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ABSTRACT. The height of a piecewise-testable language L is the maximum length of the
words needed to define L by excluding and requiring given subwords. The height of L
is an important descriptive complexity measure that has not yet been investigated in a
systematic way. This article develops a series of new techniques for bounding the height of
finite languages and of languages obtained by taking closures by subwords, superwords and
related operations.

As an application of these results, we show that FO?(A*, =), the two-variable fragment
of the first-order logic of sequences with the subword ordering, can only express piecewise-
testable properties and has elementary complexity.

1. INTRODUCTION

For two words v and v and some n € N, we write u ~, v when u and v have the same
(scattered) subwords® of length at most n. A language L C A* is piecewise-testable if it is
closed under ~,, for some n € N.

Piecewise-testable (PT) languages were introduced more than forty years ago in Imre
Simon’s doctoral thesis (see [Sim72, Sim75, SS83]) and have played an important role in the
algebraic and logical theory of first-order definable languages, see [Pin86, DGKO08, Kli11] and
the references therein. They also constitute an important class of simple regular languages
with applications in learning theory [KCMO08], databases [BSS12], linguistics [RHF*13], etc.
The concept of PT languages has been extended to richer notions of “subwords” [Zet18],
to trees [BSS12], infinite words [PP04, CP18], pictures [Mat98], or any combinatorial well-
quasi-order [GS16].
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When a language L < A* is PT, we further say that it is “n-PT” if it is closed under ~,,,
and the smallest such n is called the PT height of L, denoted h(L) in this article.

The height of piecewise-testable languages is a natural measure of descriptive complexity.
Indeed, h(L) coincides with the number of variables needed in a BY; formula that defines
L [DGKO8]. In this article, the main question we address is “how can one bound the height
of PT languages obtained by natural language-theoretic operations?” Since the height of
these languages is a more robust measure than, say, their state complexity, it can be used
advantageously in the complexity analysis of problems where PT languages are prominent.
As a matter of fact, our results apply to, and were motivated by, open problems in the
complexity analysis of a logic of subwords, see Section 7.

Related work. The height of PT languages has been used to measure the difference between
separable languages, see e.g. [HM15]. Deciding whether a DFA or a NFA A recognises a
n-PT language is coNP-complete or PSPACE-complete respectively (see [MT17] and the
references therein). The methods underlying these algorithms usually provide a bound on
h(L) in terms of A: Klima and Poldk showed that h(L) is bounded by the maximal length of
a simple path from an initial to a final state in A [KP13]. The currently best bounds on h(L)
based on automata for L have been obtained by Masopust and Thomazo [MT15, Mas16].

When L is obtained by operations on other languages, very little is known about PT
heights. It is clear that h(A* \ L) = h(L) and that h(L u L) < max(h(L),h(L")) but
beyond boolean operations, quotients, and inverse morphisms, there are very few known
ways of obtaining PT languages.

Our contribution. We provide upper and lower bounds on the PT height of finite languages
and on PT languages obtained by downward-closure (collecting all subwords of all words
from some L), upward-closure, and some related operations (collecting words in L that are
minimal wrt the subword ordering, etc.) We also show that the incomparability relation
preserves piecewise-testability and we bound the PT heights of the resulting languages.
Crucially, we show that these bounds are polynomial when expressed in terms of the PT
height of the arguments. One important tool is a small-subword theorem that shows how
any long word u contains a short subword u’' that is ~,-equivalent. Reasoning about
subwords involves ad hoc techniques and leveraging the small-subword theorem to analyse
downward-closures or incomparability languages turns out to be non-trivial. Subsequently,
all the above results are used to prove that FO?(A*, =), the two-variable logic of subwords,
has elementary complexity. For this logic, the decidability proof in [KS15] did not come
with an elementary complexity upper bound because the usual measures of complexity for
regular languages can grow exponentially with each boolean combination of upward and
downward closures, and this is what prompted our investigation of PT heights.

Outline of the article. Section 2 recalls the basic notions (subwords, Simon’s congruence, etc.)
and gives some first bounds relating PT heights and minimal automata. Section 3 focuses on
finite languages and develops our main tool: the small-subword theorem. Sections 4 and 5
give bounds for the height of PT languages obtained by upward and downward closures, while
Section 6 considers the incomparability relation and the resulting PT heights. Finally, in
Section 7 we apply these results to the complexity of FO?(A*, =). In passing, we characterise
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the expressive power of the FO2(A”‘7 C) logic, or equivalently of its quantifier-free fragment,
via new notions of subword-recognizable and piecewise-testable relations on words.

2. BASIC NOTIONS

We consider finite words u, v, ... over a given finite alphabet A of letters like a,b,.... Con-
catenation of words is written multiplicatively, with the empty word ¢ as unit. We freely
use regular expressions like (ab)* + (ba)* to denote regular languages.

The length of a word w is written |u| while, for a letter a € A, |u|, denotes the number
of occurrences of a in u. The set of letters that occur in u is denoted by «(u). The set of all
words over A is written A* and for £ € N we use A=f and A<’ to denote the subsets of all
words of length ¢ and of length at most ¢ respectively.

A word v is a factor of u if there exist words u; and wus such that v = wjvug. If
furthermore u; = € then v is a prefiz of v and we write v~ u to denote the residual us. If
up = € then v is a suffir and wv~" is the residual.

2.1. Subwords and superwords. We say that a word u is a subword (i.e., a subsequence)
of v, or equivalently that v is a superword of u, written v & v, when w is some a; - - - a,, and
v can be written as vgaiv; - - - a,v, for some vy, vy, ..., v, € A*, e.g., € & bba = ababa.

We write u = v for the associated strict ordering, where u # v. Two words v and v are
incomparable (with respect to the subword relation), denoted v L v, if v & v and v & w.
Factors are a special case of subwords.

With any u € A* we associate the upward and downward closures, Tu and |u, given by

Tud:Cf{veA*\uEv}, lu(iZCf{veA*|vEu}.

(Formally, one should write 1 4u since the definition depends on the alphabet at hand, but we
will leave A implicit: it will always be clear from the context.) For example, |ab = {ab, a,b,c}
and Tab = A*aA*DA*.

This is generalised to the closures of whole languages, via 1L = |
Uuer Lu. The Kuratowski closure axioms are satisfied:

1o=2, LetL=11L, t(JL) =t t()10) =1L,

Tu and |L =

uel

and similarly for downward closures. We say that a language L is upward-closed if L = 1L,
and downward-closed if L = |L. Note that a language is upward-closed if, and only if, its
complement is downward-closed.

A variant of the closure operations is based on the strict ordering: we let

T<’U,d=ef{v|UI:U}v T<Ld:€fUT<u’ l<ud:e£{v|’(}|:u}, l<Ld:erl<u,

uel uel
While these are not closure operations, the languages 1 _L and | _L are upward-closed and
downward-closed, respectively. Since upward-closed and downward-closed languages are
regular (Haines Theorem [Hai69], also a corollary of Higman’s Lemma [Hig52]) we conclude
that 1L, |L, 1L and | _L are regular for any L.
Finally we further define

I(L)dzef ueA* |Jve L:u L v}.
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Thus I(L) collects all words that are incomparable with some word in L. For example,
I(a*b*) = A* and I((aaa)™) = A* \ a*.

2.2. Recognizable and rational relations over words. Recall that a binary relation
R < A*x A* is rational if it can be defined via an (asynchronous nondeterministic) transducer
or, equivalently, via a regular expression using elements of A* x A*, unions, concatenations
and Kleene stars, see, e.g. [Ber79, Chap. 3] or [Sak09, Chap. 4]. It is well-known that, while
Rat(A* x A*) is (effectively) closed under composition —as well as union, concatenation,
and Kleene star,— it is not closed under complement or intersection.

For example, we can define equality over A* as well as the subword relations (strict and
non strict) via the following regular expressions:?

e (q H) o (q HE H) e — (L,i H) e (21)

Since E 4% and =4+ can even be defined by deterministic transducers, we deduce that their
complements, & 4% and O- 4=, are rational. Finally, let us mention the following result:

Proposition 2.1 [KS15]. The incomparability relation L4+ < A* x A* is rational. Conse-
quently I(L), i.e., the image of L by L ax, is effectively reqular for any regular L.

We note that proving Proposition 2.1 cannot rely on the characterisation 1 g+ =
4+ N P4+ since the intersection of two rational relations is in general not rational, even
when the two relations are given by deterministic transducers.

The rational relations over A* encompass the special case of the recognizable relations.
Recall that R € A* x A* is recognizable —in the standard way, i.e., “by some morphism to
a finite monoid”— if it is a finite union R = Ly x L} U -+ U Ly, x L/ of cartesian products
where all L;’s and L/’s are regular languages over A. Recognizable relations are rational but
the converse does not hold, for example, the equality relation =4« is not recognizable. We
shall use the well-known and easy-to-see fact that Rec(A* x A*) is (effectively) closed under
boolean operations.

2.3. Simon’s congruence. For n € N and u,v € A*, we let

U ~p U BN lun AS™ = v n AS™ . (2.2)

In other words, u ~,, v if u and v have the same subwords of length at most n. For example
abab ~1 aabb (both words use the same letters) but abab %9 aabb (ba is a subword of abab,
not of aabb). Note that v ~¢ v for any u,v, and u ~, u for any n. We write [u], for
the equivalence class of u € A* under ~,. Note that each ~,, for n = 1,2,..., has finite
index [Sim75, SS83].
We further let

usnvgtwvnv/\u;v. (2.3)
Note that <, is stronger than ~,,. Both relations are (pre)congruences: u ~,, v and u' ~, v’
imply uu' ~, vv', while v <, v and v <, v imply uu’ <, vv’. The equivalence ~,,
introduced in [Sim72], is called Simon’s congruence of order n.

2The expression for C 4% uses the concatenation, denoted R - R’, of relations, not their composition Ro R’.
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The following properties will be useful:

Lemma 2.1. For all u,v,v' € A* and a,be A:

(1) If u <p v then u ~p w for all we A* such that u E w E v;

(2) When n >0, u ~y, wv if, and only if, there exists a factorization u = ujusg - - u, such
that a(u1) 2 a(uz) 2 -+ - 2 a(uy) 2 a(v);

(3) If uav ~p, ubv’ and a # b then ubav ~, ubv’ or uabv’ ~,, uav (or both);

(4) If u ~y, v then there exists w € A* such that u <, w and v <, w;

(5) Ifu ~, v and |u| < |v| then there exists some v' with [v'| = |u| and such that u ~, v' E v;

(6) If uv ~yn uav then uv ~, uav for all £ € N;

(7) Every equivalence class of ~, is a singleton or is infinite.

