
Logical Methods in Computer Science
Volume 15, Issue 2, 2019, pp. 8:1–8:15
https://lmcs.episciences.org/

Submitted Jan. 27, 2018
Published Apr. 30, 2019

REASONING ABOUT EFFECTS: FROM LISTS TO CYBER-PHYSICAL

AGENTS

IAN A. MASON AND CAROLYN TALCOTT

SRI International,Menlo Park, CA 94025, USA
e-mail address: {ian.mason,carolyn.talcott}@sri.com

Abstract. Theories for reasoning about programs with effects initially focused on basic
manipulation of lists and other mutable data. The next challenge was to consider higher-
order programming, adding functions as first class objects to mutable data. Reasoning
about actors added the challenge of dealing with distributed open systems of entities
interacting asynchronously. The advent of cyber-physical agents introduces the need to
consider uncertainty, faults, physical as well as logical effects. In addition cyber-physical
agents have sensors and actuators giving rise to a much richer class of effects with broader
scope: think of self-driving cars, autonomous drones, or smart medical devices.

This paper gives a retrospective on reasoning about effects highlighting key principles
and techniques and closing with challenges for future work.

1. Introduction

“Real programs have effects–creating new structures, examining and modifying existing
structures, altering flow of control, etc.” This was the first sentence in our 1991 paper
published in the debut of the Journal of Functional Programming [21]. According to the
Oxford dictionary an effect is “a change that is a result or consequence of an action or
other cause.” In the computational world, effects can be broadly characterized as Read,
Write, or Allocation/Creation effects. Examples include mutable data, objects with local
state and methods for access, and actors. The effect, in terms of semantic foundations
and reasoning principles, of allowing effects depends on what other capabilities a language
or computational model provides, for example: first-order vs higher-order, sequential vs
concurrent/distributed.

Fast forward to the present, and the sentence has a much broader meaning in which
effects include interacting with and acting on the external environment: self-driving cars
and aircraft, medical devices, automated manufacturing, automated biology experiments,
smart homes,

Equivalence between data structures or active entities is a key concept to be addressed
in any system for reasoning about programs. The good news is that the rule “replacing
equals by equals gives equals” is usually achievable for a suitable notion of equivalence. The
other property of equality that is important in many logics is that replacing a variable by

Key words and phrases: effects, actors, operational equivalence.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(2:8)2019
c© I.A. Mason and C.Talcott
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

8:2 I.A. Mason and C.Talcott Vol. 15:2

some expression preserve equality. This fails when evaluation of expressions has effects.
What about other laws of equivalence in the presence of effects? What other properties do
we want to reason about in general (as opposed to application specific properties)? What
about types vs sets defined by a property? What are some helpful reasoning principles or
proof schemes?

The work presented here builds on three main themes, corresponding to works that have
guided our approach. First, the languages we consider share key features of what we call
Landinesque languages in the spirit of Landin’s seminal papers [13,14]. Such languages have
a functional core extended by primitives for data and control operations and coupled with
an operational semantics structured to support modular extension and equational reasoning.
Second, satisfying laws of the computational lambda calculus [27, 28] by the functional
core is a key requirements for notions of equivalence. Third, our approach to reasoning
and logical formalization is based on Feferman’s methods for formalization of constructive
mathematics and his ideas concerning variable types [5, 6]. Operational equivalence, being
indistinguishable by any enclosing program, has generally been an important approach
to defining equivalence of expressions, starting with Plotkin’s work [30]. The notion of
uniform semantics provides an important tool for deriving laws of operational equivalence,
avoiding the need to explicitly reason about “all enclosing programs”. In particular, a
uniform semantics allows one to compute symbolically with contexts and delay instantiation
of variables until they are used.

In the §2 we look at the simplest example of effects: mutable data in a first order
language. This was also historically where our study of effects began. We then, in §3, move
to the richer world of higher order programming in the presence of mutable data. In both
these cases the world is sequential and deterministic. In §4 we look at distributed systems,
where the notions of sequentiality, determinism, and even termination no longer play center
stage. In §5 we touch on the newer cyber-physical world, and the issues that arise therein.
Finally in §6 we summarize and make some concluding remarks on the challenges we have
uncovered.

2. First Order Theory of Mutable Data

The simplest examples of effects are those usually slandered as side effects: variable assign-
ment and mutable data such as pointers, arrays, and lisp style lists (or cons cells). Initially
we concentrated on the Lisp cons cells, but eventually became more enamored with the ML
style reference. mk is a memory allocation primitive: the evaluation of mk(v) results in the
allocation of a new memory cell and initializes this cell so that it contains the value v. The
value returned by this call to mk is the newly allocated cell. mk is total. get is the memory
access primitive: the evaluation of get(v) is defined iff v is a memory cell. If v is a memory
cell, then get(v) returns the value stored in that cell. Note that there is no reason why a
cell cannot store itself (or some more elaborate cycle). get is partial. set is the memory
modification primitive: the evaluation of set(v0, v1) is defined iff v0 is a memory cell. If v0
is a memory cell, then set(v0, v1) modifies that cell so that its new contents becomes v1.
The value returned by a call to set is somewhat arbitrary and somewhat irrelevant. We
have chosen nil as the return value, thus if v is a cell, then set(v, v) will return nil, and
more importantly modify v so that it contains itself. set is partial.

