
Logical Methods in Computer Science
Volume 15, Issue 3, 2019, pp. 16:1–16:45
https://lmcs.episciences.org/

Submitted May 16, 2018
Published Aug. 13, 2019

QUANTITATIVE AUTOMATA UNDER PROBABILISTIC SEMANTICS

KRISHNENDU CHATTERJEE a, THOMAS A. HENZINGER a, AND JAN OTOP b

a IST Austria
e-mail address: krish.chat@gmail.com, tah@ist.ac.at

b University of Wroc law
e-mail address: jan.otop@uwr.edu.pl

Abstract. Automata with monitor counters, where the transitions do not depend on
counter values, and nested weighted automata are two expressive automata-theoretic
frameworks for quantitative properties. For a well-studied and wide class of quantitative
functions, we establish that automata with monitor counters and nested weighted automata
are equivalent. We study for the first time such quantitative automata under probabilistic
semantics. We show that several problems that are undecidable for the classical questions
of emptiness and universality become decidable under the probabilistic semantics. We
present a complete picture of decidability for such automata, and even an almost-complete
picture of computational complexity, for the probabilistic questions we consider.

1. Introduction

Traditional to quantitative verification. While traditional formal verification focused on
Boolean properties of systems, such as “every request is eventually granted”, recently signifi-
cant attention has been shifted to quantitative aspects such as expressing properties like “the
long-run average success rate of an operation is at least one half” or “the long-run average (or
the maximal, or the accumulated) resource consumption is below a threshold.” Quantitative
properties are essential for performance related properties, for resource-constrained systems,
such as embedded systems.

Overview. The first natural way to express quantitative properties is to consider automata
with counters. However, computational analysis of such models quickly leads to undecidability,
and a classical way to limit expressiveness for decidability is to consider monitor counters,
i.e., the counter values do not influence the control. The second approach is to consider
automata with weights (or weighted automata). However, weighted automata have limited
expressiveness, and they have been extended as nested weighted automata [CHO17] (nesting
of weighted automata) for expressiveness. We establish that for a well-studied and wide class
of quantitative functions, automata with monitor counters and nested weighted automata
are equivalent, i.e., they represent a robust class of quantitative specifications. We study for
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the first time such quantitative automata under probabilistic semantics. Quite surprisingly
we show that several problems that are undecidable for the classical questions of emptiness
and universality become decidable under the probabilistic semantics. We present a complete
picture of decidability for nested weighted automata and automata with monitor counters
under probabilistic semantics.

Automata with monitor counters. Automata with monitor counters are natural extension of
weighted automata, where automata are equipped with integer-valued counters. At each
transition, a counter can be started, terminated, or the value of the counter can be increased
or decreased. However, the transitions do not depend on the counter values, and hence they
are referred to as monitor counters. The values of the counters when they are terminated
give rise to a sequence of weights. A value function aggregates the sequence into a single
value. For example, for words over {a,#}, such automata can express the maximal length
of block of a’s that appear infinitely often. Automata with monitor counters are similar in
spirit with the class of cost register automata [ADD+13], and we consider them over infinite
words.

Weighted automata. Weighted automata extend finite automata where every transition is
assigned an integer called a weight. Hence every run gives rise to a sequence of weights,
which is aggregated into a single value by a value function. For non-deterministic weighted
automata, the value of a word w is the infimum value of all runs over w. Weighted automata
provide a natural and flexible framework for expressing quantitative1 properties [CDH10b].
First, weighted automata were studied over finite words with weights from a semiring,
and ring multiplication as a value function [DKV09], and later extended to infinite words
with limit averaging or supremum as value functions [CDH10b, CDH10a, CDH09a]. While
weighted automata over semirings can express several quantitative properties [Moh02], they
cannot express long-run average properties that weighted automata with limit averaging
can [CDH10b]. However, even weighted automata with limit averaging cannot express the
following basic quantitative property (the example is from [CHO17]).

Example 1.1. Consider infinite words over {r, g, i}, where r represents requests, g represents
grants, and i represents idle. A basic and interesting property is the average number of
i’s and r’s between a request and the corresponding grant, which represents the long-run
average response time of the system.

Nested weighted automata. To enrich expressiveness, weighted automata were extended to
nested weighted automata (NWA) [CHO17]. A nested weighted automaton consists of a
master automaton and a set of slave automata. The master automaton runs over infinite
input words. At every transition the master automaton invokes a slave automaton that runs
over a finite subword of the infinite word, starting at the position where the slave automaton
is invoked. Each slave automaton terminates after a finite number of steps and returns a value
to the master automaton. Slave automata are equipped with finite-word value functions to
compute the returned values, which are then aggregated by the master automaton using an
infinite-word value function. For Boolean finite automata, nested automata are equivalent to
the non-nested counterpart, whereas nested weighted automata are strictly more expressive
than non-nested weighted automata [CHO17], for example, nested weighted automata can

1We use the term “quantitative” in a non-probabilistic sense, which assigns a quantitative value to each
infinite run of a system, representing long-run average or maximal response time, or power consumption, or
the like, rather than taking a probabilistic average over different runs.
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express the long-run average response time property (see [CHO17, Example 5]). It has been
shown in [CHO17] that nested weighted automata provide a specification framework where
many basic quantitative properties, which cannot be expressed by weighted automata, can
be expressed easily, and they provide a natural framework to study quantitative run-time
verification.

Classical questions. Classical questions for automata are emptiness and universality that
ask for the existence and respectively non-existence of words that are accepted. Their
natural extensions have been studied in the quantitative setting as well (such as for weighted
automata and NWA) [CDH10b, CHO17].

Motivation for probabilistic questions. One of the key reasons for quantitative specifications
is to express performance related properties. While the classical emptiness and universality
questions express the best-case/worst-case scenarios (such as the best-case/worst-case trace
of a system for average response time), they cannot express the average case average response
time, where the average case corresponds to the expected value over all traces. Performance
related properties are of prime interest for probabilistic systems, and quite surprisingly,
quantitative automata have not been studied in a probabilistic setting, which we consider in
this work.

