
Logical Methods in Computer Science
Volume 15, Issue 2, 2019, pp. 10:1–10:23
https://lmcs.episciences.org/

Submitted Nov. 06, 2017
Published May 08, 2019

A DENOTATIONAL SEMANTICS FOR SPARC TSO

RYAN KAVANAGH AND STEPHEN BROOKES

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail address: {rkavanagh, brookes}@cs.cmu.edu

Abstract. The SPARC TSO weak memory model is defined axiomatically, with a non-
compositional formulation that makes modular reasoning about programs difficult. Our
denotational approach uses pomsets to provide a compositional semantics capturing exactly
the behaviours permitted by SPARC TSO. It uses buffered states and an inductive definition
of execution to assign an input-output meaning to pomsets. We show that our denotational
account is sound and complete relative to the axiomatic account, that is, that it captures
exactly the behaviours permitted by the axiomatic account. Our compositional approach
facilitates the study of SPARC TSO and supports modular analysis of program behaviour.

1. Introduction

A memory model specifies what values can be read by a thread from a given memory location
during execution. Traditional concurrency research has assumed sequential consistency,
wherein memory actions operate atomically on a global state, and a read is guaranteed to
observe the value most recently written to that location globally. Consequently, “the result
of any execution is the same as if the operations of all the processors were executed in some
sequential order” [Lam79]. However, sequential consistency negatively impacts performance,
and modern architectures often provide much weaker guarantees. These weaker guarantees
mean that classical concurrency algorithms, which often assume sequential consistency, can
behave in unexpected ways. Consider, for example, the Dekker algorithm on a system using
the SPARC instruction set. The Dekker algorithm seeks to ensure that at most one process
enters a critical section at a time. Executing the following instance of the Dekker algorithm
on a sequentially consistent system from an initial state where memory locations w, x, y, z
are all zero will ensure that we end in a state where not both z and w are set to one:

(x := 1; if y = 0 then z := 1 else skip) ‖(y := 1; if x = 0 then w := 1 else skip).

2012 ACM CCS: [Theory of computation]: Denotational semantics; Concurrency.
Key words and phrases: SPARC TSO, denotational semantics, pomsets, concurrency, weak memory

models.
Funded in part by a Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate

Scholarship.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(2:10)2019
c© Ryan Kavanagh and Stephen Brookes
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

10:2 Ryan Kavanagh and Stephen Brookes Vol. 15:2

However, the SPARC ISA provides the weaker SPARC TSO (total store ordering) memory
model. Under SPARC TSO, it is possible to start from the aforementioned initial state and
end in a state where both z and w are set to one, thus violating mutual exclusion.

Weak memory models are often described in standards documents using natural language.
This informality makes it difficult to reason about how programs will behave on systems that
use these memory models. The SPARC Architecture Manual [SPA92] gives an axiomatic
description of TSO using partial orders of actions. We present this description in Section 2;
other axiomatic approaches are discussed in Section 5. Despite their formality, it is hard to use
axiomatic accounts to reason about the behaviour of programs. This is because the axiomatic
approach is non-compositional and precludes modular reasoning. We address this problem
by presenting a denotational semantics for SPARC TSO in Section 3. Our denotational
semantics assigns to each program a collection of pomsets. Pomsets are generalizations of
traces and were first used by Pratt [Pra86] to give denotational semantics for concurrency,
and later by Brookes [Bro16a], with some modifications, to study weak memory models. We
illustrate our semantics by validating various litmus tests and expected program equivalences.
To ensure our denotational semantics accurately captures the behaviour of SPARC TSO,
we show in Section 4 that from every denotation of a program we can derive a collection of
partial orders satisfying the axiomatic description of Section 2 and, moreover, that we can
derive every such partial order from the denotation.

2. An Axiomatic Account

The SPARC manual [SPA92] gives an axiomatic description of TSO in terms of partial
orders of actions. Unfortunately, this description is incomplete because it fails to specify
the fork and join behaviour of TSO. In this section, we complete the SPARC manual’s
account of TSO with an account of forking and joining. Before doing so, we give an informal
description of TSO to help build intuition.

A system providing the TSO weak memory model can be thought of as a collection of
processors, each with a write buffer. Whenever a processor performs a write, it places it in
its write buffer. The buffer behaves as a queue, and writes migrate out of the buffers one
at a time, and shared memory applies them according to a global total order. Whenever a
processor tries to read a location, it first checks its buffer for a write to that location. If
it finds one, it uses the value of the most recent such write; otherwise, it looks to shared
memory for a value. Because of buffering, it is possible for writes and reads to be observed
out of order relative to the program order.

2.1. Program Order Pomsets. To make the above intuition precise, we must formalize
the notion of a program order, i.e., the ordering of read and write actions specified by a
program. We do so by means of partially-ordered multisets.

Definition 2.1. A (strict) partially-ordered multiset or pomset (P,<,Φ) over a label set
L consists of a strict poset (P,<) of “action occurrences” and a function Φ : P → L mapping
each action occurrence to its label or “action”.

We frequently write just P for (P,<,Φ), in which case we let <P and ΦP denote its obvious
components. Denote by Pom(L) the set of pomsets over L. We remark that pomsets are a
natural generalization of traces. Indeed, all traces are simply pomsets where the underlying
order is total.

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:3

We do not usually make the poset P explicit, because the structure of the pomset is
invariant under relabellings of the elements of P . Consequently, we identify pomsets (P,<,Φ)
and (P ′, <′,Φ′) if there exists an order isomorphism φ : P → P ′ such that Φ = Φ′ ◦ φ. We
usually denote the elements of the pomset using just their labels, but we sometimes need to
specify their exact occurrence, in which case we write lp, where l = Φ(p).

It is useful to draw a pomset P as a labelled directed acyclic graph, where multiple
vertices can have the same label and we have an edge a→ b if a <P b. For clarity, we always
omit edges obtained by transitivity of <P . For example, the following graph depicts the
pomset where P = {0, 1, 2, 3}, the order is given by 0 < 1, 1 < 2, 0 < 2, and 0 < 3, and Φ is
given by Φ(0) = a, Φ(1) = b, Φ(2) = a, and Φ(3) = c:

c aoo // b // a .

We assume a countably infinite set of locations Loc, ranged over by metavariables
x, y, z, . . . , and a set of values V , ranged over by v. In our examples, we will take V to be
the set of integers. We call x := v a global write action, x = v a read action, and δ a skip
action. Let Aw and Ar be the sets of global write actions and read actions, respectively.

Definition 2.2. A program order is a pomset P over the set APO = Aw ∪ Ar ∪ {δ} of
action labels that satisfies the (locally) finite height property, that is, such that for all b ∈ P ,
the set {a ∈ P | a <P b} is finite.

Informally, the finite height property guarantees that all actions in P can be executed after
finitely many other actions, i.e., that the program order contains no unreachable actions.

Intuitively, the program order

x := 2 // y = 1 y := 1 // y = 1

describes the parallel execution of writing 2 to x before reading 1 from y, and writing 1 to y
before reading 1 from y, with no other ordering constraints.

2.2. TSO Axioms. We now turn our attention to our completed version of the axiomatic
account given in the SPARC manual. To do so, we first introduce the notion of state and
the requisite notation.

A global state is a finite partial function from locations Loc to values V . We let
ΣPO = Loc ⇀fin V be the set of global states, and use σ to range over ΣPO.

Given any set S and partial order <S on it, every element s ∈ S determines a set
s↓S = {s′ ∈ S | s′ <S s} ∪ {s} called its lower closure. Write s ‖S s′ to denote that s and s′

are not comparable under the reflexive closure ≤S of <S , and write s ≤≥S s′ to denote that
they are comparable.

Definition 2.3. Let P be a program order and <T be a strict partial order on the elements
of P . We say <T is TSO-consistent with P from (the initial state) σ if it satisfies the
following six axioms:

(O) Ordering: <T totally orders the write actions Aw of P .
(V) Value: for all reads (x = v)r in P , either

(a) there exists a write (x := v′)w maximal under <T amongst all writes to x in
(x = v)r↓T , all writes to x in (x = v)r↓P are in (x := v′)w↓T , and v = v′; or

(b) there exists a write (x := v′)w maximal under <P amongst all writes to x in
(x = v)r↓P , and both (x = v)r <T (x := v′)w and v = v′; or

10:4 Ryan Kavanagh and Stephen Brookes Vol. 15:2

(c) there are no writes to x in (x = v)r↓T or (x = v)r↓P , and σ(x) = v.
(L) LoadOp: for all reads r ∈ P and all actions a ∈ P , r <P a implies r <T a.
(S) StoreStore: for all writes w,w′ ∈ P , w <P w

′ implies w <T w
′.

(F) Fork: if α1 <P α2, α1 <P α3, and α2 ‖P α3, then α1 <T α2 and α1 <T α3.
(J) Join: if α1 <P α3, α2 <P α3, and α1 ‖P α2, then α1 <T α3 and α2 <T α3.

The fork axiom is easily understood by: if α1 ← α1 → α3 in P , then α2 ← α1 → α3 or
α1 → α2 → α3 in (P,<T); the join axiom is symmetric. We simply say <T is TSO-consistent
with P if there exists some initial state σ from which they are TSO-consistent. It will be
useful to identify <T and the pomset T = (P,<T ,ΦP).

