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Abstract. In the setting of DynFO, dynamic programs update the stored result of a
query whenever the underlying data changes. This update is expressed in terms of first-order
logic. We introduce a strategy for constructing dynamic programs that utilises periodic
computation of auxiliary data from scratch and the ability to maintain a query for a limited
number of change steps. We show that if some program can maintain a query for logn
change steps after an AC1-computable initialisation, it can be maintained by a first-order
dynamic program as well, i.e., in DynFO. As an application, it is shown that decision and
optimisation problems defined by monadic second-order (MSO) formulas are in DynFO, if
only change sequences that produce graphs of bounded treewidth are allowed. To establish
this result, a Feferman-Vaught-type composition theorem for MSO is established that
might be useful in its own right.

1. Introduction

Each time a database is changed, any previously computed and stored result of a fixed query
might become outdated. However, when the change is small, it is plausible that the new
query result is highly related to the old result. In that case it might be more efficient to
use previously computed information for obtaining the new answer to the query instead
of recomputing the query result from scratch. A theoretical framework for studying when
the result of a query over relational databases can be updated in a declarative fashion was
formalised by Patnaik and Immerman [PI97], and Dong, Su, and Topor [DST95]. In their
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formalisation, a dynamic program consists of a set of logical formulas that update a query
result after the insertion or deletion of a tuple. The formulas may use additional auxiliary
relations that, of course, need to be updated as well. The queries maintainable in this way
via first-order formulas constitute the dynamic complexity class DynFO.

Recent work has confirmed that DynFO is a quite powerful class, since it captures, e.g.,
the reachability query for directed graphs [DKM+18], and even allows for more complex
change operations than single-tuple changes [SVZ18, DMVZ18].

In this article we introduce a general strategy for dynamic programs that further
underscores the expressive power of DynFO. All prior results for DynFO yield dynamic
programs that are able to maintain a query for arbitrary long sequences of changes. Even
if this is not (known to be) possible for a given query, in a practical scenario it might still
be favourable to maintain the query result dynamically for a bounded number of changes,
then to apply a more complex algorithm that recomputes certain auxiliary information from
scratch, such that afterwards the query can again be maintained for some time, and so on.

Here we formalise this approach. Let C be a complexity class and f : N→ N a function. A
query q is called (C, f)-maintainable, if there is a dynamic program (with first-order definable
updates) that, starting from some input structure A and auxiliary relations computed in C
from A, can answer q for f(|A|) many steps, where |A| denotes the size of the universe of A.

We feel that this notion might be interesting in its own right. However, in this article
we concentrate on the case where C is (uniform) AC1 and f(n) = log n. The class AC1

contains all queries that can be computed by a (uniform) circuit of depth O(log n) that uses
polynomially many ∧-, ∨-, and ¬-gates, where ∧- and ∨-gates may have unbounded fan-in.
We show that (AC1, log n)-maintainable queries are actually in DynFO, and thus can be
maintained for arbitrary long change sequences.

We apply this insight to show that all queries and optimisation problems definable in
monadic second-order logic (MSO) are in DynFO for (classes of) structures of bounded
treewidth, by proving that they are (AC1, log n)-maintainable. The same can be said about
guarded second-order logic (GSO), simply because it is expressively equivalent to MSO
on such classes [Cou94]. This implies that decision problems like 3-Colourability or
HamiltonCycle as well as optimisation problems like VertexCover and DominatingSet
are in DynFO, for such classes of structures. This result is therefore a dynamic version of
Courcelle’s Theorem which states that all problems definable in (certain extensions of) MSO
can statically be solved in linear time for graphs of bounded treewidth [Cou90].

The proof that MSO-definable queries are (AC1, log n)-maintainable on structures of
bounded treewidth makes use of a Feferman–Vaught-type composition theorem for MSO
which might be useful in its own right.

The result that (AC1, log n)-maintainable queries are in DynFO comes with a technical
restriction: in a nutshell, it holds for queries that are invariant under insertion of (many)
isolated elements. We call such queries almost domain independent and refer to Section 3 for
a precise definition.

We emphasise that the main technical challenge in maintaining MSO-queries on graphs
of bounded treewidth is that tree decompositions might change drastically after an edge
insertion, and can therefore not be maintained incrementally in any obvious way. In particular,
the result does not simply follow from the DynFO-maintainability of regular tree languages
shown in [GMS12]. We circumvent this problem by periodically recomputing a new tree
decomposition (this can be done in logarithmic space [EJT10] and thus in AC1) and by
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showing that MSO-queries can be maintained for O(log n) many change operations, even if
they make the tree decomposition invalid.

Contributions. We briefly summarise the contributions described above. In this article,
we introduce the notion of (C, f)-maintainability and show that, amongst others, (almost
domain independent) (AC1, log n)-maintainable queries are in DynFO. We show that MSO-
definable decision problems and optimisation problems are (AC1, log n)-maintainable and
therefore in DynFO, for structures of bounded treewidth. These proofs make use of a
Feferman–Vaught-type composition theorem for MSO logic.

Related work. The simulation-based technique for proving that (AC1, log n)-maintainable
queries are in DynFO is inspired by proof techniques from [DKM+15] and [SVZ18]. As
mentioned above, in [GMS12] it has been shown that tree languages, i.e. MSO on trees, can
be maintained in DynFO. Independently, the maintenance of MSO definable queries on
graphs of bounded treewidth is also studied in [BJM17], though in the restricted setting
where the tree decomposition stays the same for all changes. A static but parallel version
of Courcelle’s Theorem is given in [EJT10]: every MSO-definable problem for graphs of
bounded treewidth can be solved with logarithmic space.

Organisation. Basic terminology is recalled in Section 2, followed by a short introduction
into dynamic complexity in Section 3. In Section 4 we introduce the notion of (C, f)-
maintainability and show that (AC1, log n)-maintainable queries are in DynFO. A glimpse
on the proof techniques for proving that MSO queries are in DynFO for graphs of bounded
treewidth is given in Section 5 via the example 3-Colourability. The proof of the general
results is presented in Section 6. An extension to optimisation problems can be found in
Section 7.

This article is the full version of [DMS+17].

2. Preliminaries

We now introduce some notation and notions regarding logics, graph theory and complexity
theory. We assume familiarity with first-order logic FO and other notions from finite model
theory [Imm99, Lib04].

Relational structures. In this article we consider finite relational structures over rela-
tional signatures Σ = {R1, . . . , R`, c1, . . . , cm}, where each Ri is a relation symbol with a
corresponding arity Ar(Ri), and each cj is a constant symbol. A Σ-structure A consists of
a finite domain A, also called the universe of A, a relation RAi ⊆ AAr(Ri), and a constant
cAj ∈ A, for each i ∈ {1, . . . , `}, j ∈ {1, . . . ,m}. The active domain adom(A) of a structure
A contains all elements used in some tuple or as some constant of A. For a set B ⊆ A
that contains all constants and a relation R, the restriction R[B] of R to B is the relation
R∩BAr(R). The structure A[B] induced by B is the structure obtained from A by restricting
the domain and all relations to B.

Sometimes, especially in Section 3, we consider relational structures as relational
databases. This terminology is common in the context of dynamic complexity due to
its original motivation from relational databases. Also for this reason, dynamic complexity
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classes defined later will be defined as classes of queries of arbitrary arity, and not as a class
of decision problems. However, we will mostly consider queries over structures with a single
binary relation symbol E, that is, queries on graphs.

We will often use structures A with a linear order ≤ on the universe A, and compatible
ternary relations encoding arithmetical operations + and × or, alternatively, a binary relation
encoding the relation BIT = {(i, j) | the j-th bit in the binary representation of i is 1}. The
linear order in particular allows us to identify A with the first |A| natural numbers. We write
FO(+,×) or FO(BIT) to emphasise that we allow first-order formulas to use such additional
relations.1 We also use that FO(+,×) = FO(BIT) [Imm99].

Tree decompositions and treewidth. A tree decomposition (T,B) of G consists of a
(rooted, directed) tree T = (I, F, r), with (tree) nodes I, (tree) edges F , a distinguished root
node r ∈ I, and a function B : I → 2V such that
(1) the set {i ∈ I | v ∈ B(i)} is non-empty for each node v ∈ V ,
(2) there is an i ∈ I with {u, v} ⊆ B(i) for each edge (u, v) ∈ E, and
(3) the subgraph T [{i ∈ I | v ∈ B(i)}] is connected for each node v ∈ V .

We refer to the number of children of a node i of T as its degree, and to the set B(i)
as its bag. We denote the parent node of i by p(i). The width of a tree decomposition is
defined as the maximal size of a bag minus 1. The treewidth of a graph G is the minimal
width among all tree decompositions of G. A tree decomposition is d-nice, for some d ∈ N, if
(1) T has depth at most d log n,
(2) the degree of the nodes is at most 2, and
(3) all bags are distinct.
Often we do not make the constant d explicit and just speak of nice tree decompositions.

Later we will use that tree decompositions can be transformed into nice tree decomposi-
tions with slightly increased width. This is formalized in the following lemma, whose proof is
an adaption of [EJT10, Lemma 3.1].

Lemma 2.1. For every k ∈ N there is a constant d ∈ N such that for every graph of treewidth
k, a d-nice tree decomposition of width 4k + 5 can be computed in logarithmic space.

Proof. Let G be a graph of treewidth k. By [EJT10, Lemma 3.1] a tree decomposition
(T,B) of width 4k + 3 can be computed in logarithmic space, such that each non-leaf node
has degree 2 and the depth is at most d log n, for a constant d that only depends on k.
To obtain a tree decomposition with distinct bags, we compose this algorithm with three
further algorithms, each reading a tree decomposition (T,B) and transforming it into a tree
decomposition (T ′, B′) with a particular property. Since each of the four algorithms requires
only logarithmic space, the same holds for their composition.

