SUBSPACE-INARIANT AC0 FORMULAS

BENJAMIN ROSSMAN

University of Toronto

e-mail address: ben.rossman@utoronto.ca

ABSTRACT. We consider the action of a linear subspace U of $\{0,1\}^n$ on the set of AC^0 formulas with inputs labeled by literals in the set $\{X_1, \overline{X}_1, \ldots, X_n, \overline{X}_n\}$, where an element $u \in U$ acts on formulas by transposing the ith pair of literals for all $i \in [n]$ such that $u_i = 1$. A formula is U-invariant if it is fixed by this action. For example, there is a well-known recursive construction of depth $d+1$ formulas of size $O(n \cdot 2^{dn^{1/d}})$ computing the n-variable parity function; these formulas are easily seen to be P-invariant where P is the subspace of even-weight elements of $\{0,1\}^n$. In this paper we establish a nearly matching $2^{d\left(\frac{n}{d}-1\right)}$ lower bound on the P-invariant depth $d+1$ formula size of parity. Quantitatively this improves the best known $\Omega(2^{\frac{n}{d}}(d^{1/d}-1))$ lower bound for unrestricted depth $d+1$ formulas [Ros15], while avoiding the use of the switching lemma. More generally, for any linear subspaces $U \subseteq V$, we show that if a Boolean function is U-invariant and non-constant over V, then its U-invariant depth $d+1$ formula size is at least $2^{d\left(\frac{m}{d}-1\right)}$ where m is the minimum Hamming weight of a vector in $U^\perp \setminus V^\perp$.

1. INTRODUCTION

There are two natural group actions on the set of literals $\{X_1, \overline{X}_1, \ldots, X_n, \overline{X}_n\}$: the symmetric group S_n acts by permuting indices, while Z_2^n acts by toggling negations. These group actions extend to the set of n-variable Boolean functions, as well as the set of n-variable Boolean circuits. Here we consider bounded-depth circuits with unbounded fan-in AND and OR gates and inputs labeled by literals, also known as AC^0 circuits. If G is subgroup of S_n or Z_2^n (or more generally of the group $Z_2^n \rtimes S_n$ that they generate), we say that a function or circuit is G-invariant if it is fixed under the action of G on the set of n-variable functions or circuits. Note that every G-invariant circuit computes a G-invariant function, and conversely every G-invariant function is computable by a G-invariant circuit.

We define the G-invariant circuit size of a G-invariant function f as the minimum number of gates in a G-invariant circuit that computes f. This may be compared to the unrestricted circuit size of f, noting that f can be computed (possibly more efficiently) by circuits that are not G-invariant. Several questions arise. What gap, if any, exists between the G-invariant vs. unrestricted circuit size of G-invariant functions? Are lower bounds on
1.1. Invariance under subgroups of \(S_n \). G-invariant circuit size easier to obtain, and do they suggest new strategies for proving lower bounds for unrestricted circuits? Is there a nice characterization of functions computable by polynomial-size G-invariant circuits? The same questions may be asked with respect to G-invariant versions of other complexity measures, such as formula (leaf) size, as well as bounded-depth versions of both circuit and formula size, noting that the action of \(G \) on circuits preserves both depth and fan-out.

The answer to these questions appears to be very different for subgroups of \(S_n \) and subgroups of \(Z_2^n \). This is illustrated by considering the \(n \)-variable parity function, which maps each element of \(\{0,1\}^n \) to its Hamming weight modulo 2. This function is both \(S_n \)-invariant (it is a so-called “symmetric function”) and \(P \)-invariant where \(P \subset Z_2^n \) is the index-2 subgroup of even-weight elements in \(Z_2^n \). The smallest known circuits and formulas for \(\text{parity}_n \) have size \(O(n) \) and leafsize \(O(n^2) \), respectively. These circuits and formulas turn out to be \(P \)-invariant, as do the smallest known bounded-depth circuits and formulas (which we describe in §2.3). In contrast, the \(S_n \)-invariant circuit size of \(\text{parity}_n \) is known to be exponential [AD16].

1.2. Invariance under subgroups of \(Z_2^n \). This paper initiates a study of invariant complexity with respect to subgroups of \(Z_2^n \). Since our methods are linear algebraic, we shall henceforth identify \(Z_2^n \) with the \(\mathbb{F}_2 \)-vector space \(\{0,1\}^n \) under coordinate-wise addition modulo 2, denoted \(\oplus \). We identify subgroups of \(Z_2^n \) with linear subspaces \(U \) of \(\{0,1\}^n \). A function \(f : \{0,1\}^n \to \{0,1\} \) is \(U \)-invariant if \(f(x) = f(x \oplus u) \) for all \(x \in \{0,1\}^n \) and \(u \in U \).
Note that U-invariant functions are in one-to-one correspondence with functions from the quotient space $(0,1)^n/U$ to $(0,1)$.

