
Logical Methods in Computer Science
Volume 15, Issue 3, 2019, pp. 1:1–1:47
https://lmcs.episciences.org/

Submitted Dec. 29, 2017
Published Jul. 04, 2019

GUARDED AND UNGUARDED ITERATION

FOR GENERALIZED PROCESSES

SERGEY GONCHAROV a, LUTZ SCHRÖDER b, CHRISTOPH RAUCH c, AND MACIEJ PIRÓG d

a,b,c Friedrich-Alexander-Universität Erlangen-Nürnberg
e-mail address: {sergey.goncharov,lutz.schroeder,christoph.rauch}@fau.de

d Uniwersytet Wroc lawski
e-mail address: maciej.pirog@cs.uni.wroc.pl

Abstract. Models of iterated computation, such as (completely) iterative monads, often
depend on a notion of guardedness, which guarantees unique solvability of recursive
equations and requires roughly that recursive calls happen only under certain guarding
operations. On the other hand, many models of iteration do admit unguarded iteration.
Solutions are then no longer unique, and in general not even determined as least or greatest
fixpoints, being instead governed by quasi-equational axioms. Monads that support
unguarded iteration in this sense are called (complete) Elgot monads. Here, we propose
to equip (Kleisli categories of) monads with an abstract notion of guardedness and then
require solvability of abstractly guarded recursive equations; examples of such abstractly
guarded pre-iterative monads include both iterative monads and Elgot monads, the latter
by deeming any recursive definition to be abstractly guarded. Our main result is then
that Elgot monads are precisely the iteration-congruent retracts of abstractly guarded
iterative monads, the latter being defined as admitting unique solutions of abstractly
guarded recursive equations; in other words, models of unguarded iteration come about by
quotienting models of guarded iteration.

1. Introduction

In recursion theory, notions of guardedness traditionally play a central role. Guardedness
typically means that recursive calls must be in the scope of certain guarding operations,
a condition aimed, among other things, at ensuring progress. The paradigmatic case are
recursive definitions in process algebra, which are usually called guarded if recursive calls
occur only under action prefixing [5]. A more abstract example are completely iterative
theories [11] and monads [23], where, in the latter setting, a recursive definition is guarded

Key words and phrases: Monads, iteration, guarded fixpoints, side-effects.
Research supported by the DFG project A High Level Language for Monad-based Processes (GO 2161/1-2,

SCHR 1118/8-2).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:1)2019
c© Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

1:2 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

if it factors through a given ideal of the monad. Guarded recursive definitions typically have
unique solutions; e.g. the unique solution of the guarded recursive definition

x “ a. x

is the process that keeps performing the action a.
For unguarded recursive definitions, the picture is, of course, different. For example,

to obtain the denotational semantics of an unproductive while loop while true do skip
characterized by circular operational behavior

while true do skip Ñ skip;while true do skip Ñ while true do skip

one will select one of many solutions of this trivial equation, e.g. the least solution in a
domain-theoretic semantics.

Sometimes, however, one has a selection among non-unique solutions of unguarded
recursive equations that is not determined order-theoretically, i.e. by picking least or greatest
fixpoints. One example arises from coinductive resumptions [16, 31, 30]. In the paradigm of
monad-based encapsulation of side-effects [26], coinductive resumptions over a base effect
encapsulated by a monad T form a monad T ν , the coinductive resumption transform, given by

T νX “ νγ. T pX ` γq (1.1)

– that is, a computation over X performs a step with effects from T , and then returns either a
value from X or a resumption that, when resumed, proceeds similarly, possibly ad infinitum.
We thus can view coinductive resumptions as processes whose atomic steps are programs
over T . We generally restrict to monads T for which (1.1) exists for all X (although many
of our results do not depend on this assumption). Functors (or monads) T for which this
holds are called iteratable [1]. Most computationally relevant monads are iteratable (notable
exceptions in the category of sets are the powerset monad and the continuation monad).
The last occurrence of γ in (1.1) may be seen as being wrapped in an implicit unary delay
operation that represents the gap between returning a resumption and resuming it. One
thus has a natural delay map T νX Ñ T νX that converts a computation into a resumption,
i.e. prefixes it with a delay step. In fact, for T “ id, T ν is precisely Capretta’s partiality
monad [7], also called the delay monad. It is not in general possible to equip T νX with
an ordered domain structure that would allow for selecting least (or greatest) solutions of
unguarded recursive definitions over T ν . However, one can select solutions in a coherent
way, that is, such that a range of natural quasi-equational axioms is satisfied, making T ν

into a (complete) Elgot monad [2, 18] whenever T is so.
More precisely, we closely follow the perspective advanced by Bloom and Esik [6, 13],

who identify as iteration operators certain categorical operators with the profile pf : X Ñ

Y `Xq ÞÑ pf : : X Ñ Y q (which are categorical duals of parametrized recursion operators
pf : Y ˆ X Ñ Xq ÞÑ pf: : Y Ñ Xq [32]). The above-mentioned Elgot monads support
iteration operators in this sense, specifically as operators on their Kleisli categories (with
coproduct ` inherited from the base category). We place total (unguarded) iteration and
partial (guarded) iteration on the same footing and thus aim to unify the theories of guarded
and unguarded iteration. To this end, we introduce a notion of abstractly guarded monads,
that is, monads equipped with a distinguished class of abstractly guarded equation morphisms
satisfying natural closure properties (Section 3). The notion of abstract guardedness can
be instantiated in various ways, e.g. with the class of immediately terminating ‘recursive’
definitions, with the class of guarded morphisms in a completely iterative monad, or with
the class of all equation morphisms. We call an abstractly guarded monad pre-iterative if all

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:3

abstractly guarded equation morphisms have a solution, and iterative if these solutions are
unique. Then completely iterative monads are iterative abstractly guarded in this sense,
and (complete) Elgot monads are pre-iterative, where we deem every equation morphism to
be abstractly guarded in the latter case.

The quasi-equational axioms of Elgot monads are easily seen to be satisfied when
fixpoints are unique, i.e. in iterative abstractly guarded monads, and moreover stable under
iteration-congruent retractions in a fairly obvious sense. Our first main result (Section 5,
Theorem 5.7) states that the converse holds as well, i.e. a monad T is a complete Elgot
monad iff T is an iteration-congruent retract of an iterative abstractly guarded monad –
specifically of T ν as in (1.1). As a slogan,

monad-based models of unguarded iteration arise by quotienting models of
guarded iteration.

Our second main result (Theorem 5.15) is an algebraic characterization of complete Elgot
monads: We show that the construction p´qν mapping a monad T to T ν as in (1.1) is a
monad on the category of monads (modulo existence of T ν), and complete Elgot monads
are precisely those p´qν-algebras T that cancel the delay map on T ν , i.e. interpret the delay
operation as identity.

As an illustration of these results we discuss various semantic domains of processes
equipped with canonical solutions of systems of process definitions under various notions
of guardedness (Example 4.5) and show how these domains can be related via iteration-
preserving morphisms implementing a suitable coarsening of the underlying equivalence
relation, e.g. from bisimilarity to finite trace equivalence (Example 5.8). Moreover, we show
(Section 6) that sandwiching a complete Elgot monad between a pair of adjoint functors
again yields a complete Elgot monad, in analogy to a corresponding result for completely
iterative monads [31]. Specifically, we prove a sandwich theorem for iterative abstractly
guarded monads and transfer it to complete Elgot monads using our first main result. For
illustration, we then relate iteration in ultrametric spaces using Escardó’s metric lifting
monad [12] to iteration in pointed cpo’s, by noting that the corresponding monads on sets
obtained using our sandwich theorems are related by an iteration-congruent retraction in
the sense of our first main result.

The material is organized as follows. We discuss preliminaries on monads and their
Kleisli categories and on coalgebras in Section 2. Our notion of abstractly guarded monad,
derived from a notion of guarded co-Cartesian category, is presented in Section 3, and
extended to parametrized monads in the sense of Uustalu [35] in Section 4. We prove our
main results on the relationship between Elgot monads and guarded iteration as discussed
above in Section 5, and present the mentioned application to sandwiching in Section 6.
We discuss related work in Section 7; Section 8 concludes. The present paper extends an
earlier conference version [19] by full proofs and additional example material, mostly within
Examples 4.5 and 5.8.

2. Preliminaries

We work in a category C with finite coproducts (including an initial object ∅) throughout. A
pair σ “ 〈σ1 : Y1 Ñ X, σ2 : Y2 Ñ X〉 of morphisms is a summand of X, denoted σ : Y1 X,
if it forms a coproduct cospan, i.e. X is a coproduct of Y1 and Y2 with σ1 and σ2 as
coproduct injections. Each summand σ “ 〈σ1, σ2〉 thus determines a complement summand
σ̄ “ 〈σ2, σ1〉 : Y2 X. We often shorten a summand 〈σ1, σ2〉 to its first component σ1,

1:4 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

in order to use σ as a morphism Y1 Ñ X. Summands of a given object X are naturally
preordered by taking 〈σ1, σ2〉 to be smaller than 〈θ1, θ2〉 if σ1 factors through θ1 and θ2

factors through σ2. This preorder has a greatest element 〈idX , !〉 and a least element 〈!, idX〉.
By writing X`Y we designate the latter as a coproduct of X and Y and assign the canonical
names in1 : X X `Y and in2 : Y X `Y to the corresponding summands. Dually, we
write pr1 : X ˆ Y Ñ X and pr2 : X ˆ Y Ñ Y for canonical projections (without introducing
a special arrow notation). We do not assume that C is extensive [8], in which case coproduct
complements would be uniquely determined.

A monad T over C can be given in the form of a Kleisli triple pT, η, --‹q where T is an
endomap over the objects |C| of C, the unit η is a family of morphisms pηX : X Ñ TXqXP|C|,
Kleisli lifting p--q‹ is a family of maps : HompX,TY q Ñ HompTX, TY q, and the monad laws
are satisfied:

η‹ “ id, f‹ η “ f, pf‹ gq‹ “ f‹ g‹.

These laws precisely ensure that taking morphisms of the form X Ñ TY under f‹g as the
composition and η as identities yields a category, which is also called the Kleisli category
of T, and denoted CT. The standard (equivalent) categorical definition [22] of T as an
endofunctor with natural transformation unit η : Id Ñ T and multiplication µ : TT Ñ T
can be recovered by taking Tf “ pη fq‹, µ “ id‹. (We adopt the convention that monads
and their functor parts are denoted by the same letter, with the former in blackboard bold.)
We call morphisms X Ñ TY Kleisli morphisms and view them as a high level abstraction of
sequential programs where T encapsulates the underlying computational effect as proposed
by Moggi [27], with X representing the input type and Y the output type. The Kleisli
category inherits coproducts from C, i.e. a coproduct X ` Y of objects X, Y in C remains
a coproduct in CT, with coproduct injections η in1 and η in2.

A more traditional use of monads in semantics is due to Lawvere [21], who identified
finitary monads on Set with algebraic theories, hence objects TX can be viewed as sets
of terms of the theory over free variables from X, the unit as the operation of casting a
variable to a term, and Kleisli composition as substitution. We informally refer to this
use of monads as algebraic monads. Regardless of this informal convention, for every
monad T we have an associated category of (Eilenberg-Moore-)algebras CT whose objects
are pairs pA, a : TA Ñ Aq satisfying a η “ id and µ pTaq “ a pTaq and whose morphisms
from pA, a : TAÑ Aq to pB, b : TB Ñ Bq are maps f : AÑ B such that f a “ b pTfq.

Given an adjunction F % G : D Ñ C, we obtain a monad whose functor part is
the composite Gf : C Ñ C, and both the Eilenberg-Moore construction and the Kleisli
construction show that every monad has this form. In consequence, we can sandwich a
monad T on D between an adjunction F % G : D Ñ C, obtaining a monad on C with
functor part GTF .

A(n F -)coalgebra for an endofunctor f : C Ñ C is a pair pX, f : X Ñ FXq where
X P |C|. Coalgebras form a category, with morphisms pX, fq Ñ pY, gq being C-morphisms
h : X Ñ Y such that pFhqf “ g h. A final object of this category is called a final coalgebra,
and we denote it by

pνF, out : νF Ñ FνF q

if it exists. For readability,

we will often be cavalier about existence of final coalgebras and silently assume
they exist when we need them;

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:5

that is, we hide sanity conditions on the involved functors, such as accessibility (we make
an exception to this in parts of Section 5 where we characterize Elgot monads as certain
Eilenberg-Moore algebras for a monad on the category of monads). By definition, νF comes
with coiteration as a definition principle (dual to the iteration principle for algebras): given
a coalgebra pX, f : X Ñ FXq there is a unique morphism pcoit fq : X Ñ νF such that

out pcoit fq “ F pcoit fq f.

This implies that out is an isomorphism (Lambek’s lemma) and that coit out “ id (see [36]
for more details about coalgebras for coiteration). The category of F -algebras, F -algebra
morphisms and the notion of initial F -algebra pµF, in : FµF Ñ µF q are obtained in a
completely dual way. The characteristic properties of final coalgebras and initial algebras
can be summarized in the following diagrams:

FµF FX

µF X

in

F piter fq

f

iter f

X νF

FX FνF

f

coit f

out

F pcoit fq

Note that F -algebras should not be confused with Eilenberg-Moore algebras of monads (as
we indicated above, those satisfy additional laws).

We generally drop sub- and superscripts, e.g. on natural transformations, whenever this
improves readability.

3. Abstractly Guarded Categories and Monads

The notion of guardedness is paramount in process algebra: typically one considers systems
of mutually recursive process definitions of the form xi “ ti, and a variable xi is said
to be guarded in tj if it occurs in tj only in subterms of the form a. s where a. p--q is
action prefixing. A standard categorical approach is to replace the set of terms over
variables X by an object TX where T is a monad. We then can model separate variables by
partitioning X into a sum X1 ` . . .`Xn and thus talk about guardedness of a morphism
f : X Ñ T pX1 ` . . .`Xnq in any Xi, meaning that every variable from Xi is guarded in f .
One way to capture guardedness categorically is to identify the operations of T that serve
as guards by distinguishing a suitable subobject of TX; e.g. the definition of completely
iterative monad [23] follows this approach. For our purposes, we require a yet more general
notion where we just distinguish some Kleisli morphisms as being guarded in certain output
variables. We thus aim to work in a Kleisli category of a monad, but since our formalization
and initial results can already be stated in any co-Cartesian category, we phrase them at
this level of generality as long as possible.

Definition 3.1 (Abstractly guarded category/monad). A co-Cartesian category C is ab-
stractly guarded if it is equipped with a notion of abstract guardedness, i.e. with a relation
between morphisms f : X Ñ Y and summands σ : Y 1 Y closed under the rules in Figure 1
where f : X Ñσ Y denotes the fact that f and σ are in the relation in question.

A monad is abstractly guarded if its Kleisli category is abstractly guarded. A monad
morphism α : T Ñ S between abstractly guarded monads T, S is abstractly guarded if
f : X Ñσ TY implies αf : X Ñσ SY .

1:6 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

(trv)
f : X Ñ Y

in1 f : X Ñin2 Y ` Z
(par)

f : X Ñσ Z g : Y Ñσ Z

rf, gs : X ` Y Ñσ Z

(cmp)
f : X Ñin2 Y ` Z g : Y Ñσ V h : Z Ñ V

rg, hs f : X Ñσ V

Figure 1. Axioms of abstract guardedness.

The rules in Figure 1 are designed so as to enable a reformulation of the classical laws
of iteration w.r.t. abstract guardedness, as we shall see in Section 5. Intuitively, (trv)
states that if a program does not output anything via a summand of the output type then
it is guarded in that summand. Rule (par) states that putting two guarded equation
systems side by side again produces a guarded system. Finally, rule (cmp) states that
guardedness is preserved under composition: if the unguarded part of the output of a program
is postcomposed with a σ-guarded program, then the result is σ-guarded, no matter how
the guarded part is transformed. That is, guardedness, once introduced, cannot be “undone”
through sequential composition, but it can be “forgotten”, as the following weakening rule
indicates:

(wkn)
f : X Ñσ Y

f : X Ñσθ Y
,

where σ and θ are composable summands. This rule was originally part of our axiomatiza-
tion [19] but it was later observed to be derivable from the other three [17]:

Proposition 3.2. Rule (wkn) is derivable in the calculus of Figure 1.

Proof. Let σ̄ : Z Ñ Y be the complement of σ, thus Y “ Z ` Y 1, σ “ in2 and σ̄ “ in1.
Analogously we present Y 1 as Z 1 ` Y 2 with θ “ in2. In summary, Y is a coproduct of Z, Z 1

and Y 2, f : X Ñin2 Z ` pZ
1 ` Y 2q, and we need to show that f : X Ñin2 in2 Z ` pZ

1 ` Y 2q.
Since f “ rin1, in2s f , by (cmp) we are left to check that in1 : Z Ñin2 in2 Z ` pZ

1 ` Y 2q.
Now Z ` pZ 1 ` Y 2q is also a coproduct of Z ` Z 1 and Y 2, with evident injections; so
in1 : Z Ñin2 in2 Z ` pZ

1 ` Y 2q is equivalent to in1 in1 : Z Ñin2 pZ ` Z 1q ` Y 2, which is an
instance of (trv).

Rule (wkn) is a weakening principle: If a program is guarded in some summand then
it is guarded in any subsummand of that summand. Analogously, we obtain stability of
guardedness under isomorphisms:

Proposition 3.3. The rule

(iso)
f : X Ñσ Y h : Y – Z

hf : X Ñhσ Z
,

is derivable in the calculus of Figure 1.

Proof. Let σ̄ : W Ñ Y be the complement of σ, thus Y “W `Y 1, σ “ in2 and σ̄ “ in1. Now,
Z is a coproduct of W and and Y 1 with h in1 : W Ñ Z and h in2 : Y 1 Ñ Z as the coproduct
injections, and h is the copair of h in1 and h in2 w.r.t. this coproduct structure. The rule in
question now follows from (cmp), using the fact that by (trv), h in1 is h in2-guarded.

