, \psi) \land \text{MC}(Z, \theta) \);
7. else if \(\phi = \psi \land \theta \) then
8. \hspace{1em} return \(\text{MC}(X, \psi) \land \text{MC}(X, \theta) \);
9. else if \(\phi \) is an atom then
10. \hspace{1em} return 1 iff \(X \models \phi \).

Algorithm 2: A non-deterministic model checking algorithm for QPLInd

For the lower bound, we apply the fact that dependence atoms as well as inclusion atoms can be defined in independence logic. A translation for inclusion atoms can be given as follows.

Theorem 7.2 [5]. The inclusion atom \(\overline{p} \subseteq \overline{q} \) is equivalent to

\[
\phi := \forall v_1 \forall v_2 \forall \overline{r} (\overline{r} \neq \overline{p} \land \overline{r} \neq \overline{q}) \lor (v_1 \neq v_2 \land \overline{r} \neq \overline{q}) \lor (v_1 = v_2 \lor \overline{r} = \overline{q}) \lor \overline{r} \perp_{\emptyset} v_1 v_2 \).
\]

The above theorem was shown in the first-order inclusion and independence logic setting but can be applied to the quantified propositional setting too since \(\phi \) and \(\overline{p} \subseteq \overline{q} \) are satisfied by a binary team \(X \) in the quantified propositional setting iff they are satisfied by \(X \) and the structure \(\{0, 1\} \) in the first-order setting. The lower bound can be now shown by a reduction from TRUE(\(\Pi_2\)-ADQBF) to validity of quantified propositional logic extended with dependence and inclusion atoms.

Lemma 7.3. The validity problem for QPLInd is \(\text{co-NEXPTIME}^{\text{NP}} \)-hard.

Proof. We reduce from TRUE(\(\Pi_2\)-ADQBF) which is \(\text{co-NEXPTIME}^{\text{NP}} \)-hard by Theorem 5.4. Let \((\phi, C)\) be an instance of \(\Pi_2\)-ADQBF. Then \(\phi \) is of the form

\[
\forall f_1 \ldots \forall f_m \exists f_{m+1} \ldots \exists f_{m+m'} \forall p_{1} \ldots \forall p_{n} \theta
\]

and \(C \) lists tuples \(\tau_i \) of elements from \(\{p_1, \ldots, p_n\} \), for \(i = 1, \ldots, m + m' \). We show how to construct in polynomial time from \(\phi \) a QPLInd formula \(\psi \) such that \(\psi \) is valid iff \(\phi \) is true. The free variables of \(\psi \) consist of \(p_i \) and fresh variables \(q_i \) that replace \(f_i(\tau_i) \). We construct \(\psi \) such that \(X \models \psi \) iff one can select from \(X \) a maximal subteam \(Y \subseteq X \) that satisfies
where θ is obtained from θ by replacing occurrences of $f_i(\tau_i)$ with q_i. This disjunction amounts to the existential selection of the functions $\tau_i \mapsto q_i$ for $i = m + 1, \ldots, m + \ell'.

We now claim that $\psi := 1$ is valid iff ϕ is true. Assume first that ψ is valid, and let f_i be any function from $\{0, 1\}^{r_i} \rightarrow \{0, 1\}$ for $i = 1, \ldots, m$. Let X be the team that consists of all assignments s that map $p_1, \ldots, p_n, q_{m+1}, \ldots, q_{m+\ell'}$ into $\{0, 1\}$ and q_1, \ldots, q_m to $f(s(\tau_1)), \ldots, f(s(\tau_m))$. By the assumption $X \models \psi$. Hence, we find $F_1 : X \rightarrow P(X) \setminus \emptyset$ such that

$$X[F_1/r_1] \models \text{dep}(\tau_1 q_1, r_1) \land \text{dep}(\tau_1 r_1, q_1)$$

(7.2)

Let $X' := X[F_1/r_1][1/r'_1]$. Then $X' \models \text{dep}(\tau_1 q_1, r_1)$ by the construction and $X' \models \text{dep}(\tau_1 q_1, r_1)$ by (7.2), and hence $X' \models \text{dep}(\tau_1 r_1)$. Also by the third conjunct of (7.2) $X' \models \tau_1 r'_1 \subseteq \tau_1 r_1$. Therefore, it cannot be the case that that $s(r_1) = 0$ for some $s \in X'$, and hence by the last conjunct of (7.2) and Proposition (4.4), $X[1/r_1] \models \psi_2$. After n iterations we obtain that $X[1/r_1] \ldots [1/r_n] \models \psi_{m+1}$ which implies by Proposition (4.4) that $X \models \psi_{m+1}$. Hence, there are $Z, Y_1, \ldots, Y_{\ell'} \subseteq X$ such that $Z \cup Y_1 \cup \ldots \cup Y_{\ell'} = X$, $Z \models \theta'$, and $Y_i \models \text{dep}(\tau_i, q_i)$ for $i = 1, \ldots, \ell'$. Notice that we are now at the same position as in the proof of Theorem 5.6. Hence, we obtain that ϕ is true and that the direction from left to right holds.

