
Logical Methods in Computer Science
Volume 15, Issue 3, 2019, pp. 2:1–2:34
https://lmcs.episciences.org/

Submitted Mar. 01, 2018
Published Jul. 08, 2019

CAPTURING LOGARITHMIC SPACE AND POLYNOMIAL TIME

ON CHORDAL CLAW-FREE GRAPHS

BERIT GRUSSIEN

Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
e-mail address: grussien@informatik.hu-berlin.de

Abstract. We show that the class of chordal claw-free graphs admits LREC=-definable
canonization. LREC= is a logic that extends first-order logic with counting by an operator
that allows it to formalize a limited form of recursion. This operator can be evaluated in
logarithmic space. It follows that there exists a logarithmic-space canonization algorithm,
and therefore a logarithmic-space isomorphism test, for the class of chordal claw-free graphs.
As a further consequence, LREC= captures logarithmic space on this graph class. Since
LREC= is contained in fixed-point logic with counting, we also obtain that fixed-point logic
with counting captures polynomial time on the class of chordal claw-free graphs.

1. Introduction

Descriptive complexity is a field of computational complexity theory that provides logical
characterizations for the standard complexity classes. The starting point of descriptive
complexity was a theorem of Fagin in 1974 [Fag74], which states that existential second-
order logic characterizes, or captures, the complexity class NP. Later, similar logical
characterizations were found for further complexity classes. For example, Immerman
proved that deterministic transitive closure logic DTC captures LOGSPACE [Imm87], and
independently of one another, Immerman [Imm86] and Vardi [Var82] showed that fixed-point
logic FP captures PTIME1. However, these two results have a draw-back: They only hold
on ordered structures, that is, on structures with a distinguished binary relation which is a
linear order on the universe of the structure. On structures that are not necessarily ordered,
there exist only partial results towards capturing LOGSPACE or PTIME.

A negative partial result towards capturing LOGSPACE follows from Etessami and
Immerman’s result that (directed) tree isomorphism is not definable in transitive closure
logic with counting TC+C [EI00]. This implies that tree isomorphism is neither definable in
deterministic nor symmetric transitive closure logic with counting (DTC+C and STC+C),
although it is decidable in LOGSPACE [Lin92]. Hence, DTC+C and STC+C are not strong
enough to capture LOGSPACE even on the class of trees. That is why, in 2011 a new logic

Key words and phrases: Chordal claw-free graphs, descriptive complexity, canonization, isomorphism
problem, logarithmic space, polynomial time, fixed-point logic.
∗ This article is an extended version of [Gru17a].

1 More precisely, Immerman and Vardi’s theorem holds for least fixed-point logic (LFP) and the equally
expressive inflationary fixed-point logic (IFP). Our indeterminate FP refers to either of these two logics.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:2)2019
c© B. Grußien
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2:2 B. Grußien Vol. 15:3

with logarithmic-space data complexity was introduced [GGHL11, GGHL12]. This logic,
LREC=, is an extension of first-order logic with counting by an operator that allows a limited
form of recursion. LREC= strictly contains STC+C and DTC+C. In [GGHL11, GGHL12],
the authors proved that LREC= captures LOGSPACE on the class of (directed) trees and on
the class of interval graphs. In this paper we now show that LREC= captures LOGSPACE
also on the class of chordal claw-free graphs, i.e., the class of all graphs that do not contain
a cycle of length at least 4 (chordal) or the complete bipartite graph K1,3 (claw-free) as an
induced subgraph. More precisely, this paper’s main technical contribution states that the
class of chordal claw-free graphs admits LREC=-definable canonization. This does not only
imply that LREC= captures LOGSPACE on chordal claw-free graphs, but also that there
exists a logarithmic-space canonization algorithm for the class of chordal claw-free graphs.
Hence, the isomorphism problem for this graph class is solvable in logarithmic space.

For polynomial time there also exist partial characterizations. Fixed-point logic with
counting FP+C captures PTIME, for example, on planar graphs [Gro98], on all classes of
graphs of bounded treewidth [GM99] and on K5-minor free graphs [Gro08]. Note that all
these classes can be defined by a list of forbidden minors. In fact, Grohe showed in 2010 that
FP+C captures PTIME on all graph classes with excluded minors [Gro10b]. Instead of graph
classes with excluded minors, one can also consider graph classes with excluded induced
subgraphs, i.e., graph classes C that are closed under taking induced subgraphs. For some
of these graph classes C, e.g., chordal graphs [Gro10a], comparability graphs [Lau11] and
co-comparability graphs [Lau11], capturing PTIME on C is as hard as capturing PTIME on
the class of all graphs for any “reasonable” logic.2 This gives us reason to consider subclasses
of chordal graphs, comparability graphs and co-comparability graphs more closely. There are
results showing that FP+C captures PTIME on interval graphs (chordal co-comparability
graphs) [Lau10], on permutation graphs (comparability co-comparability graphs) [Gru17c]
and on chordal comparability graphs [Gru17b]. Further, Grohe proved that FP+C captures
PTIME on chordal line graphs [Gro10a]. At the same time he conjectured that this is
also the case for the class of chordal claw-free graphs, which is an extension of the class
of chordal line graphs. Our main result implies that Grohe’s conjecture is true: Since
LREC= is contained in FP+C, it yields that there exists an FP+C-canonization of the class
of chordal claw-free graphs. Hence, FP+C captures PTIME also on the class of chordal
claw-free graphs.

Our main result is based on a study of chordal claw-free graphs. Chordal graphs are
the intersection graphs of subtrees of a tree [Bun74, Gav74, Wal72], and a clique tree of a
chordal graph corresponds to a minimal representation of the graph as such an intersection
graph. We prove that chordal claw-free graphs are (claw-free) intersection graphs of paths
in a tree, and that for each connected chordal claw-free graph the clique tree is unique.

Structure. The preliminaries in Section 2 will be followed by a Section 3 where we analyze
the structure of clique trees of chordal claw-free graphs, and, e.g., show that connected
chordal claw-free graphs have a unique clique tree. In Section 4, we transform the clique tree
of a connected chordal claw-free graph into a directed tree, and color each maximal clique
with information about its intersection with other maximal cliques by using a special coloring
with a linearly ordered set of colors. We obtain what we call the supplemented clique tree,

2 Note that FP+C does not capture PTIME on the class of all graphs [CFI92]. Hence, it does not capture
PTIME on the class of chordal graphs, comparability graphs or co-comparability graphs either.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:3

and show that it is definable in STC+C by means of a parameterized transduction. We
know that there exists an LREC=-canonization of colored directed trees if the set of colors is
linearly ordered [GGHL11, GGHL12]. In Section 5, we apply this LREC=-canonization to
the supplemented clique tree and obtain the canon of this colored directed tree. Due to the
type of coloring, the information about the maximal cliques is also contained in the colors of
the canon of the supplemented clique tree. This information and the linear order on the
vertices of the canon of the supplemented clique tree allow us to define the maximal cliques
of a canon of the connected chordal claw-free graph, from which we can easily construct the
canon of the graph. By combining the canons of the connected components, we obtain a
canon for each chordal claw free graph. Finally, we present consequences of this canonization
result in Section 6 and conclude in Section 7.

2. Basic Definitions and Notation

We write N for the set of all non-negative integers. For all n, n′ ∈ N, we define [n, n′] :=
{m ∈ N | n ≤ m ≤ n′} and [n] := [1, n]. We often denote tuples (a1, . . . , ak) by ā. Given
a tuple ā = (a1, . . . , ak), let ã := {a1, . . . , ak}. Let n ≥ 1. Let āi = (ai1, . . . , a

i
ki

) be

a tuple of length ki for each i ∈ [n]. We denote the tuple (a1
1, . . . , a

1
k1
, . . . , an1 , . . . , a

n
kn

)

by (ā1, . . . , ān). Mappings f : A → B are extended to tuples ā = (a1, . . . , ak) over A via
f(ā) := (f(a1), . . . , f(ak)). Let ≈ be an equivalence relation on a set S. Then a/≈ denotes
the equivalence class of a ∈ S with respect to ≈. For ā = (a1, . . . , an) ∈ Sn and R ⊆ Sn, we
let ā/≈ := (a1/≈, . . . , an/≈) and R/≈ := {ā/≈ | ā ∈ R}. A partition of a set S is a set P of

disjoint non-empty subsets of S where S =
⋃
A∈P A. For a set S, we let

(
S
2

)
be the set of all

2-element subsets of S.

2.1. Graphs and LO-Colorings. A graph is a pair (V,E) consisting of a non-empty finite

set V of vertices and a set E ⊆
(
V
2

)
of edges. Let G = (V,E) and G′ = (V ′, E′) be graphs.

The union G∪G′ of G and G′ is the graph (V ∪V ′, E ∪E′). For a subset W ⊆ V of vertices,
G[W] denotes the induced subgraph of G with vertex set W. Connectivity and connected
components are defined in the usual way. We denote the neighbors of a vertex v ∈ V by
N(v). A set B ⊆ V is a clique if

(
B
2

)
⊆ E. A maximal clique, or max clique, is a clique that

is not properly contained in any other clique.
A graph is chordal if all its cycles of length at least 4 have a chord, which is an edge that

connects two non-consecutive vertices of the cycle. A claw-free graph is a graph that does
not have a claw, i.e., a graph isomorphic to the complete bipartite graph K1,3, as an induced
subgraph. We denote the class of (connected) chordal claw-free graphs by (con-)CCF.

A subgraph P of G is a path of G if P = ({v0, . . . , vk}, {{v0, v1}, . . . , {vk−1, vk}}) for
distinct vertices v0, . . . , vk of G. We also denote the path P by the sequence v0, . . . , vk of
vertices. We let v0 and vk be the ends of P. A connected acyclic graph is a tree. Let
T = (V,E) be a tree. A subtree of T is a connected subgraph of T . A vertex v ∈ V of degree
1 is called a leaf.

A pair (V,E) is a directed graph or digraph if V is a non-empty finite set and E ⊆ V 2. A
path of a digraph G= (V,E) is a directed subgraph P = ({v0, . . . , vk}, {(v0, v1), . . . , (vk−1, vk)})
of G where the vertices v0, . . . , vk ∈ V are distinct. A connected acyclic digraph where the
in-degree of each vertex is at most 1 is a directed tree. Let T = (V,E) be a directed tree.
The vertex of in-degree 0 is the root of T . If (v, w) ∈ E, then w is a child of v, and v the

2:4 B. Grußien Vol. 15:3

parent of w. Let w,w′ be children of v ∈ V. Then w is a sibling of w′ if w 6= w′. If there is a
path from v ∈ V to w ∈ V in T , then v is an ancestor of w.

Let G = (V,E) be a digraph and f : V → C be a mapping from the vertices of G to a
finite set C. Then f is a coloring of G, and the elements of C are called colors. In this paper
we color the vertices of a digraph with binary relations on a linearly ordered set. We call
digraphs with such a coloring LO-colored digraphs. More precisely, an LO-colored digraph is
a tuple G = (V,E,M,E, L) with the following four properties:

(1) The pair (V,E) is a digraph. We call (V,E) the underlying digraph of G.
(2) The set of basic color elements M is a non-empty finite set with M ∩ V = ∅.
(3) The binary relation E ⊆M2 is a linear order on M .
(4) The ternary relation L ⊆ V ×M2 assigns to every vertex v ∈ V an LO-color

Lv := {(d, d′) | (v, d, d′)∈L}.
We can use the linear order E on M to obtain a linear order on the colors {Lv | v ∈ V } of G.
Thus, an LO-colored digraph is a special kind of colored digraph with a linear order on its
colors.

2.2. Structures. A vocabulary is a finite set τ of relation symbols. Each relation symbol
R ∈ τ has a fixed arity ar(R) ∈ N. A τ -structure A consists of a non-empty finite set U(A),

its universe, and for each relation symbol R ∈ τ of a relation R(A) ⊆ U(A)ar(R).
An isomorphism between τ -structures A and B is a bijection f : U(A) → U(B) such

that for all R ∈ τ and all ā ∈ U(A)ar(R) we have ā ∈ R(A) if and only if f(ā) ∈ R(B). We
write A ∼= B to indicate that A and B are isomorphic.

Let E be a binary relation symbol. Each graph corresponds to an {E}-structure
G = (V,E) where the universe V is the vertex set and E is an irreflexive and symmetric
binary relation, the edge relation. Similarly, a digraph is represented by an {E}-structure
G = (V,E) where V is the vertex set and the edge relation E is an irreflexive binary relation.
To represent an LO-colored digraph G = (V,E,M,E, L) as a logical structure, we extend the
5-tuple by a set U to a 6-tuple (U, V,E,M,E, L), and we require that U = V ∪̇M in addition
to the properties 1–4. The set U serves as the universe of the structure, and V,E,M,E, L
are relations on U . We usually do not distinguish between (LO-colored) digraphs and their
representation as logical structures. It will be clear from the context which form we are
referring to.

2.3. Logics. In this section we introduce first-order logic with counting, symmetric transitive
closure logic (with counting) and the logic LREC=. We assume basic knowledge in logic, in
particular of first-order logic (FO).

First-order logic with counting (FO+C) extends FO by a counting operator that allows for
counting the cardinality of FO+C-definable relations. It lives in a two-sorted context, where
structures A are equipped with a number sort N(A) := [0, |U(A)|]. FO+C has two types
of variables: FO+C-variables are either structure variables that range over the universe
U(A) of a structure A, or number variables that range over the number sort N(A). For
each variable u, let Au := U(A) if u is a structure variable, and Au := N(A) if u is a

number variable. Let A(u1,...,uk) := Au1 × · · · ×Auk . Tuples (u1, . . . , uk) and (v1, . . . , v`) of
variables are compatible if k = `, and for every i ∈ [k] the variables ui and vi are of the
same type. An assignment in A is a mapping α from the set of variables to U(A) ∪N(A),

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:5

where for each variable u we have α(u) ∈ Au. For tuples ū = (u1, . . . , uk) of variables and
ā = (a1, . . . , ak) ∈ Aū, the assignment α[ā/ū] maps ui to ai for each i ∈ [k], and each variable
v 6∈ ũ to α(v). By ϕ(u1, . . . , uk) we denote a formula ϕ with free(ϕ) ⊆ {u1, . . . , uk}, where
free(ϕ) is the set of free variables in ϕ. Given a formula ϕ(u1, . . . , uk), a structure A and

(a1, . . . , ak) ∈ A(u1,...,uk), we write A |= ϕ[a1, . . . , ak] if ϕ holds in A with ui assigned to ai
for each i ∈ [k]. We write ϕ[A,α; ū] for the set of all tuples ā ∈ Aū with (A,α[ā/ū]) |= ϕ.
For a formula ϕ(ū) (with free(ϕ) ⊆ ũ) we also denote ϕ[A,α; ū] by ϕ[A; ū], and for a formula
ϕ(v̄, ū) and ā ∈ Av̄, we denote ϕ[A,α[ā/v̄]; ū] also by ϕ[A, ā; ū].