We write f : X Ñi1,...,ik X1 ` . . . ` Xn as a shorthand for f : X Ñσ X1 ` . . . ` Xn with
σ “ rini1 , . . . , iniks : Xi1 ` . . .`Xik X1 ` . . .`Xn. More generally, we sometimes need

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:7

to refer to components of some Xij . This amounts to replacing the corresponding ij with
a sequence of pairs ijnj,m, and inij with inij rinnj,1 , . . . , innj,kj s, so, e.g. we write f : X Ñ12,2

pY ` Zq ` Z to mean that f is rin1 in2, in2s-guarded. Where coproducts Y ` Z etc. appear
in the rules, we mean any coproduct, not just some selected coproduct.

Recall that we have defined the notion of guardedness as a certain relation between
morphisms and summands. Clearly, the greatest such relation is the one declaring all
morphisms to be σ-guarded for all σ. We call categories (or monads) equipped with this
notion of guardedness totally guarded. It turns out we also always have a least guardedness
relation (originally called trivial [19]):

Definition 3.4 (Vacuous guardedness). A morphism f : X Ñ Y is vacuously σ-guarded for
σ : Z Y if f factors through the coproduct complement σ̄ of σ.

Intuitively, f is vacuously guarded in σ : Z Y if f does not output anything via the
summand Z; observe that by the (trv) rule, vacuous guardedness always implies guardedness.
Formally, we have:

Proposition 3.5. By taking the abstractly guarded morphisms to be the vacuously guarded
morphisms, we obtain the least guardedness relation making the given category into a guarded
category.

Proof. As indicated above, it is immediate from (trv) that every vacuously guarded mor-
phism is guarded under any guardedness relation making the category into a guarded
category. It remains to show that vacuous guardedness is closed under the rules in Figure 1;
in the following we write f : X Ñσ Y to mean that f is vacuously σ-guarded.

‚ (trv): Immediate from the definition of vacuous guardedness.
‚ (cmp): Suppose f : X Ñ2 Y ` Z, i.e. f “ in1 w for some w in1 : X Ñ Y . Now,

for g : Y Ñσ V and h : Z Ñ V , rg, hs f “ g w. Let σ̄ : W V be the complement of
σ : V 1 V . By assumption, g factors through σ̄, i.e. w “ σ̄ u for some u. Therefore
rg, hs f “ σ̄ uw, which by definition means that rg, hs f is vacuously σ-guarded.

‚ (par): Suppose that f : X Ñσ Z and g : Y Ñσ Z, i.e. f “ σ̄ f 1 and g “ σ̄ g1 for some
f 1 : X Ñ Z 1 and g1 : Y Ñ Z 1 where σ : Z 1 Z and σ̄ is the coproduct complement of σ.
Then, of course, rf, gs “ σ̄ rf 1, g1s, i.e. rf, gs : X ` Y Ñσ Z.

We call a guarded category (or monad) vacuously guarded if its notion of abstract guardedness
is given by vacuous guardedness. We note briefly how vacuous guardedness instantiates to
Kleisli categories:

Lemma 3.6. Let T be a monad on a category C. A morphism f : X Ñ T pY ` Zq is
vacuously in2-guarded iff f factors through T in1 in C.

Proof. Immediate from the fact that the left injection into the coproduct Y `Z in the Kleisli
category of T is η in1, and pη in1q

‹ “ T in1.

The notion of abstract guardedness can thus vary on a large spectrum from vacuous guarded-
ness to total guardedness, possibly detaching it from the initial intuition on guardedness. It
is for this reason that we introduced the qualifier abstract into the terminology; for brevity,
we will omit this qualifier in the sequel in contexts where no confusion is likely, speaking
only of guarded monads, guarded morphisms etc.

Remark 3.7. One subtle feature of our axiomatization is that it allows for seemingly coun-
terintuitive situations when a morphism is individually guarded in two disjoint summands,

1:8 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

but not in their union. This can be illustrated by the following example. Let T be the
algebraic monad induced by the theory of abelian groups presented, in additive notation, by
binary ´ alone. In this presentation, the zero element is presented by terms of the form
x´x; the theory thus differs slightly from the more standard presentation in that there is no
zero element in the absence of variables, i.e. T∅ “ ∅. We equip T with vacuous guardedness.
Now let z : 1 Ñ T ptxu ` tyuq be the map that picks out the zero element. This morphism is
both in1-guarded and in2-guarded, i.e. it factors both through T in2 and through T in1, since
we can write the zero element both as y ´ y and as x´ x. However, z fails to be id-guarded,
because it does not factor through T∅ “ ∅.

Note that, conversely, collective guardedness does always imply individual guardedness,
for by (wkn), f : X Ñ1,2 Y ` Z implies both f : X Ñ1 Y ` Z and f : X Ñ2 Y ` Z.

As usual, guardedness serves to identify systems of equations that admit solutions according
to some global principle:

Definition 3.8 (Guarded (pre-)iterative category/monad). Given f : X Ñ2 Y `X, we say
that f : : X Ñ Y is a solution of f if f : satisfies the fixpoint identity f : “ rid, f :s f . A
guarded category is guarded pre-iterative if it is equipped with an iteration operator that
assigns to every in2-guarded morphism f : X Ñ2 Y `X a solution f : of f . If every such f
has a unique solution, we call the category guarded iterative.

A guarded monad is guarded (pre-)iterative if its Kleisli category is guarded (pre-)iter-
ative. A guarded monad morphism α : T Ñ S between guarded pre-iterative monads T,S is
iteration-preserving if αf : “ pαfq: for every f : X Ñ2 T pY `Xq.

We can readily check that the iteration operator preserves guardedness:

Proposition 3.9. Let C be a guarded pre-iterative category, let σ : Z Y , and let
f : X Ñσ`id Y `X. Then f : : X Ñσ Y .

Proof. Let σ̄ : Z 1 Ñ Y be the complement of σ : Z Ñ Y , so we proceed under the assumption
that Y “ Z 1 ` Z, σ “ in2 and σ̄ “ in1. Then

f : “ rid, f :sf “ rrin1, in2s, f
:s f “ rin1, rin2, f

:ss rrin1, in2 in1s, in2 in2s f.

By assumption, f : X Ñin2`id pZ
1 ` Zq ` X. The morphism h “ rrin1, in2 in1s, in2 in2s

is simply an associativity isomorphism, for which h pin2`idq “ in2, hence by (iso),
rrin1, in2 in1s, in2 in2s f : X Ñ2 Z 1 ` pZ ` Xq. Since by (trv), in1 is in2-guarded, we are
done by (cmp).

We note that for guarded morphisms into guarded iterative monads, preservation of iteration
is automatic:

Lemma 3.10. Let α : T Ñ S be a guarded morphism between guarded pre-iterative monads T,
S with S being guarded iterative. Then α is iteration-preserving.

Proof. Indeed, given f : X Ñ2 T pY `Xq,

αf : “ α rη, f :s‹f // fixpoint identity for f :

“ rη, αf :s‹αf // monad morphism

but this equation has pαfq: as its unique solution, hence pαfq: “ αf :.

In vacuously guarded categories, there is effectively nothing to iterate, so we have

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:9

Proposition 3.11. Every vacuously guarded category is guarded iterative.

Proof. Let f : X Ñ2 Y `X, which by assumption means that f “ in1 g for some g. Then
for any f : satisfying f : “ rid, f :s f , we have f : “ rid, f :s f “ rid, f :s in1 g “ g, which proves
uniquenes of solutions. Moreover, rid, gsf “ rid, gs in1 g “ g, which shows existence.

We now revisit our motivating considerations on process algebra from the beginning of this
section.

Example 3.12 (Generalized processes). A natural semantic domain for finitely branching
possibly infinite processes under strong bisimilarity with final results in X and atomic actions
in A is the final coalgebra νγ.PωpX`Aˆγq in the category of sets and functions, where Pω
is the finite powerset monad. Alternatively, we can view inhabitants of this domain as
equivalence classes of possibly non-well-founded terms over variables from X, which can
also be thought of as process names, and over the operations ` of non-deterministic choice,
deadlock ∅ and action prefixing a. p--q. The latter view is useful for syntactic presentations
of those processes that happen to be finite. Systems of recursive process definitions are
naturally represented by morphisms f : X Ñ νγ.PωppY `Xq ` Aˆ γq where X contains
process names being defined and Y contains the remaining process names that can occur
freely. For example, the system

x “ y ` a. x (3.1)

corresponds to the following data: X “ txu, Y “ tyu, A “ tau, and

fpxq “ out-1tin1 y, in2〈a, out-1tin1 xu〉u
(eliding the isomorphism Y `X – tx, yu). The generalization arising from this example is
as follows: Given an endofunctor Σ on a co-Cartesian category C and a monad T such that
final coalgebras TΣX “ νγ. T pX`Σγq exist, we obtain a corresponding monad TΣ called the
generalized coalgebraic resumption monad transform of T. As above, we can view morphisms
f : X Ñ TΣpY ` Xq as systems of recursive equations for generalized processes with T
capturing the relevant computational effect (such as non-determinism) and Σ capturing
atomic steps (such as actions Σ “ Aˆ --).

Abstract guardedness can be used to effectively distinguish those systems f : X Ñ TΣpY `Xq
for which we can define desirable solutions f : : X Ñ TΣY . For the moment, we proceed
under the assumption that desirable means unique, for instance (3.1) has the unique solution
x “ y ` a. py ` a. p. . .qq. Let us recall the existing approach to defining guardedness in
this context via completely iterative monads [23], which are based on idealized monads [23,
Definition 5.5]. To make this precise, recall some definitions.

Definition 3.13 (Monad modules, idealized monads). A module over a monad T on C is a
pair pM, --˝q, where M is an endomap over the objects of C, while the lifting p--q˝ is a map
HompX,TY q Ñ HompMX,MY q such that the following laws are satisfied:

η˝ “ id, g˝f˝ “ pg‹fq˝.

Note that M extends to an endofunctor by taking Mf “ pηfq˝. A module-to-monad
morphism is a natural transformation ξ : M Ñ T that satisfies ξf˝ “ f‹ξ. We call the
tuple pT,M, --˝, ξq an idealized monad ; when no confusion is likely, we refer to these data
just as T. An idealized monad morphism between idealized monads ppT, ηT , --‹q,M, --˝, ξq
and ppS, ηS , --6q, N, --‚, ξ1q is a pair pα, βq where α : T Ñ S is a monad morphism while
β : M Ñ N is a natural transformation satisfying αξ “ ξ1β and βf‹ “ f6β.

1:10 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

Example 3.14. It follows from previous results [30, Corollary 3.13] that the monad TΣ

from Example 3.12 is idealized when equipped with the module TΣTΣ. In the concrete
case where T “ Pω and Σ “ A ˆ p--q, i.e. TΣX “ νγ.PωppY ` Xq ` A ˆ γq, the module
PωpAˆ TΣq contains processes that consist of (finitely many) non-deterministic branches all
of which begin with an action.

Milius [23] defines guardedness only for equation morphisms, i.e. morphisms of type X Ñ

T pY `Xq. Extending this notion in the obvious way to morphisms of type X Ñ T pY ` Zq
as required in our framework, we obtain the following definition:

Definition 3.15 (Completely iterative monads). Given an idealized monad pT,M, --˝, ξq, a
morphism f : X Ñ T pY `Zq is guarded if it factors via rη in1, ξs : Y `MpY `Zq Ñ T pY `Zq.
The monad T is completely iterative if every guarded f : X Ñ T pY `Xq in this sense has a
unique solution.

It turns out that the above notion of guardedness is not an instance of abstract guardedness;
specifically, it does not satisfy our (par) rule. Equation (3.1) provides a good illustration
of what happens: although both terms y and a. x are guarded in x, we cannot factor the
corresponding term X Ñ T pY `Xq through any rη in1, ξs : Y `MpY `Xq Ñ T pY `Xq
due to the top-level nondeterministic choice.

Fortunately, we can fix this by noticing that completely iterative monads actually
support iteration for a wider class of morphisms:

Definition 3.16. Let pT,M, --˝, ξq be an idealized monad. Given σ : Z Y , we say that a
morphism f : X Ñ TY is weakly σ-guarded if it factors through rησ̄, ξs‹ : T pY 1`MY q Ñ TY
for a complement σ̄ : Y 1 Y of σ.

Since a morphism that factors as rη in1, ξsf can be rewritten as rη in1, ξs
‹ηf , every guarded

morphism in an idealized monad is also weakly guarded.

Theorem 3.17. Let pT,M, --˝, ξq be an idealized monad. Then the following hold.

(1) T becomes abstractly guarded when equipped with weak guardedness as the notion of
abstract guardedness.

(2) If T is completely iterative, then every weakly in2-guarded morphism f : X Ñ T pY `Xq
has a unique solution.

(3) If pα, βq is an idealized monad morphism, then α preserves weak guardedness.

That is, completely iterative monads are abstractly guarded iterative monads w.r.t. weak
guardedness.

Proof. (1): We need to verify that weak guardedness is closed under the rules from
Definition 3.1.

‚ (trv) Given a morphism f : X Ñ TY , the following holds:

pT in1qf “ pη in1q
‹f // Kleisli

“ prη in1, ξs in1q
‹f // coproducts

“ rη in1, ξs
‹pT in1qf // Kleisli

‚ (cmp) Given f : X Ñ2 T pY ` Zq, g : Y Ñσ TV , and h : Y Ñ TV , assume that f
factors as rη in1, ξs

‹f 1, while g factors as rησ̄, ξs‹g1. Then, the following holds:

rg, hs‹f “ rrησ̄, ξs‹g1, hs‹rη in1, ξs
‹f 1

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:11

“ prrησ̄, ξs‹g1, hs‹rη in1, ξsq
‹f 1 // Kleisli

“ rrrησ̄, ξs‹g1, hs‹η in1, rrησ̄, ξs
‹g1, hs‹ξs‹f 1 // coproducts

“ rrrησ̄, ξs‹g1, hs in1, rrησ̄, ξs
‹g1, hs‹ξs‹f 1 // Kleisli

“ rrησ̄, ξs‹g1, rrησ̄, ξs‹g1, hs‹ξs‹f 1 // coproducts

“ rrησ̄, ξs‹g1, ξrrησ̄, ξs‹g1, hs˝s‹f 1 // module-to-monad morphism

“ rrησ̄, ξs‹g1, rησ̄, ξs in2rrησ̄, ξs
‹g1, hs˝s‹f 1 // coproducts

“ rrησ̄, ξs‹g1, rησ̄, ξs‹η in2rrησ̄, ξs
‹g1, hs˝s‹f 1 // Kleisli

“ prησ̄, ξs‹rg1, η in2rrησ̄, ξs
‹g1, hs˝sq‹f 1 // coproducts

“ rησ̄, ξs‹rg1, η in2rrησ̄, ξs
‹g1, hs˝s‹f 1. // Kleisli

‚ (par) Given a morphism f : X Ñσ TZ and Y Ñσ TZ assume that f factors as
rη in1, ξs

‹f 1, and g factors as rη in1, ξs
‹g1. Then, the following holds:

rf, gs “ rrησ̄, ξs‹f 1, rησ̄, ξs‹g1s // guardedness

“ rησ̄, ξs‹rf 1, g1s. // coproducts

(2): Let f “ rη in1, ξs
‹j for a morphism j : X Ñ T pY `MpY ` Xqq. We define an

auxiliary morphism g “ rη in1, js
‹ξ : MpY `Xq Ñ T pY `MpY `Xqq. Note that g is guarded

(in the sense of [23]), since it can be rewritten as follows:

rη in1, js
‹ξ “ ξrη in1, js

˝ // module-to-monad morphism

“ rη in1, ξs in2rη in1, js
˝. // coproducts

Thus, g has a unique solution g: : MpY `Xq Ñ TY . We use it to define a solution to f ,
namely f ; “ rη, g:s‹j. It is left to show that it is indeed a solution and that it is unique:

‚ Solution:

f ; “ rη, g:s‹j

“ rη, rη, g:s‹gs‹j // solution

“ rη, rη, g:s‹rη in1, js
‹ξs‹j

“ rη, prη, g:s‹rη in1, jsq
‹ξs‹j // Kleisli

“ rη, rrη, g:s‹η in1, rη, g
:s‹js‹ξs‹j // coproducts

“ rη, rrη, g:s in1, rη, g
:s‹js‹ξs‹j // Kleisli

“ rη, rη, rη, g:s‹js‹ξs‹j // coproducts

“ rrη, rη, g:s‹js in1, rη, rη, g
:s‹js‹ξs‹j // coproducts

“ rrη, rη, g:s‹js‹η in1, rη, rη, g
:s‹js‹ξs‹j // Kleisli

“ prη, rη, g:s‹js‹rη in1, ξsq
‹j // coproducts

“ rη, rη, g:s‹js‹rη in1, ξs
‹j // Kleisli

“ rη, f ;s‹f.

1:12 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

‚ Uniqueness: Let r : X Ñ TY be a solution of f , that is, r “ rη, rs‹f . First, we calculate:

rη, rs‹ξ “ rη, rη, rs‹f s‹ξ

“ rη, rη, rs‹rη in1, ξs
‹js‹ξ

“ rη, prη, rs‹rη in1, ξsq
‹js‹ξ // Kleisli

“ rη, rrη, rs‹η in1, rη, rs
‹ξs‹js‹ξ // coproducts

“ rη, rrη, rs in1, rη, rs
‹ξs‹js‹ξ // Kleisli

“ rη, rη, rη, rs‹ξs‹js‹ξ // coproducts

“ rrη, rη, rs‹ξs in1, rη, rη, rs
‹ξs‹js‹ξ // coproducts

“ rrη, rη, rs‹ξs‹η in1, rη, rη, rs
‹ξs‹js‹ξ // Kleisli

“ prη, rη, rs‹ξs‹rη in1, jsq
‹ξ // coproducts

“ rη, rη, rs‹ξs‹rη in1, js
‹ξ // Kleisli

“ rη, rη, rs‹ξs‹g.