Assume then that ϕ is true, and let X be any team whose domain contains variables $p_1, \ldots, p_n, q_1, \ldots, q_{m'+1}$.

The exact \textbf{co-NEXPTIME} bound for QPLind entailment and validity follows now by Lemmata 7.1 and 7.3. Theorems 7.4 and 4.6 then imply the same lower bound for MLind.
This means that validity in modal independence logic is at least as hard as entailment in modal dependence logic. We leave determining the exact complexity of MLInd entailment and validity as an open question.

Theorem 7.4. The entailment and the validity problems for QPLInd are co-NEXPTIME$^{\text{NP}}$-complete.

Corollary 7.5. The entailment and the validity problems for MLInd are co-NEXPTIME$^{\text{NP}}$-hard.

8. Validity and Entailment in Modal and Quantified Propositional Inclusion Logics

Next we consider quantified propositional inclusion logic and show that its validity and entailment problems are complete for \(\text{EXPTIME} \) and co-NEXPTIME, respectively. The result regarding validity is a simple observation.

Theorem 8.1. The validity problem for QPLInc is \(\text{EXPTIME} \)-complete.

Proof. For the lower bound, note that the satisfiability problem for PLInc has been shown to be \(\text{EXPTIME} \)-complete in [12]. Also, note that \(\phi(\overline{p}) \) is satisfiable iff \(\exists \overline{p} \phi(\overline{p}) \) is valid. Consequently, QPLInc validity is \(\text{EXPTIME} \)-hard.

For the upper bound, we notice by union closure (Proposition 4.3) that a formula \(\phi(\overline{p}) \in \text{QPLInc} \) is valid iff it is valid over all singleton teams. Let us denote by \(\phi^\ast \) the formula obtained from \(\phi \) by replacing all inclusion atoms \(\overline{q} \subseteq \overline{r} \) with \(\overline{p} \overline{q} \subseteq \overline{p} \overline{r} \). We observe that \(\phi(\overline{p}) \) is valid over all singletons iff \(\{ \emptyset \} \models \forall \overline{p} \phi^\ast(\overline{p}) \). The direction from left to right follows by union closure and since \(\overline{q} \subseteq \overline{r} \) entails \(\overline{p} \overline{q} \subseteq \overline{p} \overline{r} \). For the direction from right to left it can be shown by induction on \(\psi \) that \(X = \psi^\ast \) entails \(\{ s \in X \mid s(\overline{p}) = \overline{s} \} = \psi \) for all teams \(X \) and sequences of Boolean values \(\pi \). By locality (Proposition 4.4) \(\emptyset \models \forall \overline{p} \phi^\ast(\overline{p}) \) iff \(\exists \overline{p} \phi^\ast(\overline{p}) \) is satisfiable. Since MLInc satisfiability is in \(\text{EXPTIME} \) [11], we conclude by Theorem 4.6 that the EXPTIME upper bound holds.

Let us now prove the exact co-NEXPTIME complexity bound for QPLInc entailment. For the proof of the lower bound, we apply TRUE(Σ_1-ADQBF).

Lemma 8.2. The entailment problem for QPLInc is co-NEXPTIME-hard.