Our focus is on bounded-depth circuits and formulas. Returning to the example of the P-invariant function parity_n (where P is the even-weight subgroup of $(0,1)^n$), there is a well-known recursive construction of depth $d + 1$ circuits for parity_n, which we describe in §2.3. Roughly speaking, one combines a depth 2 circuit for $\text{parity}_{n/2}$ with depth d circuits for $\text{parity}_{n/2}^{(d-1)/d}$ on disjoint blocks of variables. This produces a depth $d + 1$ circuit of size $O(n^{1/d}2^{n^{1/d}})$, which converts to a depth $d + 1$ formula of leafsize $O(n \cdot 2^{dn^{1/d}})$. Up to constant factors, these circuit and formulas are the smallest known computing parity that the bound in Theorem 1.1 does not depend on the dimension n.

The main result of this paper gives a nearly matching lower bound of $2^{d(n^{1/d} - 1)}$ on the P-invariant depth $d + 1$ formula size of parity_n. This implies a $2^{n^{1/d} - 1}$ lower bound on the P-invariant depth $d + 1$ circuit size, via the basic fact that every $(U$-invariant) depth $d + 1$ circuit of size s is equivalent to a $(U$-invariant) depth $d + 1$ formula of size at most s^d. Quantitatively, the lower bounds are stronger than the best known $\Omega(2^{\frac{1}{8} n^{1/d}})$ and $\Omega(2^{\frac{1}{10} n^{d-1}})$ lower bounds for unrestricted depth $d + 1$ circuits [H˚ as86] and formulas [Ros15], respectively. Of course, P-invariance is a severe restriction for circuits and formulas, so it is no surprise that the lower bounds we obtain is stronger and significantly easier to prove. The linear-algebraic technique in this paper is entirely different from the “switching lemma” approach of [H˚ as86, Ros15].

The general form of our lower bound is the following:

Theorem 1.1. Let $U \subset V$ be linear subspaces of $(0,1)^n$, and suppose F is a U-invariant depth $d + 1$ formula which is non-constant over V. Then F has size at least $2^{d(m^{1/d} - 1)}$ where $m = \min\{|x| : x \in U \setminus V\}$, that is, the minimum Hamming weight of a vector x which is orthogonal to U and non-orthogonal to V.

Here size refers to the number of depth 1 subformulas, as opposed to leafsize. Note that the bound in Theorem 1.1 does not depend on the dimension n of the ambient space. Also note that aforementioned $2^{d(n^{1/d} - 1)}$ lower bound for parity_n follows from the case $U = P$ and $V = \{0,1\}^n$. (Here $m = n$ is witnessed by the all-1 vector, which is an element of $P^\perp \setminus \{(0,1)^n\}$.)

We remark that, since $\lim_{d \to \infty} d(m^{1/d} - 1) = \ln(m)$, Theorem 1.1 implies an $m^{\ln(2)}$ lower bound on the size of unbounded-depth formulas which are U-invariant and non-constant over V. Theorem 1.1 also implies a $2^{m^{1/d} - 1}$ lower bound for depth $d + 1$ circuits; however, we get no nontrivial lower bound for unbounded-depth circuits, since $\lim_{d \to \infty} m^{1/d} - 1 = 0$.

2. Preliminaries

Let n range over positive integers. $[n]$ is the set $\{1, \ldots, n\}$. $\ln(n)$ is the natural logarithm and $\log(n)$ is the base-2 logarithm.

The Hamming weight of a vector $x \in \{0,1\}^n$, denoted $|x|$, is the cardinality of the set $\{i \in [n] : x_i = 1\}$. For vectors $x, y \in \{0,1\}^n$, let $x \oplus y$ denote the coordinate-wise sum modulo 2 and let (x,y) denote the inner product modulo 2.

Let \mathcal{L} denote the lattice of linear subspaces of $(0,1)^n$. For $U, V \in \mathcal{L}$, let $U + V$ denote the subspace spanned by U and V. Let V^\perp denote the orthogonal complement
\[V^\perp = \{ x \in \{0,1\}^n : (x,v) = 0 \text{ for all } v \in V \}. \] We make use of the following facts about orthogonal complements over finite fields:

\[\dim(V) + \dim(V^\perp) = n, \quad U \subseteq V \iff V^\perp \subseteq U^\perp, \]

\[V = (V^\perp)^\perp, \quad (U + V)^\perp = U^\perp \cap V^\perp, \quad (U \cap V)^\perp = U^\perp + V^\perp. \]

\section*{2.1. AC^0 formulas.} We write \(\mathcal{F} \) for the set of \(n \)-variable AC^0 formulas (with unbounded fan-in AND and OR gates and leaves labeled by literals). Formally, let \(\mathcal{F} = \bigcup_{d \in \mathbb{N}} \mathcal{F}_d \) where \(\mathcal{F}_d \) is the set of \(\text{depth } d \) formulas, defined inductively:

\(\bullet \) \(\mathcal{F}_0 \) is the set \(\{ X_1, \overline{X}_1, \ldots, X_n, \overline{X}_n \} \cup \{0,1\} \),

\(\bullet \) \(\mathcal{F}_{d+1} \) is the set of ordered pairs

\[\{ (\text{gate}, \mathcal{G}) : \text{gate} \in \{ \text{AND, OR} \} \text{ and } \mathcal{G} \text{ is a nonempty subset of } \mathcal{F}_d \}. \]

Every formula \(F \in \mathcal{F} \) computes a Boolean function \(\{0,1\}^n \rightarrow \{0,1\} \) in the usual way. For \(x \in \{0,1\}^n \), we write \(F(x) \) for the value of \(F \) on \(x \). For a nonempty set \(S \subseteq \{0,1\}^n \) and \(b \in \{0,1\} \), notation \(F(S) = b \) denotes that \(F(x) = b \) for all \(x \in S \). We say that \(F \) is \textit{non-constant} on \(S \) if \(F(S) \neq 0 \) and \(F(S) \neq 1 \).