FO+C is obtained by extending FO with the following formula formation rules:

• φ := p ≤ q is a formula if p, q are number variables. We let free(φ) := {p, q}.
• φ′ := #ū ψ = p̄ is a formula if ψ is a formula, ū is a tuple of variables and p̄ a tuple of

number variables. We let free(φ′) := (free(ψ) \ ũ) ∪ p̃.
To define the semantics, let A be a structure and α be an assignment. We let

• (A,α) |= p ≤ q iff α(p) ≤ α(q),
• (A,α) |= #ū ψ = p̄ iff |ψ[A,α; ū]| = 〈α(p̄)〉A,

where for tuples n̄ = (n1, . . . , nk) ∈ N(A)k we let 〈n̄〉A be the number

〈n̄〉A :=
k∑
i=1

ni · (|U(A)|+ 1)i−1.

Symmetric transitive closure logic (with counting) STC(+C) is an extension of FO(+C) with
stc-operators. The set of all STC(+C)-formulas is obtained by extending the formula formation
rules of FO(+C) by the following rule:

• φ := [stc ū,v̄ ψ](ū′, v̄′) is a formula if ψ is a formula and ū, v̄, ū′, v̄′ are compatible tuples of
structure (and number) variables. We let free(φ) := ũ′ ∪ ṽ′ ∪

(
free(ψ) \ (ũ ∪ ṽ)

)
.

Let A be a structure and α be an assignment. We let

• (A,α) |= [stc ū,v̄ ψ](ū′, v̄′) iff (α(ū′), α(v̄′)) is contained in the symmetric transitive closure
of ψ[A,α; ū, v̄].

LREC= is an extension of FO+C with lrec-operators, which allow a limited form of recursion.
The lrec-operator controls the depth of the recursion by a “resource term”. It thereby
makes sure that the recursive definition can be evaluated in logarithmic space. A detailed
introduction of LREC= can be found in [GGHL12]. Note that we only use previous results
about LREC= and do not present any formulas using lrec-operators in this paper. We obtain
LREC= by extending the formula formation rules of FO+C by the following rule:

• φ := [lrecū,v̄,p̄ ϕ=, ϕE, ϕC](w̄, r̄) is a formula if ϕ=, ϕE and ϕC are formulas, ū, v̄, w̄ are
compatible tuples of variables and p̄, r̄ are non-empty tuples of number variables.
We let free(φ) :=

(
free(ϕ=) \ (ũ ∪ ṽ)

)
∪
(
free(ϕE) \ (ũ ∪ ṽ)

)
∪
(
free(ϕC) \ (ũ ∪ p̃)

)
∪ w̃ ∪ r̃.

Let A be a structure and α be an assignment. We let

• (A,α) |= [lrecū,v̄,p̄ ϕ=, ϕE, ϕC](w̄, r̄) iff
(
α(w̄)/∼, 〈α(r̄)〉A

)
∈ X,

where X and ∼ are defined as follows: Let V0 := Aū and E0 := ϕE[A,α; ū, v̄]∩(V0)2. We define

∼ to be the reflexive, symmetric, transitive closure of the binary relation ϕ=[A,α; ū, v̄] ∩ (V0)2.
Now consider the graph G = (V, E) with V := V0/∼ and E := E0/∼. To every ā/∼ ∈ V we
assign the set C(ā/∼) := {〈n̄〉A | there is an ā′∈ ā/∼ with n̄ ∈ ϕC[A,α[ā′/ū]; p̄]} of numbers.

2:6 B. Grußien Vol. 15:3

Let ā/∼E := {b̄/∼ ∈ V | (ā/∼, b̄/∼) ∈ E} and E b̄/∼ := {ā/∼ ∈ V | (ā/∼, b̄/∼) ∈ E}. Then, for all
ā/∼ ∈ V and ` ∈ N,

(ā/∼, `) ∈ X :⇐⇒ ` > 0 and

∣∣∣∣{b̄/∼ ∈ ā/∼E ∣∣∣∣ (b̄/∼,⌊ `− 1

|E b̄/∼|

⌋)
∈ X

}∣∣∣∣ ∈ C(ā/∼).

LREC= semantically contains STC+C [GGHL12]. Note that simple arithmetics like addi-
tion and multiplication are definable in STC+C, and therefore, in LREC=. Like STC+C-
formulas [Rei05], LREC=-formulas [GGHL12] can be evaluated in logarithmic space.

2.4. Transductions. Transductions (also known as syntactical interpretations) define cer-
tain structures within other structures. Detailed introductions with a lot of examples can
be found in [Gro13, Gru17b]. In the following we briefly introduce transductions, consider
compositions of tranductions, and present the new notion of counting transductions.

Definition 2.1 (Parameterized Transduction). Let τ1, τ2 be vocabularies, and let L be a
logic that extends FO.

(1) A parameterized L[τ1, τ2]-transduction is a tuple

Θ(x̄) =
(
θdom(x̄), θU (x̄, ū), θ≈(x̄, ū, ū′),

(
θR(x̄, ūR,1, . . . , ūR,ar(R))

)
R∈τ2

)
of L[τ1]-formulas, where x̄ is a tuple of structure variables, and ū, ū′ and ūR,i for every
R ∈ τ2 and i ∈ [ar(R)] are compatible tuples of variables.

(2) The domain of Θ(x̄) is the class Dom(Θ(x̄)) of all pairs (A, p̄) such that A |= θdom[p̄],
θU [A, p̄; ū] is not empty and θ≈[A, p̄; ū, ū′] is an equivalence relation, where A is a
τ1-structure and p̄ ∈ Ax̄. The elements in p̄ are called parameters.

(3) Let (A, p̄) be in the domain of Θ(x̄), and let us denote θ≈[A, p̄; ū, ū′] by ≈. We define a
τ2-structure Θ[A, p̄] as follows. We let

U(Θ[A, p̄]) := θU [A, p̄; ū]/≈

be the universe of Θ[A, p̄]. Further, for each R ∈ τ2, we let

R(Θ[A, p̄]) :=
(
θR[A, p̄; ūR,1, . . . , ūR,ar(R)] ∩ θU [A, p̄; ū]ar(R)

)/
≈
.

A parameterized L[τ1, τ2]-transduction defines a parameterized mapping from τ1-structures
into τ2-structures via L[τ1]-formulas.3 If θdom := > or θ≈ := u1 = u′1 ∧ · · · ∧ uk = u′k,
we omit the respective formula in the presentation of the transduction. A parameterized
L[τ1, τ2]-transduction Θ(x̄) is an L[τ1, τ2]-transduction if x̄ is the empty tuple. Let x̄ be the
empty tuple. For simplicity, we denote a transduction Θ(x̄) by Θ, and we write A ∈ Dom(Θ)
if (A, x̄) is contained in the domain of Θ.

An important property of L[τ1, τ2]-transductions is that, for suitable logics L, they
allow to pull back L[τ2]-formulas, which means that for each L[τ2]-formula there exists an
L[τ1]-formula that expresses essentially the same. A logic L is closed under (parameterized)
L-transductions if for all vocabularies τ1, τ2 each (parameterized) L[τ1, τ2]-transduction allows
to pull back L[τ2]-formulas.

Let L be the following set of logics:

L := {FO,FO+C,STC,STC+C, LREC=}.
3 In Section 4.2, for example, we will define a parameterized STC-transduction that maps trees to directed

trees. It uses a leaf r of a tree T as a parameter to root the tree T at r.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:7

Each logic L ∈ L is closed under L-transductions. Precisely, this means that:

Proposition 2.2 [EF99, GGHL12, Gru17b]. Let τ1, τ2 be vocabularies and L ∈ L. Let
Θ(x̄) be a parameterized L[τ1, τ2]-transduction, where `-tuple ū is the tuple of domain
variables. Further, let ψ(x1, . . . , xκ, p1, . . . , pλ) be an L[τ2]-formula where x1, . . . , xκ are
structure variables and p1, . . . , pλ are number variables. Then there exists an L[τ1]-formula
ψ−Θ(x̄, ū1, . . . , ūκ, q̄1, . . . , q̄λ), where ū1, . . . , ūκ are compatible with ū and q̄1, . . . , q̄λ are `-
tuples of number variables, such that for all (A, p̄) ∈ Dom(Θ(x̄)), all ā1, . . . , āκ ∈ Aū and all

n̄1, . . . , n̄λ ∈ N(A)`,

A |= ψ−Θ[p̄, ā1, . . . , āκ, n̄1, . . . , n̄λ] ⇐⇒ ā1/≈, . . . , āκ/≈ ∈ U(Θ[A, p̄]),

〈n̄1〉A , . . . , 〈n̄λ〉A ∈ N(Θ[A, p̄]) and

Θ[A, p̄] |= ψ
[
ā1/≈, . . . , āκ/≈, 〈n̄1〉A , . . . , 〈n̄λ〉A

]
,

where ≈ is the equivalence relation θ≈[A, p̄; ū, ū′] on Aū.

The following proposition shows that for each logic L ∈ L, the composition of a parameterized
L-transduction and an L-transduction is again a parameterized L-transduction. Note that
this is a consequence of Proposition 2.2.

Proposition 2.3 [Gru17b]. Let τ1, τ2 and τ3 be vocabularies and let L ∈ L. Let Θ1

(
x̄
)

be a
parameterized L[τ1, τ2]-transduction and Θ2 be an L[τ2, τ3]-transduction. Then there exists a
parameterized L[τ1, τ3]-transduction Θ

(
x̄
)

such that for all τ1-structures A and all p̄ ∈ Ax̄,(
A, p̄

)
∈ Dom

(
Θ
(
x̄
))
⇐⇒

(
A, p̄

)
∈ Dom

(
Θ1

(
x̄
))

and Θ1

[
A, p̄

]
∈ Dom

(
Θ2

)
,

and for all
(
A, p̄

)
∈ Dom

(
Θ
(
x̄
))

,

Θ
[
A, p̄

] ∼= Θ2

[
Θ1

[
A, p̄

]]
.

In the following we introduce the new notion of parameterized counting transductions
for STC+C. The universe of the structure Θ#[A, p̄] defined by a parameterized counting
transduction Θ#(x̄) always also includes the number sort N(A) of A, for all structures A and
tuples p̄ of parameters from the domain of Θ#(x̄). More precisely, the universe of Θ#[A, p̄]
contains all equivalence classes {n} where n ∈ N(A) and all equivalence classes that the
universe of Θ#[A, p̄] would contain if we interpreted the parameterized counting transduction
Θ#(x̄) as a parameterized transduction. Parameterized counting transductions are as
powerful as parameterized transductions. Presenting a parameterized counting transduction
instead of a parameterized transduction will contribute to a clearer presentation.

Definition 2.4 (Parameterized Counting Transduction). Let τ1, τ2 be vocabularies.

(1) A parameterized STC+C[τ1, τ2]-counting transduction is a tuple

Θ#(x̄) =
(
θ#dom(x̄), θ#U (x̄, ū), θ#≈(x̄, ū, ū′),

(
θ#R(x̄, ūR,1, . . . , ūR,ar(R))

)
R∈τ2

)
of STC+C[τ1]-formulas, where x̄ is a tuple of structure variables, ū, ū′ are compatible
tuples of variables but not tuples of number variables of length 1,4 and for every R ∈ τ2

and i ∈ [ar(R)], ūR,i is a tuple of variables that is compatible to ū or a tuple of number
variables of length 1.

4 We do not allow ū, ū′ to be tuples of number variables of length 1, as the equivalence classes {n} for

n ∈ N(A) are always added to the universe of Θ#[A, p̄]. This will become more clear with the definition of

the universe U(Θ#[A, p̄]) in (3).

2:8 B. Grußien Vol. 15:3

(2) The domain of Θ#(x̄) is the class Dom(Θ#(x̄)) of all pairs (A, p̄) such that A |= θ#dom[p̄]

and θ#≈[A, p̄; ū, ū′] is an equivalence relation, where A is a τ1-structure and p̄ ∈ Ax̄.
(3) Let (A, p̄) be in the domain of counting transduction Θ#(x̄) and let us denote the

equivalence relation θ#≈[A, p̄; ū, ū′] ∪ {(n, n) | n ∈ N(A)} by ≈. We define a τ2-structure
Θ#[A, p̄] as follows. We let

U(Θ#[A, p̄]) :=
(
θ#U [A, p̄; ū] ∪̇ N(A)

)
/≈

be the universe of Θ#[A, p̄]. Further, for each R ∈ τ2, we let

R(Θ#[A, p̄]) :=
(
θ#R [A, p̄; ūR,1, . . . , ūR,ar(R)] ∩

(
θ#U [A, p̄; ū] ∪̇N(A)

)ar(R)
)/
≈
.

Proposition 2.5 [Gru17b]. Let Θ#(x̄) be a parameterized STC+C[τ1, τ2]-counting transduc-
tion. Then there exists a parameterized STC+C[τ1, τ2]-transduction Θ(x̄) such that

• Dom(Θ(x̄)) = Dom(Θ#(x̄)) and
• Θ[A, p̄] ∼= Θ#[A, p̄] for all (A, p̄) ∈ Dom(Θ(x̄)).

2.5. Canonization. In this section we introduce ordered structures, (definable) canonization
and the capturing of the complexity class LOGSPACE.

Let τ be a vocabulary with ≤ 6∈ τ . A τ ∪ {≤}-structure A′ is ordered if the relation
symbol ≤ is interpreted as a linear order on the universe of A′. Let A be a τ -structure.
An ordered τ ∪ {≤}-structure A′ is an ordered copy of A if A′|τ ∼= A. Let C be a class of
τ -structures. A mapping f is a canonization mapping of C if it assigns every structure A ∈ C
to an ordered copy f(A) = (Af ,≤f) of A such that for all structures A,B ∈ C we have
f(A) ∼= f(B) if A ∼= B. We call the ordered structure f(A) the canon of A.