Proof. Theorem 5.4 states that TRUE(Σ_1-ADQBF) is NEXPTIME-hard. We reduce from its complement problem. Let \((\phi, C) \) be an instance of Σ_1-ADQBF. Then \(\phi \) is of the form \(\exists g_1 \ldots \exists g_m \forall p_1 \ldots \forall p_n \theta \) and \(C \) lists tuples \(\overline{c}_i \) of elements from \(\{ p_1, \ldots, p_n \} \), for \(i = 1, \ldots, n \). We show how to construct in polynomial time from \((\phi, C) \) two QPLInc formulae \(\psi \) and \(\psi' \) such that \((\phi, C) \) is false iff \(\psi \models \psi' \). These formulae use fresh variables \(\overline{q}_i \) for encoding \(g_i(\overline{c}_i) \) and variables \(t \) and \(f \) for encoding true and false. Denote by \(\overline{p} \) and \(\overline{q} \) sequences \(p_1 \ldots p_n \) and \(q_1 \ldots q_m \), and by \(\overline{p}' \) and \(\overline{q}' \) their distinct copies, respectively. Let \(\overline{d}_i \) list the variables of \(\{ p_1, \ldots, p_n \} \) that do not occur in \(\overline{c}_i \). Moreover, let \(\overline{\overline{c}}_i \) be lists of fresh variables of length \(|\overline{c}_i| \). The idea is to describe that whenever a team \(X \) is complete with respect to the values of \(\overline{p} \), then either one of the constraints in \(C \) is falsified or one of the assignments of \(X \) falsifies \(\theta \). We let

\[
\psi := t \land \neg f \land \bigwedge_{i=1}^n (p_1 \ldots p_{i-1} t \subseteq p_1 \ldots p_{i-1} p_i \land p_1 \ldots p_{i-1} f \subseteq p_1 \ldots p_{i-1} p_i),
\] (8.1)
and define
\[\psi' := \exists \psi' \left((\theta_0' \left(\psi'/\theta_0 \right) \land \psi' \subseteq \theta_0 \right) \lor \bigvee_{i=1}^{m} \exists \tau_i \left(\tau_i \subseteq \tau_i q_i \land \tau_i f \subseteq \tau_i q_i \right), \tag{8.2} \]
where \(\theta_0 \) is obtained from \(\theta \) by replacing occurrences of \(q_i(\tau_i) \) with \(q_i \). Above, (8.1) expresses that a team \(X \) is complete with respect to \(\theta \). In (8.2) the first disjunct entails that \(\theta_0 \) is false for some assignment in \(X \), and the second disjunct indicates that some constraint in \(C \) does not hold in \(X \). Furthermore, all disjunctions in (8.2) are essentially Boolean; if a disjunct is satisfied by a non-empty subteam of \(X \), it is likewise satisfied by the full team \(X \). We leave it to the reader to verify that \((\phi, C) \) is false iff \(\psi \) is false.

For the upper bound we refer to Algorithm 3 that was first presented in [11] in the modal logic context. Given a team \(X \) and a formula \(\phi \in \text{QPLInd} \), this algorithm computes deterministically the maximal subset of \(X \) that satisfies \(\phi \). Note that the existence of such a team is guaranteed by the union closure property of \(\text{QPLInc} \) (Proposition 4.3). Given an instance \(\Sigma \cup \phi \) of the entailment problem, the proof idea is now to first universally guess a team \(X \) (possibly of exponential size), and then check using Algorithm 3 whether \(X \) is a witness of \(\Sigma \models \phi \). Since the last part can be executed deterministically in exponential time, the \text{co-NEXPTIME} upper bound follows.

Lemma 8.3. The entailment problem for \(\text{QPLInc} \) is in \text{co-NEXPTIME}.

Proof. Consider the computation of \(\text{MaxSub}(X, \phi) \) in Algorithm 3. We leave it to the reader to show, by straightforward induction on the complexity of \(\phi \), that for all \(X, Y \) over a shared domain \(V \supseteq \text{Fr}(\phi) \) the following two claims hold:

1. \(\text{MaxSub}(X, \phi) \models \phi \), and
2. \(Y \subseteq X \) and \(Y \models \phi \Rightarrow Y \subseteq \text{MaxSub}(X, \phi) \).

Note that \(\text{MaxSub}(X, \phi) \) is the unique maximal subteam of \(X \) satisfying \(\phi \). The idea is that each subset of \(X \) satisfying \(\phi \) survives each iteration step. Since we have \(\text{MaxSub}(X, \phi) \subseteq X \), it now follows directly from (1) and (2) that \(\text{MaxSub}(X, \phi) = X \) iff \(X \models \phi \).