The depth of \(F \) is the unique \(d \in \mathbb{N} \) such that \(F \in \mathcal{F}_d \). \textit{Leafsize} is the number of depth 0 subformulas, and \textit{size} is the number of depth 1 subformulas. Inductively,

\[
\text{leafsize}(F) = \begin{cases}
1 & \text{if } F \in \mathcal{F}_0, \\
\sum_{G \in \mathcal{G}} \text{leafsize}(G) & \text{if } F = (\text{gate}, \mathcal{G}) \in \mathcal{F} \setminus \mathcal{F}_0,
\end{cases}
\]

\[
\text{size}(F) = \begin{cases}
0 & \text{if } F \in \mathcal{F}_0, \\
1 & \text{if } F \in \mathcal{F}_1, \\
\sum_{G \in \mathcal{G}} \text{size}(G) & \text{if } F = (\text{gate}, \mathcal{G}) \in \mathcal{F} \setminus (\mathcal{F}_0 \cup \mathcal{F}_1).
\end{cases}
\]

Clearly \(\text{size}(F) \leq \text{leafsize}(F) \). Note that size is within a factor 2 of the number of gates in \(F \), which is how one usually measures the size of circuits. Our lower bound naturally applies to size, while the upper bound that we present in §2.3 is naturally presented in terms of leafsize.

\section*{2.2. The action of \(\{0,1\}^n \).} We now formally define the action of \(\{0,1\}^n \) (as the group \(Z_2^n \)) on the set \(\mathcal{F} \). For \(u \in \{0,1\}^n \) and \(F \in \mathcal{F} \), let \(F^u \) be the formula obtained from \(F \) by exchanging literals \(X_i \) and \(\overline{X}_i \) for every \(i \in [n] \) with \(u_i = 1 \). Formally, this action is defined inductively by

\[
F^u = \begin{cases}
F & \text{if } F \in \{0,1\}, \\
X_i (\text{resp. } \overline{X}_i) & \text{if } F = X_i \text{ (resp. } \overline{X}_i) \text{ and } u_i = 0, \\
\overline{X}_i (\text{resp. } X_i) & \text{if } F = X_i \text{ (resp. } \overline{X}_i) \text{ and } u_i = 1, \\
(\text{gate}, \{ G^u : G \in \mathcal{G} \}) & \text{if } F = (\text{gate}, \mathcal{G}).
\end{cases}
\]

Note that \(F^u \) has the same depth and size as \(F \) and computes the function \(F^u(x) = F(x \oplus u) \) for all \(x \in \{0,1\}^n \).

Let \(U \) be a linear subspace of \(\{0,1\}^n \) (i.e., subgroup of \(Z_2^n \)). We say that an AC^0 formula \(F \) is:

\(\bullet \) \textit{U-invariant} if \(F^u = F \) (i.e., these are syntactically identical formulas) for every \(u \in U \),
• **semantically U-invariant** if F computes a U-invariant function (i.e., $F(x) = F(x \oplus u)$ for every $u \in U$ and $x \in \{0,1\}^n$).

Note that every U-invariant formula is semantically U-invariant, but not conversely. For example, the formula $(\text{AND}, \{0, X_1, \ldots, X_n\})$ computes the identically zero function and is therefore semantically U-invariant (for any U); however, this formula is not U-invariant (for any nontrivial U).

2.3. Upper bound

We review the smallest known construction of bounded-depth formulas for parity_n (see [Has86]) and observe that these formulas are P-invariant where P is the even-weight subspace of $\{0,1\}^n$.

Proposition 2.1. For all $d, n \geq 1$, parity_n is computable by P-invariant depth $d + 1$ formulas with either AND or OR as output gate and leafsize at most $n \cdot 2^{dn^{1/d}}$. If $n^{1/d}$ is an integer, this bound improves to $n \cdot 2^{d(n^{1/d} - 1)}$.

Proof. Define $\beta(d, n)$ by the following recurrence:

$$
\beta(1, n) = \begin{cases}
1 & \text{if } n = 1, \\
\infty & \text{if } n > 1,
\end{cases} \\
\beta(d + 1, n) = \min_{k,n_1,\ldots,n_k \geq 1: n_1 + \cdots + n_k = n} 2^{k-1} \sum_{i=1}^k \beta(d, n_i).
$$

We will construct depth $d + 1$ formulas of leafsize $\beta(d + 1, n)$. If $n^{1/d}$ is an integer, we get the bound $\beta(d + 1, n) \leq n \cdot 2^{d(n^{1/d} - 1)}$ by setting $k = n^{1/d}$ and $n_1 = \cdots = n_k = n^{(d-1)/d}$. For arbitrary $d, n \geq 1$, we get the bound $\beta(d + 1, n) \leq n \cdot 2^{dn^{1/d}}$ by setting $k = \lceil n^{1/d} \rceil$ and $n_1, \ldots, n_k \in \{\lfloor n/k \rfloor, \lceil n/k \rceil\}$. In particular, note that $\beta(2, n) = n2^{n-1}$.

