
Logical Methods in Computer Science
Volume 15, Issue 3, 2019, pp. 9:1–9:57
https://lmcs.episciences.org/

Submitted Feb. 20, 2018
Published Jul. 31, 2019

NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC

λ-TERMS, VIA PARALLEL REDUCTION OF RESOURCE VECTORS

LIONEL VAUX

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
e-mail address: lionel.vaux@univ-amu.fr

Abstract. It has been known since Ehrhard and Regnier’s seminal work on the Taylor
expansion of λ-terms that this operation commutes with normalization: the expansion of a
λ-term is always normalizable and its normal form is the expansion of the Böhm tree of
the term.

We generalize this result to the non-uniform setting of the algebraic λ-calculus, i.e.,
λ-calculus extended with linear combinations of terms. This requires us to tackle two
difficulties: foremost is the fact that Ehrhard and Regnier’s techniques rely heavily on
the uniform, deterministic nature of the ordinary λ-calculus, and thus cannot be adapted;
second is the absence of any satisfactory generic extension of the notion of Böhm tree in
presence of quantitative non-determinism, which is reflected by the fact that the Taylor
expansion of an algebraic λ-term is not always normalizable.

Our solution is to provide a fine grained study of the dynamics of β-reduction under
Taylor expansion, by introducing a notion of reduction on resource vectors, i.e. infinite
linear combinations of resource λ-terms. The latter form the multilinear fragment of
the differential λ-calculus, and resource vectors are the target of the Taylor expansion of
λ-terms. We show the reduction of resource vectors contains the image of any β-reduction
step, from which we deduce that Taylor expansion and normalization commute on the nose.

We moreover identify a class of algebraic λ-terms, encompassing both normalizable alge-
braic λ-terms and arbitrary ordinary λ-terms: the expansion of these is always normalizable,
which guides the definition of a generalization of Böhm trees to this setting.

1. Introduction

Quantitative semantics was first proposed by Girard [Gir88] as an alternative to domains
and continuous functionals, for defining denotational models of λ-calculi with a natural
interpretation of non-determinism: a type is given by a collection of “atomic states”; a term
of type A is then represented by a vector (i.e. a possibly infinite formal linear combination)

2012 ACM CCS: Theory of computation Denotational semantics; Theory of computation Lambda
calculus; Theory of computation Linear logic;

Key words and phrases: lambda-calculus, non-determinism, normalization, denotational semantics.
An extended abstract [Vau17] of this paper, focused on the translation of parallel β-reduction steps

through Taylor expansion, appeared in the proceedings of CSL 2017.
This work was supported by French ANR projects Coquas (number ANR-12-JS02-0006) and Récré (number

ANR-11-BS02-0010), as well as the French-Italian Groupement de Recherche International on Linear Logic.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:9)2019
© Lionel Vaux
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

9:2 Lionel Vaux Vol. 15:3

of states. The main matter is the treatment of the function space: the construction requires
the interpretation of function terms to be analytic, i.e. defined by power series.

This interpretation of λ-terms was at the origin of linear logic: the application of an
analytic map to its argument boils down to the linear application of its power series (seen
as a matrix) to the vector of powers of the argument; similarly, linear logic decomposes
the application of λ-calculus into the linear cut rule and the promotion operator. Indeed,
the seminal model of linear logic, namely coherence spaces and stable/linear functions, was
introduced as a qualitative version of quantitative semantics [Gir86, especially Appendix C].

Dealing with power series, quantitative semantics must account for infinite sums. The
interpretations of terms in Girard’s original model can be seen as a special case of Joyal’s
analytic functors [Joy86]: in particular, coefficients are sets and infinite sums are given
by coproducts. This allows to give a semantics to fixed point operators and to the pure,
untyped λ-calculus. On the other hand, it does not provide a natural way to deal with
weighted (e.g., probabilistic) non-determinism, where coefficients are taken in an external
semiring of scalars.

In the early 2000’s, Ehrhard introduced an alternative presentation of quantitative
semantics [Ehr05], limited to a typed setting, but where types can be interpreted as particular
vector spaces, or more generally semimodules over an arbitrary fixed semiring; called finiteness
spaces, these are moreover equipped with a linear topology, allowing to interpret linear
logic proofs as linear and continuous maps, in a standard sense. In this setting, the formal
operation of differentiation of power series recovers its usual meaning of linear approximation
of a function, and morphisms in the induced model of λ-calculus are subject to Taylor
expansion: the application ϕ(α) of the analytic function ϕ to the vector α boils down to

the sum
∑

n∈N
1
n !

(
∂nϕ
∂xn

)
x=0
· αn where

(
∂nϕ
∂xn

)
x=0

is the n-th derivative of ϕ computed at 0,

which is an n-linear map, and αn is the n-th tensor power of α.
Ehrhard and Regnier gave a computational meaning to such derivatives by introducing

linearized variants of application and substitution in the λ-calculus, which led to the
differential λ-calculus [ER03], and then the resource λ-calculus [ER08] — the latter retains
iterated derivatives at zero as the only form of application. They were then able to recast
the above Taylor expansion formula in a syntactic, untyped setting: to every λ-term M ,
they associate a vector τ(M) of resource λ-terms, i.e. terms of the resource λ-calculus.

The Taylor expansion of a λ-term can be seen as an intermediate, infinite object, between
the term and its denotation in quantitative semantics. Indeed, resource terms still retain
a dynamics, if a very simple, finitary one: the size of terms is strictly decreasing under
reduction. Furthermore, normal resource terms are in close relationship with the atomic
states of quantitative semantics of the pure λ-calculus (or equivalently with the elements
of a reflexive object in the relational model [BEM07]; or with normal type derivations in a
non-idempotent intersection type system [dC08]), so that the normal form of τ(M) can be
considered as the denotation of M , which allows for a very generic description of quantitative
semantics.

Other approaches to quantitative semantics generally impose a constraint on the com-
putational model a priori. For instance, the model of finiteness spaces [Ehr05] is, by design,
limited to strongly normalizing computation. Another example is that of probabilistic coher-
ence spaces [DE11], a model of untyped λ-calculi extended with probabilistic choice, rather
than arbitrary weighted superpositions. Alternatively, one can interpret non-deterministic
extensions of PCF [LMMP13, Lai16], provided the semiring of scalars has all infinite sums.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:3

By contrast, the “normalization of Taylor expansion” approach is more canonical, as it does
not rely on a restriction on the scalars, nor on the terms to be interpreted.

Of course, there is a price attached to such canonicity: in general, the normal form of a
vector of resource λ-terms is not well defined, because we may have to consider infinite sums
of scalars. Ehrhard and Regnier were nonetheless able to prove that the Taylor expansion
τ(M) of a pure λ-term is always normalizable [ER08]. This can be seen as a new proof of the
fact that Girard’s quantitative semantics of pure λ-terms uses finite cardinals only [Has96].
They moreover established that this normal form is exactly the Taylor expansion of the
Böhm tree BT(M) of M [ER06] (BT(M) is the possibly infinite tree obtained by hereditarily
applying the head reduction strategy in M). Both results rely heavily on the uniformity
property of the pure λ-calculus: all the resource terms in τ(M) follow a single syntactic tree
pattern. This is a bit disappointing since quantitative semantics was introduced as a model
of non-determinism, which is ruled out by uniformity.

Actually, the Taylor expansion operator extends naturally to the algebraic λ-calculus
[Vau09]: a generic, non-uniform extension of λ-calculus, augmenting the syntax with formal
finite linear combinations of terms. Then it is not difficult to find terms whose Taylor
expansion is not normalizable. Nonetheless, interpreting types as finiteness spaces of resource
terms, Ehrhard [Ehr10] proved by a reducibility technique that the Taylor expansion of
algebraic λ-terms typed in a variant of system F is always normalizable.

1.1. Main results. In the present paper, we generalize Ehrhard’s result and show that all
weakly normalizable algebraic λ-terms have a normalizable Taylor expansion (Theorem 8.21,
p.50).1

We moreover relate the normal form of the expansion of a term with the normal form
of the term itself, both in a computational sense (i.e. the irreducible form obtained after
a sequence of reductions) and in a more denotational sense, via an analogue of the notion
of Böhm tree: Taylor expansion does commute with normalization, in both those senses
(Theorem 8.22, p.50; Theorem 9.14, p.55).

When restricted to pure λ-terms, Theorem 9.14 provides a new proof, not relying on
uniformity, that the normal form of τ(M) is isomorphic to BT(M). In their full extent, our
results provide a generalization of the notion of non-deterministic Böhm tree [dLP95] in a
weighted, quantitative setting.

Let us stress that neither Ehrhard’s work [Ehr10] nor our own previous work with Pagani
and Tasson [PTV16] addressed the commutation of normalization and Taylor expansion.
Indeed, in the absence of uniformity, the techniques used by Ehrhard and Regnier [ER08,
ER06] are no longer available, and we had to design another approach.2 Our solution is to
introduce a notion of reduction on resource vectors, so that: (i) this reduction contains the

1 We had already obtained such a result for strongly normalizable λ-terms in a previous work with Pagani
and Tasson [PTV16]: there, we further proved that the finiteness structure on resource λ-terms could be
refined to characterize exactly the strong normalizability property in a λ-calculus with finite formal sums of
terms. Here we rely on a much coarser notion of finiteness: see subsection 8.1.

2 It is in fact possible to refine Ehrhard and Regnier’s approach, via the introduction of a rigid variant
of Taylor expansion [TAO17], which can then be adapted to the non-deterministic setting. This allows to
describe the coefficients in the normal form of Taylor expansion, like in the uniform case, and then prove
that Taylor expansion commutes with the computation of Böhm trees. It does not solve the problem of
possible divergence, though, and one has to assume the semiring of coefficients is complete, i.e. that all sums
converge. See Subsection 1.3 on related work for more details.

9:4 Lionel Vaux Vol. 15:3

translation of any β-reduction step (Lemma 7.6, p.43); (ii) normalizability (and the value
of the normal form) of resource vectors is preserved under reduction (Lemma 8.3, p.46).
This approach turns out to be quite delicate, and its development led us to two technical
contributions that we deem important enough to be noted here:

• the notion of reduction structure (subsection 5.3) that allows to control the families of
resource terms simultaneously involved in the reduction of a resource vector: in particular
this provides a novel, modular mean to circumvent the inconsistency of β-reduction in
presence of negative coefficients (a typical deficiency of the algebraic λ-calculus [Vau09]);
• our analysis of the effect of parallel reduction on the size of resource λ-terms (Section

6): this constitutes the technical core of our approach, and it plays a crucial rôle in
establishing key additional properties such as confluence (Lemma 6.17, p.36, and Corollary
6.29, p.41) and conservativity (Lemma 7.14, p.45, and Lemma 8.23, p.50).

1.2. Structure of the paper. The paper begins with a few mathematical preliminaries,
in section 2: we recall some definitions about semirings and semimodules (Subsection 2.1),
if only to fix notations and vocabulary; we also provide a very brief review of finiteness
spaces (Subsection 2.2), then detail the particular case of linear-continuous maps defined by
summable families of vectors (subsection 2.3), the latter notion pervading the paper.

In Section 3 we review the syntax and the reduction relation of the resource λ-calculus,
as introduced by Ehrhard and Regnier [ER08]. The subject is quite standard now, and the
only new material we provide is about minor and unsurprising combinatorial properties of
multilinear substitution.

Section 4 contains our first notable contribution: after recalling the Taylor expansion
construction, we prove that it is compatible with substitution. This result is related with
the functoriality of promotion in quantitative denotational models and the proof technique
is quite similar. In the passing, we recall the syntax of the algebraic λ-calculus and briefly
discuss the issues raised by the contextual extension of β-reduction in presence of linear
combinations of terms, as evidenced by previous work [Vau07, AD08, Vau09, etc.].

In Section 5, we discuss the possible extensions of the reduction of the resource λ-calculus
to resource vectors, i.e. infinite linear combinations of resource terms, and identify two main
issues. First, in order to simulate β-reduction, we are led to consider the parallel reduction
of resource terms in resource vectors, which is not always well defined. Indeed, a single
resource term might have unboundedly many antecedents by parallel reduction, hence this
process might generate infinite sums of coefficients: we refer to this phenomenon as the
size collapse of parallel resource reduction (Subsection 5.2). Second, similarly to the case
of the algebraic λ-calculus, the induced equational theory might become trivial, due the
interplay between coefficients in vectors and the reduction relation. To address the latter
problem we introduce the notion of reduction structure (Subsection 5.3) which allows us
to modularly restrict the set of resource terms involved in a reduction: later in the paper,
we will identify reduction structures ensuring the consistency of the reduction of resource
vectors (Subsection 8.4).

In Section 6, we introduce successive restrictions of the parallel reduction of resource
vectors, in order to avoid the abovementioned size collapse. We first observe that, to bound
the size of a term as a function of the size of any of its reducts, it is sufficient to bound
the length of chains of immediately nested fired redexes in a single parallel reduction step
(Subsection 6.1). This condition does not allow us to close a pair of reductions to a common

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:5

reduct, because it is not stable under unions of fired redexes. We thus tighten it to bounding
the length of all chains of (not necessarily immediately) nested fired redexes (Subsection
6.2): this enables us to obtain a strong confluence result, under a mild hypothesis on the
semiring. An even more demanding condition is to require the fired redexes as well as the
substituted variables to occur at a bounded depth (subsection 6.3): then we can define a
maximal parallel reduction step for each bound, which entails strong confluence without any
additional hypothesis. Finally, we consider reduction structures involving resource terms of
bounded height (Subsection 6.4): when restricting to such a bounded reduction structure,
the strongest of the above three conditions is automatically verified.

We then show, in Section 7, that the translation of β-reduction through Taylor expansion
fits into this setting: the height of the resource terms involved in a Taylor expansion is
bounded by that of the original algebraic λ-term, and every β-reduction step is an instance
of the previously introduced parallel reduction of resource vectors. As a consequence of our
strongest confluence result, we moreover obtain that any reduction step from the Taylor
expansion of a λ-term can be extended into the translation of a parallel β-reduction step.

We turn our attention to normalization in Section 8. We first show that normalizable
resource vectors are stable under reduction. We moreover establish that their normal form
is obtained as the limit of the parallel left reduction strategy (Subsection 8.1). Then we
introduce Taylor normalizable algebraic λ-terms as those having a normalizable Taylor
expansion, and deduce from the previous results that they are stable under β-reduction
(Subsection 8.2): in particular, the normal form of Taylor expansion does define a denotational
semantics for that class of terms. Then we establish that normalizable terms are Taylor
normalizable (subsection 8.3): it follows that normalization and Taylor expansion commute
on the nose.

We conclude with Section 9, showing how our techniques can be applied to the class of
hereditarily determinable terms, that we introduce ad-hoc: those include pure λ-terms as
well as normalizable algebraic λ-terms as a particular case, and we show that all hereditarily
determinable terms are Taylor normalizable and the coefficients of the normal form are given
by a sequence of approximants, close to the Böhm tree construction.

1.3. Related and future work. Besides the seminal work by Ehrhard and Regnier [ER08,
ER06] in the pure case, we have already cited previous approaches to the normalizability of
Taylor expansion based on finiteness conditions [Ehr10, PTV16].

A natural question to ask is how our generic notion of normal form of Taylor expansion
compares with previously introduced notions of denotation in non-deterministic settings:
non-deterministic Böhm trees [dLP95], probabilistic Böhm trees [Lev16], weighted relational
models [DE11, LMMP13, Lai16], etc. The very statement of such a question raises several
difficulties, prompting further lines of research.

One first obstacle is the fact that, by contrast with the uniform case of the ordinary
λ-calculus, the Taylor expansion operator is not injective on algebraic λ-terms (see Subsection
4.5), not even on the partial normal forms that we use to introduce the approximants in
section 9. This is to be related with the quotient that the non-deterministic Böhm trees of
de’Liguoro and Piperno [dLP95] must undergo in order to capture observational equivalence.
On the other hand, to our knowledge, finding sufficient conditions on the semiring of scalars
ensuring that the Taylor expansion becomes injective is still an open question.

Also, we define normalizable vectors based on the notion of summability: a sum of
vectors converges when it is componentwise finite i.e., for each component, only finitely many

9:6 Lionel Vaux Vol. 15:3

vectors have a non-zero coefficient (see subsection 2.3). If more information is available on
scalars, namely if the semiring of scalars is complete in some topological or order-theoretic
sense, it becomes possible to normalize the Taylor expansion of all terms.

Indeed, Tsukada, Asada and Ong have recently established [TAO17] the commutation
between computing Böhm trees and Taylor expansion with coefficients taken in the complete
semiring of positive reals [0,+∞] where all sums converge. Let us precise that they do
not consider weighted non-determinism, only formal binary sums of terms, and that the
notion of Böhm tree they consider is a very syntactic one, similar to the partial normal
forms we introduce in section 9. Their approach is based on a precise description of the
relationship between the coefficients of resource terms in the expansion of a term and those
in the expansion of its Böhm-tree, using a rigid Taylor expansion as an intermediate step:
this avoids the ambiguity between the sums of coefficients generated by redundancies in the
expansion and those representing non-deterministic superpositions.

Tsukada, Asada and Ong’s work can thus be considered as a refinement of Ehrhard
and Regnier’s method, that they are moreover able to generalize to the non-deterministic
case provided the semiring of scalars is complete. By contrast, our approach is focused on
β-reduction and identifies a class of algebraic λ-terms for which the normalization of Taylor
expansion converges independently from the topology on scalars. It seems only natural to
investigate the connections between both approaches, in particular to tackle the case of
weighted non-determinism in a complete semiring, as a first step towards the treatment of
probabilistic or quantum superposition, as also suggested by the conclusion of their paper.

In the probabilistic setting, though, the Böhm tree construction [Lev16] relies on
both the topological properties of real numbers and the restriction to discrete probability
subdistributions. Relying on this, Dal Lago and Leventis have recently shown [DLL19] that
the sum defining the normal form of Taylor expansion of an arbitrary probabilistic λ-term
always converges with finite coefficients, and that this normal form is the Taylor expansion
of its probabilistic Böhm tree, in the non-extensional sense [Lev16, section 4.2.1]. To get a
better understanding of the shape of Taylor expansions of probabilistic λ-terms and their
stability under reduction, a possible first step is to investigate probabilistic coherence spaces
[DE11] on resource λ-terms: these would be the analogue, in the probabilistic setting, of
the finiteness structures ensuring the summability of normal forms in the non-deterministic
setting (see Subsection 8.3).

Apart from relating our version of quantitative semantics with pre-existing notions of
denotation for non-deterministic λ-calculi, we plan to investigate possible applications to
other proof theoretic or computational frameworks: namely, linear logic proof nets [Gir87]
and infinitary λ-calculus [KKSdV97].

The Taylor expansion of λ-terms can be generalized to linear logic proof nets: the case of
linear logic can even be considered as being more primitive, as it is directly related with the
structure of those denotational models that validate the Taylor expansion formula [Ehr16].
Proof nets, however, do not enjoy the uniformity property of λ-terms: no general coherence
relation is satisfied by the elements of the Taylor expansion of a proof net [Tas09, section
V.4.1]. This can be related with the non-injectivity of coherence semantics [TdF03]. In
particular, it is really unclear how Ehrhard and Regnier’s methods, or even Tsukada, Asada
and Ong’s could be transposed to this setting. By contrast, our recent work with Chouquet
[CA18] shows that our study of reduction under Taylor expansion can be adapted to proof
nets.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:7

It is also quite easy to extend the Taylor expansion operator to infinite λ-terms, at least
for those of Λ001, where only the argument position of applications is treated coinductively.
For infinite λ-terms, it is no longer the case that the support of Taylor expansion involves
resource λ-terms of bounded height only. Fortunately, we can still rely on the results
of subsection 6.2, where we only require a bound on the nesting of fired redexes: this
should allow us to give a counterpart, through Taylor expansion, of the strongly converging
reduction sequences of infinite λ-terms. More speculatively, another possible outcome is a
characterization of hereditarily head normalizable terms via their Taylor expansion, adapting
our previous work on normalizability with Pagani and Tasson [PTV16].

2. Technical preliminaries

We write:

• N for the semiring of natural numbers;
• P(X) for the powerset of a set X: X ∈ P(X) iff X ⊆ X;
• #X for the cardinal of a finite set X;
• !X for the set of finite multisets of elements of X;
• [x1, . . . , xn] ∈ !X for the multiset with elements x1, . . . , xn ∈ X (taking repetitions into

account), and then #[x1, . . . , xn] = n for its cardinality;
•
∏
i∈I Xi and

∑
i∈I Xi respectively for the product and sum of a family (Xi)i∈I of sets: in

particular
∑

i∈I Xi =
⋃
i∈I {i} ×Xi;

• XI =
∏
i∈I X for the set of applications from I to X or, equivalently, for the set of I

indexed families of elements of X.

Throughout the paper we will be led to consider various categories of sets and elements
associated with a single base set X: elements of X, subsets of X, finite multisets of elements
of X, etc. In order to help keeping track of those categories, we generally adopt the following
typographic conventions:

• we use small latin letters for the elements of X, say a, b, c ∈ X;
• for subsets of X, we use cursive capitals, say A,B, C ∈ P(X);
• for sets of subsets of X, we use Fraktur capitals, say A,B,C ⊆ P(X);
• for (possibly infinite) linear combinations of elements of X, we use small greek letters, say
α, β, γ ∈ SX , where S denotes some set of scalar coefficients;
• we transpose all of the above conventions to the set !X of finite multisets by overlining:

e.g., we write a = [a1, . . . , an] ∈ !X, A ⊆ !X or α ∈ S!X .

In the remaining of this section, we introduce basic mathematical content that will be
used throughout the paper.

2.1. Semirings and semimodules. A semiring3 S is the data of a carrier set S, together
with commutative monoids (S,+S, 0S) and (S, ·S, 1S) such that the multiplicative structure
distributes over the additive one, i.e. for all a, b, c ∈ S, a ·S 0S = 0S and a ·S (b +S c) =
a ·S b+S a ·S c.

3 The terminology of semirings is much less well established than that of rings, and one can find various
non equivalent definitions depending on the presence of units or on commutativity requirements. Following
Golan’s terminology [Gol13], our semirings are commutative semirings, which is required here because we
consider multilinear applications between modules.

9:8 Lionel Vaux Vol. 15:3

We will in general abuse notation and identify S with its carrier set S. We will
moreover omit the subscripts on symbols +, ·, 0 and 1, and denote multiplication by
concatenation: ab = a · b. We also use standard notations for finite sums and products in S,
e.g.

∑n
i=1 ai = a1 + · · ·+ an. For any semiring S, there is a unique semiring morphism (in

the obvious sense) from N to S: to n ∈ N we associate the sum
∑n

i=1 1 ∈ S that we also
write n ∈ S, although this morphism is not necessarily injective. Consider for instance the
semiring B of booleans, with B = {0, 1}, +B = max and ·B = ×.

We finish this subsection by recalling the definitions of semimodules and their morphisms.
A (left) S-semimodule M is the data of a commutative monoid (M, 0M,+M) together with
an external product .M : S×M→M subject to the following identities:

0.Mm = 0M 1.Mm = m

(a+ b).Mm = a.Mm+M b.Mm a.M(b.Mm) = ab.Mm

a.M0M = 0M a.M(m+M n) = a.Mm+M a.Mn

for all a, b ∈ S and m,n ∈ M. Again, we will in general abuse notation and identify M
with its carrier set M, and omit the subscripts on symbols +, . and 0.

Let M and N be S-semimodules. We say φ :M→N is linear if

φ

(
n∑
i=1

ai.mi

)
=

n∑
i=1

ai.φ(mi)

for all m1, . . . ,mn ∈M and all a1, . . . , an ∈ S. If moreoverM1, . . . ,Mn are S-semimodules,
we say ψ :M1 × · · · ×Mn → N is n-linear if it is linear in each component.

Given a set X, SX is the semimodule of formal linear combinations of elements of X:
a vector ξ ∈ SX is nothing but an X-indexed family of scalars (ξx)x∈X , that we may also

denote by
∑

x∈X ξx.x. The support |ξ| of a vector ξ ∈ SX is the set of elements of X having
a non-zero coefficient in ξ:

|ξ| := {x ∈ X ; ξx 6= 0}.
We write S[X] for the set of vectors with finite support:

S[X] :=
{
ξ ∈ SX ; |ξ| is finite

}
.

In particular S[X] is the semimodule freely generated by X, and is a subsemimodule of SX .

2.2. Finiteness spaces. A finiteness space [Ehr05] is a subsemimodule of SX obtained by
imposing a restriction on the support of vectors, as follows.