Probabilistic questions. Weighted automata and their extensions as nested weighted automata,
or automata with monitor counters represent measurable functions from infinite words to
real numbers. We consider probability distribution over infinite words, and as a finite
representation for probability spaces we consider the classical model of finite-state Markov
chains. A stochastic environment is often modeled as a Markov chain [CHJS15]. Hence,
the theoretical problems we consider correspond to measuring performance (expectation or
cumulative distribution) under such stochastic environments, when the specification is a
nested weighted automaton. Moreover, Markov chains are a canonical model for probabilistic
systems [HKNP06, BK08]. Given a measurable function (or equivalently a random variable),
the classical quantities w.r.t. a probability distribution are: (a) the expected value; and
(b) the cumulative distribution below a threshold. We consider the computation of the above
quantities when the function is given by a nested weighted automaton or an automaton with
monitor counters, and the probability distribution is given by a finite-state Markov chain. We
also consider the approximate variants that ask to approximate the above quantities within a
tolerance term ε > 0. Moreover, for the cumulative distribution we consider the special case
of almost-sure distribution, which asks whether the probability in the distribution question
is exactly 1.

Our contributions. In this work we consider several classical value functions, namely, Sup,
Inf, LimSup, LimInf, LimAvg for infinite words, and Max, Min, Sum, SumB, Sum+

(where SumB is the sum bounded by B, and Sum+ is the sum of absolute values) for finite
words. First, we establish translations (in both directions) between automata with monitor
counters and a subclass of nested weighted automata, called bounded-width nested weighted
automata [CHO16a], where at any point only a bounded number of slave automata can
be active. However, in general, in nested weighted automata unbounded number of slave
automata can be active. We describe our main results for nested weighted automata.

• LimSup and LimInf functions. We consider deterministic nested weighted automata with
LimSup and LimInf functions for the master automaton, and show that for all value
functions for finite words that we consider, all probabilistic questions can be answered in
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polynomial time. This is in contrast with the classical questions, where the problems are
PSpace-complete or undecidable (see Remark 7.4 for further details).
• LimAvg function. We consider deterministic nested weighted automata with LimAvg

function for the master automaton, and show that for all value functions for finite words
that we consider, all probabilistic questions can be answered in polynomial time. Again
our results are in contrast to the classical questions (see Remark 7.13).
• Inf and Sup functions. We consider deterministic nested weighted automata with Sup

and Inf functions for the master automaton, and show the following: the approximation
problems for all value functions for finite words that we consider are #P -hard and can
be computed in exponential time; other than the Sum function, the expected value,
the distribution, and the almost-sure problems are PSpace-hard and can be solved in
ExpTime; and for the Sum function, the above problems are uncomputable. Again
we establish a sharp contrast w.r.t. the classical questions as follows: for the classical
questions, the complexity of LimSup and Sup functions always coincide, whereas we show
a substantial complexity gap for probabilistic questions (see Remark 8.10 and Remark 8.11
for further details).
• Non-deterministic automata. For non-deterministic automata we show two results: first we

present an example to illustrate the conceptual difficulty of evaluating a non-deterministic
(even non-nested) weighted automaton with respect to a Markov chain, and also show
that for nested weighted automata with LimSup value function for the master automaton
and Sum value function for slave automata, all probabilistic questions are undecidable (in
contrast to the deterministic case where we present polynomial-time algorithms).

Note that from above all decidability results we establish carry over to automata with
monitor counters, and we show that all our undecidability (or uncomputability) results also
hold for automata with monitor counters. Decidability results for nested weighted automata
are more interesting as compared to automata with monitor counters because in NWA
unbounded number of slaves can be active. Our results are summarized in Theorem 7.3
(in Section 7.1), Table 2 (in Section 8), and Theorem 7.12 (in Section 7.2). In summary,
we present a complete picture of decidability of the basic probabilistic questions for nested
weighted automata (and automata with monitor counters).

Technical contributions. We call a nested weighted automaton A, an (f ; g)-automaton if its
master-automaton value function is f and the value function of all slave automata is g. We
present the key details of our main technical contributions, and for sake of simplicity here
explain for the case of the uniform distribution over infinite words. Our technical results are
more general though (for distributions given by Markov chains).

• We show that for a deterministic (LimInf;Sum)-automaton A, whose master automaton
is strongly connected as a graph, almost all words have the same value which, is the
infimum over values of any slave automaton from A over all finite words.
• We show that the expected value of a deterministic (LimAvg;Sum)-automaton A coincides

with the expected value of the following deterministic (non-nested) LimAvg-automaton
A. The automaton A is obtained from A by replacing in every transition an invocation of
a slave automaton B by the weight equal to the expected value of B.
• For a deterministic (Inf;Sum)-automaton A and C > 0 we define AC as the deterministic

(Inf;Sum)-automaton obtained from A by stopping every slave automaton if it exceeds C
steps. We show that for every deterministic (Inf;Sum)-automaton A and ε > 0, there
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exists C exponential in |A| and polynomial in ε such that the expected values of A and
AC differ by at most ε.

This paper is an extended and corrected version of [CHO16b, CHO16c]. We present detailed
proofs, which could not be published in [CHO16b] due to space constrains. The main
corrections over [CHO16b] are: Table 1 and Theorem 10 (Theorem 5.1 in this paper). These
flaws in [CHO16b] are consequences of a false claim about duality between determinis-
tic (Inf; g)-automata (resp., (LimInf; g)-automata) and deterministic (Sup;−g)-automata
(resp. (LimSup;−g)-automata). This duality indeed holds for non-deterministic NWA or
deterministic NWA that accept all words (or almost all words for probabilistic questions).
However, it does not extend to all deterministic NWA (see [CHO17] and Remark 6.4).

Moreover, we discuss extensions of our main results in Section 10, which is a new
contribution. We consider there (1) the case of NWA that do not accept almost all words,
(2) the probabilistic variant of the quantitative inclusion problem for NWA, and (3) the
parametric complexity of the probabilistic questions, in which we fix the NWA and ask for the
complexity w.r.t. the Markov chain. The parametric complexity corresponds to evaluation
of a fixed specification (for example average response time from Example 1.1) represented by
an NWA on a system represented by a Markov chain. Finally, we elaborate on translations
between NWA and automata with monitor counters discussed in [CHO16b, CHO16c].