Axioms (O), (Va), (Vb), (L), and (S) are directly adapted from the formal specification
given in Appendix K.2 of [SPA92]. We introduce axiom (Vc) to simplify our presentation
of examples. By requiring that programs first write to any locations from which they
read, it can be omitted, and apart from examples, we will assume throughout that our
TSO-consistent orders do not require (Vc). Though the formal specification does not provide
axioms (F) and (J), they are consistent with the behaviour intended by Appendix J.6
of [SPA92]. Intuitively, axiom (Vb) requires that whenever a processor reads from a location,
it must use the most recent write to that location in its write buffer (if it exists). If there
is no such write in its write buffer, but we have observed a global write to that location,
then (Va) requires that the most recent such write be the one read. Our presentation differs
slightly from the formal specification. In particular, we do not consider instruction fetches
or atomic load-store operations, and we do not consider flush actions, because they can be
implemented as a derived action in our semantics by forking and immediately joining. To
be consistent with our pomset development, we also assume the order to be strict.

As the following proposition’s corollary shows, if <T is TSO-consistent for P , then there
exists a (not necessarily unique) total order on P that is TSO-consistent with P and contains
<T . As a result, we can view all orders that are TSO-consistent with P as weakenings of
total orders that are TSO-consistent with P . The proposition follows by a straightforward
check of the axioms, where (V) is the only axiom that is not immediate.

Proposition 2.4. Let <T be TSO-consistent for P and a, b ∈ P be two actions such that
a ‖T b. Let <ab be the transitive closure of <T ∪ {(a, b)}. If there exist maximum writes
under a and b relative to ≤T , call them µa and µb, respectively. If either µa and µb exist
and µa <T µb, or µa does not exist, then <ab is TSO-consistent for P .

Corollary 2.5. If P is a finite program order pomset and <T a partial order TSO-consistent
with P , then there exists a total order @T TSO-consistent with P such that <T ⊆ @T .

Despite Corollary 2.5, one should be careful not to conflate the notion of linearisation with
that of TSO-consistent total orders. Consider, for example, the program order

x := 2 // x = 2 x := 3 // x = 3 .

The linearisation x := 2 < x := 3 < x = 3 < x = 2 is not TSO-consistent with the pro-
gram order because it violates (Va); the order x = 2 < x := 2 < x = 3 < x := 3 is not a
linearisation of the program order but is TSO-consistent with it.

When we have a write followed by a read in the program order, but swapped in the
linear order, as in this example, we can imagine the write having gotten stuck in the write
buffer, and observing the read before the write.

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:5

3. A Denotational Account

So far we have dealt with program orders in the abstract. To make the rest of our development
more concrete, we restrict our attention to program orders for well-defined programs in the
simple imperative language given below. These program orders are defined in Section 3.2.

Restricting our attention to program orders of these well-defined programs raises the
question of compositionality. The key is to find a way to derive TSO-consistent orders for a
sequential composition c1; c2 or parallel composition c1 ‖ c2 given TSO-consistent orders for
c1 and c2. This is infeasible with the axiomatic approach, which requires reasoning about
whole programs and is inherently non-compositional. In contrast, a denotational approach
using pomsets is compositional: it allows us to derive the meaning of a program vis-à-vis a
weak memory model from the meanings of its parts vis-à-vis the memory model.

Our denotational semantics has two components. The first associates to each program
a set of TSO pomsets, which serves as the abstract meaning or denotation of the program.
This component is described in Section 3.3. The second associates to each pomset a set of
executions, which describe its input-output behaviours. This is described in Section 3.4.2.

3.1. A Simple Imperative Language. We express our programs using a simple imperative
language. This formalism avoids the complexity of high-level languages, while still capturing
the programs we are interested in. In the syntax below, e ranges over integer expressions, b
over boolean expressions, c over commands, and p over programs. We distinguish between
commands and programs, because although commands can be composed to form new
commands, programs are assumed to be syntactically complete and executable. This
distinction will be useful later when we consider executions, where we will assume programs
are executed from initial states with empty buffers, but impose no such constraint on
executions for commands.

v ::= . . . ,−2,−1, 0, 1, 2, . . .

e ::= v | x | e1 + e2 | e1 ∗ e2 | · · ·
b ::= true | false | ¬b | e1 = e2 | e1 < e2 | b1 ∨ b2 | b1 ∧ b2 | · · ·
c ::= skip | x := e | c1; c2 | c1 ‖ c2 | if b then c1 else c2 | while b do c

p ::= c

Let VExp denote the set of integer expressions, BExp the set of boolean expressions, and
Cmd the set of commands.

3.2. PO Pomsets. Given a command c in our language, we must now compile it down to
its set PPO(c) of program order pomsets. We need operations for the sequential and parallel
composition of pomsets over the same set of labels. When defining compositions of pomsets,
we assume without loss of generality that the underlying posets are disjoint.

Definition 3.1. The sequential composition (P0, <0,Φ0); (P1, <1,Φ1) is (P0, <0,Φ0) when-
ever P0 is infinite, and otherwise it is (P0 ∪ P1, <0 ∪<1 ∪ P0 × P1,Φ0 ∪ Φ1). The parallel
composition (P0, <0,Φ0) ‖(P1, <1,Φ1) of pomsets is (P0 ∪P1, <0 ∪<1,Φ0 ∪Φ1). The empty
pomset 0 = (∅, ∅, ∅) is the unit for sequential and parallel composition. Given a pomset P
on a set of labels L and a subset L′ ⊆ L, the restriction P �L′ of P to L′ is the pomset on
Φ−1(L′) whose ordering is induced by P . The deletion of L′ from P is P �L\L′ . We lift these

operations to sets of pomsets in the obvious manner, e.g., S1;S2 = {P1;P2 | Pi ∈ Si}.

10:6 Ryan Kavanagh and Stephen Brookes Vol. 15:2

Because the skip action δ has no effects, we identify program orders P and P ′ whenever
there exists a non-empty pomset Pδ that can be obtained in two ways: by deleting a finite
number of δ actions from P and also by deleting a finite number of δ actions from P ′. This
means, e.g., that we identify {δ};P , {δ} ‖P , and P whenever P 6= 0, but {δ}; 0 = {δ} 6= 0.

We begin with the program order denotation of expressions. To each expression e, we
assign a set PPO(e) of tuples of program orders and corresponding values:

PPO : VExp→ ℘(Pom(APO)× V)

PPO(v) = {({δ}, v)}
PPO(x) = {({x = v}, v) | v ∈ V }

PPO(e1 � e2) = {(P1 ‖P2, v1 � v2) | (Pi, vi) ∈ PPO(ei)}
where � ranges over binary operations. Read expressions x are associated with arbitrary
values in V for reasons of compositionality: we do not know with which writes the read may
eventually be composed, and so we need to permit reading arbitrary values. We chose to
evaluate binary operations e1 � e2 in parallel; one could just as legitimately have chosen
to sequentialise the evaluation and written P1;P2. We assume v1 � v2 ∈ V to be the result
of applying the binary operation � to v1 and v2. We handle program orders for unary
expressions analogously, and assume ¬b′ is the result of negating the boolean value b′. To
simplify the clauses involving conditionals, we give helper functions Ptrue(b) and Pfalse(b) to
extract the pomsets corresponding to the given boolean values from PPO(b).

PPO : BExp→ ℘(Pom(APO)× Bool)

PPO(b) = {({δ}, b)} (b ∈ {true, false})
PPO(¬b) = {(P,¬b′) | (P, b′) ∈ PPO(e)}

PPO(e1 � e2) = {(P1 ‖P2, v1 � v2) | (Pi, vi) ∈ PPO(ei)}
Ptrue(b) = {P | (P, true) ∈ PPO(b)}
Pfalse(b) = {P | (P, false) ∈ PPO(b)}

Note that in the case of boolean binary operations, the ei might be integer or boolean
expressions, and the corresponding semantic clause for PPO(ei) should be used.

We give the program order denotation of commands in a similar manner, this time
associating sets of program orders to each command phrase:

PPO : Cmd→ ℘(Pom(APO))

PPO(skip) = {{δ}}
PPO(x := e) = {P ; {x := v} | (P, v) ∈ PPO(e)}
PPO(c1; c2) = PPO(c1);PPO(c2)

PPO(c1 ‖ c2) = PPO(c1) ‖PPO(c2)

PPO(if b then c1 else c2) = Ptrue(b);PPO(c1) ∪ Pfalse(b);PPO(c2)

PPO(while b do c) =

∞⋃
n=0

In(b, c) ∪ Iω(b, c),

where I0(b, c) = Pfalse(b) and In+1(b, c) = Ptrue(b);PPO(c); In(b, c).

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:7

The only interesting clause is for while b do c. Here, we take union of all of the finite
unrollings In(b, c) of the loop. We must also consider the case of an infinite loop. This is cap-
tured by Iω(b, c), which describes the infinite pomset obtained by unrolling the loop countably
infinitely many times. The while b do c clause also illustrates why we associate the pomset
{δ} instead of 0 to values: otherwise, we would have PPO(while false do c) = {0}, and this
would break our intuition that this program should be denotationally equivalent to skip. It
would also have no executions under the formal account of Section 3.4.

To illustrate the above semantic clauses, we return to the Dekker program from the
introduction. This program has pomsets of each of the following forms, for each choice of
v 6= 0 and v′ 6= 0:

x := 1
��

y := 1
��

y = 0
��

x = 0
��

z := 1 w := 1

, x := 1

��

y := 1
��

y = v x = 0
��

w := 1

, x := 1
��

y := 1

��
y = 0
��

x = v

z := 1

, x := 1

��

y := 1
��

y = v x = v′

.

The first program order describes an execution where we read both y = 0 and x = 0 and
where Dekker fails. The next three forms of program order describe executions in which one
or both reads obtain a non-zero value.

3.3. TSO Pomsets. In this subsection, we assign a set PTSO(p) of TSO pomsets to each
program p, serving as the abstract meaning or denotation of the program p under the TSO
memory model. To do so, we will need to carefully model write buffers. For compactness,
we will write P instead of PTSO in this section’s semantic clauses.