Thus, rη, rs‹ξ is a solution of g. By uniqueness, we obtain that g: “ rη, rs‹ξ. With this,
we can check the uniqueness of f ;:

r “ rη, rs‹f

“ rη, rs‹rη in1, ξs
‹j

“ prη, rs‹rη in1, ξsq
‹j // Kleisli

“ rrη, rs‹η in1, rη, rs
‹ξs‹j // coproducts

“ rrη, rs in1, rη, rs
‹ξs‹j // Kleisli

“ rη, rη, rs‹ξs‹j // coproducts

“ rη, g:s‹j // the above

“ f ;.

(3): Let pα, βq be as in Definition 3.13. Let f : X Ñ TY be weakly σ-guarded. This
means that f factors as rηT σ̄, ξs‹f 1 for a morphism f 1 : X Ñ T pY 1`MY q. We need to show
that αf : X Ñ SY factors as rηS σ̄, ξ1s6g for some g : X Ñ SpY 1 `NY q. We calculate:

αf “ αrηT σ̄, ξs‹f 1 // factorisation of f

“ pαrηT σ̄, ξsq6αf 1 // monad morphism

“ rαηT σ̄, αξs6αf 1 // coproducts

“ rηS σ̄, αξs6αf 1 // monad morphism

“ rηS σ̄, ξ1βs6αf 1 // idealized monad morphism

“ prηS σ̄, ξ1spid` βqq6αf 1 // coproducts

“ prηS σ̄, ξ1s6ηSpid` βqq6αf 1 // Kleisli

“ rηS σ̄, ξ1s6pηSpid` βqq6αf 1 // Kleisli

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:13

4. Parametrizing Guardedness

Uustalu [35] defines a parametrized monad to be a functor from a category C to the category
of monads over C. We need a minor adaptation of this notion where we allow parameters from
a different category than C, and simultaneously introduce a guarded version of parametrized
monads:

Definition 4.1 (Parametrized guarded monad). A parametrized (guarded) monad is a
functor from a category D to the category of (guarded) monads and (guarded) monad
morphisms over C. Alternatively (by uncurrying), it is a bifunctor # : C ˆD Ñ C such
that for any X P |D|, --#X : C Ñ C is a (guarded) monad, and for every f : Z Ñ V ,
id#f : X#Z Ñ X#V is the X-component of a (guarded) monad morphism --#f : --#Z Ñ
--#V , explicitly,

pid# fq η “ η pid# fq g‹ “ ppid# fq gq‹pid# fq (4.1)

for any g : X Ñ Y and, in the guarded case,

g : Z Ñσ V #X implies pid# fq g : Z Ñσ V # Y.

A parametrized (guarded) monad morphism between parametrized (guarded) monads qua
functors into the category of (guarded) monads over C is a natural transformation that is
componentwise a (guarded) monad morphism. In uncurried notation, given parametrized
monads #, #̂ : CˆD Ñ C a natural transformation α : # Ñ #̂ is a parametrized (guarded)
monad morphism if for each X P |D|, α--,X : --#X Ñ -- #̂X is a (guarded) monad morphism.

A parametrized guarded monad # is guarded (pre-)iterative if each monad --#X is
guarded (pre-)iterative and the monad morphisms --#f are iteration-preserving, i.e.

pid# fq g: “ ppid# fq gq:. (4.2)

Note that by Lemma 3.10, condition (4.2) is automatic for guarded iterative parametrized
monads.

In the sequel, we tend to use the same notation for parametrized monads as for the
non-parametrized case, assuming that omitted information is understood from the context.
For example, the monad unit ηX,Y : X Ñ X # Y is additionally parametrized by Y , and
both parameters will be occasionally omitted unless confusion arises. Kleisli lifting assigns
f‹ : X # Z Ñ Y # Z to f : X Ñ Y # Z, and for fixed Z all monad laws can be used for
parametrized monads as stated for non-parametrized monads. The connection between Kleisli
lifting and the functor part of the monad can now be restated as follows: pf# idZq “ pηY,Zfq

‹

where f : X Ñ Y # Z.

Example 4.2. For purposes of the present work, the most important example (taken
from [35]) is # “ T p--`Σ --q : CˆC Ñ C where T is a (non-parametrized) monad on C and Σ
is an endofunctor on C. Informally, T captures a computational effect, e.g. nondeterminism
for T being a (bounded) powerset monad, and Σ captures a signature of actions, e.g.
ΣX “ AˆX, as in Example 3.12. Specifically, taking A “ 1 we obtain X # Y “ T pX ` Y q;
in this case, we have only one guard, which can be interpreted as a delay. The second
argument of # can thus be thought of as designated for guarded recursion.

Theorem 4.3. Let # : Cˆ pCˆDq Ñ C be a parametrized monad, with unit η and Kleisli
lifting p´q‹. Then

X #ν Y “ νγ.X # pγ, Y q

1:14 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

defines a parametrized monad #ν : CˆD Ñ C, whose unit and Kleisli lifting we denote ην

and p--q6, respectively. Moreover,

(1) If # is guarded, then so is #ν, with guardedness defined as follows: given σ : Y 1

Y , f : X Ñ Y #ν Z is σ-guarded if out f : X Ñ Y # pY #ν Z,Zq is σ-guarded; the
correspondence # ÞÑ #ν extends to a functor between the respective categories of guarded
parametrized monads.

(2) If # is guarded pre-iterative, with an iteration operator p--q:, then so is #ν, with the
iteration operator p--q; sending f : X Ñ2 pY `Xq #

ν Z to f ; : X Ñ Y #ν Z as follows:

f ; “ coit
´

rηY , pout fq
:s‹ out : pY `Xq #ν Z Ñ Y # pppY `Xq #ν Zq, Zq

¯

ηνY`X,Z in2

(3) If # is guarded iterative, then so is #ν , with solutions described as in the previous clause.

To better understand the typing in the second clause above, note that

‚ out f : X Ñ2 pY `Xq # ppY `Xq #
ν Z,Zq, so

‚ pout fq: : X Ñ Y # ppY `Xq #ν Z,Zq;
‚ the right-most occurrence of out has type

out : pY `Xq #ν Z Ñ pY `Xq # ppY `Xq #ν Z,Zq;

‚ the coitp. . . q subterm has type pY `Xq #ν Z Ñ Y #ν Z.

In case there is only one parameter of type C, i.e. # : C ˆC Ñ C, the typing simplifies
slightly: Now #ν is just a monad on C, which we denote by z# (i.e. z#X “ X#νpq). We
write ην , p--q6 for the corresponding monad structure. Then given f : X Ñ2 z#pY `Xq,
‚ out f : X Ñ2 pY `Xq #z#pY `Xq;
‚ pout fq: : X Ñ2 Y #z#pY `Xq;
‚ the right-most occurrence of out has type

out : z#pY `Xq Ñ pY `Xq #z#pY `Xq;
‚ the coitp. . . q subterm has type z#pY `Xq Ñ z#Y ;
‚ and, of course, f ; : X Ñ z#Y .

Proof (Theorem 4.3). (1): By currying we equivalently view # as a functor from D to the
category of parametrized guarded monads of type C ˆ C Ñ C, and the transformation
ÞÑ #ν as given pointwise. It therefore suffices to show that the assignment

ÞÑ z# where z#X “ νγ.X # γ

extends to a functor from parametrized guarded monads of type CˆC Ñ C to guarded
monads over C where guardedness for z# is defined as follows: f : X Ñ z#Y is σ-guarded
iff out f : X Ñ Y # z#Y is σ-guarded w.r.t. #. Uustalu [35] already proves that z# is a
monad; we proceed to check that his construction is in fact functorial.

As indicated above, we denote the monad structure on z# by ην , p--q6. These data are
uniquely determined by commutation of

X z#X

X#z#X X#z#X

ηνX

ηX,z#X out

z#X `z#Y z#Y

Y#pz#X `z#Y q Y#pz#Y q

rf6, ids

rf̂ , pY# in2q outs out

Y#rf6, ids

(4.3)

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:15

where

f̂ “
´

z#X
out
ÝÝÑ X#z#X

X# in1
ÝÝÝÝÑ X#pz#X`z#Y q

f̄‹
ÝÝÑ Y#pz#X `z#Y q

¯

f̄ “
´

X
f
ÝÑ z#Y

out
ÝÝÑ X#z#Y

Y# in2
ÝÝÝÝÑ Y#pz#X `z#Y q

¯

.

That is, ηνX is the unique pX#--q-coalgebra morphism pX, ηX,z#Xq Ñ pz#X, outq, and rf6, ids
is the unique pY # --q-coalgebra morphism

pz#X `z#Y, rf̂ , pY# in2q outsq Ñ pz#Y, outq,
the latter being essentially a definition of f6 by primitive corecursion. In the sequel, we
will omit the object part of coalgebras when convenient, saying, e.g., that ηνX is a coalgebra
morphism ηX,z#X Ñ out.

We need to define the action of z on morphisms: Let #1 be a further parametrized
monad, with all data of #1 and z#1 indicated by primes, and let

α : # Ñ #1

be a parametrized monad morphism. We then define a monad morphism zα : z# Ñ z#1 by
commutation of

z#X z#1X

X #1 z#X X#1z#1X,

pzαqX

αX,z#X out out1

X#pzαqX

i.e. pzαqX is the unique pX #1 --q-coalgebra morphism pz#X,α outq Ñ pz#1X, out1q.
We first check functoriality of z. For preservation of identities, just note that

id : pz#X, id outq Ñ pz#X, outq is a coalgebra morphism. For preservation of composition,
we have that if β : #1 Ñ #2 is a further parametrized monad morphism then by naturality
of β, the pX #1 --q-coalgebra morphism pzαqX : α out Ñ out1 is also an pX #2 --q-coalgebra
morphism βα out Ñ β out1; so pzβqXpzαqX is a coalgebra morphism βα out Ñ out2, and
hence equals pzβαqX .

It remains to verify that zα is indeed a monad morphism. First, we show compatibility
with the unit, i.e.

pzαqX ηνX “ η1
ν
X : X Ñ z#1X.

We note that by naturality of α, the pX # --q-coalgebra morphism ηνX : ηX,z#X Ñ out is also
an pX#1 --q-coalgebra morphism η1X,z#X “ αηX,z#X Ñ α out, so that pzαqX ηνX is a coalgebra

morphism η1X,z#X Ñ out1 and hence equals η1νX .

For compatibility of zα with Kleisli lifting, we have to show that for f : X Ñ z#Y ,

pzα fq6
1

zα “ zα f6.
We strengthen this goal to one concerning rf6, ids, specifically we show that

z#X `z#Y z#Y

z#1X `z#1Y z#1Y

rf6, ids

pzαqX`pzαqY pzαqY
rppzαqY fq6

1
, ids

commutes. By definition, the bottom arrow is a pY#1 --q-coalgebra morphism

r {pzαqY f, pY#1 in2q out
1s Ñ out1,

1:16 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

and by now-familiar arguments, the top and right-hand arrows compose to yield a pY#1 --q-
coalgebra morphism

rαf̂, αpY# in2q outs Ñ out1 .

It therefore suffices to show that

pzαqX ` pzαqY : rαf̂, αpY# in2q outs Ñ r {pzαqY f, pY#1 in2q out
1s

is a pY#1 --q-coalgebra morphism. We first check commutation of the corresponding square
on the right-hand summand z#Y :

pY#1ppzαqX ` pzαqY qqαpY# in2q out

“ pY#1ppzαqX ` pzαqY qqpY#1 in2qα out // naturality of α

“ pY#1 in2qpY#
1pzαqY qα out

“ pY#1 in2q out
1pzαqY . // definition of zα

For commutation on the left-hand summand we have to show that

pY#1ppzαqX ` pzαqY qqαf̂ “ {pzαqY fpzαqX . (4.4)

We rewrite the left-hand side of (4.4):

pY#1ppzαqX ` pzαqY qqαf̂

“ pY#1ppzαqX ` pzαqY qqαf̄‹pX# in1q out // definition of f̂

“ pY#1ppzαqX ` pzαqY qq pαf̄q‹
1

αpX# in1q out // α a monad morphism

“ pY#1ppzαqX ` pzαqY qq pαf̄q‹
1

pX#1 in1qα out . // naturality of α

We next rewrite the right-hand side of (4.4):

{pzαqY fpzαqX

“ pzαqY f
‹1

pX#1 in1q out
1pzαqX // definition of {pzαqY f

“ pzαqY f
‹1

pX#1 in1qpX#
1pzαqXqα out // definition of {pzαqY f

“ pzαqY f
‹1

pX#1ppzαqX ` pzαqY qqpX #1 zin1qα out

It thus suffices to show that

pY#1ppzαqX ` pzαqY qqpαf̄q‹
1

“ pzαqY f
‹1

pX#1ppzαqX ` pzαqY qq. (4.5)

We further rewrite the right-hand side of (4.5):

pzαqY f
‹1

pX#1ppzαqX ` pzαqY qq

“ ppY#1 in2q out
1pzαqY fq‹

1

pX#1ppzαqX ` pzαqY qq // definition of pzαqY f

“ ppY#1 in2qpY#
1pzαqY qα out fq‹

1

pX#1ppzαqX ` pzαqY qq // definition of pzαqY
“ ppY#1ppzαqX ` pzαqY qqpY#1 in2qα out fq‹

1

pX#1ppzαqX ` pzαqY qq

“ pY#1ppzαqX ` pzαqY qqppY#1 in2qα out fq‹
1

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:17

where we use in the last step that Y #1 ppzαqX ` pzαqY q is a monad morphism. We have
thus reduced (4.5) to showing that

αf̄ “ pY#1 in2qα out f.

But this is straightforward:

αf̄ “ α pY# in2q out f // definition of f̄

“ pY#1 in2qα out f. // naturality of α

Next, we need to check the axioms of guarded monads for z#.

‚ (trv) Let f : X Ñ z#Y . Then

outpz# in1qf “ pin1#pz# in1qq out f.

By (trv) for #, outpz# in1qf is in2-guarded, and thus, by definition so is pz#in1qf .
‚ (cmp) Let f : X Ñ2 z#pY ` Zq, g : Y Ñσ z#V , h : Z Ñ z#V . Then we obtain

out rg, hs‹f “ rout g, out hs‹ pid# rg, hs‹q out f.

By assumption out f is in2-guarded, and therefore, since # is a parametrized guarded monad,
so is pid # rg, hs‹q out f . Also, by assumption, outh is σ-guarded. By (cmp) for #, this
implies that the composite rout g, out hs‹ pid # rg, hs‹q out f is σ-guarded and thus so is
rg, hs‹f .

‚ (par) Let fi : Xi Ñσ z#Y for i “ 1, 2, which by definition means that out fi : Xi Ñσ

Y#pz#Y q. By (par) for #, outrf1, f2s “ rout f1, out f2s : Xi Ñσ Y#pz#Y q, so that
rf1, f2s : X1 `X2 Ñσ z#Y as required.

This shows that z# is indeed a guarded monad; it remains to show that given a
parametrized guarded monad morphism α : # Ñ #1 as above, the monad morphism zα
preserves guardedness. That is, for f : Z Ñσ z#V we have to show that zαf : Z Ñσ z#1V ,
i.e. that outpzαfq is σ-guarded. Indeed, by definition of zα,

out pzα fq “ pid#zαqα out f.

By assumption, out f is σ-guarded and therefore, since # is a parametrized guarded monad
and α is a parametrized guarded monad morphism, so is pid#zαqα out f .

(2): Let f : X Ñ2 pY `Xq#
νZ, and let g “ out-1 pin1#idq pout fq

: : X Ñ2 pY `Xq#
νZ.

Again, using the results of Uustalu [35, Theorem 3.11], h “ coitprη, pout fq:s‹ outq : pY `
Xq #ν Z Ñ2 Y #

ν Z is the unique solution of equation

h “ rην , h gs6,

which implies that f ; “ h ην in2 is a fixpoint of g. Indeed, f ; “ h ην in2 “ rη
ν , h gs6ην in2 “

h g, and thus, rην , f ;s6 g “ rην , h gs6 g “ h g “ f ;. We are left to check that f ; is also a
fixpoint of f . First, we record the auxiliary equation

outrην , f ;s6 “ rη, out f ;s‹pid# rην , f ;s6q out, (4.6)

which entails the goal as follows (using the fact that out is an isomorphism):

outrην , f ;s6 f “ rη, out f ;s‹pid# rην , f ;s6q out f // (4.6)

“ rη, outrην , f ;s6 gs‹pid# rην , f ;s6q out f // definition of f ;

“ rη, rη, out f ;s‹pid# rην , f ;s6q out gs‹

pid# rην , f ;s6q out f // (4.6)

1:18 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

“ rη, rη, out f ;s‹pin1#rη
ν , f ;s6qpout fq:s‹

pid# rην , f ;s6q out f // definition of g

“ rη, out f ;s‹rη in1, pin1#rη
ν , f ;s6qpout fq:s‹

pid# rην , f ;s6q out f

“ rη, out f ;s‹pin1#rη
ν , f ;s6qrη, pout fq:s‹ out f // (4.1)

“ rη, out f ;s‹pin1#rη
ν , f ;s6qpout fq: // definition of p--q:

“ rη, out f ;s‹pid# rην , f ;s6q out g // definition of g

“ outrην , f ;s6 g // (4.6)

“ out f ;. // definition of f ;

Equation (4.6) is derived as follows:

outrην , f ;s6 “
`

id# rrην , f ;s6, ids
˘`

pid# in2q out rη
ν , f ;s

˘‹

pid# in1q out // definition of p--q6

“
`

pid# rrην , f ;s6, idsqpid# in2q out rη
ν , f ;s

˘‹

pid# rrην , f ;s6, idsq pid# in1q out // (4.1)

“ pout rην , f ;sq‹pid# rην , f ;s6q out

“ rη, out f ;s‹pid# rην , f ;s6q out . // definition of ην

Property (4.2) transfers routinely along # ÞÑ #ν .