Related works. Quantitative automata and logic have been extensively and intensively
studied in recent years. The book [DKV09] presents an excellent collection of results of
weighted automata on finite words. Weighted automata on infinite words have been studied
in [CDH10b, CDH10a, DR06]. The extension to weighted automata with monitor counters
over finite words has been considered (under the name of cost register automata) in [ADD+13].
A version of nested weighted automata over finite words has been studied in [BGMZ10],
and nested weighted automata over infinite words have been studied in [CHO17]. Several
quantitative logics have also been studied, such as [BCHK14, BMM14, ABK14]. While a
substantial work has been done for quantitative automata and logics, quite surprisingly
none of the above works consider the automata (or the logic) under probabilistic semantics
that we consider in this work. Probabilistic models (such as Markov decision processes)
with quantitative properties (such as limit-average or discounted-sum) have also been
extensively studied for single objectives [FV96, Put94], and for multiple objectives and
their combinations [CMH06, Cha07, CFW13, BBC+11, CKK15, BCFK15, FKN+11, CD11,
BDK14, BKKW14]. However, these works do not consider properties that are expressible
by nested weighted automata (such as average response time) or automata with monitor
counters.

2. Preliminaries

Words. We consider a finite alphabet of letters Σ. A word over Σ is a (finite or infinite)
sequence of letters from Σ. We denote the i-th letter of a word w by w[i]. The length of a
finite word w is denoted by |w|; and the length of an infinite word w is |w| =∞.

Labeled automata. For a set X, an X-labeled automaton A is a tuple 〈Σ, Q,Q0, δ, F, C〉,
where (1) Σ is the alphabet, (2) Q is a finite set of states, (3) Q0 ⊆ Q is the set of initial
states, (4) δ ⊆ Q× Σ×Q is a transition relation, (5) F is the set of accepting states, and
(6) C : δ 7→ X is a labeling function. A labeled automaton 〈Σ, Q, q0, δ, F, C〉 is deterministic
if and only if δ is a function from Q × Σ into Q and Q0 is a singleton. In definitions of
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deterministic labeled automata we omit curly brackets in the description of Q0 = {q0} and
write 〈Σ, Q, q0, δ, F, C〉.
Semantics of (labeled) automata. A run π of a (labeled) automaton A on a word w is
a sequence of states of A of length |w|+ 1 such that π[0] belongs to the initial states of A
and for every 0 ≤ i ≤ |w| − 1 we have (π[i], w[i], π[i+ 1]) is a transition of A. A run π on a
finite word w is accepting if and only if the last state π[|w|] of the run is an accepting state
of A. A run π on an infinite word w is accepting if and only if some accepting state of A
occurs infinitely often in π. For an automaton A and a word w, we define Acc(w) as the set
of accepting runs on w. Note that for deterministic automata, every word w has at most
one accepting run (|Acc(w)| ≤ 1).

Weighted automata and their semantics. A weighted automaton is a Z-labeled automa-
ton, where Z is the set of integers. The labels are called weights. We assume that weights
are given in the unary notation, and, hence, the values of weights are linearly bounded in
the size of weighted automata.

We define the semantics of weighted automata in two steps. First, we define the value
of a run. Second, we define the value of a word based on the values of its runs. To define
values of runs, we will consider value functions f that assign real numbers to sequences
of integers. Given a non-empty word w, every run π of A on w defines a sequence of
weights of successive transitions of A, i.e., C(π) = (C(π[i− 1], w[i], π[i]))1≤i≤|w|; and the

value f(π) of the run π is defined as f(C(π)). We denote by (C(π))[i] the weight of the
i-th transition, i.e., C(π[i − 1], w[i], π[i]). The value of a non-empty word w assigned by
the automaton A, denoted by LA(w), is the infimum of the set of values of all accepting
runs; i.e., infπ∈Acc(w) f(π), and we have the usual semantics that infimum of an empty set is
infinite, i.e., the value of a word that has no accepting runs is infinite. Every run π on an
empty word has length 1 and the sequence C(π) is empty, hence we define the value f(π) as
an external (not a real number) value ⊥. Thus, the value of the empty word is either ⊥, if
the empty word is accepted by A, or ∞ otherwise. To indicate a particular value function f
that defines the semantics, we will call a weighted automaton A an f -automaton.

Value functions. We will consider the classical functions and their natural variants for
value functions. For finite runs we consider the following value functions: for runs of length
n+ 1 we have

(1) Min and max : Min(π) = minni=1(C(π))[i] and Max(π) = maxni=1(C(π))[i],
(2) Sum: Sum(π) =

∑n
i=1(C(π))[i],

(3) Absolute sum: Sum+(π) =
∑n

i=1 Abs((C(π))[i]) is the sum of the absolute values of the
weights (Abs denotes the absolute value of a number), and

(4) Bounded sum: SumB(π) = Sum(π), if for all prefixes π′ of π we have Abs(Sum(π′)) ≤ B,
otherwise SumB(π) is equal to first crossed bound −B or B, i.e., the bounded sum value
function returns the sum if all the partial absolute sums are below a bound B, otherwise
it returns the first crossed bound. Weighted automata with the bounded-sum value
function can model bounded quantities such as energy with the lower and the upper
bound [BMR+18].

We denote the above class of value functions for finite words as

FinVal = {Max,Min,SumB,Sum}.
For infinite runs we consider:
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(1) Supremum and Infimum: Sup(π) = sup{(C(π))[i] | i > 0} and Inf(π) = inf{(C(π))[i] |
i > 0},

(2) Limit supremum and Limit infimum: LimSup(π) = lim sup{(C(π))[i] | i > 0}, and
LimInf(π) = lim inf{(C(π))[i] | i > 0}, and

(3) Limit average: LimAvg(π) = lim sup
k→∞

1
k ·
∑k

i=1(C(π))[i].

We denote the above class of infinite-word value functions as

InfVal = {Sup, Inf,LimSup,LimInf,LimAvg}.

Silent moves. Consider a (Z ∪ {⊥})-labeled automaton. We regard such an automaton as
an extension of a weighted automaton in which transitions labeled by ⊥ are silent, i.e., they
do not contribute to the value of a run. Formally, for every function f ∈ InfVal we define
sil(f) as the value function that applies f on sequences after removing ⊥ symbols. The
significance of silent moves is as follows: they allow to ignore transitions, and thus provide
robustness where properties could be specified based on desired events rather than steps.