In the base case $d = 1$, we have the brute-force DNF (OR-of-ANDs) and CNF (AND-of-ORs) formulas of leavesize $n2^{n-1}$ for parity_n. These formulas are clearly P-invariant. Otherwise (if $d \geq 2$), fix the optimal choice of parameters k, n_1, \ldots, n_k for $\beta(d + 1, n)$.

Partition $[n]$ into sets $J_1 \sqcup \cdots \sqcup J_k$ of size $|J_i| = n_i$. Let parity_{J_i} be the parity function over variables $\{X_j : j \in J_i\}$ and let P_{J_i} be the subspace $\{u \in \{0,1\}^n : \bigoplus_{j \in J_i} u_j = 0\}$.

By the induction hypothesis, for each $i \in [k]$ there exists a P_{J_i}-invariant formula G_i computing parity_{J_i} with depth d and leafsize at most $\beta(d, n_i)$ and output gate AND. Let H_i be the formula obtained from G_i by transposing literals X_j and $\overline{X_j}$ for any choice of $j \in J_i$; note that H_i computes $1 - \text{parity}_{J_i}$. Let F be the brute-force DNF formula for parity_k over variables Y_1, \ldots, Y_k. We first form a depth $d + 2$ formula F' by replacing each literal Y_i (resp. $\overline{Y_i}$) in F with the formula G_i (resp. H_i). The two layers of gates in F' below the output consist entirely of AND gates; these two layers may be combined into a single layer, producing a formula F'' of depth $d + 1$. Since each variable Y_i occurs in 2^{k-1} literals of F, the leavesize of F'' is $2^{k-1} \sum_{i=1}^k \beta(d, n_i)$ as required.

Finally, to see that F'' is P-invariant, consider an even-weight vector $u \in \{0,1\}^n$. Note that u projects to an even-weight vector in $\{0,1\}^k$ whose ith coordinate is $\bigoplus_{j \in J_i} u_i$. Then u acts on F'' by transposing subformulas G_i and H_i for all $i \in [k]$ such that $\bigoplus_{j \in J_i} u_i = 1$; therefore, P-invariance of F'' follows from $P_{\{Y_1,\ldots,Y_k\}}$-invariance of F. If we take F to be a CNF instead of a DNF, the same construction produces F'' with OR instead of AND as its output gate.

Remark 2.2. parity_n is known to be computable by P-invariant formulas of depth $[\log n] + 1$ and leavesize $O(n^2)$ [Tar10, Yab54]. The $n \cdot 2^{dn^{1/d}}$ upper bound of Proposition 2.1 is
therefore slack, as this equals n^3 when $d = \log n$, whereas $n \cdot 2^{d(n^3/d-1)} = n^2$. We suspect that the upper bound of Proposition 2.1 can be improved that $O(n \cdot 2^{d(n^3/d-1)})$ for all $d \leq \log n$, perhaps by a more careful analysis of the recurrence for $\beta(d+1,n)$. Let us add that $\Omega(n^2)$ is a well-known lower bound for any depth, without the assumption of P-invariance [Khr71].

3. Linear-algebraic lemmas

Recall that \mathcal{L} denotes the lattice of linear subspaces of $\{0,1\}^n$. Let U,V,S,T range over elements of \mathcal{L}. If U is a subspace of V, recall that a projection from V to U is a linear map $\rho : V \to U$ such that $\rho(u) = u$ for every $u \in U$. We begin by showing that if U is a codimension-k subspace of V (i.e., $\dim(V) - \dim(U) = k$), then there there exists a projection $\rho : V \to U$ with “Hamming-weight stretch” $k + 1$.

Lemma 3.1. If U is a codimension-k subspace of V, then there exists a projection ρ from V to U such that $|\rho(v)| \leq (k+1)|v|$ for all $v \in V$.

Proof. Greedily choose a basis w_1, \ldots, w_k for V over U such that w_i has minimal Hamming weight among elements of $V \setminus \text{Span}(U \cup \{w_1, \ldots, w_{i-1}\})$ for all $i \in [k]$. Each $v \in V$ has a unique representation $v = u \oplus a_1 w_1 \oplus \cdots \oplus a_k w_k$ where $u \in U$ and $a_1, \ldots, a_k \in \{0,1\}$. Let $\rho : V \to U$ be the map $v \mapsto u$ and observe that this is a projection.