The first transformation algorithm produces a tree decomposition, in which for each leaf
bag i it holds B(i) 6⊆ B(p(i)). In particular, after this transformation, each bag of a leaf node
i contains some graph node u(i) that does not appear in any other bag. This transformation
inspects each node i separately in a bottom-up fashion, and removes it if (1) B(i) ⊆ B(p(i))
and (2) every bag below i is a subset of B(i). Clearly, logarithmic space suffices for this.

The second transformation (inductively) removes an inner node i of degree 1 with a child i′
and inserts an edge between B(p(i)) and B(i′) whenever B(i) ⊆ B(p(i)) or B(i) ⊆ B(i′)

1The question of <-invariance (c.f. [Lib04]) will not be relevant in the context of this article as a specific
relation ≤ will be available in the structure.
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Figure 1: Illustration of (a) a proper triangle (i0, i1, i2), (b) a unary triangle (i0, i1, i1), and (c)
an open triangle (i0, i0, i0). The blue shaded area is the part of the tree contained
in the triangle.

holds. For this transformation, only one linear chain of nodes in T has to be considered at
any time and therefore logarithmic space suffices again. Clearly, the connectivity property is
not affected by these deletions.

The third transformation adds to every bag of an inner node i the nodes u(i1) and u(i2),
guaranteed to exist by the first transformation, of the leftmost and rightmost leaf nodes i1
and i2 of the subtree rooted at i, respectively. Here, we assume the children of every node to
be ordered by the representation of T as input to the algorithm. After this transformation,
each node of degree 2 has a different bag than its two children thanks to the addition of u(i1)
and u(i2). Each node of degree 1 has a different bag than its child, since this was already the
case before (and to both of them the same two nodes might have been added). Altogether,
all bags are pairwise distinct and the bag sizes have increased by at most 2.

We emphasise that, whenever a leftmost graph node u(i1) is added to B(i), it is also
added to all bags of nodes on the path from i to i1 and therefore the connectivity property
is not corrupted. It is easy to see that the third transformation can also be carried out in
logarithmic space.

The three presented algorithms never increase the depth of a tree decomposition, so the
final result is a d-nice tree decomposition for G of width 4k + 5.

In this paper we only consider nice tree decompositions, and due to property (3) of these
decompositions we can identify bags with nodes from I.

For two nodes i, i′ of I, we write i � i′ if i′ is in the subtree of T rooted at i and i ≺ i′ if,
in addition, i′ 6= i. A triangle δ of T is a triple (i0, i1, i2) of nodes from I such that i0 � i1,
i0 � i2, and (1) i1 = i2 or (2) neither i1 � i2 nor i2 � i1. In case of (2) we call the triangle
proper, in case of (1) unary, unless i0 = i1 = i2 in which we call it open (see Figure 1 for an
illustration). The subtree T (δ) induced by a triangle consists of all nodes j of T for which
the following holds:
(i) i0 � j,
(ii) if i0 ≺ i1 then i1 6≺ j, and
(iii) if i0 ≺ i2 then i2 6≺ j.
That is, for a proper or unary triangle, T (δ) contains all nodes of the subtree rooted at i0
which are not below i1 or i2. For an open triangle δ = (i0, i0, i0), T (δ) is just the subtree
rooted at i0.

Each triangle δ induces a subgraph G(δ) of G as follows: V (δ) is the union of all bags
of T (δ). By B(δ) we denote the set B(i0) ∪ B(i1) ∪ B(i2) of interface nodes of V (δ). All
other nodes in V (δ) are called inner nodes. The edge set of G(δ) consists of all edges of G
that involve at least one inner node of V (δ).
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MSO-logic and MSO-types. MSO is the extension of first-order logic that allows exis-
tential and universal quantification over set variables X,X1, . . .. The (quantifier) depth of
an MSO formula is the maximum nesting depth of (second-order and first-order) quantifiers
in the syntax tree of the formula.

For a signature Σ and a natural number d ≥ 0, the depth-d MSO type of a Σ-structure A
is defined as the set of all MSO sentences ϕ over Σ of quantifier depth at most d, for which
A |= ϕ holds. We also define the notion of types for structures with additional constants and
MSO formulas with free variables. Let A be a Σ-structure and v̄ = (v1, . . . , vm) a tuple of
elements from A. We write (A, v̄) for the structure over Σ ∪ {c1, . . . , cm} which interprets ci
as vi, for every i ∈ {1, . . . ,m}. For a set Y of first-order and second-order variables and an
assignment α for the variables of Y, the depth-d MSO type of (A, v̄, α) is the set of MSO
formulas with free variables from Y of depth d that hold in (A, v̄, α). For every depth-d
MSO type τ , there is a depth-d MSO formula ατ that is true in exactly the structures and
for those assignments of type τ .

The logic guarded second-order logic (GSO) extends MSO by guarded second-order
quantification. Thus, it syntactically allows to quantify over non-unary relation variables.
However, this quantification is semantically restricted: a tuple t̄ = (a1, . . . , am) can only
occur in a quantified relation, if all elements from {a1, . . . , am} occur together in some tuple
of the structure, in which the formula is evaluated.

For more background on MSO logic and types, readers might consult, e.g., [Lib04].

Complexity classes and descriptive characterisations. Our main result refers to the
complexity class (uniform) AC1. It contains all queries that can be computed by (families
of uniform) circuits of depth O(log n), consisting of polynomially many “and”, “or” and
“not” gates, where “and” and “or” gates may have unbounded fan-in. It contains the classes
LOGSPACE and NL, and it can be characterised as the class IND[log n] of problems that
can be expressed by applying a first-order formula O(log n) times [Imm99, Theorem 5.22].
Here, n denotes the size of the universe and the formulas can use built-in relations + and ×.
More generally, this characterisation is also valid for the analogously defined classes AC[f(n)]
and IND[f(n)], where the depth of the circuits and the number of applications of the first-
order formula is f(n), respectively, for some function f : N→ N. Technically, the function f
needs to be first-order constructible, that is, there has to be a FO(+,×) formula ψf (x̄) such
that A |= ψf (ā) if and only if ā is a base-n representation of f(n), for any ordered structure
A with domain {0, . . . , n− 1}.

Our proofs often assume that log n is a natural number, but they can be easily adapted
to the general case.

3. Dynamic Complexity

We briefly repeat the essentials of dynamic complexity, closely following [SZ16, DKM+18].
The goal of a dynamic program is to answer a given query on an input database subjected

to changes that insert or delete single tuples. The program may use an auxiliary data
structure represented by an auxiliary database over the same domain. Initially, both input
and auxiliary database are empty; and the domain is fixed during each run of the program.

A dynamic program has a set of update rules that specify how auxiliary relations are
updated after a change of the input database. An update rule for updating an auxiliary
relation T is basically a formula ϕ. As an example, if ϕ(x̄, ȳ) is the update rule for auxiliary
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relation T under insertions into input relation R, then the new version of T after insertion
of a tuple ā to R is T def

= {b̄ | (I, Aux) |= ϕ(ā, b̄)} where I and Aux are the current input
and auxiliary databases. For a state S = (I, Aux) of the dynamic program P with input
database I and auxiliary database Aux we denote the state of the program after applying
a sequence α of changes by Pα(S). The dynamic program P maintains a k-ary query q if,
for each non-empty sequence α of changes and each empty input structure I∅, a designated
auxiliary relation Q in Pα(S∅) and q(α(I∅)) coincide. Here, S∅ = (I∅, Aux∅), where Aux∅
denotes the empty auxiliary structure over the domain of I∅, and α(I∅) is the input database
after applying α.

In this article, we are particularly interested in maintaining queries for structures of
bounded treewidth. There are several ways to adjust the dynamic setting to restricted classes
C of structures. Sometimes it is possible that a dynamic program itself detects that a change
operation would yield a structure outside the class C. However, here we simply disallow
change sequences that construct structures outside C. That is, in the above definition, only
change sequences α are considered, for which each prefix transforms an initially empty
structure into a structure from C. We say that a program maintains q for a class C of
structures, if Q contains its result after each change sequence α such that the application of
each prefix of α to I∅ yields a structure from C.

The class of queries that can be maintained by a dynamic program with first-order
update formulas is called DynFO. We say that a query q is in DynFO for a class C of
structures, if there is such a dynamic program that maintains q for C. Programs for queries
in DynFO(+,×) have three particular auxiliary relations ≤,+,× that are initialised as a
linear order and the corresponding addition and multiplication relations.

For a wide class of queries, membership in DynFO(+,×) implies membership in DynFO
[DKM+18]. Queries of this class have the property that the query result does not change
considerably when elements are added to the domain but not to any relation. Informally, a
query q is called almost domain independent if there is a constant c such that if a structure
already has at least c “non-active” elements, adding more “non-active” elements does not
change the query result with respect to the original elements. More formally, a query q is
almost domain independent if there is a c ∈ N such that, for every structure A and every set
B ⊆ A \ adom(A) with |B| ≥ c it holds q(A)[(adom(A) ∪B)] = q(A[(adom(A) ∪B)]).

Examples 3.1.
(a) The binary reachability query qReach, that maps a directed input graph G = (V,E) to

its transitive closure relation, is almost domain independent with c = 0: adding any set
B ⊆ V \ adom(G) of isolated nodes to a graph does not create or destroy paths in the
remaining graph. Note that, for each node v ∈ V , the tuple (v, v) is part of the query
result qReach(G), so qReach(G) 6= qReach(G[adom(G)]) in general and therefore qReach is
not domain independent in the sense of [DKM+15].