3. Extensions of weighted automata

In this section we consider two extensions of weighted automata, namely, automata with
monitor counters and nested weighted automata.

3.1. Automata with monitor counters. Intuitively, automata with monitor counters
are an extension of weighted automata with counters, where the transitions do not depend
on values of counters. We define them formally below.
Automata with monitor counters. An automaton with n monitor counters Am-c is a
tuple 〈Σ, Q,Q0, δ, F 〉 where

(1) Σ is the alphabet,
(2) Q is a finite set of states, and Q0 ⊆ Q is the set of initial states,
(3) δ is a finite subset of Q×Σ×Q×(Z ∪ {s, t})n called a transition relation, (each component

refers to one monitor counter, where letters s, t refer to starting and terminating the
counter, respectively, and the value from Z is the value that is added to the counter),
and

(4) F is the set of accepting states.

Moreover, we assume that for every (q, a, q′, ~u) ∈ δ, at most one component in ~u contains
s, i.e., at most one counter is started at each position. Intuitively, the automaton Am-c is
equipped with n counters. The transitions of Am-c do not depend on the values of counters
(hence, we call them monitor counters); and every transition is of the form (q, a, q′, ~v), which
means that if Am-c is in the state q and the current letter is a, then it can move to the state
q′ and update counters according to v. Each counter is initially inactive. It is started by the
instruction s, and it changes its value at every step by adding the value of the corresponding
component of v, until termination t. The value of the counter at the time it terminates
is then assigned to the position where it has been started. An automaton with monitor
counters Am-c is deterministic if and only if Q0 is a singleton and δ is a function from Q×Σ
into Q× (Z ∪ {s, t})n.
Semantics of automata with monitor counters. A sequence π = π[0]π[1] . . . of elements
from Q× (Z× {⊥})n is a run of Am-c on a word w = w[1]w[2] . . . if
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q0 q1

q2q3

(#, s, 0)

(#, 0, s)

(a, 1,−1)
(#, 0, 0)

(a,−1, 1)

(#, t, t)

Figure 1. The automaton Adiff computing the maximal difference between
the lengths of blocks of a’s at odd and the following even positions.

(1) π[0] = 〈q0, ~⊥〉 and q0 ∈ Q0, and
(2) for every i > 0, if π[i − 1] = 〈q, ~u〉 and π[i] = 〈q′, ~u′〉 then Am-c has a transition

(q, w[i], q′, ~v) and for every j ∈ [1, n] we have
(a) if v[j] = s, then u[j] = ⊥ and u′[j] = 0,
(b) if v[j] = t, then u[j] ∈ Z and u′[j] = ⊥, and
(c) if v[j] ∈ Z, then u′[j] = u[j] + v[j].

A run π is accepting if some state from F occurs infinitely often on the first component of π,
some counter is started infinitely often, and every started counter is finally terminated. An
accepting run π defines a sequence πW of integers and ⊥ as follows: let the counter started
at position i be j, and let the value of the counter j terminated at the earliest position after
i be xj , then πW [i] is xj . Otherwise, if no counter has been started at position i, we define
πW [i] = ⊥, Observe that for an accepting π, the sequence πW contains infinitely positions
with integer values. The semantics of automata with monitor counters is given, similarly to
weighted automata, by applying the value function to the sequence πW with ⊥ elements
removed.

Remark 3.1. Automata with monitor counters are very similar in spirit to cost register
automata considered in [ADD+13]. The key difference is that we consider infinite words
and value functions associated with them, whereas previous works consider finite words.
Another key difference is that in this work we will consider probabilistic semantics, and such
semantics has not be considered for cost register automata before.

Example 3.2 (Blocks difference). Consider an alphabet Σ = {a,#} and the language L
defined as (#2a∗#a∗#)

ω
. We consider a quantitative property “the maximal block-length

difference between odd and even positions” on the words from the language L, i.e., the
value of word #2an[1]#an[2]#3 . . . is sup0≤i |n[2 · i+ 1]− n[2 · i+ 2]|. This property can be
expressed by a Sup-automaton Adiff with two monitor counters depicted in Figure 1.

The automaton Adiff has a single initial state q0, which is also the only accepting state.
It processes the word w in subwords #2ak#am# in the following way. First, it reads #2

upon which it takes transitions from q0 to q1 and from q1 to q2, where it starts counters 1
and 2. Next, it moves to the state q2 where it counts letters a incrementing counter 1 and
decrementing counter 2. Then, upon reading #, it moves to q3, where it counts letters a,
but it decrements counter 1 and increments counter 2. After reading #2ak#am the value
of counter 1 is k −m and counter 2 is m − k. In the following transition from q3 to q0,
the automaton terminates both counters. The aggregating function of Adiff is Sup, thus
the automaton discards the lower value, i.e., the value of #2ak#am# is |k −m| and the
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automaton computes the supremum over values of all blocks. It follows that the value of
#2an[1]#an[2]#3 . . . is sup0≤i |n[2 · i+ 1]− n[2 · i+ 2]|.

3.2. Nested weighted automata. In this section we describe nested weighted automata
introduced in [CHO17], and closely follow the description of [CHO17]. For more details and
illustrations of such automata we refer the reader to [CHO17]. We start with an informal
description.

Informal description. A nested weighted automaton consists of a labeled automaton over
infinite words, called the master automaton, a value function f for infinite words, and a set
of weighted automata over finite words, called slave automata. A nested weighted automaton
can be viewed as follows: given a word, we consider the run of the master automaton on
the word, but the weight of each transition is determined by dynamically running slave
automata; and then the value of a run is obtained using the value function f . That is, the
master automaton proceeds on an input word as an usual automaton, except that before
it takes a transition, it starts a slave automaton corresponding to the label of the current
transition. The slave automaton starts at the current position in the word of the master
automaton and works on some finite part of the input word. Once the slave automaton
finishes, it returns its value to the master automaton, which treats the returned value as
the weight of the current transition that is being executed. The slave automaton might
immediately accept and return value ⊥, which corresponds to silent transitions. If one of
slave automata rejects, the nested weighted automaton rejects. We define this formally as
follows.