We introduce a set BLoc = {x̄ | x ∈ Loc} of buffer locations, assumed to be in bijection
with Loc, and let the set of buffer write actions be Ab = {x̄ := v | x̄ ∈ BLoc, v ∈ V }.
An action x̄ := v by a thread denotes adding a write x := v to the thread’s write buffer.
The set of TSO actions ATSO then consists of APO extended with Ab. A TSO pomset will
then be a pomset in Pom(ATSO) satisfying the finite height property.

To capture the effects of buffers, we parametrize our semantic clauses with lists of global
write actions, which represent the writes currently in our buffer. We let Ls = Aw list be the
set of all lists. The intuition is that write buffers behave as queues under TSO, and we can
use a list L ∈ Ls to model a queue by dequeuing from the head of the list and enqueuing at
the end of the list. For expository convenience, we identify lists and linear pomsets, where
we say a pomset is linear if its underlying poset is linear. Explicitly, we identify [] with the
empty pomset 0, and [λ1, . . . , λn] with the pomset {λ1}; · · · ; {λn}. To minimize notation,
we leverage this identification and write L;L′ to denote the concatenation of L and L′.

The semantic clauses are given in two strata. The semantic clauses B for “basic TSO
pomsets” capture the meaning of the syntactic phrases in a manner very similar to the
program order definitions in Section 3.2. B assign to each command phrase a function from
buffer lists to a set of pairs of TSO pomsets and buffer lists. We present these clauses using
the abbreviation BL(c) = B(c)(L). The pomset component of BL(c) captures the meaning
of the phrase in the presence of the buffer L, while the buffer component describes the state
of the buffer after performing the actions associated with the phrase. In the second stratum,
we use P clauses to capture the meaning of the phrase in the presence of buffer flushing.
Flushing a write from a buffer L consists of dequeuing a global write x := v from L and
inserting it in the pomset. PL(c) = P(c)(L) is again a subset of Pom(ATSO)× Ls.

10:8 Ryan Kavanagh and Stephen Brookes Vol. 15:2

To generate TSO pomsets, we modify the semantic clauses generating program orders
in four key places to get our basic pomsets. The first is for write commands x := e. Starting
from a buffer L ∈ Ls, we get the pomset P and associated value v for e from the denotation
PL(e) instead of PPO(e). The buffer L may have changed to a buffer L′ while we were
evaluating e, and PL(e) also gives us this L′. Instead of immediately making a global write
to x as we would have in the program order clause, we enqueue the global write on the
buffer L′:

BL(x := e) = {(P ; {x̄ := v}, L′; {x := v}) | (P, v, L′) ∈ PL(e)}.
We must also change the semantic clauses for read expressions. By axiom (Vb), whenever

we read from a location x, we must use the most recent value available for it in the write
buffer, if available. We use the following helper function to convert a buffer L ∈ Ls to a
partial function βL : Loc ⇀fin V giving us the value of the most recent write in L to a given
location:

β[](x) = undefined , βL;{x:=v}(y) =

{
v if x = y

βL(y) otherwise.
(3.1)

Then, the semantic clause giving us the basic pomsets for reads is

BL(x) = {({x = v}, v, L) | βL(x) = v} ∪ {({x = v}, v, L) | x /∈ dom(βL), v ∈ V }.
The first part tells us to use the value associated with x in the buffer L, if available. The
second part uses arbitrary values if the value is unavailable, as with program orders.

The third major change involves parallel composition. We explain parallel composition
of expressions; parallel composition of commands is analogous. By axioms (F) and (J),
we must flush our buffers before every fork and join. We therefore begin by flushing our
entire buffer, i.e., by taking L and placing it at the beginning of our pomset. Having flushed
the buffer, we then evaluate the ei with empty buffers and get back pomsets Pi and vi.
Because we can only join threads if their buffers are empty, we require that these Pi and
vi be associated with empty buffers in P[](ei). We then proceed as for the program order,
and add the parallel composition of the Pi to our pomset, and compute the value v1 � v2.
Because we just joined two empty buffers, our resulting buffer is empty:

BL(e1 � e2) = {(L; (P1 ‖P2), v1 � v2, []) | (Pi, vi, []) ∈ P[](ei)}.
Finally, when we sequentially compose two commands c1 and c2 (assuming no forking

or joining), c2 continues executing from the buffer c1 finished with. P(c1) and P(c2) are
both functions of type Ls → ℘(Pom(ATSO) × Ls) and are not composable qua functions.
Consequently, we need to define a composition operation capturing the above the operational
intuition. This composition is the polymorphic function y, where S ∈ ℘(Pom × A) and
f ∈ A→ ℘(Pom×B):

y : ∀A.∀B.℘(Pom×A)→ (A→ ℘(Pom×B))→ ℘(Pom×B)

Sy f = {(P ;P ′, b) | (P, a) ∈ S ∧ (P ′, b) ∈ f(a)}.
Taking A = B = Ls, sequential composition can be expressed using as

BL(c1; c2) = PL(c1)yP(c2).

Explicitly, this means BL(c1; c2) = {(P1;P2, L2) | (P1, L1) ∈ PL(c1), (P2, L2) ∈ PL1(c2)}.
This idiom of chaining pairs of pomsets and buffers together using y will be useful throughout.
We make y polymorphic so that we can handle, e.g., the case of A = Ls and B = V × Ls
below.

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:9

The remainder of the basic clauses are analogous to those for program order pomsets,
subject to the modifications described above:

B : VExp→ Ls→ ℘(Pom(ATSO)× V × Ls)

BL(v) = {({δ}, v, L)}
B : BExp→ Ls→ ℘(Pom(ATSO)× Bool× Ls)

BL(¬e) = {(P,¬b, L′) | (P, b, L′) ∈ BL(e)}
PL,true(b) = {(P,L′) | (P, true, L′) ∈ PL(b)}
PL,false(b) = {(P,L′) | (P, false, L′) ∈ PL(b)}

B : Cmd→ Ls→ ℘(Pom(ATSO)× Ls)

BL(skip) = {({δ}, L)}
BL(c1 ‖ c2) = {(L; (P1 ‖P2), []) | (Pi, []) ∈ P[](ci)}

BL(if b then c1 else c2) = (PL,true(b)yP(c1)) ∪ (PL,false(b)yP(c2))

BL(while b do c) =
∞⋃
n=0

InL(b, c) ∪ IωL(b, c)

where I0
L(b, c) = PL,false(b) and In+1

L (b, c) = PL,true(b)yP(c)y In(b, c). The set IωL(b, c) ⊆
Pom(ATSO)× {[]} contains all infinite pomsets obtained through countably infinitely many
unfoldings; because we can never observe the buffer at the end, we treat it as empty to
simplify presentation.

We now turn our attention to flushing. The intent is that a thread can flush arbitrarily
many of its writes at any point in its execution. Thus, the pomsets associated with flushes
for a buffer L are the prefixes L′ of L, and the resulting buffers are the remainders of L. We
use split(L) to denote these prefix-suffix pairs:

split : Ls→ ℘(Pom(ATSO)× Ls)

split(L) = {(L′, L′′) | L = L′;L′′}
We introduce a variant of y to cope with triples of pomsets, values, and buffers, and

will rely on types to disambiguate the version needed in any given situation:

y : ∀A.∀B.℘(Pom×A×B)→ (B → ℘(Pom×B))→ ℘(Pom×A×B)

Sy f = {(P ;P ′, A,B′) | (P,A,B) ∈ S ∧ (P ′, B′) ∈ f(B)}
We define the TSO pomsets P in terms of B and split. P composes split and B in a

manner that we can flush some writes from the buffer, then evaluate e or perform c, and
then flush some writes at the end:

PL(e) = split(L)yB(e)y split

PL(c) = split(L)yB(c)y split

We can validate various expected equivalences by unfolding these definitions. For example,
sequential composition of commands is associative, because

PL(c1; (c2; c3)) = split(L)yB(c1)y splityB(c2)y splityB(c3)y split = PL((c1; c2); c3).

Using the identity 0;P = P and the fact that parallel composition of pomsets is as-
sociative, one can show that parallel composition of commands is associative, i.e., that

10:10 Ryan Kavanagh and Stephen Brookes Vol. 15:2

PL(c1 ‖ (c2 ‖ c3)) = PL((c1 ‖ c2) ‖ c3). The parallel composition of pomsets commutes, so the
parallel composition of commands commutes, i.e., PL(c1 ‖ c2) = PL(c2 ‖ c1).

To illustrate the effects of flushing and the effect of buffers on reads, we consider the
expression x in the presence of the buffer L = [x := 3, y := 2]. The triples (P, v, L′) ∈ PL(x)
are of the form

P = (x = 3) v = 3 L′ = [x := 3, y := 2]

P = (x = 3 // x := 3) v = 3 L′ = [y := 2]

P = (x = 3 // x := 3 // y := 2) v = 3 L′ = []

P = (x := 3 // x = v) v ∈ V L′ = [y := 2]

P = (x := 3 // x = v // y := 2) v ∈ V L′ = []

P = (x := 3 // y := 2 // x = v) v ∈ V L′ = []

In the first case, the resulting P denotes performing the read without also doing any flushing.
In this case, because we have a write to x in the buffer, the read from x must use its value.
The second and third case give rise to pomsets denoting performing the read before doing
one or two flushes. In the fourth and fifth cases, we first flush the write to x from the buffer;
the value v read from x is then free to range over all possible values because there are no
other writes to x in the buffer. Finally, in the last case, we flush all of the writes from the
buffer before reading x, and the value read from x is again unconstrained.

Definition 3.2. The TSO pomsets of a program p are PTSO(p) = {P | (P, []) ∈ P[](p)}.

This definition selects pomsets with empty buffers from P[](p) because we expect programs
to be run from an empty buffer and to only stop after emptying all buffers.