(b) The FO definable Boolean query q|¬adom|=2, which is true if and only if exactly two
elements are not in the active domain, is almost domain independent with c = 3.

(c) The Boolean query qeven, which is true for domains of even size and false otherwise, is
not almost domain independent.

Furthermore, all properties definable in monadic second-order logic are almost domain
dependent.

Proposition 3.2. All MSO-definable queries are almost domain independent.
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Proof sketch. This can be easily shown by an Ehrenfeucht game. Let ϕ be an MSO-formula
of quantifier depth d with e free (node) variables and let c = 2dd+ e. Consider two graphs
A1 and A2 that result from adding c1 ≥ c and c2 ≥ c isolated nodes to some graph A,
respectively. Since ϕ might have free variables, the game is played on (A1, ā1) and (A2, ā2),
where ā1 and ā2 are tuples of elements of length e. Within d moves the spoiler can use at
most d set moves and can therefore induce at most 2d different “colours” on A1 and A2.
However, the duplicator can easily guarantee that, for each such “colour”, the number of
isolated nodes (which do not occur in the initial tuples on both structures) of that colour is
the same in A1 and A2 or it is larger than d, in both of them. Since the spoiler can have at
most d node moves, he can not make use of this difference in the two structures.

The following proposition adapts Proposition 7 from [DKM+18].

Proposition 3.3. Let q be an almost domain independent query. If q ∈ DynFO(+,×) then
also q ∈ DynFO.

The same statement is proved for weakly domain independent queries in [DKM+18,
Proposition 7]. A query q is weakly domain independent, if q(A)[adom(A)] = q(A[adom(A)])
for all structures A, that is, if it is almost domain independent with c = 0. The proof
of [DKM+18, Proposition 7] can easily be adapted for this more general statement, so we
omit a full proof here. However, for readers who are familiar with the proof of [DKM+18,
Proposition 7], we sketch the necessary changes.

Proof sketch. We assume familiarity with the proof of [DKM+18, Proposition 7] and only
repeat its main outline. That proof explains, for a given DynFO(+,×)-program P, how
to construct a DynFO-program P ′ that is equivalent to P. This program P ′ relies on
the observation that a linear order, addition and multiplication can be maintained on the
activated domain [Ete98], that is, on all elements that were part of the active domain at
some time during the dynamic process. The linear order is determined by the order in which
the elements are activated.

The program P ′ can be regarded as the parallel composition of multiple copies, called
threads, of the same dynamic program. Each thread simulates P for a certain period of time:
thread i starts when f(i− 1) elements are activated and does some initialisation, and it is in
charge of answering the query whenever more than f(i) but at most f(i+ 1) elements are
activated, for some function f . Thanks to weak domain independence, thread i only needs
to simulate P on a domain with f(i + 1) elements, for which it can define the arithmetic
relations ≤, + and × based on the available arithmetic relations on the f(i− 1) activated
elements.

For almost domain independent queries we extend this technique slightly. Let c be the
constant from almost domain independence. The query result for a structure with domain
size n coincides with the result of a simulation on a domain of size n′, if n = n′ or if there
are at least c non-activated elements in both domains. To ensure that the simulation can in
principle represent these c elements, phase i is generally in charge as long as the number of
activated elements is at least f(i) − c + 1 but at most f(i + 1) − c, as in phase i one can
simulate P on a domain of size f(i+ 1).

However, if in the original structure the number of non-activated elements becomes
smaller than c, the simulation has to switch to a domain of the same size as the original
domain. Therefore in phase i there is not only one simulation with domain size f(i+ 1), but
one simulation (denoted by the pair (i, `)) for each domain size ` ∈ {f(i)−c+1, . . . , f(i+1)}.
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During phase i the simulation denoted by (i, f(i+ 1)) is in charge unless there are fewer than
c non-activated elements in the original domain, which can be easily detected by a first-order
formula. As soon as that happens, the simulation denoted by (i, n) takes over, where n is
the size of the domain.

4. Algorithmic Technique

The definition of DynFO requires that for the problem at hand each change can be handled
by a first-order definable update operation. There are alternative definitions of DynFO,
where the initial structure is non-empty and the initial auxiliary relations can be computed
within some complexity class [PI97, WS07]. However, in a practical scenario of dynamic
query answering it is conceivable that the quality of the auxiliary relations decreases over
time and that they are therefore recomputed from scratch at times. We formalise this notion
by a relaxed definition of maintainability in which the initial structure is non-empty, the
dynamic program is allowed to apply some preprocessing, and query answers need only be
given for a certain number of change steps.

A query q is called (C, f)-maintainable, for some complexity class2 C and some func-
tion f : N→ R, if there is a dynamic program P and a C-algorithm A such that for each
input database I over a domain of size n, each linear order ≤ on the domain, and each
change sequence α of length |α| ≤ f(n), the relation Q in Pα(S) and q(α(I)) coincide
where S = (I,A(I,≤)).

Although we feel that (C, f)-maintainability deserves further investigation, in this paper
we exclusively use it as a tool to prove that queries are actually maintainable in DynFO. To
this end, we show next that every (AC1, log n)-maintainable query is actually in DynFO
and prove later that the queries in which we are interested are (AC1, log n)-maintainable.

Theorem 4.1. Every (AC1, log n)-maintainable, almost domain independent query is in
DynFO.

We do not prove this theorem directly, but instead give a more general result, strength-
ening the correspondence between depth of the initialising circuit families and number of
change steps the query has to be maintained.

Theorem 4.2. Let f : N→ N be a first-order constructible function with f ∈ O(n). Every
(AC[f(n)], f(n))-maintainable, almost domain independent query is in DynFO.

Proof. Let f : N → N be first-order constructible with f ∈ O(n) and assume that an
AC[f(n)] algorithm A and a dynamic program P witness that an almost domain independent
query q is (AC[f(n)], f(n))-maintainable. Thanks to Proposition 3.3 it suffices to construct
a dynamic program P ′ that witnesses q ∈ DynFO(+,×). We restrict ourselves to graphs,
for simplicity.

The overall idea is to use a simulation technique similar to the ones used in Proposition 3.3
and in [SVZ18, Theorem 8.1]. We first present the computations performed by P ′ intuitively
and later explain how they can be expressed in first-order logic.

We consider each application of one change as a time step and refer to the graph after
time step t as Gt = (V,Et). After each time step t, the program P ′ starts a thread that is in

2Strictly speaking C should be a complexity class of functions. In this paper, the implied class of functions
will always be clear from the stated class of decision problems.
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charge of answering the query at time point t+ f(n). Each thread works in two phases, each
lasting f(n)

2 time steps. Roughly speaking, the first phase is in charge of simulating A and
in the second phase P is used to apply all changes that occur from time step t+ 1 to time
step t+ f(n). Using f(n) many threads, P ′ is able to answer the query from time point f(n)
onwards.

We now give more details on the two phases and describe afterwards how to deal
with time points earlier than f(n). For the first phase, we make use of the equality
AC[f(n)] = IND[f(n)], see [Imm99]. Let ψ be an inductive formula that is applied df(n)
times, for some d, to get the auxiliary relations A(G,≤) for a given graph G and the given
order ≤. The program P ′ applies ψ to Gt, 2d times during each time step, and thus the
result of A on (Gt,≤) is obtained after f(n)

2 steps. The change operations that occur during
these steps are not applied to Gt directly but rather stored in some additional relation. If
some edge e is changed multiple times, the stored change for e is adjusted accordingly.

During the second phase the f(n)
2 stored change operations and the f(n)

2 change operations
that happen during the next f(n)

2 steps are applied to the state after phase 1. To this end, it
suffices for P ′ to apply two changes during each time step by simulating two update steps
of P. Observe that P ′ processes the changes in a different order than they actually occur.
However, both change sequences result in the same graph. Since P can maintain q for f(n)
changes, the program P ′ can give the correct query answer for q about Gt+f(n) at the end of
phase 2, that is, at time point t+ f(n).

The following auxiliary relations are used by thread i:
• a binary relation Êi that contains the edges currently considered by the thread,
• binary relations ∆+

i and ∆−i that cache edges inserted and deleted during the first phase,
respectively,
• a relation R̂i for each auxiliary relation R of P with the same arity,
• and a relation Ci that is used as a counter: it contains exactly one tuple which is interpreted
as the counter value, according to its position in the lexicographic order induced by ≤.

When thread i starts its first phase at time point t, it sets Êi to Et and the counter Ci to 0;
its other auxiliary relations are empty in the beginning. Whenever an edge (u, v) is inserted
(or deleted), Êi is not changed, (u, v) is inserted into ∆+

i (or ∆−i )
3, and the counter Ci is

incremented by one. The relations R̂i are replaced by the result of applying their defining
first-order formulas 2d times, as explained above.

When the counter value is at least f(n)
2 , the thread enters its second phase and proceeds

as follows. When an edge (u, v) is inserted (or deleted), it applies this change and the change
implied by the lexicographically smallest tuple in ∆+

i and ∆−i , if these relations are not
empty: it simulates P for these changes using the edge set Êi and auxiliary relations R̂i,
replaces the auxiliary relations accordingly and adjusts Êi,∆+

i and ∆−i . Again, the counter
Ci is incremented. If the counter value is f(n), the thread’s query result is used as the query
result of P ′, and the thread stops. All steps are easily seen to be first-order expressible.

So far we have seen how P ′ can give the query answer from time step f(n) onwards. For
time steps earlier than f(n) the approach needs to be slightly adapted as the program does
not have enough time to simulate A. The idea is that for time steps t < f(n) the active
domain is small and, exploiting the almost domain independence of q, it suffices to compute

3If an edge (u, v) with (u, v) ∈ ∆−i is inserted, it is instead deleted from ∆−i , and accordingly for deletions
of edges (u, v) ∈ ∆+

i .
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the query result with respect to this small domain extended by c isolated elements, where c
is the constant from almost domain independence. The result on this restricted domain can
afterwards be used to define the result for the whole domain.