Let L be a logic that extends FO. Let Θ(x̄) be a parameterized L[τ, τ ∪ {≤}]-trans-
duction, where x̄ is a tuple of structure variables. We say Θ(x̄) canonizes a τ -structure
A if there exists a tuple p̄ ∈ Ax̄ such that (A, p̄) ∈ Dom(Θ(x̄)), and for all tuples p̄ ∈ Ax̄
with (A, p̄) ∈ Dom(Θ(x̄)), the τ ∪ {≤}-structure Θ[A, p̄] is an ordered copy of A. Note
that if the tuple x̄ of parameter variables is the empty tuple, L[τ, τ ∪ {≤}]-transduction Θ
canonizes a τ -structure A if A ∈ Dom(Θ) and the τ ∪ {≤}-structure Θ[A] is an ordered copy
of A. A (parameterized) L-canonization of a class C of τ -structures is a (parameterized)
L[τ, τ ∪ {≤}]-transduction that canonizes all A ∈ C. A class C of τ -structures admits
L-definable canonization if C has a (parameterized) L-canonization.

The following proposition and theorem are essential for proving that the class of chordal
claw-free graphs admits LREC=-definable canonization in Section 5.

Proposition 2.6 [Gro13]5. Let C be a class of graphs, and Ccon be the class of all con-
nected components of the graphs in C. If Ccon admits LREC=-definable canonization,
then C does as well.

5 In [Gro13, Corollary 3.3.21] Proposition 2.6 is only shown for IFP+C. The proof of Corollary 3.3.21
uses Lemma 3.3.18, the Transduction Lemma, and that connectivity and simple arithmetics are definable.
As LREC= is closed under parameterized LREC=-transductions, the Transduction Lemma also holds for
LREC= [GGHL12]. Connectivity and all arithmetics (e.g., addition, multiplication and Fact 3.3.14) that are
necessary to show Lemma 3.3.18 and Corollary 3.3.21 can also be defined in LREC=. Further, Lemma 3.3.12
and 3.3.17, which are used to prove Lemma 3.3.18 can be shown by pulling back simple FO-formulas under
LREC=-transductions. Hence, Corollary 3.3.21 also holds for LREC=.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:9

Theorem 2.7 [GGHL12, Gru17b]6. The class of LO-colored directed trees admits LREC=-
definable canonization.

We can use definable canonization of a graph class to prove that LOGSPACE is captured
on this graph class. Let L be a logic and C be a graph class. L captures LOGSPACE on C if
for each class D ⊆ C, there exists an L-sentence defining D if and only if D is LOGSPACE-
decidable. A precise definition of what it means that a logic (effectively strongly) captures a
complexity class can be found in [EF99, Chapter 11]. A fundamental result was shown by
Immerman:

Theorem 2.8 [Imm87]7. DTC captures LOGSPACE on the class of all ordered graphs.

Deterministic transitive closure logic DTC is a logic that is contained in LREC= [GGHL12].
Since LREC=-formulas can be evaluated in logarithmic space [GGHL12], we obtain the
following corollary:

Corollary 2.9. LREC= captures LOGSPACE on the class of all ordered graphs.

Let us suppose there exists a parameterized LREC=-canonization of a graph class C. Since
LREC= captures LOGSPACE on the class of all ordered graphs and we can pull back each
LREC=-sentence that defines a logarithmic-space property on ordered graphs under this
canonization, the capturing result transfers from ordered graphs to the class C.

Proposition 2.10. Let C be a class of graphs. If C admits LREC=-definable canonization,
then LREC= captures LOGSPACE on C.

3. Clique Trees and their Structure

Clique trees of connected chordal claw-free graphs play an important role in our canonization
of the class of chordal claw-free graphs. Thus, we analyze the structure of clique trees of
connected chordal claw-free graphs in this section.

First we introduce clique trees of chordal graphs. Then we show that chordal claw-free
graphs are intersection graphs of paths of a tree. We use this property to prove that each
connected chordal claw-free graph has a unique clique tree. Finally, we introduce two
different types of max cliques in a clique tree, star cliques and fork cliques, and show that
each max clique of a connected chordal claw-free graph is of one of these types if its degree
in the clique tree is at least 3.

3.1. Clique Trees of Chordal Graphs. Chordal graphs are precisely the intersection
graphs of subtrees of a tree. A clique tree of a chordal graph G specifies a minimal
representation of G as such an intersection graph. Clique trees were introduced independently
by Buneman [Bun74], Gavril [Gav74] and Walter [Wal72]. A detailed introduction of chordal
graphs and their clique trees can be found in [BP93].

6 It is shown in [GGHL12, Remark 4.8], and in more detail in [Gru17b, Section 8.4] that the class of all
colored directed trees that have a linear order on the colors admits LREC-definable canonization. This can
easily be extended to LO-colored directed trees since an LO-colored directed tree is a special kind of colored
directed tree that has a linear order on its colors. LREC is contained in LREC= [GGHL12].

7 Immerman proved this capturing result not only for the class of ordered graphs but for the class of
ordered structures.

2:10 B. Grußien Vol. 15:3

Let G be a chordal graph, and let M be the set of max cliques of G. Further, let Mv

be the set of all max cliques in M that contain a vertex v of G. A clique tree of G is a
tree T = (M, E) whose vertex set is the set M of all max cliques where for all v ∈ V the
induced subgraph T [Mv] is connected. Hence, for each v ∈ V the induced subgraph T [Mv]
is a subtree of T . Then G is the intersection graph of the subtrees T [Mv] of T where v ∈ V .
An example of a clique tree of a chordal graph is shown in Figure 1.

1

2 3 4 5

6

1,3,4

3,4,6

1,51,2

Figure 1. A chordal graph and a clique tree of the graph

Let T = (M, E) be a clique tree of a chordal graph G. It is easy to see that the clique tree T
satisfies the clique intersection property : Let M1,M2,M3 ∈M be vertices of the tree T. If
M2 is on the path from M1 to M3, then M1 ∩M3 ⊆M2.

3.2. Intersection-Graph Representation of Chordal Claw-Free Graphs. In the fol-
lowing we consider the class CCF, i.e., the class of chordal claw-free graphs. For each vertex
v of a chordal claw-free graph, we prove that the set of max cliques Mv induces a path in
each clique tree. Consequently, chordal claw-free graphs are intersection graphs of paths of
a tree. Note that not all intersection graphs of paths of a tree are claw-free (see Figure 1).

Lemma 3.1. Let T = (M, E) be a clique tree of a chordal claw-free graph G = (V,E). Then
for all v ∈ V the induced subtree T [Mv] is a path in T.

Proof. Let G = (V,E) ∈ CCF and let T = (M, E) be a clique tree of G. Let us assume
there exists a vertex v ∈ V such that the graph T [Mv] is not a path in T. As T [Mv] is
a subtree of T, there exists a max clique B ∈ Mv such that B has degree at least 3. Let
A1, A2, A3 ∈ Mv be three distinct neighbors of B in T [Mv]. Since Ai and B are distinct
max cliques, there exists a vertex ai ∈ Ai \ B, and for each i ∈ [3], we have Ai ∈ Mai ,
B 6∈ Mai and T [Mai] is connected. As T is a tree, A1, A2, and A3 are all in different
connected components of T [M\{B}]. Therefore,Mai ∩Mai′ = ∅ for all i, i′ ∈ [3] with i 6= i′.
Now, {v, a1, a2, a3} induces a claw in G, which contradicts G being claw-free: For all i ∈ [3],
there is an edge between v and ai, because v, ai ∈ Ai. To show that vertices ai and ai′ are
not adjacent for i 6= i′, let us assume the opposite. If ai and ai′ are adjacent, then there
exists a max clique M containing ai and ai′ . Thus, Mai ∩Mai′ 6= ∅, a contradiction.

3.3. Uniqueness of the Clique Tree for Connected Chordal Claw-Free Graphs.
The following lemmas help us to show in Corollary 3.6 that the clique tree of a connected
chordal claw-free graph is unique. Notice, that this is a property that generally does not hold
for unconnected graphs. Given an unconnected chordal (claw-free) graph, we can connect
the clique trees for the connected components in an arbitrary way to obtain a clique tree of
the entire graph. Further, connected chordal graphs in general also do not have a unique
clique tree. For example, the claw is a connected chordal graph having multiple clique trees

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:11

(see Figure 2a), and the K1,4 is a connected chordal graph where the clique trees are not
even isomorphic (see Figure 2b).

1

2 3 4

1, 2
K1,3 :

1, 3

1, 4

1, 2

1, 4

1, 3

(a) The K1,3 and two clique trees

1

2 3 4

1, 2
K1,4 :

1, 3

1, 4

1, 2

1, 3

1, 4

5

1, 5

1, 5

(b) The K1,4 and two non-isomorphic clique trees

Figure 2. Connected chordal graphs where the clique tree is not unique

Lemma 3.2. Let T = (M, E) be a clique tree of a chordal claw-free graph G = (V,E).
Further, let v ∈ V , and let A1, A2, A3 be distinct max cliques in Mv. Then A2 lies between
A1 and A3 on the path T [Mv] if and only if A2 ⊆ A1 ∪A3.

Proof. Let G = (V,E) ∈ CCF and T = (M, E) be a clique tree of G. Further, let v ∈ V ,
and let A1, A2, A3 ∈Mv be distinct max cliques. First, suppose A2 ⊆ A1 ∪A3, and let us
assume that, w.l.o.g., A1 lies between A2 and A3. Then A2 ∩ A3 ⊆ A1 according to the
clique intersection property. Further, A2 ⊆ A1 ∪ A3 implies that A2 \ A3 ⊆ A1. It follows
that A2 ⊆ A1, which is a contradiction to A1 and A2 being distinct max cliques.

Now let max clique A2 lie between A1 and A3 on the path T [Mv], and let us assume that
there exists a vertex a2 ∈ A2\(A1∪A3). Let P = B1, . . . , Bl be the path T [Mv] (Lemma 3.1).
W.l.o.g., assume that Ai = Bji for all i ∈ [3] where j1, j2, j3 ∈ [l] with j1 < j2 < j3. Further,
let A′1 := Bj1+1 and A′3 := Bj3−1, and let a1 ∈ A1 \ A′1 and a3 ∈ A3 \ A′3. Similarly to the
proof of Lemma 3.1, we obtain that {v, a1, a2, a3} induces a claw in G, a contradiction.

Corollary 3.3. For all distinct vertices v, w ∈ V, the graph T [Mv \Mw] is connected.8

Proof. Let v, w ∈ V be distinct vertices. Let P = A1, . . . , Al be the path T [Mv], and let us
assume T [Mv \Mw] is not connected. Then there exist i, j, k ∈ [l] with i < j < k such that
Ai, Ak ∈ Mv \Mw and Aj ∈ Mw. By Lemma 3.2 we have Aj ⊆ Ai ∪ Ak. Thus, vertex
w ∈ Aj is also contained in Ai or Ak, a contradiction.

Lemma 3.4. Let T1 = (M, E1) and T2 = (M, E2) be clique trees of a chordal claw-free graph
G = (V,E). Then for every v ∈ V we have T1[Mv] = T2[Mv].

Proof. Let G = (V,E) ∈ CCF and let T1 = (M, E1) and T2 = (M, E2) be clique trees of G.
Let v ∈ V. According to Lemma 3.1, T1[Mv] and T2[Mv] are paths in T1 and T2, respectively.
Let us assume there exist distinct max cliques A,B ∈Mv such that, A,B are adjacent in
T1[Mv] but not adjacent in T2[Mv]. As A and B are not adjacent in T2[Mv], there exists
a max clique C ∈ Mv that lies between A and B on the path T2[Mv]. Thus, A ∩ B ⊆ C
according to the clique intersection property. Since max cliques A and B are adjacent in
T1[Mv], either A lies between B and C, or B lies between A and C on the path T1[Mv].

8We define the empty graph as connected.

2:12 B. Grußien Vol. 15:3

W.l.o.g., suppose that A lies between B and C on the path T1[Mv]. Then A ⊆ B ∪ C by
Lemma 3.2. Thus, we have A \B ⊆ C. Since A∩B ⊆ C, this yields that A ⊆ C, which is a
contradiction to A and C being distinct max cliques.

Lemma 3.5. Let T = (M, E) be a clique tree of a connected chordal graph G = (V,E).
Then

T =
⋃
v∈V

T [Mv].

Proof. Let G = (V,E) be a connected chordal graph and T = (M, E) be a clique tree of G.
Clearly, the graphs T and T ′ :=

⋃
v∈V T [Mv] have the same vertex set, and T ′ is a subgraph

of the tree T . In order to prove that T = T ′, we show that T ′ is connected.
For all vertices v ∈ V, the graph T ′[Mv] is connected because T [Mv] is connected.

For each edge {u, v} ∈ E of the graph G, there exists a max clique that contains u and
v, and therefore, we have Mu ∩ Mv 6= ∅. Hence, T ′[Mu ∪ Mv] is connected for every
edge {u, v} ∈ E. Since G is connected, it follows that T ′[

⋃
v∈V Mv] is connected. Clearly,⋃

v∈V Mv =M. Consequently, the graph T ′ is connected.

As a direct consequence of Lemma 3.4 and Lemma 3.5 we obtain the following corollary. It
follows that each connected chordal claw-free graph has a unique clique tree.

Corollary 3.6. Let T1 and T2 be clique trees of a connected chordal claw-free graph G.
Then T1 = T2.

3.4. Star Cliques and Fork Cliques. In the following let G = (V,E) be a connected
chordal claw-free graph and let TG = (M, E) be its clique tree.

Let B be a max clique of G. If for all v ∈ B max clique B is an end of path TG[Mv], we
call B a star clique. Thus, B is a star clique if, and only if, every vertex in B is contained
in at most one neighbor of B in TG. A picture of a star clique can be found in Figure 3a.
Clearly, every max clique of degree 1, i.e., every leaf, of clique tree TG is a star clique.

A max clique B of degree 3 is called a fork clique if for every v ∈ B there exist two
neighbors A,A′ of B with A 6= A′ such that Mv = {B,A,A′}, and for all neighbors A,A′

of B with A 6= A′ there exists a vertex v ∈ B with Mv = {B,A,A′}. Figure 3b shows a
sketch of a fork clique. Note that two fork cliques cannot be adjacent.

(a) A star clique (b) A fork clique

Figure 3. A star clique and a fork clique. Each picture shows a part of a
clique tree TG. For v ∈ V each path TG[Mv] is depicted as a green line.