(3): We have to show that, given f : X Ñ2 pY ` Xq #ν Z and f̂ : X Ñ Y #ν Z

such that f̂ “ rην , f̂ s6f , we have f̂ “ f ;, with f ; defined as in Claim (2). Again, let
g “ out-1 pin1#idq pout fq

: : X Ñ2 pY `Xq #ν Z. As we indicated above, f ; is the unique

solution of the equation rην , f ;s6 g “ f ;, and thus to obtain the desired identity f̂ “ f ;, it

suffices to prove the same equation for f̂ . Note that (4.6) remains valid for f̂ instead of f ;

and therefore we obtain

out f̂ “ outrην , f̂ s6f “ rη, out f̂ s‹pid# rην , f ;s6q out f,

which implies out f̂ “ ppid# rην , f ;s6q out fq:, for pid# rην , f ;s6q out f is in2-guarded, and
therefore has a unique fixpoint. Now, since

out f̂ “ ppid# rην , f ;s6q out fq:

“ pid# rην , f ;s6q pout fq: // (4.2)

“ rη, out f ;s‹pid# rην , f ;s6q out out-1 pin1#idq pout fq
:

“ outrην , f ;s6g // (4.6), definition of g

“ out f ;, // definition of f ;

we obtain f ; “ f̂ using the fact that out is an isomorphism.

Remark 4.4. The definitions figuring in Theorem 4.3 specialize to two generic cases
occurring in previous literature:

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:19

(1) With D “ 1, # “ T p--`Σ --q for an endofunctor Σ and a totally guarded pre-
iterative monad T “ pT, η, --‹, --:q, we obtain the setting studied by Goncharov et al. [18]:
z# is isomorphically a monad TΣ on C with TΣX “ νγ. T pX ` Σγq, unit ην “ out-1η in1,
with Kleisli lifting pf : X Ñ TΣY q

6 uniquely determined by the equation

out f6 “ rout f, η in2 Σf6s‹ out,

and with the total iteration operator
`

f : X Ñ TΣpY `Xq
˘;
“ coit

`“

rη in1, pT rin1`id, in1 in2s out fq
:s, η in2

‰‹
out

˘

ην in2 .

(2) With D “ 1, and any vacuously guarded # : C ˆ C Ñ C, we obtain the setting
of Uustalu [35], with the guarded iterative monad z# “ νγ. --#γ defined as follows: The
monad structure is specified by (4.3), and the iteration operator p--q; is uniquely determined
by the equation rην , f ;s6 “ f ; for every in2-guarded f : X Ñ z#pY `Xq. According to
Theorem 4.3 (2), f is in2-guarded iff out f : X Ñ pY ` Xq # z#pY `Xq factors through
in1#id : Y #z#pY `Xq Ñ pY `Xq#z#pY `Xq, which is precisely the notion of guardedness
in [35].

Example 4.5. We proceed to illustrate the use of Theorem 4.3 by various instances of
Example 3.12.

(1) By equipping the finite powerset monad Pω on Set with vacuous guardedness, we
obtain by Theorem 4.3 a notion of guardedness for νγ.PωpX ` A ˆ γq, which allows for
systems consisting of equations of the form

x “ y1 ` . . .` yn ` a1. t1 ` . . .` am. tm (4.7)

where the variables yi are not allowed to occur on the left-hand side and the terms ti
represent elements of νγ.PωpX ` A ˆ γq, as previously explained in Example 3.12. By
Proposition 3.11 and Theorem 4.3, we conclude that these systems have unique solutions,
which is of course a known fact in process algebra. This and the following examples are
intentionally chosen to be simple for illustrative purposes, but we emphasize that the same
principles apply to the examples obtained by replacing Pω with a more general T and Aˆ --
with a more general Σ. For example, replacing T with a subdistribution monad [20], to
model probability instead on nondeterminism, would require changing the format of (4.7) to

x “ p1 ¨ y1 ` . . .` pn ¨ yn ` p
1
1 ¨ a1. t1 ` . . .` p

1
m ¨ am. tm

where the non-negative real coefficients p1, . . . , pn, p
1
1, . . . , p

1
m, subject to the condition

p1 ` . . .` pn ` p
1
1 ` . . .` p

1
m ď 1, represent the probabilities of choosing the corresponding

alternative.
(2) By replacing Pω with countable powerset Pω1 in the previous clause, we can relax the

format of equation systems that can be solved, at the price of losing uniqueness of solutions.
Specifically, let Pω1 be totally guarded pre-iterative with solutions of f : X Ñ Pω1pY `Xq
calculated via least fixpoints. The derived notion of guardedness for νγ.Pω1pX ` A ˆ γq
according to Theorem 4.3 is again total, i.e. allows solving arbitrary systems of equations
(we discuss an application of such unguarded recursive process definitions in [18, Section 3];
specifically, they allow defining countably branching systems in basic process algebra). The
canonical derived iteration operator makes use of both least fixpoints and unique coalgebraic
fixpoints. For example, the canonical solution of

x “ x` a. x (4.8)

1:20 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

is the infinite sequence x “ aω, seen as an element of the final countably branching labelled
transition system νγ.Pω1pAˆγq – intuitively, the original system (4.8) is first collapsed to x “
a. x, iterating away the first x in the sum by taking a least fixpoint, and the resulting system is
solved uniquely. In detail, the definitions in Theorem 4.3 unfold as follows. We have the case
mentioned in Example 4.2 where X # Y “ Pω1pX `Aˆ Y q (so z#X “ νγ.Pω1pX `Aˆ γq).
Our example equation (4.8) corresponds to the map f : X Ñ z#p∅`Xq where X “ txu and
out fpxq “ tin1 in2 x, in2〈a, out-1ptxuq〉u P Pω1pp∅`Xq`Aˆz#p∅`Xqq–Pω1pAˆz#X`Xq.
The definition of p´q; according to Theorem 4.3 now tells us to first iterate out f in Pω1 , by
taking a least fixpoint with x seen as a variable, obtaining pout fq: : X Ñ Pω1pA ˆ z#Xq
where

pout fq:pxq “ t〈a, out-1ptin1 xuq〉u.
We next form the map g “ pPω1 in2qrpout fq

:, ηs‹ out : z#X Ñ Pω1p∅` Aˆz#Xq, where η
and p--q‹ are the unit and the Kleisli lifting of Pω1 , so for t P z#X “ νγ.Pω1pX `Aˆ γq,

gptq “ tin2pout fq
:pxq | in1 x P out tu Y tin2〈b, s〉 P Aˆz#X | in2〈b, s〉 P out tu

“ tin2〈a, out-1ptxu〉q | in1 x P out tu Y tin2〈b, s〉 P Aˆz#X | in2〈b, s〉 P out tu.
We then obtain a final coalgebra morphism coit g : z#X Ñ z#∅ “ νγ.Pω1pA ˆ γq. The
solution f ;pxq is obtained by applying coit g to ηνXpxq “ out-1pηX,z#Xpxqq “ out-1ptin1 xuq,

using the description of ην recalled in the proof of Theorem 4.3. Since gpout-1ptin1 xuqq “
tin2〈a, out-1ptin1 xuq〉u, we obtain that f ;pxq is aω, as expected.

(3) Consider a further variation of the same example obtained by replacing A in
the previous example by 1 ` A, where the adjoined element is supposed to capture the
invisible action τ in the usual sense of process algebra [25]. Applying Theorem 4.3 to
X # Y “ Pω1pX ` p1 ` Aq ˆ Y q as in the previous example, we would derive a notion of
guardedness that identifies as guarded any recursive call preceded by an action, visible or
not. We can refine this view by allowing only visible actions as guards, which is in fact
standard for CCS [25]. To this end, consider the obvious isomorphism

νγ.Pω1pX ` p1`Aq ˆ γq – νγ1. νγ.Pω1pX ` γ `Aˆ γ
1q,

which involves two more parametrized monads: Pω1p--` --`Aˆ --q : SetˆpSetˆSetq Ñ Set
and νγ.Pω1p--`γ `Aˆ --q : Setˆ Set Ñ Set. The latter parametrized monad is formed on
top of the former. We equip νγ.Pω1p--`γ `Aˆ --q with the vacuous notion of guardedness.
By furthermore forming the fixpoint νγ1. νγ.Pω1pX ` γ `Aˆ γ

1q, we obtain precisely the
notion of guardedness we aimed at for the isomorphic monad #ν .

(4) Consider TX “ Pω1pµγ.X ` 1 ` A ˆ γq, which can be understood as a semantic
domain for processes with results in X as before, but now modulo finite trace equivalence
instead of strong bisimilarity as the underlying equivalence relation: the elements of TX
are sets of traces from µγ.X ` 1`Aˆ γ – A‹ `A‹ ˆX consisting of terminating traces
(from A‹ ˆX) and non-terminating traces (from A‹). In order to apply our theory to this
example, we make use of Hasuo et al.’s results on coalgebraic finite trace semantics [20].
Specifically, we make use of the fact that due to presence of a canonical distributive law

X ` 1`Aˆ Pω1 Ñ Pω1pX ` 1`Aˆ --q

and a suitable order-enrichment of Pω1 , the object µγ.X`1`Aˆγ computed in Set carries
a final coalgebra νγ.X ` 1`Aˆ γ in the Kleisli category of Pω1 . In this category we equip
the parametrized monad # “ --`1 ` A ˆ -- with the vacuous notion of guardedness and
thus derive the notion of guardedness for #ν , allowing exactly for recursive calls preceded

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:21

Fixpoint:

f
X

X

Y

= f f
X

X
X

Y Y

Naturality:

f gX

X

Y Z

= f gX

X

Y Z

Codiagonal:

g
X

Y

X
X

= g
X

Y

XX

Uniformity:

h f
Z X

Y

X

“ g h
Z

Z

Y
X

ó

h f
Z X

Y

X

“ g
Z

Z

Y

Figure 2. Axioms of guarded iteration.

by actions from A. Again, by Proposition 3.11 and by Theorem 4.3 (3), the obtained monad
is guarded iterative.

Note that the monad Pω1pµγ. --`1` Aˆ γq is arguably too large, as it contains sets
of traces not realized by any process from νγ.Pω1pX `Aˆ γq. This can easily be fixed by
cutting down to the submonad of Pω1pµγ. --`1`Aˆ γq consisting of the prefix-closed sets
of traces, i.e. such sets S that st P S implies s P S and 〈st, x〉 P S implies s P S. It is easy to
see that this is a guarded pre-iterative submonad of T, and therefore guarded iterative.

5. Complete Elgot Monads and Iteration Congruences

Besides the fixpoint identity we are interested in natural guarded versions of the classical
properties of the iteration operator, which we refer to as the iteration laws [10, 6, 32]:

‚ naturality: g‹f : “ prpT in1q g, η in2s
‹ fq: for f : X Ñ2 T pY `Xq, g : Y Ñ TZ;

‚ codiagonal: pT rid, in2s fq
: “ f :: for f : X Ñ12,2 T ppY `Xq `Xq;

‚ uniformity: f h “ T pid`hq g implies f : h “ g: for f : X Ñ2 T pY `Xq, g : Z Ñ2 T pY `Zq
and h : Z Ñ X.

1:22 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

Dinaturality 1:

g h
X

X

Y

Z

Y
= g h g

X
Y

Z

Z

Y

X

Y

Dinaturality 2:

g h
X

X

Y

Z

Y
= g h g

X
Y

Z

Z

Y

X

Y

Bekić identity:

g f

g

X

Y

Z =

f

g

Y

X

Z

Figure 3. Derivable laws of iteration.

Remarkably, this list does not include the well-known dinaturality law, as is turns out to be
derivable (cf. [18, 14]). We prove this further below. The above axioms are summarized in
graphical form in Figure 2, and then become quite intuitive. We indicate the scope of the
iteration operator by a shaded box and guardedness by bullets at the outputs of a morphism.
Blue boxes indicate morphisms of the base category C, to contrast orange boxes referring to
Kleisli morphisms.

A guarded pre-iterative monad is called a complete Elgot monad if it is totally guarded
and satisfies all iteration laws. In the sequel we shorten ‘complete Elgot monads’ to ‘Elgot
monads’ (to be distinguished from Elgot monads in the sense of [2], which have solutions
only for morphisms with finitely presentable domain).

In general, the fact that the iteration laws are correctly formulated relies on the axioms
of guardedness. For example, in the codiagonal axiom, this follows by (cmp) from the
assumption f : X Ñ12,2 T ppY`Xq`Xq that T rid, in2s f is in2-guarded, and by Proposition 3.9
that f : is in2-guarded. Indeed, the axioms for guarded monads are designed precisely to
enable the formulation of the iteration laws.

We show next that for guarded iterative monads, all iteration laws are automatic. In
preparation, we prove the aforementioned fact that dinaturality follows from the other
axioms (thus generalizing corresponding recent observations on iteration theories [18, 14]).
Additionally, we show that the well-known Bekić identity is derivable too.

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:23

Proposition 5.1. Any guarded pre-iterative monad satisfying naturality, codiagonal and
uniformity also satisfies

‚ dinaturality: prη in1, hs
‹ gq: “ rη, prη in1, gs

‹ hq:s‹ g for g : X Ñ2 T pY ` Zq and h : Z Ñ
T pY `Xq or g : X Ñ T pY ` Zq and h : Z Ñ2 T pY `Xq;

‚ Bekić identity: pT rid` in1, in2 in2s rf, gsq
:
“ rh:, rη, h:s‹g:s with f : X Ñ12,2 T ppY `Xq`

Zq, g : Z Ñ12,2 T ppY `Xq ` Zq, and h “ rη, g:s‹f : X Ñ2 T pY `Xq.

In axiomatizations of total iteration, the Bekić identity is sometimes taken to replace
codiagonal and dinaturality [6, Section 6.8] [2, 18]. Both dinaturality and the Bekić identity
are again depicted graphically in Figure 3. The two versions of the dinaturality axiom
correspond to the alternative sets of guardedness assumptions in its formulation; basically,
we need to distinguish cases on whether the loop over g and h is guarded at g or at h.

Proof. Following [14], we consider a specific instance of uniformity:

f : “ prT pid` in1qf, hs : X ` Z Ñ2 T pY ` pX ` Zqqq
: in1 (5.1)

where f : X Ñ2 T pY `Xq and h : Z Ñ2 T pY ` pX ` Zqq, and prove the following instance
of the Bekić identity:

pT pid` in1q rf, gs : X ` Z Ñ T pY ` pX ` Zqqq: “ rf :, rη, f :s‹gs (5.2)

where f : X Ñ2 T pY `Xq and g : Z Ñ2 T pY `Xq. Indeed, on the one hand, by (5.1),

pT pid` in1q rf, gsq
: in1 “ f :, (5.3)

and on the other hand

pT pid` in1q rf, gsq
: in2

“ rη, pT pid` in1q rf, gsq
:
s‹ T pid` in1qrf, gs in2 // fixpoint

“ rη, pT pid` in1q rf, gsq
:
s‹ T pid` in1qg

“ rη, pT pid` in1q rf, gsq
: in1s

‹ g

“ rη, f :s‹ g. // (5.3)

As the result we obtain (5.2). Analogously, we prove another instance of the Bekić identity,
namely

pT pid` in2q rf, gs : X ` Z Ñ T pY ` pX ` Zqqq: “ rrη, g:s‹f, g:s (5.4)

with f : X Ñ2 T pY ` Zq and g : Z Ñ2 T pY ` Zq. We proceed to show that under the other
axioms, these two instances imply the full Bekić identity

pT rid` in1, in2 in2s rf, gs : X ` Z Ñ T pY ` pX ` Zqqq: “ rh:, rη, h:s‹g:s (5.5)

where f : X Ñ12,2 T ppY `Xq`Zq and g : Z Ñ12,2 T ppY `Xq`Zq and h “ rη, g:s‹f : X Ñ

T pY ` Xq. Let us argue briefly that h is in2-guarded. Note that the assumption for f
by (iso) implies that f 1 “ T rid ` in1, in2s f : X Ñ T pY ` pX ` Zqq is in2-guarded and
therefore h “ rη in1, rη in1, g

:ss‹f 1 is in2-guarded by (cmp).
Now, the proof of (5.5) runs as follows:

pT rid` in1, in2 in2s rf, gsq
:

“
`

T rid, in2sT ppid` in1q ` in2q rf, gs
˘:

“ pT ppid` in1q ` in2q rf, gsq
:: // codiagonal

1:24 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

“ pT pid` in2q rT ppid` in1q ` idq f, T ppid` in1q ` idq gsq::

“ rrη, pT ppid` in1q ` idq gq:s‹T ppid` in1q ` idq f,

pT ppid` in1q ` idq gq:s: // (5.4)

“ rrηpid` in1q, pT ppid` in1q ` idq gq:s‹f,

pT ppid` in1q ` idq gq:s: // naturality

“ rT pid` in1q rη, g
:s‹ f, T pid` in1q g

:s:

“ pT pid` in1q rh, g
:sq:

“ rh:, rη, h:s‹g:s. // (5.2)

Finally, let us derive dinaturality from (5.5). Suppose that g : X Ñ2 T pY ` Zq and
h : Z Ñ T pY `Xq satisfy either guardedness premise of the dinaturality axiom and consider
the following instance of (5.5) with f replaced by T pin1`idq g and g replaced by pT in1qh
(note that by the fixpoint identity, ppT in1qhq

: “ h):

rT pid` in2q g, T pid` in1qhs
: “ rprη in1, hs

‹gq:, rη, prη in1, hs
‹gq:s‹hs. (5.6)

Let γX,Y : Y `X Ñ Y `X be the obvious symmetry transformation and note the following
simple consequence of uniformity:

rT pid` in2q g, T pid` in1qhs
:γ “ rT pid` in2qh, T pid` in1q gs

:. (5.7)

By combining (5.7), (5.6) and the symmetric form of the latter (with h and g switched), we
obtain:

rprη in1, hs
‹gq:, rη, prη in1, hs

‹gq:s‹hs “ rrη, prη in1, gs
‹hq:s‹g, prη in1, gs

‹hq:s.