Towards making this idea more precise, let n0, b be such that bn ≥ f(n) for all n ≥ n0.
We focus on explaining how P ′ handles structures with n ≥ n0, as small graphs with less
than n0 nodes can be dealt with separately.

The program P ′ starts a new thread at time t
2 for the graph G t

2
with at most t

2 edges.
Such a thread is responsible for providing the query result after t time steps, and works in
two phases that are similar to the phases described above. It computes relative to a domain
Dt of size min{2t+ c, n}, where c is the constant from (almost) domain independence. The
size of Dt is large enough to account for possible new nodes used in edge insertions in the
following t

2 change steps. The domain Dt is chosen as the first |Dt| elements of the full
domain (with respect to ≤). The program P ′ maintains a bijection π between the active
domain DG of the current graph G and the first |DG| elements of the domain to allow a
translation between DG and Dt.

The first phase of the thread for t starts at time point t
2 + 1 and applies ψ for 8bcd times

during each of the next time steps. This simulation of A is finished after at most (2t+c)b
8bc ≤ t

4

time steps, and therefore the auxiliary relations are properly initialised at time point 3t
4 .

In the second phase, starting at time step 3t
4 + 1 and ending at time step t, the changes

that occurred in the first phase are applied, two at a time. The thread is then ready to answer
q at time point t. Since at time t at most 2t elements are used by edges, the almost domain
independence of q guarantees that the result computed by the thread relative to Dt coincides
with the Dt-restriction of the query result for π(Gt). The query result for Gt is obtained by
translating the obtained result according to π−1, and extending it to the full domain. More
precisely, a tuple t̄ is included in the query result, if it can be generated from a tuple t̄′ of
the restricted query result by replacing elements from π−1(Dt) \ adom(Gt) by elements from
V \ adom(Gt) (under consideration of equality constraints among these elements). Again, all
steps are easily seen to be first-order definable using the auxiliary relations from above.

The above presentation assumes a separate thread for each time point and each thread
uses its own relations. These threads can be combined into one dynamic program as follows.
Since at each time point at most f(n) threads are active, we can number them in a round
robin fashion with numbers 1, . . . , f(n) that we can encode by tuples of constant arity. The
arity of all auxiliary relations is incremented accordingly and the additional dimensions are
used to indicate the number of the thread to which a tuple belongs.

5. Warm-up: 3-Colourability

In this section, we show that the 3-colourability problem 3Col for graphs of bounded
treewidth can be maintained in DynFO. Given an undirected graph, 3Col asks whether its
vertices can be coloured with three colours such that adjacent vertices have different colours.

Theorem 5.1. For every k, 3Col is in DynFO for graphs with treewidth at most k.

The remainder of this section is dedicated to a proof for this theorem. Thanks to
Theorem 4.1 and the fact that 3Col is almost domain independent, it suffices to show that
3Col is (AC1, log n)-maintainable for graphs with treewidth at most k. In a nutshell, our
approach can be summarised as follows.
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The AC1 initialisation computes a nice tree decomposition (T,B) of width at most
4k + 5 and maximum bag size ` def

= 4k + 6, as well as information about the 3-colourability
of induced subgraphs of G. More precisely, it computes, for each triangle δ of T and each
3-colouring C of the nodes of B(δ), whether there exists a colouring C ′ of the inner vertices
of G(δ), such that all edges involving at least one inner vertex are consistent with C ∪ C ′.

During the following log n change operations, the dynamic program does not need to
do much. It only maintains a set S of special bags: for each affected graph node v that
participates in any changed (i.e. deleted or inserted) edge, S contains one bag in which v
occurs. Also, if two bags are special, their least common ancestor is considered special and is
included in S. It will be guaranteed that there are at most 4 log n special bags. With the
auxiliary information, a first-order formula ϕ can test whether G is 3-colourable as follows.
By existentially quantifying 8` variables, the formula can choose two bits of information for
each of the at most 4` log n nodes in special bags. For each such node, these two bits are
interpreted as encoding of one of three colours and the formula ϕ checks that this colouring of
the special bags can be extended to a colouring of G. This can be done with the help of the
auxiliary relations computed during the initialisation which provide all necessary information
about colourability of subgraphs induced by triangles consisting of special bags.

Before we give a detailed proof, we need some more notation. Let G = (V,E) be a
graph and (T,B) with T = (I, F, r) a nice tree decomposition with bags of size at most `.
A colouring of a set U of vertices is just a mapping from U to {1, 2, 3}. An edge (u, v) is
properly coloured if u and v are mapped to different colours. For a triangle δ, we say that a
colouring C of B(δ) is consistent, if there exists a colouring C ′ of the inner vertices of G(δ)
such that all edges of G(δ) are properly coloured by C ∪ C ′. Recall that G(δ) only contains
edges that involve at least one inner vertex.

We say that a tuple v̄(i) = (v1, . . . , v`) represents a tree node i ∈ I (or, the bag B(i)) if
B(i) = {v1, . . . , v`}. A tuple v̄(δ) = (v̄(i0), v̄(i1), v̄(i2)) represents the triangle δ = (i0, i1, i2).
If v̄(δ) = (v1, . . . , v3`) represents the triangle δ and c̄ is a tuple from {1, 2, 3}3` such that
cj = cj′ whenever vj = vj′ for j, j′ ∈ {1, . . . , 3`}, we write Cc̄,v̄ for the colouring of B(δ)
defined by Cc̄,v̄(vj) = cj , for every j ∈ {1, . . . , 3`}.

Proof (of Theorem 5.1). Let G = (V,E) be a graph of treewidth at most k.
The AC1 initialisation first computes a d-nice tree decomposition (T,B) with bags of

size at most ` = 4k + 6, for the constant d guaranteed to exist by Lemma 2.1, and the
predecessor relation � of T . Also, it initialises the relations ≤ and BIT. Next, it computes
the following auxiliary relations in a bottom-up fashion with respect to T = (I, F, r). For
each tuple c̄ ∈ {1, 2, 3}3` the auxiliary relation Rc̄ contains all tuples v̄(δ) from V 3` that
represent some triangle δ such that Cc̄,v̄ is a consistent colouring of B(δ).

The auxiliary relations are computed inductively and bottom-up, that is, the auxiliary
information for a tuple representing a triangle (i0, i1, i2) is computed by using the information
for the triangles rooted at the two children of i0. It will be easy to see that each inductive step
can be defined by a first-order formula and, since T has depth d log n, the induction reaches a
fixpoint after d log n iterations. Therefore the initialisation is in IND[log n] = AC[log n]. We
recall that triangles can be open, unary or proper, depending on whether they are induced
by a single bag, by two, or by three bags.

For the base case, a tuple v̄ representing an open triangle corresponding to a leaf of T is
in Rc̄ if and only if, for each j ∈ {1, . . . `}, cj = c`+j = c2`+j , since there are no inner vertices
to worry about.
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Figure 2: Illustration of the inductive step in the computation of colourability information
for triangles in the proof of Theorem 5.1.

The inductive cases are straightforward. We only describe in detail the case of a proper
triangle δ = (i0, i1, i2) where i1 and i2 are in different subtrees of i0; the other cases are
similar. Let i′1 and i′2 be the two children of i0 such that i′1 � i1 and i′2 � i2. Figure 2
illustrates this situation. By the induction hypothesis, the auxiliary information for all
triangles rooted at i′1 and i′2 has already been computed. A tuple v̄ = v̄(δ) is in some Rc̄, if
there are tuples d̄, ē ∈ {1, 2, 3}3` such that ū = v̄((i′1, i1, i1)) ∈ Rd̄, w̄ = v̄((i′2, i2, i2)) ∈ Rē
and it holds that
• Cc̄,v̄ and Cd̄,ū coincide on B(i0) ∩B(i′1) and on B(i1),
• Cc̄,v̄ and Cē,w̄ coincide on B(i0) ∩B(i′2) and on B(i2), and
• all edges over B(i0) ∪B(i′1) ∪B(i′2) ∪B(i1) ∪B(i2) of which at least one node is not in
B(i0) ∪B(i1) ∪B(i2) are properly coloured by Cc̄,v̄ ∪ Cd̄,ū ∪ Cē,w̄.
We next describe how a dynamic program can maintain 3-colourability for log n change

steps starting from the above initial auxiliary relations with the help of an additional `-ary
relation S and another binary relation N . Whenever an edge (u, v) is inserted into or deleted
from E, we consider both u and v as affected. With each affected graph node v we associate
a tree node i(v) ∈ I such that v ∈ B(i(v)). Tree nodes of the form i(v) for affected nodes v
are called special. Furthermore, if node i is the least common ancestor of two special nodes
i1, i2 it becomes special, as well. The dynamic program keeps track of all special nodes using
the relation S which contains all tuples v̄ that represent some special node. Furthermore,
using the relation N it maintains a bijection between the first `|S| nodes of V with respect
to the linear order ≤ and the graph nodes in S. We call a triangle δ = (i0, i1, i2) of T clean
if there are no special nodes in T (δ) apart from i0, i1, i2.

It only remains to describe how a first-order formula can check 3-colourability of G given
the relation S and the relations Rc̄.