Nested weighted automata. A nested weighted automaton (NWA) A is a tuple

〈Amas; f ;B1, . . . ,Bk〉
such that

(1) Amas, called the master automaton, is a {1, . . . , k}-labeled automaton over infinite words
(the labels are the indexes of automata B1, . . . ,Bk),

(2) f is a value function on infinite words, called the master value function, and
(3) B1, . . . ,Bk are weighted automata over finite words called slave automata.

Intuitively, an NWA can be regarded as an f -automaton whose weights are dynamically
computed at every step by the corresponding slave automaton. We define an (f ; g)-automaton
as an NWA where the master value function is f and all slave automata are g-automata.

Semantics: runs and values. A run of an NWA A on an infinite word w is an infinite
sequence (Π, π1, π2, . . .) such that (1) Π = Π[0]Π[1] . . . is a run of Amas on w = w[1]w[2] . . .;
(2) for every i > 0 we have πi is a run of the automaton BC(Π[i−1],w[i],Π[i]), referenced by
the label C(Π[i− 1], w[i],Π[i]) of the master automaton, on some finite subword w[i, j] of
the input word w. The run (Π, π1, π2, . . .) is accepting if all runs Π, π1, π2, . . . are accepting
(i.e., Π satisfies its acceptance condition and each π1, π2, . . . ends in an accepting state) and
infinitely many runs of slave automata have length greater than 1 (the master automaton
takes infinitely many non-silent transitions). The value of the run (Π, π1, π2, . . .) is defined
as sil(f)(v(π1)v(π2) . . .), where v(πi) is the value of the run πi in the corresponding slave
automaton. The value of a word w assigned by the automaton A, denoted by LA(w), is
the infimum of the set of values of all accepting runs. We require accepting runs to contain
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infinitely many non-silent transitions because f is a value function over infinite sequences,
so we need the sequence v(π1)v(π2) . . . with ⊥ symbols removed to be infinite.

Deterministic nested weighted automata. An NWA A is deterministic if (1) the master
automaton and all slave automata are deterministic, and (2) in all slave automata accepting
states have no outgoing transitions. Condition (2) implies that no accepting run of a slave
automaton visits an accepting state twice. Intuitively, slave automata have to accept the
first time they encounter an accepting state as they will not reach an accepting state again.

Bounded width. An NWA has width k if and only if k is the minimal number such that
in every accepting run at every position at most k slave automata are active.

Example 3.3 (Average response time with bounded requests). Consider an alphabet Σ
consisting of requests r, grants g and idle instructions i. The average response time (ART)
property asks for the average number of instructions between any request and the following
grant. It has been shown in [CHO17] that NWA can express ART. However, the automaton
from [CHO17] does not have bounded width. To express the ART property with NWA of
bounded width we consider only words such that between any two grants there are at most
k requests.

Average response time over words where between any two grants there are at most k
requests can be expressed by a (LimAvg;Sum)-automaton A. Such an automaton A =
(Amas;LimAvg;B1,B2) is depicted in Fig. 2. The master automaton of A accepts only
words with infinite number of requests and grants, where every grant is followed by a
request and there are at most k requests between any two grants. On letters i and g, the
master automaton invokes a dummy automaton B1, which immediately accepts; the result
of invoking such an automaton is equivalent to taking a silent transition as the automaton
B1 returns ⊥, the empty value. On letters r, denoting requests, the master automaton
invokes B2, which counts the number of letters to the first occurrence of letter g, i.e., the
automaton B2 computes the response time for the request on the position it is invoked. The
automaton A computes the limit average of all returned values, which is precisely ART (on
the accepted words). Note that the width of A is k.

3.3. Translation. We now present translations from NWA to automata with monitor
counters and vice-versa. To state correctness of translation, we first define equivalence.
Equivalence of quantitative automata. We say that A1,A2, each being a weighted
automaton, an automaton with monitor counters or an NWA over infinite words from Σ,
are equivalent if and only if for all words w ∈ Σω we have A1(w) = A2(w).

Now, we state the main translation lemma:

Lemma 3.4 (Translation Lemma). For every value function f ∈ InfVal on infinite words
we have the following:

(1) Every deterministic f-automaton with monitor counters Am-c can be transformed in
polynomial time into an equivalent deterministic (f ;Sum)-automaton of bounded width.

(2) Every non-deterministic (resp., deterministic) (f ;Sum)-automaton of bounded width
can be transformed in exponential time into an equivalent non-deterministic (resp.,
deterministic) f -automaton with monitor counters.

Before the formal proof, we illustrate below the key ideas of the above translations of
Lemma 3.4 to automata from Examples 3.2 and 3.3.
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q0 q1 qk−1 qk. . .

(i, 1) (i, 1) (i, 1)

(g, 1)

(g, 1)

(g, 1)

(r, 2) (r, 2)

Amas

q1
0

B1

q2
0 q2

1

B2

(g, 0)

(i, 1)

(r, 1)

Figure 2. The (LimAvg;Sum)-automaton computing the average response
time over words with infinite number of requests and grants such that between
any two grants there are at most k requests.

Example 3.5 (Translation of automata with monitor counters to nested weighted automata).
Consider a deterministic automaton A with k monitor counters. We construct an NWA
A equivalent to A. The automaton A uses k slave automata to track values of k monitor
counters in the following way. The master automaton of A simulates A; it invokes slave
automata whenever A starts monitor counters. Slave automata simulate A as well. Each
slave automaton is associated with some counter i; it starts in the state (of A) the counter i
is initialized, simulates the value of counter i, and terminates when counter i is terminated.
Figure 3 presents the result of transition of the automaton Adiff from Example 3.2 to a
(Sup;Sum)-automaton of width bounded by 3.

Example 3.6 (Translation of nested weighted automata of bounded width to automata
with monitor counters). Consider an (f ;Sum)-automaton A of width bounded by k. We
construct an automaton with monitor counters AA, which simulates the master automaton
and up to k slave automata running in parallel. To simulate values of slave automata it uses
monitor counters, each counter separately for each slave automaton.

Figure 4 shows the result of translation of the automaton A from Example 3.3 to the au-

tomaton with monitor counters AA. The set of states of AA there is {q0, . . . , qk}× ({q2
0,⊥})

k
,

i.e., the states of the master automaton and all non-accepting states of slave automata (in de-
terministic NWA accepting states are sink states, hence storing them is redundant). Now, ob-
serve that only reachable states ofAA are (q0,⊥, . . . ,⊥), (q1, q

2
0,⊥, . . . ,⊥), . . . , (qk, q

2
0, . . . , q

2
0),

i.e., the reachable part of AA is isomorphic (in the sense of graphs) to the master automaton
of A.