Proof. (1) is by combining Eq. (2.2) with |u € |w € |v; (2-4) are Lemmas 3, 5, and 6
from [Sim75]; (5) is an immediate consequence of Theorem 4 from [Sim72, p. 91|, showing
that all minimal (wrt. £) words in [u], have the same length —see also Theorem 6.2.9 from
[SS83]; (6) is in the proof of Corollary 2.8 from [SS83]; (7) follows from (1), (4) and (6). [

2.4. Piecewise-testable languages. A language L € A* is piecewise-testable (or PT) if
it if closed under ~,, for some n (and then we say that it is n-piecewise-testable, or n-PT).
Note that if L is n-PT, it is also m-PT for any m > n. We write h(L) for the smallest n
—called the height of L— such that L is n-PT, letting h(L) = c0 when L is not PT. Finally,
we write PT for the class of piecewise-testable languages (over some alphabet A) and PT,
for the class of languages with height at most n, so that PTg < PT; < ---PT, < ---PT
form a hierarchy of varieties of regular languages.

Fact 2.2 (Alternative characterisations of PT and n-PT languages). Let L < A*. The

following are equivalent:

(1) L is n-PT (i.e., closed under ~,);

(2) L is a finite union [uy]n U [uz]n U -+ U [um]n of ~n classes;

(3) L is a finite boolean combination of principal filters A*a;A*agA* - agA* (i.e., of
closures Tajag - -+ ay) with £ < n;

(4) L is definable in the BL1[<] fragment® of first-order logic over words, via a formula
involving only n variables [DGKOS].

The following are equivalent:

(5) L is PT;

(6) L is recognised by a finite and J-trivial monoid [Sim75, ST88, HP0O, Kli11];

(7) L is regular and its minimal DFA is partially ordered and satisfies the UMS prop-
erty [Sim75, Tra01];

(8) L is regular and its minimal DFA is acyclic and locally confluent [KP13].

The characterisations (3), (4), (7) and (8) are useful for showing that a language is PT
—or even n-PT in the case of (3) and (4)—. For example, with alphabet A = {a,b, ¢}, the
language a*b* can be defined via required and excluded minors, as in:
+b*

u€ea — aCuArbatuncku. (2.4)

3That is, the boolean closure of the existential fragment.
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This definition of a*b* directly translates into a BY; formula, or into a finite boolean
combination of filters:

ath* = ta~ tha ~ Tc = A*aA* ~ A*bA*aA* ~ A*cA* . (2.5)

Furthermore, since the minors in Eq. (2.4) have length at most 2 (they are a, ba, and ¢), we
conclude that h(a™b*) < 2.

The characterisations (7) and (8) are also useful for showing that a language is not PT
(see examples in Section 2.6 below). Finally (1) is very useful for showing that a language
is not n-PT for a given n: by exhibiting two words uw ~,, v such that v € L and v ¢ L, one
proves that L is not saturated by ~,. E.g., one sees that a™b* is not 1-PT since ab ~1 ba
while only ab is in a™b*. We may now conclude that h(a™b*) = 2.

Some examples of (families of) PT languages are:

All finite languages: u ~, v and n > |u| imply v = v. Thus [u], = {u} and any
L ={uy,...,upm} S A" can be expressed as L = [u1], U U [tm]n. By characterisation
(2), L is PT.

All upward-closed languages: By Haines Theorem [Hai69, High2], any language L < A*
has finitely many minimal elements (wrt =), i.e., min(L) is some {u,...,uy}. This
entails 1L = Tuy U -+ U Ty, which is PT by characterisation (3).

All downward-closed languages: They are the complements of upward-closed languages,
hence PT again by characterisation (3).

In sections 3, 4 and 5 respectively, we analyse the PT heights of languages belonging to the
above three families.

2.5. Piecewise-testable relations. Following the generic pattern laid out in [GS16], we
say that a relation R € A* x A* is piecewise-testable if it is a finite boolean combination
of principal filters 1(u,v) in the product ordering (A* x A*, £ x £). The relation is n-
PT if the boolean combination only uses filters 1(u,v) with |(u,v)| < n, where we define
def

|(w,0)] = max(Jul, v]).

Since 1(u,v) = (Tu) x (Tv), we see that piecewise-testable relations are recognizable.
Using

(A" x A*) N M(u,v) = (A" N tu) x A" U A* x (A" < 1)
= (=Tu) x Te U e x (=1v)

and de Morgan’s laws, we further see that a finite boolean combination of filters 1(u,v) can
be written as some | J; [;(£1ui;) x (£1vi5), i.e., Ul((ﬂ] 1w ) < (N +1v;;)). Finally,
any n-PT relation can be written under the form R = Ly x L}y u---uU Ly, x L), where all L;’s
and L}’s are n-PT languages. Hence PT relations form a subclass, denoted PT(A* x A*)

of Rec(A* x A*). We shall not use PT relations until Section 7 and, for the moment, keep
focused on PT languages.
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2.6. Closure properties of PT languages. By definition (see Fact 2.2), any class PT,,
is closed under boolean operations. Furthermore, PT,, is also closed under (left and right)
quotients and under inverse morphisms [Thé81]. In terms of PT height, the above statements
can be written as

(UL) max {h(L:)}: , (ﬂL) max {h(L;)}i , h(=L) = h(L), (2.6)

h(pfl(L)) < h(L) for p: A* — B* a morphism, h(u'Lo™')y < h(L). (2.7)

Note that we can allow arbitrary unions and intersections in Eq. (2.6) since, for fixed A,
there are only finitely many languages in PT,,.

Let us also mention that PT,, is closed under taking mirror images: writing &ias - - - ay
for the mirror word ay - - - agay, and letting L = {w | uwe L} for a language L < A*, one
has h(T) = h(L).

Beyond that, PT is not closed under any of the usual language-theoretic operations as
we now illustrate.

Concatenation and prefixing: a(a + b)* is not PT: it is not closed under any ~ since
it contains (ab)® but not b(ab)¥ while (ab)* ~y, b(ab)*.* Since (a + b)* is PT, we see that
the class PT is not closed under concatenation, even in the special case of prefixing with
a.

Kleene star: PT is not closed under Kleene star (recall that PT is a subvariety of the star-
free languages): aa is finite hence PT but (aa)* is not PT since its minimal automaton
is not acyclic.

Shuffle product: ab* and a* are PT but their shuffle product ab* LW a* = a(a + b)* is not
as just shown, see [HS19] for PT shufflings.

Conjugacy Recall that the conjugates of u are u def {uguy | u = ujue}, and we extend
with L = Uwer @ Now L = ac(a + b)* is PT but L = (a+b)*ac(a + b)* + c(a + b)*a is
not.

Renaming: c(a + b)* is PT but applying the renaming ¢ +— a yield a(a + b)* which is not.

Erasing one letter: This operation can be seen as the inverse of L — L LI A where an
arbitrary letter is inserted at an arbitrary position. Now ac(a + b)* is PT but erasing
one letter yields (a + ¢ + ac)(a + b)* which is not PT.

Finally, we are only aware of one more positive instance of a closure property, “I(L) is
PT when L is”, but proving this is the topic of Section 6.

2.7. Relating PT height and state complexity. For regular languages, a standard
measure of descriptive complexity is state complexity, denoted sc(L), and defined as the
number of states of the minimal DFA for L [Yu05].

The bounds given in Egs. (2.6) and (2.7) let us contrast the height of a PT language
with its state complexity. If L is a PT language, one has h(L) < sc(L) (equality occurs
e.g. when L = {a'}) since sc(L) bounds the depth of the minimal automaton for L, i.e., the
maximum length of a simple path from the initial to some final state, which in turns bounds
h(L) [KP13, MT15].

In the other direction, we can prove

4An alternative proof is by observing that the minimal automaton for (a + b)*a —the mirror language—
is not acyclic.
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Theorem 2.3. Let A be an alphabet of size k with k > 1. Suppose L < A* is n-PT. Then
the minimal DFA for L has at most m states,® where

n+2k—3
1 B A B e
ogm ( -

Here log means log to the base 2. Thus, for fized k, sc(L) is 20" " 1en) " yhere n = h(L).

k—1
> lognlogk .

Proof. Write L under the form L = [ui]y, U -+ U [um]n and consider the ~,,-canonical
DFA, i.e., the DFA A = (Q, A, 1, ., F) whose states are all classes [w], for w € A* and with
transitions given by [w],.a = [wa],. With initial state i = [g],, this automaton reaches

[w],, upon reading w. With accepting states F' = {[u1]n, - ., [tm]n}, it recognises exactly L.
In [KKS15] we showed that the number of equivalence classes of ~, i.e., |@|, is bounded by
m. This in turns bound sc(L). ]

The general situation is that h(L) can be much smaller than sc(L) as we shall see
in the following sections. More importantly, PT height is a more robust measure than
state complexity. For example, state complexity can increase exponentially when building
boolean combinations of regular languages (while PT height does not increase). This
classic phenomenon occurs even when we restrict to PT languages, and even if we use
nondeterministic state complexity, see the examples in [KNS16]. This is not limited to
boolean operations: for example, we saw that h((f) = h(L) but sc((f) cannot be bounded
by a polynomial of sc(L), even in the case of finite, hence PT, languages [SWY04].

3. PT HEIGHT OF WORDS AND THE SMALL-SUBWORD THEOREM
Our starting point is an analysis of the PT height of single words. It is clear that any single-
ton language {u} is PT since {u} = Tu ~\ ,equyua T, which entails h({u}) < [u| + 1. Here
we used a shuffle product notation, {u} LU A, to denote {v : u E v A |v| = |u|+1}, i.e., the set

of all words obtained from u by inserting, at some position, one letter from A. Below we of-
ten omit set-theoretical parentheses when denoting singletons, writing e.g. “h(u)” or “utuA”.