The following lemma and corollary provide more information about the structure of the
clique tree of a connected chordal claw-free graph.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:13

Lemma 3.7. Let B ∈M. If the degree of B in clique tree TG is at least 3, then B is a star
clique or a fork clique.

Corollary 3.8. Let B ∈M be a fork clique. Then every neighbor of B in clique tree TG is
a star clique.

Proof. Let us assume max clique A is a neighbor of fork clique B, and A is not a star clique.
Then the degree of A is at least 2. As A cannot be a fork clique, Lemma 3.7 implies that A
has degree 2. Since B is a fork clique, there does not exist a vertex v ∈ A that is contained
in B and the other neighbor of A. Thus, A is a star clique, a contradiction.

In the remainder of this section we prove Lemma 3.7.
Let P and Q be two paths in TG. We call (A′, A, {AP , AQ}) ∈ V 2 ×

(
V
2

)
a fork of P

and Q, if P [{A′, A,AP }] and Q[{A′, A,AQ}] are induced subpaths of length 3 of P and Q,
respectively, and neither AP occurs in Q nor AQ occurs in P. Figure 4 shows a fork of paths
P and Q. We say P and Q fork (in A) if there exists a fork (A′, A, {AP , AQ}) of P and Q.

A′ A

AP

AQ

P

Q

Figure 4. A fork of P and Q

Lemma 3.9. Let v, w ∈ V. If the paths TG[Mv] and TG[Mw] fork, then TG[Mv] and
TG[Mw] are paths of length 3.

Proof. Let v, w ∈ V. Clearly, if TG[Mv] and TG[Mw] fork, then they must be paths of length
at least 3. It remains to prove that their length is at most 3. For a contradiction, let us
assume the length of TG[Mv] is at least 4. Let (A1, B, {A2, A

′
2}) be a fork of TG[Mv] and

TG[Mw] where A2 ∈Mv \Mw and A′2 ∈Mw \Mv.

A1 B A2

A′2

v

w

A0

(a)

A1 B A2

A′2

v

w

A0

u

(b)

B A2 A3

A′2

v

w

A1

u

(c)

Figure 5. Illustrations for the proof of Lemma 3.9

First let us assume there exists a max clique A0 ∈Mv such that P = A0, A1, B,A2 is
a subpath of TG[Mv] of length 4. According to Corollary 3.3, the graph TG[Mv \Mw] is
connected. Thus, we have A0 ∈ Mw (see Figure 5a). Now A0 and A1 are distinct max
cliques. Therefore, there exists a vertex u ∈ A1 \ A0. As P is a subpath of TG[Mv] and
P ′ = A0, A1, B,A

′
2 is a subpath of TG[Mw], vertex u is not only contained in A1 but also in

B, A2 and A′2 by Lemma 3.2 (see Figure 5b). As a consequence, TG[Mu] is not a path, a
contradiction to Lemma 3.1.

2:14 B. Grußien Vol. 15:3

Next, let us assume there exists a max clique A3 ∈Mv such that P = A1, B,A2, A3 is a
subpath of TG[Mv] of length 4. Further, P ′ = A1, B,A

′
2 is a subpath of TG[Mw]. As A1 and

B are max cliques, there exists a vertex u ∈ B \A1. By Lemma 3.2, vertex u is also contained
in A2, A3 and A′2 as shown in Figure 5c. Now let us consider the paths TG[Mv] and TG[Mu].
Q = A3, A2, B,A1 is a subpath of TG[Mv], and Q′ = A3, A2, B,A

′
2 is a subpath of TG[Mu].

Clearly, (A2, B, {A1, A
′
2}) is a fork of TG[Mv] and TG[Mu]. According to the previous part

of this proof, we obtain a contradiction.

The max cliques A1, A2, A3 ∈ M form a fork triangle around a max clique B ∈ M if
A1, A2 and A3 are distinct neighbors of B and there exist vertices u, v, w ∈ V such that
Mu = {A1, B,A2}, Mv = {A2, B,A3} and Mw = {A3, B,A1}. We say that max clique
B ∈ M has a fork triangle if there exist max cliques A1, A2, A3 ∈ M that form a fork
triangle around B. Figure 6 depicts a fork triangle around a max clique B. Clearly, if a
max clique B has a fork triangle, then B is a vertex of degree at least 3 in TG.

A1

B

A2

u

A3
u

w

w
vv

Figure 6. A fork triangle

Lemma 3.10. Let v, w ∈ V, and let B ∈M be a max clique. If TG[Mu] and TG[Mv] fork
in B, then B has a fork triangle.

Proof. Let v, w ∈ V, let B ∈ M be a max clique, and let TG[Mu] and TG[Mv] fork in B.
Then TG[Mu] and TG[Mv] are paths of length 3 by Lemma 3.9. LetMu = {A2, B,A1} and
Mv = {A2, B,A3} with A1 6= A3. Since B and A2 are max cliques, there exists a vertex
w ∈ B \A2. Now, we can apply Lemma 3.2 to the paths TG[Mu] and TG[Mv], and obtain
that w ∈ A1 and w ∈ A3. As TG[Mw] and TG[Mu] fork, the path TG[Mw] must be of
length 3 by Lemma 3.9. Thus, Mw = {A3, B,A1}. Hence, A1, A2, A3 form a fork triangle
around B.

Lemma 3.11. Let z ∈ V. If max clique B ∈Mz has a fork triangle, then |Mz| = 3 and B
is in the middle of path TG[Mz].

Proof. Let z ∈ V, and let B ∈Mz have a fork triangle. Then, there exist u, v, w ∈ V and dis-
tinct neighbor max cliques A1, A2, A3 of B such thatMu = {A1, B,A2},Mv = {A2, B,A3}
and Mw = {A3, B,A1}. Let W be the set {A1, A2, A3} of max cliques that form a fork
triangle around B. Let us consider |Mz ∩W|. If |Mz ∩W| ≤ 1, then Mz is a separating
set of at least one of the paths TG[Mu], TG[Mv] or TG[Mw] as shown in Figure 7a and 7b,
and we have a contradiction to Corollary 3.3. Clearly, we cannot have |Mz ∩W| = 3, since
TG[Mz] must be a path. It remains to consider |Mz ∩ W| = 2, which is illustrated in
Figure 7c. In this case, TG[Mz] forks with one of the paths TG[Mu], TG[Mv] or TG[Mw]
in B, and must be of length 3 according to Lemma 3.9. Obviously, B is in the middle of the
path TG[Mz].

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:15

A1

B

A2 A3
u wvv

z

uw

(a) |Mz ∩W| = 0

A1

B

A2 A3
u wvv

z

uw

(b) |Mz ∩W| = 1

A1

B

A2 A3
u wvv

z

uw

(c) |Mz ∩W| = 2

Figure 7. Illustrations for the proof of Lemma 3.11

Lemma 3.12. If max clique B ∈M has a fork triangle, then the degree of B in TG is 3.

Proof. Let B ∈M have a fork triangle. Thus, there exists vertices u, v, w ∈ V and distinct
neighbor max cliques A1, A2, A3 of B such that Mu = {A1, B,A2}, Mv = {A2, B,A3} and
Mw = {A3, B,A1}. Let us assume B is of degree at least 4. Let C be a neighbor of B in TG
that is distinct from A1, A2 and A3. According to Lemma 3.5 there must be a vertex z ∈ V
such that B,C ∈Mz (for an illustration see Figure 8). By Lemma 3.11, we have |Mz| = 3.
W.l.o.g., let A2 and A3 be not contained in Mz. Then TG[Mv \Mz] is not connected, and
we obtain a contradiction to Corollary 3.3.

A1

B
A2

C

u

w

v z

A3

Figure 8. Illustration for the proof of Lemma 3.12

Corollary 3.13. If a max clique B ∈M has a fork triangle, then B is a fork clique.

Proof. Let B be a max clique that has a fork triangle. Then the degree of B is 3 by
Lemma 3.12. As B has a fork triangle, there exists a vertex v ∈ B with Mv = {B,A,A′}
for all neighbor max cliques A,A′ of B with A 6= A′. Further, it follows from Lemma 3.11
that for every v ∈ B there exist two neighbor max cliques A,A′ of B with A 6= A′ such that
Mv = {B,A,A′}.

Now we can prove Lemma 3.7 and show that each max clique of degree at least 3 in the
clique tree TG is a star clique or a fork clique.

Proof of Lemma 3.7. Let B be a max clique of degree at least 3. Suppose B is not a star
clique. Then there exists a vertex u ∈ B and two neighbor max cliques A1, A2 of B in TG
that also contain vertex u. Let C be a neighbor of B with C 6= A1 and C 6= A2. Since
{B,C} is an edge of TG, there must be a vertex w ∈ V such that B,C ∈Mw according to
Lemma 3.5 (see Figure 9 for an illustration). By Corollary 3.3, the graph TG[Mu \Mw]
must be connected. Thus, we have A1 ∈ Mw or A2 ∈ Mw. Hence, TG[Mu] and TG[Mw]

2:16 B. Grußien Vol. 15:3

fork in B, and Lemma 3.10 implies that B has a fork triangle. It follows from Corollary 3.13
that B is a fork clique.

A1 B A2

C

u

w

Figure 9. Illustration for the proof of Lemma 3.7

4. The Supplemented Clique Tree

In this section we define the supplemented clique tree of a connected chordal claw-free
graph G. We obtain the supplemented clique tree by transferring the clique tree TG into a
directed tree and including some of the structural information about each max clique into the
directed clique tree by means of an LO-coloring. We show that there exists a parameterized
STC+C-transduction that defines for each connected chordal claw-free graph and every tuple
of suitable parameters an isomorphic copy of the corresponding supplemented clique tree.
In order to do this, we first present (parameterized) transductions for the clique tree and
the directed clique tree. Throughout this section we let x̄, ȳ and ȳ′ be triples of structure
variables.

4.1. Defining the Clique Tree in FO. In a first step we present an FO-transduction
Θ = (θU (ȳ), θ≈(ȳ, ȳ′), θE(ȳ, ȳ′)) that defines for each connected chordal claw-free graph G a
tree isomorphic to the clique tree of G.

For now, let G = (V,E) be a chordal claw-free graph, and let M be the set of max
cliques of G. A triple b̄ = (b1, b2, b3) ∈ V 3 spans a max clique A ∈M if A is the only max
clique that contains the vertices b1, b2 and b3. Thus, b̄ spans max clique A ∈M if and only
if Mb1 ∩Mb2 ∩Mb3 = {A}. We call b̄ ∈ V 3 a spanning triple of G if b̄ spans a max clique.
We use spanning triples to represent max cliques. Note that this concept was already used
in [Lau10] and [GGHL12] to represent max cliques of interval graphs.

Lemma 4.1. Every max clique of a chordal claw-free graph is spanned by a triple of vertices.

Proof. Let T = (M, E) be a clique tree of a chordal claw-free graph G. Let B ∈M and let
v ∈ B. By Lemma 3.1, the induced subgraph T [Mv] is a path P = B1, . . . , Bl. Suppose
B = Bi. If i > 1, let u be a vertex in B \ Bi−1, and let w be a vertex in B \ Bi+1 if i < l.
We let u = v if i = 1, and we let w = v if i = l. Then (u, v, w) spans max clique B: Clearly,
u, v, w ∈ B. It remains to show, that there does not exist a max clique A ∈M with A 6= B
and u, v, w ∈ A. Let us suppose such a max clique A exists. Since v ∈ A, max clique A is a
vertex on path P . W.l.o.g., suppose A = Bj for j < i. According to the clique intersection
property, we have u ∈ A ∩B ⊆ Bi−1, a contradiction.

As a direct consequence of Lemma 4.1, there exists an at most cubic number of max cliques
in a chordal claw-free graph.

The following observations contain properties that help us to define the transduction Θ.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:17

Observation 4.2. Let G = (V,E) be a chordal claw-free graph. Let v̄ = (v1, v2, v3) ∈ V 3.
Then v̄ is a spanning triple of G if, and only if, ṽ is a clique and {w1, w2} ∈ E for all vertices
w1, w2 ∈ N(v1) ∩N(v2) ∩N(v3) with w1 6= w2.

Proof. Let G = (V,E) be a chordal claw-free graph, and let v̄ = (v1, v2, v3) ∈ V 3. First,
suppose that v̄ is a spanning triple. Then ṽ is a clique. Let us assume there exist vertices
w1, w2 ∈ N(v1) ∩N(v2) ∩N(v3) with w1 6= w2 such that there is no edge between w1 and
w2. Then ṽ ∪ {w1} and ṽ ∪ {w2} are cliques but ṽ ∪ {w1, w2} is not a clique. Thus, ṽ ∪ {w1}
is a subset of a max clique C1 with w2 6∈ C1, and ṽ ∪ {w2} is a subset of a max clique C2

with w1 6∈ C2. Consequently, vertices v1, v2, v3 are contained in more than one max clique,
and therefore, v̄ is no spanning triple, a contradiction.

Next, let us suppose that ṽ is a clique and that {w1, w2} ∈ E for all vertices w1, w2 ∈
N(v1)∩N(v2)∩N(v3) with w1 6= w2. Assume that v1, v2, v3 are contained in two max cliques
A and B. As A cannot be a subset of B, there exists a vertex w1 ∈ A \B. Now, B ∪ {w1}
cannot be a clique. Thus, there must exist a vertex w2 ∈ B that is not adjacent to w1. Since
w1 is adjacent to all vertices in A \ {w1}, we have w2 ∈ B \A. Consequently, w1 and w2 are
vertices in N(v1) ∩N(v2) ∩N(v3) with w1 6= w2 that are not adjacent, a contradiction.

From the characterization of spanning triples in Observation 4.2, it follows that there exists
an FO-formula θU (ȳ) that is satisfied by a chordal claw-free graph G = (V,E) and a triple
v̄ ∈ V 3 if and only if v̄ is a spanning triple of G.

Observation 4.3. Let G = (V,E) be a chordal claw-free graph. Let A be a max clique of
G, and let the triple v̄ = (v1, v2, v3) ∈ V 3 span A. Then w ∈ A if, and only if, w ∈ ṽ or
{w, vj} ∈ E for all j ∈ [3].