Proof of Lemma 3.4. (Translation of automata with monitor counters to NWA):
Consider a deterministic f -automaton Am-c with k monitor counters and the set of states
Qm−c. We define an (f ;Sum)-automaton A, which consists of a master automaton Amas

and slave automata {Bi,q | i ∈ {1, . . . , k}, q ∈ Qm−c} ∪ {B⊥}. The slave automaton B⊥ is a
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q′0 q′1

q′2q′3

(#, 0)

(a, 1)
(#, 0)

(a,−1)

(#, 0)

B1

q′′1q′′0

q′′2q′′3 (a,−1)
(#, 0)

(a, 1)

(#, 0)

B2

q0

B3

q0 q1

q2q3

(#, 1)

(#, 2)

(a, 3)
(#, 3)

(a, 3)

(#, 3)

Figure 3. A nested weighted automaton resulting from translation of the
automaton Adiff from Example 3.2. The master automaton is obtained from
Adiff (see Figure 1) by changing the labels of transitions. All slave automata
are defined based on Adiff; each slave automaton corresponds to Adiff starting
in a state q′, in which a counter i is initialized, and contains all the transitions
that can be taken before the counter i is terminated.

q0 q1 qk−1 qk. . .

(i,~1) (i,~1) (i,~1)

(g,~t1)

(g,~tk−1)

(g,~tk)

(r, ~s1)
(r, ~sk)

AA

Figure 4. The (reduced) result of translation of the automaton A from
Example 3.3 to an automaton with monitor counters. All vectors have
dimension k. Vector ~1 denotes the vector with all components equal 0. Vector
~si denotes the whose i-th component is s and other components are 1. Vector
~ti denotes the vector whose components 1, . . . , i are t and the remaining
components are 0.

dummy automaton, i.e., it has only a single state which is both the initial and the accepting
state. Invoking such an automaton is equivalent to taking a silent transition (with no weight).
Next, the master automaton Amas and slave automata {Bi,q | i ∈ {1, . . . , k}, q ∈ Qm−c}
are variants of Am-c, i.e., they share the underlying transition structure. The automaton
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Amas simulates Am-c, i.e., it has the same states and the transitions among these states as
Am-c. However, whenever Am-c activates counter i, the master automaton invokes the slave
automaton Bi,q, where q is their current state (both Amas and the simulated Am-c). The
accepting condition of Amas is the same as of Am-c. We can construct Amas in polynomial
time in |Am-c|. For every i ∈ {1, . . . , k}, the slave automaton Bi,q keeps track of counter i,
i.e., it simulates Am-c and applies instructions of Am-c for counter i to its value. That is,
whenever Am-c changes the value of counter i by m, the automaton Bi,q takes a transition
of the weight m. Finally, Bi,q terminates precisely when Am-c terminates counter i. The
automaton Bi,q can be constructed in polynomial time in |Am-c|. There are at most k · |Am-c|
such slave automata and each of them has the size bounded by |Am-c|. Therefore, |A| is
polynomial in |Am-c| and can be constructed in polynomial time in |Am-c|.

The semantics of automata with monitor counters implies that A accepts if and only if
Am-c accepts and, for every word, the sequences of weights produced by the runs of A and
Am-c on that word coincide. Therefore, the values of A and Am-c coincide on every word.
(Translation of NWA of bounded width to automata with monitor counters): We
show that non-deterministic (resp., deterministic) f -automata with monitor counters subsume
non-deterministic (resp., deterministic) (f ;Sum)-automata of bounded width. Consider
a non-deterministic (f ;Sum)-automaton A with width bounded by k. We define an f -
automaton Am-c with k monitor counters that works as follows. Let Qmas be the set of states
of the master automaton of A and Qs be the union of the sets of states of the slave automata

of A. The set of states of Am-c is Qmas×(Qs∪{⊥})×· · ·×(Qs∪{⊥}) = Qmas×(Qs ∪ {⊥})k.
The automaton Am-c simulates runs of the master automaton and slave automata by keeping
track of the state of the master automaton and states of up to k active slave automata. If
there are less than k active slave automata, Am-c uses ⊥ to mark slots that can be used in
the future to simulate slave automata. Moreover, it uses counters to simulate the values of
slave automata, i.e., whenever a slave automaton is activated, Am-c simulates the execution
of this automaton and assigns some counter i to that automaton. Next, when the simulated
slave automaton takes a transition of the weight m the automaton Am-c changes the value of
counter i by m. Finally, Am-c terminates counter i when the corresponding slave automaton
terminates. The size of |Am-c| is bounded by |A|k and it can be constructed in time O(|A|k).

Since A has width bounded by k, the simulating automaton Am-c never runs out of
counters to simulate slave automata. Moreover, as it simulates runs of the master automaton
and slave automata of A, there is a one-to-one correspondence between runs of Am-c and runs
of A and accepting runs of A correspond to accepting runs of Am-c. Finally, the sequence
of weights for the master automaton determined by a given run of A coincides with the
sequence of weights of Am-c on the corresponding run. Therefore, the values of A and Am-c

coincide on every word. Thus, non-deterministic f -automata with monitor counters subsume
non-deterministic (f ;Sum)-automata of bounded width.

Now, assume that A is deterministic. Therefore, the master automaton and all slave
automata are deterministic and accepting states of slave automata have no outgoing tran-
sitions. We claim that Am-c is deterministic as well. Consider a state (s1, q1, . . . , qk) from

Qmas × (Qs ∪ {⊥})k and every letter a ∈ Σ. The successor over a of s1 is uniquely deter-
mined as the master automaton is deterministic. For all qi, which are not accepting, the
successor states of deterministic slave automata are uniquely determined. If some state qi is
accepting, then the slave automaton has no outgoing transition and the successor state is ⊥.
Finally, for qi equal ⊥, the one with the least index becomes the initial state of the newly
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invoked slave automaton and the other states remain ⊥. Therefore, the automaton Am-c is
deterministic.