Dinaturality is now obtained by composing both sides with in1 : X Ñ X ` Z.

The proof of the following result runs in accordance with the original ideas of Elgot for
iterative theories [10], except that, by Proposition 5.1, dinaturality is now replaced with
uniformity.

Theorem 5.2. Every guarded iterative monad validates naturality, dinaturality, codiagonal,
and uniformity.

Proof. By Proposition 5.1 we only need to verify naturality, codiagonal and uniformity.

‚ Naturality. Let f : X Ñ2 T pY `Xq and g : Y Ñ TZ. Then

g‹f : “ g‹rη, f :s‹f

“ rg‹η, g‹f :s‹f

“ rg, g‹f :s‹f

“ rη, g‹f :s‹rpT in1q g, η in2s
‹f.

Since the same equation uniquely characterizes prpT in1q g, η in2s
‹ fq:, the latter is equal

to g‹f :.
‚ Codiagonal. Let f : X Ñ12,2 T ppY `Xq `Xq. Then

f :: “ rη, f ::s‹f :

“ rη, f ::s‹rη, f :s‹f

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:25

“ rrη, f ::s, rη, f ::s‹f :s‹f

“ rrη, f ::s, f ::s‹f

“ rη, f ::s‹T rin2, ids f.

Therefore f :: satisfies the fixpoint identity for pT rin2, ids fq
:, and thus f :: “ pT rin2, ids fq

:.
‚ Uniformity. Suppose that f h “ T pid` hq g for some f : X Ñ2 T pY `Xq, g : Z Ñ2

T pY ` Zq and h : Z Ñ X. Then

f :h “ rη, f :s‹f h “ rη, f :s‹T pid` hq g “ rη, f :hs‹g,

that is, f :h satisfies the fixpoint equation for g:. Hence g: “ f :h.

We now proceed to introduce key properties of morphisms of guarded monads that allow for
transferring pre-iterativity and the iteration laws, respectively.

Definition 5.3 (Guarded retraction). Let T and S be guarded monads. We call a monad
morphism ρ : T Ñ S a guarded retraction if there is a family of morphisms pυX : SX Ñ

TXqXP|C| (not necessarily natural in X!) such that

(1) for every f : X Ñσ SY , we have υY f : X Ñσ TY , and
(2) ρXυX “ id for all X P |C|.

Theorem 5.4. Let ρ : T Ñ S be a guarded retraction, witnessed by υ : S Ñ T, and suppose
that pT, --:q is guarded pre-iterative. Then S is guarded pre-iterative with the iteration operator
p--q; given by f ; “ ρ pυfq:.

Proof. Since T satisfies the fixpoint identity, rη, pυfq:s‹υf “ pυfq: and therefore,

f ; “ ρ pυfq:

“ ρ rη, pυfq:s‹υf

“ rρη, ρpυfq:s‹ρυf // ρ is a monad morphism

“ rη, f ;s‹f. // ρυ “ id

Definition 5.5 (Iteration congruence). Let T be a guarded pre-iterative monad and let S
be a monad. We call a monad morphism ρ : T Ñ S an iteration congruence if for every pair
of morphisms f, g : X Ñ2 T pY `Xq,

ρf “ ρg implies ρf : “ ρg:. (5.8)

If ρ is moreover a guarded retraction, we call ρ an iteration-congruent retraction.

Theorem 5.6. Under the premises of Theorem 5.4, assume moreover that ρ is an iteration-
congruent retraction. Then any property out of naturality, dinaturality, codiagonal, and
uniformity that is satisfied by T is also satisfied by S.

Proof. The crucial observation is that under our assumptions, (5.8) is equivalent to the
condition that for all f : X Ñ2 T pY `Xq,

ρ pυρ fq: “ ρf :. (5.9)

Indeed, (5.8) ùñ (5.9), for ρυρ f “ ρ f and therefore ρpυρ fq: “ ρ f : and conversely,
assuming (5.9) both for f and for g, and ρf “ ρg, we obtain that ρf : “ ρpυρ fq: “
ρpυρ gq: “ ρg:. The proof of transfer of the respective properties then proceeds as follows.

1:26 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

‚ Naturality:

g‹f ; “ g‹ρ pυ fq:

“ pρυ gq‹ ρ pυ fq: // ρυ “ id

“ ρ pυ gq‹ pυ fq: // ρ is a monad morphism

“ ρ prpT in1q υ g, η in2s
‹υ fq: // naturality for p--q:

“ ρ pυρ rpT in1q υ g, η in2s
‹υ fq: // (5.9)

“ ρ pυrρ pT in1q υ g, η in2s
‹ρ υ fq: // ρ is a monad morphism

“ ρ pυrpS in1q g, η in2s
‹ fq: // ρυ “ id

“ prpS in1q g, η in2s
‹fq;.

‚ Dinaturality: First observe that it follows from the fact that ρ is a monad morphism
and ρυ “ id that ρυrη in1, hs

‹ g “ ρrη in1, υhs
‹υg, and therefore, by (5.8), that

ρpυrη in1, hs
‹ gq: “ ρprη in1, υhs

‹υgq:. (5.10)

Then we obtain the goal as follows:

prη in1, hs
‹ gq; “ ρpυrη in1, hs

‹ gq:

“ ρprη in1, υhs
‹υgq: // (5.10)

“ ρrη, prη in1, υgs
‹ υhq:s‹ υg // dinaturality for p--q:

“ rη, ρprη in1, υgs
‹ υhq:s‹ρυg // ρ is a monad morphism

“ rη, ρprη in1, υgs
‹ υhq:s‹g // since ρυ “ id

“ rη, ρpυrη in1, gs
‹hq:s‹g // analogous to (5.10)

“ rη, prη in1, gs
‹hq;s‹g.

‚ Codiagonal:

pf ;q; “ ρ pυρpυ fq:q:

“ ρ ppυ fq:q: // (5.9)

“ ρ pT rid, in2s υ fq
: // codiagonal for p--q:

“ ρ pυρ T rid, in2s υ fq
: // (5.9)

“ ρ pυ Srid, in2s fq
: // ρυ “ id

“ pSrid, in2s fq
;.

‚ Uniformity: Suppose that f h “ Spid` hq g. Then

υ fh “ υ Spid` hq g

“ υ Spid` hq ρυ g

“ T pid` hq υ g

and therefore pυ fq: h “ pυ gq:. This implies f ; h “ g; by definition.

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:27

Recall from the introduction that a monad S is iteratable if its coinductive resumption
transform Sν exists. We make Sν into a guarded monad by applying Theorem 4.3 to S as a
vacuously guarded monad; explicitly: f : X Ñ SνpY `Xq is guarded iff

out f “ Spin1`idq g for some g : X Ñ SpY ` SνpY `Xqq.

We are now set to prove our first main result, which states that every iteratable Elgot
monad can be obtained by quotienting a guarded iterative monad; that is, every choice of
solutions that obeys the iteration laws arises by quotienting a more fine-grained model in
which solutions are uniquely determined:

Theorem 5.7. A totally guarded iteratable monad S is an Elgot monad iff there is a
guarded iterative monad T and an iteration-congruent retraction ρ : T Ñ S. Specifically,
every iteratable Elgot monad S is an iteration-congruent retract of its coinductive resumption
transform Sν .

Proof. ‘If’ is immediate by Theorems 5.6 and 5.2. We prove ‘only if’, i.e. that S “

pS, η, --‹, --:q is an iteration-congruent retract of Sν “ pνγ. Sp--`γq, ην , --‹, --;q. We define
υX “ out-1η in2 out

-1pS in1q and

ρX “
`

SνX
out
ÝÝÑ SpX ` SνXq

˘:
.

Clearly, υf is σ-guarded for every f : X Ñ SY and υ is left inverse to ρ, for

ρυ “ out: out-1η in2 out
-1pS in1q

“ rη, ρs‹ out out-1η in2 out
-1pS in1q // fixpoint for p--q:

“ ρ out-1pS in1q

“ rη, ρs‹ out out-1pS in1q // fixpoint for p--q:

“ η‹

“ id.

It follows straightforwardly by naturality of p--q: that ρ is a natural transformation. Note
the following property of ρ: for any h : X Ñ SpY `Xq, outpcoithq “ Spid` coithqh, and
hence, by uniformity

ρpcoithq “ h:. (5.11)

Let us verify that ρ is a monad morphism. For one thing

ρην “ rη, ρs‹ out ην “ rη, ρs‹η in1 “ η.

Next, we have to check that ρf6 “ pρfq‹ρ for any f : X Ñ SνY . Note that

f6 “ coit
`

rrη in1, Spid` S
ν in1q out f s, η in2s

‹ out
˘

pSν in2q.

Therefore

ρf6 “ ρ coit
`

rrη in1, Spid` S
ν in1q out f s, η in2s

‹ out
˘

pSν in2q

“
`

rrη in1, Spid` S
ν in1q out f s, η in2s

‹ out
˘:
pSν in2q // (5.11)

“
`

Srid, in2s rpS in1q rη in1, Spid` S
ν in1q out f s, η in2s

‹ out
˘:
pSν in2q

“
`

prpS in1q rη in1, Spid` S
ν in1q out f s, η in2s

‹ outq:
˘:
pSν in2q // codiagonal

“ prη in1, Spid` S
ν in1q out f s

‹ out:q: pSν in2q // naturality

1:28 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

“ prη in1, Spid` S
ν in1q out f s

‹ρq: pSν in2q

“ rη, prη in1, ρs
‹Spid` Sν in1q out fq

:s‹ρ pT in2q // dinaturality

“ rη, prη in1, ρs
‹Spid` Sν in1q out fq

:s‹pS in2q ρ

“ pprη in1, ρs
‹Spid` Sν in1q out fq

:q‹ ρ

“ pppS in1q rη, ρs
‹ out fq:q‹ ρ

“ pppS in1q ρfq
:q‹ ρ

“ prη, ppS in1q ρfq
:s‹pS in1q ρfq

‹ ρ // fixpoint

“ pρfq‹ρ.

Finally, let us check that ρ is an iteration congruence. Let f, g : X Ñ2 S
νpY `Xq, which

means that there are f 1, g1 : X Ñ SpY ` SνpX ` Y qq such that out f “ Spin1`idqf
1 and

out f “ Spin1`idqg
1. Suppose that ρf “ ρg, which amounts to

rη in1, ρs
‹f 1 “ rη in1, ρs

‹g1, (5.12)

for

ρf “ rη, ρs‹ out f “ rη, ρs‹Spin1`idqf
1 “ rη in1, ρs

‹f 1

and analogously for g. Our goal is to prove that

ρf ; “ rη, prη in1, ρs
‹f 1q;s‹η in2,

from which ρf : “ ρg: will follow by the analogous formula for ρg: and (5.12). Observe that

f ; “ pcoithq ην in2

where h “ rrη in1, f
1s, η in2s

‹ out. Now

ρf ; “ ρ pcoithq ην in2

“ h: ην in2 // (5.11)

“ prrη in1, f
1s, η in2s

‹ outq: ην in2

“ pSrid, in2s rrη in1 in1, pS in1qf
1s, η in2s

‹ outq: ην in2

“ pprrη in1 in1, pS in1qf
1s, η in2s

‹ outq:q: ην in2 // codiagonal

“ pprpS in1qrη in1, f
1s, η in2s

‹ outq:q: ην in2

“ prη in1, f
1s‹ out:q: ην in2 // naturality

“ prη in1, f
1s‹ρq: ην in2

“ rη, prη in1, ρs
‹f 1q:s‹ρ ην in2 // dinaturality

“ rη, prη in1, ρs
‹f 1q:s‹ην in2

and we are done.

Example 5.8 (Finite trace semantics). Let us revisit Example 4.5 (4), with A assumed to be
finite throughout. Recall that µγ. pX`1q`Aˆγ – A‹`A‹ˆX is a final ppX`1q`Aˆ --q-
coalgebra in the Kleisli category SetPω1 of Pω1 . Note that νγ.Pω1pX`Aˆγq is a coalgebra
of the same type in the same category, with

νγ.Pω1pX `Aˆ γq
Pω1 pin1`idq outYt¨u in1 in2 !
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Pω1ppX ` 1q `Aˆ νγ.Pω1pX `Aˆ γqq

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:29

as the structure morphism, where Y denotes pointwise union and t¨u is the map x ÞÑ txu, i.e.
the unit of Pω1 . Intuitively, we thus add ‘non-termination’, i.e. the element of the right-hand
summand 1 in X`1, as a possible result to every state (in the original view of Hasuo et al. [20],
this element instead represents acceptance, so the above definition would correspond to
converting a labelled transition system into an automaton by making every state accepting).
This yields a final coalgebra map ξX : νγ.Pω1pX ` A ˆ γq Ñ Pω1pµγ. pX ` 1q ` A ˆ γq
characterized by the diagram

νγ.Pω1pX `Aˆ γq pX ` 1q `Aˆ νγ.Pω1pX `Aˆ γq

µγ. pX ` 1q `Aˆ γ pX ` 1q `Aˆ µγ. pX ` 1q `Aˆ γ

pin1`idq outYt¨u in1 in2 !

ξX X`1`AˆξXpin SetPω1 q

in-1

which amounts to the following corecursive definition of ξX :

ξXptq “ tin in1 in1 x | in1 x P out tuYtin in1 in2 ‹uYtin in2〈a, t2〉 | t2 P ξXpt1q, in2〈a, t1〉 P out tu.
The result of applying ξX to a tree is the set of finite traces in it, which are finite sequences
from A‹ followed either by an element of X (successfully terminating traces) or by the single
inhabitant of 1 (divergent traces). It is easy to see that ξ is a natural transformation; we
show that it is in fact a monad morphism. The domain of ξ is a generalized coalgebraic
resumption monad νγ.Pω1p--`Aˆ γq (on Set) as discussed in Example 3.12, while the
codomain Pω1pµγ. p--`1q `Aˆ γq is obtained by sandwiching the monad νγ. p--`1q `Aˆ γ
(on SetPω1) between the adjoint pair F % G : SetPω1 Ñ Set generating the monad Pω1 , and

therefore is also a monad (cf. Section 2). The corresponding structure is defined as follows:

ηpxq “ tin in1 in1 xu
`

f : X Ñ Pω1pµγ. pY ` 1q `Aˆ γq
˘‹
ppq “

ď

tpiter f̂qptq | t P pu

where iter f̂ : µγ. pX`1q`Aˆγ Ñ Pω1pµγ. pY `1q`Aˆγq is the initial algebra morphism

to the algebra pPω1pµγ. pY ` 1q `Aˆ γq, f̂q whose structure map

f̂ : pX ` 1q `Aˆ Pω1pµγ. pY ` 1q `Aˆ γq Ñ Pω1pµγ. pY ` 1q `Aˆ γq

is as follows: f̂pin1 in1 xq “ fpxq, f̂pin1 in2 ‹q “ tin in1 in2 ‹u, f̂pin2〈a, t〉q “ tin in2〈a, t〉u. This

results in the following inductive definition of iter f̂ :

piter f̂q in in1 in1 x “fpxq

piter f̂q in in1 in2 ‹ “tin in1 in2 ‹u

piter f̂q in in2〈a, t〉 “tin in2〈a, t1〉 | t1 P piter f̂qptqu
It is then easy to see that ξ respects η. The fact that ξ respects Kleisli lifting amounts to a
rather technical verification of the fact that both ξf‹ and pξfq‹ξ satisfy the same corecursive
definition and are thus equal:

ξ f‹ppq “

in in1 in1 x | in1 x P out f
‹ppq

(

Y

in in1 in2 ‹
(

Y

in2〈a, t2〉 | t2 P ξpt1q, in2〈a, t1〉 P out f‹ppq
(

“

in in1 in1 x | in1 x P tout fpxq | in1 x P out pu
(

Y tin in1 in2 ‹u

1:30 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

Y

in in1 in1 x | in1 x P tin2〈a, f‹pp1q〉 | in2〈a, p1〉 P out pu
(

Y

in2〈a, t2〉 | t2 P ξpt1q, in2〈a, t1〉 P tout fpxq | in1 x P out pu
(

Y

in2〈a, t2〉 | t2 P ξpt1q, in2〈a, t1〉 P tin2〈a, f‹pp1q〉 | in2〈a, p1〉 P out pu
(

“ tin in1 in1 x | in1 x P out fpxq, in1 x P out pu Y tin in1 in2 ‹u

Y tin2〈a, t2〉 | t2 P ξpt1q, in2〈a, t1〉 P out fpxq, in1 x P out pu

Y tin2〈a, t2〉 | t2 P ξpf‹pp1qq, in2〈a, p1〉 P out pu

pξfq‹pξppqq “
ď

tpiter xξ fqptq | t P ξppqu

“
ď

piter xξ fqptq | t P tin in1 in1 x | in1 x P out pu
(

Y
ď

piter xξ fqptq | t P tin in1 in2 ‹u
(

Y
ď

piter xξ fqptq | t P tin in2〈a, t2〉 | t2 P ξpt1q, in2〈a, t1〉 P out pu
(

“
ď

tξfpxq | in1 x P out pu Y tin in1 in2 ‹u

Y tin2〈a, t〉 | t P piter xξ fqpt2q, t2 P ξpt1q, in2〈a, t1〉 P out pu
“ tin in1 in1 x | in1 x P out fpxq, in1 x P out pu Y tin in1 in2 ‹u

Y tin2〈a, t2〉 | t2 P ξpt1q, in2〈a, t1〉 P out fpxq, in1 x P out pu

Y tin2〈a, t2〉 | t2 P pξfq‹pξpt1qq, in2〈a, t1〉 P out pu
Now consider the situation where guardedness for νγ.Pω1pX ` A ˆ γq is induced by
vacuous guardedness for Pω1p--`A ˆ γq by Theorem 4.3 (1) and with guardedness for
Pω1pµγ. pX ` 1q`Aˆ γq defined as follows: f : X Ñ Pω1pµγ. pY ` 1q`Aˆ γq is σ-guarded
iff as a morphism f : X Ñ νγ. pY ` 1q ` A ˆ γ in SetPω1 it is σ-guarded under the no-

tion of guardedness induced by vacuous guardedness for p--`1q ` A ˆ -- in SetPω1 , again

by Theorem 4.3 (1). This turns ξ into a guarded monad morphism, and moreover ξ is
iteration-preserving by Lemma 3.10, because, as we argued before in Example 4.5 (4), its
codomain Pω1pµγ. pX ` 1q `Aˆ γq is guarded iterative (a more abstract argument showing
that sandwiching a guarded iterative monad between an adjoint pair produces a guarded
iterative monad is later given in Theorem 6.1).