Proof. Let A be a max clique of a chordal claw-free graph G = (V ,E), and let v̄ =
(v1, v2, v3) ∈ V 3 span A. Clearly, if w ∈ A, then w ∈ ṽ or {w, vj} ∈ E for all j ∈ [3]. Further,
w ∈ A if w ∈ ṽ. Thus, we only need to show that w ∈ A if {w, vj} ∈ E for all j ∈ [3].
Suppose {w, vj} ∈ E for all j ∈ [3]. Then {v1, v2, v3, w} is a clique. Let B be a max clique
with {v1, v2, v3, w} ⊆ B. Since A is the only max clique that contains v1, v2, v3, we have
B = A. Hence, w ∈ A.

Observation 4.3 yields that there further exists an FO-formula ϕmc(ȳ, z) that is satisfied for
v̄ ∈ V 3 and w ∈ V in a chordal claw-free graph G = (V,E) if, and only if, v̄ spans a max
clique A and w ∈ A. We can use this formula to obtain an FO-formula θ≈(ȳ, ȳ′) such that
for all chordal claw-free graphs G = (V,E) and all triples v̄, v̄′ ∈ V 3 we have G |= θ≈(v̄, v̄′)
if, and only if, v̄ and v̄′ span the same max clique.

In the following we consider connected chordal claw-free graphs G. The next observation
is a consequence of Lemma 3.5 and Lemma 3.2.

Observation 4.4. Let G = (V,E) be a connected chordal claw-free graph, and TG = (M, E)
be the clique tree of G. Let A,B ∈ M. Max cliques A and B are adjacent in TG if, and
only if, there exists a vertex v ∈ V such that v ∈ A ∩B and for all C ∈M with v ∈ C we
have C 6⊆ A ∪B.

Proof. Let TG = (M, E) be the clique tree of a connected chordal claw-free graph G = (V,E).
Let A,B ∈M. By Lemma 3.5 there is an edge between two max cliques A,B ∈M in TG if,
and only if, there exists a vertex v ∈ V such that A,B ∈Mv and there is an edge between A
and B on the path T [Mv]. Further, it follows from Lemma 3.2 that max cliques A,B ∈Mv

are adjacent precisely if there does not exist a max clique C ∈Mv with C ⊆ A ∪B.

2:18 B. Grußien Vol. 15:3

It follows from Observation 4.4 that there exists an FO-formula θE(ȳ, ȳ′) that is satisfied for
triples v̄, v̄′ ∈ V 3 in a connected chordal claw-free graph G = (V,E) if, and only if, v̄ and v̄′

span adjacent max cliques.
It is not hard to see that Θ = (θU , θ≈, θE) is an FO-transduction that defines for each

connected chordal claw-free graph G a tree isomorphic to the clique tree of G.

Lemma 4.5. There exists an FO-transduction Θ such that Θ[G] ∼= TG for all G ∈ con-CCF.

4.2. The Directed Clique Tree and its Definition in STC. Now we transfer the clique
tree into a directed tree and show that this directed clique tree can be defined in STC.

Let R be a leaf of the clique tree TG. We transform TG into a directed tree by rooting
TG at max clique R. We denote the resulting directed clique tree by TRG = (M, ER). Since
R is a leaf of TG, the following corollary is an immediate consequence of Lemma 3.7.

Corollary 4.6. Let A be a max clique of a connected chordal claw-free graph G. If A is a
vertex with at least two children in TRG , then A is a star clique or a fork clique.

In the following we show that there exists a parameterized STC-transduction Θ′(x̄) which
defines an isomorphic copy of TRG for each connected chordal claw-free graph G and triple
r̄ ∈ V 3 that spans a leaf R of TG.

Clearly, we can define an FO-formula θ′dom(x̄) such that for all connected chordal claw-
free graphs G and r̄ ∈ V 3 we have G |= θ′dom(r̄) if, and only if, r̄ ∈ V 3 spans a leaf of
TG. Then θ′dom defines the triples of parameters of transduction Θ′(x̄). Further, we let
θ′U (x̄, ȳ) := θU (ȳ) and θ′≈(x̄, ȳ, ȳ′) := θ≈(ȳ, ȳ′). Finally, we let θ′E(x̄, ȳ, ȳ′) be satisfied for
triples r̄, v̄, v̄′ ∈ V 3 in a connected chordal claw-free graph G = (V,E) if, and only if, r̄, v̄
and v̄′ span max cliques R, A and A′, respectively, and (A,A′) is an edge in TRG . Note that
(A,A′) is an edge in TRG precisely if {A,A′} is an edge in TG and there exists a path between
R and A in TG after removing A′. Thus, formula θ′E can be constructed in STC. We let
Θ′(x̄) := (θ′dom(x̄), θ′U (x̄, ȳ), θ′≈(x̄, ȳ, ȳ′), θ′E(x̄, ȳ, ȳ′)), and conclude:

Lemma 4.7. There exists a parameterized STC-transduction Θ′(x̄) such that Dom(Θ′(x̄))
is the set of all pairs (G, r̄) where G = (V,E) ∈ con-CCF and r̄ ∈ V 3 spans a leaf R of TG,
and Θ′[G, r̄] ∼= TRG for all (G, r̄) ∈ Dom(Θ′(x̄)) where r̄ spans the max clique R of G.

4.3. The Supplemented Clique Tree and its Definition in STC+C. We now equip
each max clique of the directed clique tree TRG with structural information. We do this by
coloring the directed clique tree TRG with an LO-coloring. An LO-color is a binary relation on
a linearly ordered set of basic color elements. Into each LO-color, we encode three numbers.
Isomorphisms of LO-colored directed trees preserve the information that is encoded in the
LO-colors. Thus, an LO-colored directed tree and its canon contain the same numbers
encoded in their LO-colors. We call this LO-colored directed clique tree a supplemented
clique tree. More precisely, let G ∈ con-CCF and let R be a leaf of the clique tree TG of G,
then the supplemented clique tree SRG is the 5-tuple (M, ER, [0, |V |],≤[0,|V |], L) where

• (M, ER) is the directed clique tree TRG of G,
• ≤[0,|V |] is the natural linear order on the set of basic color elements [0, |V |],
• L ⊆M× [0, |V |]2 is the ternary color relation where

– (A, 0, n) ∈ L iff n is the number of vertices in A that are not in any child of A in TRG ,

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:19

– (A, 1, n) ∈ L iff n is the number of vertices that are contained in A and in the parent of
A in TRG if A 6= R, and n = 0 if A = R,

– (A, 2, n) ∈ L iff n is the number of vertices in A that are in two children of A in TRG .9

In its structural representation the supplemented clique tree SRG corresponds to the 6-tuple
(M∪̇ [0, |V |],M, ER, [0, |V |],≤[0,|V |], L).

Example 4.8. Figure 10 shows a supplemented clique tree, that is, a directed clique tree
with its LO-coloring.

f

o

q

a

d

h
e

p

l

d

e

f

i

t
q

ur

b

g

g k
o

nj

c

d

e

g

p

m ns v

f

m

0 3
1 0

2 0

0 0

1 3

2 1

0 4

1 2
2 0

0 3

1 1

2 0

 0 5

1 3

2 0

0 6

1 3

2 0

0 2

1 1

2 0

Figure 10. A supplemented clique tree SRG

The properties encoded in the colors of the max cliques are expressible in STC+C. Therefore,
we can extend the parameterized STC-transduction Θ′(x̄) to a parameterized STC+C-trans-
duction Θ′′(x̄) that defines an LO-colored digraph isomorphic to SRG for every connected
chordal claw-free graph G and triple r̄ ∈ V 3 that spans a leaf R of TG.

Lemma 4.9. There is a parameterized STC+C-transduction Θ′′(x̄) such that Dom(Θ′′(x̄))
is the set of all pairs (G, r̄) where G = (V,E) ∈ con-CCF and r̄ ∈ V 3 spans a leaf R of TG,
and Θ′′[G, r̄] ∼= SRG for all (G, r̄) ∈ Dom(Θ′′(x̄)) where r̄ spans the max clique R of G.

Proof. We let Θ′(x̄) := (θ′dom(x̄), θ′U (x̄, ȳ), θ′≈(x̄, ȳ, ȳ′), θ′E(x̄, ȳ, ȳ′)) be the parameterized
STC-transduction from Lemma 4.7. Then the domain Dom(Θ′(x̄)) of Θ′(x̄) is the set of all
pairs (G, r̄) where G = (V,E) ∈ con-CCF and r̄ ∈ V 3 spans a leaf R of TG, and we have
Θ′[G, r̄] ∼= TRG for all (G, r̄) ∈ Dom(Θ′(x̄)) where r̄ spans the max clique R.

We can define a parameterized STC+C-counting transduction Θ#(x̄) as follows:
We let

Θ#(x̄) :=
(
θ#dom(x̄), θ#U (x̄, ȳ), θ#≈(x̄, ȳ, ȳ′),θ#V (x̄, ȳ), θ#E(x̄, ȳ, ȳ′),

θ#M (x̄, p), θ#E(x̄, p, p′), θ#L (x̄, ū, p, p′),
)
,

9 Let A be a max clique and n be the number of vertices in A that are in two children of A in TR
G . Notice

that according to Corollary 4.6, A is a fork clique if and only if n > 0.

2:20 B. Grußien Vol. 15:3

where

θ#dom(x̄) := θ′dom(x̄) θ#V (x̄, ȳ) := θ′U (x̄, ȳ) θ#M (x̄, p) := >
θ#U (x̄, ȳ) := θ′U (x̄, ȳ) θ#E(x̄, ȳ, ȳ′) := θ′E(x̄, ȳ, ȳ′) θ#E(x̄, p, p′) := p ≤ p′

θ#≈(x̄, ȳ, ȳ′) := θ′≈(x̄, ȳ, ȳ′)

and

θ#L (x̄, ȳ, p, p′) := ϕ0(x̄, ȳ, p, p′) ∨ ϕ1(x̄, ȳ, p, p′) ∨ ϕ2(x̄, ȳ, p, p′).

We let ϕ0(x̄, ȳ, p, p′), ϕ1(x̄, ȳ, p, p′) and ϕ2(x̄, ȳ, p, p′) be STC+C-formulas such that for all
G = (V,E) ∈ con-CCF, all triples r̄ ∈ V 3 that span a leaf R of TG, all v̄ ∈ V 3 and all
m,n ∈ N(G):

• G |= ϕ0[r̄, v̄,m, n] iff m = 0, the triple v̄ spans a max clique A of G, and n is the number
of vertices in A that are not in any child of A in TRG .
• G |= ϕ1[r̄, v̄,m, n] iff m = 1, the triple v̄ spans a max clique A of G, and n is the number

of vertices that are contained in A and in the parent of A in TRG if A 6= R, and n = 0 if
A = R.
• G |= ϕ2[r̄, v̄,m, n] iff m = 2, the triple v̄ spans a max clique A of G, and n is the number

of vertices in A that are in at least two children of A in TRG .

Let ϕmc(ȳ, z) be the FO-formula from Section 4, which is satisfied for v̄ ∈ V 3 and w ∈ V
in a chordal claw-free graph G = (V,E) if, and only if, v̄ spans a max clique A and w ∈ A.
Then ϕ0(x̄, ȳ, p, p′), for example, can be defined as follows:

ϕ0(x̄, ȳ, p, p′) := ∀q p ≤ q ∧ θ′U (x̄, ȳ) ∧

#z
(
ϕmc(ȳ, z) ∧ ∀ȳ′

(
θ′E(x̄, ȳ, ȳ′)→ ¬ϕmc(ȳ

′, z)
))

= p′ .

It should be clear how to define ϕ1(x̄, ȳ, p, p′) and ϕ2(x̄, ȳ, p, p′).
It is not hard to see that Θ#(x̄) is a parameterized STC+C-counting transduction whose

domain Dom(Θ#(x̄)) is the set of all pairs (G, r̄) where G = (V,E) ∈ con-CCF and r̄ ∈ V 3

spans a leaf R of TG, and which satisfies Θ#[G, r̄] ∼= SRG for all (G, r̄) ∈ Dom(Θ#(x̄)) where
r̄ spans the max clique R of G. Now Lemma 4.9 follows directly from Proposition 2.5.

5. Canonization

In this section we prove that there exists a parameterized LREC=-canonization of the class
of connected chordal claw-free graphs, which is the main result of this paper.

Theorem 5.1. The class of chordal claw-free graphs admits LREC=-definable canonization.

Proof of Theorem 5.1. We prove that there exists a parameterized LREC=-canonization of
the class of connected chordal claw-free graphs. Then Proposition 2.6 implies that there
also exists one for the class of chordal claw-free graphs.

Thus, let us show that there exists a parameterized LREC=-canonization of con-CCF.
By Lemma 4.9 there exists a parameterized STC+C-, and therefore, LREC=-transduction
Θ′′(x̄) such that Θ′′[G, r̄] is isomorphic to the LO-colored directed tree SRG for all connected
chordal claw-free graphs G = (V,E) and all triples r̄ ∈ V 3 that span a leaf R of TG. Further,
there exists an LREC=-canonization ΘLO of the class of LO-colored directed trees according
to Theorem 2.7. We show that there also exists an LREC=-transduction ΘK which defines

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:21

for each canon K(SRG) of a supplemented clique tree SRG of G ∈ con-CCF the canon K(G)
of G. Then we can compose the (parameterized) LREC=-transductions Θ′′(x̄), ΘLO and ΘK

(see Figure 11) to obtain a parameterized LREC=-canonization of the class of connected
chordal claw-free graphs (Proposition 2.3).

G ∈ con-CCF, r̄ ∈ V 3

(r̄ spans a leaf R of TG)
Θ′′[G, r̄]

∼ =

SRG

ΘLO[Θ′′[G, r̄]]

=

K(SRG)

ΘK [ΘLO[Θ′′[G, r̄]]]

=

K(G)

Θ′′(x̄) ΘLO ΘK

Figure 11. Overview of the composition of (parameterized) transductions

We let LREC=[{V,E,M,E, L,≤}, {E,≤}]-transduction ΘK = (θV (p), θE(p, p′), θ≤(p, p′)) de-
fine for each canon K(SRG) = (UK , VK , EK ,MK ,EK , LK ,≤K) of a supplemented clique tree
of G ∈ con-CCF an ordered copy K(G) = (V ′K , E

′
K ,≤′K) of G = (V,E). We let V ′K be the

set [|V |], and ≤′K be the natural linear order on [|V |]. As the set of basic color elements
of SRG is [0, |V |], the set MK of basic color elements of the canon K(SRG) contains exactly
|V |+ 1 elements. Hence, we can easily define the vertex set of K(G) by counting the number
of basic color elements of K(SRG). We let ϕV (p) := ∃q

(
p ≤ q ∧ p 6= 0 ∧ #xM(x) = q

)
.