The |u| + 1 upper bound for h(u) is tight. For example,
h(a) =0+1. (3.1)
(To see that h(a’) > £, one notes that a’ ~, a**1.) However, words on more than one letter
can generally be described within some PT height lower than their length. For example
{aabb} = (taa N 1bb) \ (tba U taaa L 1bbb) ,

showing h(aabb) < 3. (Note that h(aabb) > 2 since aabbb ~9 aabb, thus h(aabb) = 3.)

It turns out that the PT height of words can be much lower than their length as we
shall see in section 3.1, but before considering lower bounds on h(u), let us make some easier
observations.

Proposition 3.1. The PT-height of a word can be computed in polynomial time.

51t is shown in [MT15, MT17] that the depth (not the size) of the minimal DFA is bounded by (":k) -1



Vol. 15:2 THE HEIGHT OF PIECEWISE-TESTABLE LANGUAGES 6:9

Proof. Following [SS83], we let d(v,v) e max{n | v ~, v'} for any two words v,v’ € A*.

We now claim that
h(u) =1+ max{d(u,v) | veuws A} . (3.2)
To prove the claim, we note that u # v entails 6(u,v) < h(u) since, by definition of h(u),
U ~p(y) v entails u = v. In the other direction, let n = h(u)—1 so that [u], is not a singleton.
Then [u]y, is infinite (Lemma 2.1 (7)) and in particular contains some word w with v = w
(Lemma 2.1 (4)). In fact [u],, contains all words between v and w (Lemma 2.1 (1)) hence
some w’ € ull A. Thus the right-hand side of (3.2) is at least 1 + §(u,w’), i.e., at least
n+ 1= h(u).
We have thus reduced the computation of h(u) to polynomially many d(u,v) computa-
tions and now rely on the fact that § can be computed in polynomial time [Sim03].° []

Proposition 3.1 can be used to compute the PT height of finite languages in polynomial
time: for such languages, the inequality in Eq. (2.6) becomes

h({u1,...,um}) = max{h(ui),...,h(um)} . (3.3)

Indeed, h({ui,...,um}) = n implies [u;],  {u1,...,un} for any i. Thus [u;], is a singleton
in view of Lemma 2.1 (7). Hence [u;], = {u;} and h(u;) < n.

3.1. Words with low PT height. We introduce a family of words with “low PT height”
that will be used repeatedly in later sections. Let Ay = {a1,...,ar} be a k-letter alphabet.
We define a word Uy, € AF by induction on k and parameterized by a parameter A € N. We

def
let Uy = € and, for k > 0, Uk = (U;.C 1a;) Up_1. For example, for A\ = 3 and k = 2, one
has Uy = a‘fagai’aga‘fagaif = 01a10109201041010201010410201010].

The rest of Section 3.1 establishes the following bounds for any k, A € N:
Ukl = A+ 1)F =1, h(Ug) = kX +1, (LU = XA+ 1Dt 41, (3.4)

The first equality, |Ux| = (A + 1)¥ — 1, is easily seen by induction on k.
To show h(Uy) = kA+1 we use some auxiliary languages Py, N < A} defined inductively
by the following expressions:

Py € e}, No ¥ g, (3.5)
and, for k > 0,
def d f
P, = Zak Py -ap S ap™ + Zak Ny_1-a}™" (3.6)
=0

The words in P, and Nj are used as positive, and respectlvely negative, constraints in the
following claim.

Claim 3.2. For any k€ N and u € Aj:
(/\UEU)A(/\U}EU)(:)UZU]C. (3.7)
UEPk weNk

61t is also possible to directly compute h(u) in time and space O(|h| - |A|) by adapting the techniques
used in [FK18], where the goal is to compute a canonical ~,-equivalent for wu.
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Proof. By induction on k. For k = 0, Ay is empty and there is only one word in Af, namely
u = Uy = . It satisfies the positive constraint ¢ C u (from FPp) and there are no negative
constraints in Ng.

Assume now that & > 0 and that the claim holds for £ — 1. We prove the left-to-right
implication: Since Py is not empty, the Pj constraints a}%vaiii C w imply that |ulq, = A
However the N} constraint ai“ & u implies that u contains exactly A occurrences of aj and
can be written u = voagviay - - - apvy with v; € Ay foralli=0,..., A

Consider some fixed v;: for any v € Pr_q it holds that v = v; since akvaz Cou.
Similarly w & v; for any w € Ng_1 since a’,’%wa?ii £ u. The induction hypothesis now yields

= Ug_1, thus u = Up_1a,Uk_1 - - - aUg_1 = Ug. The right-to-left implication should now
be clear and can be left to the reader. L]

Claim 3.2 entails h(Uy) < kA + 1 since the words in Py have length kX and the words in

Ni have length at most kA + 1.

It remains to show that h(Uy) > kA, i.e., that {Uy} is not closed under ~y. For this
we factor U, under the form

U, = (Uk_lak))‘(Uk_gak_l))‘(Uk_gak_g)A e (U0a1)>\ . (3.8)

Using Lemma 2.1 (2), this factorization in kX factors involving decreasing alphabets proves
Ui ~kx Urar and concludes the proof of the second equality in Eq. (3.4).

To prove the third equality in Eq. (3.4), we write Ly for |Ug|s, and note that Ly =
(A+1)Lg—1 when k > 1.

Claim 3.3. For any k,r € N and u € A}, if u © U, then h(u) <1+ rL;.

Proof. By induction on k. For k < 1, u = U] = a’iLk requires u = af with £ < rL. Eq. (3.1)
then gives h(u) =1+ ¢ <1+ rL.

So assume k > 1. Let m = |u|,, and factor u as uparuiay . ..arum so that u; € A7,
for all i = 0,...,m. We then derive a PT-characterisation of u from PT-characterisations of
the u;’s: w is the only word in A* that satisfies

ap’ CuAak+1$uA/\ /\ (apwa] " Eu = wE ). (3.9)
weASh()

We deduce that h(u) < max(m+1,m+h(ug),...,m+h(uy)) = m+max(1, h(ug), ..., h(upm)).

Now recall that v has m occurrences of aj while U] has r(X 4+ 1). This implies that any
u; in the decomposition of u is a subword of U] | for ' = r(\ + 1) — m, so, by induction
hypothesis, h(u;) < 1+ 1'Li_1. Assuming k > 1, we thus have

h(u) <Km+1+7"Lgy=m+1+[r(A+1) —m]Lg_y
=14+m[l—Ligq]+r(AN+1)Li_1 <1+rLg,

establishing the claim. []
Corollary 3.4. h(lU]) = 1 4 rLy, and thus in particular, h({Uy) = 1 + Ly,.

Proof. Since |U} is finite, Claim 3.3 and Eq. (3.3) entail h(lU]) < 1 4 rLj. On the other
hand, /™ € |U7. Hence h(JU}) = h(a}™*) = 1+ rLy. H
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3.2. Rich words and rich factorizations. Assume a fixed k-letter alphabet A. We say
that a word w is rich if a(u) = A, i.e., the k letters of A all occur in u, and that it is poor
otherwise. For £ € N, we further say that w is ¢-rich if it can be written as a concatenation
u =11 ---reu’ where the ¢ factors rq,...,r, are rich.

The richness of u is the largest £ € N such that u is ¢-rich. Note that having |u|, = ¢
for all letters a € A does not imply that u is ¢-rich.

Lemma 3.5. If u; and us are respectively (1-rich and fy-rich, then v ~, v' implies
!
ULVU2 ~ ) 4n4ly ULV U2.

Proof. A subword x of ujvus can be decomposed as © = x1yxo where x; is the longest prefix
of x that is a subword of w1 and x5 is the longest suffix of the remaining xl_lx that is a subword
of ug. Thus y T v since x = ujvug. Now, since u; is ¢1-rich, we have |z1| = min(¢y, |z|),
and similarly |z2| > min(fy, |27 z|). Finally |y| < n when |z| < 1 +n + £o, and then y = o/
since v ~,, v/, entailing © = ujv'us. A symmetrical reasoning shows that subwords of ujv'us
of length < £1 + n + 5 are subwords of ujvus and we are done. O]

The rich factorization of u € A* is the decomposition u = uja - - - Uma,,v defined by
induction in the following way: if u is poor, we let m = 0 and v = u; otherwise w is rich, we
let uja; (with a; € A) be the shortest prefix of u that is rich and let ugasg - - - upamv be the
rich factorization of the remaining suffix (uja;)~'u. By construction m is the richness of u.
E.g., assuming k = 3 and A = {a, b, ¢}, the following is a rich factorization with m = 2:

u ul v

u2

, % — - —
bbaaabbccccaabbbaa = bbaaabb - ¢ - ‘cccaa - b - bbaa
Note that, by construction, uq,...,u, and v are poor.

Lemma 3.6. Consider two words u,u’ of richness m and with rich factorizations u =
ura - Umamv and v’ = ulay - ul,a,v’. Suppose that v ~, V' and that u; ~n41 u} for all
i=1,...,m. Then u ~nim u'.
Proof. Since each factor w;a; is rich, one gets
/ / /
ULa1U2G2 * - - UM AmV ~pi4m ULA1U2A2 * * - UmAmU ~pni4m U1A1U9A2 - UmAQmU
/ / / / / / /
~odm t Spdm W A1USAD ¢ Uy GV S, WG URA2 ¢ Uy GV

by repeated uses of Lemma 3.5. O]

3.3. The small-subword theorem. Our next result is used to prove lower bounds on the
PT height of long words. It will be used repeatedly in the course of this article.
For k =1,2,... define fr : N — N by induction on k with

filn) =n, (3.10)
fra1(n) = oinn%i(n(mfk(n +1—m)+m+ fr(n—m)). (3.11)

x

In the rest of the article, we shall simplify statements involving the fx(n) bound by
relying on the following bound (proved in the Appendix):

frln) < (%H)k—l < (%Jrz)k. (3.12)
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Theorem 3.7 (Small-subword Theorem). Let k = |A|. For all u € A* and n € N there
exists some v € A* with v <, w and such that |v] < fr(n).

Proof. By induction on k, the size of the alphabet.

With the base case, k = 1, we consider a unary alphabet A = {a} and u is al“l. Now
at ~, wiff £ = |u] <n or n < min(4,|ul). So taking v = a’ for £ = min(n, |u|) proves the
claim.