If X is a set, we call structure on X any set S ⊆ P(X), and then the dual structure is

S⊥ := {X ′ ⊆ X ; for all X ∈ S, X ∩ X ′ is finite}.
A relational finiteness space is a pair (X,F), where X is a set (the web of the finiteness
space) and F ⊆ P(X) is a structure on X such that F = F⊥⊥: F is then called a finiteness
structure, and we say X ⊆ X is finitary in (X,F) iff X ∈ F. The finiteness space generated
by (X,F), denoted by S〈X,F〉, or simply S〈F〉, is then the set of vectors on X with finitary
support: ξ ∈ S〈F〉 iff |ξ| ∈ F. By this definition, if ξ ∈ S〈F〉 and ξ′ ∈ S

〈
F⊥
〉

then the sum∑
x∈X ξxξ

′
x involves finitely many nonzero summands.

Finitary subsets are downwards closed for inclusion, and finite unions of finitary subsets
are finitary, hence S〈X,F〉 is a subsemimodule of SX . Moreover, the least (resp. greatest)

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:9

finiteness structure on X is the set Pf (X) of finite subsets of X (resp. the powerset P(X)),

generating the finiteness space S[X] (resp. SX).
We do not describe the whole category of finiteness spaces and linear-continuous maps

here. In particular we do not recall the details of the linear topology induced on S〈X,F〉 by
F: the reader may refer to Ehrhard’s original paper [Ehr05] or his survey presentation of
differential linear logic [Ehr16].

In the following, we focus on a very particular case, where the finiteness structure on
base types is trivial (i.e. there is no restriction on the support of vectors): linear-continuous
maps are then univocally generated by summable functions.

We started with the general notion of finiteness space nonetheless, because it provides
a good background for the general spirit of our contributions: we are interested in infinite
objects restricted so that, componentwise, all our constructions involve finite sums only.
Also, the semimodule of normalizable resource vectors introduced in section 8 is easier to
work with once its finiteness space structure is exposed.

2.3. Summable functions. Let
−→
ξ = (ξi)i∈I ∈

(
SX
)I

be a family of vectors: write ξi =∑
x∈X ξi,x.x. We say

−→
ξ is summable if, for all x ∈ X, {i ∈ I ; x ∈ |ξi|} is finite. In this case,

we define the sum
∑−→

ξ =
∑

i∈I ξi ∈ SX in the obvious, pointwise way:4(∑−→
ξ
)
x

:=
∑
i∈I

ξi,x.

Of course, any finite family of vectors is summable and, fixing an index set I and a

base set X, summable families in
(
SX
)I

form an S-semimodule, with operations defined
pointwise.

Moreover, if (ξi)i∈I ∈
(
SX
)I

is summable, then it follows from the inclusion |ai.ξi| ⊆ |ξi|
that (ai.ξi)i∈I is also summable for any family of scalars (ai)i∈I ∈ SI . Whenever the n-ary

function f : X1 × · · · × Xn → SY (i.e. the family (f(x1, . . . , xn))(x1,...,xn)∈X1×···×Xn) is

summable, we can thus define its extension 〈f〉 : SX1 × · · · × SXn → SY by

〈f〉(ξ1, . . . , ξn) :=
∑

(x1,...,xn)∈X1×···×Xn

ξ1,x1 · · · ξn,xn .f(x1, . . . , xn).

Note that we can consider f : X → SY as a Y ×X matrix: fy,x = f(x)y. Then if f is
summable and ξ ∈ SX , 〈f〉(ξ) is nothing but the application of the matrix f to the column
ξ: the summability hypothesis ensures that this is well defined.

It turns out that the linear extensions of summable functions are exactly the linear-
continuous maps, defined as follows:

Definition 2.1. Let ϕ : SX1 × · · · × SXn → SY . We say ϕ is n-linear-continuous if,

for all summable families
−→
ξ1 = (ξ1,i)i∈I1 ∈

(
SX1

)I1 , . . . ,−→ξn = (ξn,i)i∈In ∈
(
SXn

)In , the

4 The reader can check that the family
−→
ξ is summable iff the support set

{(i, x) ∈ I ×X ; ξi,x 6= 0}
is finitary in the relational arrow finiteness space (I × X,P(I) (P(X)) as defined by Ehrhard [Ehr05,

see in particular Lemma 3]. Then
∑−→

ξ is the result of applying the matrix (ξi,x)i∈I,x∈X to the vector

(1)i∈I ∈ S〈P(I)〉 = SI .

9:10 Lionel Vaux Vol. 15:3

family (ϕ(ξ1,i1 , . . . , ξn,in))(i1,...,in)∈I1×···×In is summable and, for all families of scalars, −→a1 =

(a1,i)i∈I1 ∈ SI1 , . . . ,−→an = (an,i)i∈In ∈ SIn , we have

ϕ

∑
i1∈I1

a1,i1 .ξ1,i1 , . . . ,
∑
in∈In

an,in .ξn,in

 =
∑

(i1,...,in)∈I1×···×In

a1,i1 · · · an,in .ϕ(ξ1,i1 , . . . , ξn,in).

Lemma 2.2. If ϕ : SX1 × · · · × SXn → SY is n-linear-continuous then its restriction
ϕ�X1×···×Xn is a summable n-ary function and ϕ = 〈ϕ�X1×···×Xn〉. Conversely, if f :
X1 × · · · ×Xn → SY is a summable n-ary function then 〈f〉 is n-linear-continuous.

Proof. It is possible to derive both implications from general results on finiteness spaces.5

We also sketch a direct proof.
The first implication follows directly from the definitions, observing that each diagonal

family of vectors (x)x∈Xi is obviously summable.

For the converse: let
−→
ξ1 = (ξ1,i)i∈I1 ∈

(
SX1

)I1 , . . . ,−→ξn = (ξn,i)i∈In ∈
(
SXn

)In be
summable families. We first prove that the family

(ξ1,i1,x1 · · · ξn,in,xn .f(x1, . . . , xn))(i1,...,in)∈I1×···×In,(x1,...,xn)∈X1×···×Xn

is summable. Fix y ∈ Y . If y ∈ |ξ1,i1,x1 · · · ξn,in,xn .f(x1, . . . , xn)| then in particular y ∈
|f(x1, . . . , xn)|: since f is summable, there are finitely many such tuples (x1, . . . , xn) ∈
X1 × · · · × Xn. For each such tuple (x1, . . . , xn) and each k ∈ {1, . . . , n}, since

−→
ξ k is

summable, there are finitely many ik’s such that ξk,ik,xk 6= 0. The necessary equation then
follows from the associativity of sums.

From now on, we will identify summable functions with their multilinear-continuous
extensions. Moreover, it should be clear that multilinear-continuous maps compose.

3. The resource λ-calculus

In this section, we recall the syntax and reduction of the resource λ-calculus, that was
introduced by Ehrhard and Regnier [ER08] as the multilinear fragment of the differential
λ-calculus [ER03]. The syntax is very similar to that of Boudol’s resource λ-calculus [Bou93]
but the intended meaning (multilinear approximations of λ-terms) as well as the dynamics
is fundamentally different.

We also recall the definitions of the multilinear counterparts of term substitution: partial
differentiation and multilinear substitution.

In the passing, we introduce various quantities on resource λ-terms (size, height, and
number and maximum depth of occurrences of a variable) and we state basic results that
will be used throughout the paper.

5 One might check that a map ϕ : SX1 × · · · × SXn → SY is n-linear-continuous in the sense of Definition
2.1 iff it is n-linear and continuous in the sense of the linear topology of finiteness spaces, observing that the
topology on SX = S〈P(X)〉 is the product topology (S being endowed with the discrete topology) [Ehr05,
Section 3]. Moreover, n-ary summable functions f : X1 × · · · ×Xn → SY are the elements of the finiteness
space S〈P(X1)⊗ · · · ⊗P(Xn)(P(Y)〉. As a general fact, the linear-continuous maps S〈F〉 → S〈G〉 are
exactly the linear extensions of vectors in S〈F(G〉. But linear-continuous maps from a tensor product of
finiteness spaces correspond with multilinear-hypocontinuous maps [Ehr05, Section 3] rather than the more
restrictive multilinear-continuous maps. In the very simple setting of summable functions, though, both
notions coincide, since SX is always locally linearly compact [Ehr05, Proposition 15].

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:11

Finally, we present the dynamics of the calculus: resource reduction and normalization.

3.1. Resource expressions. In the remaining of the paper, we suppose an infinite, count-
able set V of variables is fixed: we use small letters x, y, z to denote variables.

We define the sets ∆ of resource terms and !∆ of resource monomials by mutual
induction as follows:6

∆ 3 s, t, u, v, w ::= x | λx s | 〈s〉 t
!∆ 3 s, t, u, v, w ::= [] | [s] · t.

Terms are considered up to α-equivalence and monomials up to permutativity: we
write [t1, . . . , tn] for [t1] · (· · · · ([tn] · [])) and equate [t1, . . . , tn] with

[
tf(1), . . . , tf(n)

]
for all

permutation f of {1, . . . , n}, so that resource monomials coincide with finite multisets of
resource terms.7 We will then write s ·t for the multiset union of s and t, and #[s1, . . . , sn] :=
n.

We call resource expression any resource term or resource monomial and write (!)∆
for either ∆ or !∆: whenever we use this notation several times in the same context, all
occurrences consistently denote the same set. When we make a definition or a proof by
induction on resource expressions, we actually use a mutual induction on resource terms
and monomials.

Definition 3.1. We define by induction over a resource expression e ∈ (!)∆, its size s(e) ∈ N
and its height h(e) ∈ N:

s(x) := 1 h(x) := 1

s(λx s) := 1 + s(s) h(λx s) := 1 + h(s)

s
(
〈s〉 t

)
:= 1 + s(s) + s

(
t
)

h
(
〈s〉 t

)
:= max

{
h(s), 1 + h

(
t
)}

s([s1, . . . , sn]) :=

n∑
i=1

s(si) h([s1, . . . , sn]) := max {h(si) ; 1 ≤ i ≤ n}.

It should be clear that, for all e ∈ (!)∆, h(e) ≤ s(e). Also observe that s(s) > 0
and h(s) > 0 for all s ∈ ∆, and s(s) ≥ #s for all s ∈ !∆. In the application case, we
chose not to increment the height of the function: this is not crucial but it will allow to
simplify some of our computations in Section 6. In particular, in the case of a redex we have
h
(
〈λx s〉 t

)
= 1 + max

{
h(s),h

(
t
)}

.
For all resource expression e, we write fv(e) for the set of its free variables. In the

remaining of the paper, we will often have to prove that some set E ⊆ (!)∆ is finite: we
will generally use the fact that E is finite iff both {s(e) ; e ∈ E} and fv(E) :=

⋃
e∈E fv(e) are

finite.
Besides the size and height of an expression, we will also need finer grained information

on occurrences of variables, providing a quantitative counterpart to the set of free variables:

6 We use a self explanatory if not standard variant of BNF notation for introducing syntactic objects:

!∆ 3 s, t, u, v, w ::= [] | [s] · t
means that we define the set !∆ of resource monomials as that inductively generated by the empty monomial,
and addition of a term to a monomial, and that we will denote resource monomials using overlined letters
among s, t, u, v, w, possibly with sub- and superscripts.

7 Resource monomials are often called bags, bunches or poly-terms in the literature, but we prefer to
strengthen the analogy with power series here.

9:12 Lionel Vaux Vol. 15:3

Definition 3.2. We define by induction over resource expressions the number nx(e) ∈ N
of occurrences and the set dx(e) ∈ N of occurrence depths of a variable x in e ∈ (!)∆:

nx(y) :=

{
1 if x = y

0 otherwise

nx(λy s) := nx(s) (choosing y 6= x)

nx
(
〈s〉 t

)
:= nx(s) + nx

(
t
)

nx([s1, . . . , sn]) :=

n∑
i=1

nx(si)

and

dx(y) :=

{
{1} if x = y

∅ otherwise

dx(λy s) := {d+ 1 ; d ∈ dx(s)} (choosing y 6= x)
dx([s1, . . . , sn]) :=

⋃n
i=1 dx(si)

dx
(
〈s〉 t

)
:= dx(s) ∪

{
d+ 1 ; d ∈ dx

(
t
)}
.

We then write mdx(e) := max dx(e) for the maximal depth of occurrences of x in e.

Again, it should be clear that nx(e) ≤ s(e) and mdx(e) ≤ h(e). Moreover, x ∈ fv(e) iff
nx(e) 6= 0 iff dx(e) 6= ∅ iff mdx(e) 6= 0.

3.2. Partial derivatives. In the resource λ-calculus, the substitution e[s/x] of a term s
for a variable x in e admits a linear counterpart: this operator was initially introduced in
the differential λ-calculus [ER03] in the form of a partial differentiation operation, reflecting
the interpretation of λ-terms as analytic maps in quantitative semantics.

Partial differentiation enforces the introduction of formal finite sums of resource ex-
pressions: these are the actual objects of the resource λ-calculus, and in particular the
dynamics will act on finite sums of terms rather than on simple resource terms (see Sub-
section 3.4). We extend all syntactic constructs to finite sums of resource expressions by
linearity: if σ =

∑n
i=1 si ∈ N[∆] and τ =

∑p
j=1 tj ∈ N[!∆], we set λxσ :=

∑n
i=1 λx si,

〈σ〉 τ :=
∑n

i=1

∑p
j=1 〈si〉 tj and [σ] · τ :=

∑n
i=1

∑p
j=1 [si] · tj .

This linearity of syntactic constructs will be generalized to vectors of resource expressions
in the next section. For now, up to linearity, it is already possible to consider the substitution
e[σ/x] of a finite sum of terms σ for a variable term x in an expression e: in particular e[0/x] =
0 whenever x ∈ fv(e). This is in turn extended to sums by linearity: ε[σ/x] =

∑n
i=1 ei[σ/x]

when ε =
∑n

i=1 ei. Observe that this is not linear in σ, because x may occur several times
in e: for instance, with a monomial of degree 2, [x, x][t+ u/x] = [t, t] + [t, u] + [u, t] + [u, u].

Partial differentiation is then defined as follows:

Definition 3.3. For all u ∈ ∆ and x ∈ V, we define the partial derivative ∂e
∂x · u ∈ N[(!)∆]

of e ∈ (!)∆, by induction on e:

∂y

∂x
· u :=

{
u if x = y

0 otherwise

∂λy s

∂x
· u := λy

(
∂s

∂x
· u
)

(choosing y 6∈ {x} ∪ fv(u))

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:13

∂〈s〉 t
∂x

· u :=

〈
∂s

∂x
· u
〉
t+ 〈s〉

(
∂t

∂x
· u
)

∂ [s1, . . . , sn]

∂x
· u :=

n∑
i=1

[
s1, . . . ,

∂si
∂x
· u, . . . , sn

]
.

Partial differentiation is extended to finite sums of expressions by bilinearity: if ε =∑n
i=1 ei ∈ N[(!)∆] and σ =

∑p
j=1 sj ∈ N[∆], we set

∂ε

∂x
· σ =

n∑
i=1

p∑
j=1

∂ei
∂x
· sj .

Lemma 3.4 [ER08, Lemma 2]. If x 6∈ fv(u) then

∂

∂y

(
∂e

∂x
· t
)
· u =

∂

∂x

(
∂e

∂y
· u
)
· t+

∂e

∂x
·
(
∂t

∂y
· u
)
.

If moreover y 6∈ fv(t), we obtain a version of Schwarz’s theorem on the symmetry of
second derivatives:

∂

∂y

(
∂e

∂x
· t
)
· u =

∂

∂x

(
∂e

∂y
· u
)
· t.

If x 6∈ fv(si) for all i ∈ {1, . . . , n}, we write

∂ne

∂xn
· (s1, . . . , sn) :=

∂

∂x

(
· · · ∂e

∂x
· s1 · · ·

)
· sn.

More generally, we write

∂ne

∂xn
· (s1, . . . , sn) :=

(
∂ne[y/x]

∂yn
· (s1, . . . , sn)

)
[x/y]

for any y 6∈
⋃n
i=1 fv(si)∪ (fv(e)\{x}): it should be clear that this definition does not depend

on the choice of such a variable y. By the previous lemma,

∂ne

∂xn
· (s1, . . . , sn) =

∂ne

∂xn
·
(
sf(1), . . . , sf(n)

)
for any permutation f of {1, . . . , n} and we will thus write

∂ne

∂xn
· s :=

∂ne

∂xn
· (s1, . . . , sn)

whenever s = [s1, . . . , sn].
An alternative, more direct presentation of iterated partial derivatives is as follows.

Suppose nx(e) = m, and write x1, . . . , xm for the occurrences of x in e. Then:

∂ne

∂xn
· [s1, . . . , sn] =

∑
f :{1,...,n}→{1,...,m}

f injective

e
[
s1, . . . , sn/xf(1), . . . , xf(n)

]
More formally, we obtain:

9:14 Lionel Vaux Vol. 15:3

Lemma 3.5. For all monomial u = [u1, . . . , un] ∈ !∆ and all variable x ∈ V:8

∂ny

∂xn
· u =

y if n = 0

u1 if x = y and n = 1

0 otherwise

∂nλy s

∂xn
· u = λy

(
∂ns

∂xn
· u
)

(choosing y 6∈ {x} ∪ fv(u))

∂n〈s〉 t
∂xn

· u =
∑

(I,J) partition of {1,...,n}

〈
∂#Is

∂x#I
· uI
〉
∂#J t

∂x#J
· uJ

∂n[s1, . . . , sk]

∂xn
· u =

∑
(I1,...,Ik) partition of {1,...,n}

[
∂#I1s1

∂x#I1
· uI1 . . . ,

∂#Iksk
∂x#Ik

· uIk
]

where uI denotes
[
ui1 , . . . , uip

]
whenever I = {i1, . . . , ip} with p = #I.

Proof. Easy, by induction on n.

Lemma 3.6. For all e ∈ (!)∆, s ∈ !∆, x 6= y ∈ V and e′ ∈
∣∣ ∂ne
∂xn · s

∣∣ with n = #s, moreover
assuming that x 6∈ fv(s):

• nx(e) ≥ n and nx(e′) = nx(e)− n;
• ny(e

′) = ny(e) + ny(s);
• dx(e′) ⊆ dx(e);
• dy(e) ⊆ dy(e

′) ⊆ dy(e) ∪ {d+ d′ − 1 ; d ∈ dx(e), d′ ∈ dy(s)};
• s(e′) = s(e) + s(s)− n;
• h(e) ≤ h(e′) ≤ max {h(e),mdx(e) + h(s)− 1}.

Proof. Each result is easily established by induction on e, using the previous lemma to
enable the induction.

3.3. Multilinear substitution. Recall that Taylor expansion involves iterated derivatives
at 0. If n = #s and x 6∈ fv(s) we write

∂xe · s :=

(
∂ne

∂xn
· s
)

[0/x].

Observe that by Lemma 3.6: if n > nx(e) then ∂ne
∂xn · s = 0; and if n < nx(e) then x ∈ fv(e′)

for all e′ ∈
∣∣ ∂ne
∂xn · s

∣∣, and then e′[0/x] = 0. In other words,

∂xe · s =

{
∂ne
∂xn · s if n = nx(e)

0 otherwise
.

We say ∂xe · s is the n-linear substitution of s for x in e. More generally, we write

∂xe · s := (∂ye[y/x] · s)[x/y]

for any y 6∈ fv(s) ∪ (fv(e) \ x) and it should again be clear that this definition does not
depend of the choice of such a y. By a straightforward application of Lemma 3.6, we obtain:

8 In this definition and in the remaining of the paper, we say a tuple (I1, . . . , In) ∈ P(I)n is a partition of
I if I =

⋃n
i=1 Ik, and the Ik’s are pairwise disjoint. We do not require the Ik’s to be nonempty. Hence a

partition of I into a n-tuple is uniquely defined by a function from I to {1, . . . , n}.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:15

Lemma 3.7. For all e ∈ (!)∆, s ∈ !∆, x 6= y ∈ V and e′ ∈ |∂xe · s|, assuming x 6∈ fv(s):

• nx(e) = #s and nx(e′) = 0;
• ny(e

′) = ny(e) + ny(s);
• dx(e′) = ∅;
• dy(e) ⊆ dy(e

′) ⊆ dy(e) ∪ {d+ d′ − 1 ; d ∈ dx(e), d′ ∈ dy(s)};
• s(e′) = s(e) + s(s)−#s;
• h(e) ≤ h(e′) ≤ max {h(e),mdx(e) + h(s)− 1}.

In particular, fv(e′) = (fv(e) \ {x}) ∪ fv(s), and max {s(e), s(s)} ≤ s(e′) ≤ s(e) + s(s).
Again, we can give a direct presentation of multilinear substitution. Suppose nx(e) = m,

and write x1, . . . , xm for the occurrences of x in e. Then:

∂xe · [s1, . . . , sn] =
∑

f :{1,...,n}→{1,...,m}
f bijective

e
[
s1, . . . , sn/xf(1), . . . , xf(n)

]
.

More formally, as a consequence of Lemma 3.5:

Lemma 3.8. For all monomial u = [u1, . . . , un] ∈ !∆ and all variable x ∈ V:

∂xy · u =

y if y 6= x and n = 0

u1 if y = x and n = 1

0 otherwise

∂xλy s · u = λy (∂xs · u) (choosing y 6∈ {x} ∪ fv(u))

∂x〈s〉 t · u =
∑

(I,J) partition of {1,...,n}
s.t. #I=nx(s) and #J=nx(t)

〈∂xs · uI〉 ∂xt · uJ

∂x[s1, . . . , sk] · u =
∑

(I1,...,Ik) partition of {1,...,n}
s.t. ∀j, #Ij=nx(sj)

[∂xs1 · uI1 , . . . , ∂xsk · uIk]

where the conditions on cardinalities of subsets of {1, . . . , n} in the application and monomial
cases may be omitted.

A similar result is the commutation of multilinear substitutions:

Lemma 3.9. If x 6∈ fv(u) then:

∂y
(
∂xe · t

)
· u =

∑
(I,J) partition of {1,...,#u}

s.t. #I=nx(e) and #J=nx(t)

∂x(∂ye · uI) ·
(
∂yt · uJ

)
.

Proof. Write n = #t and p = #u. It is sufficient to prove

∂p

∂yp

(
∂ne

∂xn
· t
)
· u =

∑
(I,J) partition of {1,...,p}

∂n

∂xn

(
∂#Is

∂y#I
· uI
)
·
(
∂#J t

∂y#J
· uJ

)
by induction on n and p, using Lemma 3.4.

9:16 Lionel Vaux Vol. 15:3

3.4. Resource reduction. If → is a reduction relation, we will write →? (resp. →+; →∗)
for its reflexive (resp. transitive; reflexive and transitive) closure.

In the resource λ-calculus, a redex is a term of the form 〈λx t〉u ∈ ∆ and its reduct is
∂xt · u ∈ N[∆]. The resource reduction →∂ is then the contextual closure of this reduction
step on finite sums of resource expressions. More precisely:

Definition 3.10. We define the resource reduction relation→∂ ⊆ (!)∆×N[(!)∆] inductively
as follows:

• 〈λx s〉 t→∂ ∂xs · t for all s ∈ ∆ and t ∈ !∆;
• λx s→∂ λxσ

′ as soon as s→∂ σ
′;

• 〈s〉 t→∂ 〈σ′〉 t as soon as s→∂ σ
′;

• 〈s〉 t→∂ 〈s〉 τ ′ as soon as t→∂ τ
′;

• [s] · t→∂ [σ′] · t as soon as s→∂ σ
′.

We extend this reduction to finite sums of resource expressions: write ε→∂ ε
′ if ε =

∑n
i=0 ei

and ε′ =
∑n

i=0 ε
′
i with e0 →∂ ε

′
0 and, for all i ∈ {1, . . . , n}, ei →?

∂ ε
′
i.

Observe that we allow for parallel reduction of any nonzero number of summands in a
finite sum. This reduction is particularly well behaved. In particular, it is confluent in a
strong sense:

Lemma 3.11. For all ε, ε0, ε1 ∈ N[(!)∆], if ε→∂ ε0 and ε→∂ ε1 then there is ε′ ∈ N[(!)∆]
such that ε0 →?

∂ ε
′ and ε1 →?

∂ ε
′.

Proof. The proof follows a well-trodden path for proving confluence.
One first proves by induction on s that if s→∂ σ

′ then ∂xs · t→?
∂ ∂xσ

′ · t, and if t→∂ τ
′

then ∂xs · t→?
∂ ∂xs · τ ′. Note that the reflexive closure is made necessary by the possibility

that ∂xs · t = 0, and the transitive closure is not needed because there is no duplication of
the redexes of t in the summands of the multilinear substitution ∂xs · t.

One then proves that if e →∂ ε0 and e →∂ ε1 then there is ε′ ∈ N[(!)∆] such that
ε0 →?

∂ ε
′ and ε1 →?

∂ ε
′. The proof is straightforward, by induction on the pair of reductions

e→∂ ε0 and e→∂ ε1, using the previous result in case e is a redex which is reduced in ε0
but not in ε1 (or vice versa).

In other words, →?
∂ enjoys the diamond property.9 Moreover, the effect of reduction

on the size of terms is very regular. First introduce some useful notation: write e �∂ e′ if
e→∂ ε

′ with e′ ∈ |ε′|.
Lemma 3.12. Let e �∂ e′. Then fv(e′) = fv(e), and s(e′) + 2 ≤ s(e) ≤ 2s(e′) + 2.