Mutable data structures are richer than immutable ones since the ability to mutate
allows one to distinguish between objects that have identical structure, but are not the

Vol. 15:2 REASONING ABOUT EFFECTS: FROM LISTS TO CYBER-PHYSICAL AGENTS 8:3

same object stored in memory. The notion of being the same object in memory, in the Lisp
tradition, is known as eq-ness, or being eq rather than just equal.

We illustrate this phenomena by providing a function that returns t if the reference
cells x and y are the same object in memory, and nil otherwise.

λx.λy.let{x0 := get(x), y0 := get(y)}
seq(set(x, nil),

set(y, t),

let{z := get(x)}seq(set(x, x0), set(y, y0), z))

It is important to notice that the function above leaves the state of memory completely
unchanged, even though during execution, observable modifications are made. As a result
the function would be indistinguishable from the pure version which relies on the eq primitive
found in Lisp languages

λx.λy.eq(x, y)

assuming a simple (single threaded) notion of indistinguishablity. We can make this observa-
tion more formal by using the notion of a context, an expression with a hole, •, or more
pragmatically an enclosing program. We say two expressions, f and g, are operationally
equivalent iff C[f] gives the same result computationally as C[g] for any closing context C
in the language at hand. The notion of sameness can usually be taken to be a very coarse
grained notion such as simply being defined.

We introduce contexts at this early stage because they turn out to be crucial in the
study of languages with effects. They can be used to define the semantics of programs by
elegant reduction systems. As we have already seen they can be used to define the notion
of computational indistinguishablity, and they can even be used as a logical construct to
express properties of programs, akin to a Hoare triple. A contextual assertion takes the form,
U[[Φ]], and asserts that the assertion Φ holds at the point in the computation U when the • is
reached. A simple example of this is the axiom which expresses the allocation effects of mk:

let{x := mk(v)}[[¬(x ∼= y) ∧ cell?(x) ∼= t ∧ get(x) ∼= v]]

Intuitively it asserts that the result of a call to mk(v) is a cell whose contents is v and more
importantly, different from every value that existed prior to the call. Contextual assertions
are first class formulas and can be quantifed, and be passed to the boolean connectives.
Thus we can make the implicitly universally quantified value y explicitly quantified:

(∀y)(let{x := mk(v)}[[¬(x ∼= y) ∧ cell?(x) ∼= t ∧ get(x) ∼= v]])

This also is a good illustration of the fact that we make no distinction between logical
variables, and the variables of our programming language. They are one and the same. We
will discuss contextual assertions in more detail in section 3.

In modeling first order languages with mutable data one must have some representation
of the current state of the the data structures at hand. In first order Lisp like languages the
state of memory can be simply represented by a memory context, an expression, or context,
of the form

let{z1 := mk(nil)} . . . let{zn := mk(nil)}seq(set(z1, v1), . . . , set(zn, vn), •)
The set of memory contexts, M, is the set of contexts Γ of the above form where zi 6= zj
when i 6= j. Subsequently Γ ranges over M. Here we have used unary cells, the definition
for binary cells is entirely analogous. Note that we split the construction of memory into

8:4 I.A. Mason and C.Talcott Vol. 15:2

allocation followed by assignment to allow for the construction of arbitrary, possibly cyclic,
memory. That memory can be represented as syntactic contexts simplifies the expression
of many properties since it provides natural notions of parameterized memory objects, of
binding, and of substitution for parameters. We define a reduction calculus on syntactic
entities,

Γ0; e0 7→ Γ1; e1
called descriptions. They consist of a memory context, a syntactic representation of the
state of memory, and an expression, representing the computation taking place. The
current computation can be further divided into the current instruction, and the current
continuation. Their syntactic counterparts are redexes, and reduction contexts, respectively.
Redexes describe the primitive computation steps. A primitive step is either a βv-reduction
or the application of a primitive operation to a sequence of value expressions. Reduction
contexts, R, identify the subexpression of an expression that is to be evaluated next, they
correspond to the standard reduction strategy (left-first, call-by-value) of [30] and were first
introduced in [8]. We use R to range over R.

In addition, the syntactic representation of computation state allows us to compute with
open expressions and provides a natural scoping mechanism for memory simply using laws
for bound variables. Many of the basic equivalence relations on memories and other semantic
entities translate naturally into simple syntactic equivalences such as alpha equivalence.

Reasoning about programs with effects is more delicate than the pure or effect-free
languages. For example, it is not the case that substitution instances of equivalent expressions
are equivalent eq(x, x) will always evaluate to t in a world of atomic data, references, and
cons cells, but the substitution instance eq(mk(x), mk(x)) will always be false. This is simply
because the evaluation of an expression can have effects, and evaluating an expression more
than once can be noticeable. Again, one is rescued by contexts, since the property that
remains true can be captured by

let{x := e}eq(x, x)

always evaluating to t, hinting at the crucial role contexts can make in being able to express
subtle properties of the primitives involved.

The quintessential property of operational equivalence is that it is a congruence relation.
e0 ∼= e1 implies C[e0] ∼= C[e1] for any context C, making it an ideal tool for reasoning
symbolically about programs with effects. The down side to operational equivalence is that
it is in general very hard to establish equivalences. In the case of first order lisp programs
this difficulty is surmounted by defining a seemingly stronger perspicuous relation called
strong isomorphism, and establishing that it implies operational equivalence.