When k£ > 1 we consider the rich factorization v = uwjaiugas - - umamu’ of u. Let
n' = max(n+1—m,1). Every u; is a word on the subalphabet A\ {a;}. Hence by induction
hypothesis there exists v; & u; with |v;| < fr_1(n’) and v; ~, w;, entailing w;a; ~, v;a;.
Similarly, the induction hypothesis entails the existence of some v’ & u’ with v/ ~,/_1 v/ and
|v'| < frx—1(n’ —1). Note that in these inductive steps we use a length bound obtained with
fr—1 by using the fact that uq,...,u,, and v/, being poor, use at most k — 1 letters from A.

We now consider two cases. If m < n — 1, we let v = viay - - Vmamv’, so that v C u
and |v] < mfr_1(n') + m + fr_1(n’ —1). We deduce |v| < fi(n) using Eq. (3.11) and since
n' =n+1—m. That v ~, u, hence v <, u, is an application of Lemma 3.6: via - - - VG’
is indeed the rich decomposition of v since n’ = 2, v/ ~,y_1 v/, and v; ~,y u; fori =1,...,m.

If m > n, then w is n-rich and its subwords include all words of length at most n. It
is easy to extract some n-rich subword v of u that only uses kn letters. Now v ~,, u since
both w and v are n-rich, entailing v <, u. One also checks that |v| = kn < fi(n). ]

Note that the bound f(n) in Theorem 3.7 does not depend on w.

We can already apply the small-subword theorem to the case of finite languages.

Proposition 3.8 (Finite languages). Suppose L € A* is finite and nonempty with |A| = k.
Let € be the length of the longest word in L. Then k(¢ + 1)Y* —2k +1 < h(L) < £+ 1.

Proof. Thanks to Eq. (3.3), it is enough to consider the case where L = {u} is a singleton.
So assume h(L) = h(u) = n and |u| = ¢. The small-subword theorem says that u ~, v
for some short v but necessarily v = w since [u],, is a singleton, hence ¢ < fr(n). Using

Eq. (3.12) one gets ¢ < fr(n) < (%)k — 1. This gives n > k(£ + 1)V/* — 2k + 1 as

announced. The upper bound h(L) < ¢ + 1 was observed earlier. ]
Remark 3.9 (On Tightness). We already noted that the ¢ + 1 upper bound is tight. The
lower bound is quite good: for Uy seen above, £ = (A + 1)* — 1, so that £ < (%)%C -1
gives n = h(Uy) = kXA — k + 1 while we know h(Uy) = kX + 1. []

Finding tight bounds for the trade-off between word length and PT-height is an inter-
esting open problem. The existing gap in Proposition 3.8 can be narrowed at one end by
improving the small-subword theorem and, at the other end, by discovering words with
small PT-height as a function of their length. In this direction, we note that our Uy words
provably do not hold the record: for example, for k = 3 and w = a3b*a?cta*cb®c3p? =
aaabbbbaaccccaaaacbbbeecbb, we have |w| = 26 and h(w) = 6, to be compared with |Us| = 26
and h(Us) = 7 when A = 2.
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4. UPWARD CLOSURES

Recall that 1L is PT for any L < A*. Related languages are 1_L (used in Section 7) and

min(L) def {ue L |VveL:vd u}. This section provides bounds on the PT height of these

languages as a function of L.
We first note that, in the special case where L is a singleton, the PT height of 1L and
I(L) always coincide with word length:”

Proposition 4.1. For any u e A*

ul i [A] =2,

. (4.1)
0 otherwise.

h(tu) = ful h(I(u)) = h(Tu v lu) = {
Proof. Let ¢ = |u|. Obviously h(1u) < ¢ and the point is to prove h(tu) > ¢ — 1. For this
we assume £ > 0 and write u = a7 - - - ap. With each letter a € A we associate a word 7, of
length |A| that lists all the letters of A exactly once and ends with a. E.g. m, = acdb works
when A = {a,b,c,d}. Let now v = 7y, g, - - T, , and v" = v - ap. Then v ~,_; v’ since v
has all subwords of length £ — 1. However u & v and u £ v’ hence 1u is not closed under
~p1-

Now for I(u), we note that h(I(u)) < max(h(tu),h(|_ u)) since I(u) = A*\ (Tuu | u),
and that max(h(fu),h(}.u)) = £ since h(Tu) = ¢ and since all the finitely many words in
l <u have length at most £ — 1. To show h(I(u)) > ¢ —1 when |A| > 2, we assume ¢ > 1 and
use v and v" again: v’ ¢ I(u) while v € I(u) hence I(u) is not closed under ~;_;. Finally,
when |A| <2 or £ =0, I(u) = &, while when ¢ = 1 and |A| > 2, I(u) is neither ¢ nor A*
so h(I(u)) > 0. ]
Corollary 4.2. For any L < A* and m € N, if all words in min(L) have length bounded by
m, then h(t1L) < m and h(1_L) < m + 1.

Proof. Since 1L = tmin(L) and since min(L) is finite (by Higman’s Lemma), we have
h‘(TL) = h(Uuemin(L) Tu) < MmaXyemin(L) h(TU) = MaXyemin(L) ‘u| s m.

Now since 1_L = (1L) ~ min(L), we deduce h(1_.L) < max(h(1L), h(min(L))). But
h(min(L)) < m + 1 by Proposition 3.8. ]

This can be immediately applied to languages given by automata or grammars.

Theorem 4.3 (Upward closures of regular and context-free languages).

(1) If L is accepted by a nondeterministic automaton (a NFA) having depth m, then
h(1L) < m while h(1_L) < m+1 and h(min(L)) < m + 1.

(2) The same holds if L is accepted by a context-free grammar (a CFG) when we let m = (N
where N is the number of nonterminal symbols and ¢ is the mazimum length for the
right-hand side of production rules.

Proof. (1) A word accepted by the NFA is minimal wrt = only if it is accepted along an
acyclic path. (2) A word generated by the CFG is minimal wrt = only if any nonterminal
appears at most once along any branch of its smallest derivation tree. L]

The bounds in Theorem 4.3 can be reached, e.g., for L a singleton of the form {a™}.

For our applications, we are interested in bounding h(1L) in terms of h(L), assuming
that L is PT.

TThis phenomenon does not extend to the other operations nor to finite sets.
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Theorem 4.4 (Upward closures of PT languages). Suppose that L < A* is PT and let
k= |A] and m = f,(h(L)). Then

h(1L) <m, h(1.L)<m+1, h(min(L)) <m +1.

Proof. By the small-subword theorem, and since L is closed under ~y ), the minimal
elements of L have length bounded by m. Then Corollary 4.2 applies. []

Remark 4.5. The upper bound in Theorem 4.4 is quite good: for any k, A = 1, the language
L = {Ug} has h(L) = h(U) = kX + 1 so that Theorem 4.4 with Eq. (3.12) give h(1Uy) <
fe(kXA +1) < (A +2)* — 1. On the other hand we know that h(1Uy) = (A + 1)¥ — 1 by
Proposition 4.1.

5. DOWNWARD CLOSURES

We now move to downward closures. It is known that, for any L < A*, |L and |_L are
PT since they are the complement of upward-closed languages. Our strategy for bounding
h(}L) is to approximate L by finitely many D-products.

Definition 5.1. A D-product over A is a regular expression P of the form Fy - Fy--- Ej
where every E; is either of the form B* for a subalphabet B € A (B* is called a star factor
of P), or a single letter a € A (a letter factor). We say that ¢ is the length of P.

As is common, we abuse notation and let P denote both a regular expression and the
associated language.

We note that our D-products are slightly more general than the monomials of the form
Bjai1Bfas - - a, B} considered in [DGKO08], where a strict alternation is imposed between
star factors and letter factors. However, any D-product is easily translated as a polynomial
(a finite sum of monomials) by replacing any two consecutive letter factors a - a’ by the equiv-
alent a- *-a’, and any two consecutive star factors B*- B"™* by B*+ Y. _p/(B*-a-B'*) and
then distributing concatenations over unions. Thus the languages described by finite unions
of D-products are exactly the languages described by polynomials (see [DGKO08, PW97] for
algebraic and logical characterisations).

D-products generalise words, and they share with words their nice upper bound on the
PT height of downward closures:

Proposition 5.2. Let P be a D-product of length ¢. Then h(}P) < {+1 and h(| . P) < {+1.

Proof. Let P’ be the regular expression obtained from P by replacing any letter factor a by
(a+¢) so that P’ = | P. We claim that any residual w=!P” of a suffix P” of P’ is either the
empty language ¢, or is itself a suffix of P’. The claim is proven by induction on the length
of P”, then on the length of w, recalling that residuals can be computed inductively via
e 'L =L and (wb)™'L = b=} (w~'L). When considering suffixes of P’ (or &), the following
equalities can be used:

b le = o, vl =,
p" if b=a, { B*P" ifbe B,

_1 A -1rg*p" =
b~ '[(a +e)P"| —{ b-1P" otherwise, b [BTP"] = b='P" otherwise.
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Note that the correctness of the third equality when b = a, and of the fourth equality
when b € B, rely on b='P” < P”: this holds because P’, and then each suffix P”, is
downward-closed.

Finally, P’ has at most ¢ + 1 distinct non-empty residuals since it has ¢ + 1 suffixes.
Thus the minimal DFA for P’ has at most £ + 1 productive states, hence has depth at most
¢+ 1. We now apply Theorems 1 and 2 from [KP13] and conclude that h(|P) < ¢+ 1.

For bounding h(|_P) very little is changed. If P contains at least one (nonempty) star
factor then |_P and | P coincide. If P only contains letter factors (and empty star factors)
then P denotes a singleton {u} with |u| < ¢ and |_P is a finite set of words of length at
most ¢ — 1, entailing h(| . P) < £. []

The bounds in Proposition 5.2 can be reached, e.g., for P =a---a.

Corollary 5.3. If L < | J, P; < | L for a family (P;); of D-products of length at most ¢, then
h(JL) <€+1 and h(J_L) < £+ 1.

Proof. Obviously |L =, | P; and |_L =, | - P;. These unions are finite since there are
only finitely many D-products of bounded length, so that we can invoke Eq. (2.6). []

This can be immediately applied to languages given by automata or grammars.

Theorem 5.4 (Downward-closures of regular and context-free languages).

(1) If L is accepted by a nondeterministic automaton (a NFA) having depth m, then |L and
<L are {-PT for £ =2m + 2.

(2) The same holds if L is accepted by a CFG in quadratic normal form (a QNF, see [BLS15])
with N nonterminals and ¢ = 4 - 3N~ + 2.