Proof. By induction on the reduction e →∂ ε
′ with e′ ∈ |ε′|. The inductive contextuality

cases are easy, and we only detail the base case, i.e. e = 〈λx t〉u and ε′ = ∂xt · u.
Write n = nx(t). The result then follows from Lemma 3.7, observing that s(e′) =

s(t) + s(u)− n = s(e)− 2− n and n ≤ s(u) ≤ s(e′).

We will write ≥∂ (resp. >∂) for �∗∂ (resp. �+
∂). Observe that e ≥∂ e′ (resp. e >∂ e

′) iff

there is ε′ ∈ N[(!)∆] such that e′ ∈ |ε′| and e→∗∂ ε′ (resp. e→+
∂ ε
′). Moreover, {e′ ; e ≥∂ e′}

is always finite and >∂ defines a well-founded strict partial order. A direct consequence is
that →∂ always converges to a unique normal form:

9 This strong confluence result was not mentioned in Ehrhard and Regnier’s papers about resource
λ-calculus [ER08, ER06] but they established a very similar result for differential nets [ER05, Section 4]:
Lemma 3.11 can be understood as a reformulation of the latter in the setting of resource calculus.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:17

Lemma 3.13. The reduction →∂ is confluent and strongly normalizing. Moreover, for all
ε ∈ N[(!)∆], the set {ε′ ; ε→∗∂ ε′} is finite.

Proof. Confluence is a consequence of Lemma 3.11. By Lemma 3.12, the transitive closure
�+
∂ is a well-founded strict partial order. Observe that the elements of N[(!)∆] can be

considered as finite multisets of resource expressions: then →+
∂ is included in the multiset

ordering induced by �+
∂ , and it follows that →+

∂ defines a well-founded strict partial order
on N[(!)∆], i.e. →∂ is strongly normalizing.

The final property follows from strong normalizability applying König’s lemma to the
tree of possible reductions, observing that each ε has finitely many →∂-reducts.

If ε ∈ N[(!)∆], we then write NF(ε) for the unique sum of normal resource expressions
such that ε→∗∂ NF(ε). A consequence of the previous lemma is that any reduction discipline
reaches this normal form:

Corollary 3.14. Let → ⊆ N[(!)∆]×N[(!)∆] be such that → ⊆→∗∂. Moreover assume that,
for all non normal ε ∈ N[(!)∆] there is ε′ 6= ε such that ε → ε′. Then ε →∗ NF(ε) for all
ε ∈ N[(!)∆].

4. Vectors of resource expressions and Taylor expansion of algebraic
λ-terms

4.1. Resource vectors. A vector σ =
∑

s∈∆ σs.s of resource terms will be called a term
vector whenever its set of free variables fv(σ) :=

⋃
s∈|σ| fv(s) is finite. Similarly, we will call

monomial vector any vector of resource monomials whose set of free variables is finite. We
will abuse notation and write S∆ for the set of term vectors and S!∆ for the set of monomial
vectors.10

A resource vector will be any of a term vector or a monomial vector, and we will write
S(!)∆ for either S∆ or S!∆ : as for resource expressions, whenever we use this notation several
times in the same context, all occurrences consistently denote the same set.

The syntactic constructs are extended to resource vectors by linearity: for all σ ∈ S∆

and σ, τ ∈ S!∆ , we set

λxσ :=
∑
s∈∆

σs.λx s,

〈σ〉 τ :=
∑

s∈∆,t∈!∆

σsτ t.〈s〉 t,

and [σ1, . . . , σn] :=
∑

s1,...,sn∈∆

(σ1)s1 · · · (σn)sn .[s1, . . . , sn].

This poses no problem for finite vectors: e.g., if |σ| is finite then finitely many of the vectors
σs.λx s are non-zero, hence the sum is finite. In the general case, however, we actually

10 The restriction to vectors with finitely many free variables is purely technical. For instance, it allows
us to assume that a sum of abstractions σ =

∑
i∈I λxi si can always use a common abstracted variable:

σ =
∑
i∈I λx (si[x/xi]), with x 6∈ ∪i∈Ifv(λxi si). Working without this restriction would only lead to more

contorted statements and tedious bookkeeping: consider, e.g., what would happen to the definition of the
substitution of a term vector for a variable (Definition 4.4), especially the abstraction case.

9:18 Lionel Vaux Vol. 15:3

need to prove that the above sums are well defined: the constructors of the calculus define
summable functions, which thus extend to multilinear-continuous maps.11

Lemma 4.1. The following families of vectors are summable:

(λx s)s∈∆ ,
(
〈s〉 t

)
s∈∆,t∈!∆

, ([s])s∈∆ and
(
s · t
)
s,t∈!∆

.

Proof. The proof is direct, but we detail it if only to make the requirements explicit.
For all u ∈ ∆ there is at most one s such that u ∈ |λx s| (in which case u = λx s) and

at most one pair (s, t) such that u ∈
∣∣〈s〉 t∣∣ (in which case u = 〈s〉 t).

For all u ∈ !∆ there is at most one s such that u ∈ |[s]| (in which case u = [s]), and
there are finitely many s and t such that u ∈

∣∣s · t∣∣ (those such that u = s · t).

For each term vector σ, we then write σn for the monomial vector

[

n times︷ ︸︸ ︷
σ, . . . , σ].

4.2. Partial differentiation of resource vectors. We can extend partial derivatives to
vectors by linear-continuity (recall that, via the unique semiring morphism from N to S, we

can consider that N[(!)∆] ⊆ S(!)∆).

Lemma 4.2. The function

(!)∆ × !∆ → S(!)∆

(e, [s1, . . . , sn]) 7→ ∂ne

∂xn
· [s1, . . . , sn]

is summable.

Proof. Let e′ ∈ (!)∆ and assume that e′ ∈
∣∣ ∂ne
∂xn · s

∣∣ with #s = n. By Lemma 3.6, fv(e) ⊆
fv(e′) ∪ {x}, fv(s) ⊆ fv(e′), s(e) ≤ s(e′) and s(s) ≤ s(e′): e′ being fixed, there are finitely
many (e, s) satisfying these constraints.

The characterization of iterated partial derivatives given in Lemma 3.5 extends directly
to resource vectors, by the linear-continuity of syntactic constructs and partial derivatives.
For instance, given term vectors σ, ρ1, . . . , ρn ∈ S∆ and a monomial vector τ ∈ S!∆ , we
obtain:

∂n〈σ〉 τ
∂xn

· [ρ1, . . . , ρn] =
∑

(I,J) partition of {1,...,n}

〈
∂#Iσ

∂x#I
· ρI
〉
∂#Jτ

∂x#J
· ρJ .

Now we can consider iterated differentiation along a fixed term vector ρ: ∂nε
∂xn ·ρ

n. We obtain:

11 The one-to-one correspondence between summable n-ary functions and multilinear-continuous maps
was established for semimodules of the form SX , i.e. the semimodules of all vectors on a fixed set. Due to the
restriction we put on free variables, S(!)∆ is not of this form: it should rather be written

⋃
V ∈Pf (V) S

(!)∆V

where (!)∆V := {e ∈ (!)∆ ; fv(e) ⊆ V }. So when we say a function is multilinear-continuous on S(!)∆ , we

actually mean that its restriction to each S(!)∆V with V ∈ Pf (V) is multilinear-continuous. In the present
case, keeping this precision implicit is quite innocuous, but we will be more careful when considering the
restriction to bounded vectors in Subsection 6.4, and to normalizable vectors in Section 8.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:19

Lemma 4.3. For all σ, τ1, . . . , τn, ρ ∈ S∆ and all τ ∈ S!∆,

∂k〈σ〉 τ
∂xk

· ρk =

k∑
l=0

[
k

l, k − l

]〈
∂lσ

∂xl
· ρl
〉
∂k−lτ

∂xk−l
· ρk−l and

∂k[τ1, . . . , τn]

∂xk
· ρk =

∑
k1,...,kn∈N
k1+···+kn=k

[
k

k1, . . . , kn

][
∂k1τ1

∂xk1
· ρk1 , . . . ,

∂knτn
∂xkn

· ρkn
]
.

Proof. First recall that, if k =
∑n

i=1 ki, the multinomial coefficient
[

k
k1,...,kn

]
:= k!∏n

i=1 ki!
is

nothing but the number of partitions of {1, . . . , k} into n sets I1, . . . , In such that #Ij = kj
for 1 ≤ j ≤ n [DLMF, §26.4]. Then both results derive directly from Lemma 3.5.

4.3. Substitutions. Since |∂xe · s| ⊆
∣∣ ∂ne
∂xn · s

∣∣, multilinear substitution also defines a sum-
mable binary function and we will write

∂xε · σ :=
∑

e∈(!)∆,s∈!∆

εeσs.∂xe · s.

By contrast with partial derivatives, the usual substitution is not linear, so the substitu-
tion of resource vectors must be defined directly.

Definition 4.4. We define by induction over resource expressions the substitution e[σ/x] ∈
S(!)∆ of σ ∈ S∆ for a variable x in e ∈ (!)∆:

x[σ/x] :=

{
σ if x = y

y otherwise

(λy s)[σ/x] := λy s[σ/x] (choosing y 6∈ fv(σ) ∪ {x})
[s1, . . . , sn][σ/x] := [s1[σ/x], . . . , sn[σ/x]](

〈s〉 t
)
[σ/x] := 〈s[σ/x]〉 t[σ/x]

Lemma 4.5. For all e ∈ (!)∆, x ∈ V and σ ∈ S∆:

• if σ ∈ ∆ then e[σ/x] ∈ ∆;
• if σ ∈ S[∆] then e[σ/x] ∈ S[(!)∆];
• if x 6∈ fv(e) then e[σ/x] = e;
• if x ∈ fv(e) then e[0/x] = 0;
• for all e′ ∈ |e[σ/x]|, fv(e) \ {x} ⊆ fv(e′) ⊆ (fv(e) \ {x}) ∪ fv(σ) and s(e′) ≥ s(e).

Proof. Each statement follows easily by induction on e.

A consequence of the last item is that the function

(!)∆ → S(!)∆

e 7→ e[σ/x]

is summable: we thus write
ε[σ/x] :=

∑
e∈S(!)∆

εe.e[σ/x].

9:20 Lionel Vaux Vol. 15:3

4.4. Promotion. Observe that the family (σn)n∈N is summable because the supports |σn|
for n ∈ N are pairwise disjoint. We then define the promotion of σ as σ! :=

∑
n∈N

1
n! .σ

n.
For this definition to make sense, we need inverses of natural numbers to be available:

we say S has fractions if every n ∈ N \ {0} admits a multiplicative inverse in S. This
inverse is necessarily unique and we write it 1

n . Observe that S has fractions iff there is
a semiring morphism from the semiring Q+ of non-negative rational numbers to S, and
then this morphism is unique, but not necessarily injective: consider the semiring B of
booleans. Semifields, i.e. commutative semirings in which every non-zero element admits
an inverse, obviously have fractions: Q+ and B are actually semifields. In the following,
we will keep this requirement implicit: whenever we use quotients by natural numbers, it
means we assume S has fractions.

Lemma 4.6. For all σ and τ ∈ S∆, σ![τ/x] = (σ[τ/x])!.

Proof. By the linear-continuity of ε 7→ ε[σ/x], it is sufficient to prove that

σn[τ/x] = (σ[τ/x])n

which follows from the n-linear-continuity of (σ1, . . . , σn) 7→ [σ1, . . . , σn] and the definition
of substitution.

Lemma 4.7. The following identities hold:

∂xx · ρ! = ρ

∂xy · ρ! = y

∂xλy σ · ρ! = λy
(
∂xσ · ρ!

)
(choosing y 6∈ {x} ∪ fv(ρ))

∂x〈σ〉 τ · ρ! =
〈
∂xσ · ρ!

〉
∂xτ · ρ!

∂x[σ1, . . . , σn] · ρ! =
[
∂xσ1 · ρ!, . . . , ∂xσn · ρ!

]
Proof. Since each syntactic constructor is multilinear-continuous, it is sufficient to consider
the case of ∂xe · ρ! for a resource expression e ∈ (!)∆. First observe that, if k = nx(e) then

∂xe · ρ! = 1
k! .

∂ke
∂xk
· ρk. In particular the case of variables is straightforward.

The case of abstractions follows directly, since ∂kλx s
∂xk

· ρk = λx
(
∂ks
∂xk
· ρk
)

.

If e = 〈s〉 t, write l = nx(s) and m = nx
(
t
)
. It follows from Lemma 4.3 that ∂xe · ρk =[

k
l,m

]
.
〈
∂xs · ρl

〉
∂xt · ρm and then 1

k! .∂xe · ρ
k =

〈
1
l! .∂xs · ρ

l
〉

1
m! .∂xt · ρ

m.

Similarly, if e = [t1, . . . , tn], write ki = nx(ti) for all i ∈ {1, . . . , n}. It follows from

Lemma 4.3 that ∂xe · ρk =
[

k
k1,...,kn

]
.
[
∂xt1 · ρk1 , . . . , ∂xtn · ρkn

]
and then 1

k! .∂xe · ρ
k =[

1
k1!∂xt1 · ρ

k1 , . . . , 1
kn!∂xtn · ρ

kn
]
.

Lemma 4.8. For all ε ∈ S(!)∆ an σ ∈ S∆,

ε[σ/x] = ∂xε · σ!.

Proof. By the linear-continuity of ε 7→ ∂xε · σ! and ε 7→ ε[σ/x], it is sufficient to show that

e[σ/x] = ∂xe · σ!

for all resource expression e. The proof is then by induction on e, using the previous Lemma
in each case.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:21

By Lemma 4.6, we thus obtain

∂xσ
! · τ ! =

(
∂xσ · τ !

)!

which can be seen as a counterpart of the functoriality of promotion in linear logic. To
our knowledge it is the first published proof of such a result for resource vectors. This will
enable us to prove the commutation of Taylor expansion and substitution (Lemma 4.10),
another unsurprising yet non-trivial result.

4.5. Taylor expansion of algebraic λ-terms. Since resource vectors form a module,
there is no reason to restrict the source language of Taylor expansion to the pure λ-calculus:
we can consider formal finite linear combinations of λ-terms.

We will thus consider the terms given by the following grammar:

ΣS 3 M,N,P ::= x | λxM | (M)N | 0 | a.M |M +N

where a ranges in S.12 For now, terms are considered up to the usual α-equivalence only:
the null term 0, scalar multiplication a.M and sum of terms M +N are purely syntactic
constructs.

Definition 4.9. We define the Taylor expansion τ(M) ∈ S(!)∆ of a term M ∈ ΣS inductively
as follows:

τ(x) := x τ(0) := 0

τ(λxM) := λx τ(M) τ(a.M) := a.τ(M)

τ((M)N) := 〈τ(M)〉 τ(N)! τ(M +N) := τ(M) + τ(N).

Lemma 4.10. For all M,N ∈ ΣS, and all variable x,

τ(M [N/x]) = ∂xτ(M) · τ(N)! = τ(M)[τ(N)/x].

Proof. By induction on M , using Lemmas 4.7 and 4.8.

Let us insist on the fact that, despite its very simple and unsurprising statement, the
previous lemma relies on the entire technical development of the previous subsections. Again,
to our knowledge, it is the first proof that Taylor expansion commutes with substitution, in
an untyped and non-uniform setting, without any additional assumption.

By contrast, one can forget everything about the semiring of coefficients and consider
only the support of Taylor expansion. Recall that B denotes the semiring of booleans. Then
we can consider that B(!)∆ = P((!)∆) and write, e.g., λxS = {λx s ; s ∈ S} for all set S of
resource terms.

12We follow Krivine’s convention [Kri90], by writing (M)N for the application of term M to term N .
We more generally write (M)N1 · · ·Nk for (· · · (M)N1 · · ·)Nk. Moreover, among term constructors, we give
sums the lowest priority so that (M)N + P should be read as ((M)N) + P rather than (M) (N + P).

9:22 Lionel Vaux Vol. 15:3

Definition 4.11. The Taylor support T (M) ⊆ ∆ of M ∈ ΣS is defined inductively as
follows:13

T (x) := {x} T (0) := ∅
T (λxM) := λx T (M) T (a.M) := T (M)

T ((M)N) := 〈T (M)〉 T (N)! T (M +N) := T (M) ∪ T (N).

It should be clear that |τ(M)| ⊆ T (M), but the inclusion might be strict, if only because
T (0.M) = T (M). By contrast with the technicality of the previous subsection, the following
qualitative analogue of Lemma 4.10 is easily established:

Lemma 4.12. For all M,N ∈ ΣS, and all variable x,

T (M [N/x]) = ∂xT (M) · T (N)! = T (M)[T (N)/x].

Proof. The qualitative version of Lemma 4.7 is straightforward. The result follows by
induction on M .

The restriction of T to the set Λ of pure λ-terms was used by Ehrhard and Regnier
[ER08] in their study of Taylor expansion. They showed that if M ∈ Λ then T (M) is
uniform: all the resource terms in T (M) have the same outermost syntactic construct and
this property is preserved inductively on subterms. They moreover proved that τ(M), and
in fact M itself, is entirely characterized by T (M): in this case, τ(M) =

∑
s∈T (M)

1
m(s)s

where m(s) is an integer coefficient depending only on s. Of course this property fails in the
non uniform setting of ΣS.

Now, let us consider the equivalence induced on terms by Taylor expansion: write
M 'τ N if τ(M) = τ(N).

Lemma 4.13. The following equations hold:

0 +M 'τ M M +N 'τ N +M (M +N) + P 'τ M + (N + P)

0.M 'τ 0 1.M 'τ M a.M + b.M 'τ (a+ b).M

a.0 'τ 0 a.(b.M) 'τ (ab).M a.(M +N) 'τ a.M + a.N

λx 0 'τ 0 λx (a.M) 'τ a.λxM λx (M +N) 'τ λxM + λxN

(0)P 'τ 0 (a.M)P 'τ a.(M)P (M +N)P 'τ (M)P + (N)P

Moreover, 'τ is compatible with syntactic constructs: if M 'τ M ′ then λxM 'τ λxM ′,
(M)N 'τ (M ′)N , (N)M 'τ (N)M ′, a.M 'τ a.M ′, M +N 'τ M ′ +N and N +M 'τ
N +M ′.

Proof. Up to Taylor expansion, these equations reflect the fact that S(!)∆ forms a semimodule
(first three lines), and that all the constructions used in the definition of τ are multilinear-
continuous, except for promotion (last two lines). Compatibility follows from the inductive
definition of τ .

13 One might be tempted to make an exception in case a = 0 and set T (0.M) = ∅ but this would
only complicate the definition and further developments for little benefit: what about T (a.M + b.M) (resp.
T (a.b.M)) in a semiring where a 6= 0, b 6= 0 and a+ b = 0 (resp. ab = 0)? If we try and cope with those too,
we are led to make T invariant under the equations of S-module, which is precisely what we want to avoid
here: see the case of τ in the remaining of the present section.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:23

Let us write 'v for the least compatible equivalence relation containing the equations
of the previous lemma, and call vector λ-terms the elements of the quotient ΣS/'v: these
are the terms of the previously studied algebraic λ-calculus [Vau09, Alb14].14

It is clear that ΣS/'v forms a S-semimodule. In fact, one can show [Vau09] that ΣS/'v

is freely generated by the 'v-equivalence classes of base terms, i.e. those described by the
following grammar:

Σb
S 3 B ::= x | λxB | (B)M.

Hence we could write ΣS/'v = S
[
Σb
S/'v

]
.

Notice however that Taylor expansion is not injective on vector λ-terms in general.

Example 4.14. We can consider that ΣB/'v = Pf

(
Σb
B/'v

)
and τ(M) ⊆ ∆ for all M ∈ ΣB.

It is then easy to check that, e.g., τ((x) ∅) ⊆ τ((x)x), hence (x) ∅+B (x)x 'τ (x)x.15

This contrasts with the case of pure λ-terms, for which τ is always injective: in this case,
it is in fact sufficient to look at the linear resource terms in supports of Taylor expansions.

Fact 4.15. For all M,N ∈ Λ, `(M) ∈ |τ(N)| iff M = N , where ` is defined inductively as
follows:

`(x) := x `(λxM) := λx `(M) `((M)N) := 〈`(M)〉 [`(N)].

To our knowledge, finding sufficient conditions on S ensuring that τ becomes injective
on ΣS/'v is still an open question.

Observe moreover that the S-semimodule structure of ΣS/'v gets in the way when we
want to study β-reduction and normalization: it is well known [Vau07, AD08, Vau09] that
β-reduction in a semimodule of terms is inconsistent in presence of negative coefficients.

Example 4.16. Consider δM := λx (M + (x)x) and ∞M := (δM) δM . Observe that ∞M

β-reduces to M +∞M . Suppose S is a ring. Then any congruence ' on ΣS containing
β-reduction and the equations of S-module is inconsistent: 0 ' ∞M + (−1).∞M ' (M +
∞M) + (−1).∞M 'M .

The problem is of course the identity 0 ' ∞M + (−1).∞M . Another difficulty is that, if
S has fractions then, up to S-semimodule equations, one can split a single β-reduction step
into infinitely many fractional steps: if M →β M

′ then

M ' 1
2 .M + 1

2 .M →β
1
2 .M + 1

2 .M
′ '

(
1
4 .M + 1

4 .M
)

+ 1
2 .M

′ →β

(
1
4 .M + 1

4 .M
′)+ 1

2 .M
′ ' · · ·

It is not our purpose here to explore the various possible fixes to the rewriting theory
of β-reduction on vector λ-terms. We rather refer the reader to the literature on algebraic
λ-calculi [Vau09, AD08, Alb14, DC11] for various proposals. Our focus being on Taylor
expansion, we propose to consider vector λ-terms as intermediate objects: the reduction
relation induced on resource vectors by β-reduction through Taylor expansion contains
β-reduction on vector terms — which is mainly useful to understand what may go wrong.

14 In those previous works, the elements of ΣS/'v were called algebraic λ-terms, but here we reserve this
name for another, simpler, notion.

15 This discrepancy is also present in the non-deterministic Böhm trees of de’Liguoro and Piperno [dLP95]:
in that qualitative setting, they can solve it by introducing a preorder on trees based on set inclusion. They
moreover show that this preorder coincides with that induced by a well chosen domain theoretic model, as
well as with the observational preorder associated with must-solvability. This preorder should be related
with that induced by the inclusion of normal forms of Taylor expansions (which are always defined since we
then work with support sets rather than general vectors).

9:24 Lionel Vaux Vol. 15:3

We still need to introduce some form of quotient in the syntax, though, if only to allow
formal sums to retain a computational meaning: otherwise, for instance, no β-redex can
be fired in (λxM + λxN)P ; and more generally there are β-normal terms whose Taylor
expansion is not normal, and conversely (consider, e.g., (λx 0)P).

Write ΛS for the quotient of ΣS by the least compatible equivalence '+ containing the
following six equations:

λx 0 '+ 0 λx (a.M) '+ a.λxM λx (M +N) '+ λxM + λxN

(0)P '+ 0 (a.M)P '+ a.(M)P (M +N)P '+ (M)P + (N)P

We call algebraic λ-terms the elements of ΛS. We will abuse notation and denote an algebraic
λ-term by any of its representatives.

Observe that T (M) is preserved under '+ so it is well defined on algebraic terms,
although not on vector terms.

Fact 4.17. An algebraic λ-term M is β-normal (i.e. each of its representatives is β-normal)
iff T (M) contains only normal resource terms.

We do not claim that '+ is minimal with the above property (for this, the bottom three
equations are sufficient) but it is quite natural for anyone familiar with the decomposition
of λ-calculus in linear logic, as it reflects the linearity of λ-abstraction and the function
position in an application. Moreover it retains the two-level structure of vector λ-terms,
seen as sums of base terms.

It is indeed a routine exercise to show that orienting the defining equations of '+ from
left to right defines a confluent and terminating rewriting system. We call canonical terms
the normal forms of this system, which we can describe as follows. The sets Σc

S of canonical
terms and Σs

S of simple canonical terms are mutually generated by the following grammars:

Σs
S 3 S, T ::= x | λxS | (S)M

Σc
S 3 M,N,P ::= S | 0 | a.M |M +N

so that each algebraic term M admits a unique canonical '+-representative.
In the remaining of this paper we will systematically identify algebraic terms with their

canonical representatives and keep '+ implicit. Moreover, we write Λs
S for the set of simple

algebraic λ-terms, i.e. those that admit a simple canonical representative.

Fact 4.18. Every simple term S ∈ Λs
S is of one of the following two forms:

• S = λx1 · · ·λxn (x)M1 · · ·Mk: S is a head normal form;
• S = λx1 · · ·λxn (λxT)M0 · · ·Mk: (λxT)M0 is the head redex of S.

So each algebraic λ-term can be considered as a formal linear combination of head
normal forms and head reducible simple terms, which will structure the notions of weak
solvability and hereditarily determinable terms in section 9.