We illustrate the constructions by giving four example families of TSO pomsets for the
Dekker program from the introduction, again assuming v 6= 0 and v′ 6= 0:

x̄ := 1
��

ȳ := 1
��

x := 1
��

y := 1
��

y = 0
��

x = 0
��

z̄ := 1
��

w̄ := 1
��

z := 1 w := 1

, x̄ := 1
��

ȳ := 1
��

y = 0
��

x = 0
��

x := 1
��

y := 1
��

z̄ := 1
��

w̄ := 1
��

z := 1 w := 1

, x̄ := 1
��

ȳ := 1
��

x := 1

��

y := 1
��

y = v x = 0
��

w̄ := 1
��

w := 1

, x̄ := 1

��

ȳ := 1
��

y = v
��

y := 1
��

x := 1 x = v′

.

In the first family of pomsets, we flush the writes immediately after inserting them in the
buffers, while in the second, we flush the writes to x and y after reading y and x. In the
third family, we flush x right after placing its write in the buffer, but fall into the false case
of the conditional after reading some value v 6= 0, thus taking the skip branch. In the fourth
pomset, we read y after placing the write x := 1 in the buffer, but before it gets flushed,
and both threads fall into the skip branch.

3.3.1. Laws of parallel programming. Because parallel composition of pomsets is associative
and commutative, and because sequential composition of pomsets is associative, we satisfy

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:11

many laws of parallel programming from [Bro96] and [JPR12] for free. Let C ≡ C ′ whenever
PL(C) = PL(C ′) for all L. Our semantics satisfies:

skip; c ≡ c ≡ c; skip

(c1; c2); c3 ≡ c1; (c2; c3)

c1 ‖ c2 ≡ c2 ‖ c1

(c1 ‖ c2) ‖ c3 ≡ c1 ‖(c2 ‖ c3)

(if b then c1 else c2); c3 ≡ if b then c1; c3 else c2; c3

while b do c ≡ if b then (c; while b do c) else skip

Because we must flush buffers before every fork and join, skip is not a unit for parallel
composition under TSO: skip ‖ c 6≡ c.

3.4. Executions. Our TSO pomset semantics gives an abstract account capturing families of
possible executions. However, compositionality comes with its price: we associate to programs
some pomsets that cannot in any real sense be “executed”. Consider for example, the pomset
x̄ := 2→ x := 2→ x = 1→ · · · for the program c = (x := 2; if x = 1 then c1 else c2).
In no circumstance do we expect to execute c1 when this program is run alone, and so the
above TSO pomset has, in a sense made precise later, no executional meaning. However,
compositionality requires this pomset be associated with the command c, because one could
execute c1 if our program were instead c ‖x := 1. Our notion of execution filters out these
pomsets with no executional meaning and yields an input/output behaviour for programs
built from their pomset semantics.

3.4.1. Buffered States. Our notion of execution uses buffered global state, i.e., a global
state with a write buffer per thread. We execute threads individually. Each thread’s
execution starts from a state with a buffer, which in combination reflect that thread’s view
of shared memory. Let Locs = BLoc ∪ Loc be the set of all locations. We use elements of
Σ = (BLoc ⇀fin (V × N)/≈)× (Loc ⇀fin V) to model the combination of a global state
and a buffer, where ≈ is given by (v, n) ≈ (v′,m) if and only if both n = m, and v = v′

or n = 0. Because Loc and BLoc are disjoint, we identify Σ with its obvious inclusion in
Locs ⇀fin ((V × N)/≈ ∪ V). The intuition is that if σ(x̄) = (v, n), then there are n writes
to x in σ’s write buffer, and the most recent buffer write to σ had the value v. We need
to keep track of the number n of writes to x still in the buffer to know whether we should
continue reading x from the buffer after a flush. We identify (v, 0) and (v′, 0) for all v
and v′ because one should not be able to observe a value for a write that is no longer in
the buffer, and this identification allows us to “forget” the value by setting n to 0. For
x, y, z, . . . ∈ Locs and u, v, w, . . . in the corresponding subset of ((V × N)/ ≈) ∪ V , we
denote by [x : u, y : v, z : w, . . .] the buffered state with graph {(x, u), (y, v), (z, w), . . . }. For
compactness of notation, we write vn for the equivalence class of (v, n) in (V × N)/ ≈.

10:12 Ryan Kavanagh and Stephen Brookes Vol. 15:2

3.4.2. Footprints. Footprints are the first step towards formalizing execution and filtering
out unexecutable pomsets. Informally, a footstep (σ, τ) ∈ Σ× Σ of an action λ is a minimal
piece of state σ required to be able to perform λ, and a description τ of the effects of
performing λ. For example, to perform a global write x := v, x must be in the domain of
the initial state and present in the buffer, so σ = [x : v′, x̄ : v′′n+1] for some v′ and v′′, and
the result is setting the global value of x to v while removing one occurrence of x from the
buffer, so τ = [x : v, x̄ : v′′n]. Though v and v′′ are unrelated, this gives the correct behaviour
in the context of command pomsets because global writes to x occur in the same order as
buffer writes to x. To perform a read action x = v, we must either have no entries for x in
the buffer and have x : v in the global state, or we must have x in the buffer with value v,
i.e., x̄ : vn for some n > 0. We call the set of footsteps associated with an action its footprint.
Pomsets also have footsteps and footprints.

Definition 3.3. TSO footprints for actions are given as follows:

Jx = vK = {([x : v, x̄ : v0], []), ([x̄ : vn+1], []) | n ∈ N}
Jx̄ := vK = {([x̄ : v′n], [x̄ : vn+1]) | v′ ∈ V ∧ n ∈ N}
Jx := vK = {([x : v′, x̄ : v′′n+1], [x : v, x̄ : v′′n]) | v′, v′′ ∈ V ∧ n ∈ N}

JδK = {([], [])}

To give footprints to pomsets, we need to know when it makes sense to combine two
footsteps sequentially or in parallel. We say two states σ1 and σ2 are consistent, σ1 ⇑ σ2,
if for all x ∈ dom(σ1) ∩ dom(σ2), σ1(x) = σ2(x). In this case, σ1 ∪ σ2 is also a state. Let
σ\dom(τ) = σ�dom(σ)\dom(τ). Then the result of updating σ by τ is [σ | τ] = (σ\dom(τ))∪τ .

To sequence the footprint (σ1, τ1) before the footprint (σ2, τ2), we must ensure that the result
of the first computation from its initial state, [σ1 | τ1], is consistent with the requirements
σ2 of the second computation, i.e., we must ensure [σ1 | τ1] ⇑ σ2. In this case, sequentially
performing both computations requires that the initial state provide everything required
by the first computation, plus everything required by the second computation not already
provided by the first one. This is σ1 ∪ (σ2 \ dom(τ1)). The effects of the two computations
are the first’s effects updated by the effects of the second one, [τ1 | τ2]. Consequently, for
states (σi, τi) such that [σ1 | τ1] ⇑ σ2, we define their sequential composition to be:

(σ1, τ1) / (σ2, τ2) = (σ1 ∪ (σ2 \ dom(τ1)), [τ1 | τ2]).

This lifts to an associative operation on Σ× Σ:

S1 / S2 = {(σ1, τ1) / (σ2, τ2) | (σi, τi) ∈ Si ∧ [σ1 | τ1] ⇑ σ2}.
To account for global writes occurring elsewhere during the program, we parametrize

the rules assigning footprints JP KΛ to pomsets P by a list Λ containing a linearisation of the
pomset as a subsequence, combined with any number of other global writes that represent
flushes from buffers belonging to other threads. Because these global writes are performed,
in principle, by other threads, they should not affect the buffers in the footprints associated
with P . The exact mechanics of how Λ and P interact in producing footprints will be made
clear below. Formally, given a pomset P , we let Lin(P) be the set of its linearisations.
Then the clauses are parametrized by Λ ∈ Γ(P) =

⋃
L∈Ls Lin(P ‖L), where given some

global-write environment Λ ∈ Γ(P), we identify P with its image in Λ. So Λ is a linearisation
of P interspersed with global writes that will not involve buffers. In particular, when P is
{λ}, then every Λ ∈ Γ(P) will be of the form Λ1; {λ}; Λ2 for some unique Λ1,Λ2 ∈ Ls. This

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:13

fact will be important for understanding the (Act) rule below. Because Λ is a linearisation,
it totally orders the writes it contains, including those of P .

Given some L ∈ Ls, let JLK∗ be inductively defined on the structure of L as follows:

J [] K∗ = {([], [])}
J{x := v};LK∗ = {([x : v′], [x : v]) | v′ ∈ V } / JLK∗

The intuition here is that the foreign buffer flushes in L should only affect the global part of
the state and have no effect on our buffer. Given a list [x1 := v1, . . . , xn := vn], we write
Jx1 := v1, . . . , xn := vnK∗ for J[x1 := v1, . . . , xn := vn]K∗.

We will need to know if buffered states have empty buffers. We let ζ(σ) hold if and only
if for all x ∈ dom(σ�BLoc), σ(x) = v0. In other words, ζ(σ) holds if and only if σ “has an
empty buffer”. Thus, for example, both ζ([]) and ζ([x : 1, ȳ : 20]), but neither ζ([x : 1, x̄ : 25])
nor ζ([ȳ : 11]).

Definition 3.4. The footprint JP KΛ of a pomset P under a global-write environment
Λ ∈ Γ(P) is the smallest set closed under the following three rules:

(Act) If P = {λ} for some action λ and Λ = Λ1;P ; Λ2 for some Λ1,Λ2 ∈ Ls, then
JP KΛ = JΛ1K∗ / JλK / JΛ2K∗.