In [17, 18] strong isomorphism is defined between two expressions e0 and e1, written
e0 ' e1, if and only if for every closed instantiation1 the expressions evaluate to equal values
in states that are identical, modulo the production of garbage. Here garbage is used to
describe memory that is not reachable from either the result, or the original memory. Simple
examples of strongly isomorphic expressions are

eq(x, x) ' t

seq(set(x, v), set(x,w)) ' set(x,w)

1a closed instantiation is a substitution of values for the free variables that results in a closed expression,
where the notion of closed maybe relative to the memory context at hand.

Vol. 15:2 REASONING ABOUT EFFECTS: FROM LISTS TO CYBER-PHYSICAL AGENTS 8:5

seq(mk(x), mk(u)) ' mk(u)

the first two simply evaluate to identical states, the third does so too, but produces some
garbage along the way. The main result concerning strong isomorphism, apart from its
usefulness in establishing equivalences, is that in the first order Lisp world it coincides with
operational equivalence, and so can be used as a tool to establish the operational equivalence
of expressions.

In [20,22] we used this characterization and the ability to reason syntactically to provide
a formal system for establishing operational equivalence of first order Lisp like programs,
and showed that it was sound. The system was also shown to be complete when restricted
to non-recursive programs.

Note that sequentiality is very important in establishing the above results. In a multi-
threaded world strong isomorphism would not coincide with operational equivalence, since
multi-threaded contexts would be sensitive not just to the result of the computation, but also
to the state of the world at every step. Without some form of mutual exclusion one would
not be able to define eq-ness in terms of mutation, since a process running concurrently
could also be mutating the cells being tested.

3. Reasoning about Functions and Effects

Treating functions as first class entities, with the ability to create functions during execution,
and to store or return functions as values adds new complications for reasoning about
programs. To begin with, equality of values in the usual sense is no longer decidable. This
of course is an issue even in the absence of mutable data. Another feature is the ability to
create functions that share one or more instances of mutable data structures For example

let{x := mk(nil)}let{f := λy.e0(x)}let{g := λz.e1(x)}pair(f, g)

constructs two closures, f and g, that share a reference cell x. Thus f and g can communicate
with each other via setting the value stored in x or export x for other expressions to
manipulate. Properties of f and g may crucially depend on how the visibility of this x is
maintained, making reasoning a challenge [23,25]. A concrete example of this is a version of
the call-by-value fixed point combinator, let Yv be

λy.let{z := mk(nil)}
seq(set(z, λx.app(app(y, get(z)), x)),

get(z))

This version of the fixed-point combinator is essentially identical to the one suggested by
Landin [13]. When applied to a functional F of the form λf.λx.e, Yv creates a private local
cell, z, with contents G = λx.app(app(F, get(z)), x), and returns G. By privacy of z, G is
operationally equivalent to F (G) (cf. [21]). Note that this example is typable in the simply
typed lambda calculus (for provably non-empty types (cf. [12])). Thus adding operations for
manipulating references to the simply typed lambda calculus causes the failure of strong
normalization as well as many other of its nice mathematical properties.

As another example, the usual notion of function satisfies the property that each time it
is applied to a given argument, the result is the same. This is not the case when functions
have memory! Here is a function that returns a different number each time it is called.

let{x := mk(0)}λy.let{z := get(x)}seq(set(x, z + 1), z)

8:6 I.A. Mason and C.Talcott Vol. 15:2

Though simple, such an example can easily be elaborated, using the sieve of Eratosthenes,
to enumerate the prime numbers.

3.1. Equivalence. Early work on reasoning about equality in higher-order languages in-
cludes Plotkin’s work defining operational approximations and equivalence for various
lambda calculi [30], Felleisen’s (and students) work on reduction calculi for languages with
effects [7, 9], and Moggi’s work on computational monads for a variety of computational
primitives [29]. Moggi’s equational laws of computational lambda calculus [28] are the core
equational theory for lambda-based computational languages.

In [21] we developed a theory of operational approximation and equivalence for a language
that combines (call-by-value) lambda calculus and Lisp-like mutable lists. Our definition of
operational equivalence extends the extensional equivalence relations defined by Morris and
Plotkin to computation over memory structures. Equational laws and methods for proving
equivalence were developed building on [16,22]. This work provided the foundation for a
Variable Type Logic of Effects [12] which extended equational reasoning with language for
defining sets (properties) and principles for reasoning about set membership.

Just as in § 2, the basis of our definition of operational equivalence is a small step
operational semantics, defined using memory contexts to represent memory state and
reduction contexts to represent the continuation of a computation and reduction rules to
define the small steps of a computation. Two expressions e0, e1 are operationally equivalent
if for any closing context C, C[e0] and C[e1] are equi-defined. This looks identical to the
definition in the first-order case. The difference is in the set of possible contexts. It is easy
to see that this is a congruence relation so substitution of equals for equals gives equals.
But, substitution of an expression into equals does not give equals. The counter-example
shown in § 2 remains a counter-example.

The definition of strong isomorphism in the first order case can be lifted to our higher-
language in an entirely analogous fashion and just as in the first-order case, we have that

• strong isomorphism implies operational equivalence.

A key feature of ' is that reduction rules of the operational semantics are a subset of the '
relation. Thus many laws can be proved by showing two expressions have a common reduct.
For example

let{z := mk(x)}seq(set(z, w), e) ' let{z := mk(w)}e
if z and w are distinct variables. Furthermore, many of the laws of strong isomorphism from
the first-order case continue to hold as laws of operational equivalence in the higher-order
case, including laws based on reductions that do not directly involve functions.