In order to obtain a guarded retraction from ξ, let ρ be the epimorphic part of the
image factorization of ξ. It is easy to verify that the codomain of ρ consists precisely of the
prefix-closed subsets of Pω1pµγ. pX ` 1q ` A ˆ γq, i.e. is the guarded iterative submonad
of Pω1pµγ. pX ` 1q ` A ˆ γq mentioned in Example 4.5 (4). Under the axiom of choice,
this is sufficient to turn ρ into a retraction because every epi splits. However, the requisite
section υ can also be constructed explicitly without choice, for every prefix-closed subset
of Pω1pµγ. pX ` 1q `Aˆ γq standardly induces an A-branching tree, hence an element of
νγ.Pω1pX `Aˆ γq. In summary,

ρXptq “ tin in1 in1 x | in1 x P out tu Y tin in1 in2 ‹u Y tin in2〈a, t2〉 | t2 P ρXpt1q, in2〈a, t1〉 P out tu
υXpSq “ out-1

`

in1 x | in in1 in1 x P S
(

Y

in2〈a, υXptt | in in2〈a, t〉 P Suq〉 | a P A
(˘

where t P νγ.Pω1pX`Aˆγq and S is a countable prefix-closed subset of µγ. pX ` 1q`Aˆ γ.
Note that the tree constructed by υ has only very special kind of nondeterminism, not
including non-deterministic choice between processes prefixed by actions. Roughly, we can

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:31

have x ` y and x ` a.t in the image of υ with x, y P X and a P A, but not a.t ` b.s with
a, b P A. The composition υρ can therefore be seen as a determinization procedure, pushing
the non-deterministic choice downwards along the tree. Of course, non-determinism can not
be entirely eliminated, because in the end we arrive at subsets of X, which must remain
intact. We conjecture that this effect is generic, i.e. that the same scenario can be run
with ω1 replaced by any other regular infinite cardinal κ; that is, υρ pushes κ-branching
non-determinism downwards in the same sense as above. We also conjecture that υ is a
monad morphism and hence so is υρ.

The established retraction pρ, υq can thus be reused in two further cases.

Guarded iteration for finitely-branching processes We can restrict ρ to the monad
νγ.Pωp--`AˆXq capturing finitely branching processes with outputs in X. As indicated
above, we then essentially again obtain countable prefix-closed sets P of traces as the image
of ρ, which however now additionally satisfy the condition that for each w P A˚, the set
tx P X | pw, xq P P u is finite (while in the countably branching case, and for infinite X, these
sets may be countably infinite). The section υ restricts accordingly, and we thus obtain a
guarded retraction.

Unguarded iteration for countably-branching processes As discussed in Exam-
ple 4.5 (2), νγ.Pω1pX ` A ˆ γq supports unguarded iteration, and in fact is an Elgot
monad [18]. In the remainder of the example we use the terms “unguarded” for total
guardedness and “guarded” for the notion of guardedness on νγ.Pω1pX `Aˆ γq discussed
above. Now, in order to conclude by Theorem 5.7 that the codomain of ρ as above is an
Elgot monad, it suffices to check that ρ remains iteration preserving if we equip its domain
with total guardedness, i.e. that ρ preserves iteration also of unguarded morphisms. So let
f : X Ñ νγ.Pω1ppY ` Xq ` A ˆ γq. The unguarded iterate f ; is defined as the guarded

iterate f̂ ;, where f̂ has the same profile as f and is defined as the guarded morphism

f̂ “ out-1Pω1pin1`idq
`

Pω1rin1`id, in1 in2s out f
˘:
,

with iteration p--q: on Pω1 calculated in the expected way using least fixpoints [18]. It is
easy to check that

υρf̂ “ out-1Pω1pin1`idq
`

Pω1rin1`id, in1 in2s out υρf
˘:

and thus pυρf̂q; “ pυρfq; by the above definition of pυρfq;. Therefore, using (5.9) and the

fact that, as we argued above, ρ preserves guarded iteration, ρf ; “ ρf̂ ; “ ρpυρf̂q; “ ρpυρfq;,
which means that ρ is iteration preserving.

Recall from Section 4 that guardedness, guarded iteration, and the coinductive resumption
transform work at the level of parametrized monads, i.e. functors from a parameter category
D into the category of monads on a category C, typically rearranged into bifunctors
: C ˆ D Ñ C. The notions of guarded retraction and iteration congruence extend
straightforwardly to parametrized monads; explicitly:

Definition 5.9. A parametrized guarded monad morphism is a guarded retraction (an
iteration congruence) if its components are guarded retractions (iteration congruences).

We then can take the claims of Theorem 4.3 further:

Theorem 5.10. Let #, #̂ : C ˆ pC ˆDq Ñ C be guarded parametrized monads, and let
ρ : # Ñ #̂ be an iteration-congruent retraction. By Theorem 4.3, #ν “ νγ. --#pγ, --q

1:32 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

and #̂ν “ νγ. -- #̂pγ, --q are also parametrized guarded monads. Then ρν : #ν Ñ #̂ν, with
components

ρνX,Y “ coit
`

νγ.X # pγ, Y q
ρ out
ÝÝÝÝÑ X #̂ pνγ.X # pγ, Y q, Y q

˘

,

is again an iteration-congruent retraction.

Proof. It is already shown in Theorem 4.3 that ρν is a monad morphism.
We define the associated section by υν “ coitpυ outq. Indeed it is easy to check that

ρνυν “ id: since

out ρνυν “ pid #̂ ρνq ρ out υν

“ pid #̂ ρνq ρpid# υνq υ out

“ pid #̂ ρνqpid #̂ υνq ρυ out

“ pid #̂ ρνυνq out .

and also out id “ pid #̂ idq out, the claim ρνυν “ id follows by uniqueness of final coalgebra
morphisms.

Next, suppose that f : X Ñ Y #̂ν Z is σ-guarded, which according to Theorem 4.3
means that out f is σ-guarded. We need to show that so is υνf : X Ñ Y #ν Z. Now

out υνf “ pid# υνq υ out f

is σ-guarded because ρ is a guarded retraction and hence υ out f is σ-guarded, and id# υν

is a parametrized guarded monad morphism. Hence, again, according to Theorem 4.3, υνf
is σ-guarded. We have thus proved that ρν is a guarded retraction.

We are left to check that ρν is an iteration congruence. Suppose that ρνf “ ρνg for
some f, g : X Ñ2 pY `Xq #

ν Z. Then

ρ pid# ρνq out f “ pid #̂ ρνq ρ out f “ out ρνf

(by naturality of ρ and the definition of ρν) and analogously for g in place of f , so using
that ρ is an iteration congruence, we obtain

ρ ppid# ρνq out fq: “ ρ ppid# ρνq out gq:. (5.13)

Observe that for suitably typed h,

out coitpρ outq pcoithq “ pid #̂ coitpρ outqq ρ out pcoithq

“ pid #̂ coitpρ outqq ρ pid# pcoithqqh

“ pid #̂ coitpρ outq pcoithqq ρ h,

and therefore, by finality of coitpρhq,

coitpρ outq pcoithq “ coitpρhq. (5.14)

Therefore,

ρνf ; “ ρν coitprη, pout fq:s‹ outq η in2 // Theorem 4.3

“ coitpρ outq coitprη, pout fq:s‹ outq η in2

“ coitpρrη, pout fq:s‹ outq η in2 // (5.14)

“ coitprη, ρ ppid# ρνq out fq:s‹ outq ρνη in2 .

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:33

The last step is due to uniqueness of the final coalgebra morphism coitprη, ρ pout fq:s‹ρ outq
and the following calculation:

out coit
`

rη, ρ ppid# ρνq out fq:s‹ out
˘

ρν

“
`

id #̂ coitprη, ρ ppid# ρνq out fq:s‹ outq
˘

rη, ρ ppid# ρνq out fq:s‹ out ρν

“
`

id #̂ coitprη, ρ ppid# ρνq out fq:s‹ outq
˘

ρ rη, ppid# ρνq out fq:s‹pid# ρνq out // ρ is a monad morphism

“
`

id #̂ coitprη, ρ ppid# ρνq out fq:s‹ outq
˘

ρ pid# ρνq rη, pout fq:s‹ out // id# ρν is a monad morphism

“
`

id #̂ coitprη, ρ ppid# ρνq out fq:s‹ outq ρν
˘

ρ rη, pout fq:s‹ out .

An analogous calculation applies to ρνg;, and therefore by (5.13), ρνf ; “ ρνg;.

Theorems 5.7 and 5.10 jointly provide a simple and structured way of showing that Elgotness
extends along the parametrized monad transformer # ÞÑ #̂: If --#X is Elgot, then by
Theorem 5.7 there is an iteration-congruent retraction ρ : νγ. --`γ # X Ñ --#X. By
Theorem 5.10, this gives rise to an iteration-congruent retraction

ρν : νγ1. νγ. --`γ # pγ1, Xq Ñ νγ1. --#pγ1, Xq

and by Theorem 5.7, the right-hand side is again Elgot. We have thus proved

Corollary 5.11. Given a parametrized monad # and X P |C|, if --#X is Elgot then so is
--#νX “ νγ. --#pγ,Xq.

In particular, we have thus obtained a more structured and simpler proof of one of the main
results in [18], which states that the coinductive generalized resumption monad transformer
preserves Elgotness.

Theorem 5.7 characterizes iteratable Elgot monads as iteration-congruent retracts of
their p--qν-transforms. We take this perspective further as follows.

Definition 5.12. We extend the notation F ν “ νγ.F p´ ` γq to functors F . We say that a
functor F is

‚ 1-iteratable if F ν exists,
‚ pn` 1q-iteratable if F ν is n-iteratable,
‚ ω-iteratable if F is n-iteratable for every n.

We apply all these notions mainly to monads T, referring to their underlying functor T .

Remark 5.13. Note that for every natural number n,

νγ1. νγ. T pX ` γ1 ` nˆ γq – νγ. T pX ` γ ` nˆ γq – νγ. T pX ` pn` 1q ˆ γq,

where nˆX denotes the n-fold sum X ` . . .`X. It follows by induction that n-iteratability
of T is equivalent to the assumption that all coalgebras νγ. T pX ` nˆ γq exist, a condition
that does not appear much stronger than iteratability of T . Still, the 2-iteratable functors
are properly contained in the iteratable functors, as the following example shows. Let C be
the category of countable sets and T “ Id. Then, it is easy to see that T νX is isomorphic to

1:34 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

X ˆN` 1, hence Id is iteratable. However, it is not 2-iteratable, because pT νqν∅ – νγ. 2ˆ γ
can be characterized as the object of all infinite bit streams, which does not fit into C
for cardinality reasons. Showing this formally amounts to mimicking Cantor’s classical
diagonalization argument.

We expect that separating n-iteratability from pn ` 1q-iteratability for n ą 1 would
involve much less natural examples, as the previous cardinality argument typically would
not apply.

Consider the functor T ÞÑ Tν on the category of ω-iteratable monads over C. This con-
struction is itself a monad: the unit η is the natural transformation with components
ηX “ out-1pT in1q : TX Ñ T νX, and the multiplication µ : T νν Ñ T ν has components

µX “ coit
`

T rid, in2 out
-1s out out : T ννX Ñ T pX ` T ννXq

˘

.

We record explicitly that the relevant laws are satisfied:

Lemma 5.14. With multiplication µ and unit η as defined above, the construction p--qν

becomes a monad on the (overlarge) category of ω-iteratable monads.

Proof. By coinduction. Using the definitions of µ and η, we have

outµη “ out coit
`

T rid, in2 out
-1s out out

˘

out-1pT ν in1q

“ T
`

id` coitpT rid, in2 out
-1s out outq

˘

T rid, in2 out
-1s out pT ν in1q

“ T
`

id` coitpT rid, in2 out
-1s out outq

˘

T rid, in2 out
-1sT

`

in1`pT
ν in1q

˘

out

“ T
`

id` coitpT rid, in2 out
-1s out outq out-1 pT ν in1q

˘

out

“ T
`

id` µη
˘

out,

and therefore µη “ id by uniqueness of final coalgebra morphisms. Analogously,

outµην “ out coit
`

T rid, in2 out
-1s out out

˘

coitpη outq

“ T
`

id` coitpT rid, in2 out
-1s out outq

˘

T rid, in2 out
-1s outT pid` coitpη outqqη out

“ T
`

id` coitpT rid, in2 out
-1s out outq

˘

T rid, in2 out
-1s pT in1qT

`

id` coitpη outq
˘

out

“ T
`

id` coitpT rid, in2 out
-1s out outq

˘

T
`

id` coitpη outq
˘

out

“ T pid` µηνq out

and therefore outµην “ id. The remaining law µµ “ µµν follows by the same argument
from

outµµν “ out coit
`

T rid, in2 out
-1s out out

˘

coitpcoit
`

T rid, in2 out
-1s out out

˘

outq

“ T
`

id` coitpT rid, in2 out
-1s out outq

˘

T rid, in2 out
-1s out

T
`

id` coitpcoit
`

T rid, in2 out
-1s out out

˘

outq
˘

coit
`

T rid, in2 out
-1s out out

˘

out

“ T pid` µqT rid, in2 out
-1s outT pid` µνqµ out

“ T rid` µµν , in2 µ out-1T pid` µνqs outµ out

“ T rid` µµν , in2 µ out-1T pid` µνqµsT rid, in2 out
-1s out out out

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:35

“ T rid` µµν , in2 µµ
ν out-1sT rid, in2 out

-1s out out out

“ T pid` µµνqT rid, in2 out
-1sT rid, in2 out

-1s out out out

outµµ “ out coit
`

T rid, in2 out
-1s out out

˘

coit
`

T νrid, in2 out
-1s out out

˘

“ T pid` µqT rid, in2 out
-1s outT νpid` µqT νrid, in2 out

-1s out out

“ T rid` µµ, in2 µ out-1T νpid` µqs outT νrid, in2 out
-1s out out

“ T rpid` µµq rid, in2 out
-1s, in2 µ out-1T νpid` µqT νrid, in2 out

-1ss out out out

“ T rpid` µµq rid, in2 out
-1s, in2 µµ out-1out-1s out out out

“ T pid` µµqT rrid, in2 out
-1s, in2 out

-1out-1s out out out

“ T pid` µµqT rid, in2 out
-1sT rid, in2 out

-1s out out out

For every T we now define the delay transformation

� “ out-1η in2 : T ν Ñ T ν .

This leads to our second main result:

Theorem 5.15. The category of ω-iteratable Elgot monads over C is isomorphic to the full
subcategory of the category of p--qν-algebras consisting of the p--qν-algebras pS, ρ : Sν Ñ Sq
(for ω-iteratable S) satisfying ρ� “ ρ.

We refer to the condition ρ� “ ρ as delay cancellation.

Remark 5.16. The point of the above result is to systematize the connection between
the p--qν construction and Elgot monads previously indicated by Theorem 5.7. Alternative
efforts to show that Elgotness is monadic exist (see Section 7) but necessarily involve quite
different monads than p--qν : Any monad M (on a category of monads) whose algebras are
precisely the Elgot monads would itself have to produce Elgot monads MT, while the point
of involving p--qν is to obtain Elgot monads from guarded iterative ones.

Formally, the following simple example shows that the delay cancellation condition
ρ� “ ρ cannot be omitted from Theorem 5.15. Let MonpCqν be the category of p--qν-
algebras, and let MonpCqν� be the full subcategory of MonpCqν figuring in Theorem 5.15.
Since the identity functor is the initial monad, the initial object of MonpCqν is Capretta’s
delay monad [7] D “ νγ. p--`γq. On the other hand, the initial object of MonpCqν� (if it
exists) is the initial Elgot monad L, which on C “ Set is the maybe monad p--q ` 1.

If C “ Set, then DX “ pX ˆ N ` 1q does turn out to be Elgot [15] (but applying
Theorem 5.15 to D qua Elgot monad yields a different p--qν-algebra structure than the initial
one), and L is, in this case, a retract of D in MonpCqν�. The situation is more intricate in
categories with a nonclassical internal logic, for which D is mainly intended. We believe that
in such a setting, neither is D Elgot in general, nor is L the maybe monad. However, there
will still be a unique p--qν-algebra morphism D Ñ L in MonpCqν .