(Seq) If P = P1;P2 and Λ = Λ1; Λ2, then JP1KΛ1 / JP2KΛ2 ⊆ JP KΛ.
(Par) If P = P1 ‖P2, Λ1 is the result of deleting the read and buffer write actions of P2

from Λ, Λ2 is the symmetric restriction, (σi, τi) ∈ JPiKΛi , ζ(σi) and ζ(τi) (i = 1, 2),
and σ1 ⇑ σ2, then (σ1 ∪ σ2, τ1 ∪ τ2) ∈ JP KΛ.

This definition is inspired by Lamport’s “happened before” relation [Lam78]. In the case of
(Act), for a given P = {λ} and Λ ∈ Γ(P), the intuition is that Λ specifies that the global
writes in Λ1 happened before λ, and that λ happened before the global writes in Λ2. In the
case of (Seq), for JPiKΛi to be well-defined, we are implicitly assuming that Λi ∈ Γ(Pi). (Seq)
tells us that the result of sequentially executing a program in the presence of global writes
should be the same as executing the pieces sequentially in the presence of the appropriate
subset of global writes. Finally, in (Par), the restrictions of Λ are such that both parallel
components observe all writes in the same order, and this is how we simulate the effects of
writes to a global state. One can show that the set JP KΛ is well-defined with regards to our
identification of pomsets up-to-isomorphism. In particular, J(P1;P2);P3KΛ = JP1; (P2;P3)KΛ

and J(P1 ‖P2) ‖P3KΛ = JP1 ‖(P2 ‖P3)KΛ.
We give various results below that simplify computing the footprint of pomsets. By

Proposition 3.5, a pomset has a footprint only if it is series-parallel. A pomset is series-
parallel or SP if it is linear, or if it is the sequential or parallel composition of SP pomsets.

The maximal linear segments of a SP pomset are its SP components; any SP pomset
can be uniquely decomposed into these. To compute the footprint of a pomset P , we can
use Proposition 3.6 and 3.8 to first decompose P into its series-parallel components, each of
which will be linear. We can then compute the footprints of these linear components using
Corollary 3.7 and Proposition 3.9, and combine them using the appropriate applications of
(Seq) and (Par).

We use these results to illustrate how global-write environments simulate the effects of
global writes. Let P1 and P2 be the pomsets

x̄ := 2 // x := 2 // x = 3 and x̄ := 3 // x = 3 // x := 3 ,

10:14 Ryan Kavanagh and Stephen Brookes Vol. 15:2

respectively, and let P = P1 ‖P2. Consider the global-write environments

Λ = [x̄ := 2, x̄ := 3, x := 2, x = 3, x := 3, x = 3]

Λ1 = [x̄ := 2, x := 2, x := 3, x = 3]

Λ2 = [x̄ := 3, x := 2, x = 3, x := 3].

We see that Λ is a global-write environment for P , and that Λi is the restriction of Λ given
by the (Par) rule for Pi and is again a global-write environment for Pi. To compute the
footprint of P , we must begin by applying the (Par) rule and recursively compute the
footprint of Pi under Λi. We first consider JP1KΛ1 . By Corollary 3.7, it is given by

Jx̄ := 2K / Jx := 2K / Jx := 3K∗ / Jx = 3K,

where we omitted the instances of the unit J[]K∗ for the / operation. Simplifying this
expression, we get that JP1KΛ1 = {([x : v, x̄ : v′n] , [x : 3, x̄ : 2n]) | v, v′ ∈ V ∧ n ∈ N}. Despite
there being no write of 3 to x in P1, the presence of such a global write in Λ1 and its position
in Λ1 mean that the read x = 3 can be executed by P1. More interesting, perhaps, is the
footprint JP2KΛ2 , and in particular, how the global write x := 2 does not interfere with the
read x = 3 thanks to buffering. Again by Corollary 3.7, it is given by

Jx̄ := 3K / Jx := 2K∗ / Jx = 3K / Jx := 3K.

The subexpression Jx̄ := 3K / Jx := 2K∗ simplifies to

{(
[
x : v, x̄ : v′n

]
, [x : 2, x̄ : 3n+1]) | v, v′ ∈ V ∧ n ∈ N} (3.2)

Because for each (σ, τ) ∈ Jx̄ := 3K / Jx := 2K∗ we have τ(x̄) = 3n for some n > 0, i.e.,
because τ ’s buffer has a write to x, the footsteps ([x : 3, x̄ : v0] , []) ∈ Jx = 3K describing
a read of 3 from shared memory are ignored when combining Jx̄ := 3K / Jx := 2K∗ with
Jx = 3K using the / operation. Instead, Jx̄ := 3K / Jx := 2K∗ gets combined with the
subset {([x̄ : 3n+1] , []) | n ∈ N} ⊆ Jx = 3K to give (3.2) again. Then combining (3.2) with
Jx := 3K gives us JP2KΛ2 = {([x : v, x̄ : v′n] , [x : 3, x̄ : 3n]) | v, v′ ∈ V ∧ n ∈ N}. Finally, we
get JP KΛ = {([x : v, x̄ : v0] , [x : 3, x̄ : v0]) | v ∈ V } by combining these footprints using the
(Par) rule.

One can show by induction on the rules defining footprints that:

Proposition 3.5. For all P ∈ Pom(ATSO) and Λ ∈ Γ(P), if JP KΛ 6= ∅, then P is SP.

The following proposition shows that the execution of a pomset P in a global-write environ-
ment Λ can be thought of as executions of parts of P interspersed with environment steps
from Λ. Its corollary shows how to efficiently compute the footprint of linear pomsets.

Proposition 3.6. If P = P1; . . . ;Pn and Λ = E0; Λ1;E1; · · · ; Λn;En ∈ Γ(P) such that
Λi ∈ Γ(Pi) and Ei ∈ Ls for all i, then

JP KΛ = JE0K∗ / JP1KΛ1 / JE1K∗ / · · · / JPnKΛn / JEnK∗.

Without loss of generality, the Λi and Ei can be chosen such that the first and last elements
of Λi are in Pi.

Corollary 3.7. If P = [λ1, . . . , λn] and Λ = E0; {λ1};E1; · · · ; {λn};En ∈ Γ(P), then

JP KΛ = JE0K∗ / Jλ1K / JE1K∗ / · · · / JλnK / JEnK∗.

We can similarly decompose parallel compositions of pomsets when computing footprints.

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:15

Proposition 3.8. If P = P1 ‖ · · · ‖Pn, Λ ∈ Γ(P), and for all i, Λi ∈ Γ(Pi) is obtained from
Λ by deleting the read and buffer write actions not in Pi, then

JP KΛ = JP1KΛ1 ‖ · · · ‖ JPnKΛn ,

where the associative binary operator ‖ on subsets of Σ× Σ is given by

S1 ‖S2 = {(σ1 ∪ σ2, τ1 ∪ τ2) | (σi, τi) ∈ Si, ζ(σi), ζ(τi), σ1 ⇑ σ2, τ1 ⇑ τ2}.

Finally, we can characterize the footprints of the above “environment steps” using the
following lemma, which can be shown by induction on the length of Λ:

Proposition 3.9. For all Λ ∈ Ls and (σ, τ) ∈ JΛK∗, we have x := v ∈ Λ for some v if
and only if x ∈ dom(σ). For no x̄ ∈ BLoc do we have x̄ ∈ dom(σ) ∪ dom(τ). Moreover,
dom(σ) = dom(τ). For all x ∈ dom(σ) and v ∈ V , we have ([σ | x : v] , τ) ∈ JΛK∗. If x := v
is the maximal write to x in Λ, then τ(x) = v.

To better understand and characterize pomset executions, we introduce the characteristic
χx(P) ∈ N×N of a location x in a series-parallel pomset P . Intuitively, when χx(P) = (g, b),
g is the number of global writes to x in P that do not have a buffer entry witnessing them,
and b describes the number of buffer entries left to be flushed after executing P . The
characteristic is inductively given on the structure of P as follows:

χx({y := v}) =

{
(1, 0) x = y

(0, 0) x 6= y

χx({ȳ := v}) =

{
(0, 1) x = y

(0, 0) x 6= y

χx(y = v) = (0, 0)

χx(δ) = (0, 0)

χx(P1 ‖P2) = (g1 + g2, b1 + b2)

χx(P1;P2) = (g1 + max{g2 − b1, 0}, b2 + max{b1 − g2, 0}),
where χx(Pi) = (gi, bi). It is not hard to show that the characteristic χx(P) is well-defined.

As shown in Proposition 3.10 below, the concept of characteristic is closely related to
that of the differential. Where gx and bx are the number of global and buffer write actions
to x in a pomset P , respectively, call ∆x(P) = bx − gx the differential of x in P .

Proposition 3.10. For all P ∈ Pom(ATSO), if χx(P) = (g, b), then ∆x(P) = b− g.

The following proposition tells us that the number of buffer entries for x in the final state of
a footstep of a pomset P is determined by the differential of x in P and by the number of
buffer entries for x in the initial state. For compactness, let σ[x̄] = n whenever σ(x̄) = vn.

Proposition 3.11. For all P ∈ Pom(ATSO), Λ ∈ Γ(P), (σ, τ) ∈ JP KΛ, and x̄ ∈ dom(σ), if
x̄ ∈ dom(τ), then τ [x̄] = σ[x̄] + ∆x(P).

Corollary 3.12. Let P ∈ Pom(ATSO), Λ ∈ Γ(P), (σ, τ) ∈ JP KΛ, and χx(P) = (g, b). Then
τ [x̄] = σ[x̄] + b− g. In particular, when g = 0, then τ [x̄] = σ[x̄] + b.