We note first that within log n steps at most 2 log n graph nodes can be affected resulting
in at most 4 log n special tree nodes altogether (since each new special node can contribute
at most one new least common ancestor of special nodes). That is, the set Z of graph
nodes occurring in some tuple of S contains at most 4` log n nodes. A colouring of Z can be
represented by 8` log n bits and can thus be guessed by a first-order formula by quantifying
over 8` first-order variables x1, . . . , x4`, y1, . . . , y4`. More precisely, the j-th bits of xr and yr
together represent the colour of the special node at position (r − 1) log n+ j with respect to
the linear order represented by N . The first-order formula can easily check that the colouring
C of S represented by x1, . . . , x4`, y1, . . . , y4` is consistent for edges between special nodes and
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that for each clean triangle of T induced by special nodes it can be extended to a consistent
colouring of the inner nodes. The latter information is available in the relations Rc̄.

6. MSO Queries

In this section we prove a dynamic version of Courcelle’s Theorem: all MSO properties can
be maintained in DynFO for graphs with bounded treewidth. More precisely, for a given
MSO sentence ϕ we consider the model checking problem MCϕ that asks whether a given
graph G satisfies ϕ, that is, whether G |= ϕ holds.

Theorem 6.1. For every MSO sentence ϕ and every k, MCϕ is in DynFO for graphs with
treewidth at most k.

Since, for every k, guarded second-order logic (GSO) has the same expressive power
as MSO on graphs with treewidth at most k [Cou94, Theorem 2.2], we can immediately
conclude the following corollary.

Corollary 6.2. For every GSO sentence ϕ and every k, MCϕ is in DynFO for graphs with
treewidth at most k.

We first give a rough sketch of the proof. Let ϕ be a fixed MSO formula of quantifier
depth d and k a treewidth. We show that MCϕ is (AC1, log n)-maintainable for graphs with
treewidth at most k. The construction of a dynamic program for MCϕ is similar to the one
in the proof for 3-Colourability (Theorem 5.1). At each point, the program needs to
evaluate ϕ on a graph G′ = (V, (E \ E−) ∪ E+) with n nodes, where |E− ∪ E+| = O(log n),
using a nice tree decomposition (T,B) of width 4k + 5 for the initial graph G = (V,E) and
auxiliary information on the MSO type of depth d for each triangle of T (defined as in
Section 2).

The graph G′ can be viewed as having a center C ⊆ V of logarithmic size, that contains
the nodes with edges in E− ∪ E+ and, additionally, for each of these nodes v all nodes of
one bag that contains v.

Furthermore, there are node sets D1, . . . , D` that, together with C, contain all nodes
from V , such that the sets Di−C are pairwise disjoint and disconnected, and each set Di∩C
has size O(1) (cf. Figure 3). From the type information for the triangles, the program can
infer the depth-d MSO types of each G′[Di].

The situation is similar as in the Composition Theorem of Elberfeld, Grohe and Tantau
[EGT16, Theorem 3.8]. However, in their setting, the size of C is bounded by a constant,
and they show, very roughly, that there is a first-order formula that can be evaluated on a
suitable extension of G[C] by information on the types of the G[Di] to yield the same result
as ϕ on G.

We show that in our setting one can construct an MSO formula ψ such that G′ |= ϕ if
and only if B |= ψ, where B is a structure, which extends G′[C] by type information about
the G′[Di]. This construction is detailed in Section 6.1 below. It uses well-known techniques
and, in particular, a composition theorem by Shelah (cf. Theorem 6.7).

The dynamic program then uses a first-order formula (to be evaluated in a suitable
extension of G′ with auxiliary relations) that is obtained from ψ by replacing the second-order
quantification over C by first-order quantification over V . This is possible, since sets of size
O(log n) over C can be encoded by O(1) elements of V .
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Figure 3: Sketch of a graph with center C of connection width 2, highlighted in blue, and
petals D1, . . . , D6.

In the remainder of this section we make these ideas more precise. In the next subsection
we state and prove a composition theorem for graphs with a center of the form described
above. Then, in Section 6.2, we show how this theorem is applied to dynamically evaluate
an MSO formula ϕ.

6.1. A Feferman–Vaught-type composition theorem. In the following, we give an
adaptation of the Feferman–Vaught-type composition theorem from [EGT16] that will be
useful for maintaining MSO properties. Intuitively, the idea is very easy, but the formal
presentation will come with some technicalities. For ease of presentation, we explain the
basic idea for graphs first.

We consider graphs G = (V,E) with a center C ⊆ V , such that there are sets D1, . . . , D`

such that, for some w > 0, the following conditions hold.
• C ∪

⋃`
i=1Di = V .

• For all i 6= j, Di ∩Dj ⊆ C.
• All edges in E have both end nodes in C or in some Di.
• For every i, |Di ∩ C| ≤ w.
• For each i there is some element vi ∈ Di ∩ C that is not contained in any Dj , for j 6= i.
In this case, we say that C has connection width w in G. See Figure 3 for an illustration.

We refer to the sets D1, . . . , D` as petals and the nodes v1, . . . , v` as identifiers of their
respective petals. We emphasise that ` is bounded by |C|, but not assumed to be bounded
by a constant. Readers who have read the proof of Theorem 5.1 can roughly think of C as
the set of vertices from special bags.

Our goal is to show the following. If a graph G has a center C of connection width w,
for come constant w, then G[C] can be extended by the information about the MSO types
of its petals in a suitable way, resulting in a structure B with universe C, such that MSO
formulas over G have equivalent MSO formulas over B.

In the following, we work out the above plan in more detail. Although, for Theorem 6.1,
we need the composition theorem only for coloured graphs with some constants, we deal in
the following with arbitrary signatures. We fix some relational signature Σ and assume that
it contains a unary relation symbol C.
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The definition of the connection width of sets C easily carries over to Σ-structures. In
particular, tuples need to be entirely in C or in some petal Di, and all constants of the
structure need to be included in C. For every i, we call the set Ii

def
= Di ∩ C the interface of

Di and the nodes of Di − C inner elements of Di.
Let A be a Σ-structure, C a center of connection width w with petals D1, . . . , D`. For

every i, let ūi = (ui1, . . . , u
i
w) be a tuple of elements from the interface Ii of Di such that ui1

is an identifier of its petal Di and every node from Ii occurs in ūi. By (Ai, ūi) we denote the
substructure of A induced by Di with ui1, . . . , uiw as constants but without all tuples over C,
i.e., (Ai, ūi) only contains tuples with at least one inner element of Di.

Let d > 0. The depth d, width w MSO indicator structure of A relative to C and tuples
ūi is the unique structure B which expands A[C] by the following relations:
• a w-ary relation J that contains all tuples ūi, and
• for every depth-d MSO-type τ over Σ∪ {c1, . . . , cw}, a unary relation Rτ containing those
identifier nodes ui1 for which the depth-d MSO-type of (Ai, ūi) is τ .
We note that different choices of the tuples ūi result in different indicator structures and

we denote the set of all indicator structures of A relative to C by S(A, C, w, d).
We are now ready to formulate the desired composition theorem.

Theorem 6.3. For each d > 0, every MSO sentence ϕ with depth d, and each w, there is a
number d′ and a MSO sentence ψ such that for every Σ-structure A, every center C of A
with connection width w and every B ∈ S(A, C, w, d′) it holds A |= ϕ if and only if B |= ψ.

The proof of Theorem 6.3 uses Shelah’s generalised sums [She75]. We follow the exposition
from Blumensath et al. [BCL08]. In a nutshell, a generalised sum is a composition of several
disjoint component structures along an index structure. Shelah’s composition theorem states
that MSO sentences on a generalised sum can be translated to MSO sentences on the index
structure enriched by MSO type information on the components.

We apply the composition theorem on the basis of the following ideas, illustrated in
Figure 4. From the center C and the petals Di we define an index structure I and component
structures Di, respectively. In the generalised sum, these disjoint structures are again
composed into a structure that is very similar to A. More precisely, A can be defined in the
generalised sum by a first-order interpretation, and thus, thanks to Lemma 6.5 below, we can
translate the formula ϕ for A into a formula ϕ′ on the generalised sum. Shelah’s composition
theorem then provides a translation of ϕ′ into an MSO formula ψ′ on the structure I enriched
with type information on the structures Di. This enriched index structure is again very
similar to an MSO indicator structure B: there is a first-order interpretation that defines
the enriched index structure in B. As a consequence, by Lemma 6.5 again, the formula ψ′
can be translated into a formula ϕ on B.

Before we proceed to the proof of Theorem 6.3, we formally introduce the notions of
a generalised sum and a first-order interpretation, and state the corresponding results on
translations of MSO formulas. We start with first-order interpretations.

Definition 6.4. Let Σ,Γ be relational signatures. A first-order interpretation Υ from Σ
to Γ consists of a first-order formula ϕU (x) and first-order formulas ϕR(x1, . . . , xr) for each
r-ary relation symbol R ∈ Γ, each over signature Σ.

The first-order interpretation Υ interprets, in a Σ-structure A, the Γ-structure Υ(A)

with universe UΥ(A) def
= {a | A |= ϕU (a)} and relations

RΥ(A) def
= {(a1, . . . , ar) | A |= ϕR(a1, . . . , ar), a1, . . . , ar ∈ UΥ(A)}
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Figure 4: Overview of the proof strategy of Theorem 6.3.

for each R ∈ Γ.

A first-order interpretation from Σ to Γ not only interprets a Γ-structure in a Σ-structure,
it also translates Γ-formulas to Σ-formulas.

Lemma 6.5 (see e.g. [BCL08, Proposition 3.2]). Let Υ be a first-order interpretation from
Σ to Γ. For every FO (MSO) formula ϕ(x1, . . . , x`) over Γ there is an FO (MSO) formula
ϕΥ(x1, . . . , x`) over Σ such that A |= ϕΥ(a1, . . . , a`) ⇔ Υ(A) |= ϕ(a1, . . . , a`) for all Σ-
structures A and all elements ai ∈ UΥ(A).