A direct consequence of Lemma 3.4 is the following theorem:

Theorem 3.7. For every f ∈ InfVal, deterministic bounded-width (f,Sum)-automata and
deterministic f -automata with monitor counters are expressively equivalent.

Remark 3.8 (Discussion). Theorem 3.7 states that deterministic automata with monitor
counters have the same expressive power as deterministic NWA of bounded width. However,
the latter may be exponentially more succinct. In consequence, lower bounds on deterministic
automata with monitor counters imply lower bounds on NWA of bounded width. Conversely,
deterministic NWA can be considered as automata with infinite number of monitor counters,
therefore upper bounds on deterministic NWA imply upper bounds on deterministic automata
with monitor counters

4. Problems

4.1. Classical questions. The classical questions in automata theory are emptiness and
universality (of a language). These problems have their counterparts in the quantitative
setting of weighted automata and their extensions. The (quantitative) emptiness and
universality problems are defined in the same way for weighted automata, NWA and
automata with monitor counters, i.e., in the following definition the automaton A can be a
weighted automaton, an NWA or an automaton with monitor counters.

• Emptiness: Given an automaton A and λ ∈ Q, decide whether there is a word w with
LA(w) ≤ λ?
• Universality: Given an automaton A and λ ∈ Q, decide whether for all words w we

have LA(w) ≤ λ?

The universality question asks for non-existence of a word w such that LA(w) > λ.

4.2. Probabilistic questions. The classical questions ask for the (non-)existence of words
for input automata, whereas in the probabilistic setting, input automata are analyzed w.r.t.
a probability distribution. We consider probability distributions over infinite words Σω, and
as a finite representation consider the classical model of Markov chains.

Labeled Markov chains. A (labeled) Markov chain is a tuple 〈Σ, S, s0, E〉, where Σ is the
alphabet of letters, S is a finite set of states, s0 is an initial state, E : S × Σ× S 7→ [0, 1] is
the edge probability function, which for every s ∈ S satisfies that

∑
a∈Σ,s′∈S E(s, a, s′) = 1.

Distributions given by Markov chains. Consider a Markov chain M. For every
finite word u, the probability of u, denoted PM(u), w.r.t. the Markov chain M is the
sum of probabilities of paths labeled by u, where the probability of a path is the product
of probabilities of its edges. For basic open sets u · Σω = {uw : w ∈ Σω}, we have
PM(u · Σω) = PM(u), and then the probability measure over infinite words defined by M is
the unique extension of the above measure (by Carathéodory’s extension theorem [Fel71]).
We will denote the unique probability measure defined by M as PM, and the associated
expectation measure as EM.
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We define the uniform probability measure U such that for every u ∈ Σ∗ we have
PU(u · Σω) = |Σ|−|u|. It can be defined by a single-state Markov chain, in which all
transitions are self-loops labled with the same probability 1

|Σ| .

Automata as random variables. Note that deterministic weighted automata, NWA or
automata with monitor counters all define functions h : Σω 7→ R, which are measurable with
respect to probability measures given by Markov chains, and hence these functions can be
interpreted as random variables. Therefore, given an automaton A and a Markov chain M,
we consider the following fundamental quantities:

(1) Expected value: EM(A) is the expected value of the random variable defined by the
automaton A w.r.t. the probability measure defined by the Markov chain M.

(2) (Cumulative) distribution: DM,A(λ) = PM({w | LA(w) ≤ λ}) is the cumulative
distribution function of the random variable defined by the automaton A w.r.t. the
probability measure defined by the Markov chain M.

Computational questions. Given an automaton A and a Markov chain M, we consider
the following basic computational questions:

(Q1) The expected question asks to compute EM(A).
(Q2) The distribution question asks, given a threshold λ ∈ Q, to compute DM,A(λ).

Questions (Q1) and (Q2) have their approximate variants, which, given an additional input
ε > 0, ask to compute values that are ε-close to EM(A) or DM,A(λ), i.e., given ε > 0:

(Q3) The approximate expected question asks to compute a value η such that |η−EM(A)| ≤ ε,
and

(Q4) The approximate distribution question asks to compute a value η such that |η −
DM,A(λ)| ≤ ε.

Additionally, a special important case for the distribution question is

(Q5) The almost-sure distribution question asks whether for a given λ ∈ Q the probability
DM,A(λ) is exactly 1.

We refer to questions (Q1)–(Q5) as probabilistic questions. Note that an upper bound on
the complexity of the expected and distribution questions imply the same upper bound on
all probabilistic questions as approximate and almost-sure variants are special cases.

Example 4.1 (Expected average response time). Consider an NWA A from Example 3.3.
Recall that it computes ART on words it accepts (bounded number of requests between any
two grants). Next, consider a Markov chain M which gives a distribution on words over
{r, g, i}. In such a case, the value EM(A) is the expected ART.

5. Results on classical questions

Existing results. The complexity of the classical decision problems for NWA has been
established in [CHO17] which is presented in Table 1.

New results. Due to Lemma 3.4, decidability of deterministic (f ;Sum)-automata implies
decidability of deterministic automata with monitor counters with the value function f .
However, the undecidability result of NWA does not imply undecidability for automata with
monitor counters as the NWA in the reduction may have unbounded width. We present
the undecidability result for NWA of bounded width, which implies undecidability of the
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Inf Sup
LimAvg

LimInf LimSup
Min,Max Empt. PSpace-comp.
SumB Univ. PTime

Sum+ Empt. PSpace-comp.
ExpSpace

Univ. PTime

Sum
Empt.

PSpace-comp.
Undecidable Open

Univ. PTime

Table 1. Decidability and complexity of emptiness and universality for
deterministic (f ; g)-automata. Functions f are listed in the first row and
functions g are in the first column.

emptiness problem for automata with monitor counters. Thus, our following result completes
the decidability picture also for automata with monitor counters (i.e., the decidability results
coincide with the Sum row of Table 1).

Theorem 5.1. The emptiness problem is undecidable for deterministic Sup-automata (resp.,
LimSup-automata) with 8 monitor counters.

Proof. We show undecidability of the emptiness problem for deterministic (LimSup,Sum)-
automata of width 8. The proof for deterministic (Sup,Sum)-automata is virtually the same.
Then, the theorem follows from the translation lemma (Lemma 3.4).