The following lemma is useful in bounding the characteristic of P . In particular, it implies that
if there exists a Λ ∈ Γ(P) and a (σ, τ) ∈ JP KΛ such that ζ(σ) and ζ(τ), then χx(P) = (0, 0).

10:16 Ryan Kavanagh and Stephen Brookes Vol. 15:2

Lemma 3.13. Let P ∈ Pom(ATSO), Λ ∈ Γ(P), (σ, τ) ∈ JP KΛ, and χx(P) = (g, b). Then
σ[x̄] ≥ g, and if x̄ /∈ dom(σ), then g = 0. Moreover, τ [x̄] ≥ b, and if x̄ /∈ dom(τ), then
b = 0.

Corollary 3.14. If (σ, τ) ∈ JP1 ‖P2KΛ, then χx(Pi) = (0, 0) and χx(P) = (0, 0).

In certain cases, we can “read off” from P and Λ what certain values in a footstep should
be. We can show by induction on the derivation of (σ, τ) ∈ JP KΛ that:

Proposition 3.15. Let P ∈ Pom(ATSO), Λ ∈ Γ(P), (σ, τ) ∈ JP KΛ and let χx(P) = (g, b).

Let {ρ(i)}i=1..k be the minimal reads {x = v(i)}i=1..k from x under <P .

(1) If there exist i1, . . . , il, l ≥ 1, such that there are no writes to x or x̄ in
⋃l
j=1 ρ

(ij)↓Λ,

then x̄ ∈ dom(σ), there exists a v such that v = v(i1) = · · · = v(il), σ(x̄) = vn for some
n ≥ g, and σ(x) = v when n = 0.

(2) If there exists a maximal global write x := v to x under <Λ (it may be in P or not),
then τ(x) = v. Moreover, x ∈ dom(τ) if and only if there exists a global write to x in Λ.

(3) If there exists a maximal buffer write x̄ := v to x under <Λ, then τ(x̄) = vn for some
n ≥ b. Moreover, x̄ ∈ dom(τ) if and only if there exists a global write to x or a buffer
write to x̄ in P .

(4) If there exist no buffer writes x̄ := v and x̄ ∈ dom(τ), then where σ(x̄) = vn, we have
τ(x̄) = vm for some m.

As a corollary, we validate the intuition that the final state should be determined by the
total order imposed by Λ on the writes, where β is as in (3.1):

Corollary 3.16. For all P , Λ ∈ Γ(P), and (σ, τ) ∈ JP KΛ, we have τ�Loc = βΛ�Aw
.

3.4.3. Executions. Let JP KζΛ = {(σ, τ) ∈ JP KΛ | ζ(σ) ∧ ζ(τ)} be the subset of footsteps
with empty buffers. The set of TSO executions of a finite pomset P is given by the set

E(P) = {(σ, [σ | τ]) | Λ ∈ Lin(P), (σ′, τ) ∈ JP KζΛ, σ
′ ⊆ σ}; infinite pomsets are considered

in Section 3.6. These executions take all of the states σ containing a minimal fragment
σ′ required to execute P to that state updated with the effects τ of P . The set of TSO
executions for a program p is then E(p) =

⋃
P∈PTSO(p) E(P). We say that a finite pomset P

and a program p are TSO executable if E(P) and E(p) are non-empty, respectively.
We illustrate TSO pomset executions by validating the IRIW litmus test, i.e., by showing

that all writes appear in the same order to all threads. For example, starting from a state
initialized to zero, executing the program

x := 1 ‖ y := 1 ‖ (w1 := x;w2 := y) ‖ (z1 := y; z2 := x)

under TSO should never give a state consistent with [w1 : 1, w2 : 0, z1 : 1, z2 : 0]. To show
this, it is sufficient to show that the following pomset P is not executable:

x̄ := 1
��

ȳ := 1
��

x = 1
��

y = 1
��

x := 1 y := 1 y = 0 x = 0.

Consider some Λ ∈ Lin(P). Without loss of generality, assume x := 1 <Λ y := 1. To get an
execution, we must apply (Par), and eventually we will need to compute JP4KΛ4 where P4 is
y = 1→ x = 0 and Λ4 is such that x := 1 <Λ4 y := 1. To be able to execute y = 1 and still
get a footstep with an empty initial buffer, we need Λ4 to satisfy y := 1 < y = 1. But then

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:17

JP4KΛ4 = Jx := 1, y := 1K∗ / J{y = 1}K[y=1] / J{x = 0}K[x=0], and there are no footsteps in
Jx := 1, y := 1K∗ / J{y = 1}K[y=1] that can be combined with those in J{x = 0}K[x=0] to get
states with empty buffers. This means we cannot combine footsteps from P4 to get footsteps
for P using the (Par) rule, and so JP KΛ will be empty.

As discussed in the introduction, the Dekker mutual exclusion algorithm fails under
TSO. Indeed, the second pomset for Dekker on page 10 can be executed from an initial
state having both x and y set to zero. To do so, we take a Λ such that y = 0 <Λ y := 1
and x = 0 <Λ x := 1, and apply (Par) followed by (Seq).

In contrast, the Peterson algorithm successfully enforces mutual exclusion under TSO.
Consider the following instance of the Peterson algorithm:

(x := 1; if x = 2 then l := 1 else skip) ‖ (x := 2; if x = 1 then r := 1 else skip).

Starting from the initial state [x : 0, l : 0, r : 0], one cannot execute the above under TSO
and reach a state where both l and r are 1. In showing this, we can safely ignore all
pomsets where a read from x appears before the global write to x, because whenever we have
x̄ := v → x = v′ → x := v in a command’s TSO pomset, we must have v = v′. This implies
that if a thread reads x before it does the global write to x, it will take the skip branch of
the conditional. It is then sufficient to show that the following pomset is not executable:

x̄ := 1 // x := 1 // x = 2

x̄ := 2 // x := 2 // x = 1.

Consider some Λ ∈ Lin(P). Without loss of generality, assume x := 1 <Λ x := 2. To get an
execution, we must apply (Par) and derive a footstep for the bottom row P2 under some
Λ2 where x := 1 <Λ2 x := 2. To compute this footstep, we must repeatedly apply (Seq),
and will eventually reach the stage where JP2KΛ2 = {([x : 0] , [x : 2])} / Jx = 1K[x=1]. But
this footprint must be empty, because [x : 0 | x : 2] is not consistent with [x : 1]. We thus
cannot apply (Par) and we conclude that the pomset is not executable. It follows that the
Peterson algorithm enforces mutual exclusion under TSO.

3.5. Fences. We can extend the above semantics to deal with fences. This extension will
not be referenced in subsequent sections, and we mention it here merely to emphasize the
flexibility of our general development.

A fence constrains the reordering of memory actions. To capture fences, we first
introduce a command fence. Under TSO, fences cause all actions before the fence to be
observed before any actions after the fence. It is sufficient to flush the thread’s buffer to
ensure this, giving rise to the semantic clause PL(fence) = {(L; {δ}, [])}.

3.6. Infinite executions. Though we cannot capture the input-output behaviour of infinite
pomsets (such executions have no “final state”), we can describe their executions in terms
of executions of finite pomsets. We first characterize the “phased executions” describing
infinite executions. Then we describe when a phased execution is an execution of a given
infinite pomset.

The set PE(σ) ⊆ Pom(Σ × PTSO × Σ) of execution-from-σ pomsets is coinductively
defined by:

(1) if P is finite and (σ, τ) ∈ E(P), then {(σ, P, τ)} ∈ PE(σ); and
(2) if P is finite, (σ, τ) ∈ E(P), and E ∈ PE([σ | τ]), then {(σ, P, τ)};E ∈ PE(σ).

10:18 Ryan Kavanagh and Stephen Brookes Vol. 15:2

All pomsets in PE(σ) are linear, satisfy the finite-height property, and are series-parallel.
Given an E ∈ PE(σ), its underlying TSO pomset π2(E) is obtained by sequentially composing
its pomsets in the obvious manner. Explicitly, π2(E) = (

⋃
e∈E{e} × (π2 ◦ ΦE)(e), <,Φ),

where Φ(e, p) = ΦΦE(e)(p), and (e0, p0) < (e1, p1) if and only if e0 <E e1, or e0 = e1 and
p0 <Φ(e0) p1.

An execution pomset E is a phased execution of P ∈ PTSO if P = π2(E). Let
PE(P) =

⋃
σ∈Σ{E ∈ PE(σ) | π2(E) = P} be the set of execution pomsets of P .

This definition captures the “termination” axiom [SPA92, p. 283] that guarantees
fair executions. A pomset P satisfies this axiom if for all write actions w to x and all
infinite sequences r1 <P r2 <P r3 <P · · · of read actions from x, there exists a j such
that w <P rj . This axiom prohibits, e.g., the non-terminating execution of the program
y := 1 ‖while y = 0 do skip. For every E ∈ PE(σ), π2(E) satisfies the termination axiom.
Indeed, consider a write action w and an infinite sequence {ri}i∈N in π2(E). There exists an
e ∈ E such that w ∈ e. Because each of the pomsets in E is finite and E is linear, there
exists an e′ and an i such that e <E e

′ and ri ∈ e′. Then w <π2(E) ri by definition.

Proposition 3.17. We can characterize phased executions of pomsets P as follows:

(1) if P is finite, then every E in PE(P) is finite;
(2) if some E ∈ PE(P) is finite, then P is finite;
(3) if P is finite, (σ, τ) ∈ E(P), then (σ, P, τ) ∈ PE(P);
(4) if {(σ1, P1, τ2)}; · · · ; {(σn, Pn, τn)} ∈ PE(P) is finite, then P = P1; · · · ;Pn, σi+1 =

[σi | τi] for 1 ≤ i < n, and (σ1, [σ1 | τ1 | · · · | τn]) ∈ E(P).