To show that $|\rho(v)| \leq (k+1)|v|$, we first observe that $|a_i w_i| \leq |v|$ for all $i \in [k]$. If $a_i = 0$, this is obvious, as $|a_i w_i| = 0$. If $a_i = 1$, then $v \in V \setminus \text{Span}(U \cup \{w_1, \ldots, w_{i-1}\})$, so by our choice of w_i we have $|a_i w_i| = |w_i| \leq |v|$. Completing the proof, we have

\[
|\rho(v)| = |v \oplus a_1 w_1 \oplus \cdots \oplus a_k w_k| \\
\leq |v| + |a_1 w_1| + \cdots + |a_k w_k| \\
\leq (k+1)|v|.
\]

Definition 3.2. Define sets \mathcal{L}_2 and \mathcal{L}_4 as follows:

$\mathcal{L}_2 = \{(U,V) \in \mathcal{L} \times \mathcal{L} : U$ is a codimension-1 subspace of $V\}$,

$\mathcal{L}_4 = \{(S,T),(U,V) \in \mathcal{L}_2 \times \mathcal{L}_2 : T \cap U = S \text{ and } T + U = V\}$.

The next lemma shows that \mathcal{L}_4 is anti-symmetric under orthogonal complementation.

Lemma 3.3. For all $((S,T),(U,V)) \in \mathcal{L}_4$, we have $((V^\perp,U^\perp),(T^\perp,S^\perp)) \in \mathcal{L}_4$.

Proof. We use the properties of orthogonal complements stated in §2. Consider any $((S,T),(U,V)) \in \mathcal{L}_4$. First note that $(V^\perp,U^\perp) \in \mathcal{L}_2$ by the fact that $U \subseteq V \implies V^\perp \subseteq U^\perp$ and $\dim(U^\perp) - \dim(V^\perp) = (n - \dim(U)) - (n - \dim(V)) = \dim(V) - \dim(U) = 1$. Similarly, we have $(T^\perp,S^\perp) \in \mathcal{L}_2$. We now have $((V^\perp,U^\perp),(T^\perp,S^\perp)) \in \mathcal{L}_4$ since $U^\perp \cap T^\perp = (T + U)^\perp = V^\perp$ and $U^\perp + T^\perp = (T \cap U)^\perp = S^\perp$.

Finally, we state a dual pair of lemmas which play a key role in the proof of Theorem 1.1.

Lemma 3.4. For all $(S,T) \in \mathcal{L}_2$ and $V \supseteq T$, there exists $U \supseteq S$ such that $((S,T),(U,V)) \in \mathcal{L}_4$ and

\[
\min_{x \in V \setminus U} |x| \geq \frac{1}{\dim(V) - \dim(T) + 1} \min_{y \in T \setminus S} |y|.
\]
Proof. By Lemma 3.1, there exists a projection ρ from V onto T such that $|\rho(v)| \leq (\dim(V) - \dim(T) + 1)|v|$ for all $v \in V$. Let $U = \rho^{-1}(S)$ and note that U is a codimension-1 subspace of V. (This follows by applying the rank-nullity theorem to linear maps $\rho : V \to T$ and $\rho[U : U \to S$ and noting that $\ker(\rho) = \ker(\rho[U]$.) We have $S = T \cap U$ and $T + U = V$, hence $((S, T), (U, V)) \in \mathcal{L}_4$. Choosing x with minimum Hamming weight in $V \setminus U$, we observe that $\rho(x) \in T \setminus S$ and $|x| \geq |\rho(v)|/(\dim(V) - \dim(T) + 1)$, which proves the lemma. □

Lemma 3.5. For all $(U, V) \in \mathcal{L}_2$ and $S \subseteq U$, there exists $T \subseteq V$ such that $((S, T), (U, V)) \in \mathcal{L}_4$ and

$$\min_{x \in S \setminus T^\perp} |x| \geq \frac{1}{\dim(U) - \dim(S) + 1} \min_{y \in U \setminus V^\perp} |y|.$$

Proof. Follows directly from Lemmas 3.3 and 3.4. □

4. Proof of Theorem 1.1

We first prove the base case of Theorem 1.1 for depth 2 formulas, also known as DNFs and CNFs.

Lemma 4.1. Suppose F is a depth 2 formula and $(U, V) \in \mathcal{L}_2$ such that $F(U) \equiv b$ and $F(V \setminus U) \equiv 1 - b$ for some $b \in \{0, 1\}$. Then $\text{size}(F) \geq 2^{m-1}$ and $\text{leavesize}(F) \geq m \cdot 2^{m-1}$ where $m = \min\{|x| : x \in U^\perp \setminus V^\perp\}$.

Note that Lemma 4.1 does not involve the assumption that F is U-invariant.

Proof. Assume that F is a DNF formula (i.e., an OR-of-ANDs formula) and $F(U) \equiv 0$ and $F(V \setminus U) \equiv 1$. This is without loss of generality: if F were a DNF formula and $F(U) \equiv 1$ and $F(V \setminus U) \equiv 0$, then we may consider F^w for any choice of $w \in V \setminus U$; this is a DNF formula of the same size and leafsize, but has $F^w(U) \equiv 0$ and $F^w(V \setminus U) \equiv 1$. The argument for CNF formulas is similar.