The ' laws combined with congruence entail that the η law of the lambda calculus holds
in the sense that if e denotes a function, i.e. e ∼= λx.e0, then e ∼= λx.e(x). In contrast, if we
view the notion of function in the more general sense of being a lambda with local memory,
e ∼= Γ[λx.e0], then the η law fails. That is, in general λx.(Γ[λx.e])x is not operationally
equivalent to Γ[λx.e]. As a counter-example take Γ to be let{z := mk(0)}• and λx.e to
be λx.let{y := get(z)}seq(set(z, x), y). Since in this case λx.(Γ[λx.e])x is operationally
equivalent to λx.0, albeit with a memory leak, while Γ[λx.e] is a thunk that when applied
returns the value it was previously applied to.

So how does the presence of higher-order entities distinguish ∼= vs '? Take any two
distinct operationally equivalent lambda expressions, the simplest pair that comes to mind is:

Vol. 15:2 REASONING ABOUT EFFECTS: FROM LISTS TO CYBER-PHYSICAL AGENTS 8:7

λx.x and λx.seq(mk(0), x), these are operationally equivalent, but not strongly isomorphic
because, as values, to be strongly isomorphic, they would have to be identical.

Strong isomorphism and computational reasoning based on reduction rules nicely capture
laws of local data and memory manipulation but there is much more to operational equivalence
and reasoning about all contexts is daunting, even in the absence of memory structures.
Robin Milner’s context lemma [26] showed that operational equivalence can be proved by
considering a small number of context patterns, thus greatly reducing the complexity of
proving operational equivalence laws.

An analog to the context lemma for languages with effects is the CIU (Closed Instantia-
tions of Uses) theorem which states that

• if all closed instantiations of all uses of two expressions are equidefined then the expressions
are operationally equivalent.

A closed instantiation of a use of an expression e is a closed expression of the form
Γ[R[eσ]] where the memory context Γ and substitution σ represent the closed instantiation
and the reduction context R represents the use. As hinted in the introduction, uniform
semantics is key to proving CIU. Once established, CIU is used to develop methods for
proving equivalence of lambda functions with and without memory.

Using this theorem we can easily establish, for example, the validity of the Moggi’s
let-rules of the computational lambda calculus [28] (see also [33] where these laws are
established for a language with control abstractions).

(i) app(λx.e, v) ∼= e{x:=v} ∼= let{x := v}e

(ii) R[e] ∼= let{x := e}R[x]

(iii) R[let{x := e0}e1] ∼= let{x := e0}R[e1]

where in (ii) and (iii) we require x not free in R.
Another nice property that is easily established using CIU is that reduction preserves

operational equivalence:

Γ; e 7→ Γ′; e′ ⇒ Γ[e] ∼= Γ′[e′]

This property is the basis of the calculi found in [10]. Our lambda language is an example of
a Landinesque language, so called in the spirit of Landin’s “Next 700 Programming languages”
paper [14]. A key result is that the CIU theorem holds for any Landinesque language with a
suitably nice (uniform) semantics. Uniformity is captured by the ability to compute with
contexts rather than just expressions, and the exact notion of uniformity is axiomatized
in [24].

3.2. Formulas. In addition to being a useful tool for establishing laws of operational
equivalence, CIU can be used to define a satisfaction relation between memory contexts and
equivalence assertions. In an obvious analogy with the usual first-order Tarskian definition
of satisfaction this can be extended to define a satisfaction relation Γ |= Φ[σ] for formulas Φ
and closing substitutions σ 2.

The memory context Γ plays the role of the model, in that it specifies what objects
exist in memory, while the closing substitution σ binds variables to values that exist in that
model. Note that variables bound by the memory context Γ are cells, while variables bound

2 Here a closing substitution binds at least the free variables not bound in the memory context.

8:8 I.A. Mason and C.Talcott Vol. 15:2

by the substitution σ are arbitrary values. The adjective closing just emphasizes that all
free variables of Γ and Φ are in the domain of the substitution, and that no free variables
creep in amongst the values in the range of σ.

The atomic formulas of our language assert the operational equivalence of two expressions.
In addition to the usual first-order formula constructions we add contextual assertions: if Φ
is a formula and U is a certain type of context, then U[[Φ]] is a formula. This form of formula
expresses the fact that the assertion Φ holds at the point in the program text marked by the
hole in U, if execution of the program reaches that point. The contexts allowed in contextual
assertions are called univalent contexts, (U-contexts). They are the largest natural class of
contexts whose symbolic evaluation is unproblematic. The key restriction is that we forbid
the hole to appear in the scope of a (non-let) lambda, thus preventing the proliferation of
holes.

One simple consequence of the definitions are the following three principles for reasoning
about contextual assertions: a general principle for introducing contextual assertions (akin
to the rule of necessitation in modal logic); a principle for propagating contextual assertions
through equations; and a principle for composing contexts (or collapsing nested contextual
assertions).

(i) |= Φ implies |= U[[Φ]]

(ii) U[[e0 ∼= e1]] ⇒ U[e0] ∼= U[e1]

(iii) U0[[U1[[Φ]]]] ⇔ (U0[U1])[[Φ]]

Also, as we have already mentioned in section 2 one can naturally express properties such as
the allocation effects of mk:

(∀y)(let{x := mk(v)}[[¬(x ∼= y) ∧ cell?(x) ∼= t ∧ get(x) ∼= v]])

3.3. Classes. Using methods developed by Feferman [5,6] and applied to lambda languages
with control operators [33], we extend our theory to include a general theory of classifications
(classes for short). With the introduction of classes, principles such as structural induction,
as well as principles accounting for the effects of an expression can easily be expressed.
Classes serve as a starting point for studying semantic notions of type. As will be seen, direct
representation of type inference systems can be problematic, and additional notions maybe
required to provide a formal semantics. Even here classes are likely to play an important
role.