Proof (Theorem 5.15). We fix the notation pη, --‹, :q for (potential) Elgot monads over C
and pην , --6, ;q for their p--qν-transforms. We record the following identity, satisfied by any
monad morphism ρ for which ρη “ id and ρ� “ ρ:

ρ “ rη, ρs‹ out . (5.15)

1:36 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

Indeed,

rη, ρs‹ out “ rη, ρs‹ρη out // ρη “ id

“ rη, ρ�s‹ρη out // ρ� “ ρ

“ ρ rη,�s6η out // ρ is a monad morphism

“ ρ rη,�s6 out-1pS in1q out

“ ρ out-1 routrη, ids, η in2rη, ids
6s‹pS in1q out

“ ρ out-1 rη in1, η in2s
‹ out

“ ρ.

For the inclusion from Elgot monads to p--qν-algebras, let S be an Elgot monad. By
Theorem 5.7, S is an iteration-congruent retract of Sν with SνX “ νγ. SpX`γq; specifically,
υ “ �η : S Ñ Sν is a left inverse to ρ “ out: : Sν Ñ S.

First of all, it is easy to see that

ρ� “ rη, ρs‹ out� “ rη, ρs‹η in2 “ ρ.

Moreover, we need to show the axioms of p--qν-algebras:

ρη “ id and ρµ “ ρρν (5.16)

where ρν “ coitpρ outq : Sνν Ñ Sν . For the left axiom, we readily have id “ ρυ “ ρ�η “ ρη.
The right axiom is shown as follows:

ρµ
piq
““ ρrη, p� outq;s6 out

piiq
““ ρ

`

out-1Spin1`η in2qρ out
˘; piiiq
““ ρρν .

To show step (i), first observe that on the one hand

µ “ coit
`

Srid` out, in2s out
˘

out

Indeed, let t “ coit
`

Srid` out, in2s out
˘

. Then

out t out “ Spid` tqSrid` out, in2s out out

“ Srid` t out, t in2s out out

“ Spid` t outqSrid, in2 out
-1s out out,

which means that t out satisfies the equation uniquely characterizing µ, hence µ “ t out.
On the other hand, rη, p� outq;s6 satisfies the equation characterizing t. In order to see this,
note that

outp� outq; “ η in2rη
ν , p� outq;s6 out, (5.17)

witnessed by the following calculation:

outp� outq;

“ outrην , p� outq;s6� out

“ routrην , p� outq;s, η in2rη
ν , p� outq;s6s‹ out� out

“ routrην , p� outq;s, η in2rη
ν , p� outq;s6s‹η in2 out

“ η in2rη
ν , p� outq;s6 out

Therefore,

outrην , p� outq;s6 “ routrην , p� outq;s, η in2rη
ν , p� outq;s6s‹ out

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:37

“ rrout ην , out p� outq;s, η in2rη
ν , p� outq;s6s‹ out

“ rη pid` rην , p� outq;s6 outq, η in2rη
ν , p� outq;s6s‹ out // (5.17)

“ rη pid` rην , p� outq;s6q rid` out, in2ss
‹ out

“ Spid` rην , p� outq;s6qSrid` out, in2s out .

In summary we obtain

µ “ coit
`

Srid` out, in2s out
˘

out “ rην , p� outq;s6 out,

which justifies (i). Let us check (iii). Let us denote out-1Spin1`η
ν in2qρ out by t. Then

out t; “ outrην , t;s6 out-1Spin1`η
ν in2qρ out

“ routrην , t;s, η in2rη
ν , t;s6s‹Spin1`η

ν in2qρ out

“ rout ην , η in2 t
;s‹ρ out

“ Spid` t;qρ out,

and therefore t; satisfies the equation characterizing ρν , hence ρν “ t;. Finally, we proceed
with the proof of (ii). Using the fact that ρ is a monad morphism and that it cancels �, we
obtain that

ρrη, p� outq;s6 out “ rη, ρ p� outq;s6ρ out

“ rη, ρ p� outq;s6ρ� out

“ ρrη, p� outq;s6� out

“ ρp� outq;. // fixpoint

In order to finish the proof of (ii), it suffices to check that

ρ� out “ ρ out-1Spin1`η in2qρ out (5.18)

and call the assumption that ρ is an iteration congruence. The proof of (5.18) runs as
follows:

ρ out-1Spin1`η in2qρ out “ rη, ρs
‹ out out-1Spin1`η in2qρ out

“ rη, ρs‹Spin1`η in2qρ out

“ rη in1, ρη in2s
‹ρ out

“ ρ out

“ ρ� out .

We have thus proved the claimed inclusion on objects. To extend the claim to morphisms,
suppose that α : S Ñ T is an Elgot monad morphism, i.e. a monad morphism such that
αf : “ pαfq:, and let us show that it is also a morphism of the corresponding p--qν-algebras,
i.e. αρ “ ραν . Indeed, on the one hand αρ “ α out: “ pα outq:, and also on the other hand,
by uniformity of p--q:, ραν “ out: αν “ pα outq:, since outαν “ T pid` ανqα out.

We proceed with the converse inclusion, i.e. from p--qν-algebras to Elgot monads. So
assume that pS, ρq is a p--qν-algebra, i.e. the laws (5.16) are satisfied, and ρ� “ ρ. We
claim that S equipped with the iteration operation f : “ ρpcoit fq is an Elgot monad. The
corresponding axioms are verified as follows.

1:38 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

‚ Fixpoint. Let f : X Ñ SpY `Xq. Then f ; “ ρpcoit fq and hence

f ; “ ρpcoit fq

“ rη, ρs‹ out pcoit fq

“ rη, ρs‹Spid` coit fqf // (5.15)

“ rη, ρ coit f s‹f

“ rη, f ;s‹f.

‚ Naturality. Let f : X Ñ SpY `Xq and g : Y Ñ SZ. Then

g‹f : “ g‹ρ pcoit fq “ ρ pηgq6 pcoit fq,

prpS in1q g, η in2s
‹ fq: “ ρ coitprpS in1q g, η in2s

‹ fq.

We are left to show that pηgq6pcoit fq satisfies the equation for coitprpS in1q g, η in2s
‹ fq. This

runs as follows:

outpηgq6pcoit fq “ routη g, η in2pηgq
6s‹ out pcoit fq

“ rpS in1qg, η in2pηgq
6s‹Spid` coit fqf

“ rpS in1qg, η in2pηgq
6pcoit fqs‹f

“ Spid` pηgq6pcoit fqq rpS in1q g, η in2s
‹ f.

‚ Codiagonal. Let f : X Ñ SppY `Xq `Xq. Observe that since

out pcoitpρ outqq pcoitpcoit fqq

“ Spid` coitpρ outqq ρ out pcoitpcoit fqq

“ Spid` coitpρ outqq ρSνpid` coitpcoit fqq pcoit fq

“ Spid` coitpρ outqqSpid` coitpcoit fqq ρ pcoit fq // naturality of ρ

“ Spid` pcoitpρ outqq pcoitpcoit fqqq ρ pcoit fq,

we have that
coitpρ pcoit fqq “ pcoitpρ outqq pcoitpcoit fqq (5.19)

by uniqueness of final morphisms. Thus,

f :: “ ρ pcoitpρpcoit fqqq

“ ρ pcoitpρ outqqpcoitpcoit fqq // (5.19)

“ ρ ρν pcoitpcoit fqq // definition of ρν

“ ρµ pcoitpcoit fqq. // (5.16)

Since by definition, pSrid, in2s fq
: “ ρ coitpSrid, in2s fq, we are only left to check that

coitpSrid, in2s fq “ µ pcoitpcoit fqq. This is easy to establish directly by showing that the
right-hand side satisfies the equation characterizing the left-hand side:

outµ coitpcoit fq

“ Spid` µqSrid, in2 out
-1s out out coitpcoit fq

“ Srid` µ, in2 µ out-1s out out pcoitpcoit fqq

“ Srid` µ, in2 µ out-1s out Sνpid` coitpcoit fqq coit f

“ Srid` µ, in2 µ out-1sSppid` coitpcoit fqq ` Sνpid` coitpcoit fqqq out coit f

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:39

“ Srid` µ, in2 µ out-1sSppid` coitpcoit fqq ` Sνpid` coitpcoit fqqqSpid` coit fqf

“ Srid` µ pcoitpcoit fqq, in2 µ out-1Sνpid` coitpcoit fqqpcoit fqs f

“ Srid` µ pcoitpcoit fqq, in2 µ pcoitpcoit fqqs f

“ Spid` µ pcoitpcoit fqqqSrid, in2s f.

‚ Uniformity. Let f : X Ñ T pY `Xq, g : Z Ñ SpY ` Zq, h : Z Ñ X and suppose that
f h “ T pid ` hq g. If follows standardly by uniqueness of final coalgebra morphisms that
pcoit fqh “ coit g and therefore

f ; h “ ρ pcoit fqh “ ρ pcoit gq “ g;.

Finally, let us check that every p--qν-algebra morphism α : T Ñ S is an Elgot monad morphism.
By assumption we have that αρ “ ραν , and therefore, for every f : X Ñ SpY ` Xq,
αf : “ αρpcoit fq “ ρανpcoit fq “ ρ coitpα outqpcoit fq. It is then straightforward to verify
that ρ coitpα outqpcoit fq “ ρ coitpαfq “ pαfq:.

6. A Sandwich Theorem for Elgot Monads

As an application of Theorem 5.7, we show that sandwiching an Elgot monad between a pair
of adjoint functors again yields an Elgot monad. A similar result has previously been shown
for completely iterative monads [31]; this result generalizes straightforwardly to guarded
iterative monads:

Theorem 6.1. Let F : C Ñ D and U : D Ñ C be a pair of adjoint functors with associated
natural isomorphism Φ: DpFX, Y q Ñ CpX,UY q, and let T be a guarded iterative monad
on D. Then the monad induced on the composite functor UTF is guarded iterative, with the
guardedness relation defined by taking f : X Ñσ UTFY if and only if Φ-1f : FX Ñσ TFY ,
and unique solutions given by f ÞÑ ΦppΦ-1fq:q.

Proof. First, we need to verify that the guardedness relation defined in the claim satisfies
the rules from Definition 3.1. Note that since left adjoints preserve coproducts (LAPC), we
can assume w.l.o.g. that F pX ` Y q “ FX ` FY .

‚ (trv) Let f : X Ñ UTFY be a morphism. By (trv) for T, we have
pT in1qpΦ

-1fq : FX Ñσ T pFY ` FXq. Then, the following holds:

pT in1qpΦ
-1fq “ pTF in1qpΦ

-1fq // LAPC

“ Φ-1ppUTF in1qfq // Φ is a natural isomorphism

Thus, Φ-1ppUTF in1qfq : FX Ñσ T pFY ` FXq, so pUTF in1qf : X Ñσ UTF pY `Xq.
‚ (par) Let f : X Ñσ UTFZ and g : Y Ñσ UTFZ. This means that Φ-1f : FX Ñσ

TFZ and Φ-1g : FY Ñσ TFZ, hence, by (par) for T, rΦ-1f,Φ-1gs : FX`FY Ñσ TFZ. By
LAPC, we have rΦ-1f,Φ-1gs “ Φ-1rf, gs : F pX ` Y q Ñσ TFZ, so rf, gs : X ` Y Ñσ UTFZ.

‚ (cmp) Let f : X Ñ2 UTF pY ` Zq, g : Y Ñσ UTFV , and h : Z Ñ UTFV be
morphisms. Then, by (cmp) for T, we obtain that rΦ-1g,Φ-1hs‹pΦ-1fq : FX Ñσ TFV .
Then, the following holds:

rΦ-1g,Φ-1hs‹pΦ-1fq

“ µTpT rΦ-1g,Φ-1hsqpΦ-1fq

“ µTpΦ-1pUT rΦ-1g,Φ-1hsqfq // Φ is a nat. iso.

1:40 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

“ Φ-1ppUµTqpUT rΦ-1g,Φ-1hsqfq // Φ is a nat. iso.

“ Φ-1ppUµTqpUTΦ-1rg, hsqfq // LAPC

“ Φ-1ppUµTqpUTΦ-1idqpUTF rg, hsqfq // Φ is a nat. iso.

“ Φ-1pµUTF pUTF rg, hsqfq

“ Φ-1prg, hs‹fq.

Thus, Φ-1prg, hs‹fq : X Ñσ UTF pY ` Xq in T, so rg, hs‹f : FX Ñσ TF pY ` Xq in the
monad on UTF .

This means that if f : X Ñ2 UTF pY `Xq, then Φ-1f : FX Ñ2 T pFY ` FXq, so Φ-1f has
a unique solution due to the fact that T is guarded iterative. The rest of the proof is the
same as for Theorem 3.1 in [31].

Now, to obtain a similar result for Elgot monads, we can easily combine Theorems 5.7
and 6.1 without having to verify the equational properties by hand.

Theorem 6.2. With an adjunction as in Theorem 6.1, let S be an Elgot monad on D.
Then, the monad induced on the composite USF is an Elgot monad.

Proof. By Theorem 5.7, there exist a guarded iterative monad T and an iteration-congruent
retraction ρ : T Ñ S. By Theorem 6.1, the monad induced on UTF is guarded iterative.
Thus, it is enough to show that UρF : UTF Ñ USF is an iteration-congruent retraction.

‚ It is a retraction, since retractions are preserved by all functors.
‚ To see that it is guarded, let f : X Ñ USFY be σ-guarded. By definition, this means

that Φ-1f : FX Ñ SFY is σ-guarded in S. Since ρ is a guarded retraction, it follows that
υpΦ-1fq, for ρ’s family of sections υ, is also σ-guarded. By the fact that Φ is a natural
isomorphism, we obtain υpΦ-1fq “ Φ-1ppUυqfq, hence, by definition, pUυqf is also σ-guarded.

‚ To see that UρF is an iteration congruence, let us denote by p--q: the solution in T,
and by p--q; the solution in the monad on UTF . Let f, g : X Ñ2 UTF pX`Y q be morphisms
such that pUρqf “ pUρqg. First, using this and the fact that Φ is a natural isomorphism,
we obtain the following:

ρpΦ-1fq “ Φ-1ppUρqfq “ Φ-1ppUρqgq “ ρpΦ-1gq

Thus, by the fact that ρ is an iteration congruence, we obtain that ρpΦ-1fq: “ ρpΦ-1gq:.
Now, we check that UρF is an iteration congruence:

pUρqf ; “ pUρqpΦpΦ-1fq:q

“ ΦpρpΦ-1fq:q // Φ is a natural isomorphism

“ ΦpρpΦ-1gq:q // the above

“ pUρqpΦpΦ-1gq:q // Φ is a natural isomorphism

“ pUρqg;

Example 6.3 (From Metric to CPO-based Iteration). As an example exhibiting sandwiching
as well as the setting of Theorem 5.7, we compare two iteration operators on Set that arise
from different fixed point theorems: Banach’s, for complete metric spaces, and Kleene’s, for
complete partial orders, respectively. We obtain the first operator by sandwiching Escardo’s
metric lifting monad S [12] in the adjunction between sets and bounded complete ultrametric
spaces (which forgets the metric in one direction and takes discrete spaces in the other),

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:41

obtaining a monad S̄ on Set. Given a bounded complete metric space pX, dq, SpX, dq is
a metric on the set pX ˆ Nq Y tKu. As we show in the appendix, S is guarded iterative
if we define f : pX, dq Ñ SpY, d1q to be σ-guarded if k ą 0 whenever fpxq “ pσpyq, kq.
By Theorem 6.1, S̄ is also guarded iterative (of course, this can also be shown directly).
The second monad arises by sandwiching the identity monad on cpos with bottom in the
adjunction between sets and cpos with bottom that forgets the ordering in one direction and
adjoins bottom in the other, obtaining an Elgot monad L on Set according to Theorem 6.2.
The latter is unsurprising, of course, as L is just the maybe monad LX “ X ` 1.

The monad S̄ keeps track of the number of steps needed to obtain the final result. We
have an evident extensional collapse map ρ : S̄ Ñ L, which just forgets the number of steps.
One can show that ρ is in fact an iteration-congruent retraction, so we obtain precisely the
situation of Theorem 5.7. Technical details are in the appendix.

7. Related Work

Alternatively to our guardedness relation on Kleisli morphisms, guardedness can be formalized
using type constructors [28] or, categorically, functors, as in guarded fixpoint categories [24].
Roughly speaking, in such settings a morphism X Ñ Y ` Z is guarded in Z if it factors
through a morphism X Ñ Y` I Z where I is a functor or type constructor to be thought of
as isolating the guarded inhabitants of a type. The functorial approach, giving rise to guarded
fixpoint categories, covers also total guardedness, like we do. Our approach is slightly more
fine-grained, and in particular natively supports the two variants of the dinaturality axiom
(Figure 2), which, e.g., in guarded fixpoint categories require additional assumptions [24,
Proposition 3.15] akin to the one we discuss in Remark 3.7. In our own subsequent work,
we have generalized the notion of abstract guardedness from co-Cartesian to symmetric
monoidal categories [17], where guardedness becomes a more symmetric concept: among
morphisms XbY Ñ ZbW , where b is the monoidal structure, one distinguishes morphisms
that are (simultaneously) unguarded in the input A and guarded in the output D.

A result that resembles our Theorem 5.15, due to Adámek et al. [3], states roughly
that if C is locally finitely presentable and hyperextensive (a property imposing certain
compatibility constraints between pullbacks and countable coproducts, satisfied, e.g., over
sets and over complete partial orders), then the finitary Elgot monads are the algebras for a
monad on the category of endofunctors given by H ÞÑ LH “ ργ. p--`1`Hγq where ρ takes
rational fixpoints (i.e. final coalgebras among those where every point generates a finite
subcoalgebra); that is, in the mentioned setting, finitary Elgot monads are monadic over
endofunctors. Besides Theorem 5.15 making fewer assumptions on C, the key difference
(indicated already in Remark 5.16) is that, precisely by dint of the mentioned result, LH is
already a finitary Elgot monad (namely, the free finitary Elgot monad over H); contrastingly,
we characterize Elgot monads as quotients of guarded iterative monads, i.e. of monads where
guarded recursive definitions have unique fixpoints.