Proof. (1) For a word u € L we consider the cycles in an accepting path on u. This

leads to a factoring u = wupajuias---apu, of u such that the accepting path is some
W3S 3aB g CQp—1 & ap = gp with qo, q1,...,¢qp all different. Then p < m.

Let now B; € A be the set of letters occurring in u; and define P, def BjaiBias . .. B;_lapB;‘.
Then v € P, and P, < |L. Finally, L < | J,c; P. € |L and each P, has length < 2m + 1.
One now invokes Corollary 5.3.

(2) Bachmeier et al. showed that there is an NFA for | L having 2 - 3V~ states [BLS15]. []

For our applications, we are interested in bounding h(|L) in terms of h(L) when L is
PT. Our main result in this section is:

Theorem 5.5 (Downward closures of PT languages). Suppose that L < A* is PT and let
k =1A| and m = fx(h(L)). Then

h(JL) < (E+1)(m+1), h(J.L) < (k+1)(m+1).

Remark 5.6. Before proving Theorem 5.5, let us observe that the upper bound it provides is
quite good: for any k, A > 1, the language L = {Uy} from Section 3.1 has h(Uy) =n = kA+1
so that Theorem 5.5 gives h(|Ug) < (k + 1)(\ + 2)¥. On the other hand we know that
h(LUx) = A\ + 1)*~1 + 1 by Eq. (3.4).

The rest of this section is devoted to the proof of Theorem 5.5. Let n = h(L) and
m = fr(h(L)). Our strategy is to cover L by D-products of bounded length, relying on the
fact that L is closed under ~,,.
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Lemma 5.7. For every u € A* there is a D-product P, with at most m letter factors and
such that u € P, € [u]y,.

Proof. By the small-subword theorem, u has a subword v = a;---ay with v ~, u and
|v| = ¢ < m. Thus u has the form

U = upaituyragauy---apUuy = b071 ce bo7p0 aj 1)171 e b17p1 as---Qy bg}l tee bg’pe . (51)
Note that the above factorization is not necessarily unique, we just fix one. Then the b; ;’s
are the letters making up the w; factors in (5.1). To shorten notation, we let ay stand for &
so that we can write u = [ [*_ aiu; = [[5_o(as [T52 bij)-

We claim that P, % Hf:o (ai H?i:l{bm}*) proves the Lemma. That u € P, and that
P, has at most m letter factors is clear. To show P, € [u],, it is enough to invoke a natural
generalisation of Lemma 2.1 (6) that, for the sake of completeness, we state and prove as

Lemma 5.8. ]
Lemma 5.8. Assume u = uguius---up Sp UgaiUiagus---aguy = v for some words
uo, - .., ug and letters ay,...,ag. Then upafuiaius ---ajue < [ul, = [v]n-

Proof. By induction on . The case ¢ = 0 is trivial so we assume ¢ > 0. From u <,, v, and via
Lemma 2.1 (1), we deduce v’ <, v for v’ = upuiasus - - - apug. With v’ <,, v, Lemma 2.1 (6)
gives

upaiuagus - - - apup S [uly, = [W']n = [v]n - (5.2)
Pick k € N and write wy, for ugafujagus - - - ague. Eq. (5.2) entails wy, ~, u. With u C
uoa’fu1u2 -+~ Uy E wg, and since u ~, v ~, wg, Lemma 2.1 (1) now gives uoa]fulu2 coeup S
wg. With the induction hypothesis, we obtain

upakuyadug - - - afup S [wpln = [uln = [un] - (5.3)
Since this holds for any k € N, we have proved the Lemma. []

After bounding the letter factors in the P,’s (Lemma 5.7), we consider their star
factors. For this it is convenient to write a D-product with ¢ letter factors under the
form P = ]_[f:[) (ai ?i:l B;‘jj), i.e., regrouping the star factors in blocks separated by the
letter factors, and again with a¢ standing for e. With such a D-product, we associate
P = Hfzo a; ?i:l B;:‘;) with the B} ;’s given by

BgJ d:ef (Bi71 U Bi,g UV B@j) M (Bi,j U B@j.,.l U VU Bi,pi) . (54)

That is, any star product B, ; is enlarged with letters that occur both on its left (inside the
block of star products) and on its right. For example, with

Py=d*a;b* (c+ )" d* (b+e)*c*age,
we associate
Pi=d*a1b*(b+c+)* (b+c+d)*(b+e+c) c*age” (1)
=d*ar(b+c+d) (b+c+d)* (b+e+c)*aze”. (1)

Since B;j < B; ; for all 7, j, one has P < P'. However P’ only enlarges P in the following
safe way:

Lemma 5.9. For any u€ A* and n € N, P < [u],, implies P' < [u],.
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Proof. A word in P’ may use letters from some B ;s that are not in the corresponding B; ;
and, with any w € P/, we associate #,,, the smallest number of letters that must be removed
from w before the resultlng subword belongs to P.

We now assume P < [u],, and prove w € [u], for all w € P’ by induction on #,,. The
base case where #,, = 0 is trivial because then w € P. So assume that #,, > 0, i.e., w ¢ P.
Then there must exist in w an occurrence of some letter b, from some B ) that does not
appear in the corresponding B; ;. (Note that, by Eq. (5.4), there must exist some r < j and
some s > j such that be B;, n B; s.) Accordingly, we factor w under the form

w=w1a;$1bP2ra;41we,

highlighting the selected b, the occurrences of a; and a;.1 that surround it, and where (3,
and (2 belong to B --- B and B --- B[ , vespectively. Let w' = wi a; 1 B2 aiv1 wo,
ie., w is w without the b e Bz’-’j that we singled out, so that #,, < #,, and the induction
hypothesis yields v’ € [u],,. We now claim that w ~, w’. To prove this, and since v’ E w,
it is enough to show that any subword ¢t € AS™ of w is also a subword of w’. So consider one

such t. From t C w we extract a factorization ¢t = ¢y t5 t3 such that
t1 & wia; B, to = b, t3 © B2 @il W2 . (55)

Thus t1t3 £ w’ and, since w’ € [u],, and |t1t3| < n, t1t3 € x for any x € [ ]n. In particular,
tits E ajag - - -ag € P, which requires t; £ ajas---a; or t3 = a;11a;42 - -ag (or both). Let
us assume t; £ ajag - - - a4, the other case being similar. Combining with Eq. (5.5), we obtain

t = titat3 & (w” d:ef) araz---a;-b- frair1ws .

Note that w” € P’ and that #,» < #., since the b that follows a; in w” can be accounted
for by Bf,. Thus w” € [u], by induction hypothesis, i.e. w” ~;, w’, from which we deduce
tcw'. []

We can now bound the number of star factors in the D-product P’ associated with P.
For this, we first simplify P’ = HZ o(as pi B’*) by removing any B/ star factor that is
subsumed by its immediate neighbour, i.e., Such that B ; € B; ;_; or B” C B} ;- Thisis
exactly how we moved from (f) to () in our earlier example, and it shortens P’ without

changing the denoted language. Once no more simplifications are possible, we can bound
the length of the resulting D-product with the following combinatorial observation:

Lemma 5.10. Assume that Aq,..., A, S A are p subalphabets such that
— for all1 < j <p, Aj ¢ Aj+1 and Aj+1 ¢ Aj ;

— forallbe Aand1 < j<k<j <p,ifbe AjnAj, thenbe Ay.
Then p < |Al.

Proof. Note that by the first condition, each A; is nonempty. Extend the sequence by
defining Ag = Apy1 = J. For 0 < j < p, define A; = A; A Aj 1, where A denotes
symmetric difference. Now Ag and A, have size at least 1, and by the first condition, every
other A; has size at least 2. Thus Z _olAj| = 2p. By the second condition, any b € A

occurs in at most two A;’s, thus ZFO \A | < 2]A|. So we conclude 2p < 2|A]. ]

Corollary 5.11. For every u € A* there is a D-product P}, of length at most km + m + k,
and such that u € P, S [u],.
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Proof. P) as constructed above (and after simplifications) has at most m letter factors, that
separate at most m + 1 blocks of star factors. Each such block is based on subalphabets
Bi,..., B, that satisfy the assumptions of Lemma 5.10: condition 1 holds since otherwise
more simplifications could be performed, while condition 2 is a consequence of the definition
of the B} ;’s via Eq. (5.4). Consequently, any star factor block in P, has length at most
|A| = k, leading to a km+m+ k bound for the total length of P,,. Finally, that u € P, < [u],
is a consequence of Lemma 5.9 since u € P, < [u],. L]

We may now conclude the proof of Theorem 5.5. Indeed, with Corollary 5.11, and
since L is closed under ~,,, we obtain L = |, Py, where each P, has length bounded by
km + k + m. We then apply Corollary 5.3.

6. PIECEWISE-TESTABILITY AND PT HEIGHT FOR (L)

Recall that I(L) is the set of words which are incomparable (via = or 2) with some word in
L. Te., it is the image of L by the incomparability relation L, or equivalently its pre-image
since | is symmetric.

In this section we prove the following result.

Theorem 6.1. Suppose L < A* is PT and let k = |A| and m = fi,(h(L)). Then I(L) is
PT and
h(I(L)) <m+1.

We saw that | 4+ is a rational relation, so that I(L) is regular when L is regular, see
Proposition 2.1. Showing that I also preserves piecewise-testability requires more work.
For such questions, I does not behave as simply as the pre-images we considered in earlier
sections. In particular it does not necessarily yield languages that are PT, unlike 1L or | L.

At this point it is useful to examine some examples and make some general observations.
Let A = {a,b,c} and define the language L of all finite prefixes of (abc)® via

Ly = (abe)*(e + a + ab) = {e,a, ab, abe, abca, abcab, . . .} .

Note that L, is totally ordered by = hence no word of L; is in I(Lq), i.e., [(L1) € A* \ L;.
To prove the reverse inclusion, we rely on the fact that a word is incomparable with
any other word having same length. Le., I(u) 2 A=I“ < {u} for any u, and thus, for any

language L,
(L) = J 1) 2 (AT < {u}) . (6.1)

uel uel
Since L; above contains at least one word of any given length, Eq. (6.1) entails I(L1) 2
A*~ L;. Finally we have proved that I(L1) = A*~ Ly. Thus I(L1) is not PT since L; is not.