5. On the reduction of resource vectors

Observe that

τ((λxM)N) = 〈λx τ(M)〉 τ(N)! =
∑
s∈∆
t∈!∆

τ(M)sτ(N)!
t.〈λx s〉 t

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:25

and
τ(M [N/x]) = ∂xτ(M) · τ(N)! =

∑
s∈∆
t∈!∆

τ(M)sτ(N)!
t.∂xs · t

In order to simulate β-reduction through Taylor expansion we might be tempted to
consider the reduction given by ε → ε′ as soon as ε =

∑
i∈I ai.ei and ε′ =

∑
i∈I ai.ε

′
i with

ei →∂ ε
′
i for all i ∈ I.16

Observe indeed that, as soon as (ai.ei)i∈I ∈ (!)∆ is summable (i.e. for all e ∈ (!)∆,
there are finitely many i ∈ I such that ai 6= 0 and ei = e), the family (ai.ε

′
i)i∈I is summable

too: if e′ ∈ |ai.ε′i| then ai 6= 0 and e′ ∈ |ε′i| hence by Lemma 3.12, fv(ei) = fv(e′) and
s(ei) ≤ 2s(e′) + 2; e′ being fixed, there are thus finitely many possible values for ei hence for
i. So we do not need any additional condition for this reduction step to be well defined.

This reduction, however, is not suitable for simulating β-reduction because whenever
the reduced β-redex is not in linear position, we need to reduce arbitrarily many resource
redexes.

Example 5.1. Observe that

τ((y) (λxx) z) =
∑

n,k1,...,kn∈N

1

n!k1! · · · kn!
〈y〉
[
〈λxx〉 zk1 , . . . , 〈λxx〉 zkn

]
and

τ((y) z) =
∑
n∈N

1

n!
〈y〉 zn.

Then the reduction from
[
〈λxx〉 zk1 , . . . , 〈λxx〉 zkn

]
to zn if each ki = 1 (resp. to 0 if one

ki 6= 1) requires firing n independent redexes (resp. one of those n redexes).

5.1. Parallel resource reduction. One possible fix would be to replace →∂ with →∗∂ in
the above definition, i.e. set ε → ε′ as soon as ε =

∑
i∈I ai.ei and ε′ =

∑
i∈I ai.ε

′
i with

ei →∗∂ ε′i for all i ∈ I, but then the study of the reduction subsumes that of normalization,
which we treat in Section 8, and this relies on the possibility to simulate β-reduction steps.

A reasonable middle ground is to consider a parallel variant ⇒∂ of →∂ , where any
number of redexes can be reduced simultaneously in one step. The parallelism involved
in the translation of a β-reduction step is actually quite constrained: like in the previous
example, the redexes that need to be reduced in the Taylor expansion are always pairwise
independent and no nesting is involved. However, in order to prove the confluence of the
reduction on resource vectors, or its conservativity w.r.t. β-reduction, it is much more
convenient to work with a fully parallel reduction relation, both on algebraic λ-terms and on
resource vectors. Indeed, parallel reduction relations generally allow, e.g., to close confluence
diagrams in one step or to define a maximal parallel reduction step: the relevance of this
technical choice will be made clear all through Section 6.

Definition 5.2. We define parallel resource reduction ⇒∂ ⊆ (!)∆ ×N[(!)∆] inductively as
follows:

• x⇒∂ x;
• 〈λx s〉 t⇒∂ ∂xσ

′ · τ ′ as soon as s⇒∂ σ
′ and t⇒∂ τ ′;

16 We must of course require that
⋃
i∈I fv(ei) is finite but, again, we will keep such requirements implicit

in the following.

9:26 Lionel Vaux Vol. 15:3

• λx s⇒∂ λxσ
′ as soon as s⇒∂ σ

′;
• 〈s〉 t⇒∂ 〈σ′〉 τ ′ as soon as s⇒∂ σ

′ and t⇒∂ τ
′;

• [s1, . . . , sn]⇒∂ [σ′1, . . . , σ
′
n] as soon as si ⇒∂ σ

′
i for each i ∈ {1, . . . , n}.

We extend this reduction to sums of resource expressions by linearity: ε⇒∂ ε
′ if ε =

∑n
i=1 ei

and ε′ =
∑n

i=1 ε
′
i with ei ⇒∂ ε

′
i for all i ∈ {1, . . . , n}.

It should be clear that →∂ ⊆ ⇒∂ ⊂ →∗∂ , Moreover observe that, because all term
constructors are linear, the reduction rules extend naturally to finite sums of resource
expressions: for instance, λxσ ⇒∂ λxσ

′ as soon as σ ⇒∂ σ
′.

We will prove in Sections 6 and 7 that this solution is indeed a good one: parallel
resource reduction is strongly confluent, and there is a way to extend it to resource vectors so
that not only the resulting reduction is strongly confluent and allows to simulate β-reduction,
but any reduction step from the Taylor expansion of an algebraic term can be completed
into a parallel β-reduction step. There are two pitfalls with this approach, though.

5.2. Size collapse. First, parallel reduction ⇒∂ (like iterated reduction →∗∂) lacks the
combinatorial regularity properties of →∂ given by Lemma 3.12: write e Ï∂ e

′ if e ⇒∂ ε
′

with e′ ∈ |ε′|; e′ ∈ (!)∆ being fixed, there is no bound on the size of the ⇒∂-antecedents of
e′, i.e. those e ∈ (!)∆ such that e Ï∂ e

′.

Example 5.3. Fix s ∈ ∆. Consider the sequences −→u (s) and −→v (s) of resource terms given
by: {

u0(s) := s

un+1(s) := 〈λy y〉 [un(s)]
and

{
v0(s) := s

vn+1(s) := 〈λy vn(s)〉 []
.

Observe that for all n ∈ N, un+1(s)→∂ un(s) and vn+1(s)→∂ vn(s), and more generally, for
all n′ ≤ n, un(s)⇒∂ un′(s) and vn(s)⇒∂ vn′(s). In particular un(s)⇒∂ s and vn(s)⇒∂ s
for all n ∈ N.

Reducing all resource expressions in a resource vector simultaneously is thus no longer
possible in general: consider, e.g.,

∑
n∈N un(x). As a consequence, when we introduce

a reduction relation on resource vectors by extending a reduction relation on resource
expressions as above, we must in general impose the summability of the family of reducts as
a side condition:

Definition 5.4. Fix an arbitrary relation→ ⊆ (!)∆×N[(!)∆]. For all ε, ε′ ∈ S(!)∆ , we write

ε →̃ ε′ whenever there exist families (ai)i∈I ∈ SI , (ei)i∈I ∈ (!)∆I and (ε′i)i∈I ∈ N[(!)∆]I such
that:

• (ei)i∈I is summable and ε =
∑

i∈I ai.ei;
• (ε′i)i∈I is summable and ε′ =

∑
i∈I ai.ε

′
i;

• for all i ∈ I, ei →? ε′i.

The necessity of such a side condition forbids confluence. Indeed:

Example 5.5. Let σ =
∑

n un(vn(x)). Then σ ⇒̃∂
∑
un(x) and σ ⇒̃∂

∑
vn(x), but since

the only common reduct of up(x) and vq(x) is x, there is no way17 to close this pair of
reductions: (x)n∈N is not summable.

17 In fact, this argument is only valid if S is zerosumfree (i.e. if a+ b = 0 ∈ S entails a = b = 0; see below,
in particular Lemma 5.7), for instance if S = N: we rely on the fact that if

∑
i∈I ai.si =

∑
n∈N un(x) then

for all i ∈ I such that ai 6= 0, there is n ∈ N such that si = un(x).

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:27

These considerations lead us to study the combinatorics of parallel resource reduction
more closely: in Section 6, we introduce successive variants of parallel reduction, based on
restrictions on the nesting of fired redexes, and provide bounds for the size of antecedents of
a resource expression. We moreover consider sufficient conditions for these restrictions to be
preserved under reduction.

We then observe in Section 7 that, when applied to Taylor expansions, parallel reduction
is automatically of the most restricted form, which allows us to provide uniform bounds and
obtain the desired confluence and simulation properties.

5.3. Reduction structures. The other, a priori unrelated pitfall is the fact that the
reduction can interact badly with the semimodule structure of S(!)∆ : we can reproduce
Example 4.16 in S(!)∆ through Taylor expansion (see the discussion in Section 7, p.42). Even
more simply, we can use the terms of Example 5.3:

Example 5.6. Let s ∈ ∆ and σ =
∑

n∈N un+1(s) ∈ S∆ . Assuming S is a ring: 0 =
σ + (−1).σ ⇒̃∂

∑
n∈N un(s) + (−1).σ = s.

Of course, this kind of issue does not arise when the semiring of coefficients is zerosumfree:
recall that S is zerosumfree if a + b = 0 implies a = b = 0, which holds for all semirings
of non-negative numbers, as well as for booleans. This prevents interferences between
reductions and the semimodule structure:

Lemma 5.7. Assume S is zerosumfree and fix a relation → ⊆ (!)∆ ×N[(!)∆]. If ε →̃ ε′

then, for all e′ ∈ |ε′| there exists e ∈ |ε| and ε0 ∈ N[(!)∆] such that e→? ε0 and e′ ∈ |ε0|.

Proof. Assume ε =
∑

i∈I ai.ei and ε′ =
∑

i∈I ai.ε
′
i with ei →? ε′i for all i ∈ I. If e′ ∈ |ε′| then

there is i ∈ I such that e′ ∈ |ai.ε′i| hence ai 6= 0 and e′ ∈ |ε′i|. Then, since S is zerosumfree,
ei ∈ |ε|.

Various alternative approaches to get rid of this restriction in the setting of the algebraic
λ-calculus can be adapted to the reduction of resource vectors: we refer the reader to the
literature on algebraic λ-calculi [Vau09, AD08, Alb14, DC11] for several proposals. The
linear-continuity of the resource λ-calculus allows us to propose a novel approach: consider
possible restrictions on the families of resource expressions simultaneously reduced in a
→̃-step.

Definition 5.8. We call resource support any set E ⊆ (!)∆ of resource expressions such that
fv(E) =

⋃
e∈E fv(e) is finite. Then a resource structure is any set E ⊆ P((!)∆) of resource

supports such that:

• E contains all finite resource supports;
• E is closed under finite unions;
• E is downwards closed for inclusion.

The maximal resource structure is (!)Ffv := {E ⊆ (!)∆ ; fv(E) is finite}, which is also a
finiteness structure [Ehr10]. Observe that any finiteness structure F ⊆ (!)Ffv is a resource
structure: all three additional conditions are automatically satisfied.

Definition 5.9. Fix a relation → ⊆ (!)∆ ×N[(!)∆]. For all resource support E , we write
→̃E for ⇀̃E where ⇀E denotes →∩ (E ×N[(!)∆]). For all resource structure E, we then
write →̃E for

⋃
E∈E →̃E .

9:28 Lionel Vaux Vol. 15:3

We have →̃E ⊆ →̃ ∩ (SE × S(!)∆), but in general the reverse inclusion holds only if S is
zerosumfree: in this latter case ε ⇒̃∂ ε

′ iff ε ⇒̃∂ |ε| ε
′.

Definition 5.10. We call→-reduction structure any resource structure E such that if E ∈ E
then

⋃{
|ε′| ; e ∈ E and e→? ε′

}
∈ E.

We will consider some particular choices of reduction structure in the following, but
the point is that our approach is completely generic. The results of Section 7 will imply
that if S ⊆ P

(
S∆
)

is a ⇒∂-reduction structure containing |τ(M)| then one can translate
any ⇒β-reduction sequence from M into a ⇒̃∂S-reduction sequence from τ(M). Additional
properties such as the confluence of ⇒̃∂S, its conservativity over ⇒β, or its compatibility
with normalization will depend on additional conditions on S.

6. Taming the size collapse of parallel resource reduction

In this section, we study successive families of restrictions of the parallel resource reduction
⇒∂ . Our purpose is to enforce some control on the size collapse induced by ⇒∂ , so as to
obtain a confluent restriction of ⇒̃∂ , all the while retaining enough parallelism to simulate
parallel β-reduction on algebraic λ-terms, ideally in a conservative way.

First observe that parallel resource reduction itself is strongly confluent as expected:
following a classic argument, we define F(e) as the result of firing all redexes in e and then,
whenever e⇒∂ ε

′, we have ε′ ⇒∂ F(e). Formally:

Definition 6.1. For all e ∈ (!)∆ we define the full parallel reduct F(e) of e by induction on
e as follows:

F(x) := x

F(λx s) := λxF(s)

F
(
〈λx s〉 t

)
:= ∂xF(s) · F

(
t
)

F
(
〈s〉 t

)
:= 〈F(s)〉F

(
t
)

(if s is not an abstraction)

F([s1, . . . , sn]) := [F(s1), . . . ,F(sn)].

Then if ε =
∑n

i=1 ei ∈ N[(!)∆], we set F(ε) =
∑n

i=1 F(ei).

Lemma 6.2. For all ε, ε′ ∈ N[(!)∆], if ε⇒∂ ε
′ then ε′ ⇒∂ F(ε).

Proof. Follows directly from the definitions.

In general, however, if we fix e′ ∈ (!)∆ then there is no bound on those e ∈ (!)∆ such

that e′ ∈ |F(e)|, so we cannot extend F on S(!)∆ , nor generalize Lemma 6.2 to ⇒̃∂ . Indeed,
we have shown that ⇒̃∂ is not even confluent.

In order to understand what restrictions are necessary to recover confluence, we first
provide a close inspection of the combinatorial effect of⇒∂ on the size of resource expressions:
we show in subsection 6.1 that bounding the length of chains of immediately nested fired
redexes is enough to bound the size of ⇒∂-antecedents of a fixed resource expression.

In order to close a pair of reductions e⇒∂ ε
′ and e⇒∂ ε

′′, we have to reduce at least
the residuals in ε′ of the redexes fired in the reduction e⇒∂ ε

′′ (and vice versa). So we want
the above bounds to be stable under taking the unions of sets of redexes in a term: it is not
the case if we consider chains of immediately nested redexes. In Subsection 6.2, we extend
the boundedness condition to all chains of nested fired redexes and introduce the family

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:29

(
⇒(b)

)
b∈N of boundedly nested parallel reductions. We then show that this family enjoys a

kind of diamond property (Lemma 6.14), which can then be extended to ⇒̃(∂) =
⋃
b∈N ⇒̃(b).

We must require that S enjoys an additional additive splitting property (see Definition 6.15),
in order to “align” the ⇒(b)-reductions involved in both sides of a pair of ⇒̃(b)-reductions
from the same resource vector (see the proof of Lemma 6.17).

To get rid of the additive splitting hypothesis we must further restrict resource reduction
so as to recover a notion of full reduct at bounded depth. It is not sufficient to bound the
depth of fired redexes because this is not stable under reduction. In Subsection 6.3, we
rather introduce the parallel reduction ⇒bdc where substituted variables occur at depth at

most d. We then show that ⇒̃b∂c =
⋃
d∈N ⇒̃bdc is strongly confluent by proving that any

⇒bdc-step from ε can be followed by a ⇒bd′c-reduction to Fbdc(ε), where Fbdc(ε) is obtained
by firing all redexes in ε for which the bound variables occur at depth at most d, and d′

depends only on d.
Finally, we consider resource vectors of bounded height: these contain the Taylor

expansions of algebraic λ-terms. We show that all the above restrictions actually coincide
with ⇒̃∂ on bounded resource vectors. In this particular case, we can actually extend F by
linear-continuity and obtain a proof of the diamond property for ⇒̃∂ .18

At this point of the discussion, it is worth noting that, if we extend a relation → ⊆
(!)∆ ×N[(!)∆] to a binary relation on finite sums of resource expressions so that ε→ ε′ iff
ε =

∑n
i=1 ei and ε′ =

∑n
i=1 ε

′
i with ei → ε′i for all i ∈ {1, . . . , n}, then for all →-reduction

structure E and all resource vectors ε, ε′ ∈ S(!)∆ , we have ε →̃E ε
′ iff there exist a set I of

indices, a resource support E ∈ E, a family (ai)i∈I ∈ SI of scalars and families (εi)i∈I ∈ N[E]I

and (ε′i)i∈I ∈ N[(!)∆]I such that:

• (εi)i∈I is summable and ε =
∑

i∈I ai.εi;
• (ε′i)i∈I is summable and ε′ =

∑
i∈I ai.ε

′
i;

• for all i ∈ I, εi → ε′i.

We will use this fact for confluence proofs: ⇒∂ and its variants are all of this form.

6.1. Bounded chains of redexes.

Definition 6.3. We define a family of relations ⇒(m|k) ⊆ (!)∆ ×N[(!)∆] for m ≤ k ∈ N
inductively as follows:

18 Note that, although they involve increasing constraints on parallel reduction, Subsections 6.1 to 6.3 are
essentially pairwise independent. Moreover, we obtain the diamond property for ⇒̃∂ on bounded resource
vectors as a consequence of the results of Subsection 6.3, but it could as well be proved directly, using similar
techniques (see Footnote 21, p.41). So, the reader who only wants the proofs necessary for the main results
of the paper can skip Subsections 6.1 and 6.2; the reader who is not interested in checking proofs can also
skip subsection 6.3.

We chose to present the successive families of restrictions anyway, because their construction provides
a precise understanding of the combinatorics of parallel resource reduction, and of the various ingredients
involved in designing a strongly confluent version of ⇒̃∂ : we start by avoiding the size collapse by putting a
restriction on families of redexes that can be fired in parallel; then we ensure that this restriction is stable
under reduction.

This understanding plays a key rôle in enabling the generalization of our approach to linear logic proof nets
or infinitary λ-calculus: with Chouquet, we have recently established that our restrictions on the nesting of
redexes, as well as their preservation under reduction, can be adapted to the setting of proof nets [CA18]; and
preliminary work on infinitary λ-calculus indicates that it could be amenable to the technique of Subsection
6.2, whereas it does not make sense to restrict the depth of substituted variables in this setting.

9:30 Lionel Vaux Vol. 15:3

• x⇒(m|k) x for all m ≤ k ∈ N;
• λx s⇒(m|k) λxσ

′ if m ≤ k and s⇒(m1|k) σ
′ for some m1 ≤ k;

• 〈s〉 t⇒(m|k) 〈σ′〉 τ ′ if m ≤ k, s⇒(m1|k) σ
′ and t⇒(m2|k) τ ′ for some m1 ≤ k and m2 ≤ k;

• [s1, . . . , sr]⇒(m|k) [σ′1, . . . , σ
′
r] if si ⇒(m|k) σ

′
i for all i ∈ {1, . . . , r};

• 〈λx s〉 t⇒(m|k) ∂xσ
′ · τ ′ if 0 < m ≤ k, s⇒(m−1|k) σ

′ and t⇒(m−1|k) τ ′.

Intuitively, we have e⇒(m|k) ε
′ iff e⇒∂ ε

′ and that reduction fires chains of redexes of
length at most k, those starting at top level being of length at most m. In particular, it
should be clear that if e ⇒(m|k) ε

′ then e ⇒∂ ε
′, and e ⇒(m′|k′) ε

′ as soon as m ≤ m′ ≤ k′

and k ≤ k′. Moreover, e⇒∂ ε
′ iff e⇒(h(e)|h(e)) ε

′.

Definition 6.4. We define gbk(l,m) ∈ N for all k, l,m ∈ N, by induction on the lexico-
graphically ordered pair (l,m):

gbk(0, 0) := 0

gbk(l + 1, 0) := gbk(l, k) + 1

gbk(l,m+ 1) := 4gbk(l,m).

We then write gbk(l) := gbk(l, k).

For all k, l,m ∈ N, the following identities follow straightforwardly from the definition
and will be used throughout this subsection:

gbk(l,m) = 4mgbk(l, 0)

gbk(0,m) = 0

gbk(1,m) = 4m.

Lemma 6.5. For all k, l, l′,m ∈ N, gbk(l + l′,m) ≥ gbk(l,m) + gbk(l
′,m).

Proof. By induction on l′. The case l′ = 0 is direct. Assume the result holds for l′, we prove
it for l′ + 1:

gbk
(
l + l′ + 1,m

)
= 4m

(
gbk

(
l + l′ + 1, 0

))
= 4m

(
gbk

(
l + l′, k

)
+ 1
)

≥ 4m
(
gbk(l, k) + gbk

(
l′, k
)

+ 1
)

= 4m
(

4kgbk(l, 0) + gbk
(
l′ + 1, 0

))
≥ 4mgbk(l, 0) + 4mgbk

(
l′ + 1, 0

)
= gbk(l,m) + gbk

(
l′ + 1,m

)
.

The following generalization follows directly:

Corollary 6.6. For all l1 . . . , ln ∈ N

gbk

(
n∑
i=1

li,m

)
≥

n∑
i=1

gbk(li,m).

Lemma 6.7. For all k, l,m ∈ N, gbk(l,m) ≥ l.

Proof. By Corollary 6.6, gbk(l,m) ≥ l × gbk(1,m) = l × 4m.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:31

Lemma 6.8. For all k, k′, l, l′,m,m′ ∈ N if k ≤ k′, l ≤ l′ and m ≤ m′, then:

gbk(l,m) ≤ gbk′
(
l′,m′

)
.

Proof. We prove the monotonicity of gbk(l,m) in m, l and then k, separately.

First, if m ≤ m′ then gbk(l,m) = 4mgbk(l, 0) ≤ 4m
′
gbk(l, 0) = gbk(l,m

′).
By Lemma 6.5, if l ≤ l′, gbk(l

′,m) ≥ gbk(l,m) + gbk(l
′ − l,m) ≥ gbk(l,m).

Finally, we prove that if k ≤ k′ then gbk(l,m) ≤ gbk′(l,m) by induction on the
lexicographically ordered pair (l,m):

gbk(0, 0) = 0

= gbk′(0, 0)

gbk(l + 1, 0) = gbk(l, k) + 1

≤ gbk′(l, k) + 1

≤ gbk′
(
l, k′
)

+ 1

= gbk′(l + 1, 0)

gbk(l,m+ 1) = 4gbk(l,m)

≤ 4gbk′(l,m)

= gbk′(l,m+ 1)

Write e Ï(m|k) e
′ if e⇒(m|k) ε

′ with e′ ∈ |ε′|.

Lemma 6.9. If e Ï(m|k) e
′ then s(e) ≤ gbk(s(e′),m).

Proof. By induction on the reduction e⇒(m|k) ε
′ such that e′ ∈ ε′.

If e = x = ε′ then e′ = x and s(e) = 1 = gb0(1, 0) ≤ gbk(s(e′),m).
If e = λx s, ε′ = λxσ′, m ≤ k and s ⇒(m1|k) σ

′ with m1 ≤ k, then e′ = λx s′ with
s Ï(m1|k) s

′. We obtain:

s(e) = s(s) + 1

≤ gbk
(
s
(
s′
)
,m1

)
+ 1 (by induction hypothesis)

≤ gbk
(
s
(
s′
)
, k
)

+ 1

= gbk
(
s
(
s′
)

+ 1, 0
)

≤ gbk
(
s
(
e′
)
,m
)
.

If e = 〈s〉 t, ε′ = 〈σ′〉 τ ′, m ≤ k, s ⇒(m1|k) σ
′ and t ⇒(m2|k) τ ′ with mi ≤ k for all

i ∈ {1, 2}, then e′ = 〈s′〉 t′ with s Ï(m1|k) s
′ and t Ï(m2|k) t′. We obtain:

s(e) = s(s) + s
(
t
)

+ 1

≤ gbk
(
s
(
s′
)
,m1

)
+ gbk

(
s
(
t′
)
,m2

)
+ 1 (by induction hypothesis)

≤ gbk
(
s
(
s′
)
, k
)

+ gbk
(
s
(
t′
)
, k
)

+ 1

≤ gbk
(
s
(
s′
)

+ s
(
t′
)
, k
)

+ 1

= gbk
(
s
(
s′
)

+ s
(
t′
)

+ 1, 0
)

≤ gbk
(
s
(
e′
)
,m
)
.

9:32 Lionel Vaux Vol. 15:3

If e = [s1, . . . , sr], ε
′ = [σ′1, . . . , σ

′
r] and si ⇒(m|k) σ

′
i for all i ∈ {1, . . . , r}, then e′ =

[s′1, . . . , s
′
r] with si Ï(m|k) s

′
i for all i ∈ {1, . . . , r}. We obtain:

s(e) =
r∑
i=1

s(si)

≤
r∑
i=1

gbk
(
s
(
s′i
)
,m
)

(by induction hypothesis)

≤ gbk

(
r∑
i=1

s
(
s′i
)
,m

)
= gbk

(
s
(
e′
)
,m
)
.