8. Conclusions and Further Work

We have given a unified account of monad-based guarded and unguarded iteration by
axiomatizing the notion of guardedness to cover standard definitions of guardedness, and
additionally, as a corner case, what we call total guardedness, i.e. the situation when all
morphisms are declared to be guarded. We thus obtain a common umbrella for guarded

1:42 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

iterative monads, i.e. monads with unique iterates of guarded morphisms, and Elgot monads,
i.e. totally guarded monads satisfying Elgot’s classical laws of iteration. We reinforce the
view that the latter constitute a canonical model for monad-based unguarded iteration by
establishing the following equivalent characterizations: Provided requisite final coalgebras
exist, a monad T is Elgot iff it satisfies one of the following equivalent conditions:

‚ it satisfies the quasi-equational theory of iteration [2, 18] (definition);
‚ it is an iteration-congruent retract of a guarded iterative monad (Theorem 5.7);
‚ it is an algebra pT, ρq of the monad T ÞÑ νγ. T pX`γq in the category of monads satisfying

a natural delay cancellation condition (Theorem 5.15).

In future work, we aim to investigate further applications of this machinery, in particular
to examples which did not fit previous formalizations. One prospective target is suggested
by work of Nakata and Uustalu [29], who give a coinductive big-step trace semantics for a
while-language. We conjecture that this work has an implicit guarded iterative monad TR

under the hood, for which guardedness cannot be defined using the standard argument based
on a final coalgebra structure of the monad because TR is not a final coalgebra. Moreover,
we aim to extend the treatment of iteration in finite trace semantics via iteration-congruent
retractions (Example 5.8) to infinite traces, possibly taking orientation from recent work on
coalgebraic infinite trace semantics [34].

In type theory, there is growing interest in forming an extensional quotient of the delay
monad [9, 4]. It is shown in [9] that under certain reasonable conditions, a suitable collapse
of the delay monad by removing delays is again a monad; however, the proof is already
quite complex, and proving directly that the collapse is in fact an Elgot monad, as one
would be inclined to expect, seems daunting. We expect that Theorem 5.15 may shed light
on this issue. A natural question that arises in this regard is whether the subcategory of
p--qν-algebras figuring in the theorem is reflexive. A positive answer would provide a means
of constructing canonical quotients of p--qν-algebras (such as the delay monad) with the
results automatically being Elgot monads.

Acknowledgements. We would like to thank the anonymous referees for their thorough
attention to the text and their useful comments on improving the presentation.

References

[1] P. Aczel, J. Adámek, S. Milius, and J. Velebil. Infinite trees and completely iterative theories: a
coalgebraic view. Theor. Comput. Sci., 300(1–3):1–45, 2003.

[2] J. Adámek, S. Milius, and J. Velebil. Equational properties of iterative monads. Inf. Comput.,
208(12):1306–1348, 2010.

[3] J. Adámek, S. Milius, and J. Velebil. Elgot theories: a new perspective of the equational properties of
iteration. Math. Struct. Comput. Sci., 21(2):417–480, 2011.

[4] T. Altenkirch, N. Danielsson, and N. Kraus. Partiality, revisited - the partiality monad as a quotient
inductive-inductive type. In J. Esparza and A. Murawski, eds., Foundations of Software Science and
Computation Structures, FOSSACS 2017, vol. 10203 of LNCS, pp. 534–549, 2017.

[5] J. Bergstra, A. Ponse, and S. Smolka, eds. Handbook of Process Algebra. Elsevier, 2001.

[6] S. Bloom and Z. Ésik. Iteration theories: the equational logic of iterative processes. Springer, 1993.
[7] V. Capretta. General recursion via coinductive types. Log. Meth. Comput. Sci., 1(2), 2005.
[8] A. Carboni, S. Lack, and R. Walters. Introduction to extensive and distributive categories. J. Pure Appl.

Algebra, 84:145–158, 1993.

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:43

[9] J. Chapman, T. Uustalu, and N. Veltri. Quotienting the delay monad by weak bisimilarity. In M. Leucker,
C. Rueda, and F. Valencia, eds., Theoretical Aspects of Computing, ICTAC 2015, vol. 9399 of LNCS, pp.
110–125. Springer, 2015.

[10] C. Elgot. Monadic computation and iterative algebraic theories. In H. Rose and J. Shepherdson, eds.,
Logic Colloquium 1973, vol. 80 of Studies in Logic and the Foundations of Mathematics, pp. 175–230.
Elsevier, 1975.

[11] C. Elgot, S. Bloom, and R. Tindell. On the algebraic atructure of rooted trees. J. Comput. Syst. Sci.,
16(3):362–399, 1978.

[12] M. Escardó. A metric model of PCF. In Realizability Semantics and Applications, 1999.

[13] Z. Ésik. Axiomatizing iteration categories. Acta Cybern., 14(1):65–82, 1999.

[14] Z. Ésik and S. Goncharov. Some remarks on Conway and iteration theories. CoRR, abs/1603.00838,
2016.

[15] S. Goncharov, S. Milius, and C. Rauch. Complete Elgot monads and coalgebraic resumptions. In
L. Birkedal, ed., Mathematical Foundations of Programming Semantics, MFPS 2016, vol. 325 of ENTCS,
pp. 147–168. Elsevier, 2016.

[16] S. Goncharov and L. Schröder. A coinductive calculus for asynchronous side-effecting processes. Inf.
Comput., 231:204–232, 2013.

[17] S. Goncharov and L. Schröder. Guarded traced categories. In C. Baier and U. Dal Lago, eds., Foundations
of Software Science and Computation Structures, FOSSACS 2018, vol. 10803 of LNCS, pp. 313–330.
Springer, 2018.

[18] S. Goncharov, L. Schröder, C. Rauch, and J. Jakob. Unguarded recursion on coinductive resumptions.
Log. Methods Comput. Sci., 14(3), 2018.

[19] S. Goncharov, L. Schröder, C. Rauch, and M. Piróg. Unifying guarded and unguarded iteration. In
J. Esparza and A. Murawski, eds., Foundations of Software Science and Computation Structures,
FoSSaCS 2017, vol. 10203 of LNCS, pp. 517–533. Springer, 2017.

[20] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Log. Meth. Comput. Sci.,
3(4), 2007.

[21] W. Lawvere. Functorial semantics of algebraic theories. Proc. Natl. Acad. Sci. USA, 50(5):869–872, 1963.
[22] S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition, 1998.
[23] S. Milius. Completely iterative algebras and completely iterative monads. Inf. Comput., 196(1):1–41,

2005.
[24] S. Milius and T. Litak. Guard your daggers and traces: Properties of guarded (co-)recursion. Fund.

Inform., 150:407–449, 2017.
[25] R. Milner. Communication and concurrency. Prentice-Hall, 1989.
[26] E. Moggi. A modular approach to denotational semantics. In D. Pitt, P.-L. Curien, S. Abramsky, A. Pitts,

A. Poigné, and D. Rydeheard, eds., Category Theory and Computer Science, CTCS 1991, vol. 530 of
LNCS, pp. 138–139. Springer, 1991.

[27] E. Moggi. Notions of computation and monads. Inf. Comput., 93:55–92, 1991.
[28] H. Nakano. A modality for recursion. In Logic in Computer Science, LICS 2000, pp. 255–266. IEEE

Computer Society, 2000.
[29] K. Nakata and T. Uustalu. A Hoare logic for the coinductive trace-based big-step semantics of while.

Log. Methods Comput. Sci., 11(1), 2015.
[30] M. Piróg and J. Gibbons. The coinductive resumption monad. In B. Jacobs, ed., Mathematical Foundations

of Programming Semantics, MFPS 2014, vol. 308 of ENTCS, pp. 273–288, 2014.
[31] M. Piróg and J. Gibbons. Monads for behaviour. In D. Kozen, ed., Mathematical Foundations of

Programming Semantics, MFPS 2013, vol. 298 of ENTCS, pp. 309–324, 2015.
[32] A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point operators. In Logic in Computer

Science, LICS 2000, pp. 30–41, 2000.
[33] M. Smyth. Topology. In Handbook of Logic in Computer Science, vol. 1, pp. 641–761. Clarendon Press,

1992.
[34] N. Urabe and I. Hasuo. Coalgebraic infinite traces and kleisli simulations. In L. Moss and P. Sobocinski,

eds., Algebra and Coalgebra in Computer Science, CALCO 2015, vol. 35 of LIPIcs, pp. 320–335. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[35] T. Uustalu. Generalizing substitution. ITA, 37(4):315–336, 2003.

1:44 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

[36] T. Uustalu and V. Vene. Primitive (Co)Recursion and Course-of-Value (Co)Iteration, Categorically.
Informatica (Lithuanian Academy of Sciences), 10(1):5–26, 1999.

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:45

Appendix A. Details of Example 6.3

As an example of the setting described in Theorem 5.7, we compare two iteration operators
on Set that arise from different fixed point theorems: Banach’s for complete metric spaces
and Kleene’s for complete partial orders, respectively. The first operator keeps track of the
number of steps needed to obtain the final result. We show that its extensional collapse,
defined as a morphism that forgets the number of steps, is an iteration-congruent retraction
with the second operator as the retract.

First, we consider the category CbUMet of complete 1-bounded ultrametric spaces
and nonexpansive maps. Note that CbUMet has coproducts and is Cartesian closed [33].
Following Escardó [12], one has a monad T on CbUMet given on objects as T pA, dq “
ppAˆ Nq Y t8u, d1q, with d1 given by

d1p8,8q “ 0 d1ppx, kq,8q “ d1p8, px, kqq “ p1{2qk

d1ppx, kq, py, kqq “ p1{2qkdpx, yq d1ppx, kq, py, tqq “ p1{2qminpk,tq if k ‰ t

The monad structure on T is defined as expected, by ηpaq “ pa, 0q and f‹pa, kq “ pb, k `
tq where fpaq “ pb, tq

Theorem A.1. The monad T is guarded iterative with f : X Ñ TY being σ-guarded if for
all x and y, fpxq “ pσpyq, kq implies k ą 0.

Proof. First, note that the product of pA, dAq and pB, dBq in CbUMet is given by
pAˆB, dAˆBq, where

dAˆBppx1, y1q, px2, y2qq “ maxtdApx1, x2q, dBpy1, y2qu.

The exponential object is equal to pBA, dAñBq where

dAñBpf, gq “ suptdBpfpxq, gpxqq | x P Au.

The coproduct is given by pA`B, dA`Bq, where

dA`Bpp, qq “

$

’

&

’

%

dApx1, x2q if p “ in1 x1 and q “ in1 x2

dBpy1, y2q if p “ in2 y1 and q “ in2 y2

1 otherwise

Now, we show that the monad T is guarded. The only nontrivial case is (cmp). So, assume
prg, hs‹fqpxq “ pσpyq, kq. We consider two cases:

‚ fpxq “ pin2 z, k
1q. Then, since f is in2-guarded, k1 ą 0, so, by definition of p--q‹, k ą 0.

‚ fpxq “ pin1 z, k
1q. Then, prg, hs‹fqpxq “ rg, hs‹pin1 z, k

1q “ pσpyq, k1 ` k2q, where gpzq “
pσpyq, k2q. Since g is σ-guarded, k2 ą 0, so k “ k1 ` k2 ą 0.

Given a guarded morphism f : X Ñ1 T pY `Xq, we define the morphism f : : X Ñ TY as
the unique fixed point of the following map ψ : pX Ñ TY q Ñ pX Ñ TY q:

ψpgq “ rη, gs‹f

One can easily see that any fixed point of ψ satisfies the fixed point identity, and that the
uniqueness of such a fixed point gives us that f has a unique solution. We use Banach’s
theorem to achieve both.

By Banach’s theorem, it is enough to show that ψ is contractive, that is, there exists a
non-negative real c ă 1 such that for maps g, g1 : X Ñ TY , the following holds:

dXñTY pψpgq, ψpg
1qq ď c ¨ dXñTY pg, g

1q (A.1)

1:46 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg Vol. 15:3

The left-hand side of the equation (A.1) is equal to:

dXñTY pψpgq, ψpg
1qq “ suptdTY pψpgqpxq, ψpg

1qpxqq | x P Xu

In turn, the right-hand side is as follows:

c ¨ dXñTY pg, g
1q “ c ¨ suptdTY pgpxq, g

1pxqq | x P Xu

“ suptc ¨ dTY pgpxq, g
1pxqq | x P Xu

Thus, it is enough to show that for all x P X, there exists y P X such that:

dTY pψpgqpxq, ψpg
1qpxqq ď c ¨ dTY pgpyq, g

1pyqq

We show this for c “ 1{2. We consider two cases:

‚ fpxq “ pin1 y, kq for some y P Y and k P N. Then, for all g : X Ñ TY , the following
holds:

ψpgqpxq “ prη, gs‹fqpxq

“ rη, gs‹pin1 y, kq

“ py, kq

So, the following holds:

dTY pψpgqpxq, ψpg
1qpxqq “ dTY ppy, kq, py, kqq

“ 0

ď p1{2q ¨ dTY pgpxq, g
1pxqq

‚ fpxq “ pin2 y, k ` 1q for some y P X and k P N (the ‘`1’ part follows from the fact
that f is guarded). Assume that gpyq “ pz, tq for some z and t. Then

ψpgqpxq “ prη, gs‹fqpxq

“ rη, gs‹pin2 y, k ` 1q

“ pz, t` k ` 1q.

Similarly, let g1pyq “ pz1, t1q, and so ψpg1qpxq “ pz1, t1 ` k ` 1q. Then, it follows that:

dTY pψpgqpxq, ψpg
1qpxqq “ dTY ppz, t` k ` 1q, pz1, t1 ` k ` 1qq

“ p1{2qk`1 ¨ dTY ppz, tq, pz
1, t1qq

“ p1{2qk ¨ p1{2q ¨ dTY ppz, tq, pz
1, t1qq

ď p1{2q ¨ dTY ppz, tq, pz
1, t1qq

“ p1{2q ¨ dTY pgpyq, g
1pyqq

We thus obtain a monad UDTFD on Set by sandwiching T in the adjunction FD % UD where
UD is the forgetful functor CbUMet Ñ Set and FD takes discrete metrics. By Theorem 6.1,
UDTFD is guarded iterative.

For the second operator, let CpoK be the category of complete partial orders and
continuous bottom-preserving functions. The identity on CpoK is an Elgot monad, hence,
by Theorem 6.2, we obtain an Elgot monad ULFL on Set by sandwiching in the adjunction
FL % UL where UL is the forgetful functor CpoK Ñ Set and FL adjoins bottom. The
relation between the two monads on Set is an instance of our notion of iteration-congruent
retraction:

Vol. 15:3 GUARDED AND UNGUARDED ITERATIONFOR GENERALIZED PROCESSES 1:47

Theorem A.2. Define ρ : UDTFD Ñ ULFL by ρpa, kq “ a and ρp8q “ K. Then ρ is
an iteration-congruent retraction with the section given by υpaq “ pa, 1q and υpKq “ 8.
Moreover, the respective iteration operators induced by ρ and the sandwich theorem coincide.

Proof. It is trivial that ρ is a guarded retraction. To see that it is a iteration congruence,
we first define an auxiliary relation: given two functions f, h : X Ñ pB ˆNq Y t8u, we write
f „ h if fpxq “ pa, kq for some a P B, k P N if and only if hpxq “ pa, k1q for some k1 P N and
fpxq “ 8 if and only if hpxq “ 8 (i.e. the two functions differ only in the number of steps
needed to obtain the value). We also write ψf pgq “ rη, gs

‹f for the function ψ from the
proof of Theorem A.1.

Given a 2-guarded function f : X Ñ ppY ` Xq ˆ Nq Y t8u, the function f : can be
defined as the unique fixed point of ψf (see the proof of Theorem A.1), which by Banach’s

fixed-point theorem is given by the limit of the sequence W f
0 “ c and W f

pn`1q “ ψf pW
f
n q,

where c is the constant function cpxq “ 8. It is easy to see that for each x the sequence

W f
n pxq stabilizes. Given a function h such that f „ h, it is easy to show by induction

that for every x, the sequence W f
n pxq stabilizes with pa, kq for some k if and only if W h

n pxq
stabilizes with pa, k1q for some k1 at the same index n. Then, for all x, f :pxq “ pa, kq and
h:pxq “ pa, k1q, so ρpf :pxqq “ ρph:pxqq. Then, the result is obtained by noticing that for all
f and h, ρf “ ρh implies f „ h.

It is left to see that the solution operator that follows from the sandwich theorem
and the one that follows from the iteration-congruent retraction coincide. Given f : X Ñ

pX ` Y q Y tKu, its solution in the Elgot monad ULFL is given by the fixed point of the
equation φpgq “ rη, gs‹f , that is, by Kleene’s theorem, by the limit of the sequence W 1

0 “ c1

and W 1
pn`1q “ φf pW

1
nq, where c1 is the constant function c1pxq “ K. It is easy to see that

W 1
n “ ρW

pυfq
n , so the solutions coincide.

Forgetting the provenance of the above-mentioned monads on Set via sandwiching, we
obtain that the maybe monad p--q ` tKu on Set is an iteration-congruent retract of the
delay monad p--q ˆ N` tKu, which is, of course, not surprising. In categories beyond sets
(where the delay monad, or partiality monad, is more generally defined as νγ.p´ ` γq [7]),
the situation is more complex, see Remark 5.16.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Abstractly Guarded Categories and Monads
	4. Parametrizing Guardedness
	5. Complete Elgot Monads and Iteration Congruences
	6. A Sandwich Theorem for Elgot Monads
	7. Related Work
	8. Conclusions and Further Work
	References
	Appendix A. Details of Example ??