Let us now present the universal exponential-time algorithm for deciding entailment for \(\text{QPL} \). Assuming an input sequence \(\phi_1, \ldots, \phi_n \) from \(\text{QPLInc} \), the question is to decide whether \(\{\phi_1, \ldots, \phi_{n-1}\} \models \phi_n \). The algorithm first universally guesses a team \(X \) over \(\bigcup_{i=1}^{n} \text{Fr}(\phi_i) \) and then using Algorithm 3 deterministically tests whether \(X \) is a counterexample for \(\{\phi_1, \ldots, \phi_{n-1}\} \models \phi_n \), returning true iff this is not the case. Note that \(X \) is a counterexample for \(\{\phi_1, \ldots, \phi_{n-1}\} \models \phi_n \) iff \(\text{MaxSub}(X, \phi_n) \neq X \) and \(\text{MaxSub}(X, \phi_i) = X \) for \(i = 1, \ldots, n-1 \). By the locality principle of \(\text{QPL} \) (Proposition 4.4) this suffices, i.e., each universal branch returns true iff \(\{\phi_1, \ldots, \phi_{n-1}\} \models \phi_n \).

It remains to show that the procedure runs in exponential time. Consider first the running time of Algorithm 3 over an input \((X, \phi) \). First note that one can find an exponential function \(g \) such that at each recursive step \(\text{MaxSub}(Y, \psi) \) the size of the team \(Y \) is bounded by \(|X| g(|\phi|) \). The possible exponential blow-up comes from nested quantification in \(\phi \). Furthermore, each base step \(\text{MaxSub}(Y, \psi) \) can be computed in polynomial time in the size of \(Y \). Also, each recursive step \(\text{MaxSub}(Y, \psi) \) involves at most \(|Y| \) iterations consisting of either computations of \(\text{MaxSub}(Z, \theta) \) for \(Z \subseteq Y \) and a subformula \(\theta \) of \(\psi \), or removals of assignments from \(Y \). It follows by induction that there exists a polynomial \(f \) and an exponential \(h \) such that the running time of \(\text{MaxSub}(Y, \psi) \) is bounded by \(f(|X|) h(|\phi|) \). The overall algorithm now guesses first a team \(X \) whose size is possibly exponential in the input. By the previous
Input: \((X, \phi)\) where \(X\) is a propositional team over \(\text{Fr}(\phi)\) and \(\phi \in \text{QPLInc}\)

Output: \(\text{MaxSub}(X, \phi)\)

1. if \(\phi = \exists p \psi\) then
 2. return \(\{s \in X \mid s(0/p) \in \text{MaxSub}(X[[0, 1]/p], \psi) \text{ or } s(1/p) \in \text{MaxSub}(X[[0, 1]/p], \psi)\}\);
3. else if \(\phi = \forall p \psi\) then
 4. \(Y \leftarrow X[[0, 1]/p];\)
 5. while \(Y \neq \{s \in Y \mid \{s(0/p), s(1/p)\} \subseteq \text{MaxSub}(Y, \psi)\}\) do
 6. \(Y \leftarrow \{s \in Y \mid \{s(0/p), s(1/p)\} \subseteq \text{MaxSub}(Y, \psi)\};\)
 7. end
 8. return \(\{s \in X \mid \{s(0/p), s(1/p)\} \subseteq Y\}\);
9. else if \(\phi = \psi \lor \theta\) then
 10. return \(\text{MaxSub}(X, \psi) \cup \text{MaxSub}(X, \theta);\)
11. else if \(\phi = \psi \land \theta\) then
 12. \(Y \leftarrow X;\)
 13. while \(Y \neq \text{MaxSub}(\text{MaxSub}(Y, \psi), \theta)\) do
 14. \(Y \leftarrow \text{MaxSub}(\text{MaxSub}(Y, \psi), \theta);\)
 15. end
 16. return \(Y;\)
17. else if \(\phi = p\) then
 18. return \(\{s \in X \mid s(p) = 1\};\)
19. else if \(\phi = \neg p\) then
 20. return \(\{s \in X \mid s(p) = 0\};\)
21. else if \(\overline{p} \subseteq \overline{q}\) then
 22. \(Y \leftarrow X;\)
 23. while \(Y \neq \{s \in Y \mid \exists s' \in Y: s(\overline{p}) = s'(\overline{q})\}\) do
 24. \(Y \leftarrow \{s \in Y \mid \exists s' \in Y: s(\overline{p}) = s'(\overline{q})\};\)
 25. end
 26. return \(Y;\)
27. end

Algorithm 3: A deterministic model checking algorithm for QPLInc

reasoning, the running time of \(\text{MaxSub}(X, \phi_i)\) remains exponential for each \(\phi_i\). This shows the claim.