Further, we let θ≤(p, p′) := p ≤ p′. In order to show that there exists an LREC=-formula
θE(p, p′), which defines the edge relation of K(G), we exploit the property that LREC=

captures LOGSPACE on ordered structures (Corollary 2.9), and show that there exists a
logarithmic-space algorithm that computes the edge relation of K(G), instead. According to
Lemma 5.2 there exists a logarithmic-space algorithm that computes the set of max cliques
of K(G). As every edge is a subset of some max clique and every two distinct vertices in
a max clique are adjacent, such a logarithmic-space algorithm can easily be extended to a
logarithmic-space algorithm that decides whether a pair of numbers is an edge of K(G).

Lemma 5.2. There exists a logarithmic-space algorithm that, given the canon K(SRG) of a
supplemented clique tree of a connected chordal claw-free graph G, computes the set of max
cliques of an ordered copy K(G) of G.

In the following we briefly sketch the algorithm. A detailed proof of Lemma 5.2 follows
afterwards.

The algorithm performs a post-order tree traversal on the underlying tree of the
canon K(SRG) = (UK , VK , EK ,MK ,EK , LK ,≤K) of the supplemented clique tree SRG . Let
m1, . . . ,m|M| be the post-order traversal sequence. Each vertex mk ∈ VK of the canon

K(SRG) corresponds to a vertex, i.e., a max clique Ak ∈ M, in the supplemented clique
tree SRG . We call A1, . . . , Am|M| a transferred traversal sequence. For all k ∈ {1, . . . , |M|},
starting with k = 1, the algorithm constructs for mk ∈ VK a copy Bmk

⊆ [|V |] of Ak.
From the information encoded in the colors of the vertices of K(SRG), we know the

number of vertices in Ak that are not in any max clique that occurs before Ak in the
transferred traversal sequence. For these vertices, we add the smallest numbers of [|V |] to
Bmk

that were not used before. We also use the information in the colors to find out how
many vertices of Ak are in a max clique Ai that occurs before Ak in the transferred traversal
sequence, and to determine what numbers these vertices were assigned to. These numbers
are added to Bmk

as well.

2:22 B. Grußien Vol. 15:3

We will see that the algorithm computes the max cliques Bm1 , . . . , Bmk−1
in logarithmic

space.

In the remainder of this section we prove Lemma 5.2. We start with looking at the structure
of the required algorithm, and focus on its basic idea. Then we make necessary observations,
and finally present the algorithm. Afterwards, we prove its correctness and show that it only
needs logarithmic space.

In the following let G = (V,E) be a connected chordal claw-free graph and SRG be a
supplemented clique tree of G. Further, let K(SRG) = (UK , VK , EK ,MK ,EK , LK ,≤K) be
the canon of SRG . Without loss of generality, we assume that the set of basic color elements
MK is [0, |V |] and that EK is the natural linear order ≤[0,|V |] on [0, |V |].

The goal is to define the max cliques of an ordered copy of G. We denote this ordered
copy by K(G) = (V ′K , E

′
K ,≤′K), and let V ′K be the set [|V |] and ≤′K be the natural linear

order on [|V |].

Post-Order Depth-First Tree Traversal. The algorithm uses post-order traversal (see,
e.g., [Sed02]) on the underlying directed tree of K(SRG) to construct the max cliques of the
canon K(G) of G. Like pre-order and in-order traversal, post-order traversal is a type of
depth-first tree traversal, that specifies a linear order on the vertices of a tree.

Note that the universe of the canon of the supplemented clique tree is linearly ordered.
Thus, we have a linear order on the children of a vertex, and we assume the children of a
vertex to be given in that order.

In the following we summarize the logarithmic-space algorithm for depth-first traversal
described by Lindell in [Lin92]. We start at the root. For every vertex of the tree we have
three possible moves:

• down: go down to the first child, if it exists
• over: move over to the next sibling, if it exists
• up: buck up to the parent, if it exists

If our last move was down, over or there was no last move, which means we are visiting
a new vertex, then we perform the first move out of down, over or up that succeeds. If
our last move was up, then we are backtracking, and we call over if it is possible or else
up. Note that at each step we only need to remember our last move and the current vertex.
Therefore, we only need logarithmic space for depth-first traversal.

The post-order traversal sequence consists of every vertex we visit during the depth-first
traversal in order of its last visit. It follows that we obtain the post-order traversal sequence
by successively adding all vertices visited during depth-first traversal that are not followed
by the move down. Thus, we can perform post-order traversal in logarithmic space.10

Let m1, . . . ,m|M| be the post-order traversal sequence of the underlying directed tree

of the canon K(SRG). We know that there exists an isomorphism I between K(SRG) and
SRG . For all k ∈ [|M|] the isomorphism I maps the vertex mk of K(SRG) to a vertex, i.e.,
a max clique Ak := I(mk), of the supplemented clique tree SRG . Notice that the vertices
mk and Ak have the same color. We call A1, . . . , A|M| the traversal sequence transferred

10 We also obtain the post-order traversal of an ordered directed tree T with root r recursively as follows:
Let d be the out-degree of r. For all i ∈ {1, . . . , d}, in increasing order, perform a post-order traversal
on the subtree rooted at child i of the root. Afterward, visit r. Note that this does not correspond to a
logarithmic-space algorithm.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:23

by isomorphism I. The isomorphism I also transfers the ordering of the children of a
vertex. A sequence A1, . . . , A|M| is a transferred (post-order) traversal sequence if there

exists an isomorphism I between K(SRG) and SRG , and A1, . . . , A|M| is the traversal sequence

transferred by isomorphism I. Figure 12 shows an example of a canon K(SRG) and its
post-order traversal sequence m1, . . . ,m|M|,

11 and the corresponding supplemented clique

tree SRG and its transferred traversal sequence A1, . . . , A|M|.

m7

m4m3m2

m1 m5

m6

0 3

1 0
2 0

0 0

1 3

2 1

0 4

1 2

2 0

0 3

1 1

2 0

0 6

1 3

2 0

0 5

1 3

2 0

0 2

1 1

2 0

(a) Canon K(SR

G) and its post-order tra-
versal sequence m1, . . . ,m7

A7

A4A3A2

A1 A5

A6

0 3

1 0
2 0

0 0

1 3
2 1

0 4

1 2
2 0

0 3
1 1

2 0

0 6

1 3

2 0

0 5

1 3

2 0

0 2
1 1

2 0

(b) The supplemented clique tree SR

G and a
transferred traversal sequence A1, . . . , A7

Figure 12

Clearly, in the post-order traversal sequence of a tree, a proper descendant of a vertex v
occurs before the vertex v. Regarding the supplemented clique tree SRG , this means:

Observation 5.3. Let A1, . . . , A|M| be a transferred post-order traversal sequence on SRG ,

and let i, i′∈ [|M|]. If max clique Ai is a proper descendant of max clique Ai′ in TRG , then
i < i′.

Intersections of Max Cliques with Preceding Max Cliques in Transferred Post-
Order Traversal Sequences. We traverse the underlying directed tree of K(SRG) in
post-order, and we construct the max cliques of the canon K(G) of G during this post-order
traversal. So for each vertex mk of the directed tree we construct a clique Bmk

⊆ [|V |]. The
clique Bmk

will be the max clique of K(G) that corresponds to max clique Ak of graph G.
In order to construct these cliques Bmk

during the traversal of the underlying directed
tree of K(SRG), we have to decide on numbers for all vertices that are supposed to be in
such a clique. The numbering happens according to the post-order traversal sequence. The
hard part will be to detect which vertices have already occurred in a clique corresponding to
a vertex mi we have visited before reaching mk, and to determine the numbers they were
assigned to. Then we can choose new numbers for newly occurring vertices and reuse the

11 In fact, Figure 12a shows the canon of the supplemented clique tree depicted in Figure 10.

2:24 B. Grußien Vol. 15:3

numbers that correspond to vertices that have occurred before. Thus, in the following we
take a transferred post-order traversal sequence A1, . . . , A|M| and study the intersection of
a max clique Ak with max cliques that precede Ak in the transferred traversal sequence.

An important observation in this respect is that if Ak is a fork clique, then the vertices in
Ak only occur in the two children and the parent max clique of fork clique Ak (Corollary 3.13).
Thus, apart from the two children of Ak the vertices in Ak are not contained in any other
max clique previously visited in the transferred traversal sequence. Further, each vertex in
Ak occurs in at least one child max clique of Ak. Hence, each vertex in Ak is contained in a
max clique that was visited before.

If max clique Ak is not a fork clique, then it has only one child or is a star clique
(Lemma 3.7). Thus, the vertices in Ak occur in no more than one child max clique of Ak.
Observation 5.5 shows that each vertex v ∈ Ak that occurs in a max clique that is visited
before non-fork clique Ak in the transferred traversal sequence is either contained in exactly
one child of Ak or in the first child of a fork clique Al if Ak is the second child of Al.

Observation 5.4. Let A1, . . . , A|M| be a transferred post-order traversal sequence of SRG .
Let k ∈ [|M|] and let v ∈ Ak. If there exists a j < k such that v ∈ Aj and Aj is not a
descendant of Ak in the underlying directed tree TRG of SRG , then Aj is the first and Ak the
second child of a fork clique.

Proof. Let A1, . . . , A|M| be a transferred post-order traversal sequence of SRG . Let j, k ∈ [M]
with j < k and let v ∈ Aj ∩ Ak. Further, suppose that Aj is not a descendant of Ak.
As j < k, max clique Ak also cannot be a proper descendant of Aj by Observation 5.3.
Consequently, the smallest common ancestor Al of Aj and Ak must be a proper ancestor of
Aj and Ak. Clearly, Al has at least two children. Corollary 4.6 yields that Al is either a
star or a fork clique. According to the clique intersection property vertex v is contained in
Al and every max clique on the path between Aj and Ak. Thus, Al must be a fork clique,
and TG[Mv] is a path of length 3. Therefore, Aj and Ak are the children of fork clique Al.
Since j < k, max clique Aj is the first and Ak the second child of Al.

Observation 5.5. Let A1, . . . , A|M| be a transferred post-order traversal sequence of SRG .
Let k ∈ [|M|]. Suppose that Ak is not a fork clique, and let v ∈ Ak. If there exists a j < k
such that v ∈ Aj , then there exists exactly one i ∈ [|M|] such that v ∈ Ai and

(1) Ai is a child of Ak or
(2) Ai is the first child of a fork clique and Ak the second one.

Proof. Let A1, . . . , A|M| be a transferred post-order traversal sequence of SRG . Let j, k ∈ [M]
with j < k and let v ∈ Aj ∩Ak. Suppose that Ak is not a fork clique. If Aj is a descendant
of Ak, then there exists an i ∈ [|M|] such that v ∈ Ai and Ai is a child of Ak by the clique
intersection property. If Aj is not a descendant of Ak, then by Observation 5.4 there exists
an i ∈ [|M|], that is, i = j, such that Ai is the first and Ak the second child of a fork clique.
Thus, there exists an i ∈ [|M|] such that v ∈ Ai and property 1 or 2 is satisfied. Now, let us
assume there exist i1, i2 ∈ [|M|] with i1 6= i2 such that for all m ∈ [2] we have v ∈ Aim and

(1) Aim is a child of Ak or
(2) Aim is the first child of a fork clique and Ak the second one.

Clearly, Ai1 and Ai2 cannot be both the first child of a fork clique.
Now, let us consider the case, where Ai1 and Ai2 are children of Ak. Since Ak has at

least two children and is not a fork clique, it must be a star clique by Corollary 4.6. However,
v is contained in Ai1 , Ak and Ai2 . Therefore, Ak cannot be a star clique, a contradiction.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:25

It remains to consider the case where, w.l.o.g., Ai1 is a child of Ak, and Ai2 is the
first child of a fork clique Al and Ak the second one. As v ∈ Ai2 and v ∈ Ai1 , the clique
intersection property implies that v ∈ Ak and v ∈ Al. Since v ∈ Al and |Mv| > 3, we obtain
a contradiction to Al being a fork clique.

Now, let us summarize what we know about the intersection of a max clique with preceding
max cliques in a transferred traversal sequence. If Ak is a fork clique, then we know the
vertices of Ak all occur in its two children, which occur before Ak within a transferred
traversal sequence. If Ak is not a fork clique, then by Observation 5.5 the vertices in Ak
that occur in max cliques before Ak within a transferred traversal sequence are precisely
the vertices in the pairwise intersection of Ak with its children, and the intersection of Ak
with its sibling if Ak is the second child of a fork clique. Further, Observation 5.5 yields
that these intersections are disjoint sets of vertices.

Algorithm to Construct the Cliques Bmj . We now include the new knowledge about
the intersection of max cliques with preceding max cliques in a transferred traversal sequence
into our construction of the sets Bmj . For the numbers in each clique Bmj where mj does
not corresponds to the second child of a fork clique, we maintain the property that if a
number l ∈ Bmj is contained in more ancestors of Bmj than a number l′ ∈ Bmj , then l > l′.
Thus, if Bmj is a child of a clique Bmj′ , then the intersection Bmj ∩Bmj′ contains precisely

the |Bmj ∩ Bmj′ | largest numbers of Bmj . In the following we present an algorithm that

computes the sets Bmj .
During the algorithm, we need to remember or compute a couple of values: At each

step of our traversal, we let count be the total number of vertices we have created so far.
We update this number after visiting a vertex mk in the post-order traversal sequence
m1, . . . ,m|M| of the underlying directed tree of K(SRG). Sometimes we need to recompute
the number of vertices created up until after the visit of a vertex mi with i < k. We let
count(mi) denote this number. Further, we exploit the information contained in the color
of a vertex m. We let

• in0children(m) be the number of vertices that are contained in the max clique represented
by m and are not contained in any max cliques corresponding to children of m,
• inparent(m) be the number of vertices that are contained in the max clique represented

by m and the max clique represented by the parent of m (if m is the root of the tree, then
inparent(m) will be 0), and
• in2children(m) be the number of vertices that are contained in the max clique corre-

sponding to m and in at least two max cliques represented by children of m.

We also need the following boolean values. Note that they can be easily obtained from the
color of a vertex, as well.

• isforkclique(m) which indicates whether m corresponds to a fork clique, and
• isforkchild2(m) which indicates whether m is the second child of a vertex corresponding

to a fork clique.