If e = 〈λx s〉 t, ε′ = ∂xσ
′ · τ ′, 0 < m ≤ k, s⇒(m−1|k) σ

′ and t⇒(m−1|k) τ ′, then there are

s′ ∈ |σ′| and t′ ∈
∣∣τ ′∣∣ such that e′ ∈

∣∣∣∂xs′ · t′∣∣∣. In particular, s Ï(m−1|k) s
′ and t Ï(m−1|k) t′

and we obtain:

s(e) = s(s) + s
(
t
)

+ 2

≤ gbk
(
s
(
s′
)
,m− 1

)
+ gbk

(
s
(
t′
)
,m− 1

)
+ 2 (by induction hypothesis)

≤ 2gbk
(
s
(
e′
)
,m− 1

)
+ 2 (s

(
e′
)
≥ max

{
s
(
s′
)
, s
(
t′
)}

)

≤ 4gbk
(
s
(
e′
)
,m− 1

)
(s
(
e′
)
≥ s
(
s′
)
≥ 1)

= gbk
(
s
(
e′
)
,m
)
.

As a direct consequence, for all m ≤ k ∈ N, for all summable family (ei)i∈I and all
family (ε′i)i∈I such that ei ⇒(m|k) ε

′
i for all i ∈ I, (ε′i)i∈I is also summable: we can thus drop

the side condition in the definition of ⇒̃(m|k).
Observe however that those reduction relations are not stable under taking the unions of

fired redexes in families of reduction steps: using, e.g., the terms un(s) from Example 5.3, for
all n ∈ N, we have u2n(s)⇒(1|1) un(s) by firing all redexes at even depth, u2n(s)⇒(0|1) un(s)
by firing all redexes at odd depth, and u2n(s)⇒(2n|2n) s by firing both families, but there
is obviously no k ∈ N such that u2n(s)⇒(k|k) s uniformly for all n ∈ N. Although we can
close the induced critical pair∑

n∈N u2n(s) ⇒̃(0|1)

∑
n∈N un(s) and

∑
n∈N u2n(s) ⇒̃(1|1)

∑
n∈N un(s)

trivially in this case, this phenomenon is an obstacle to confluence:

Example 6.10. Fix s ∈ ∆ and consider the sequence −→w (s) of resource terms given by
w0(s) = s and:

w2n+1(s) = 〈λy y〉 [w2n(s)]

w2n+2(s) = 〈λy w2n+1(s)〉 []
Then for all n ∈ N, w2n(s) ⇒(1|1) un(s), w2n+1(s) ⇒(0|1) un(s), w2n(s) ⇒(0|1) vn(s), and
w2n+1(s)⇒(1|1) vn(s). Then for instance∑

n∈N
w2n(s) ⇒̃(1|1)

∑
n∈N

un(s) and
∑
n∈N

w2n(s) ⇒̃(0|1)

∑
n∈N

vn(s)

but we know from Example 5.5 that this pair of reductions cannot be closed in general.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:33

6.2. Boundedly nested redexes. From the previous subsection, it follows that bounding
the length of chains of immediately nested redexes allows to tame the size collapse of resource
expressions under reduction, but we need to further restrict this notion in order to keep it
stable under unions of fired redex sets. A natural answer is to require a bound on the depth
of the nesting of fired redexes, regardless of the distance between them:

Definition 6.11. We define a family of relations
(
⇒(b)

)
b∈N inductively as follows:

• x⇒(b) x for all b ∈ N;
• λx s⇒(b) λxσ

′ if s⇒(b) σ
′;

• 〈s〉 t⇒(b) 〈σ′〉 τ ′ if s⇒(b) σ
′ and t⇒(b) τ ′;

• [s1, . . . , sr]⇒(b) [σ′1, . . . , σ
′
r] if si ⇒(b) σ

′
i for all i ∈ {1, . . . , r};

• 〈λx s〉 t⇒(b) ∂xσ
′ · τ ′ if b ≥ 1, s⇒(b−1) σ

′ and t⇒(b−1) τ ′.

Intuitively, we have e⇒(b) ε
′ iff e⇒∂ ε

′ and every branch of e (seen as a rooted tree)
crosses at most b fired redexes. In particular it should be clear that if e⇒(b) ε

′ then e⇒(b|b) ε
′,

and moreover e⇒(b′) ε
′ for all b′ ≥ b. Moreover observe that e⇒(h(e)) ε

′ whenever e⇒∂ ε
′,

hence ⇒∂ =
⋃
b∈N⇒(b).

Write e Ï(b) e
′ if e⇒(b) ε

′ with e′ ∈ |ε′|. If e Ï(b) e
′, then e Ï(b|b) e

′ and we thus know
that s(e) ≤ gbb(s(e′)). In this special case, we can in fact provide a much better bound:

Lemma 6.12. If e Ï(b) e
′ then s(e) ≤ 4bs(e′).

Proof. By induction on the reduction e⇒(b) ε
′ such that e′ ∈ |ε′|.

If e = x = ε′ then e′ = x and s(e) = 1 ≤ 4b = 4bs(e′).
If e = λx s and ε′ = λxσ′ with s⇒(b) σ

′, then e′ = λx s′ with s Ï(b) s
′. By induction

hypothesis, s(s) ≤ 4bs(s′). Then s(e) = s(s) + 1 ≤ 4bs(s′) + 1 ≤ 4b(s(s′) + 1) = 4bs(e′).
If e = 〈s〉 t, ε′ = 〈σ′〉 τ ′, s ⇒(b) σ

′ and t ⇒(b) τ ′, then e′ = 〈s′〉 t′ with s Ï(b) s
′

and t Ï(b) t′. By induction hypothesis, s(s) ≤ 4bs(s′) and s
(
t
)
≤ 4bs

(
t′
)
. Then s(e) =

s(s) + s
(
t
)

+ 1 ≤ 4bs(s′) + 4bs
(
t′
)

+ 1 ≤ 4b
(
s(s′) + s

(
t′
)

+ 1
)

= 4bs(e′).
If e = [s1, . . . , sr], ε

′ = [σ′1, . . . , σ
′
r] and si ⇒(b) σ

′
i for all i ∈ {1, . . . , r}, then e′ =

[s′1, . . . , s
′
r] with si Ï(b) s

′
i for all i ∈ {1, . . . , r}. By induction hypothesis, s(si) ≤ 4bs(s′i) for

all i ∈ {1, . . . , r} and then s(e) =
∑r

i=1 s(si) ≤
∑r

i=1 4bs(s′i) = 4bs(e′).

If e = 〈λx s〉 t, ε′ = ∂xσ
′ · τ ′, b > 0, s⇒(b−1) σ

′ and t⇒(b−1) τ ′, then there are s′ ∈ |σ′|
and t′ ∈

∣∣τ ′∣∣ such that e′ ∈
∣∣∂xs′ · t′∣∣. In particular, s Ï(b−1) s

′ and t Ï(b−1) t′ and, by

induction hypothesis, s(s) ≤ 4b−1s(s′) and s
(
t
)
≤ 4b−1s

(
t′
)
. Writing n = nx(s′) = #t′, we

have:

4bs
(
e′
)

= 4b
(
s
(
s′
)

+ s
(
t′
)
− n

)
= 4b−1

(
s
(
s′
)

+ s
(
t′
)

+ 3s
(
s′
)

+ 3s
(
t′
)
− 4n

)
(n ≤ s

(
s′
)

and n ≤ s
(
t′
)
)

≥ 4b−1
(
s
(
s′
)

+ s
(
t′
)

+ 2s
(
s′
))

(s
(
s′
)
≥ 1)

≥ 4b−1
(
s
(
s′
)

+ s
(
t′
))

+ 2

≥ s(s) + s
(
t
)

+ 2

= s(e).

Like for parallel reduction (Definition 5.2), we extend each ⇒(b) to sums of resource

expressions by linearity: ε ⇒(b) ε
′ if ε =

∑n
i=1 ei and ε′ =

∑n
i=1 ε

′
i with ei ⇒(b) ε

′
i for all

9:34 Lionel Vaux Vol. 15:3

i ∈ {1, . . . , n}. Again, because all term constructors are linear, the reduction rules extend
naturally to finite sums of resource expressions: for instance,〈λxσ〉 τ ⇒(b) ∂xσ

′ · τ ′ as soon

as b ≥ 1, σ ⇒(b−1) σ
′ and τ ⇒(b−1) τ ′.

The relations ⇒(b) are then stable under unions of families of fired redexes, avoiding
pitfalls such as that of Example 6.10.

Lemma 6.13. If e⇒(b0) ε
′ and u⇒(b1) υ′ then ∂xe · u⇒(b0+b1) ∂xε

′ · υ′.

Proof. Write u = [u1, . . . , un]. Then we can write υ′ = [υ′1, . . . , υ
′
n] with ui ⇒(b1) υ

′
i for all

i ∈ {1, . . . , n}. Recall that whenever I = {i1, . . . , ik} ⊆ {1, . . . , n} with #I = k, we write
uI = [ui1 , . . . , uik] and υ′I =

[
υ′i1 , . . . , υ

′
ik

]
.

The proof is by induction on the reduction e⇒(b0) ε
′. If e = y = ε′ then:

• if y = x and n = 1 then ∂xe · u = u1 ⇒(b1) υ
′
1 = ∂xε

′ · υ′′;
• if y 6= x and u = [] then ∂xe · u = y ⇒(0) y = ∂xε

′ · υ′;
• otherwise, ∂xe · u = 0⇒(0) 0 = ∂xε

′ · υ′.
If e = λy s (choosing y 6= x and y 6∈ fv(u)), ε′ = λy σ′ and s ⇒(b0) σ

′ then, by

induction hypothesis, ∂xs · u ⇒(b0+b1) ∂xσ
′ · υ′. We obtain: ∂xe · u = λy (∂xs · u) ⇒(b0+b1)

λy
(
∂xσ

′ · υ′
)

= ∂xε
′ · υ′.

If e = 〈s〉 t, ε′ = 〈σ′〉 τ ′, s ⇒(b0) σ
′ and t ⇒(b0) τ ′ then, by induction hypothesis,

∂xs · uI ⇒(b0+b1) ∂xσ
′ · υ′I and ∂xt · uI ⇒(b0+b1) ∂xτ ′ · υ′I , for all I ⊆ {1, . . . , n}. We obtain:

∂xe ·u =
∑

(I, J) partition
of {1, . . . , n}

〈∂xs · uI〉 ∂xt · uJ ⇒(b0+b1)

∑
(I, J) partition
of {1, . . . , n}

〈
∂xσ

′ · υ′I
〉
∂xτ ′ · υ′J = ∂xε

′ ·υ′.

If e = [s1, . . . , sr], ε
′ = [σ′1, . . . , σ

′
r] and si ⇒(b0) σ

′
i for all i ∈ {1, . . . , r} then, by

induction hypothesis, ∂xsi · uI ⇒(b0+b1) ∂xσ
′
i · υ′I for all i ∈ {1, . . . , r} and all I ⊆ {1, . . . , n}.

We obtain:

∂xe · u =
∑

(I1, . . . , Ir) partition
of {1, . . . , n}

[∂xs1 · uI1 , . . . , ∂xsr · uIr]

⇒(b0+b1)

∑
(I1, . . . , Ir) partition

of {1, . . . , n}

[
∂xσ

′
1 · υ′I1 , . . . , ∂xσ′r · υ′Ir

]
= ∂xε

′ · υ′.

If e = 〈λy s〉 t (choosing y 6= x and y 6∈ fv
(
t
)
∪ fv(u)), ε′ = ∂yσ

′ · τ ′, b0 ≥ 1, s ⇒(b0−1)

σ′ and t ⇒(b0−1) τ ′ then, by induction hypothesis, ∂xs · uI ⇒(b0+b1−1) ∂xσ
′ · υ′I and

∂xt · uI ⇒(b0+b1−1) ∂xτ ′ · υ′I , for all I ⊆ {1, . . . , n}. We obtain:

∂xe · u =
∑

(I, J) partition
of {1, . . . , n}

〈λy ∂xs · uI〉 ∂xt · uJ

⇒(b0+b1)

∑
(I, J) partition
of {1, . . . , n}

∂y
(
∂xσ

′ · υ′I
)
·
(
∂xτ ′ · υ′J

)
= ∂x

(
∂yσ

′ · τ ′
)
· υ′ = ∂xε

′ · υ′

using Lemma 3.9.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:35

Lemma 6.14. Let K be a finite set, and assume ε ⇒(bk) ε
′
k for all k ∈ K. Then, setting

b =
∑

k∈K bk, there is ε′′ such that ε′k ⇒(2bk b)
ε′′ for all k ∈ K.

Proof. By the linearity of the definition of reduction on finite sums, it is sufficient to address
the case of ε = e ∈ (!)∆. The proof is then by induction on the family of reductions
e⇒(bk) ε

′
k.

If e = x = ε′k for all k ∈ K, then we set ε′′ = x.
If e = λx s, and ε′k = λxσ′k with s⇒(bk) σ

′
k for all k ∈ K then, by induction hypothesis,

we have σ′′ such that σ′k ⇒(2bk b)
σ′′ for all k ∈ K, and then we set ε′′ = λxσ′′.

If e = [s1, . . . , sr] and ε′k =
[
σ′1,k, . . . , σ

′
r,k

]
with sj ⇒(bk) σ

′
j,k for all j ∈ {1, . . . , r}

and k ∈ K then, by induction hypothesis, we have σ′′j such that σ′j,k ⇒(2bk b)
σ′′j for all

j ∈ {1, . . . , r} and k ∈ K, and then we set ε′′ = [σ′′1 , . . . , σ
′′
r].

Finally, assume K = K0 +K1, e = 〈λx s〉 t and:

• for all k ∈ K0, ε′k = 〈λxσ′k〉 τ ′k with s⇒(bk) σ
′
k and t⇒(bk) τ ′k;

• for all k ∈ K1, bk ≥ 1 and ε′k = ∂xσ
′
k · τ ′k with s⇒(bk−1) σ

′
k and t⇒(bk−1) τ ′k.

Write b′ = b − #K1. By induction hypothesis, there are σ′′ and τ ′′ such that, for all
k ∈ K0, σ′k ⇒(2bk b′) σ

′′ and τ ′k ⇒(2bk b′) τ
′′, and for all k ∈ K1, σ′k ⇒(2(bk−1)b′

) σ′′ and

τ ′k ⇒(2(bk−1)b′
) τ ′′.

If K1 = ∅ then b = b′ and we set ε′′ = 〈λxσ′′〉 τ ′′: we obtain ε′k ⇒(2bk b)
ε′′, for all

k ∈ K = K0.
Otherwise, b > b′ and we set ε′′ = ∂xσ

′′ · τ ′′ so that:

• for all k ∈ K0, ε′k = 〈λxσ′k〉 τ ′k ⇒(2bk b′+1)
σ′k with 2bkb′ + 1 ≤ 2bkb;

• for all k ∈ K1, by the previous lemma, ε′k = ∂xσ
′
k · τ ′k ⇒(2bk b′) σ

′
k and 2bkb′ < 2bkb.

We already know ⇒̃∂ is not confluent, and the counter examples we provided actually
show that no single ⇒̃(b) is confluent either. Setting19

⇒̃(∂) :=

(⋃
b∈N
⇒̃(b)

)
⊆ S(!)∆ × S(!)∆

however, we will obtain a strongly confluent reduction relation, under the assumption that
S has the following additive splitting property:20

Definition 6.15. We say S has the additive splitting property if: whenever a1 + a2 =
b1 + b2 ∈ S, there exists c1,1, c1,2, c2,1, c2,2 ∈ S such that ai = ci,1 + ci,2 and bj = c1,j + c2,j

for i, j ∈ {1, 2}.

This property is satisfied by any ring, but also by the usual semirings of non-negative
numbers (N, Q+, etc.) as well as booleans. We will in fact rely on the following generalization
of the property to finite families of finite sums of any size:

19 Our notation is somehow abusive as ⇒̃(∂) is not of the form described in Definition 5.9: there should

not be any ambiguity as we have not defined any relation ⇒(∂). Similarly, we may also write ⇒̃(∂)E
for⋃

b∈N ⇒̃(b)E
in the following.

20 The additive splitting property was previously used by Carraro, Ehrhard and Salibra [CES10, Car11]
in their study of linear logic exponentials with infinite multiplicities. There is no clear connection between
that work and our present contributions, though.

9:36 Lionel Vaux Vol. 15:3

Lemma 6.16. Assume S has the additive splitting property. Let a ∈ S, J1, . . . , Jn be finite
sets and, for all i ∈ {1, . . . , n}, let (bi,j)j∈Ji ∈ SJi be a family such that a =

∑
j∈Ji bi,j. Write

J = J1 × · · · × Jn and, for all i ∈ {1, . . . , n}, write J ′i = J1 × · · · × Ji−1 × Ji+1 × · · · × Jn.
Whenever −→ ′ = (j1, . . . , ji−1, ji+1, . . . , jn) ∈ J ′i and ji ∈ Ji, write −→ ′ ·i ji = (j1, . . . , jn) ∈ J .
Then there exists a family

(
c−→
)
∈ SJ such that, for all i ∈ {1, . . . , n} and all j ∈ Ji,

bi,j =
∑
−→ ′∈J ′

i
c−→ ′·ij.

Proof. By induction on n, and then on #Jn for n > 0, using the binary additive splitting
property to enable the induction.

Lemma 6.17. Assume S has the additive splitting property and fix a ⇒∂-reduction structure
E. For all finite set K and all reductions ε ⇒̃(∂)E

ε′k for k ∈ K, there is ε′′ such that

ε′k ⇒̃(∂)E
ε′′ for all k ∈ K.

Proof. For all k ∈ K, there are bk ∈ N, a resource support Ek ∈ E, a set Ik of indices, a

family (ak,i)i∈Ik of scalars, and summable families (ek,i)i∈Ik ∈ E
Ik
k and

(
ε′k,i

)
i∈Ik
∈ N[(!)∆]Ik

such that ε =
∑

i∈Ik ak,i.ek,i, ε
′
k =

∑
i∈Ik ak,i.ε

′
k,i and ek,i ⇒(bk) ε

′
k,i for all i ∈ Ik.

Write E = {ek,i ; k ∈ K, i ∈ Ik}: since E ⊆
⋃
k∈K Ek and E is a resource structure, we

have E ∈ E. Write E ′ =
⋃{∣∣∣ε′k,i∣∣∣ ; k ∈ K, i ∈ Ik

}
: since E is a reduction structure, we also

have E ′ ∈ E.
Now fix e ∈ (!)∆ and write a = εe. For all k ∈ K, the set Ie,k = {ik ∈ Ik ; ek,ik = e} is

finite, and then
∑

ik∈Ie,k ak,ik = a. Write Ie =
∏
k∈K Ie,k and, for all k ∈ K, K ′k = K \ {k}

and I ′e,k =
∏
l∈K′

k
Ie,l. If −→ı = (il)l∈K′

k
∈ I ′e,k and ik ∈ Ie,k, write −→ı ·k ik = (ik)k∈K ∈ Ie.

By Lemma 6.16, we obtain a family of scalars
(
a′
e,−→ı

)
−→ı ∈Ie

such that, for all k ∈ K and all

ik ∈ Ie,k, ak,ik =
∑
−→ı ∈I′e,k

a′
e,−→ı ·kik

. Moreover, a =
∑
−→ı ∈Ie a

′
e,−→ı .

Since each Ie is finite, the family (e)e∈(!)∆,−→ı ∈Ie is summable. Moreover, if we fix k ∈ K
and ik ∈ Ik, there are finitely many e ∈ (!)∆ and −→ı ∈ I ′e,k such that −→ı ·k ik ∈ Ie: indeed in

this case e = ek,ik . Since
(
ε′k,ik

)
ik∈Ik

is summable too, it follows that
(
ε′k,ik

)
e∈(!)∆,−→ı ∈Ie

is

summable. By associativity, we obtain∑
e∈(!)∆
−→ı ∈Ie

a′e,−→ı .e =
∑
e∈(!)∆

∑
−→ı ∈Ie

a′e,−→ı

e = ε

and ∑
e∈(!)∆
−→ı ∈Ie

a′e,−→ı .ε
′
k,ik

=
∑
ik∈Ik

 ∑
−→ı ∈I′ek,ik ,k

a′ek,ik ,
−→ı ·kik

ε′k,ik = ε′k

for all k ∈ K.
Write b =

∑
k∈K bk. For all e ∈ (!)∆ and all −→ı = (ik)k∈K ∈ Ie, we have e⇒(bk) ε

′
k,ik

for

all k ∈ K hence Lemma 6.14 gives ε′′
e,−→ı ∈ N[(!)∆] such that ε′k,ik ⇒(2bk b)

ε′′
e,−→ı for all k ∈ K.

Moreover, for all k ∈ K and e′′ ∈ (!)∆, if e′′ ∈
∣∣∣ε′′e,−→ı ∣∣∣ then there is e′ ∈

∣∣∣ε′k,ik ∣∣∣ such that

e′ Ï
(2bk b)

e′′, and then e Ï(bk) e
′: it follows that s(e) ≤ 4bk+2bk bs(e′′) and fv(e) = fv(e′′).

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:37

Since each Ie is finite, there are finitely many pairs (e,−→ı) ∈
∑

e∈(!)∆ Ie such that e′′ ∈
∣∣∣ε′′e,−→ı ∣∣∣.

Hence the family
(
ε′′
e,−→ı

)
e∈(!)∆,−→ı ∈Ie

is summable. Recall moreover that ε′k,ik ∈ N[E ′] for all

k ∈ K and ik ∈ Ik: we obtain

ε′k ⇒̃(2bk b)E ′

∑
e∈(!)∆
−→ı ∈Ie

a′e,−→ı .ε
′′
e,−→ı

for all k ∈ K, which concludes the proof.

6.3. Bounded depth of substitution. In the previous subsection, we relied on the additive
splitting property to establish the confluence of ⇒̃(∂) : this is because there is no maximal

way to ⇒̃(b)-reduce a resource vector, hence we must track precisely the different redexes
that are fired in each reduction of a critical pair.

We can get rid of this hypothesis by considering a more uniform bound on reductions.
A first intuition would be to bound the depth at which redexes are fired, but as with ⇒(m|k)

this boundedness condition is not preserved in residuals: rather, we have to bound the depth
at which variables are substituted. First recall from Definition 3.2 that mdx(s) = max dx(s)
is the maximum depth of an occurrence of x in s. Then:

Definition 6.18. We define a family of relations
(
⇒bdc

)
d∈N inductively as follows:

• e⇒b0c e for all e ∈ (!)∆;
• x⇒bd+1c x for all x ∈ V;
• λx s⇒bd+1c λxσ

′ if s⇒bdc σ′;
• 〈s〉 t⇒bd+1c 〈σ′〉 τ ′ if s⇒bd+1c σ

′ and t⇒bdc τ ′;
• [s1, . . . , sr]⇒bd+1c [σ′1, . . . , σ

′
r] if si ⇒bd+1c σ

′
i for all i ∈ {1, . . . , r};

• 〈λx s〉 t⇒bd+1c ∂xσ
′ · τ ′ if mdx(s) ≤ d, s⇒bdc σ′ and t⇒bdc τ ′.

It should be clear that if e⇒bdc ε′ then e⇒(d) ε
′, and moreover e⇒bd′c ε′ for all d′ ≥ d.

We also have e⇒bh(e)c ε
′ as soon as e⇒∂ ε

′.

Definition 6.19. For all e ∈ (!)∆ we define the full parallel reduct Fbdc(e) at substitution
depth d of e by induction on the pair (d, e) as follows:

Fb0c(e) := e

Fbd+1c(x) := x

Fbd+1c(λx s) := λxFbdc(s)

Fbd+1c
(
〈λx s〉 t

)
:= ∂xFbdc(s) · Fbdc

(
t
)

(if mdx(s) ≤ d)

Fbd+1c
(
〈s〉 t

)
:=
〈
Fbd+1c(s)

〉
Fbdc

(
t
)

(in the other cases)

Fbd+1c([s1, . . . , sn]) :=
[
Fbd+1c(s1), . . . ,Fbd+1c(sn)

]
Then if ε =

∑n
i=1 ei ∈ N[(!)∆], we set Fbdc(ε) :=

∑n
i=1 Fbdc(ei).

Lemma 6.20. For all e ∈ (!)∆, e⇒bdc Fbdc(e).
Proof. By a straightforward induction on d then on e.

It follows that e⇒(d) Fbdc(e), hence if e′ ∈
∣∣Fbdc(e)∣∣ then s(e) ≤ 4ds(e′). In particular

Fbdc defines a linear-continuous function on S(!)∆ .

9:38 Lionel Vaux Vol. 15:3

Lemma 6.21. If e ⇒bd0c ε
′, u ⇒bd1c υ

′ and d ≥ max ({d0} ∪ {dx + d1 − 1 ; dx ∈ dx(e)})
then ∂xe · u⇒bdc ∂xε′ · υ′.

Proof. Write n = #u, u = [u1, . . . , un] and υ′ = [υ′1, . . . , υ
′
n] so that ui ⇒bd1c υ

′
i for

i ∈ {1, . . . , n}.
The proof is by induction on the reduction e⇒bd0c ε

′. We treat the cases d0 = 0 and
d0 > 0 uniformly by a further induction on e, setting d′0 = max {0, d0 − 1}.