A similar example shows that I(L) is not necessarily regular when L is not. For example,
take A = {a,b} and let

Ly = {a’b*(e + b) | £ € N} = {e,b, ab, abb, aabb, a®b*, a3, .. .} .
Here too Lo is totally ordered by & and contains one word of each length. Hence

I(Lg) = A* . Ly, which is not regular.

Let us now consider some PT languages. In the case of a singleton language L = {w},
we know from Eq. (4.1) that h(I(w)) = |w| when |[A| > 2, and h(I(w)) = 0 when |A| < 2.
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This can be used to bound h(I(F)) for a finite language F', using I(F) = | ep L (w).

weF

Consider now L3 = [aabls, i.e., L3 = aaa®b. This language is infinite but it is totally
ordered by = and has one word of each length ¢ > 3. Hence I(L3) = A* \ L3 \ |aab and
we can easily bound h(I(L3)) using results from the previous sections.

Another infinite PT language is Ly = [aabb]s, i.e., Ly = aaa®bbb*. A different strategy
applies here: L4 contains no words of length ¢ < 4 and exactly ¢ — 3 words of each length
¢ = 4. We may invoke a consequence of Eq. (6.1): if a language L contains at least two
words having same length ¢ then I(L) contains all words of length ¢. Applied to Ly, this
entails I(L;) 2 A>%, which is enough to conclude that I(L4) is AZ% U F for some finite
F < ASY entailing h(I(Ly)) < 5.

As the above examples suggest, it is useful to think of the “layers” L n A=¢ = {w €
L : |w| = ¢} of L, and classify them into empty, singular, or populous layers, depending
on whether they contain 0, 1, or more words. Observe that if L n A= is populous then
I(L) n A=! equals A=*.

It is also useful to decompose PT-languages into the equivalence classes that make them
up. Therefore, in the rest of this section, we focus on some equivalence class [w], € A*
where n = h(L).

A first observation is that the populous layers of [w], propagate upwards:
Lemma 6.2. Let p e N. If [w], n A™P is populous, then [w], n AP+ is populous too.

Proof. Assume that [w],, contains two different words uy, us of length p. Then p > 0 and
these words can be written under the form u; = ugavy and ug = ugbvy where ug is their
longest common prefix and a, b are two distinct letters occurring at the first position where
up and ug differ. Applying Lemma 2.1 (3) we deduce that [w],, contains either ugabvy or
ugbavi. Let us assume, w.l.o.g., that ugbav, ~, w since the other case is similar. We now
claim that ugbbvy ~, w. Since w ~,, us E ugbbvg, it is enough to show that every subword
s of ugbbvs of length at most n is also a subword of us. So let us pick any such s and
factor it as s = sgspse with sg & ug, sy & bb, and s £ vo, and with furthermore sy chosen
longest possible. If s, < b then s E ugbve = ue and we are done, so we assume s, = bb. Let
s’ = sgbsg and note that s’ £ wug, hence s’ & uy since u; ~, uz and |s'| < |s| < n. Now
s’ = sgbsy & upgavy = uy requires bss T avy since our choice of sg longest entails sob & ug.
This gives s = sgbbsa E ugbavy, hence s E ug since ugbavy ~,, usa.

We have shown that [w],, contains upbav; and upbbve, both words having length p+1. [

Populous layers also propagate downwards in the following sense:

Lemma 6.3. Let p > 2. If [w], n A=P is populous then [w], n AP~ is populous or
[w], N A=P=2 is empty (or both).

Proof. Assume that layer p is populous and that layer p — 2 is non empty. If layer p — 2
is populous, then layer p — 1 is populous by Lemma 6.2 and we are done. So assume
that [w], n A=P=2 = {z} is singular. Then Lemma 2.1 (5) entails that = w’ for all
w' € [w], n AZP~! and since layer p is not empty, Lemma 2.1 (1) entails that layer p — 1
too is not empty. Pick y € [w], n A=P~! and factor it as y = uau’ such that x = uu’. This
entails z = uaau’ € [w], N A™P by Lemma 2.1 (6). By assumption, [w],, n A=P is populous,
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hence contains another word 2’ # z and there is a word ¢’ € [w], N A=P~! with z = ¢/ € 2/,
If 3/ # y we have proved that layer p — 1 is populous and we are done. Otherwise y C 2’ and
we may consider the different possibilities for y = uau’ E 2’ # z, knowing that |2/| = |y| + 1.
If 2’ is either some wabu’ or ubau’ with b # a then we let y” = ubu’. From z = uu' £ " = 2/
we deduce y” € [w],, by Lemma 2.1 (1). If 2’ is vau’ with v = v we let ¥’ = vu’ and again
deduce 3" € [w], from x = 3" = 2. (Note that y” # y since vau' = 2’ # 2z = waav’.) If 2’/
is wav’ with v/ = v/, the same reasoning applies to y” = uv’. In all three cases y” # y and
ly"| = |y| = p — 1, showing that [w], n A=P~! is populous. []

With Lemmas 6.2 and 6.3, we see that almost all layers of [w],, are populous as soon
as one is. More precisely, when one layer is populous, either all (nonempty) layers are
populous, or all are except for the lowest (nonempty) one. We already saw an example of
the second situation with L4 = [aabb]a = aaa™bbb*, and an example of the first situation
is L5 = [abcab]a, where the lowest nonempty layer is L5 n A=° = {abcab, abcba, bacab, bacba}.

We now consider the general case:

Lemma 6.4. h(I([w],)) <m + 1.

w]

Proof. Recall that [w], is a singleton or is infinite (Lemma 2.1 (7)). We consider two cases.

(1) Assume that [w], = {w} is a singleton. Then h(I(w)) < |w| by Eq. (4.1) and |w| < m
by the small-subword theorem. Hence h(I([w],)) < m.

(2) Assume that [w],, is infinite. Let u be a shortest word in [w],, and write p for its length
|u|. By the small-subword theorem, p < m. Since [w], is infinite, and by Lemma 2.1 (1),
it contains at least one word of each length > p, hence I([w],) 2 A* \ [w], ~ | -u by
Eq. (6.1). There are two subcases.

(a) If [w], is a total order under C, no layer is populous, hence I([w],) = A* N [w], ~
l<u. Since h(|_u) = |u| < m and h([w],) =n = m, we obtain h(I([w,])) < m.

(b) If [w], is not a total order under =, all layers above p are populous by Lemmas 6.2
and 6.3. If u is the unique shortest word in [w],, we have I([w],) = A* < |u,
entailing h(I([w],)) < |u| +1 < m+ 1. Otherwise layer p is populous too, entailing
AZP < I([w]y), ie., I(Jw],) = AZP U F for some finite F = A<P. We deduce
h(I([w],)) < p < m by Eq. (3.3). []

We may now conclude:

Proof of Theorem 6.1. Being n-PT, L is a finite union [wi], U -+ U [wy]y, of equivalence
classes of ~, so that I(L) = I([wi]n) v -+ U I([we]n). Now each I([w;]y,) is (m + 1)-PT
by Lemma 6.4 so that I(L) is too. ]

Remark 6.5. The upper bound in Theorem 6.1 is quite good: for any k, A = 1, the language
L = {Uyg} from Section 3.1 has h(Uy) = n = kX + 1 so that Theorem 6.1 gives h(I(Uy)) <
(A+2)*. On the other hand we know by Eq. (4.1) that h(I(Uy)) = |Ux| = (A +1)¥ — 1 when
k>1.

7. DECIDING THE TWO-VARIABLE LOGIC OF SUBWORDS

In this section we use our results on PT heights to establish complexity bounds on a decidable
fragment of FO(A*, &), the first-order logic of subwords.
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We assume familiarity with basic notions of first-order logic as exposed in, e.g., [Har09]:
bound and free occurrences of variables, quantifier depth of formulae, and fragments FO™
where at most n different variables (free or bound) are used. In particular, if ¢(z1,...,zy)
has n free variables, we write Ry for the n-ary relation defined by ¢ on the underlying
structure.

The signature of the FO(A*, =) logic only contains one predicate symbol, “C”, denoting
the subword relation. Terms are variables taken from a countable set X = {z,y, z,...} and
all words wy,wa, ... € A* as constant symbols (denoting themselves). For example, with
A = {a,b,c,...}, Jw(ab = & A bc E & A —(abc = x)) is a true sentence as witnessed by
x +— bcab.

The logic of the subword relation is a logic of substructure ordering like those considered
by Jezek and McKenzie (see [JM09] and subsequent papers). It is one of the simplest
and most natural substructure ordering occurring in computer science [Kus06]. In its full
generality, this logic is computably isomorphic with FO(N, +, x), hence undecidable [KSY10].
We showed that already the 3o fragment is undecidable [KS15] and recently Halfon et al.
showed that even the ; fragment is undecidable [HSZ17]. This was very surprising: by
comparison, “words equations”, i.e., the ¥; fragment of FO(A*,-, =) in which the prefix
relation can be defined, are decidable in PSPACE [Die02, Pla04, Jez16].

We have previously shown that FO?(A*, C), the 2-variable fragment, is decidable by a
quantifier elimination technique [KS15]. In this article we extend our earlier analysis of the
expressive power and complexity of the FO2.

When performing quantifier elimination, it is convenient to enrich the basic logic by
allowing all regular languages L1, Lo, ... € Reg(A*) as monadic predicates with the expected
semantics, and we shall temporarily adopt this extension. We write x € L rather than L(x)
and assume that L is given via a regular expression or a finite automaton — For example,
we can state that (a+b)* is the downward closure of (ab)* with Vz[z € (a+b)* < Jy(y €
(ab)* Az Cy)].

7.1. Subword-recognizable relations. In order to characterise the FO?-definable rela-
tions, we need some definitions. A relation R € A* x A* is subword-recognizable, if it
belongs to the boolean closure of Rec(A* x A*) U {E 4%, 3 ax}. It is furthermore subword-
piecewise-testable, if it belongs to the boolean closure of PT(A* x A*) U {& 4%, 34x}. We
write Recc (A* x A*) and PTc(A* x A*) for the corresponding classes.

Proposition 7.1 (Normal form for Recc (A* x A*) and PTc(A* x A*)). A relation R <
A* x A* is subword-recognizable if, and only if, it can be written under the form

R = (EA*ORl)u(:A*ﬁRQ)U(ZJA* ﬂR3)U(J_A*ﬁR4) (NF)

for some recognizable relations Ri, Ra, R3, Ry.
Furthermore, R is subword-piecewise-testable if, and only if, the relations Ry, Ro, R3, R4
can be chosen among the piecewise-testable relations.