Class terms are either class variables, class constants, or comprehension terms, {x Φ}.
We extend the set of formulas to include class membership and quantification over class
variables. We define (extensional) equality and subset relations on classes in the usual
manner.

K0 ⊆ K1 abbreviates (∀x)(x ∈ K0 ⇒ x ∈ K1)

K0 ≡ K1 abbreviates K0 ⊆ K1 ∧ K1 ⊆ K0

A simple example of a class is the set of reference cells that contain values in a specific set
K:

Cell = {x cell?(x) ∼= t}

Cell[K] = {x cell?(x) ∼= t ∧ get(x) ∈ K}

Vol. 15:2 REASONING ABOUT EFFECTS: FROM LISTS TO CYBER-PHYSICAL AGENTS 8:9

We can also express a variety of function spaces, the simplest are total, partial and memory.3

X̄ → Y = {f (∀x̄ ∈ X̄)(∃y ∈ Y)app(f, x̄) ∼= y}

X̄
p→ Y = {f (∀x̄ ∈ X̄)(∀y)(app(f, x̄) ∼= y ⇒ y ∈ Y)}

X̄
µ→Y = {f (∀x̄ ∈ X̄)(let{y := app(f, x̄)}[[y ∈ Y]])}

So for example, the reference operations can be given types by

(mk) λx.mk(x) ∈ (X
µ→Cell[X])

(get) λx.get(x) ∈ Cell[X]→ X

(set) λx.λy.set(x, y) ∈ Cell→ (Val
µ→Nil)

Class membership expresses a very restricted form of non-expansiveness, allowing neither
expansion of memory domain nor change in contents of existing cells. To illustrate some
of the subtleties regarding class membership, and notions of expansiveness, consider the
following expressions:

e0 = λx.mk(nil)

e1 = let{z := mk(nil)}λx.z

e2 = seq(if(cell?(y), set(y, nil), nil), λx.mk(nil))

e3 = seq(if(cell?(y), set(y, nil), nil), let{z := mk(nil)}λx.z)
Then each of these expressions evaluates to a memory function mapping arbitrary values
to cells containing nil. But they differ in the effects they have. e0 is a value (and as such
neither expands nor modifies memory). e1 is not a value and is expansive (its evaluation
enlarges the domain of memory) but does not modify existing memory. e2 may modify
existing memory, but does not expand it. e3 is expansive, and it may modify existing memory.

These observations can be expressed in the theory as follows. Let T be Val
µ→Cell[Nil],

and Φ¬write[Cell](e) be as defined below. Then

e0 ∈ T ∧ e0 ∈ Val

ej 6∈ Val for 1 ≤ j ≤ 3

let{x := ej}[[x ∈ T]] for 0 ≤ j ≤ 3

Φ¬write(ej) for 0 ≤ j ≤ 1

Φ¬expand(ej) for j ∈ {0, 2}
Let Φ¬expand(e) stand for the formula

(∀X)(X ≡ Cell ⇒ seq(e, [[X ≡ Cell]]).

Then Φ¬expand(e) says that execution of e does non expand the memory, although it might
modify contents of existing cells. Φ¬write(e) is defined as:

(∃X)(X ≡ Cell∧
(∀x ∈ X)(∀z ∈ Val))(get(x) ∼= z ⇒ seq(e, [[get(x) ∼= z]])))

3We use the standard notation of x̄ to denote a sequence x0, . . . , xn of variables.

8:10 I.A. Mason and C.Talcott Vol. 15:2

3.4. Classes vs Types: the functional case. In [6] Feferman proposes an explanation
of ML types in the variable type framework. This gives a natural semantics to ML type
expressions, but there are problems with polymorphism, even in the purely functional case.
The collection of classes is much too rich to be considered a type system. One problem
that arises is that fixed-point combinators can not be uniformly typed over all classes. This
problem arises even in the absence of memory [31,33]. Let Yv by any fixed-point combinator
(such that f(Yv(f)) = Yv(f)). Then it is not the case that

f ∈ (C → C) ⇒ Yv(f) ∈ C
for all function classes C (C ⊆ A p→ B for some classes A,B).

Define P to be the class of strictly partial maps from Nat to Nat:

P = {g ∈ Nat
p→ Nat (∃n ∈ Nat)(¬↓ g(n))}

Let

f = λp.λn.if(eq(n, 0), n, p(n− 1))

Then we can prove

(1) f ∈ P → P

(2) Yv(f) ∈ Nat→ Nat

(1) follows by simple properties of if, eq and arithmetic (2) follows by induction on Nat
using the fixed point property of Y . Consequently, ¬(Yv(f) ∈ P)

3.5. Classes vs Types: the imperative case. The situation becomes more problematic
when references are added, even in the simply typed (or monomorphic) case. Näıve attempts
to represent ML types as classes fails in sense that ML inference rules are not valid. The
essential feature of the ML type system, in addition to the inference rules, is the preservation
of types during the execution of well-typed programs, not just of the text being executed,
but also of the contents of any cell in memory. This requirement is a strong form of subject
reduction. One that does not seem to be expressible using classes (quantifying over types,
whatever they may be, seems problematic). Our analysis indicates that ML types are
therefore more syntactic than semantic.