If d0 = d′0 + 1, e = 〈λy s〉 t and ε′ = ∂yσ
′ · τ ′ with y 6∈ {x} ∪ fv

(
t
)
∪ fv(u), mdy(s) ≤ d′0,

s⇒bd′0c σ
′ and t⇒bd′0c τ

′, then we have

∂xe · u =
∑

(I,J) partition of {1,...,n}

〈λy (∂xs · uI)〉 ∂xt · uJ

and
∂xε
′ · υ′ =

∑
(I,J) partition of {1,...,n}

∂y
(
∂xs · υ′I

)
·
(
∂xt · υ′J

)
.

Observe that d > 0 and d−1 ≥ max {d′0}∪
{
d′x + d1 − 1 ; d′x ∈ dx(s) ∪ dx

(
t
)}

. By induction

hypothesis, we obtain ∂xs ·uI ⇒bd−1c ∂xσ
′ ·υ′I and ∂xt ·uJ ⇒bd−1c ∂xτ

′ ·υ′J , and we conclude
since mdy(∂xs · uI) = mdy(s) ≤ d′0 ≤ d− 1.

If e = y = ε′, with y 6= x, then ∂xe · u = ∂xε
′ · υ′ = y and we conclude directly by the

definition of ⇒bdc.
If e = x = ε′, then dx(e) = {1} hence d ≥ d1 and we conclude since ∂xe · u = u,

∂xε
′ · υ′ = υ′ and u⇒bd1c υ

′.
If e = λy s and ε′ = λy σ′ with y 6∈ {x}∪fv(u) and s⇒bd′0c σ

′, then write d′ = max {d′0}∪
{d′x + d1 − 1 ; d′x ∈ dx(s)}. By induction hypothesis, we obtain ∂xs·u⇒bd′c ∂xσ′·υ′. Observe
that either d = d′ + 1 or d = d′ = 0 (in that latter case, ∂xs · u = ∂xσ

′ · υ′), and then we
conclude since ∂xe · u = λy (∂xs · u) and ∂xε

′ · υ′ = λy (∂xσ
′ · υ′).

If e = 〈s〉 t and ε′ = 〈σ′〉 τ ′, with s⇒bd0c σ
′ and t⇒bd′0c τ

′, then we have

∂xe · u =
∑

(I,J) partition of {1,...,n}

〈∂xs · uI〉 ∂xt · uJ

and
∂xε
′ · υ′ =

∑
(I,J) partition of {1,...,n}

〈
∂xs · υ′I

〉 (
∂xt · υ′J

)
.

Write d′ = max {d′0} ∪
{
d′x + d1 − 1 ; d′x ∈ dx

(
t
)}

. By induction hypothesis, we obtain

∂xs ·uI ⇒bdc ∂xσ′ ·υ′I and ∂xt ·uJ ⇒bd′c ∂xτ ′ ·υ′J . Then we conclude observing that d = d′+1

or d = d′ = 0 (in that latter case, ∂xs · uI = ∂xσ
′ · υ′I and ∂xt · uJ = ∂xτ

′ · u′J).
If e = [s1, . . . , sk] and ε′ = [σ′1, . . . , σ

′
k], with si ⇒bd0c σ

′
i for i ∈ {1, . . . , k}, then we have

∂xe · u =
∑

(I1,...,Ik) partition of {1,...,n}

[∂xs1 · uI1 . . . , ∂xsk · uIk]

and
∂xε
′ · υ′ =

∑
(I1,...,Ik) partition of {1,...,n}

[
∂xσ

′
1 · υ′I1 . . . , ∂xσ′k · υ′Ik

]
.

By induction hypothesis, we obtain

[∂xs1 · uI1 . . . , ∂xsk · uIk]⇒bdc
[
∂xσ

′
1 · υ′I1 . . . , ∂xσ′k · υ′Ik

]

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:39

for all partition (I1, . . . , Ik) of {1, . . . , n} and we conclude.

Lemma 6.22. If e⇒bdc ε′ and e′ ∈ |ε′| then mdx(e′) ≤ 2d max {d,mdx(e)}.

Proof. By induction on the reduction e⇒bdc ε′.
If d = 0, then e′ = ε′ = e and the result is trivial. For the other inductive cases, write

d = d′ + 1.
If e = 〈λy s〉 t and ε′ = ∂yσ

′ · τ ′ with mdy(s) ≤ d′, s ⇒bd′c σ′ and t ⇒bd′c τ ′, choosing

y 6∈ {x} ∪ fv
(
t
)
, then e′ ∈

∣∣∂ys′ · t′∣∣ with s′ ∈ |σ′| and t
′ ∈ |τ ′|. By induction hypothesis,

mdz(s
′) ≤ 2d

′
max {d′,mdz(s)} and mdz(t

′
) ≤ 2d

′
max

{
d′,mdz

(
t
)}

for any z ∈ V. By
Lemma 3.7,

mdx
(
e′
)
≤ max

(
dx
(
s′
)
∪
{
d′y + d′x − 1 ; d′y ∈ dy

(
s′
)
, d′x ∈ dx(t

′
)
})

≤ max
{

2d
′
max

{
d′,mdx(s)

}
, 2d

′
max

{
d′,mdy(s)

}
+ 2d

′
max

{
d′,mdx

(
t
)}}

≤ 2d
′+1 max

{
d′,mdx(s),mdy(s),mdx

(
t
)}

≤ 2d max {d,mdx(e)}.
If e = λy s and ε′ = λy σ′ with s⇒bd′c σ′, choosing y 6= x, then e′ = λx s′ with s′ ∈ |σ′|.

By induction hypothesis, mdx(s′) ≤ 2d
′
max {d′,mdx(s)}. Then mdx(e′) ≤mdx(s′) + 1 ≤

2d
′
max {d′,mdx(s)}+ 1 ≤ 2d max {d,mdx(s)} ≤ 2d max {d,mdx(e)}.
If e = 〈s〉 t and ε′ = 〈σ′〉 τ ′ with s⇒bdc σ′ and t⇒bd′c τ ′, then e′ = 〈s′〉 t′ with s′ ∈ |σ′|

and t
′ ∈ |τ ′|. By induction hypothesis, mdx(s′) ≤ 2d max {d,mdx(s)} and mdx(t

′
) ≤

2d
′
max

{
d′,mdx

(
t
)}

. Then:

mdx
(
e′
)
≤ max

{
mdx

(
s′
)
,mdx

(
t
′)

+ 1
}

≤ max
{

2d max {d,mdx(s)}, 2d′ max
{
d′,mdx

(
t
)}

+ 1
}

≤ 2d max
{
d,mdx(s),mdx

(
t
)}

≤ 2d max {d,mdx(e)}.
If e = [s1, . . . , sk] and ε′ = [σ′1, . . . , σ

′
k], with si ⇒bdc σ′i for all i ∈ {1, . . . , k}, then

e′ = [s′1, . . . , s
′
k] with s′i ∈ |σ′i| for all i ∈ {1, . . . , k}. By induction hypothesis, for all

i ∈ {1, . . . , k}, mdx(s′i) ≤ 2d max {d,mdx(si)}, hence

mdx
(
e′
)

= max
{
mdx

(
s′1
)
, . . . ,mdx

(
s′k
)}

≤ 2d max {d,mdx(s1), . . . ,mdx(sk)}

= 2d max {d,mdx(e)}.

Lemma 6.23. If e⇒bdc ε′ then ε′ ⇒b2ddc Fbdc(e).

Proof. By induction on the reduction e⇒bdc ε′.
If d = 0, then ε′ = e and the result follows from Lemma 6.20. For the other inductive

cases, set d = d′ + 1.
If e = 〈λx s〉 t and ε′ = ∂xσ

′ · τ ′ with mdx(s) ≤ d′, s ⇒bd′c σ′ and t ⇒bd′c τ ′ then

by induction hypothesis, we have σ′ ⇒b2d′d′c Fbd′c(s) and τ ′ ⇒b2d′d′c Fbd′c
(
t
)
. By the

previous lemma, we moreover have mdx(σ′) ≤ 2d
′
max {d′,mdx(s)} = 2d

′
d′. It follows that

9:40 Lionel Vaux Vol. 15:3

2dd ≥ 2d
′
d′ and 2dd ≥ mdx(σ′) + 2d

′
d′ − 1 hence we can apply Lemma 6.21 to obtain

ε′ ⇒b2ddc ∂xFbd′c(s) · Fbd′c
(
t
)

= Fbdc(e).

If e = λy s and ε′ = λy σ′ with s ⇒bd′c σ′, then by induction hypothesis, σ′ ⇒b2d′d′c
Fbd′c(s), hence ε′ ⇒b2d′d′+1c λxFbd′c(s) = Fbdc(e) and we conclude since 2d

′
d′ + 1 ≤ 2dd.

If e = 〈s〉 t and ε′ = 〈σ′〉 τ ′ with s⇒bdc σ′ and t⇒bd′c τ ′, there are two subcases:

• If moreover s = λxu and mdx(u) ≤ d′ then σ′ = λxυ′ with u⇒bd′c υ′. Then by induction

hypothesis, υ′ ⇒b2d′d′c Fbd′c(u), and τ ′ ⇒b2d′d′c Fbd′c
(
t
)
. By the previous lemma, we

moreover have mdx(υ′) ≤ 2d
′
max {d′,mdx(u)} = 2d

′
d′, hence ε′ = 〈λxυ′〉 τ ′ ⇒b2d′d′+1c

∂xFbd′c(u) · Fbd′c
(
t
)

= Fbdc(e), and we conclude since 2d
′
d′ + 1 ≤ 2dd.

• Otherwise s is not an abstraction or s = λxu with mdx(u) > d′. By induction hypothesis,

σ′ ⇒b2ddc Fbdc(σ′), and τ ′ ⇒b2d′d′c Fbd′c
(
t
)
. Since 2d

′
d′ < 2dd, we obtain τ ′ ⇒b2dd−1c

Fbd′c
(
t
)

and then ε′ ⇒b2ddc
〈
Fbdc(s)

〉
Fbd′c

(
t
)

= Fbdc(e).

If e = [s1, . . . , sk] and ε′ = [σ′1, . . . , σ
′
k], with si ⇒bdc σ′i for all i ∈ {1, . . . , k}, then by

induction hypothesis, for all i ∈ {1, . . . , k}, σ′i ⇒b2ddc Fbdc(si) and we conclude directly.

Lemma 6.24. For all ⇒∂-reduction structure E, if ε ⇒̃bdcE ε
′ then ε′ ⇒̃b2ddcE Fbdc(ε

′).

Proof. Assume there is E ∈ E, summable families (ei)i∈I ∈ EI and (ε′i)i∈IN[(!)∆]I , and
a family of scalars (ai)i∈I such that ε =

∑
i∈I ai.ei, ε

′ =
∑

i∈I ai.ε
′
i and ei ⇒bdc ε′i for all

i ∈ I. Write E ′ =
⋃
i∈I |ε′i|: since E is a reduction structure, we obtain E ′ ∈ E. The family(

Fbdc(ei)
)
i∈I is summable, and by the previous lemma, ε′i ⇒b2ddc Fbdc(ei) for all i ∈ I. We

conclude that ε′ ⇒̃b2ddc
∑

i∈I ai.Fbdc(ei) = Fbdc(ε).

Similarly to ⇒̃(∂) , we set

⇒̃b∂c :=
⋃
d∈N
⇒̃bdc

and we obtain:

Corollary 6.25. For all ⇒∂-reduction structure E and all ε, ε′1, . . . , ε
′
n ∈ S(!)∆ such that

ε ⇒̃b∂cE ε
′
i for i ∈ {1, . . . , n}, there exists d ∈ N such that ε′i ⇒̃b∂cE Fbdc(ε) for i ∈ {1, . . . , n}.

6.4. Parallel reduction of resource vectors of bounded height. Recall that we have
e⇒∂ ε

′ iff e⇒(h(e)|h(e)) ε
′ iff e⇒(h(e)) ε

′ iff e⇒bh(e)c ε
′.

Definition 6.26. We say a resource vector ε ∈ S(!)∆ is bounded if {h(e) ; e ∈ |ε|} is finite.
We then write h(ε) = max {h(e) ; e ∈ |ε|}.

If E ⊆ (!)∆, we also write h(E) := {h(e) ; e ∈ E} and then

(!)B := {E ⊆ (!)∆ ; h(E) and fv(E) are finite}
which is a resource structure (see Definition 5.8). Indeed, (!)B ⊆ (!)Ffv, and if we write

(!)∆h,V := {e ∈ (!)∆ ; h(e) ≤ h and fv(e) ⊆ V }

for all h ∈ N and all V ⊆ V, we have (!)B = {(!)∆h,V ; h ∈ N and V ∈ Pf (V)}⊥⊥: this is
a consequence of a generic transport lemma [TV16]. The semimodule of bounded resource
vectors is then S〈(!)B〉.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:41

Lemma 6.27. For all h ∈ N and V ∈ Pf (V), (F(e))e∈(!)∆h,V
is summable. Moreover, for

all ε ∈ S〈(!)B〉, we have |ε| ⊆ (!)∆h(ε),fv(ε) and then, setting F(ε) :=
∑

e∈|ε| εe.F(e), we obtain

ε ⇒̃∂ |ε| F(ε).

Proof. Follows from Lemmas 6.20 and 6.12 using the fact that, if h(e) ≤ h then F(e) =
Fbhc(e).

If S is zerosumfree, we have: ε ⇒̃∂ ε
′ iff ε ⇒̃bh(ε)c ε

′ as soon as ε is bounded. More

generally, without any assumption on S, we have ε ⇒̃∂(!)∆h,V
ε′ iff ε ⇒̃bhc(!)∆h,V

ε′. We can

moreover show that bounded vectors are stable under ⇒̃∂(!)B:

Lemma 6.28. If e Ï∂ e
′ then h(e′) ≤ 2h(e)h(e).

Proof. The proof is by induction on the reduction e ⇒∂ ε
′ such that e′ ∈ |ε′|, and is very

similar to that of Lemma 6.22. We detail only the base case.
If e = 〈λx s〉 t and ε′ = ∂xσ

′ · τ ′ with s ⇒∂ σ
′ and t ⇒∂ τ

′. Then e′ ∈
∣∣∂xs′ · t′∣∣ with

s′ ∈ |σ′| and t′ ∈ |τ ′|. By induction, h(s′) ≤ 2h(s)h(s) and h
(
t′
)
≤ 2h(t)h

(
t
)
. By Lemma 3.6,

h
(
e′
)
≤ h

(
s′
)

+ h
(
t′
)

≤ 2h(s)h(s) + 2h(t)h
(
t
)

≤ 2× 2max{h(s),h(t)}max
{
h(s),h

(
t
)}

< 2max{h(s),h(t)}+1
(
max

{
h(s),h

(
t
)}

+ 1
)

= 2h(e)h(e).

It follows that (!)B is a ⇒∂-reduction structure: since ⇒̃∂(!)B coincides with ⇒̃b∂c(!)B,

Corollary 6.25 entails that ⇒̃∂(!)B is strongly confluent. We can even refine this result
following Lemma 6.27. First, let us call bounded reduction structure any ⇒∂-reduction
structure E such that E ⊆ (!)B. Then Lemma 6.24 entails:

Corollary 6.29. For all bounded reduction structure E, and all reduction ε ⇒̃∂E ε
′, ε′ ⇒̃∂E

F(ε).

It should moreover be clear that τ(M) is bounded for all M ∈ ΛS. In the next section,
we show that ⇒̃∂(!)B allows to simulate parallel β-reduction via Taylor expansion.21

7. Simulating β-reduction under Taylor expansion

From now on, for all M,N ∈ ΛS, we write M ⇒̃∂ N if τ(M) ⇒̃∂ τ(N). More generally,

for all M ∈ ΛS and all σ ∈ S(!)∆ , we write M ⇒̃∂ σ (resp. σ ⇒̃∂ M) if τ(M) ⇒̃∂ σ (resp.
σ ⇒̃∂ τ(M)). We will show in Subsection 7.1 that M ⇒̃∂ N as soon as M ⇒β N where ⇒β

is the parallel β-reduction defined as follows:

Definition 7.1. We define parallel β-reduction on algebraic terms ⇒β ⊆ ΛS × ΛS by the
following inductive rules:

• x⇒β x;

21 Observe that it is possible to establish Corollary 6.29 quite directly, following the proof of Lemma 6.24,
and using only Lemma 6.28 and a variant of Lemma 6.12 (replacing b with h(e)). This is the path adopted
in the extended abstract [Vau17] presented at CSL 2017.

9:42 Lionel Vaux Vol. 15:3

• if S ⇒β M
′ then λxS ⇒β λxM

′;
• if S ⇒β M

′ and N ⇒β N
′ then (S)N ⇒β (M ′)N ′;

• if S ⇒β M
′ and N ⇒β N

′ then (λxS)N ⇒β M
′[N ′/x];

• 0⇒β 0;
• if M ⇒β M

′ then a.M ⇒β a.M
′;

• if M ⇒β M
′ and N ⇒β N

′ then M +N ⇒β M
′ +N ′.

In particular, if 1 ∈ S admits an opposite element −1 ∈ S then ⇒̃∂(!)B is degenerate.
Indeed, we can consider ⇒β up to the equality of vector λ-terms by setting M ⇒

β̃
N if

there are M ′ 'v M and N ′ 'v N such that M ′ ⇒β N
′. Since 'τ subsumes 'v, the results

of Subsection 7.1 will imply that M ⇒̃∂(!)B N as soon as M ⇒
β̃
N . If −1 ∈ S, we have

M ⇒∗
β̃
N for all M,N ∈ ΛS by Example 4.16, hence M ⇒̃∂

∗
(!)B N .

Using reduction structures, we will nonetheless be able to define a consistent reduction
relation containing β-reduction, but restricted to those algebraic λ-terms that have a
normalizable Taylor expansion, in the sense to be defined in Section 8.

On the other hand, even assuming S is zerosumfree, Taylor expansions are not stable
under ⇒̃∂ : if M ⇒̃∂B σ′, we know from the previous section that σ′ is bounded and
M ⇒̃b∂c σ′, but there is no reason why σ′ would be the Taylor expansion of an algebraic
λ-term.

We do know, however, that σ′ ⇒̃∂B F(τ(M)), which will allow us to obtain a weak
conservativity result w.r.t. parallel β-reduction: for all reduction M ⇒̃∂

∗
B σ′ there is a

reduction M ⇒∗β M ′ such that σ′ ⇒̃∂
∗
B M ′, i.e. any ⇒̃∂B-reduction sequence from a Taylor

expansion can be completed into a parallel β-reduction sequence (Subsection 7.2). Restricted
to normalizable pure λ-terms, this will enable us to obtain an actual conservativity result.

7.1. Simulation of parallel β-reduction. We show that ⇒̃∂(!)B allows to simulate ⇒β

on S(!)∆ , without any particular assumption on S.

Lemma 7.2. If σ ⇒̃∂S σ
′ and τ ⇒̃∂T τ

′ then 〈λxσ〉 τ ⇒̃∂〈λxS〉 T ∂xσ
′ · τ ′.

Proof. Assume there are summable families (si)i∈I , (σ′i)i∈I ,
(
tj
)
j∈J and

(
τ ′j

)
j∈J

, and families

of scalars (ai)i∈I ∈ SI and (bj)j∈J ∈ T
J

such that:

• σ =
∑

i∈I ai.si, σ
′ =

∑
i∈I ai.σ

′
i and si ⇒∂ σ

′
i for all i ∈ I;

• τ =
∑

j∈J bj .tj , τ
′ =

∑
j∈J bj .τ

′
j , and tj ∈ T and tj ⇒∂ τ

′
j for all j ∈ J .

By multilinear-continuity, the families
(
〈λx si〉 tj

)
i∈I,j∈J and

(
∂xσ

′
i · τ ′j

)
i∈I,j∈J

are summa-

ble, 〈λxσ〉 τ =
∑

i∈I,j∈J aibj .〈λx si〉 tj and ∂xσ
′ · τ ′ =

∑
i∈I,j∈J aibj .∂xσ

′
i · τ ′j . It is then

sufficient to observe that 〈λx si〉 tj ⇒∂ ∂xσ
′
i · τ ′j for all (i, j) ∈ I × J .

The additional requirement on resource supports is straightforwardly satisfied, since
〈λx si〉 tj ∈ 〈λxS〉 T for all (i, j) ∈ I × J .

Lemma 7.3. If σ ⇒̃∂S σ
′ then λxσ ⇒̃∂λxS λxσ

′. If moreover τ ⇒̃∂T τ
′ then 〈σ〉 τ ⇒̃∂〈S〉 T

〈σ′〉 τ ′.

Proof. Similarly to the previous lemma, each result follows from the multilinear-continuity
of syntactic operators, and the contextuality of ⇒∂ .

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:43

Lemma 7.4. If σ ⇒̃∂S σ
′ then σ! ⇒̃∂S! σ′

!.

Proof. Assume there are summable families (si)i∈I and (σ′i)i∈I , and a family of scalars (ai)i∈I
such that σ =

∑
i∈I ai.si, σ

′ =
∑

i∈I ai.σ
′
i and si ⇒∂ σ

′
i for all i ∈ I.

Then by multilinear-continuity of the monomial construction, for all n ∈ N, the families
([si1 , . . . , sin])i1,...,in∈I and

([
σ′i1 , . . . , σ

′
in

])
i1,...,in∈I

are summable, and

σn =
∑

i1,...,in∈I
ai1 · · · ain [si1 , . . . , sin]

and
σ′
n

=
∑

i1,...,in∈I
ai1 · · · ain .

[
σ′i1 , . . . , σ

′
in

]
.

Since the supports of the monomial vectors σn (resp. σ′n) for n ∈ N are pairwise disjoint,
we obtain that the families ([si1 , . . . , sin]) n∈N

i1,...,in∈I
and

([
σ′i1 , . . . , σ

′
in

])
n∈N

i1,...,in∈I
are summable,

and

σ! =
∑
n∈N

1

n !
.σn =

∑
n∈N

i1,...,in∈I

ai1 · · · ain
n !

.[si1 , . . . , sin]

and

σ′
!
=
∑
n∈N

1

n !
.σ′

n
=

∑
n∈N

i1,...,in∈I

ai1 · · · ain
n !

.
[
σ′i1 , . . . , σ

′
in

]
which concludes the proof since each [si1 , . . . , sin]⇒∂

[
σ′i1 , . . . , σ

′
in

]
.

Lemma 7.5. If ε ⇒̃∂E ε
′ and ϕ ⇒̃∂F ϕ

′ then a.ε ⇒̃∂E a.ε
′ and ε+ ϕ ⇒̃∂E∪F ε

′ + ϕ′.

Proof. Follows directly from the definitions, using the fact that summable families form a
S-semimodule.

Lemma 7.6. If M ⇒β M
′ then M ⇒̃∂T (M) M

′.

Proof. By induction on the reduction M ⇒β M
′ using Lemmas 7.2 to 7.4 in the cases of

reduction from a simple term, and Lemma 7.5 in the case of reduction from an algebraic
term.

Recalling that T (M) ∈ B we obtain:

Corollary 7.7. If M ⇒β M
′ then M ⇒̃∂B M ′.

Observe that these results hold on Taylor supports as well, which will be useful in the
treatment of Taylor normalizable terms in Section 8:

Lemma 7.8. If M ⇒β M
′ then T (M) ⇒̃∂T (M) T (M ′) in B∆.

Proof. The proof is again by induction on the reduction M ⇒β M
′ using Lemmas 7.2 to

Lemma 7.5 in B∆ .

9:44 Lionel Vaux Vol. 15:3

7.2. Conservativity.

Definition 7.9. We define the full parallel reduct of simple terms and algebraic terms
inductively as follows:

F(x) := x F(0) := 0

F(λxS) := λxF(S) F(a.M) := a.F(M)

F((λxS)N) := F(S)[F(N)/x] F(M +N) := F(M) + F(N)

F((S)N) := (F(S))F(N) (if S is not an abstraction).

As can be expected, we have M ′ ⇒β F(M) as soon as M ⇒β M
′. In this subsection,

we will show that a similar property holds for ⇒̃∂(!)B.
Recall that, by Lemma 6.27, the full reduction operator F on resource expressions

extends to bounded resource vectors. We obtain:

Lemma 7.10. For all bounded σ0 ∈ S∆, τ ∈ S!∆, ε, ϕ ∈ S(!)∆,

F(x) = x F
(
σ!
)

= F(σ)!

F(λxσ) = λxF(σ) F(a.ε) = a.F(ε)

F(〈λxσ〉 τ) = ∂xF(σ) · F(τ) F(ε+ ϕ) = F(ε) + F(ϕ)

F(〈σ0〉 τ) = 〈F(σ0)〉F(τ) (if there is no abstraction term in |σ0|).

Proof. The proofs of those identities are basically the same as those of Lemmas 7.2 to 7.5,
the necessary summability conditions following from Lemma 6.27.