We now turn to the definition of generalised sums.

Definition 6.6 ([She75], formulation following [BCL08]). Let I = (I, S1, . . . , Sr) be a
structure and (Di)i∈I a sequence of structures Di = (Di, R

i
1, . . . , R

i
t) indexed by elements i

of I. The generalised sum of (Di)i∈I is the structure∑
i∈I
Di

def
= (U,∼, R′1, . . . , R′t, S′1, . . . , S′r)

with universe U def
= {〈i, a〉 | i ∈ I, a ∈ Di} and relations

• 〈i, a〉 ∼ 〈i′, a′〉 if and only if i = i′

• R′j
def
= {(〈i, a1〉, . . . , 〈i, a`〉) | i ∈ I, (a1, . . . , a`) ∈ Rij}

• S′j
def
= {(〈i1, a1〉, . . . , 〈i`, a`〉) | (i1, . . . , i`) ∈ Sj , ak ∈ Dik for all k ∈ {1, . . . , `}}

The structures I and Di in this definition are also referred to as index structure and
component structures, respectively.

Theorem 6.7 ([She75], formulation from [BCL08, Theorem 3.16]). From every MSO sen-
tence ϕ, a finite sequence χ1, . . . , χs of MSO formulas and an MSO formula ψ can be
constructed such that ∑

i∈I
Di |= ϕ ⇔ (I, Jχ1K, . . . , JχsK) |= ψ

for all index structures I and component structures Di, where JχK def
= {i ∈ I | Di |= χ}.

Intuitively, the formulas χi encode the MSO type information on the component struc-
tures of the generalized sum.

With the necessary notions in place, we can now prove Theorem 6.3.
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Proof (of Theorem 6.3). Suppose thatA is a Σ-structure with center C of connection width w,
tuples ūi collecting the interface nodes for each petal Di as described above, and let ϕ be an
MSO formula over signature Σ. The proof is in three steps, depicted in Figure 4:
(A) We present an index structure I and component structures Di, and show that there is

an FO-interpretation Υ that interprets the structure A in the generalised sum
∑

i∈I Di.
Thus there is an MSO formula ϕ′ such that A |= ϕ if and only if

∑
i∈I Di |= ϕ′ by

Lemma 6.5.
(B) From Theorem 6.7 we obtain formulas ψ′ and χ1, . . . , χs such that

∑
i∈I Di |= ϕ′ if and

only if (I, Jχ1K, . . . , JχsK) |= ψ′.
(C) Then we show that there is an FO-interpretation Υ′ that interprets (I, Jχ1K, . . . , JχsK)

in each MSO indicator structure B ∈ S(A, C, w, d′) with appropriate d′. Thus there
is an MSO formula ψ that satisfies B |= ψ if and only if (I, Jχ1K, . . . , JχsK) |= ψ′ by
Lemma 6.5.

Combining these three steps allows us to conclude

A |= ϕ
(A)⇐⇒

∑
i∈I
Di |= ϕ′

(B)⇐⇒ (I, Jχ1K, . . . , JχsK) |= ψ′
(C)⇐⇒ B |= ψ

for any MSO indicator structure B ∈ S(A, C, w, d′).
It remains to prove (A) and (C), since (B) is a direct application of Theorem 6.7.
Towards proving (A) we construct structures I and Di which are closely related to

the substructure A[C] of A and the structures (Ai, ūi), respectively. Let R1, . . . , Rq be the
relation symbols of Σ and let Γ = {S1, . . . , Sq}. The structure I has universe C, Γ-relations
Si defined as the restriction of the respective Σ-relation Ri of A to C, and the relation J as
described above. Each structure Dv for v ∈ C is over signature Σ ∪ {U1 . . . , Uw} and defined
as follows. If v is an identifier ui1 of a petal, then Dv = (Ai, {ui1}, . . . , {uiw}), that is, the
restriction of A to the elements from Di, without any tuples consisting only of elements from
C ∩Di, and with additional unary, singleton relations U1, . . . , Uw such that Uj includes only
the j-th interface node uij . If v is no identifier node then Dv is the structure with universe
{v} and empty relations.

In the generalised sum S def
=

∑
v∈I Dv = (U,∼, R′1, . . . , R′q, U ′1, . . . U ′w, S′1, . . . , S′q, J ′),

the universe U consists of elements of the form 〈ui1, w〉, where w ∈ Di, and of the form
〈u, u〉 where u ∈ C is not an identifier of any petal. We emphasise that the formulas of the
interpretation that defines (a copy of) A in S can not access the components u and v of an
element 〈u, v〉 ∈ U . However, U can be partitioned into four kinds of elements, each of which
can easily be distinguished from the others in a first-order fashion:

(i) Elements of the form 〈v, v〉, for which Dv is not a petal. They can be identified since
they constitute an equivalence class of size 1 with respect to ∼;

(ii) Elements of the form 〈v, v〉, for which Dv is a petal. These are precisely the elements
in U ′1;

(iii) Elements of the form 〈v, u〉, where u ∈ C is in the petal Dv. These elements occur in
some U ′i , for i > 1 (but not in U ′1);

(iv) Elements of the form 〈v, u〉, where u 6∈ C is in the petal Dv. They do not occur in any
U ′i and are not of type (i).

Elements of type (iv) are in one-to-one correspondence with the inner elements of petals Di.
Elements from C might have several copies in U , but only one of the types (i) or (ii). Thus,
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the formula that defines the universe for the first-order interpretation Υ of A in
∑

i∈I Di
simply drops all elements of type (iii). Tuples of A of a relation Ri that entirely consist
of nodes from C (that is, elements of type (i) or (ii) in S) are directly induced by the
corresponding relation S′i.

In order to define tuples with at least one node of type (iv) in A, we first observe that it
can be expressed in a first order fashion, whether for a type (iii) element 〈v1, u1〉 and a type
(i) element 〈v2, v2〉 it holds u1 = v2, i.e., that, intuitively, 〈v2, v2〉 is the copy representing
u1 in S that survives in the universe of the interpretation. We claim that this condition
holds, if and only if 〈v2, v2〉 occurs as the i-th entry in some tuple of J ′ with first entry
〈v1, u1〉, where i is the unique number such that 〈v1, u1〉 ∈ U ′i . From this claim, first-order
expressibility follows instantly. The “only if”-part of the claim is straightforward. For the
“if”-part, it follows from the latter condition that there is a tuple with first entry v1 and i-th
entry v2 in J , by the definition of J ′. Since 〈v1, u1〉 ∈ U ′i , there is also a tuple in J with v1

as first entry and u1 as i-th entry. However, since J has at most one tuple with any given
value as first entry, u1 = v2 follows, as claimed.

A tuple with some element 〈v, u〉 of type (iv) is now in a relation Ri of the interpretation,
if it can be transformed into a tuple of R′i by replacing some elements 〈w,w〉 of type (i) with
〈v, w〉.

It follows from the construction that Υ(S) is isomorphic to A and therefore A |= ϕ if
and only if Υ(S) |= ϕ. We obtain the formulas ϕ′, χ1, . . . , χs and ψ′ as explained above. Let
d′ be the maximal quantifier depth of any formula χj . This concludes step (A) of the proof.

Towards proving (C), recall that we need to show that there is a first-order interpretation
Υ′ which interprets (I, Jχ1K, . . . , JχsK) in B, for any B ∈ S(A, C, w, d′). Let B be such a
structure. The universe of I is C, that is, the same as the universe of B. Thus the formula
of Υ′ that defines the universe is trivial.

For the definitions of the relations JχjK, the idea is as follows. If v is not an identifier
ui1 of a petal, then v ∈ JχjK if and only if χj holds in the structure consisting of only
one element and with empty relations, which can be hard-coded in the defining formula.
Otherwise, if v = ui1 for some i, we need to determine whether χj holds in the structure
Dv = (Ai, {ui1}, . . . , {uiw}), which is a structure over signature Σ ∪ {U1, . . . , Uw}. The
structure B contains information about the MSO types of the structures (Ai, ūi), but (Ai, ūi)
is a structure over signature Σ ∪ {c1, . . . , cw}. Yet it is easy to see that for the formula χ′j
that is obtained from χj by replacing every atom Uk(x) by x = ck it holds (Ai, ūi) |= χ′j if
and only if Dv |= χj . So, in this case v ∈ JχjK if and only if v ∈ RBτ for a depth-d′ MSO
type τ with χ′j ∈ τ . All these conditions can even be expressed by quantifier-free first-order
formulas for fixed formulas χj . As a result, by Lemma 6.5 we obtain from Υ′ and ψ′ a
formula ψ with B |= ψ ⇔ A |= ϕ.

6.2. The dynamic program. We proceed to show that every MSO-definable property
can be maintained in DynFO, and thus prove Theorem 6.1. Thanks to Theorem 4.1 and
Proposition 3.2 it suffices to show that MCϕ is (AC1, log n)-maintainable for graphs G with
treewidth at most k.

The idea for our dynamic program is similar to the idea for maintaining 3-colourability:
during its initialisation the program constructs a tree decomposition and appropriate MSO
types for all triangles (instead of partial colourings as in the proof of Theorem 5.1). During
the change sequence, a set C of nodes is defined that contains, for each affected graph node
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v, all nodes of at least one special bag containing v. The set C has connection width w for
some constant w and the dynamic program basically maintains an MSO indicator structure
B for G relative to C. As there are only log n many change steps, the size of C is bounded
by O(log n).

By Theorem 6.3 there is an MSO formula ψ with the property that G |= ϕ if and only
if B |= ψ. Although the dynamic program maintains B, it cannot directly evaluate ψ, as
it is restricted to use first-order formulas. For this reason we first show that second-order
quantification over sets of size O(log n) can be simulated in first-order logic, if a particular
relation is present. Afterwards we present the details of the dynamic program.