4. Actors: Open Systems of Interactive Agents

An actor is a unit of concurrent/distributed interactive computation. Each actor encapsulates
state. It can receive messages; which may cause it to change state; it can send messages, to
actors it knows about; and it can create new actors. Communication by message passing
is reliable, and asynchronous with fair message delivery [1, 11]. We can describe actor
behaviors using lambda expressions augmented with actor primitives (become, send and
letactor) analogous to describing computation over memory structures by adding memory
effect primitives [2]. send is for sending messages; send(a, v) creates a new message with
receiver a and contents v and puts the message into the message delivery system. letactor
is for actor creation. letactor{x := b}e creates an actor with initial behavior b, making
the new address the value of the variable x. The expression e is evaluated in the extended
environment. The variable x is also bound in the expression b, thus allowing an actor to refer
to itself if so desired. become is for changing behavior; become(b) creates an anonymous

Vol. 15:2 REASONING ABOUT EFFECTS: FROM LISTS TO CYBER-PHYSICAL AGENTS 8:11

actor to carry out the rest of the current computation, alters the behavior of the actor
executing the become to be b, and frees that actor to accept another message. This provides
additional parallelism. The anonymous actor may send messages or create new actors in the
process of completing its computation, but will never receive any messages as its address
can never be known.

A consequence of the actor interaction model is unbounded non-determinism. A classic
example is the Ticker actor that maintains a counter, sends itself tick messages to increment
the counter, and responds to requests from other actors by sending the current counter
value.

bTicker = Yv(λb.λc.λm.if(m = tick,

seq(send(τ, tick), become(app(b, c+ 1)))

seq(send(customer(m), c), become(app(b, c)))))

Ticker = letactor{τ := bTicker}seq(send(τ, tick), τ)

We avoid going into the details of messages as data structures by using customer(m) to
denote the sender of the message. The Ticker has the property that (assuming it is sent an
initial tick message) for any natural number n there is a computation where a request results
in sending a number greater than n. This is because, although the request is guaranteed to
be delivered and receive a response, any number of ticks can be delivered before the request.

The operational semantics for actor systems is given by a transition relation on actor
configurations. A configuration 〈〈

α µ
〉〉ρ
ξ

can be thought of as representing a global snapshot of an actor system with respect to some
idealized observer [1]. It contains a collection of actors α, messages µ, external actor names
ξ , and receptionist names ρ. The sets of receptionists and external actors are the interface
of an actor configuration to its environment. They specify which actors are visible and
which actor connections must be provided for the configuration to function. Both the set of
receptionists and the set of external actors may grow as the configuration evolves.

Several semantics have been defined for actor configurations [35] differing by treatment
of ordering relations among send/receive events and level of detail [3]. The basic operational
semantics is the set of traces of fair executions given by a reduction relation as for Landinesque
languages. What is different is the presence of interactions with the external world –
transitions for input of messages from external (unseen) actors (in(msg)), and output of
messages to these external actors (out(msg)).

Although we have never done so, actor computation is uniform enough for it to be
represented as a Landinesque language, what is lacking is the development of a syntax
rich enough to represent configurations. However, a somewhat more crucial distinction is
that unlike the sequential case, neither the notion of reducing to a value, nor deterministic
computation, nor the notion of a computation terminating are central concepts. Rather
they are side lined to the more infinitary notion of a computation path, and the collection
of all computation paths. It is in this infinitary realm that crucial questions of fairness arise
and play a part. The unimportance of termination creates a new problem: what are the
primitive observations that underly any notion of operational or observational equivalence?
The approach taken in [2] is to introduce a primitive, event, and observe whether or not in
a given computation, event is executed. This approach is similar in spirit to that used in

8:12 I.A. Mason and C.Talcott Vol. 15:2

defining testing equivalence for CCS [4], except that the required condition of fairness of
actor computation simplifies matters by collapsing two obvious candidates of equivalence
into one. See §4 of [2] for more details.

With a notion of equivalence on actor expressions defined, a library of useful equivalences
can be established. Since our reduction rules preserve the evaluation semantics of the
embedded functional language, many of the equational laws for the language of section 3
(cf. [34]) continue to hold in the actor language. For example, the laws of the untyped
computational lambda calculus [27] continue to hold in the actor setting [2].

Even though the actor language is not presented as a Landinesque language, the fact
that computation can be parametrically defined more generally on contexts allows for laws
to be established in an entirely analogous fashion to the CIU principle. For example if there

is some e′ such that R0[x]
∗7→ e′ and R1[x]

∗7→ e′ where x is a fresh variable, then R0[e] ∼= R1[e]
for any e. This rule says that if two reduction contexts have a common λ-reduct when the
redex hole is filled with a fresh variable (standing for an arbitrary value expression), then
they are equivalent. In other words, two reduction contexts are considered equivalent if
placing an arbitrary expression in the redex hole results in equivalent expressions.