Lemma 7.11. For all M ∈ ΛS, F(τ(M)) = τ(F(M)).

Proof. We know that τ(M) is bounded. The identity is then proved by induction on simple
terms and algebraic terms, using the previous lemma in each case.

Lemma 7.12. For all bounded term reduction structure S and all M ∈ ΛS, if M ⇒̃∂S σ′

then σ′ ⇒̃∂S F(M).

Proof. By Corollary 6.29, σ′ ⇒̃∂S F(τ(M)) and we conclude by the previous lemma.

This result can then be generalized to sequences of ⇒̃∂ -reductions.

Lemma 7.13. For all bounded term reduction structure S and all M ∈ ΛS, if M ⇒̃∂
n
S σ′

then σ′ ⇒̃∂
n
S Fn(M).

Proof. By induction on n. The case n = 0 is trivial, and the inductive case follows from
the previous lemma and strong confluence of ⇒̃∂S: if M ⇒̃∂

n
S σ′ ⇒̃∂S τ then by induction

hypothesis σ′ ⇒̃∂
n
S Fn(M), hence by strong confluence, there exists τ ′ such that τ ⇒̃∂

n
S τ ′

and Fn(M) ⇒̃∂S τ ′; by the previous lemma, τ ′ ⇒̃∂ Fn+1(M).

We have thus obtained some weak kind of conservativity of ⇒̃∂B w.r.t. β-reduction,
but it is not very satisfactory: the same result would hold for the tautological relation
S〈B〉 × S〈B〉, which is indeed the same as ⇒̃∂B if 1 has an opposite element in S. Even
when S is zerosumfree, the converse to Lemma 7.6 cannot hold in general if only because
there can be distinct β-normal forms M 6'v N such that M 'τ N (see Example 4.14). Under
this hypothesis, we can nonetheless obtain an actual conservativity result on normalizable
pure λ-terms as follows.

We write 'β for the symmetric, reflexive and transitive closure of ⇒β . Similarly, if E is
a reduction structure, we write '∂ E for the equivalence on S〈E〉 induced by ⇒̃∂E.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:45

Lemma 7.14. Assume S is zerosumfree. Let M,N ∈ Λ be such that M is normalizable.
Then M '∂B N iff M 'β N .

Proof. Corollary 6.29 entails that, if E is a bounded reduction structure, then ε '∂ E ε′ iff
ε ⇒̃∂

∗
E Fn(ε′) for some n ∈ N. Now assume M ∈ ΛS is normalizable and write NF(M) for

its normal form: in particular M ⇒̃∂
∗
B NF(M), by Corollary 7.7. If M '∂B N , we thus

have NF(M) '∂B N , hence NF(M) ⇒̃∂
∗
B Fn(N) for some n ∈ N. In particular, if S is

zerosumfree, we obtain NF(M) 'τ Fn(N). If moreover M,N ∈ Λ, we deduce M 'β N by
the injectivity of τ on Λ.

The next section will allow us to establish a similar conservativity result, without any
assumption on S, at the cost of restricting the reduction relation to normalizable resource
vectors.

8. Normalizing Taylor expansions

Previous works on the normalization of Taylor expansions were restricted a priori, to a strict
subsystem of the algebraic λ-calculus:

• the uniform setting of pure λ-terms [ER08, ER06];
• the typed setting of an extension of system F to the algebraic λ-calculus [Ehr10];
• a λ-calculus extended with formal finite sums, rather than linear combinations [PTV16,

TAO17].

In all these, pathological terms were avoided, e.g. those involved in the inconsistency
Example 4.16. Moreover observe that the very notion of normalizability is not compatible
with 'v, and in particular the identity 0 'v 0.M : those previous works circumvented this
incompatibility, either by imposing normalizability via typing, or by excluding the formation
of the term 0.M .

Our approach is substantially different. We introduce a notion of normalizability on
resource vectors such that:

• both pure λ-terms and normalizable algebraic λ-terms (in particular typed algebraic
λ-terms and normalizable λ-terms with sums) have a normalizable Taylor expansion;
• the restriction of ⇒̃∂ to normalizable resource vectors is a consistent extension of both β-

reduction on pure λ-terms and normalization on algebraic λ-terms, without any assumption
on the underlying semiring of scalars.

8.1. Normalizable resource vectors. We say ε ∈ S(!)∆ is normalizable whenever the
family (NF(e))e∈|ε| is summable. In this case, we write NF(ε) :=

∑
e∈(!)∆ εe.NF(e).

Normalizable vectors form a finiteness space. Recall indeed from Subsection 3.1 that
e ≥∂ e′ iff e →∗∂ ε′ with e′ ∈ |ε′|. If e ∈ (!)∆, we write ↑e := {e′ ∈ (!)∆ ; e′ ≥∂ e}.
Then ε is normalizable iff for each normal resource expression e, |ε| ∩ ↑e is finite: writing

(!)N = {e ∈ (!)∆ ; e is normal} and (!)N = {↑e ; e ∈ (!)N}⊥∩(!)Ffv, we obtain that S〈(!)N〉
is the set of normalizable resource vectors. Observe that NF is defined on all S〈(!)N〉 but is
guaranteed to be linear-continuous only when restricted to subsemimodules of the form SE

with E ∈ (!)N.
For our study of hereditarily determinable terms in Section 9, it will be useful to

decompose (!)N into a decreasing sequence of finiteness structures.

9:46 Lionel Vaux Vol. 15:3

Definition 8.1. We define the monomial depth d(e) ∈ N of a resource expression e ∈ (!)∆
as follows:

d(x) := 0 d
(
〈s〉 t

)
:= max(d(s),d

(
t
)
)

d(λx s) := d(s) d([t1, . . . , tn]) := 1 + max {d(ti) ; 1 ≤ i ≤ n}

We write (!)Nd = {e ∈ (!)N ; d(e) ≤ d} so that (!)N =
⋃
d∈N(!)Nd. We then write

(!)Nd = {↑e ; e ∈ (!)Nd}⊥∩ (!)Ffv so that (!)N =
⋂
d∈N(!)Nd. Each finiteness structure (!)Nd

is moreover a reduction structure for any reduction relation contained in →∗∂ (and so is
(!)N). Indeed, writing ↓e = {e′ ∈ (!)∆ ; e ≥∂ e′} and ↓E =

⋃
e∈E ↓e, we obtain:

Lemma 8.2. If E ∈ (!)Nd then ↓E ∈ (!)Nd.

Proof. Let e′′ ∈ (!)Nd and e′ ∈ ↓E ∩ ↑e′′. Necessarily, there is e ∈ E such that e ≥∂ e′.
Then e ∈ E ∩ ↑e′′: since E ∈ (!)Nd, there are finitely many values for e hence for e′ by
Lemma 3.13.

It follows that normalizable vectors are stable under reduction:

Lemma 8.3. If ε ⇒̃∂(!)N ε′ then ε′ ∈ S〈(!)N〉 and NF(ε) = NF(ε′).

Proof. Assume there exists E ∈ (!)N and families (ai)i∈I ∈ SI , (ei)i∈I ∈ (!)∆I and (ε′i)i∈I ∈
N[(!)∆]I such that:

• (ei)i∈I is summable and ε =
∑

i∈I ai.ei;
• (ε′i)i∈I is summable and ε′ =

∑
i∈I ai.ε

′
i;

• for all i ∈ I, ei ∈ E and ei ⇒̃∂ ε
′
i.

We obtain that E ′ :=
⋃
i∈I |ε′i| ∈ (!)N by Lemma 8.2, hence ε′ ∈ S〈(!)N〉 since |ε′| ⊆ E ′.

Then, by the linear-continuity of NF on SE
′
,

NF(ε) =
∑
i∈I

ai.NF(ei) =
∑
i∈I

ai.NF
(
ε′i
)

= NF

(∑
i∈I

ai.ε
′
i

)
= NF

(
ε′
)
.

As a direct consequence, we obtain that '∂ (!)N is consistent, without any additional
condition on the semiring S:

Corollary 8.4. If ε '∂ (!)N ε′ (in particular ε, ε′ ∈ S〈(!)N〉) then NF(ε) = NF(ε′).

We can moreover show that the normal form of a Taylor normalizable term is obtained
as the limit of the parallel left reduction strategy. Let us first precise the kind of convergence

we consider. With the notations of Subsection 2.3, we say a sequence
−→
ξ = (ξn)n∈N ∈

(
SX
)N

of vectors converges to ξ′ if, for all x ∈ X there exists nx ∈ N such that, for all n ≥ nx,
ξn,x = ξ′x. In other words we consider the product topology on SX , S being endowed with
the discrete topology. Similarly to the notion of summability, this notion of convergence
coincides with that induced by the linear topology on SX associated with the maximal
finiteness structure P(X) on X: in this particular case, a base of neighbourhoods of 0 is

given by the sets
{
ξ ∈ SX ; |ξ| ∩ X ′ = ∅

}
for X ′ ∈ P(X)⊥ = Pf (X), or equivalently by the

the sets
{
ξ ∈ SX ; x 6∈ |ξ|

}
for x ∈ X.

The parallel left reduction strategy on resource vectors is defined as follows.

Definition 8.5. We define the left reduct of a resource expression inductively as follows:

L(λx s) := λx L(s)

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:47

L([t1, . . . , tn]) := [L(t1), . . . , L(tn)]

L
(
〈x〉 t1 · · · tn

)
:= 〈x〉 L

(
t1
)
· · · L

(
tn
)

L
(
〈λx s〉 t0 t1 · · · tn

)
:=
〈
∂xs · t0

〉
t1 · · · tn.

This is extended to finite sums of resource expressions by linearity: L(
∑n

i=1 ei) =
∑n

i=1 L(ei).

Lemma 8.6. For all resource expression e ∈ (!)∆, e⇒(1) L(e).

Proof. Easy by induction on e.

In particular NF(e) = NF(L(e)) for all e ∈ (!)∆. By Lemma 6.12, we moreover obtain
that if e′ ∈ |L(e)| then s(e) ≤ 4s(e′) and fv(e) = fv(e′). As a consequence (L(e))e∈(!)∆ is

summable. For all ε ∈ S(!)∆ , we set

L(ε) :=
∑
e∈(!)∆

εe.L(e)

and obtain a linear-continuous map on resource vectors.
For all ε ∈ S(!)∆ , we write ε�(!)N for the projection of ε on normal resource expressions:

ε�(!)N :=
∑

e∈(!)N εe.e ∈ S(!)N . We obtain:

Theorem 8.7. For all normalizable resource vector ε ∈ S〈(!)N〉,
(
Lk(ε)�(!)N

)
k∈N converges

to NF(ε) in S(!)N .

Proof. Fix e′ ∈ N . Since |ε| ∈ (!)N, E := |ε| ∩ ↑e′ is finite. Let k′ be such that Lk
′
(e) is

normal for all e ∈ E . Then NF(ε)e′ =
∑

e∈|ε| εe.NF(e)e′ =
∑

e∈E εe.NF(e)e′ =
∑

e∈E εe.L
k′(e)e′ .

Moreover, by the linear-continuity of Lk on resource vectors,
(
Lk(ε)�(!)N

)
e′

= Lk(ε)e′ =∑
e∈∆ εe.L

k(e)e′ =
∑

e∈E εe.L
k(e)e′ =

∑
e∈E εe.L

k′(e)e′ .

Observe that the projection on normal expressions is essential:

Example 8.8. Consider the looping term Ω := (λx (x)x)λx (x)x: one can check that
NF(τ(Ω)) = τ(Ω)�N = 0, but it will follow from the results of subsection 8.2 that Lk(τ(Ω)) =
τ(Ω) 6= 0 for all k ∈ N.

Analyzing this phenomenon was fundamental in the characterization of strongly normal-
izable λ-terms by a finiteness structure on resource terms, obtained by Pagani, Tasson and
the author [PTV16].

8.2. Taylor normalizable terms. It is possible to transfer some of the good properties
of reduction on normalizable vectors to those algebraic λ-terms that have a normalizable
Taylor expansion. More precisely, we say M ∈ ΛS is Taylor normalizable if T (M) ∈ (!)N.
Then:

Lemma 8.9. Assume M,M ′ ∈ ΛS are such that M ⇒β M
′. Then M is Taylor normalizable

iff M ′ is Taylor normalizable.

Proof. First observe that by Lemma 7.8, we have T (M) ⇒̃∂T (M) T (M ′) in B∆ . Moreover
observe that B〈N〉 is nothing but N.

Assume M is Taylor normalizable, i.e. T (M) ∈ N: by Lemma 8.3, T (M ′) ∈ B〈N〉, i.e.
M ′ is Taylor normalizable.

9:48 Lionel Vaux Vol. 15:3

Conversely, assume M ′ is Taylor normalizable and let s′′ ∈ N and S := T (M) ∩ ↑s′′:
we prove S is finite. Fix an enumeration (sk)k∈K ∈ SK of S: S = {sk ; k ∈ K}. Since
T (M) ⇒̃∂T (M) T (M ′), we have T (M) = {ti ; i ∈ I} and T (M ′) =

⋃
i∈I |τ ′i | with ti ⇒∂ τ

′
i

for all i ∈ I. Now for all k ∈ K, there exists i ∈ I such that sk = ti. Since sk ≥∂ s′′, τ ′i 6= 0
and we can fix s′k ∈ |τ ′i | ⊆ T (M ′) such that sk Ï∂ s

′
k ≥∂ s′′. Since T (M ′) ∈ N, the set

{s′k ; k ∈ K} is finite. Then S ⊆
{
s ∈ ∆ ; k ∈ K, s Ï(h(M)) s

′
k

}
which is finite by Lemma

6.12.

The consistency of β-reduction on Taylor normalizable terms follows.

Theorem 8.10. Assume M,M ′ ∈ ΛS are such that M 'β M ′. Then M is Taylor normal-

izable iff M ′ is Taylor normalizable, and in this case NF(τ(M)) = NF(τ(M ′)).22

Proof. The first part is a direct corollary of Lemma 8.9. By Lemma 7.6, it follows that
M '∂ (!)N M ′, and then we conclude by Corollary 8.4.

In other words, when restricted to Taylor normalizable terms, the normal form of
Taylor expansion is a valid notion of denotation. Remark that, in general, it is not possible
to generalize this result to those terms M such that τ(M) is normalizable because of the
interaction with coefficients: consider, e.g., 0 'τ (I)∞x+(−1).(I)∞x ⇒β ∞x+(−1).(I)∞x,
and observe that τ(∞x + (−1).(I)∞x) 6∈ S〈N〉.

Definition 8.11. We define the left reduct of an algebraic λ-term inductively as follows:

L(λxS) := λx L(S) L(0) := 0

L((x)M1 · · ·Mn) := (x) L(M1) · · · L(Mn) L(a.M) := a.L(M)

L((λxS)M0M1 · · ·Mn) := (S[M0/x])M1 · · ·Mn L(M +N) := L(M) + L(N)

Observe that this definition is exhaustive by Fact 4.18. It should be clear that M ⇒β

L(M) for all term M , and that L(M) = M when M is in normal form (although the converse
may not hold). Now we can establish that L commutes with Taylor expansion.

Lemma 8.12. For all σ ∈ S∆, L
(
σ!
)

= L(σ)!.

Proof. First observe that by the definition of L and the linear-continuity of both L and the
monomial construction, for all σ1, . . . , σn ∈ S∆ , we have L([σ1, . . . , σk]) = [L(σ1), . . . , L(σk)].

In particular, L
(
σk
)

= L(σ)k. We deduce that L
(
σ!
)

= L
(∑

k∈N
1
k ! .σ

k
)

=
∑

k∈N
1
k ! .L(σ)k =

L(σ)!, by the linear-continuity of L.

Lemma 8.13. For all M ∈ ΛS, L(τ(M)) = τ(L(M)).

Proof. By induction on the definition of L(M): in addition to the inductive hypothesis and
the linear-continuity of L, we use Lemma 8.12 in the case of a head variable, and Lemmas
4.7, 4.10 and 8.12 in the case of a head β-redex.

As a direct corollary of Theorem 8.7, we obtain:

Theorem 8.14. For all Taylor normalizable term M , the sequence of normal resource
vectors

(
τ
(
Lk(M)

)
�N
)
k∈N converges to NF(τ(M)) in SN .

22 In the standard terminology of denotational semantics, Theorem 8.10 expresses the soundness of
NF(τ(·)) on Taylor normalizable terms.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:49

This property is very much akin to the fact that the Böhm tree BT(M) of a pure λ-term
M is obtained as the limit (in an order theoretic sense) of normal form approximants of the
left reducts of M . This analogy will be made explicit in Section 9. Before that, we apply
our results to normalizable algebraic λ-terms.

8.3. Taylor expansion and normalization commute on the nose. By a general stan-
dardization argument, we can show that parallel reduction is a normalization strategy:

Lemma 8.15. An algebraic λ-term M is normalizable iff there exists k ∈ N, such that
Lk(M) = NF(M).

Proof. Recall that we consider algebraic λ-terms up to '+ only. Then one can for instance
use the general standardization technique developed by Leventis for a slightly different
presentation of the calculus [Lev16].

A direct consequence is that M normalizes iff the judgement M ⇓ can be derived
inductively by the following rules:23

S ⇓
λxS ⇓

M1 ⇓ · · · Mn ⇓
(x)M1 · · ·Mn ⇓

(S[M0/x])M1 · · ·Mn ⇓
(λxS)M0M1 · · ·Mn ⇓ 0⇓

M ⇓
a.M ⇓

M ⇓ N ⇓
(M +N)⇓

In the remaining of this subsection, we prove that normalizable algebraic λ-terms are
Taylor normalizable, using a reducibility technique: like in Ehrhard’s work for the typed
case [Ehr10], or our previous work for the strongly normalizable case [PTV16], (!)N is the
analogue of a reducibility candidate. We prove each key property (Lemmas 8.16 to 8.20)
using the family of structures (!)Nd rather than (!)N directly: this will be useful in section
9, while the corresponding results for (!)N are immediately derived from those.

Lemma 8.16. If S ∈ Nd then λxS ∈ Nd.

Proof. Let t′ ∈ Nd and t ∈ (λxS) ∩ ↑t′. Necessarily, t = λx s and t′ = λx s′ with s ∈ S ∩ ↑s′
which is finite by assumption.

Lemma 8.17. If S ∈ Nd then S ! ∈ !Nd+1.

Proof. Let t
′ ∈ !Nd+1 and t ∈ S ! ∩ ↑t′. Write n = #t

′
. Without loss of generality, we can

write t = [t1, . . . , tn] and t
′
= [t′1, . . . , t

′
n] so that ti ≥∂ t′i and t′i ∈ Nd, for all i ∈ {1, . . . , n}.

Since t ∈ S !, each ti ∈ S. Since S ∈ Nd, t
′
i being fixed, there are finitely many possible

values for each ti.

Lemma 8.18. If T 1, . . . , T n ∈ !Nd then 〈x〉 T 1 · · · T n ∈ Nd.

Proof. Let t′ ∈ Nd and t ∈
(
〈x〉 T 1 · · · T n

)
∩ ↑t′. Necessarily, t = 〈x〉 t1 · · · tn and t′ =

〈x〉 t′1 · · · t
′
n and, for each i ∈ {1, . . . , n}, ti ∈ T i, ti ≥∂ t

′
i and t

′
i ∈ !Nd: since T i ∈ !Nd, there

are finitely many possible values for each ti.

Corollary 8.19. If T1, . . . , Tn ∈ Nd then 〈x〉 T1
! · · · Tn! ∈ Nd+1.

Lemma 8.20. If
〈
∂xS · T 0

〉
T 1 · · · T n ∈ Nd then 〈λxS〉 T 0 T 1 · · · T n ∈ Nd.

23 Moreover, it seems natural to conjecture that if M ⇓ then M (or, rather, its 'v-class) is normalizable
in the sense of Alberti [Alb14], and then the obtained normal forms are the same (up to 'v).

9:50 Lionel Vaux Vol. 15:3

Proof. Let u′ ∈ Nd, and let u ∈
(
〈λxS〉 T 0 T 1 · · · T n

)
∩↑u′. In other words, u′ ∈ |NF(u)| and

we can write u = 〈λx s〉 t0 t1 · · · tn with s ∈ |S| and ti ∈
∣∣T i∣∣ for i ∈ {0, . . . , n}. Write v =〈

∂xs · t0
〉
t1 · · · tn: Corollary 3.14 entails v ≥∂ u′, hence we have v ∈

(〈
∂xS · T 0

〉
T 1 · · · T n

)
∩

↑u′. By assumption, there are finitely many possible values for v. Then, v being fixed, by
Lemma 3.12, we have fv(u) = fv(v) and s(u) ≤ 2s(v) + 2, hence there are finitely many
possible values for u.

Theorem 8.21. If M is normalizable, then T (M) ∈ N, and τ(M) ∈ S〈N〉.

Proof. By induction on the derivation of M ⇓: Lemma 8.16, Corollary 8.19 and Lemma 8.20
respectively entail the translation of the first three inductive rules through Taylor expansion.
The other three follow from the fact that N is a resource structure (because it is a finiteness
structure).

It remains to prove that in this case, τ(NF(M)) is indeed the normal form of τ(M).

Theorem 8.22. If M is normalizable, then NF(τ(M)) = τ(NF(M)).

Proof. By Theorem 8.21, M is Taylor normalizable. Then Theorem 8.10 entails NF(τ(M)) =
NF(τ(NF(M))) = τ(NF(M)).

8.4. Conservativity. The restriction to normalizable vectors allows us to prove an analogue
of Lemma 7.14, without any assumption on the semiring of scalars.

Lemma 8.23. Let M,N ∈ Λ be normalizable. Then M '∂N N iff M 'β N .

Proof. Assume M '∂N N . By Corollary 8.4, we have NF(τ(M)) = NF(τ(M ′)). By
Theorem 8.22, we obtain NF(M) 'τ NF(M ′). Since M and N are pure λ-terms, we deduce
NF(M) = NF(N) from the injectivity of τ on Λ.

The reverse direction is similar to Theorem 8.10 and does not depend on M and N
being pure λ-terms: apply Lemmas 7.6, 8.3 and 8.9 to the reduction path from M to N

We can adapt this result to non-normalizing pure λ-terms thanks to previous work by
Ehrhard and Regnier:24

Theorem 8.24 [ER08, ER06]. For all pure λ-term M ∈ Λ, T (M) ∈ N and NF(τ(M)) =
τ(BT(M)) where BT(M) denotes the Böhm tree of M .

Here Böhm tree is to be understood as generalized normal form for left β-reduction. In
particular it does not involve η-expansion. More formally, the Böhm tree of a λ-term is the
possibly infinite tree obtained coinductively as follows:

• if M is head normalizable and its head normal form is λx1 · · ·λxn (x)N1 · · ·Nk then
BT(M) := λx1 · · ·λxn (x)BT(N1) · · ·BT(Nk)
• otherwise BT(M) := ⊥, where ⊥ is a constant representing unsolvability.

Taylor expansion can be generalized to Böhm trees [ER06], setting in particular τ(⊥) = 0:
this is still injective.

Lemma 8.25. If M,N ∈ Λ and M '∂N N then BT(M) = BT(N).

Proof. By Corollary 8.4, we have NF(τ(M)) = NF(τ(M ′)). By Theorem 8.24, we obtain
τ(BT(M)) = τ(BT(N)). We conclude since τ is injective on Böhm trees.

24 We could as well rely on Theorem 9.14, to be proved in the next section.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:51

In the next and final section, we prove a generalization of Theorem 8.24 to the non-
uniform setting which is made possible by the results we have achieved so far.

9. Normal form of Taylor expansion, façon Böhm trees

The Böhm tree construction is often introduced as the limit of an increasing sequence
(BTd(M))d∈N of finite normal form approximants, aka finite Böhm trees, where BTd(M) is
defined inductively as follows:

• BT0(M) = ⊥;
• if M is head normalizable and its head normal form is λx1 · · ·λxn (x)N1 · · ·Nk then
BTd+1(M) := λx1 · · ·λxn (x)BTd(N1) · · ·BTd(Nk)
• otherwise BTd+1(M) := ⊥;

and the order on Böhm trees is the contextual closure of the inequality ⊥ ≤M for all M .
In this final section of our paper, we show that the normal form of Taylor expansion

operator generalizes this construction to the class of hereditarily determinable terms: these
encompass both all pure λ-terms and all normalizable algebraic λ-terms, but exclude terms
such as ∞x, that produce unbounded sums of head normal forms. More precisely, we show
that any hereditarily determinable term M is Taylor normalizable, and moreover admits
a sequence of approximants (NAd(M))d∈N, such that each NAd(M) is an algebraic λ-term
in normal form, and the sequence of normal term vectors (τ(NAd(M)))d∈N converges to
NF(τ(M)).

The results in this section should not hide the fact that the more fundamental notion is
that of Taylor normalizable term, which arises naturally by combining Taylor expansion with
the normalization of resource terms, subject to a summability condition. We believe this
approach is quite robust, and may be adapted modularly following both parameters: to other
systems admitting Taylor expansion; and to variants of summability, possibly associated
with topological conditions of the semiring of scalars.