With help of the above values, we can complete the algorithm. Thus, let us describe the
algorithm at a vertex m during the post-order traversal. The algorithm distinguishes between
the following cases. For each case we list the numbers belonging to clique Bm, and indicate
the values used to determine the numbers in Bm.

2:26 B. Grußien Vol. 15:3

1. Node m corresponds to a fork clique (isforkclique(m) = true).

Let m′ be the first child of node m, and m′′ be the second one. We determine
count(m′), and since count(m′′) = count, we already know count(m′′). Further, we
need inparent(m′) and inparent(m′′), and in2children(m). We let Bm be the set of
numbers in

[count(m′)− inparent(m′) + 1, count(m′)] and

[count(m′′)− inparent(m′′) + in2children(m) + 1, count(m′′)].

We do not increase count.

2. Node m does not correspond to a fork clique (isforkclique(m) = false).

Let m1, . . . ,mk be the children of m where k ≥ 0. Now for all j ∈ [k] we determine
isforkclique(mj), and distinguish between the following two cases.

(a) isforkclique(mj) = false:
We determine count(mj) and inparent(mj) and we add to Bm the numbers in

[count(mj)− inparent(mj) + 1, count(mj)]

(b) isforkclique(mj) = true:
Let m′j and m′′j be the children of mj . We add to Bm the numbers in

[count(m′j)− inparent(m′j) + in2children(mj) + 1, count(m′j)] and

[count(m′′j)− inparent(m′′j) + in2children(mj) + 1, count(m′′j)].

Further, we determine isforkchild2(m) and depending on the value of it, we do the
following.

(c) isforkchild2(m) = false:
We increase count by in0children(m), and add to Bm the vertices in

[count− in0children(m) + 1, count].

(d) isforkchild2(m) = true:
Let p be the parent of m, and let m′ be the first sibling of m. We increase count by
in0children(m)− in2children(p). We add to Bm the vertices in the intervals

[count(m′)−inparent(m′)+1, count(m′)−inparent(m′)+in2children(p)],

[count− in0children(m) + in2children(p) + 1, count].

In the following we illustrate the algorithm with an example.

Example 5.6. The algorithm can be applied to the canon K(SRG) depicted in Figure 12a.
Figure 13 shows the computed values at each step of the algorithm. It also shows the cliques
Bmi for all i.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:27

i mi Case Bmi count

0

1 m1 2(c) [1, 6] 6

2 m2 2(c) [7, 9] 9

3 m3 2(c) [10, 11] 11

4 m4 2(c) [12, 16] 16

5 m5 2(a) for m2 [9, 9]
2(a) for m3 [11, 11]
2(a) for m4 [14, 16]
2(d) [4, 4] ∪ [17, 19] 19

6 m6 1 [4, 6] ∪ [19, 19] 19

7 m7 2(b) for m6 [5, 6] ∪ [19, 19]
2(c) [20, 22] 22

17
163

2
1

20
21

22

6
5

4

6 5 19

19
4

14
15

11
9

9 11 10

8
7

141516

12 13

195
6

4

18

Bm1

Bm2 Bm3 Bm4

Bm6

Bm7

Bm5

Figure 13. Application of the algorithm to the example in Figure 12a

Correctness of the Algorithm. We show that the presented algorithm returns the max
cliques of an ordered copy of G. In order to do this, we prove that there exists a bijection h
between V and [|V |], so that for all k ∈ [|M|] we have h(Ak) = Bmk

. Then h is a graph
isomorphism between G and the graph (V ′K , E

′
K) where V ′K = [|V |] and {v, v′} ∈ E′K iff

v 6= v′ and there exists a k ∈ [|M|] such that v, v′ ∈ Bmk
. Thus, K(G) = (V ′K , E

′
K ,≤′K),

where ≤′K is the natural linear order on [|V |], is an ordered copy of G.
We show the existence of bijection h with help of the lemma below. The lemma is

proved by induction along the post-order traversal sequence. First, we introduce definitions
that are used in the lemma.

Let TRG be the underlying directed clique tree of the supplemented clique tree SRG . For
all max cliques A ∈ M and for all v ∈ A we let #ancA(v) be the number of max cliques
in TRG that contain vertex v and are an ancestor of A. Clearly, for every vertex v ∈ A the
number #ancA(v) is at least 1. Let A1, . . . , A|M| be a transferred traversal sequence. For
i ∈ [|M|] and c ∈ [2] let Sci be the set of vertices v of max clique Ai, where #ancAi(v) > c.
Thus, if max clique Ai has a parent max clique Pi in TRG , then S1

i is the set of vertices in
Ai ∩ Pi. Hence, inparent(mi) = |S1

i |. If again Pi has a parent in TRG , then S2
i is the subset

of vertices of Ai which are contained in Pi and the parent of Pi. For example, if Al is a fork
clique with children Ai and Aj , then Al is the disjoint union of S1

i and S2
j . Further, if Al′ is

the parent max clique of fork clique Al, then Al′ is the disjoint union of S2
i and S2

j .

Lemma 5.7. Let m1, . . . ,m|M| be the post-order traversal sequence of the underlying directed

tree of K(SRG). Further, let Bm1 , . . . , Bm|M| be the cliques computed by the algorithm and

A1, . . . , A|M| be a transferred traversal sequence. Then, for all l ∈ [|M|] there exists a
bijection hl between A1 ∪ · · · ∪Al and [count(ml)], such that for all i ∈ [l] we have

(1) hl(Ai) = Bmi,
(2) #ancAi(v) ≤ #ancAi(v

′) for all vertices v, v′ ∈ Ai with hl(v) ≤ hl(v′) if Ai is neither a
fork clique nor the second child of a fork clique,

2:28 B. Grußien Vol. 15:3

(3) hl(S
1
i) = [count(mi)− inparent(mi) + 1, count(mi)] if Ai is neither a fork clique nor

the second child of a fork clique, and
(4) hl(S

2
i) = [count(mi)− inparent(mi) + in2children(pi) + 1, count(mi)] if Ai is the

second child of a fork clique, where pi is the parent of mi.

Proof. Let m1, . . . ,m|M| be the post-order traversal sequence, Bm1 , . . . , Bm|M| be the cliques
computed by the algorithm and A1, . . . , A|M| be a transferred traversal sequence. We prove
Lemma 5.7 by induction on l ∈ [0, |M|]. Notice that l = 0 is not included in the lemma, but
we extend it to l = 0. Although there does not actually exist a vertex m0, we let count(m0)
be 0. This makes sense, since 0 is the initial value of count. We let h0 : ∅ → ∅ be the empty
mapping. Clearly, h0 meets all the requirements. Now suppose l > 0 and let there be a
bijection hl−1 with properties 1 to 4 for all i ∈ [l− 1]. We show the existence of bijection hl.

First, let us consider the case where ml corresponds to a fork clique. Clearly, Al is a
subset of the set of vertices occurring in Al’s children, and count(ml) = count(ml−1). Thus,
we let hl := hl−1, and we know by inductive assumption that it is a bijection. By inductive
assumption we also know that hl satisfies properties 1 to 4 for all i < l. Therefore, it remains
to show these properties for i = l. As Al is a fork clique, and cannot be the second child of
a fork clique, properties 2, 3 and 4 trivially hold for i = l. Thus, we only have to show that
hl satisfies property 1 for i = l, that is, that hl(Al) = Bml

.
So let us prove that hl(Al) = Bml

. Let mi and mj with i < j < l be respectively the
first and the second child of ml. Since mi cannot correspond to a fork clique or to the second
child of a fork clique, we have

hl(S
1
i) = [count(mi)− inparent(mi) + 1, count(mi)]

by inductive assumption. Analogously, we know

hl(S
2
j) = [count(mj)− inparent(mj) + in2children(ml) + 1, count(mj)]

because the vertex mj corresponds to the second child of a fork clique. We obtain that
Bml

= hl(S
1
i) ∪ hl(S2

j). As Al is a fork clique, Al is the disjoint union of S1
i and S2

j . Hence,

we have Bml
= hl(Al).

Next, suppose ml is a vertex that does not correspond to a fork clique. By Observation 5.5
we know that there are in0children(ml) vertices in A′l := Al \

⋃
i<lAi if Al is not the

second child of a fork clique, and in0children(ml) − in2children(ml+1) vertices in A′l
if Al is the second child of a fork clique (then ml+1 is the parent of ml). Thus, A′l and
the set B′ml

of newly occurring numbers in Bml
have the same cardinality. We let hl be

an extension of hl−1 that bijectively maps the vertices in A′l to the numbers in B′ml
such

that hl(v) ≤ hl(v′) implies #ancAl
(v) ≤ #ancAl

(v′) for all v, v′ ∈ A′l. Then hl is a bijection
between A1 ∪ · · · ∪Al and [count(ml)]. By inductive assumption we already know that hl
satisfies properties 1 to 4 for all i < l. Thus, we only need to show them for i = l.

Let us show property 1: Let mi1 , . . . ,mik with i1 < · · · < ik < l be the children of ml.
Further, if ml corresponds to the second child of a fork clique, then let mi0 be its sibling.
Clearly, i0 < i1. According to Observation 5.5 max clique Al is the disjoint union of A′l and the
sets Al∩Aij for j ∈ [k] if Al is not the second child of a fork clique, and for j ∈ [0, k] otherwise.
Consequently, hl(Al) is the disjoint union of hl(A

′
l) and hl(Al ∩ Aij) for all feasible j ≤ k.

First, let us consider the children of ml, that is, all mij with j ∈ [k]. For each child mij of ml,

we have Al ∩Aij = S1
ij

. Now suppose for the child mij , we have isforkclique(mij) = false.

Then max clique Aij is neither a fork clique nor the second child of a fork clique. Therefore,

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:29

we have hl(Al ∩Aij) = hl(S
1
ij

) = hl−1(S1
ij

) = [count(mij)−inparent(mij)+1, count(mij)]

by inductive assumption. Next, let us assume isforkclique(mij) = true. Then vertex mij

corresponds to a fork clique. Let mi and mi′ be the children of the vertex mij . Since mi′

corresponds to the second child of a fork clique, we know by inductive assumption that
hl(S

2
i′) = hl−1(S2

i′) = [count(mi′)− inparent(mi′) + in2children(mij) + 1, count(mi′)].
Further, mi corresponds neither to a fork clique nor to the second child of a fork clique.
Consequently, hl(S

1
i) = hl−1(S1

i) = [count(mi)− inparent(mi) + 1, count(mi)]. The set
S2
i contains exactly the vertices v ∈ S1

i with #ancAi(v) 6= 2. Therefore, property 2 yields
that hl(S

2
i) = [count(mi)− inparent(mi) + in2children(mij) + 1, count(mi)]. Clearly,

since max clique Aij is a fork clique, the set hl(Al ∩Aij) = hl(S
1
ij

) is the disjoint union of

the sets hl(S
2
i) and hl(S

2
i′). Now suppose the vertex ml corresponds to the second child of a

fork clique, and let us consider mi0 , the sibling of ml. The vertex mi0 corresponds neither
to a fork clique nor to the second child of a fork clique. Thus, we have

hl(S
1
i0) = hl−1(S1

i0) = [count(mi0)− inparent(mi0) + 1, count(mi0)].

The set Al ∩ Ai0 contains precisely the vertices v ∈ S1
i0

with #ancAi0
(v) = 2, that is, the

vertices that are contained in the parent Al+1 of the max cliques Ai0 and Al and that are
also contained in both of Al+1’s children. As a consequence, property 2 implies that

hl(Al ∩Ai0) = [count(mi0)− inparent(mi0) + 1,

count(mi0)− inparent(mi0) + in2children(ml+1)],

where the vertex ml+1 is the parent of the two vertices ml and mi0 . Finally, by the definition
of the mapping hl we know that hl(A

′
l) = [count(ml)− in0children(ml) + 1, count(ml)]

if the vertex ml does not correspond to the second child of a fork clique, and that
hl(A

′
l) = [count(ml)− in0children(ml) + in2children(ml+1) + 1, count(ml)] otherwise.

Thus, we have shown that the disjoint union of hl(A
′
l) and the sets hl(Al∩Aij) for all feasible

j ≤ k is exactly the set Bml
. Hence, hl(Al) = Bml

.
We prove the remaining properties separately for star cliques and for max cliques that

are neither star nor fork cliques. We first consider the case where Al is a star clique. Let
us show property 2. We have to prove that #ancAl

(v) ≤ #ancAl
(v′) for vertices v, v′ ∈ Al

with hl(v) ≤ hl(v′) if Al is neither a fork clique nor the second child of a fork clique. Thus,
suppose Al is a star clique that is not the second child of a fork clique. Let Ai1 , . . . , Aik
with i1 < · · · < ik be the children of Al. As shown above Al is the disjoint union of A′l and
Al ∩Aij for all j ∈ [k]. As Al is a star clique we know #ancAl

(v) = 1 for all v ∈ Al ∩Aij for
j ∈ [k]. Now let us consider v, v′ ∈ Al with hl(v) ≤ hl(v

′). If v ∈ Al \ A′l and v′ ∈ Al, we
have #ancAl

(v) = 1 and therefore #ancAl
(v) ≤ #ancAl

(v′). It remains to consider the case
where v ∈ A′l. Since hl(v) ≤ hl(v′) and each number in h(A′l) is greater than every number
in h(Al \A′l), we also have v′ ∈ A′l. Then #ancAl

(v) ≤ #ancAl
(v′) follows directly from the

construction of hl. To show property 3 we suppose again that Al is a star clique that is not
the second child of a fork clique. We have already seen that #ancAl

(v) = 1 for all v ∈ Al \A′l.
Therefore, we have S1

l ⊆ A′l. Now hl(S
1
l) = [count(ml) − inparent(ml) + 1, count(ml)]

follows directly from property 2. It remains to show property 4. This time, assume Al is
a star clique that is the second child of a fork clique Al+1. According to Observation 5.5,
all vertices in Al are either contained in a child max clique of Al, in its sibling max
clique, or in A′l. We know #ancAl

(v) = 1 for all v ∈ Al that are also contained in a
child of Al, and #ancAl

(v) = 2 for v ∈ Al if and only if v is also contained in the sibling

2:30 B. Grußien Vol. 15:3

max clique of Al. Consequently, S2
l must be a subset of A′l, and property 2 yields that

hl(S
2
l) = [count(ml)− inparent(ml) + in2children(ml+1) + 1, count(ml)].
Now let us consider max cliques Al that are neither fork cliques nor star cliques. Then

Al cannot be the parent or a child of a fork clique, as the neighbors of fork cliques are
star cliques according to Corollary 3.8. Further, Al must have precisely one child and a
parent, since Al has at most one child by Corollary 4.6 and max cliques of degree 1 are
trivially star cliques. To show property 2 let us consider v, v′ ∈ Al with hl(v) ≤ hl(v

′).
The child Al−1 of max clique Al is neither a fork clique nor the second child of a fork
clique. Thus, according to the inductive assumption we have #ancAl−1

(v) ≤ #ancAl−1
(v′)

for v, v′ ∈ Al−1. Further, if v, v′ ∈ A′l = Al \ Al−1, then #ancAl
(v) ≤ #ancAl

(v′) follows
directly from the construction of hl. Since every number in h(A′l) is greater than each
number in h(Al \ A′l), it remains to consider v, v′ with v ∈ Al \ A′l and v′ ∈ A′l. Let us
assume that #ancAl

(v) > #ancAl
(v′) for such v and v′. Then Mv′ is a separator of the

path induced by Mv in the clique tree of G, which is a contradiction to Corollary 3.3. Thus,
#ancAl

(v) ≤ #ancAl
(v′) for all v, v′ ∈ Al with hl(v) ≤ hl(v′). Next, let us show property 3.