4. Soundness and Completeness

We show that our denotational account of TSO in Section 3 is sound and complete relative
to the axiomatic account of Section 2. Soundness implies that we capture only behaviours
permitted by the axiomatic account; completeness implies that we capture all behaviours
permitted by the axiomatic account. Because all TSO-consistent orders are contained in
TSO-consistent total orders by Corollary 2.5 and can be obtained by weakening these, it is
sufficient to show that we capture all TSO-consistent total orders. We identify total orders
and lists.

4.1. Soundness. We call a function f : Pom(APO) → ℘(APO list) sound when for every
program p and finite pomset P ∈ PPO(p), if L ∈ f(P), then L is TSO-consistent with P .

We will construct such an f and show that it is sound in this subsection, and we will show
that it is complete in the next subsection. We begin by giving an important characterization
of pomsets for programs.

Lemma 4.1. For every program p and pomset P ∈ PTSO(p), there exists an order isomor-
phism ω : P �Ab

→ P �Aw
such that if ω(x̄ := v) = (y := w), then y = x and w = v, and such

that for all b ∈ P �Ab
, we have b <P ω(b).

For programs, this means that global writes appear after the corresponding write to
the buffer, that global writes occur in the same order as the writes to the buffer, and that
all writes to the buffer give rise to global writes. We call a series-parallel TSO pomset for
which such an ω exists for each of its SP components well-balanced ; these “patch together”
to form an ω for the entire pomset. Given a program p, all TSO pomsets in PTSO(p) are

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:19

well-balanced, and finite P ∈ PTSO(p) have a unique such ω. We assume in the rest of this
section that our TSO pomsets are well-balanced.

Consider the function U : Pom(ATSO)→ Pom(APO) that takes each TSO pomset to
its underlying program order. It does so by first deleting all global write actions, and then
relabelling all buffer write actions x̄ := v by corresponding global write actions x := v. We
identify all reads in P with the corresponding reads in U(P) and (x := v) = ω(x̄ := v) with
the write x := v below x̄ := v. We can imagine U and the identifications as being given in
the following diagram, where dashed arrows indicate identifications, solid arrows indicate
the pomset orders, and the λj are arbitrary read actions:

· · · // λi //

��

x̄ := v // λi+2
//

��

· · · // λk //

��

x := v //

��

λk+2
//

��

· · · P

U
��

· · · // λi // x := v // λi+2
// · · · // λk // λk+2

// · · · U(P)

By observing that the PO pomset clauses are essentially special cases of the TSO pomset
clauses, we have that for all programs p, U(PTSO(p)) ⊆ PPO(p). This inclusion is actually
an equality, because given any program order P for p, we can construct a TSO pomset P ′

such that U(P ′) = P by immediately flushing the buffer with split after every write, i.e., by
replacing all occurrences of x := v in P with x̄ := v → x := v to get P ′.

Let the set T (P) of TSO-consistent total orders of P ∈ Pom(ATSO) be given by

T (P) =
⋃

P ′∈U−1(P)

{Λ�APO
| Λ ∈ Lin(P ′) ∧ JP ′KζΛ 6= ∅}.

Informally, T (P) captures the linearisations of TSO pomsets in U−1(P) that give rise to
TSO executions of pomsets.

We will eventually show that T is sound. First, we prove a few technical lemmas that
will be useful in showing axiom (V) is satisfied. The first implies that (Va) is satisfied.

Lemma 4.2. Let P be a TSO pomset and Λ ∈ Γ(P) such that JP KζΛ 6= ∅. Let (x = v)r ∈ P
be a read action such that for all buffered write actions b <P (x = v)r, its corresponding
global write action ω(b) satisfies ω(b) <P (x = v)r. If there exists a write (x := v′)w maximal
under <Λ amongst all writes to x in (x = v)r↓Λ and all global writes to x in (x = v)r↓P are
in (x := v′)w↓Λ, then v′ = v.

Proof. By the remarks on page 13, it is sufficient to consider only linear pomsets P . Let
ΛL = r↓Λ \r, ΛR be such that Λ = ΛL; ΛR, L = P ∩ΛL, and R = P ∩ΛR. Let (g, b) = χx(P),

then by Lemma 3.13, we have g = b = 0. Consider some arbitrary footstep (σ, τ) ∈ JP KζΛ,
and let (σL, τL) ∈ JLKΛL

and (σR, τR) ∈ JRKΛR
be the footsteps combined by (Seq) to form

(σ, τ). Then because σL ⊆ σ and ζ(σ), we have ζ(σL). Because L has the same number
of buffer writes to x̄ as global writes to x, we have χx(L) = (0, 0) by Lemma 3.13 and
Proposition 3.10. So by Corollary 3.12, we get τL[x̄] = σ[x̄] = 0. By Proposition 3.9, we
then get τL(x) = v′, and also that σR(x) = v. Because [σL | τL] ⇑ σR by (Seq), we conclude
v′ = v.

The following lemma implies that (Vb) is satisfied.

Lemma 4.3. Let P be a TSO pomset and Λ ∈ Γ(P) such that JP KζΛ 6= ∅. Let (x = v)r ∈ P
be a read action such that there exists a buffered write action b′ <P (x = v)r writing to x.

10:20 Ryan Kavanagh and Stephen Brookes Vol. 15:2

Let (x̄ := v′)b be the maximal such b′ with regards to <P . If (x = v)r <P ω((x̄ := v′)b), then
v = v′.

Proof. It is again sufficient to consider only linear P . Let ΛL, ΛR, L, R, (σL, τL), and (σR, τR)
be as in the proof of Lemma 4.2. By Proposition 3.11, we have τL[x̄] = σL[x̄] + bx − gx,
where bx and gx are the number of buffer writes and global writes to x in L, respectively.
But σL[x̄] = σ[x̄] = 0, and well-balancedness and the last hypothesis imply bx > gx, so
τL[x̄] > 0 and τL(x̄) = v′m for some v and m > 0. But σR(x̄) = vn for some v and n as well.
Because [σL | τL] ⇑ σR by (Seq), we conclude v′ = v.

Theorem 4.4. The function T is sound.

Proof. Let p be an arbitrary program, and let P ′ ∈ PPO(p), P ∈ U−1(P ′), and Λ ∈ Lin(P)

be arbitrary such that there exists a (σ, τ) ∈ JP KζΛ. Let L = Λ�APO
. We check the six axioms

to show that L is TSO-consistent for U(P) = P ′ from σ.
Axiom (O). This is clearly satisfied, because U leaves reads untouched, and there is an

order isomorphism between global writes in P and global writes in U(P) by Lemma 4.1,
and linearisations preserve all elements.

Axiom (Va). Let (x = v)r ∈ U(P) be an arbitrary read, and assume we have some
write (x := v′)w maximal amongst all writes to x in (x = v)r↓L, and that all writes to x in
(x = v)r↓U(P ′) are in (x := v′)w↓L. That’s to say, assume the hypotheses to (Va) hold for

(x = v)r. We must show v = v′. Because all writes to x in (x = v)r↓U(P ′) are in (x := v′)w↓L,

this means all buffer writes to x in (x = v)r↓Λ are in (x := v′)w↓L. Because w appears in L,
it is a global write, and so all of the corresponding global writes for the buffer writes to x in
(x = v)r↓Λ are also in (x := v′)w↓L. Then we can apply Lemma 4.2 and conclude v = v′.

Axiom (Vb). Let (x = v)r ∈ U(P) be an arbitrary read. Assume there exists a write
(x := v′)w to x maximal under <P amongst all writes to x in (x = v)r↓U(P), but that

(x = v)r <L (x := v′)w. We must show that v′ = v. That (x := v′)w <U(P) (x = v)r implies
(x̄ := v′)w <P (x = v)r, and (x = v)r <L (x := v′)w implies (x = v)r <P ω((x̄ := v′)w). So
by Lemma 4.3, we have v′ = v.

Axiom (Vc). Let (x = v)r ∈ U(P) be an arbitrary read. If there exist no writes
(x := v′)w <U(P) (x = v)r in U(P), then there exist no buffered writes (x̄ := v′)w <P (x = v)r
in P , and so by Proposition 3.15, axiom (Vc) is satisfied.

Axiom (L). Consider some arbitrary read action r ∈ U(P) and action a such that
r <U(P) a. Because linearisation preserves order, it is sufficient to show that r <P a. If a is
also a read action, then U leaves a untouched, and so r <p a. If a is a write action, then
there exists a corresponding buffered write a′ in P such that r <P a′ and ω(a′) = a. By
Lemma 4.1, a′ < ω(a′), so r <P a by transitivity.

Axiom (S). Lemma 4.1 implies there exists an order isomorphism between P �Aw and
U(P)�Aw, so w <P w′ implies w <U(P) w

′. Linearisation preserves order, so w <U(P) w
′

implies w <Λ w
′. Because w and w′ are global writes, w <L w

′ as desired.
Axiom (F). Let α1, α2, α3 ∈ U(P) be arbitrary such that α1 <U(P) α3, α1 <U(P) α3,

and α2 ‖U(P) α3. If α1 is a write, then it is sufficient to observe that by the definition of

TSO pomsets for parallel compositions of expressions or commands, for any buffered write b
such that b <P α2 and b <P α3 for some α2 ‖P α3, we have ω(b) <P α2 and ω(b) <P α3.
For then α1 <L α2 and α1 < α3. If α1 is a read, then we are done by (L).

Axiom (J). Let α1, α2, α3 ∈ U(P) be arbitrary such that α1 <U(P) α3, α2 <U(P) α3,
and α1 ‖U(P) α2. If α1 and α2 are reads, then we are done by (L), so assume without loss

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:21

of generality that α1 is some write (x := v)w. Then α1 corresponds to some buffered write
(x̄ := v)w in P . By the dual observation to that in (F), we have that if b is a buffered write
such that for some a and c, a <P c and b <P a but a ‖P b, then ω(b) <P a. So we get
α1 <L α3 as desired. A symmetric argument applies when α2 is a write.