By contrast, the definition of hereditarily determinable terms is essentially ad-hoc. Its
only purpose is to allow us to generalize Theorem 8.24 and support our claim that: the
normal form of Taylor expansion extends the notion of Böhm tree to the non-uniform setting.

9.1. Taylor unsolvability. In the ordinary λ-calculus, head normalizable terms are exactly
those with a non trivial Böhm tree. This is reflected via Taylor expansion: it is easy to check
that NF(τ(M)) = 0 iff M has no head normal form. In the non uniform setting, a similar
result holds, although we need to be more careful about the interplay between reduction
and coefficients.

Definition 9.1. We say an algebraic λ-term M (resp. simple term S) is weakly solvable if
the judgement M ⇓w can be derived inductively by the following rules:

(x)M1 · · ·Mn ⇓w

S ⇓w

λxS ⇓w

(S[M0/x])M1 · · ·Mn ⇓w

(λxS)M0M1 · · ·Mn ⇓w

M ⇓w

a.M ⇓w

M ⇓w

M +N ⇓w

N ⇓w

M +N ⇓w

It should be clear that, if M is a pure λ-term, M ⇓w iff M is head normalizable. In the
general case, we show that M ⇓w iff normalizing the Taylor expansion of M yields a non
trivial result. More formally:

Definition 9.2. We say an algebraic λ-term M ∈ ΛS is Taylor unsolvable and write M ⇑ if
NF(s) = 0 for all s ∈ T (M).

9:52 Lionel Vaux Vol. 15:3

In particular, if M ⇑ then τ(M) ∈ S〈N〉 and NF(τ(M)) = 0: indeed, |τ(M)| ⊆ T (M).
Beware that the reverse implication does not hold in general. We can then show that M ⇓w

iff M is Taylor solvable (Lemmas 9.3 and 9.4).

Lemma 9.3. If there exists s ∈ T (M) such that NF(s) 6= 0 then M ⇓w.

Proof. We prove by induction on k ∈ N then on M ∈ ΛS that if
∣∣Lk(s)∣∣ contains a normal

resource term and s ∈ T (M) then M ⇓w.
If M = (x)M1 · · ·Mn we conclude directly.
If M = λxT then s = λx t with t ∈ T (T): necessarily

∣∣Lk(t)∣∣ contains a normal resource
term and by induction hypothesis we obtain T ⇓w hence M ⇓w.

If M = (λxT)M0M1 · · ·Mn then s = 〈λx t〉 s0 s1 · · · sn with t ∈ T (T) and si ∈ T (Mi)
!

for i ∈ {0, . . . , n}. Necessarily k > 0 and there is s′ ∈ |L(s)| = |〈∂xt · s0〉 s1 · · · sn| such that∣∣Lk−1(s′)
∣∣ contains a normal resource term. By Lemma 4.12, s′ ∈ T ((T [M0/x])M1 · · ·Mn):

we obtain (T [M0/x])M1 · · ·Mn ⇓w by induction hypothesis, and then M ⇓w.
If M = a.N , M = N + P or M = P + N with s ∈ T (N) then we obtain N ⇓w by

induction hypothesis, and then M ⇓w.

Lemma 9.4. If M ⇓w, then there exists s ∈ T (M) such that NF(s) 6= 0.

Proof. By induction on the derivation of M ⇓w.
If M = (x)M1 · · ·Mn, set s = 〈x〉 [] · · · [] (x applied n times to the empty monomial):

s ∈ T (M) and s is normal.
If M = λxT with T ⇓w: by induction hypothesis, we obtain t ∈ T (T) with NF(t) 6= 0

and set s = λx t.
If M = λxTM0M1 · · ·Mn and M ′ = (T [M0/x])M1 · · ·Mn with M ′ ⇓w, the induction

hypothesis gives s′ ∈ T (M ′) such that NF(s′) 6= 0. By Lemma 4.12, there exist t ∈ T (T)

and ui ∈ T (Mi)
! for i ∈ {0, . . . , n} such that s′ ∈ |〈∂xt · u0〉u1 · · ·un|. We then set s =

〈λx t〉u0 · · ·un.
If M = a.N , M = N + P or M = P + N with N ⇓w: the induction hypothesis gives

s ∈ T (N) ⊆ T (M) with NF(s) 6= 0 directly.

Taylor unsolvable terms are thus exactly those that are not weakly solvable.25 They are
moreover stable under 'β:

Lemma 9.5. If M ⇒β M
′ then M ⇑ iff M ′ ⇑.

Proof. If E ⊆ (!)∆, we write NF(E) :=
⋃
{|NF(e)| ; e ∈ E}. We leave as an exercise to the

reader the proof that NF(T (M)) = NF(T (M ′)) as soon as M ⇒β M
′: this is the analogue of

Lemma 8.3 on Taylor supports (in particular there is no summability condition, and scalars
play absolutely no rôle).

25 If we restrict to non-deterministic λ-terms (i.e. only add a sum operator to the usual λ-term constructs)
then we obtain M ⇑ iff NF(T (M)) = ∅, which states the adequacy of NF(T (·)) for the observational equivalence
associated with may-style head normalization.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:53

9.2. Hereditarily determinable terms. The Böhm tree construction is based on the fact
that, for a pure λ-term M , either M is unsolvable, or it reduces to a head normal form; and
then the same holds for the arguments of the head variable. We will be able to follow a
similar construction for the class of hereditarily determinable terms: intuitively, a simple
term is in determinate form if it is either unsolvable or a head normal form; and a term
is hereditarily determinable if it reduces to a sum of determinate forms, and this holds
hereditarily in the arguments of head variables. Formally:

Definition 9.6. Let M ∈ ΛS be an algebraic λ-term. We say M is d-determinable if the
judgement M ⇓d can be derived inductively from the following rules:

M ⇓0

M ⇑
M ⇓d

S ⇓d
λxS ⇓d

M1 ⇓d · · · Mn ⇓d
(x)M1 · · ·Mn ⇓d+1

M ⇓d
a.M ⇓d

M ⇓d N ⇓d
M +N ⇓d

(S[M0/x])M1 · · ·Mn ⇓d
(λxS)M0M1 · · ·Mn ⇓d

We say M is hereditarily determinable and write M ⇓ω if M ⇓d for all d ∈ N. We say M
is in d-determinate form and write M dfd if M ⇓d is derivable from the above rules excluding
the last one.

It should be clear that M ⇓ implies M ⇓ω. Observing that M ⇑ for all unsolvable pure
λ-terms (i.e. those pure λ-terms having no head normal form), we moreover obtain M ⇓ω
for all M ∈ Λ.

We can already prove that hereditarily determinable terms are Taylor normalizable:26

Lemma 9.7. If M ⇓d then T (M) ∈ Nd. If moreover M ⇓ω then T (M) ∈ N.

Proof. The second fact follows directly from the first one, which we prove by induction on
the derivation of M ⇓d: we use the definition of M ⇑ for the base case, and rely on Lemma
8.16, Corollary 8.19, Lemma 8.20, or the fact that Nd is a resource structure to establish
the induction in the other cases.

On the other hand, there are Taylor normalizable terms that do not follow this pattern:
intuitively, hereditarily determinable terms rule out any representation of an infinite sum of
head normal forms, whereas Taylor normalizability allows to represent an infinite sum of
normal forms as long as their Taylor expansions are pairwise disjoint. More formally:

Example 9.8. Write s0 := λxx, and sn+1 := λx sn. Let Mstep = λy λz z + λy λz λx (y) y z

and then Mloop = (Mstep)Mstep λxx. Write u = λy λz z and vn,k = λy λz λx 〈y〉 yn zk
so that T (Mstep) = {u} ∪ {vn,k ; n, k ∈ N}. Let s ∈ T (Mloop) be such that NF(s) 6=
0: a simple inspection shows that either s = 〈u〉 [] [s0] and then NF(s) = s0, or s =
〈vn,1〉 [v0,1, . . . , vn−1,1, u] [s0] and then NF(s) = sn+1. It follows that Mloop is Taylor nor-
malizable. On the other hand, observe that L2(Mloop) = λxx + λxMloop, which is not

1-determinate: hence no L2k(Mloop) is 1-determinate and it will follow from Lemma 9.10
that Mloop is not 1-determinable.

Hence hereditarily determinable terms form a strict subclass of Taylor normalizable
terms, containing both pure λ-terms and normalizable algebraic λ-terms. For each level
d ∈ N, the class of d-determinable terms (resp. of d-determinate terms) is moreover stable
under left reduction:

Lemma 9.9. If M ⇓d (resp. M dfd) then L(M)⇓d (resp. L(M) dfd).

26 Observe that this fails if we replace T (M) with |τ(M)| in the definition of M ⇑: write I := λxx and
consider, e.g., M = (λx (I) (x+ (−1).∞y))∞y which head-reduces to (I) (∞y + (−1).∞y) 'τ (I) 0, with
(I) 0⇑ but of course τ(M) 6∈ N0. The very same problem would occur if we were to consider terms up to 'v.

9:54 Lionel Vaux Vol. 15:3

Proof. We give the proof for d-determinable terms, by induction on the derivation of M ⇓d:
the case of d-determinate terms is similar, except that we do not consider head redexes.

If d = 0 the result is direct. Otherwise, write d = d′ + 1.
If M ⇑ then L(M)⇑ by Lemma 9.5, and we conclude directly.
If M = λxS with S ⇓d: by induction hypothesis L(S)⇓d, and then λx L(S)⇓d.
If M = (x)M1 · · ·Mn with Mi ⇓d′ for i ∈ {1, . . . , n}: by induction hypothesis L(Mi)⇓d′

for i ∈ {1, . . . , n}, and then (x) L(M1) · · · L(Mn)⇓d.
If M = (λxS)M0M1 · · ·Mn with (S[M0/x])M1 · · ·Mn ⇓d then we conclude directly

since L(M) = (S[M0/x])M1 · · ·Mn.
If M = a.N with N ⇓d: by induction hypothesis L(N)⇓d, and then a.L(N)⇓d.
If M = N + P with N ⇓d and P ⇓d: by induction hypothesis L(N)⇓d and L(P)⇓d, and

then L(N) + L(P)⇓d.

Now we can formally prove that applying the parallel left reduction strategy to d-
determinable terms does reach d-determinate forms.

Lemma 9.10. If M ⇓d then there exists k ∈ N such that Lk(M) dfd.

Proof. By induction on the derivation of M ⇓d.
If d = 0 or M ⇑, then M dfd.
If M = λxS with S ⇓d: by induction hypothesis, we have k ∈ N such that Lk(S) dfd

and then Lk(M) = λx Lk(S) hence Lk(M) dfd.
If M = (x)M1 · · ·Mn with d > 0 and Mi ⇓d−1 for each i ∈ {1, . . . , n}: by induction

hypothesis, we obtain ki ∈ N such that Lki(Mi) dfd−1 for each i ∈ {1, . . . , n}. Let k =
max {ki ; 1 ≤ i ≤ n}: by Lemma 9.9, we also have Lk(Mi) dfd−1 for all i ∈ {1, . . . , n}. Since
Lk(M) = Lk((x)M1 · · ·Mn) = (x) Lk(M1) · · · Lk(Mn) we conclude that Lk(M) dfd.

If M = (λxS)M0M1 · · ·Mn with (S[M0/x])M1 · · ·Mn ⇓d: by induction hypothesis, we
have k0 ∈ N such that Lk0((S[M0/x])M1 · · ·Mn) dfd. It is then sufficient to observe that
L(M) = (S[M0/x])M1 · · ·Mn and set k = k0 + 1.

If M = a.N with N ⇓d: by induction hypothesis, we have k ∈ N such that Lk(S) dfd
and then Lk(M) = a.Lk(S) hence Lk(M) dfd.

If M = N + P with N ⇓d and P ⇓d: by induction hypothesis, we have k0, k1 ∈ N such
that Lk0(N) dfd and Lk1(P) dfd and then, setting k = max(k0, k1), Lk(M) = Lk(N) + Lk(P)
hence Lk(M) dfd by the previous lemma.

9.3. Approximants of the normal form of Taylor expansion. Now we introduce the
analogue of finite Böhm trees for hereditarily determinable terms:

Definition 9.11. If M ⇓d then we define the normal d-approximant NAd(M) of M induc-
tively as follows: NAd(M) := 0 if d = 0 or M ⇑, and

NAd(λxS) := λxNAd(S)

NAd((x)M1 · · ·Mn) := (x)NAd−1(M1) · · ·NAd−1(Mn)

NAd((λxS)M0M1 · · ·Mn) := NAd((S[M0/x])M1 · · ·Mn)

NAd(a.M) := a.NAd(M)

NAd(M +N) := NAd(M) + NAd(N)

otherwise.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:55

First observe that d approximants are stable under parallel left reduction:

Lemma 9.12. If M ⇓d then NAd(M) = NAd(L(M)).

Proof. Recall indeed that, by Lemma 9.9, L(M)⇓d so that NAd(L(M)) is well defined. The
proof is then straightforward, by induction on M ⇓d.

We do not prove here that d-determinable terms and the associated d-approximants are
stable under arbitrary reduction: if M ⇓d and M ⇒β M

′ then M ′ ⇓d and then NAd(M) =
NAd(M

′). We believe it is a very solid conjecture, but it would require us to develop a full
standardization argument: in our non-deterministic setting, this is known to be tedious at
best [Alb14, Lev16]. Since we introduced hereditarily determinable terms ad-hoc, only to be
able to define normal d-approximants, we feel that the general study of their computational
behaviour is not worth the effort.

Our next step is to show that if M is in d+ 1 determinate form, then τ(M)�Nd depends
only on NAd+1(M).

Lemma 9.13. If M dfd+1 then, for all s ∈ Nd, τ(M)s = τ(NAd+1(M))s.

Proof. By induction on the derivation of M dfd+1, writing M ′ = NAd+1(M).
If M ⇑ then M ′ = 0 and τ(M)s = 0 for all s ∈ N , hence the result holds.
If M = λxT with T dfd+1 then M ′ = λxNAd+1(T) and we can assume s = λx t:

otherwise τ(M)s = 0 = τ(M ′)s. Then t ∈ Nd and by induction hypothesis τ(M)s = τ(T)t =
τ(NAd+1(T))t = τ(M ′)s.

If M = (x)N1 · · ·Nn with Ni dfd for all i ∈ {1, . . . , n} then M ′ = (x)N ′1 · · ·N ′n with
N ′i = NAd(Ni) and we can assume s = 〈x〉 t1 · · · tn: otherwise τ(M)s = 0 = τ(M ′)s. If
d = 0, s ∈ N0, hence n = 0 and then M = x = M ′. Otherwise write d = d′ + 1. For
each i ∈ {1, . . . , n},

∣∣ti∣∣ ⊆ Nd′ . By induction hypothesis we obtain τ(Ni)u = τ(N ′i)u
for all u ∈

∣∣ti∣∣: it follows that τ(Ni)
!
ti

= τ(N ′i)
!
ti

by the definition of promotion. Then

τ(M)s =
∏n
i=1 τ(Ni)ti =

∏n
i=1 τ(N ′i)ti = τ(M ′)s.

If M = a.N with N dfd+1 then τ(M)s = a.τ(N)s = a.τ(NAd+1(N))s = τ(M ′)s by
induction hypothesis.

Similarly, if M = N + P with N dfd+1 and P dfd+1 then τ(M)s = τ(N)s + τ(P)s =
τ(NAd+1(N))s + τ(NAd+1(P))s = τ(M ′)s by induction hypothesis.

We obtain our final theorem:

Theorem 9.14. For all hereditarily determinable term M , the sequence (τ(NAd(M)))d∈N
of normal vectors converges to NF(τ(M)) in SN .

Proof. First observe that each τ(NAd(M)) ∈ SN , because NAd(M) is in normal form. Let
s ∈ N and fix d ≥ d(s) + 1: by Lemmas 9.9, 9.10 and 9.12, there exists k0 ∈ N such that
Lk(M) dfd and NAd

(
Lk(M)

)
= NAd(M) whenever k ≥ k0. By Lemma 9.13, we moreover have

τ(NAd(M))s = τ
(
NAd

(
Lk(M)

))
s

= τ
(
Lk(M)

)
s
. It follows that τ(NAd(M))s = NF(τ(M))s,

by Theorem 8.14. Since this holds for any d ≥ d(s) + 1, we have just proved that
(τ(NAd(M))s)d∈N converges to NF(τ(M))s, for the discrete topology.

In the case of pure λ-terms, by identifying 0 with the unsolvable Böhm tree ⊥, it should
be clear that the sequence (NAd(M))d∈N is nothing but the increasing sequence of finite
approximants of BT(M): Theorem 9.14 is thus a proper generalization of Theorem 8.24 of
which it provides a new proof.

9:56 Lionel Vaux Vol. 15:3

References

[AD08] Pablo Arrighi and Gilles Dowek. Linear-algebraic lambda-calculus: higher-order, encodings, and
confluence. In Andrei Voronkov, editor, Rewriting Techniques and Applications, 19th International
Conference, RTA 2008, Hagenberg, Austria, July 15-17, 2008, Proceedings, volume 5117 of Lecture
Notes in Computer Science, pages 17–31. Springer, 2008.

[Alb14] Michele Alberti. On operational properties of quantitative extensions of λ-calculus. PhD thesis,
Aix Marseille Université ; Università di Bologna, December 2014.

[BEM07] Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not enough points is enough.
In Computer Science Logic, volume 4646 of Lecture Notes in Computer Science, pages 298–312.
Springer Berlin, 2007.

[Bou93] Gérard Boudol. The lambda-calculus with multiplicities (abstract). In CONCUR ’93: Proceedings
of the 4th International Conference on Concurrency Theory, pages 1–6, London, UK, 1993.
Springer-Verlag.

[CA18] Jules Chouquet and Lionel Vaux Auclair. An application of parallel cut elimination in unit-
free multiplicative linear logic to the taylor expansion of proof nets. In Dan R. Ghica and
Achim Jung, editors, 27th EACSL Annual Conference on Computer Science Logic, CSL 2018,
September 4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages 15:1–15:17. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018.

[Car11] Alberto Carraro. Models and theories of pure and resource lambda calculas. PhD thesis, 2011.
Thèse de doctorat dirigée par Salibra, Antonino et Bucciarelli, Antonio Informatique Paris 7
2011.

[CES10] Alberto Carraro, Thomas Ehrhard, and Antonino Salibra. Exponentials with infinite multiplicities.
In Anuj Dawar and Helmut Veith, editors, Computer Science Logic, 24th International Workshop,
CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010.
Proceedings, volume 6247 of Lecture Notes in Computer Science, pages 170–184. Springer, 2010.

[dC08] Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and intersection
types. Technical report, 2008. Rapport de recherche INRIA n° 6638.

[DC11] Alejandro Dı́az-Caro. Du typage vectoriel. PhD thesis, Université de Grenoble, France, Septem-
ber 23, 2011.

[DE11] Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Information and Computation, 2011.

[DLL19] Ugo Dal Lago and Thomas Leventis. On the Taylor expansion of probabilistic λ-terms. Submitted,
2019.

[DLMF] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.11 of 2016-
06-08. Online companion to [OLBC10].

[dLP95] Ugo de’ Liguoro and Adolfo Piperno. Nondeterministic extensions of untyped λ-calculus. Infor-
mation and Computation, 149-177(122), 1995.

[Ehr05] Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615–646,
2005.

[Ehr10] Thomas Ehrhard. A finiteness structure on resource terms. In Proceedings of the 25th Annual
IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United
Kingdom, pages 402–410. IEEE Computer Society, 2010.

[Ehr16] Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antideriva-
tives. CoRR, abs/1606.01642, 2016.

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309:1–41, 2003.

[ER05] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Electr. Notes Theor. Comput.
Sci., 123:35–74, 2005.

[ER06] Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine’s machine and the Taylor expansion
of λ-terms. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors,
CiE, volume 3988 of Lecture Notes in Computer Science, pages 186–197. Springer, 2006.

[ER08] Thomas Ehrhard and Laurent Regnier. Uniformity and the taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci., 403(2-3):347–372, 2008.

[Gir86] Jean-Yves Girard. The system F of variable types, fifteen years later. Theor. Comput. Sci.,
45(2):159–192, 1986.

Vol. 15:3 NORMALIZING THE TAYLOR EXPANSION OF NON-DETERMINISTIC λ-TERMS 9:57

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gir88] Jean-Yves Girard. Normal functors, power series and lambda-calculus. Annals of Pure and

Applied Logic, 37(2):129–177, 1988.
[Gol13] J.S. Golan. Semirings and their Applications. SpringerLink : Bücher. Springer Netherlands,

2013.
[Has96] Ryu Hasegawa. The generating functions of lambda terms. In Douglas S. Bridges, Cristian S.

Calude, Jeremy Gibbons, Steve Reeves, and Ian H. Witten, editors, First Conference of the
Centre for Discrete Mathematics and Theoretical Computer Science, DMTCS 1996, Auckland,
New Zealand, December, 9-13, 1996, pages 253–263. Springer-Verlag, Singapore, 1996.

[Joy86] André Joyal. Foncteurs analytiques et espèces de structures, pages 126–159. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1986.

[KKSdV97] J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary lambda calculus. Theoretical
Computer Science, 175(1):93 – 125, 1997.

[Kri90] Jean-Louis Krivine. Lambda-calcul, types et modèles. Masson, Paris, 1990.
[Lai16] J. Laird. Fixed points in quantitative semantics. In Martin Grohe, Eric Koskinen, and Natarajan

Shankar, editors, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 347–356. ACM, 2016.
[Lev16] Thomas Leventis. Probabilistic λ-theories. PhD thesis, Aix-Marseille Université, December 2016.
[LMMP13] Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted relational models

of typed lambda-calculi. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 301–310. IEEE Computer Society,
2013.

[OLBC10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST Handbook of
Mathematical Functions. Cambridge University Press, New York, NY, 2010. Print companion to
[DLMF].

[PTV16] Michele Pagani, Christine Tasson, and Lionel Vaux. Strong normalizability as a finiteness
structure via the taylor expansion of λ-terms. In Bart Jacobs and Christof Löding, editors,
Foundations of Software Science and Computation Structures - 19th International Conference,
FOSSACS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9634 of
Lecture Notes in Computer Science, pages 408–423. Springer, 2016.

[TAO17] Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species of rigid resource
terms. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

[Tas09] Christine Tasson. Sémantiques et syntaxes vectorielles de la logique linéaire. PhD thesis, Université
Paris Diderot – Paris 7, December 2009.

[TdF03] Lorenzo Tortora de Falco. Obsessional experiments for linear logic proof-nets. Mathematical
Structures in Computer Science, 13(6):799–855, 2003.

[TV16] Christine Tasson and Lionel Vaux. Transport of finiteness structures and applications. Mathe-
matical Structures in Computer Science, page 1–36, 2016.

[Vau07] Lionel Vaux. On linear combinations of λ-terms. In Franz Baader, editor, RTA, volume 4533 of
Lecture Notes in Computer Science, pages 374–388. Springer, 2007.

[Vau09] Lionel Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science,
19(5):1029–1059, 2009.

[Vau17] Lionel Vaux. Taylor expansion, lambda-reduction and normalization. In Valentin Goranko and
Mads Dam, editors, 26th EACSL Annual Conference on Computer Science Logic, CSL 2017,
August 20-24, 2017, Stockholm, Sweden, volume 82 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. Main results
	1.2. Structure of the paper
	1.3. Related and future work

	2. Technical preliminaries
	2.1. Semirings and semimodules
	2.2. Finiteness spaces
	2.3. Summable functions

	3. The resource λ-calculus
	3.1. Resource expressions
	3.2. Partial derivatives
	3.3. Multilinear substitution
	3.4. Resource reduction

	4. Vectors of resource expressions and Taylor expansion of algebraic λ-terms
	4.1. Resource vectors
	4.2. Partial differentiation of resource vectors.
	4.3. Substitutions
	4.4. Promotion
	4.5. Taylor expansion of algebraic λ-terms

	5. On the reduction of resource vectors
	5.1. Parallel resource reduction
	5.2. Size collapse
	5.3. Reduction structures

	6. Taming the size collapse of parallel resource reduction
	6.1. Bounded chains of redexes
	6.2. Boundedly nested redexes
	6.3. Bounded depth of substitution
	6.4. Parallel reduction of resource vectors of bounded height

	7. Simulating β-reduction under Taylor expansion
	7.1. Simulation of parallel β-reduction
	7.2. Conservativity

	8. Normalizing Taylor expansions
	8.1. Normalizable resource vectors
	8.2. Taylor normalizable terms
	8.3. Taylor expansion and normalization commute on the nose
	8.4. Conservativity

	9. Normal form of Taylor expansion, façon Böhm trees
	9.1. Taylor unsolvability
	9.2. Hereditarily determinable terms
	9.3. Approximants of the normal form of Taylor expansion

	References