5. Cyber-Physical Agents

Actors are an idealization of real world interactive agents: messages are always delivered,
intact, to the right actor. The interactions are simply exchanges of information. Autonomous
cyber-physical agents (CPAs) combine interaction as information exchange with interaction
with the physical world via sensors and actuators. Examples include drones used for
agricultural surveillance, railway track monitoring, or package delivery; security robots, wave
gliders that traverse the Pacific Ocean by themselves; and self-driving cars. CPAs interact
in space and time and have finite resources. Things don’t always work as expected: sensors
may give false readings; actuators (driving engines, rotors, cameras) may fail to act or cause
too much or too little effect; or there may be natural threats such as obstacles or bad weather
impeding a mobile CPA. Communication is likely to be disrupted so coordination amongst
agents is a challenge.

In the actor model the notion of fairness attempts to capture that actors are independent
agents running on independent clocks combined with reliable message delivery. It ensures
that one actor does not get all the resources in a situation of concurrent processing on
a shared host. In the case of autonomous CPAs we are modeling physically independent
agents. Fairness is in some sense built in to the physics. Although agents can purposely
interfere with one another, that is a behavior problem, not a model problem. Also, fairness
is an infinitary property, and limits of the sort used to define fairness aren’t observable in
the real world. From a practical point of view, we are typically interested in behaviors of
CPAs over a finite time horizon, in which case fairness, being an infinitary property, does
not play a role.

To define an interaction path semantics for CPA systems, one needs semantic rules for
agent behaviors, which include rules modeling the physical effects of sensors and actuators,
rules modeling relevant aspects of the external environment. Examples can be found
in [15,19].

To define operational equivalence in analogy to actor systems we would need a notion of
closing configuration. It is not clear that there is in general a meaningful such notion. If the
rules for sensors and actuators capture fault/threat models they are likely to be probabilistic,

Vol. 15:2 REASONING ABOUT EFFECTS: FROM LISTS TO CYBER-PHYSICAL AGENTS 8:13

leaving the question of what to check about the set of interaction paths to decide equivalence.
Is it interesting or useful to have a probability measure on equivalence?

We propose that a first approach to reasoning about CPAs is to identify effects that
we are concerned with, and use these to formulate goals that a CPA system should achieve.
Examples of goals include monitoring (taking a picture or sampling air or water for quality
assessment, checking inventory); moving objects; not running out of energy, not doing
damage. Monitoring goals come with space and time requirements. Achievement of goals is
not all or nothing, but can be measured either in a discrete or continuous (partially) ordered
domain. For example the percent of specified locations visited or sampled by a monitor
system in a given period could be a measure of achievement. Another measure could be
the percent of energy remaining or the minimal energy reserve at any point in carrying
out a task. These could be combined lexicographically giving preference to safety to give
an overall measure of success. See [19, 32] for examples. Given such measures, one could
compare CPAs based on how well they achieve goals, leading to a partial order on CPAs. In
different circumstances the ordering of importance of goals may change and thus the ranking
of agents may change.

6. Conclusion

Effects are an essential part of interaction and communication. In computation systems
effects are observed by and affect the remaining computation (continuation), the concurrent
computations, and observers outside the system.

From studies that develop theories of effects, key concepts for formalizing and reasoning
about programs with effects have emerged. These include a variety of contexts (reduction,
memory, closing, . . .); reduction calculii, and operational notions of equivalence. The ability
to represent execution state as contexts leads to an elegant operational semantics, and is
also key for further developing the theory of effects. Uniformity – reduction rules that are
uniformly parameterized by the surrounding context – is a powerful tool for developing
reasoning principles; an example of this is the CIU theorem.

Equivalence and the consequences of effects are very sensitive to the richness of the
contexts. Contexts have dimensions beyond what is normally thought of as effects, including:
first-order versus higher-order, functions can encapsulate and replicate effects as they are
passed around; sequential versus concurrent/distributed, introducing the complications of
non-determinism and interference mid-computation.

In each case some equational laws will break. However, the laws of the computational
lambda calculus hold in all cases where there is a uniform semantics, an indication of the
importance of that calculus as a core for computational languages.

Logics for reasoning about programs/systems with effects have been developed building
on the equational theories. Again contexts are key for axiomatizing effectual primitives and
for expressing properties such as invariants. There are completeness results for first-order
fragments. In other cases a combination of computational and logical reasoning seems useful,
taking advantage again of reasoning principles based on uniform computation.

There remain a number of interesting challenges for reasoning about effects. One
example is relating syntactic and semantic notions of type. Are there semantic types that
can be checked by syntactic type rules? Are there syntactic types that have semantic
characterizations.

8:14 I.A. Mason and C.Talcott Vol. 15:2

Syntactic representation of execution contexts has been a crucial tool for developing
reasoning methods. Although the formal development has not been done for actor languages,
the reasoning methods relied on a mix of syntactic and semantic contexts that make it clear
a fully syntactic representation of computation contexts is possible. This remains an open
question for cyber-physical agents (CPAs). Perhaps some form of symbolic reasoning where
the unknown parts of the context remain unspecified?

Reasoning about CPAs introduces many new issues as a consequence of the physical
nature of effects and interacting in an open unpredictable environment. Sensors and actuators
may be faulty, other agents and nature may interfere. Furthermore, some cyber/digital
effects disappear when system stops (files, databases, hopefully do not). Effects caused
by CPAs may persist after the system task ends, by design or due to errors, until another
system (CPA, nature, human) causes further change.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
Mass., 1986.

[2] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation. Journal of
Functional Programming, 7:1–72, 1997.

[3] H. G. Baker and C. Hewitt. Laws for communicating parallel processes. In IFIP Congress, pages 987–992.
IFIP, Aug. 1977.