We may further assume that F is minimal firstly with respect to the number of clauses and secondly with respect to the number of literals in each clause.

Consider any clause G of F. This clause G is the AND of some number ℓ of literals. Without loss of generality, suppose these literals involve the first ℓ coordinates. Let π be the projection $(0,1)^n \to \{0,1\}^\ell$ onto the first ℓ coordinates. There is a unique element $p \in \{0,1\}^\ell$ such that $G(x) = 1 \iff \pi(x) = p$ for all $x \in \{0,1\}^n$. Observe that $G(U) \equiv 0$ (since $F(U) \equiv 0$) and, therefore, $p \notin \pi(U)$.

We claim that $p \in \pi(V)$. To see why, assume for contradiction that $p \notin \pi(V)$. Then $G(V) \equiv 0$. But this means that the clause G can be removed from F and the resulting function F' would still satisfy $F'(U) \equiv 0$ and $F'(V \setminus U) \equiv 1$, contradicting the minimality of F with respect to number of clauses.

For each $i \in [\ell]$, let $p^{(i)} \in \{0,1\}^{\ell}$ be the element obtained from p by flipping its ith coordinate. We claim that $p^{(1)}, \ldots, p^{(\ell)} \in \pi(U)$. Without loss of generality, we give the argument showing $p^{(\ell)} \in \pi(U)$. Let G' be the AND of the first $\ell - 1$ literals in G, and let F' be the formula obtained from F by replacing G with G'. For all $x \in \{0,1\}^n$, we have $G(x) \leq G'(x)$ and hence $F(x) \leq F'(x)$. Therefore, $F'(V \setminus U) \equiv 1$. Now note that there exists $u \in U$ such that $F'(u) = 1$ (otherwise, we would have $F'(u) \equiv 0$, contradicting the minimality of F with respect to the width of each clause). Since $F(u) = 0$ and G' is the only clause of F' distinct from the clauses of F, it follows that $G'(u) = 1$. This means that
with equality iff $p^{(\ell)}$. We now have $\pi(u) = p^{(\ell)}$, (otherwise, we would have $\pi(u) = p$ and therefore $G(u) = 1$ and $F(u) = 1$, contradicting that fact that $F(U) \equiv 0$).

Note that $p^{(1)}, \ldots, p^{(\ell)}$ span either the even-weight subspace of $\{0, 1\}^\ell$ (if p has odd weight) or all of $\{0, 1\}^\ell$ (if p has even weight). Since $p^{(1)}, \ldots, p^{(\ell)} \in \pi(U)$ and $p \in \pi(V) \setminus \pi(U)$, only the former is possible. That is, we have $\pi(V) = \{0, 1\}^\ell$ and $\pi(U) = \{q \in \{0, 1\}^\ell : |q| \text{ is even}\}$. Therefore, $1^i \in \pi(U) \perp \pi(V) \perp$ (writing 1^i for the all-1 vector in $\{0, 1\}^\ell$). It follows that $1^i0^{m-\ell} \in U^\perp \setminus V^\perp$ and, therefore, $\ell = |1^i0^{m-\ell}| \geq m$ (by definition of m).

We now observe that

$$\Pr_{v \in V} [G(v) = 1] = \Pr_{v \in V} [\pi(v) = p] = \Pr_{q \in \pi(V)} [q = p] = \Pr_{q \in \{0, 1\}^\ell} [q = p] = 2^{-\ell} \leq 2^{-m}.$$

That is, each clause in F has value 1 over at most 2^{-m} fraction of points in V. Since the set $V \setminus U$ has density $1/2$ in V, we see that 2^{m-1} clauses are required to cover $V \setminus U$.

Subject to the stated minimality assumptions on F (first with respect to the number of clauses and second to the width of each clause), we conclude that F contains $\geq 2^{m-1}$ clauses, each of width $\geq m$. Therefore, $\text{size}(F) \geq 2^{m-1}$ and $\text{leafsize}(F) \geq m \cdot 2^{m-1}$. \square

The induction step of Theorem 1.1 makes use of the following inequality.

Lemma 4.2. For all real $a, b, c \geq 1$, we have $a + c(b/a)^{1/c} \geq (c + 1)b^{1/(c+1)}$. This holds with equality iff $a = b^{1/(c+1)}$.

Proof. Taking the derivative of the left-hand side with respect to a, we get

$$\frac{\partial}{\partial a} (a + c(b/a)^{1/c}) = 1 - (b/a)^{1/c}.$$

The function $a \mapsto a + c(b/a)^{1/c}$ is thus seen to have a unique minimum at $a = b^{1/(c+1)}$, where it takes value $(c + 1)b^{1/(c+1)}$. \square

Onto the main result:

Theorem 1.1 (restated). Let $U \subseteq V$ be linear subspaces of $\{0, 1\}^n$, and suppose F is a U-invariant depth $d + 1$ formula which is non-constant over V. Then F has size at least $2^{\ell(m^{1/d} - 1)}$ where $m = \min\{|x| : x \in U^\perp \setminus V^\perp\}$.