We call an MSO-formula C-restricted, if all its quantified subformulas are of one of the
following forms.
• ∃x (C(x) ∧ ϕ) or ∀x (C(x)→ϕ),
• ∃X (∀x(X(x)→C(x)) ∧ ϕ) or ∀X (∀x(X(x)→C(x))→ϕ).

Let A be a structure with a unary relation C and a (k + 1)-ary relation Sub, for some k.
We say that Sub encodes subsets of C if, for each subset C ′ ⊆ C, there is a k-tuple t̄ such
that, for every element c ∈ C it holds c ∈ C ′ if and only if (t̄, c) ∈ Sub. Clearly, such an
encoding of subsets only exists if |V |k ≥ 2|C| and thus if |C| ≤ k log |V |.

Proposition 6.8. For each C-restricted MSO-sentence ψ over a signature Σ (containing C)
and every k there is a first-order sentence χ over Σ ∪ {S} where S is a (k + 1)-ary relation
symbol such that, for every Σ-structure A and (k + 1)-ary relation Sub that encodes subsets
of C (of A), it holds A |= ψ if and only if (A,Sub) |= χ.

Proof. The proof is straightforward. Formulas ∃X (∀x(X(x)→C(x)) ∧ ϕ) are translated
into formulas ∃x̄ ϕ′, where x̄ is a tuple of k variables and ϕ′ results from ϕ by simply
replacing every atomic formula X(y) by Sub(x̄, y). Universal set quantification is translated
analogously.

Proof (of Theorem 6.1). Thanks to Theorem 4.1 and Proposition 3.2 it suffices to show that
MCϕ is (AC1, log n)-maintainable in DynFO for graphs with treewidth at most k. Let d be
the quantifier depth of ϕ and let d′ and ψ be the number and the MSO sentence guaranteed
to exist by Theorem 6.3.

Given a graph G = (V,E), the AC1 initialisation first ensures that relations ≤,+,× and
BIT are available. Then it computes a dtree-nice tree decomposition (T,B) with T = (I, F, r)
with bags of size at most ` def

= 4k+6, for the constant dtree guaranteed to exist by Lemma 2.1,
together with the predecessor order � on I. With each node i ∈ I, we associate a tuple
v̄(i) = (v1, . . . , vm, v1, . . . , v1) of length `, where B(i) = {v1, . . . , vm} and v1 < · · · < vm.
That is, if the bag size of i is `, this tuple just contains all graph nodes of the bag in increasing
order. If the bag size is smaller, the smallest graph node is repeated. Similarly, with each
triangle δ = (i0, i1, i2) such that the subgraph G(δ) has at least one inner node, we associate
a tuple v̄(δ) = (v(δ), v̄(i0), v̄(i1), v̄(i2)), where v(δ) denotes the smallest inner node of G(δ)
with respect to ≤.

The dynamic program further uses auxiliary relations S,C,N , and Dτ , for each depth-d′
MSO type τ over the signature that consists of the binary relation symbol E and 3` + 1
constant symbols c1, . . . , c3`+1. The intended meaning is that C is a center of G with
connection width 3`+ 1 and that from these relations an MSO indicator structure B relative
to C can be defined in first-order.
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Figure 5: Tree of a tree decomposition. Tree nodes representing special bags are coloured
blue, the corresponding maximal clean triangles are indicated as coloured areas.
The union of all special bags are a center of the graph, with the graphs induced by
the maximal clean triangles as petals.

The relation S stores tuples v̄(i) representing special bags, as in the proof of Theorem 5.1.
The relations Dτ provide MSO type information for all triangles. More precisely, for each
triangle δ = (i0, i1, i2) for which the subgraph G(δ) has at least one inner node, Dτ contains
the tuple v̄(δ) if and only if the MSO depth-d′ type of (G(δ), v̄(δ)) is τ .

The set C always contains all graph nodes that occur in special bags (and thus in S),
plus one inner node v(δ), for each maximal clean triangle4 δ with at least one inner node.
The relation N defines a bijection between C and an initial segment of ≤.

We observe that C is a center of G and that the petals induced by C correspond to
the maximal clean triangles, with respect to the special nodes stored in S, with at least
two inner nodes. The interface I(δ) of a petal corresponding to a maximal clean triangle
δ = (i0, i1, i2) contains the nodes from B(i0), B(i1), and B(i2) as well as the node v(δ), so C
has connection width w def

= 3`+ 1. Figure 5 gives an illustration.
Now, an indicator structure B ∈ S(G,C,w, d′) can be first-order defined as follows.

Clearly, maximal clean triangles can be easily first-order defined from the relation S. For each
maximal clean triangle δ = (i0, i1, i2) with at least two inner nodes, the relation J contains
the tuple v̄(δ), and the relation Rτ contains v(δ) if and only if is v̄(δ) ∈ Dτ . We translate
the MSO formula ψ to a C-restricted MSO formula χ′ such that B |= ψ ⇔ (G,Aux) |= χ′,
where Aux is the auxiliary database stored by the dynamic program. This translation is
basically as described by Lemma 6.5. The formula χ′ results from ψ by
• C-restricting every quantified subformula, so, for example, replacing every quantified
subformula ∃X θ by ∃X (∀x(X(x)→C(x)) ∧ θ) and every quantified subformula ∀X θ by
∀X (∀x(X(x)→C(x))→ θ), and
• replacing every atom A(x̄) by θA(x̄), where θA is the first-order formula that defines A in

(G,Aux).
It clearly holds that (G,Aux) |= χ′ ⇔ B |= ψ, and by Theorem 6.3 also (G,Aux) |= χ′ ⇔
G |= ϕ.

4For such a triangle δ = (i0, i1, i2), the nodes i0, i1, i2 are exactly the special nodes in T (δ).
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We now define a relation Sub that encodes subsets of C. We observe that C is of
size at most b log n for some b ∈ N. Thus a subset C ′ of C can be represented by a
tuple (a1, . . . , ab) of nodes, where an element c ∈ C is in C ′ if and only if c is the m-th
element of C with respect to the mapping defined by N , m = (` − 1) log n + j and the
j-th bit of a` is one. By Proposition 6.8 we finally obtain a first-order formula χ such that
(G,Aux, Sub) |= χ⇔ (G,Aux) |= χ′ ⇔ G |= ϕ. That means that a dynamic program that
maintains the auxiliary relations as intended can maintain the query MCϕ.

It thus remains to describe how the auxiliary relations can be initialised and updated.
The set C is initially the bag B(r) of the root of T plus one inner node v(r, r, r), and S
contains the tuple v̄(r).

The relations Dτ are computed in dtree log n inductive steps, each of which can be defined
in first-order logic, and therefore this computation can be carried out in AC1, thanks to
IND[log n] = AC1. More precisely, the computation of the relations Dτ proceeds inductively
in a bottom-up fashion. It starts with triangles δ = (i0, i1, i2) for which T (δ) has exactly one
or two inner tree nodes (i,.e., nodes different from i0, i1, i2). Since such graphs G(δ) have at
most 5` nodes, their type can be determined by a first-order formula.5

For larger triangles, several cases need to be distinguished. Here we explain the case of a
triangle δ = (i0, i1, i2), for which i0 has child nodes i′1 and i′2 such that i′1 � i1 and i′2 � i2
(cf., Figure 2). In this case, the type τ of (G(δ), v̄(δ)) can be determined from the types τ1

of (G(δ1), v̄(δ1)) and τ2 of (G(δ2), v̄(δ2)), where δ1 = (i′1, i1, i1) and δ2 = (i′2, i2, i2), and the
type τ0 of the graph G0 that includes all edges of G(δ) that are not already in G(δ1) or G(δ2).
More precisely, τ0 is the type of (G0, v̄(i0), v̄(i1), v̄(i2), v̄(i′1), v̄(i′2)) and G0 is the subgraph
of G with node set V0 =

⋃
{B(i0), B(i1), B(i2), B(i′1), B(i′2)} and all edges from G[V0] that

have at least one endpoint in B(i′1) ∪B(i′2). These types are either already computed or the
graphs are of size at most 5` and their type can therefore be determined by a first-order
formula as before.

We make this more precise. We observe that (G(δ), v̄(δ)) can be composed from the
graphs (G0, v̄(i0), v̄(i1), v̄(i2), v̄(i′1), v̄(i′2)), (G(δ1), v̄(δ1)) and (G(δ2), v̄(δ2)) by first taking the
disjoint union of these graphs and afterwards fusing nodes according to the identities induced
by the additional constants. For both operations, the depth-d MSO type of the resulting
structure only depends on the depth-d MSO type(s) of the original structure(s) [Mak04,
Theorem 1.5 (ii) and Proposition 3.6]. The type τ of (G(δ), v̄(δ)) is therefore determined by a
finite function f as τ = f(τ0, τ1, τ2), which can be directly encoded into first-order formulas.

Finally, we describe how a dynamic program can maintain S,C, and N for log n many
changes. The relation Dτ is not adapted during the changes. Whenever an edge (u, v)
is inserted to or deleted from G, the nodes u and v are viewed as affected. For every
affected node u that is not yet in a bag stored in S, a special tree node is selected (in some
canonical way, e.g. always the smallest node with respect to ≤ is selected) such that u ∈ B(j).
Furthermore, if node i is the least common ancestor of j and another special node it becomes
special, as well. It is easy to see that when selecting j as a special node, at most one further
node becomes special. The tuples v̄(j) and v̄(i) (if i exists) are added to S, their elements
are added to C, the identifier nodes in C for maximal clean triangles are corrected, and N is
updated accordingly.