We know that S1
l−1 = Al∩Al−1. As Al−1 is neither a fork clique nor the second child of a fork

clique, we have hl(S
1
l−1) = [count(ml−1)− inparent(ml−1) + 1, count(ml−1)] by inductive

assumption. Further, the set hl(A
′
l) is precisely the interval [count(ml−1) + 1, count(ml)].

Hence, hl(Al) is the interval [count(ml−1)−inparent(ml−1)+1, count(ml)], and property 3
follows directly from property 2. Finally, property 4 holds trivially since Al cannot be the
second child of a fork clique.

Corollary 5.8. Let m1, . . . ,m|M| be the post-order traversal sequence of the underlying

directed tree of K(SRG). Further, let Bm1 , . . . , Bm|M| be the cliques computed by the algorithm
and A1, . . . , A|M| be a transferred traversal sequence. Then there exists a bijection h between
V and [|V |], so that for all i ∈ [|M|] we have h(Ai) = Bmi.

Let m1, . . . ,m|M| be the post-order traversal sequence of the underlying directed tree of

K(SRG), and let Bm1 , . . . , Bm|M| be the cliques computed by the algorithm. We define the

ordered graph K(G) = (V ′K , E
′
K ,≤′K) as follows: We let V ′K be the set [|V |], relation ≤′K

be the natural linear order on [|V |], and we let {v, v′} ∈ E′K if and only if v 6= v′ and there
exists an i ∈ [|M|] such that v, v′ ∈ Bmi .

Corollary 5.9. The presented algorithm computes the max cliques of the ordered graph
K(G) = (V ′K , E

′
K ,≤′K), which is an ordered copy of G.

Proof. Let m1, . . . ,m|M| be the post-order traversal sequence, Bm1 , . . . , Bm|M| be the cliques
computed by the algorithm and A1, . . . , A|M| be a transferred traversal sequence. By
Corollary 5.8, there exists a bijection h between V and [|V |], so that for all i ∈ [|M|] we
have h(Ai) = Bmi . Then h is a graph isomorphism between G and the graph (V ′K , E

′
K),

because for all v, v′ ∈ V :

There is an edge between v and v′ in G.

⇐⇒ There exists an i ∈ [|M|] such that v, v′ ∈ Ai and v 6= v′.

⇐⇒ There exists an i ∈ [|M|] such that h(v), h(v′) ∈ Bmi and h(v) 6= h(v′).

⇐⇒ There is an edge between h(v) and h(v′) in (V ′K , E
′
K).

Consequently, K(G) is an ordered copy of G and the computed cliques Bm1 , . . . , Bm|M| are
max cliques.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:31

Analysis of Space Complexity. Finally we show that the presented algorithm only needs
logarithmic space. This finishes the proof of Lemma 5.2, that is, this shows that there exists
a logarithmic-space algorithm that, given the canon K(SRG) of a supplemented clique tree of
a connected chordal claw-free graph G, computes the set of max cliques of an ordered copy
K(G) of G.

Proof of Lemma 5.2. According to Corollary 5.9, the presented algorithm computes the max
cliques of an ordered copy of G, given the canon K(SRG) of a supplemented clique tree of
a connected chordal claw-free graph G. It remains to show that the algorithm only needs
logarithmic space. In the following, we analyze the space required by the algorithm.

During the depth-first traversal, we need to remember the current vertex, the last move
and count. As we want to visit the vertices in post-order, we also compute the next move
at each vertex. If it is not down, then we visit the current vertex for the last time and
it belongs to the post-order traversal sequence. Clearly, post-order depth-first traversal is
possible in logarithmic space.

At each vertex m, we distinguish between different cases and compute the partial inter-
vals that form Bm. In order to do this, we need the values in0children(m′), inparent(m′),
in2children(m′), isforkclique(m′), isforkchild2(m′) and count(m′) for certain ver-
tices m′. Note that we do not need to remember any of these values. We can recompute
them whenever we need them.

For each vertex m′, the values in0children(m′), inparent(m′) and in2children(m′)
can be determined in logarithmic space. We obtain these values directly from the color of m′.
Further, isforkclique(m′) can be computed in logarithmic space for every m′. Fork cliques
are the only kind of max cliques that contain a vertex which is also contained in (at least) two
child max cliques. (Observation 5.5). Thus, we can use the value in2children(m′) to deter-
mine whether a vertex m′ corresponds to a fork clique, that is, whether isforkclique(m′)
is true. The value isforkchild2(m′) can be computed in logarithmic space, by deciding
whether m′ is the second child of a vertex corresponding to a fork clique.

For every m′, we can recompute count(m′) in logarithmic space by performing a new
post-order traversal. Let us look at the value count after visiting a vertex m′′ during
this new post-order traversal: If isforkclique(m′′) is true, count does not change. If
isforkclique(m′′) is false, then depending on the value isforkchild2(m′′), the value
count is increased by in0children(m′′) or by in0children(m′′)− in2children(p′′) where
p is the parent vertex of m′′. Hence, a new post-order traversal allows us to recompute
count(m′).

We can conclude that the presented algorithm only needs logarithmic space. Hence,
there is a logarithmic-space algorithm that, given the canon K(SRG) of a supplemented clique
tree of a connected chordal claw-free graph G, computes the set of max cliques of an ordered
copy of G.

6. Implications

In the previous section, we have shown that the class of chordal claw-free graphs admits
LREC=-definable canonization. This result has interesting consequences for descriptive
complexity theory and computational graph theory. We present these consequences in this
section.

2:32 B. Grußien Vol. 15:3

The following corollary provides a logical characterization of LOGSPACE on the class
of chordal claw-free graphs. It is an implication of Theorem 5.1 and Proposition 2.10.

Corollary 6.1. LREC= captures LOGSPACE on the class of chordal claw-free graphs.

Since LREC= is contained in FP+C [GGHL12], Theorem 5.1 also implies that there exists an
FP+C-canonization of the class of chordal claw-free graphs. As a consequence (see [EF99],
e.g.), we also obtain a logical characterization of PTIME on the class of chordal claw-free
graphs:

Corollary 6.2. FP+C captures PTIME on the class of chordal claw-free graphs.

Because of LREC=’s logarithmic-space data complexity, Theorem 5.1 further yields the two
subsequent corollaries. These corollaries allow us to reclassify the computational complexity
of graph canonization and the graph isomorphism problem on the class of chordal claw-free
graphs.

Corollary 6.3. There exists a logarithmic-space canonization algorithm for the class of
chordal claw-free graphs.

Corollary 6.4. On the class of chordal claw-free graphs, the graph isomorphism problem
can be computed in logarithmic space.

7. Conclusion

Currently, there exist hardly any logical characterizations of LOGSPACE on non-trivial
natural classes of unordered structures. The only ones previously presented are that LREC=

captures LOGSPACE on (directed) trees and interval graphs [GGHL11, GGHL12]. By
showing that LREC= captures LOGSPACE also on the class of chordal claw-free graphs,
we contribute a further characterization of LOGSPACE on an unordered graph class. It
would be interesting to investigate further classes of unordered structures such as the class
of planar graphs or classes of graphs of bounded treewidth. The author conjectures that
LREC= captures LOGSPACE on the class of all planar graphs that are equipped with an
embedding.

We also make a contribution to the investigation of PTIME’s characteristics on restricted
classes of graphs. In this paper, we prove that FP+C captures PTIME on the class of chordal
claw-free graphs. Thus, the class of chordal claw-free graphs can be added to the (so far)
short list of graph classes that are not closed under taking minors and on which PTIME is
captured.

Our main result, which states that the class of chordal claw-free graphs admits LREC=-
definable canonization, does not only imply that LREC= captures LOGSPACE and FP+C
captures PTIME on this graph class, but also that there exists a logarithmic-space canon-
ization algorithm for the class of chordal claw-free graphs. Hence, the isomorphism problem
for this graph class is solvable in logarithmic space.

Acknowledgements.

The author wants to thank Nicole Schweikardt and the reviewers for helpful comments that
contributed to improving the paper.

Vol. 15:3 CAPTURING LOGSPACE AND PTIME ON CHORDAL CLAW-FREE GRAPHS 2:33

References

[BP93] J.R.S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In A. George,
J.R. Gilbert, and J.W.H. Liu, editors, Graph Theory and Sparse Matrix Computation, pages 1–29.
Springer New York, 1993.

[Bun74] P. Buneman. A characterisation of rigid circuit graphs. Discrete Mathematics, 9:205–212, 1974.
[CFI92] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for

graph identification. Combinatorica, 12:389–410, 1992.
[EF99] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1999.
[EI00] K. Etessami and N. Immerman. Tree canonization and transitive closure. Information and

Computation, 157(1–2):2–24, 2000.
[Fag74] R. Fagin. Generalized first–order spectra and polynomial–time recognizable sets. In R.M. Karp,

editor, Complexity of Computation, SIAM-AMS Proceedings 7, pages 43–73, 1974.
[Gav74] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of

Combinatorial Theory, Series B, 16(1):47–56, 1974.
[GGHL11] M. Grohe, B. Grußien, A. Hernich, and B. Laubner. L-recursion and a new logic for logarithmic

space. In CSL, pages 277–291, 2011.
[GGHL12] M. Grohe, B. Grußien, A. Hernich, and B. Laubner. L-recursion and a new logic for logarithmic

space. Logical Methods in Computer Science, 9(1), 2012.
[GM99] M. Grohe and J. Mariño. Definability and descriptive complexity on databases of bounded tree-

width. In Proceedings of the 7th International Conference on Database Theory (ICDT), pages
70–82, 1999.

[Gro98] M. Grohe. Fixed-point logics on planar graphs. In Proceedings of the 13th Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 6–15, 1998.

[Gro08] M. Grohe. Definable tree decompositions. In Proceedings of the 23rd Annual IEEE Symposium on
Logic in Computer Science (LICS), pages 406–417, 2008.

[Gro10a] M. Grohe. Fixed-point definability and polynomial time on chordal graphs and line graphs.
In A. Blass, N. Dershowitz, and W. Reisig, editors, Fields of Logic and Computation, Essays
Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday, pages 328–353, 2010.

[Gro10b] M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors. In
Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science (LICS), 2010.

[Gro13] M. Grohe. Descriptive complexity, canonisation, and definable graph structure theory. http:
//lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/cap/all.pdf, 2013. [Online; accessed
2017-03-31].

[Gru17a] B. Grußien. Capturing logarithmic space and polynomial time on chordal claw-free graphs. In
Proceedings of the 26th EACSL Annual Conference on Computer Science Logic (CSL), pages
26:1–26:19, 2017.

[Gru17b] B. Grußien. Capturing Polynomial Time and Logarithmic Space using Modular Decompositions
and Limited Recursion. PhD thesis, Humboldt-Universität zu Berlin, 2017.

[Gru17c] B. Grußien. Capturing polynomial time using modular decomposition. In Proceedings of the 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017.

[Imm86] N. Immerman. Relational queries computable in polynomial time. Information and Control,
68:86–104, 1986.

[Imm87] N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing, 16:760–
778, 1987.

[Lau10] B. Laubner. Capturing polynomial time on interval graphs. In Proceedings of the 25th Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 199–208, 2010.

[Lau11] B. Laubner. The Structure of Graphs and New Logics for the Characterization of Polynomial
Time. PhD thesis, Humboldt-Universität zu Berlin, 2011.

[Lin92] S. Lindell. A logspace algorithm for tree canonization. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing (STOC), pages 400–404, 1992.

[Rei05] O. Reingold. Undirected ST-connectivity in log-space. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing (STOC), pages 376–385, 2005.

[Sed02] R. Sedgewick. Algorithms in Java: Parts 1-4. Addison-Wesley, 3rd edition, 2002.
[Var82] M.Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th Annual

ACM Symposium on Theory of Computing (STOC), pages 137–146, 1982.

http://lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/cap/all.pdf
http://lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/cap/all.pdf

2:34 B. Grußien Vol. 15:3

[Wal72] J.R. Walter. Representations of Rigid Cycle Graphs. PhD thesis, Wayne State University, 1972.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	Structure

	2. Basic Definitions and Notation
	2.1. Graphs and LO-Colorings
	2.2. Structures
	2.3. Logics
	2.4. Transductions
	2.5. Canonization

	3. Clique Trees and their Structure
	3.1. Clique Trees of Chordal Graphs
	3.2. Intersection-Graph Representation of Chordal Claw-Free Graphs
	3.3. Uniqueness of the Clique Tree for Connected Chordal Claw-Free Graphs
	3.4. Star Cliques and Fork Cliques

	4. The Supplemented Clique Tree
	4.1. Defining the Clique Tree in FO
	4.2. The Directed Clique Tree and its Definition in STC
	4.3. The Supplemented Clique Tree and its Definition in STC+C

	5. Canonization
	Post-Order Depth-First Tree Traversal
	Intersections of Max Cliques with Preceding Max Cliques in Transferred Post-Order Traversal Sequences
	Algorithm to Construct the Cliques Bmj
	Correctness of the Algorithm
	Analysis of Space Complexity

	6. Implications
	7. Conclusion
	Acknowledgements.
	References