Proof. We first observe that it suffices to prove the theorem in the case where $(U, V) \in \mathcal{L}_2$, that is, U has codimension-1 in V. To see why, note that for any $U \subseteq V$ such that F is U-invariant and non-constant over V, there must exist $U \subset W \subseteq V$ such that $(U, W) \in \mathcal{L}_2$ and F is non-constant over W. Assuming the theorem holds with respect to $U \subset W$, it also holds with respect to $U \subset V$, since $U^\perp \setminus W^\perp \subseteq U^\perp \setminus V^\perp$ and hence

$$\min\{|x| : x \in U^\perp \setminus W^\perp\} \geq \min\{|x| : x \in U^\perp \setminus V^\perp\}.$$

Therefore, we assume $(U, V) \in \mathcal{L}_2$ and prove the theorem by induction on d. The base case $d = 1$ is established by Lemma 4.1. For the induction step, let $d \geq 2$ and assume $F \in \mathcal{F}_{d+1}$ is a U-invariant and non-constant over V. Without loss of generality, we consider the case where $F = (\text{OR}, G)$ for some nonempty $G \subseteq \mathcal{F}_d$. (The case where $F = (\text{AND}, G)$ is symmetric, with the roles of 0 and 1 exchanged.)

Since F is U-invariant, we have $G^u \subseteq G$ for every $u \in U$ and $G \subseteq G_t$. We claim that it suffices to prove the theorem in the case where the action of U on G is transitive (i.e. $G = \{G^u : u \in U\}$ for every $G \in G$). To see why, consider the partition $G = G_1 \cup \cdots \cup G_t$, $t \geq 1$, into orbits under U. For each $i \in [t]$, let F_i be the formula (OR, G_i). Note that F_i is U-invariant and U acts transitively on G_i. Clearly, we have $F(v) = \bigvee_{i \in [t]} F_i(v)$ for all $v \in V$. Since every U-invariant Boolean function is constant over sets U and $V \setminus U$ (using the fact that U has codimension-1 in V), it follows that each F_i satisfies either $F_i(V) \equiv 0$ or $F(v) = F_i(v)$ for all $v \in V$. (It cannot happen that $F_i(V) \equiv 1$ for any i, since that would
We have $F(V) \equiv 1$.) Because F is non-constant over V, it follows that there exists $i \in [t]$ such that $F(v) = F_i(v)$ for all $v \in V$. In particular, this F_i is non-constant over V. Since $\text{size}(F) \geq \text{size}(F_i)$, we have reduced proving the theorem for F to proving it for F_i.

In light of the preceding paragraph, we proceed under the assumption that U acts transitively on \mathcal{G}. Fix an arbitrary choice of $G \in \mathcal{G}$. Let

$$S = \text{Stab}_U(G) = \{u \in U : G^u = G\},$$

$$a = \dim(U) - \dim(S) + 1.$$

By the orbit-stabilizer theorem,

$$|\mathcal{G}| = |\text{Orbit}_U(G)| = |U : S| = |U|/|S| = 2^{a-1}.$$

Since $\text{size}(G') = \text{size}(G)$ for every $G' \in \mathcal{G}$, we have

$$\text{size}(F) = \sum_{G' \in \mathcal{G}} \text{size}(G') = |\mathcal{G}| \cdot \text{size}(G) = 2^{a-1} \cdot \text{size}(G). \quad (4.1)$$

We next observe that G^u is S-invariant for every $u \in U$ (in fact, $S = \text{Stab}_U(G^u)$). This follows from the fact that $(G^u)^s = G^{u \otimes s} = (G^s)^u = G^u$ for every $s \in S$.

By Lemma 3.5, there exists T such that $(S,T,(U,V)) \in \mathcal{L}_4$ and

$$\min_{x \in S \setminus T^\perp} |x| \geq \frac{1}{\dim(U) - \dim(S) + 1} \min_{y \in U \setminus V^\perp} |y| = \frac{m}{a}.$$

We claim that there exists $u \in U$ such that G^u is non-constant on T. There are two cases to consider:

Case 1: Suppose $F(U) \equiv 0$ and $F(V \setminus U) \equiv 1$.

We have $G(U) \equiv 0$ and $G(V) \not\equiv 0$. Fix any $v \in V \setminus U$ such that $G(v) = 1$. In addition, fix any $w \in T \setminus U$ (noting that $T \setminus U$ is nonempty since $U + T = V$ and $U \subset V$). Let $u = v \oplus w$ and note that $u \in U$ (since U is a codimension-1 subspace of V and $v, w \in V \setminus U$).

We have $G^u(U) \equiv 0$ and $G^u(w) = G(w \oplus u) = G(v) = 1$. By the S-invariance of G^u, it follows that $G^u(S) \equiv 0$ and $G^u(T \setminus S) \equiv 1$. In particular, G^u is non-constant on T.

Case 2: Suppose $F(U) \equiv 1$ and $F(V \setminus U) \equiv 0$.