5Basically, all isomorphism types of such graphs and their respective MSO types can be directly encoded
into first-order formulas.
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7. MSO Optimisation Problems

With the techniques presented in the previous section, also MSO definable optimisation
problems can be maintained in DynFO for graphs with bounded treewidth. An MSO
definable optimisation problem OPTϕ is induced by an MSO formula ϕ(X1, . . . , Xm) with free
set variables X1, . . . , Xm. Given a graph G with vertex set V , it asks for sets A1, . . . , Am ⊆ V
of minimal6 size

∑m
i=1 |Ai| such that G |= ϕ(A1, . . . , Am). Examples (with m = 1) for such

problems are the vertex cover problem and the dominating set problem.
We require from a dynamic program for such a problem that it maintains unary query

relations Q1, . . . , Qm that store, at any time, an optimal solution for the current graph.

Theorem 7.1. For every MSO formula ϕ(X1, . . . , Xm) and every k, OPTϕ is in DynFO
for graphs with treewidth at most k.

As already mentioned in the previous section, for every k and every GSO formula ϕ
there is an MSO formula ψ that is equivalent on graphs with treewidth k [Cou94, Theorem
2.2]. Moreover, if ϕ = ∃X1 · · · ∃Xm ϕ

′, then ψ is of the form ∃X1
1 · · · ∃X`

1 · · · ∃X1
m · · · ∃X`

mψ
′,

for some natural number `. So, we can conclude the following corollary.

Corollary 7.2. For every GSO formula ϕ(X1, . . . , Xm) and every k, OPTϕ is in DynFO
for graphs with treewidth at most k.

Given the machinery from the previous section, the plan for a dynamic program for an
MSO-definable optimisation problem is relatively straightforward. Again, it suffices to show
(AC1, log n)-maintainability. The affected nodes of the graph after log n changes are again
collected in a center C of the graph (with O(log n) additional nodes as before). For each
petal Di and each relevant MSO-type τ we basically maintain a collection (B1, . . . , Bm) of
subsets of Di − C that yields type τ in Di and is minimal with respect to

∑m
i=1 |Bi|. Then,

it is easy to compute in a first-order fashion, for every possible colouring of C, the minimum
achievable overall sum for extensions of the colouring that make ϕ true.

Proof (of Theorem 7.1). We only prove the special case ofm = 1, the extension to the general
case is straightforward. Let ϕ(X) be an MSO formula of quantifier depth d. The proof of
Theorem 6.1 shows how one can obtain a dynamic program that (AC1, log n)-maintains the
model checking problem MCψ for ψ def

= ∃X ϕ. We adapt this proof, and reuse its notation,
in order to obtain such a dynamic program for OPTϕ, using almost the same auxiliary
relations. Together with Theorem 4.1 and Proposition 3.2, the result follows.

In the following, we sketch the proof idea. We consider ϕ to be an MSO sentence over
the signature {E,X}. Let G+X = (V,E,X) be an arbitrary expansion of a graph G with a
center C of connection width w, for some constant w. By Theorem 6.3 there is a number d′
and an MSO sentence ψ such that for every B+X ∈ S(G+X , C, w, d′) it holds that G+X |= ϕ
if and only if B+X |= ψ. So, the formula ψ uses the type information on the petals provided
by B+X as well as G+X [C] directly to check whether the relation X represents a feasible
solution of the problem OPTϕ. In the proof of Theorem 6.1 we explained how to obtain
a first-order formula χ from ψ such that (G,Aux, Sub) |= χ ⇔ B |= ψ, for the auxiliary
database Aux maintained by the dynamic program constructed in the proof of Theorem 6.1
and a relation Sub encoding subsets of C.

Let B ∈ S(G,C,w, d′+ 1) be an MSO indicator structure for G. Our goal is to maintain
some relations that augment the type information provided by B such that a formula χ′

6The adaptation to maximisation problems is straightforward.
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similar to χ can “guess” a relation X, check that it is a feasible solution, compute its size and
verify that no feasible solution of smaller size exists. Of course, a relation X of unrestricted
size cannot be quantified in first-order logic, even in the presence of Sub, but we will see that
the restriction of X to C and the type information on the petals can be quantified, which is
sufficient for our purpose.

We now give the details of the construction. The structure B contains relations Rτ
such that ui1 ∈ Rτ if and only the depth-(d′ + 1) MSO type of (Ai, ūi) over signature
Σ = {E, c1, . . . , c3`+1} is τ , where the subgraph Ai over universe Di and the tuple ūi are
defined as in Subsection 6.1. We say that a depth-d′ type τ ′ over signature Σ+X def

= Σ∪ {X}
can be realised in (Ai, ūi) by a set Ai ⊆ Di, if τ ′ is the depth-d′ MSO type of (Ai, ūi, Ai).
If (Ai, ūi) has depth-(d′ + 1) MSO type τ , the existence of such a set is equivalent to the
statement ∃X ατ ′ ∈ τ . We note that τ ′ already determines whether uij ∈ Ai shall hold, for
each constant uij from the tupel ūi.

The dynamic program maintains relations #Rτ ′ and Qτ ′ , for each depth-d′ MSO type
over Σ+X . The relations #Rτ ′ give the minimal size of a set that realises the type τ ′. So, if
τ ′ can be realised in (Ai, ūi) by some set A, and s is the minimal size of such a set, then
#Rτ ′ shall contain the tuple (ui1, vs), where vs is the (s+ 1)-th element7 with respect to ≤.
Furthermore, for the lexicographically minimal set A of this kind and size s, Qτ ′ shall contain
all tuples (ui1, a), where a ∈ A.

We construct a first-order formula χ′ from χ that is able to define an optimal solution X
for OPTϕ from (G,Aux, Sub) expanded by the relations #Rτ ′ and Qτ ′ . First, this formula
quantifies for each depth-d′ MSO type τ ′ the set of identifiers ui1 such that X realises τ ′
in (Ai, ūi) and checks consistency: as for each node v ∈ C that appears in ūi the type τ ′
already determines whether v ∈ X shall hold, the respective types need to agree for nodes
that appear in multiple petals. For each ui1 the assigned type also needs to be realisable in
the respective substructure (Ai, ūi), which can be checked using the relations Rτ of B. Using
this information, χ′ can apply χ to check that the implied set X is a feasible solution. With
the help of #Rτ it can compute the size of X, as FO(+,×) is able to add up logarithmically
many numbers [Vol99, Theorem 1.21] and C is only of logarithmic size in |V |. Also χ′ checks
that no other assignment of types τ ′ to identifier nodes results in feasible solutions of smaller
size. Finally, χ′ uses the relations Qτ ′ to actually return an optimal solution X.

Building on the proof of Theorem 6.1, it remains to show that the additional auxiliary
relations #Rτ ′ and Qτ ′ can be initialised and maintained. Actually, we maintain similarly
defined relations #Dτ ′ and Fτ ′ , the relations #Rτ ′ and Qτ ′ are then first-order definable by
the dynamic program using these relations.

Let δ be a triangle such that G(δ) has at least one inner node. Similar to the relations
Dτ used in the proof of Theorem 6.1, here a relation #Dτ ′ contains the tuple (v̄(δ), u) if and
only if (1) the depth-d′ MSO type τ ′ is realisable in (G(δ), v̄(δ)), and (2) u is the (s+ 1)-th
element with respect to ≤, where s is the minimal size of a set that realises this type.
Furthermore, for the lexicographically minimal set A of this kind and size s, Fτ ′ contains all
tuples (v̄(δ), a), where a ∈ A. It is clear that these relations suffice to define the relations
#Rτ ′ and Qτ ′ , given the other relations of the proof of Theorem 6.1.

The proof of Theorem 6.1 can be extended to show that the initial versions of these
auxiliary relations can be computed in AC1. For the inductive step of this computation,

7We ignore the case that the size could be as large as |V |, which can be handled by some additional
encoding.
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a type τ ′ realisable in a structure (G(δ), v̄(δ)) might be achievable by a finite number of
combinations of types of its substructures. Here, the overall size of the realising set for X
needs to be computed and the minimal solution needs to be picked. This is possible by
a FO(+,×)-formula since the number of possible combinations is bounded by a constant
depending only on d and k.

The updates of the auxiliary relations are exactly as in the proof of Theorem 6.1. Since
Dτ needs no updates there, neither #Dτ ′ nor Fτ ′ do, here.

From the proof it is easy to see that a dynamic program can also maintain the size s of
an optimal solution, either implicitly as

∑m
j=1 |Qj | for distinguished relations Qj , or as {vs}.

Additionally, it can easily be adapted for optimisation problems on weighted graphs, where
nodes and edges have polynomial weights in n.

8. Conclusion

In this paper, we introduced a strategy for maintaining queries by periodically restarting its
computation from scratch and limiting the number of change steps that have to be taken
into account. This has been captured in the notion of (C, f)-maintainable queries, and we
proved in particular that all (AC1, log n)-maintainable, almost domain independent queries
are actually in DynFO. As a consequence, decision and optimisation queries definable in
MSO- and GSO-logic are in DynFO for graphs of bounded treewidth. For this, we stated a
Feferman-Vaught-type composition theorem for these logics, which might be interesting in
its own right. Though we phrase our results for MSO and GSO for graphs only, their proofs
translate swiftly to general relational structures.

Apart from this paper, this strategy is already used in [DMVZ18] to prove that the
reachability query can be maintained dynamically under insertions and deletions of a non-
constant number of edges per change step.

We believe that our strategy will find further applications. For instance, it is conceivable
that interesting queries on planar graphs, such as the shortest-path query, can be maintained
for a bounded number of changes using auxiliary data computed by an AC1 algorithm (in
particular since many important data structures for planar graphs can be constructed in
logarithmic space and therefore in AC1).
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