4.2. Completeness. We call a function f : Pom(APO)→ ℘(APO list) complete when for
every program p and finite pomset P ∈ PPO(p), if L ∈ APO list is TSO-consistent with P ,
then L ∈ f(P).

Our goal is to show that T is complete. To do so, we first construct a pomset s(P,L) ∈
U−1(P) for any P ∈ Pom(APO) and total order L that is TSO-consistent with P . Let
the underlying set s(P,L) be given by {0} × P ∪ {1} × P �Aw

. Let Φs(P,L) be given by
Φs(P,L)((i, p)) = (x̄ := v) if both i = 0 and ΦP (p) = (x := v), and Φs(P,L)((i, p)) = ΦP (p)
otherwise. Intuitively, <s(P,L) merges the global writes into the program order in the places
specified by L. Let <s(P,L) be the least strict partial order generated by the following
collection of inequalities: (i) (0, p) <s(P,L) (0, p′) if p <P p′; (ii) (1, w) <s(P,L) (1, w′) if
w ≤≥P w′ and w <L w

′; (iii) (0, w) <s(P,L) (1, w) if w ∈ P �Aw
; (iv) (0, p) <s(P,L) (1, w) if

p ≤≥P w and p <L w; and (v) (1, w) <s(P,L) (0, p) if w ≤≥P p and w <L p. We identify
the program order actions in P with their corresponding instances in s(P,L), that is, we
identify all read actions r of P with (0, r) in s(P,L), and all global write actions w of P
with the global write action (1, w) in s(P,L). We leverage this identification below to lift L
from P to s(P,L).

The proof of completeness can be broken down into three lemmas as follows:

Lemma 4.5. If p is a program, P ∈ PPO(p), and L is TSO-consistent with P , then
s(P,L) ∈ PTSO(p) and U(s(P,L)) = P .

Lemma 4.6. If P ∈ Pom(APO) and L is TSO-consistent with P , there exists a Λ ∈
Lin(s(P,L)) such that Λ�APO

= L.

Lemma 4.7. If p is a program, P ∈ PTSO(p), L0 ∈ Ls, L is TSO-consistent with U(P) ‖L0,

Λ ∈ Lin(P ‖L0), and Λ�APO
= L, then JP KζΛ 6= ∅.

The presence of L0 in the statement of Lemma 4.7 lets us use an induction hypothesis in
the case where P is a parallel composition of pomsets, because when we want to apply the
induction hypothesis to one of the pomsets, we need to be able to reference the global writes
in the other pomset.

Theorem 4.8. The function T is complete.

Proof. Given a program p, a P ∈ PPO(P) and an L that is TSO-consistent with P , we have
by Lemma 4.5 that s(P,L) ∈ U−1(P). By Lemma 4.6, we have a Λ ∈ Lin(s(P,L)) such that

Λ�APO
= L. By Lemma 4.7 with L0 = [], Js(P,L)KζΛ 6= ∅. So L ∈ T (P), and we conclude

completeness.

10:22 Ryan Kavanagh and Stephen Brookes Vol. 15:2

5. Related Work

Other approaches to semantics for weak memory models mostly use execution graphs and
operational semantics. Execution graphs [BOS+11, BA08] serve to describe the executional
behaviour of an entire program, an inherently non-modular approach. We see our denotational
framework as offering an alternative basis for program analysis, compositional and modular
by design. Boudol and Petri [BP09] gave an operational semantics framework for weak
memory models that uses buffered states. Jagadeesan et al. [JPR12] adapted a fully abstract,
trace-based semantics by Brookes [Bro96] to give a fully abstract denotational semantics for
TSO. Higham and Kawash [HK00] gave an axiomatic semantics for TSO using linearizations.
They showed their semantics to be equivalent to an abstract machine with buffers based on
the informal description in [SPA92]. Their account does not consider forking and joining
of processes. Demange et al. [DLZ+13] proposed a tractable memory model consistent
with the Java Memory Model. They give an operational semantics using buffers and an
axiomatic account and show the two to be equivalent. Sewell et al. [SSO+10] gave a TSO-like
memory model for x86, formalized in HOL4. Alglave et al. [AMT14] gave a generic axiomatic
framework for describing weak memory models and showed how to specialize it to various
memory models. Jeffrey and Riely [JR19] give a denotational account of relaxed memory
models using event structures.

Pratt [Pra86] was the first to generalize from traces to pomsets in the study of concurrency.
He introduced the parallel composition operations we presented in Section 3 and he used
pomsets in the study of concurrent processes. Building on Pratt’s work, Brookes [Bro15,
Bro16a, Bro16b] introduced a pomset framework to study weak memory. This framework
used Pratt’s parallel composition operator, and its sequential composition is a variant of
Pratt’s concatenation operation. The TSO semantics given above builds on Brookes’s
work. The key technical differences involve adapting pomset semantics to incorporate
state equipped with abstract buffers, with careful accounting to deal properly with order
relaxations allowed by TSO. Our formal axiomatization of SPARC TSO, including full
treatment of forks and joins, is a crucial part of the set-up, allowing us to be precise about
the relationship between our abstract denotational semantics and the more concrete and
informal characterization of TSO that appears in the manual.

6. Conclusion

Our denotational semantics accurately captures the behaviours of SPARC TSO, and its
compositionality enables us reason modularly about programs. The main strength of the
pomset approach is its conceptual simplicity. Unlike trace semantics, which include irrelevant
orderings of actions, our pomset semantics specifies only relevant orderings of actions. Its
simplicity also makes it readily adaptable to other memory models. For example, to capture
SPARC PSO, which relaxes TSO to provide only per-location global orders on writes, we
conjecture that it is sufficient to replace the single buffer parameter L in the BL semantic
clauses with families {Lx}x∈Loc of buffers, and to then modify the buffer flushing clauses
in the obvious manner and to handle store barrier “stbar” commands. Memory models
provided by modern processors are often much weaker than TSO and PSO. To model these,
we conjecture that it is sufficient to specify the correct set of actions, and to modify the
semantic clauses generating pomsets and footsteps accordingly. We believe pomset semantics
provide fertile ground for future research in semantics for weak memory models.

Vol. 15:2 A DENOTATIONAL SEMANTICS FOR SPARC TSO 10:23

Acknowledgements

This paper is an extended version of one [KB18] presented at MFPS XXXIII. The authors
gratefully acknowledge feedback from anonymous reviewers and from André Platzer.

References

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation, testing,
and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, July 2014.

[BA08] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory model. In Proceed-
ings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’08, pages 68–78, New York, NY, USA, 2008. ACM.

[BOS+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing C++
concurrency. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’11, pages 55–66, New York, NY, USA, 2011. ACM.

[BP09] Gérard Boudol and Gustavo Petri. Relaxed memory models: An operational approach. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’09, pages 392–403, New York, NY, USA, 2009. ACM.

[Bro96] Stephen Brookes. Full abstraction for a shared variable parallel language. Information and Compu-
tation, 127:145–163, 1996.

[Bro15] Stephen Brookes. Partial order semantics and weak memory. Invited talk, Domains XII, Boole
Symposium, University of Cork, August 2015.

[Bro16a] Stephen Brookes. A denotational semantics for weak memory concurrency. Invited talk, Mathematical
Foundations of Computer Science, May 2016.

[Bro16b] Stephen Brookes. A denotational semantics for weak memory concurrency. Midlands Graduate
School in the Foundations of Computing Science, April 2016.

[DLZ+13] Delphine Demange, Vincent Laporte, Lei Zhao, Suresh Jagannathan, David Pichardie, and
Jan Vitek. Plan B: A buffered memory model for Java. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, pages 329–342,
New York, NY, USA, 2013. ACM.

[HK00] Lisa Higham and Jalal Kawash. Memory consistency and process coordination for SPARC multipro-
cessors. In Proceedings of the 7th International Conference on High Performance Computing, HiPC
’00, pages 355–366, London, UK, UK, 2000. Springer-Verlag.

[JPR12] Radha Jagadeesan, Gustavo Petri, and James Riely. Brookes is relaxed, almost! In Proceedings of
the 15th International Conference on Foundations of Software Science and Computational Structures,
FOSSACS’12, pages 180–194, Berlin, Heidelberg, 2012. Springer-Verlag.

[JR19] Alan Jeffrey and James Riely. On Thin Air Reads: Towards an Event Structures Model of Relaxed
Memory. Logical Methods in Computer Science, 15(1), March 2019.

[KB18] Ryan Kavanagh and Stephen Brookes. A denotational semantics for SPARC TSO. Electronic Notes in
Theoretical Computer Science, 336:223–239, 2018. The Thirty-third Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXIII).

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, July 1978.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

[Pra86] Vaughan Pratt. Modeling concurrency with partial orders. Int. J. Parallel Program., 15(1):33–71,
February 1986.

[SPA92] SPARC International Inc. The SPARC Architecture Manual. Menlo Park, CA, USA, 1992. version
8, revision SAV080SI9308.

[SSO+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
X86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM,
53(7):89–97, July 2010.

	1. Introduction
	2. An Axiomatic Account
	2.1. Program Order Pomsets
	2.2. TSO Axioms

	3. A Denotational Account
	3.1. A Simple Imperative Language
	3.2. PO Pomsets
	3.3. TSO Pomsets
	3.4. Executions
	3.5. Fences
	3.6. Infinite executions

	4. Soundness and Completeness
	4.1. Soundness
	4.2. Completeness

	5. Related Work
	6. Conclusion
	Acknowledgements
	References