Lemmata 8.3 and 8.2 now show the co-NEXPTIME-completeness of the QPLInc entailment problem. The same lower bound have been shown in [11] to apply already to QPLInc validity. The exact complexity of MLInc validity and entailment however remains an open problem.

Theorem 8.4. The entailment problem for QPLInc is co-NEXPTIME-complete.

Theorem 8.5 [11]. The entailment and the validity problems for MLInc are co-NEXPTIME-hard.
We have examined the validity and entailment problem for various modal and propositional dependence logics (see Table 1). We showed that the entailment problem for (extended) modal and (quantified) propositional dependence logic is co-NEXPSPACE-complete, and that the corresponding validity problems are NEXPSPACE-complete. We also showed that modal logic extended with intuitionistic disjunction is PSPACE-complete with respect to its satisfiability, validity, and entailment problems, therefore being not more complex than the standard modal logic. Furthermore, we examined extensions of propositional and modal logics with independence and inclusion atoms. Quantified propositional independence logic was proven to be co-NEXPSPACE-complete both in terms of its validity and entailment problem. For quantified propositional inclusion logic the validity and entailment problems were shown to be EXPTIME-complete and co-NEXPSPACE-complete, respectively. Using standard reduction methods we established the same lower bounds for modal independence and inclusion logic, although for validity of modal inclusion logic a higher lower bound of co-NEXPSPACE is known to apply. However, we leave determining the exact complexities of validity/entailment of MLInd and MLInc as an open problem. It is plausible that solving these questions will open up possibilities for novel axiomatic characterizations.

Table 1: Summary of results. The stated complexity classes refer to completeness results, except that the prefix "≥" refers to hardness results.

<table>
<thead>
<tr>
<th></th>
<th>satisfiability</th>
<th>validity</th>
<th>entailment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>NP [2, 21]</td>
<td>co-NP [2, 21]</td>
<td>co-NP [2, 21]</td>
</tr>
<tr>
<td>ML</td>
<td>PSPACE [20]</td>
<td>PSPACE [20]</td>
<td>PSPACE [20]</td>
</tr>
<tr>
<td>ML(\emptyset)</td>
<td>PSPACE [27]</td>
<td>PSPACE [Thm. 6.3]</td>
<td>PSPACE [Thm. 6.3]</td>
</tr>
<tr>
<td>PDL</td>
<td>NP [22]</td>
<td>NEXPSPACE [25, 27], [Thm. 4.6]</td>
<td>co-NEXPSPACE [Thm. 6.1]</td>
</tr>
<tr>
<td>QPDL, MDL, EMDL</td>
<td>NEXPSPACE [25, 18], [Thm. 4.6]</td>
<td>co-NEXPSPACE [Thm. 7.4]</td>
<td>co-NEXPSPACE [Thm. 7.4]</td>
</tr>
<tr>
<td>QPLind</td>
<td>NEXPSPACE [18]</td>
<td>$\geq\text{co-NEXPSPACE}$ [Cor. 7.5]</td>
<td>$\geq\text{co-NEXPSPACE}$ [Cor. 7.5]</td>
</tr>
<tr>
<td>QPLinc</td>
<td>EXPTIME [12], [Thm. 4.6]</td>
<td>EXPTIME [Thm. 8.4]</td>
<td>co-NEXPSPACE [Thm. 8.4]</td>
</tr>
</tbody>
</table>

9. Conclusion

We have examined the validity and entailment problem for various modal and propositional dependence logics (see Table 1). We showed that the entailment problem for (extended) modal and (quantified) propositional dependence logic is co-NEXPSPACE-complete, and that the corresponding validity problems are NEXPSPACE-complete. We also showed that modal logic extended with intuitionistic disjunction is PSPACE-complete with respect to its satisfiability, validity, and entailment problems, therefore being not more complex than the standard modal logic. Furthermore, we examined extensions of propositional and modal logics with independence and inclusion atoms. Quantified propositional independence logic was proven to be co-NEXPSPACE-complete both in terms of its validity and entailment problem. For quantified propositional inclusion logic the validity and entailment problems were shown to be EXPTIME-complete and co-NEXPSPACE-complete, respectively. Using standard reduction methods we established the same lower bounds for modal independence and inclusion logic, although for validity of modal inclusion logic a higher lower bound of co-NEXPSPACE is known to apply. However, we leave determining the exact complexities of validity/entailment of MLInd and MLInc as an open problem. It is plausible that solving these questions will open up possibilities for novel axiomatic characterizations.

References