We have $G(U) \not\equiv 0$ and $G(V \setminus U) \equiv 0$. Fix any $u \in U$ such that $G(u) = 1$. In addition, fix any $w \in T \setminus U$ and let $v = w \oplus u$. We have $G^u(v) = G(v \oplus u) = G(w) = 0$ (since $w \in V \setminus U$ and $G(V \setminus U) \equiv 0$). We also have $G^u(\vec{0}) = G(u) = 1$ where $\vec{0}$ is the origin in $\{0,1\}^n$. By S-invariance of G^u, it follows that $G^u(S) \equiv 1$ and $G^u(T \setminus S) \equiv 0$. In particular, G^u is non-constant on T.

Since G^u is S-invariant and non-constant on T and depth$(G^u) = (d - 1) + 1$, we may apply the induction hypothesis to G^u. Thus, we have

$$\text{size}(G) = \text{size}(G^u) \geq 2^{(d-1)(m/a)^{1/(d-1)} - 1}. \quad (4.2)$$

Since $d \geq 2$, Lemma 4.2 tells us

$$a + (d - 1)(m/a)^{1/(d-1)} \geq d(m/a)^{1/d}. \quad (4.3)$$
Putting together (4.1), (4.2), (4.3), we get the desired bound

\[
\text{size}(F) \geq 2^{a-1} \cdot 2^{(d-1)((m/a)^{1/(d-1)} - 1)} \\
= 2^{a + (d-1)(m/a)^{1/(d-1)} - d} \\
\geq 2^{d(m^{1/d} - 1)}.
\]

This completes the proof of Theorem 1.1.

5. Remarks and open questions

5.1. Another application of Theorem 1.1. Theorem 1.1 applies to interesting subspaces U of $\{0,1\}^n$ besides the even-weight subspace P. Here we describe one example. Let G be a simple graph with n edges, so that $\{0,1\}^n$ may be identified with the set of spanning subgraphs of G. The cycle space of G is the subspace $Z \subseteq \{0,1\}^n$ consisting of even subgraphs of G (i.e., spanning subgraphs in which every vertex has even degree). Consider the even-weight subspace $Z_0 = \{z \in Z : |z| \text{ is even}\}$. Provided that G is non-bipartite, Z_0 is a codimension-1 subspace of Z.

Let $m = \min\{|x| : x \in Z_0^\perp \setminus Z^\perp\}$ as in Theorem 1.1 with $U = Z_0$ and $V = Z$. This number m is seen to be equal to the minimum number of edges whose removal makes G bipartite. It follows that $m = n - c$ where c is the number edges in a maximum cut in G. Now suppose G is generated as a uniform random 3-regular graph with n edges (and $\frac{2}{3}n$ vertices). There is a constant $\varepsilon > 0$ such that $c \leq (1 - \varepsilon)n$ (and hence $m \geq \varepsilon n$) holds asymptotically almost surely [Bol88]. From these observations, we have

Corollary 5.1. Every Z_0-invariant depth $d + 1$ formula that computes parity_n over Z has size at least $2^{d((\varepsilon n)^{1/d} - 1)}$ asymptotically almost surely.

The AC^0 complexity of computing parity_n over the cycle space of a graph G is loosely related to the AC^0-Frege proof complexity of the Tseitin tautology on G, which has been explored recently in [H˚as17, PRST16]. In general, however, we do not have techniques to lower bound the (non-subspace-invariant) AC^0 complexity of parity_n over arbitrary subspaces of $\{0,1\}^n$.

5.2. The $V \setminus U$ search problem. For linear subspaces $U \subset V$ of $\{0,1\}^n$, consider the following “$V \setminus U$ search problem”. There is a hidden vector $w \in V \setminus U$ and the goal is to learn a nonzero coordinate of w (any $i \in [n]$ such that $w_i = 1$) by asking queries (yes/no questions) in the form of linear functions $\{0,1\}^n \rightarrow \{0,1\}$. The d-round query complexity of this problem is the minimum number of queries required by a deterministic protocol which issues batches of queries over d consecutive rounds. By an argument similar to the proof of Theorem 1.1, we get a $d(m^{1/d} - 1)$ lower bound on the d-round query complexity of the $V \setminus U$-search problem where $m = \min\{|x| : x \in U^\perp \setminus V^\perp\}$. We remark that this $V \setminus U$ search problem may be viewed as an U-invariant version of the Karchmer-Wigderson game.
5.3. **Open questions.** We conclude by mentioning some open questions and challenges raised by this work:

- Does the $2^{d(m^{1/d}-1)}$ lower bound of Theorem 1.1 (or even a weaker bound like $2^{Ω(m^{1/d})}$ or $2^{nΩ(1/d)}$) apply to depth $d+1$ formulas which are *semantically* U-invariant and non-constant on V?
- Counting leafsize instead of size, improve the lower bound of Theorem 1.1 from $2^{d(m^{1/d}-1)}$ to $m \cdot 2^{d(m^{1/d}-1)}$.
- Improve the upper bound of Proposition 2.1 from $n \cdot 2^{dn^{1/d}}$ to $O(n \cdot 2^{d(n^{1/d}-1)})$ for all $d \leq \log n$.
- What is the maximum gap, if any, between the U-invariant vs. unrestricted AC^0 complexity of a U-invariant Boolean function?

References