Proof. That the normal forms are subword-recognizable is clear since =4+ and =4+ belong
to the boolean closure of {E 4%, 4% }: they are 4% N D% and g% \ = gx.

Showing the other direction, i.e., that a subword-recognizable or subword-piecewise-
testable relation R can be put in normal forms, is done by induction on the boolean
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combination realising R from the generators of the boolean closure. Here it suffices to
show that normal forms are closed under intersections and complementations. Let us write
{€1,82,&3,84} for {T %, =%, 4%, Lax} and U?zl & N R; for normal forms. Since the &;’s
are pairwise disjoint, we have

(O@“Ri) n (CJ&“RQ) = CJEM(RMR;). (7.1)
i=1 i=1 i=1

Since the &;’s form a partition of A* x A*, we further have

(A* x A*)N (& R) = (gi A~ (A% x A%~ R]) oG n x4, (12

J#i
Thus we see that normal forms are closed under boolean operations since Rec(A* x A*) is.
Finally, the same proof applies to PTc(A* x A*). ]

7.2. Quantifier elimination for FO?(A* C, Ly, Lo,...). We may now characterise the
FO2-definable relations.

Theorem 7.2. (i) A relation R € A* x A* is definable in the extended logic FO?(A*,C,
Ly, Lo,...) iff it is subword-recognizable.

(ii) It is definable in the basic logic FO?(A*, T, wy,ws, . ..) iff it is subword-piecewise-
testable.

(iii) Furthermore, a normal form for Ry can be computed from the FO? formula ¢(zx,y),

Proof. The (<) direction of (i) is obvious: for example R = C 4% n L x L' is definable via
rCyrz+yrzel ayel’ aFO? formula. When proving the same (<) direction for
(ii), we cannot use regular predicates to express x € L or y € L. But since we assume that
L is PT, it is a boolean combination of filters tu, 1u/, etc., so x € L can be expressed as a
boolean combination of atomic formulas u C x, v’ E z, etc.

We prove the (=) direction for (i-i) by structural induction on the FO2-formula ¢(z, y)
that defines Rys. We consider all cases:

If ¢ is an atomic formula of the form z € L or y € L', then Ry is L x A* or A* x L'. If
¢ is some u € L, then Ry is one of the trivial (§ or A* x A*.

If ¢ is an atomic formula of the form = E u or v E y for some constant word u or v then
Ry is (Ju) x A* or A* x (Tv) respectively (a piecewise-testable relation in each case). If ¢ is
x E y then Ry is E 4%, and Ry is trivial if ¢ is some u & v.

If ¢ is a conjunction ¢; A ¢o or a negation —¢1, we rely on the induction hypothesis
and the closure properties of Recc (A* x A*) and PTc(A* x A*).

The remaining case is when ¢(z,y) is some 3x.¢)(x, y), the case Jy.1)(z, y) being identical.
Here Ry = A* x my(Ry) where mp : A* x A* — A* is the projection (u,v) — v lifted from
pairs to sets of pairs, i.e., relations. To compute ma(Ry) we write Ry in normal form
—thanks to the induction hypothesis— and use o (U?:l &N Ri) = U?=1 o (& N Ri) and the
following equalities (proofs omitted):

mo(=axs NLx L'y =Ln L, mo(Cax NLx L'y =(1_L)n L, (7.3)
7o(Llas "L x L)y =I(L)n L, mo(Tax NLx LY =(|_L)nL". (7.4)

Finally, in the case where ¢ does not use regular predicates, the above inductive construction
only produces subword-piecewise-testable relations.
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We now see why (%ii) holds: the operations used above can all computed effectively
on relations in normal form, e.g., using a quadruplet of automata for the R, Ro, R3, R4 of
(NF). The required operations on automata are classic constructions: boolean combinations
and images of regular languages by 24, =4 and 14 (all rational relations). L]

We note that if ¢(z) is a FO? formula with a single free variable, Ry can be put under
the form L x A* i.e., ¢(x) defines a regular property of words, and a piecewise-testable one
if ¢(x) is in the basic logic.

Theorem 7.2 has several corollaries. Firstly, and since the normal forms can be effectively
computed, we have

Corollary 7.3 (Decidability [KS15]). Validity and satisfiability are decidable for FO*(A*
Li,Lo,...).

By contrast, note that the FO? n ¥y and the ¥; fragments of the basic logic are
undecidable [KS15, HSZ17].

Secondly, the computations inside the proof of Theorem 7.2 can be seen as a quantifier-
elimination procedure.

Corollary 7.4. Any FO*(A*,=, Ly, Ly, ...) formula is effectively equivalent to a quantifier-
free FO? formula. The same holds for the basic logic FO?(A* =, w1, wy, .. .).

7.3. Complexity for FO?(A* ). The algorithm underlying the proof of Theorem 7.2 (iii)
can be implemented using finite-state automata to handle and compute subword-recognizable
relations via their normal forms. The steps described in Egs. (7.3-7.4) involve computing
images of regular languages by (fixed) rational relations and may induce an exponential
complexity blow-up. In particular the pre-images 1 _L and | _L can have exponential size
if one uses deterministic or alternating automata, while if one uses nondeterministic (or
unambiguous) automata, the dual pre-images —(1_(—L)) and —(|_(—L)) —used in elimi-
nating a universal quantifier— can have doubly exponential size [KNS16]. Therefore the best
known upper bound for the decidability of FO*(A*, =, Ly, Lo, ...) is a tower of exponentials
with height bounded by the nesting depth of the formula at hand, hence a nonelementary
complexity. Regarding lower bounds, only PSPACE-hardness has been established [KS15].

We now turn to the basic logic, FOQ(A*, =, w1y, wa, . ..) where regular predicates are not
allowed. As stated in Theorem 7.2, the quantifier-elimination procedure will only produce
subword-piecewise-testable relations and languages. Furthermore, it is possible to bound
the PT height of the defined languages and deduce an elementary complexity upper bound.

Theorem 7.5 (FO?(A*, =, wy,wy,...) has elementary complexity). Assume that ¢ is a
FO2(A* =, wy,wy,...) formula. Then h(Rg) is in 9207l

Furthermore, computing DFAs for the normal form of Ry (hence deciding the satisfiability
or the validity of ¢) can be done in 3—EXPTIME.

Proof. The quantifier-elimination procedure that proves Theorem 7.2 (ii) builds, for any sub-
formula ¢ of ¢, a relation of the form U?:l & N R; represented by a quadruplet Ry, Ro, R3, Ry
of PT relations. The PT height of these relations can be bounded. For example, the PT
height is given by |u| for ¢ an atomic formula of the form u & x. Boolean combinations do
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not increase PT height even in the case of subword-piecewise-testable relations, see Egs.
(7.1) and (7.2). Quantifier-elimination can increase PT height when we compute 1_L, | _L
and I(L) as prescribed by Egs. (7.3) and (7.4). But Theorems 4.4, 5.5 and 6.1 apply and
show that the increase is polynomially bounded. Such increases combined at most |¢| times
give a PT height bounded in 920D

Finally, when the PT height of Ry (and of all intermediary Ry) have been bounded in

220(‘4)‘), we obtain a bound on the size of the minimal DFAs and the time and space needed

to compute them using Theorem 2.3. ]

8. CONCLUDING REMARKS

We developed several new techniques for proving upper and lower bounds on the PT height
of languages constructed by closing w.r.t. the subword ordering or its inverse. We also
considered related constructions like taking minimal elements, or taking the image by
the incomparability relation. In general, the PT height of upward closures is bounded
with the length of minimal words. For downward closures, we developed techniques for
expressing them with D-products and bounding their lengths. We illustrated these techniques
with regular and context-free languages but more classes can be considered [Zet15]. More
importantly, the closures of PT languages have PT height bounded polynomially in terms
of the PT height of the argument. Our main tool here is the small-subword theorem that
provides tight lower bounds on the PT height of finite languages, with ad hoc developments
for I(L).

These results are used to bound the complexity of the two-variable logic of subwords
but we believe that the PT hierarchy can be used more generally as an effective measure of
descriptive complexity. (The same can be said of the hierarchies of locally-testable languages,
or of dot-depth-one languages).

This research program raises many interesting questions, such as connecting PT height
and other measures, narrowing the gaps remaining in our Theorems 4.4, 5.5, and 6.1, and
enriching the known collection of PT preserving operations.
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APPENDIX A. BOUNDING fi(n)

From Section 3, recall the definition of fr : N — N where £ is a strictly positive integer:
filn) =n, (3.10)
fera(n) = max mfi(n+1—m)+m+ fy(n—m). (3.11)
os<m<n
We note that each fj function is monotonic: this is clear for fi, and Eq. (3.11) guarantees

that fr.1 is monotonic if f is.
In this appendix we prove the bound on fi(n) claimed in Section 3:

Ji(n) < (%H)k—l < (%Jrz)k. (3.12)
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To prove Eq. (3.12) we introduce the following auxiliary functions, where 0 < k € N and

z,yeR:
o 2%k —1\"
A = () (F)
def (y +1)(x —y +2k)"
Gk,a:( ) (y + 1)Fk(m —y+ 1) = Lk (G)
Let us check that Gy, gc 2 ) Fyiq(z) for any k> 0 and x > 0:
k+x 1 k+z k
e (357) = (g 1) e (o i )
_w+2k+1 1 (kx+2k* +k F
k+1 kk kE+1
+2k+1 1 [ k \F ®)
T k
— — 2k + 1
k+1 Kk <k+1> (z+2k+1)
z+ 2k + 1\
— (2T} R .
( il ) kt1()
Lemma A.1. Fjyq(z) = Gg,(y) for all y € [0, z].
Proof. G}, . is well-defined and differentiable over R, its derivative is
, (z —y +2k)* — (y + Dk(z —y + 2k)*!
x —y+2k)F1
_ ! s L (= y+28) — (g + 1K)
x—y + 2k)k1
=( 1 ) (z+k—ylk+1)).
Thus G%x(y) is 0 for ¥ = Ymax def iff, is strictly positive for 0 < ¥ < Ymax, and strictly
negative for ymax < y < z. Hence, over [0,z], G, reaches its maximum at £+2 +7 and (*)
concludes the proof. []

Proposition A.2. fi(n) +1 < Fjy(n) for all k,n € N with k > 0.