[4] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Computer Science,
34:83–133, 1984.

[5] S. Feferman. A language and axioms for explicit mathematics. In Algebra and Logic, volume 450 of
Springer Lecture Notes in Mathematics, pages 87–139. Springer Verlag, 1975.

[6] S. Feferman. Polymorphic typed lambda-calculi in a type-free axiomatic framework. In Logic and
Computation, volume 106 of Contemporary Mathematics, pages 101–136. A.M.S., Providence R. I., 1990.

[7] M. Felleisen. The Calculi of Lambda-v-cs Conversion: A Syntactic Theory of Control and State in
Imperative Higher-Order Programming Languages. PhD thesis, Indiana University, 1987.

[8] M. Felleisen and D. Friedman. Control operators, the SECD-machine, and the λ-calculus. In M. Wirsing,
editor, Formal Description of Programming Concepts III, pages 193–217. North-Holland, 1986.

[9] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of sequential control.
Theoretical Computer Science, 52:205–237, 1987.

[10] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and state.
Theoretical Computer Science, 103:235–271, 1992.

[11] C. Hewitt. Description and Theoretical Analysis (Using Schemata) of PLANNER: A Language for
Proving Theorems and Manipulating Models in a Robot. PhD thesis, MIT, 1971.

[12] F. Honsell, I. A. Mason, S. F. Smith, and C. L. Talcott. A variable typed logic of effects. Information
and Computation, 119(1):55–90, 1995.

[13] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–320, 1964.
[14] P. J. Landin. The next 700 programming languages. Comm. ACM, 9:157–166, 1966.
[15] M. Loreti and J. Hillston. Modelling and analysis of collective adaptive systems with carma and its tools.

In SFM 2016: Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems, volume
9700 of LNCS. Springer, 2016.

[16] I. A. Mason. The Semantics of Destructive Lisp. PhD thesis, Stanford University, 1986. Also available as
CSLI Lecture Notes No. 5, Center for the Study of Language and Information, Stanford University.

[17] I. A. Mason. The Semantics of Destructive Lisp. Number 5 in CSLI Lecture Notes, Center for the Study
of Language and Information, Stanford University. University of Chicago Press, 1986.

[18] I. A. Mason. Verification of Programs that Destructively Manipulate Data. Science of Computer
Programming, 10:177–210, 1988.

[19] I. A. Mason, V. Nigam, C. Talcott, and A. Brito. A framework for analyzing adaptive autonomous aerial
vehicles. In 1st Workshop on Formal Co-Simulation of Cyber-Physical Systems, 2017.

Vol. 15:2 REASONING ABOUT EFFECTS: FROM LISTS TO CYBER-PHYSICAL AGENTS 8:15

[20] I. A. Mason and C. L. Talcott. A sound and complete axiomatization of operational equivalence between
programs with memory. Technical Report STAN-CS-89-1250, Department of Computer Science, Stanford
University, 1989.

[21] I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects. Journal of Functional
Programming, 1:287–327, 1991.

[22] I. A. Mason and C. L. Talcott. Inferring the equivalence of functional programs that mutate data.
Theoretical Computer Science, 105(2):167–215, 1992.

[23] I. A. Mason and C. L. Talcott. References, local variables and operational reasoning. In Seventh Annual
Symposium on Logic in Computer Science, pages 186–197. IEEE, 1992.

[24] I. A. Mason and C. L. Talcott. Feferman–Landin Logic. In W. Sieg, R. Sommer, and C. Talcott, editors,
Reflections on the Foundations of Mathematics: Essays in honor of Solomon Feferman, Lecture Notes in
Logic, pages 299–344. Association of Symbolic Logic, 2002.

[25] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables: Preliminary report. In
15th ACM Symposium on Principles of Programming Languages, pages 191–208, 1988.

[26] R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science, 4:1–22, 1977.
[27] E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-86, University

of Edinburgh, 1988.
[28] E. Moggi. Computational lambda-calculus and monads. In Fourth Annual Symposium on Logic in

Computer Science. IEEE, 1989.
[29] E. Moggi. Notions of computation and monads. Information and Computation, 93(1), 1991.
[30] G. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical Computer Science, 1:125–

159, 1975.
[31] S. F. Smith. Partial Objects in Type Theory. PhD thesis, Cornell University, 1988. Available as TR

88-938.
[32] C. Talcott, F. Arbab, and M. Yadav. Soft agents: Exploring soft constraints to model robust adaptive

distributed cyber-physical agent systems. In Software, Services, and Systems - Essays Dedicated to
Martin Wirsing on the Occasion of His Retirement from the Chair of Programming and Software
Engineering, volume 8950 of LNCS. Springer-Verlag, 2015.

[33] C. L. Talcott. A theory for program and data type specification. Theoretical Computer Science, 104:129–
159, 1992.

[34] C. L. Talcott. A theory for program and data specification. Theoretical Computer Science, 104:129–159,
1993.

[35] C. L. Talcott. Composable semantic models for actor theories. Higher-Order and Symbolic Computation,
11(3):281–343, 1998.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. First Order Theory of Mutable Data
	3. Reasoning about Functions and Effects
	3.1. Equivalence
	3.2. Formulas
	3.3. Classes
	3.4. Classes vs Types: the functional case
	3.5. Classes vs Types: the imperative case

	4. Actors: Open Systems of Interactive Agents
	5. Cyber-Physical Agents
	6. Conclusion
	References