Proof. By induction on k. For the base case k = 1, one has fi(n) +1=n+1= Fi(n) by
combining Egs. (3.10) and (F'). For the inductive case k > 2, we know by Eq. (3.11) that
fen)+1=m- fr_1(n+1—m)+m+ fr_1(n—m) +1

for some m € {0, ...,n},
<(m+D)[frmi(n+1—m)+1]
by monotonicity of fi_1,
<(m+4+1)F_1(n+1—m)
by induction hypothesis,
— Gr1a(m) < Fi(n)
by Eq. (G) and Lemma A.1. ]
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This entails fi(n) < Fx(n) — 1 which is exactly our original claim.

[Ber79]
[BLS15]
[BSS12]
[CP18]
[DGKOS]

[Die02]

[FK18]

[GS16]

[Hai69]
[Har09]
[Hig52]
[HM15]

[HPOO]

[HS19]
[HSZ17]
[Jex16]
[IM09)]
[KCMOS]
[KKS15]
[KIf11]

[KNS16]

[KP13]

REFERENCES

J. Berstel. Transductions and Context-Free Languages. B. G. Teubner, Stuttgart, 1979.

G. Bachmeier, M. Luttenberger, and M. Schlund. Finite automata for the sub- and superword
closure of CFLs: Descriptional and computational complexity. In Proc. LATA 2015, volume 8977
of Lecture Notes in Computer Science, pages 473-485. Springer, 2015.

M. Bojaniczyk, L. Segoufin, and H. Straubing. Piecewise testable tree languages. Logical Methods
in Comp. Science, 8(3), 2012.

O. Carton and M. Pouzet. Simon’s theorem for scattered words. In Proc. DLT 2018, volume 11088
of Lecture Notes in Computer Science, pages 182—193. Springer, 2018.

V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic over
finite words. Int. J. Foundations of Computer Science, 19(3):513-548, 2008.

V. Diekert. Makanin’s algorithm. In M. Lothaire, editor, Algebraic Combinatorics on Words,
volume 90 of Encyclopedia of Mathematics and Its Applications, chapter 13, pages 387-442.
Cambridge Univ. Press, 2002.

L. Fleischer and M. Kufleitner. Testing Simon’s congruence. In Proc. MFCS 2018, volume 117 of
Leibniz International Proceedings in Informatics, pages 62:1-62:13, 2018.

J. Goubault-Larrecq and S. Schmitz. Deciding piecewise testable separability for regular tree
languages. In Proc. ICALP 2016, volume 55 of Leibniz International Proceedings in Informatics,
pages 97:1-97:15, 2016.

L. H. Haines. On free monoids partially ordered by embedding. Journal of Combinatorial Theory,
6(1):94-98, 1969.

J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press,
2009.

G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3), 2(7):326—
336, 1952.

P. Hofman and W. Martens. Separability by short subsequences and subwords. In Proc. ICDT
2015, volume 31 of Leibniz International Proceedings in Informatics, pages 230-246, 2015.

K. Henckell and J.-E. Pin. Ordered monoids and J-trivial monoids. In J.-C. Birget et al.,
editor, Algorithmic Problems in Groups and Semigroups, Trends in Mathematics, pages 121-136.
Birkhauser, 2000.

S. Halfon and Ph. Schnoebelen. On shuffle products, acyclic automata and piecewise-testable
languages. Information Processing Letters, 145:68-73, 2019.

S. Halfon, Ph. Schnoebelen, and G. Zetzsche. Decidability, complexity, and expressiveness of
first-order logic over the subword ordering. In Proc. LICS 2017, pages 1-12. IEEE, 2017.

A. Jez. Recompression: A simple and powerful technique for word equations. Journal of the ACM,
63(1):4:1-4:51, 2016.

J. Jezek and R. McKenzie. Definability in substructure orderings, I: finite semilattices. Algebra
universalis, 61(1):59, 2009.

L. Kontorovich, C. Cortes, and M. Mohri. Kernel methods for learning languages. Theoretical
Computer Science, 405(3):223-236, 2008.

P. Karandikar, M. Kufleitner, and Ph. Schnoebelen. On the index of Simon’s congruence for
piecewise testability. Information Processing Letters, 115(4):515-519, 2015.

O. Klima. Piecewise testable languages via combinatorics on words. Discrete Mathematics,
311(20):2124-2127, 2011.

P. Karandikar, M. Niewerth, and Ph. Schnoebelen. On the state complexity of closures and
interiors of regular languages with subwords and superwords. Theoretical Computer Science,
610:91-107, 2016.

O. Klima and L. Poldk. Alternative automata characterization of piecewise testable languages. In
Proc. DLT 2013, volume 7907 of Lecture Notes in Computer Science, pages 289-300. Springer,
2013.



Vol. 15:2

[KS15]

[KS16]

[KSY10]
[Kus06]
[Mas16]
[Mat98]

[MT15]

[MT17]

[Pin86]
[Pla04]

[PP04]
[PW97]
[RHF*13]
[Sako09]
[Sim72]
[Sim75]
[Sim03]
[SS83]
[STSS]
[SWYO04]
[Thés1]
[Tra01]
[Yu05]
[Zet15)]

[Zet18]

THE HEIGHT OF PIECEWISE-TESTABLE LANGUAGES 6:27

P. Karandikar and Ph. Schnoebelen. Decidability in the logic of subsequences and supersequences.
In Proc. FSTETCS 2015, volume 45 of Leibniz International Proceedings in Informatics, pages
84-97, 2015.

P. Karandikar and Ph. Schnoebelen. The height of piecewise-testable languages with applications
in logical complexity. In Proc. CSL 2016, volume 62 of Leibniz International Proceedings in
Informatics, pages 37:1-37:22, 2016.

0. V. Kudinov, V. L. Selivanov, and L. V. Yartseva. Definability in the subword order. In Proc.
CiFE 2010, volume 6158 of Lecture Notes in Computer Science, pages 246—255. Springer, 2010.
D. Kuske. Theories of orders on the set of words. RAIRO Theoretical Informatics and Applications,
40(1):53-74, 2006.

T. Masopust. Piecewise testable languages and nondeterministic automata. In Proc. MFCS 2016,
volume 58 of Leibniz International Proceedings in Informatics, pages 67:1-67:14, 2016.

O. Matz. On piecewise testable, starfree, and recognizable picture languages. In Proc. FOSSACS
’98, volume 1378 of Lecture Notes in Computer Science, pages 203—210. Springer, 1998.

T. Masopust and M. Thomazo. On the complexity of k-piecewise testability and the depth of
automata. In Proc. DLT 2015, volume 9168 of Lecture Notes in Computer Science, pages 364-376.
Springer, 2015.

T. Masopust and M. Thomazo. On Boolean combinations forming piecewise testable languages.
Theoretical Computer Science, 682:165-179, 2017.

J.-E. Pin. Varieties of Formal Languages. Plenum, New-York, 1986.

W. Plandowski. Satisfiability of word equations with constants is in PSPACE. Journal of the
ACM, 51(3):483-496, 2004.

D. Perrin and J.-E. Pin. Infinite words: Automata, Semigroups, Logic and Games, volume 141 of
Pure and Applied Mathematics Series. Elsevier Science, 2004.

J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of Computing
Systems, 30(4):383-422, 1997.

J. Rogers, J. Heinz, M. Fero, J. Hurst, D. Lambert, and S. Wibel. Cognitive and sub-regular
complexity. In Proc. FG 2012 & 2013, volume 8036 of Lecture Notes in Computer Science, pages
90-108. Springer, 2013.

J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

1. Simon. Hierarchies of Fvent with Dot-Depth One. PhD thesis, University of Waterloo, Dept.
Applied Analysis and Computer Science, Waterloo, ON, Canada, 1972.

I. Simon. Piecewise testable events. In Proc. 2nd GI Conf. on Automata Theory and Formal
Languages, volume 33 of Lecture Notes in Computer Science, pages 214—222. Springer, 1975.

I. Simon. Words distinguished by their subwords. In Proc. WORDS 2003, 2003.

J. Sakarovitch and I. Simon. Subwords. In M. Lothaire, editor, Combinatorics on Words, volume 17
of Encyclopedia of Mathematics and Its Applications, chapter 6, pages 105-142. Cambridge Univ.
Press, 1983.

H. Straubing and D. Thérien. Partially ordered finite monoids and a theorem of I. Simon. Journal
of Algebra, 119(2):393-399, 1988.

A. Salomaa, D. Wood, and Sheng Yu. On the state complexity of reversals of regular languages.
Theoretical Computer Science, 320(2-3):315-329, 2004.

D. Thérien. Classification of finite monoids: The language approach. Theoretical Computer Science,
14(2):195-208, 1981.

A. N. Trahtman. Piecewise and local threshold testability of DFA. In Proc. FCT 2001, volume
2138 of Lecture Notes in Computer Science, pages 347-358. Springer, 2001.

Sheng Yu. State complexity: Recent results and open problems. Fundamenta Informaticae,
64(1-4):471-480, 2005.

G. Zetzsche. An approach to computing downward closures. In Proc. ICALP 2015, volume 9135
of Lecture Notes in Computer Science, pages 440-451. Springer, 2015.

G. Zetzsche. Separability by piecewise testable languages and downward closures beyond subwords.
In Proc. LICS 2018, pages 929-938. ACM Press, 2018.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany



	1. Introduction
	2. Basic notions
	2.1. Subwords and superwords.
	2.2. Recognizable and rational relations over words.
	2.3. Simon's congruence.
	2.4. Piecewise-testable languages.
	2.5. Piecewise-testable relations
	2.6. Closure properties of PT languages.
	2.7. Relating PT height and state complexity.

	3. PT height of words and the small-subword theorem
	3.1. Words with low PT height
	3.2. Rich words and rich factorizations
	3.3. The small-subword theorem

	4. Upward closures
	5. Downward closures
	6. Piecewise-testability and PT height for I(L)
	7. Deciding the two-variable logic of subwords
	7.1. Subword-recognizable relations
	7.2. Quantifier elimination for FO2(A*,,L1,L2,…)
	7.3. Complexity for FO2(A*,)

	8. Concluding remarks
	Acknowledgments
	Appendix A. Bounding fk(n)
	References