We show a reduction from the halting problem for deterministic two-counter machines,
which is undecidable [Min61]. Let M be a deterministic two-counter machine and let Q be
the set of states of M. We define a deterministic (LimSup,Sum)-automaton A of width
8 such that A has a run of the value not exceeding 0 if and only if M has an accepting
computation.

Consider the alphabet Σ = Q∪{1, 2,#, $}. We encode computations of M as a sequence
of configurations separated by #. A single configuration of M, where the machine is in the
state q, the first counter has the value x and the second y is encoded by the word q1x2y.
Finally, computations of M are separated by $. We define the automaton A that for a word
w ∈ Σ∗ returns the value 0 if (some infinite suffix of) w encodes a sequence valid accepting
computations of M. Otherwise, A returns the value at least 1.

The automaton A works as follows. On a single computation, i.e., between symbols $,
A checks consistency of the transitions by checking two conditions: (C1) Boolean consis-
tency, and (C2) counter consistency. The condition (C1) states that encoded subsequence

configurations, which are represented by subwords q1x2y#q′1x
′
2y
′
, are consistent with the

transition function of M modulo counter values, i.e., under counter abstraction to values 0
and “strictly positive”. Observe that a finite automaton can check that. The conditions
that need to be checked are as follows: (C1-1) Boolean parts of transitions are consistent;
the automaton checks only emptiness/nonemptiness of counters and based on that verifies
whether a subword q1x2y#q′ is valid w.r.t. transitions of M. For example, consider transition
(q,⊥,+, q′,+1,−1) of M stating that “if M is in state q, the first counter is 0 and the
second counter is positive, then change the state to q′ increment the first counter and
decrement the second one”. This transition corresponds to the regular expression q2+#q′.
(C1-2) The initial and final configurations in each computation (between $ symbols) are
respectively qI1

020 and qf1020. (C1-3) The word encodes infinitely many computations, i.e.,
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the word contains infinitely many $ symbols. The last conditions rejects words encoding
non-terminating computations.

To check the condition (C2), A uses slave automata. It uses 4 slave automata to check
transitions between even and odd positions and the other 4 slave automata to check validity of
the remaining transitions. Then, between even and odd positions it uses 2 slave automata for
each counter of M. These slave automata encode the absolute values between the intended
values of counters (i.e., assuming that counter values are consistent with the instructions)

and the actual values. For example, for a subword q1x2y#q′1x
′
2y
′
, the automaton A checks

whether the value of counter 1 is consistent with transition (q,⊥,+, q′,+1,−1) in the
following way. The first slave automaton ignores letters 2 and initially decrements its value
at every letter 1 until it reads letter # (where its value is −x). Next, it switches its mode
and increments its value at letters 1 while ignoring letters 2. In that way its value upon
reading q1x2y#q′1x

′
2y
′

equals −x+ x′. Finally, it increments its value by 1. Thus, the value
of the slave automaton is −x+ x′ + 1. The second slave automaton works in a similar way,
but it decrements whenever the first counter increments and vice versa. At the end, the
value of the second slave automaton is x − x′ − 1. Observe that the maximum of these
value is |x − (x′ + 1)|, which is 0 if and only if the value of counter 1 is consistent with
the transition (q,⊥,+, q′,+1,−1). It follows that the supremum over the values returned
by all slave automata is 0 only if all counter values are consistent with the transitions.
Therefore, the value LimSup of the whole word is 0 if and only if starting at some point all
computations are valid and accepting. The latter is possible only if M has at least one such
a computation. Otherwise, the value of LimSup is at least 1.

Observe that this construction works for Sup as well.

6. Basic results on probabilistic questions

In this section we discuss basic properties of the probabilistic questions and present some
basic facts about Markov chains. Next, in the following Section 7 and Section 8 we
study the probabilistic questions for NWA. We consider there separately NWA with
LimInf,LimSup,LimAvg value functions for the master automaton (Section 7) and NWA
with Inf,Sup value functions for the master automaton (Section 8).

We begin with the discussion on the acceptance by an NWA.

6.1. Property about almost-sure acceptance. Observe that if the probability of the
set of words rejected by an automaton A is strictly greater than 0, then the expected value
of such an automaton is infinite or undefined. In the next lemma we show that given a
deterministic NWA A and a Markov chain M we can decide in polynomial time whether
the NWA is almost-surely accepting, i.e., the set of words whose runs are accepting has
probability 1. In Section 7 we consider all the computational problems for NWA which are
almost-surely accepting. This assumption does not influence the complexity of computational
questions related to the expected value, but has an influence on the complexity of distribution
questions, which we discuss in Section 10.1.

Proposition 6.1. Given a deterministic NWA A and a Markov chain M, we can decide in
polynomial time whether PM({w | Acc(w) 6= ∅}) = 1?
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Proof. First, the master automaton has to accept almost all words. We can check this in
polynomial time by considering the master automaton as a Büchi automaton and applying
the classical methods [BK08].

For all pairs (q, s), where q is the initial state of some slave automaton Bi and s is
a state of the Markov chain M, we check that either Bi is never invoked while M is in
the state s or Bi almost-surely accepts (w.r.t. the distribution given by M started in s).
Observe that Bi almost-surely accepts if for every finite word u generated by M starting
in the state s there exists its finite extension u′ (generated by M), which is accepted by
Bi (i.e., Bi terminates in an accepting state and returns a finite value). One can easily
check that this condition is necessary and sufficient, and it can be checked in polynomial
time [BK08].

Remark 6.2 (Almost-sure acceptance). The answer to the expected value problem does not
change even without the assumption. We show next that without the almost-sure acceptance
condition, the distribution questions become similar to Inf and Sup value functions. Hence,
in Section 7 we consider the almost-sure acceptance property, and presented the conceptually
interesting results. Moreover, classically weighted automata have been considered without
any acceptance conditions (i.e., all words are accepted), and then the almost-sure acceptance
is trivially ensured.

6.2. Duality property between infimum and supremum. In Section 7 and Section 8,
when we consider the expected value and the distribution, in most cases we consider
only Inf and LimInf value functions, and by duality, we obtain results for Sup and
LimSup value functions, respectively. The only exception are (Inf,Sum+)-automata and
(Sup,Sum+)-automata, which have to be considered separately. For every value function
g ∈ FinVal \ {Sum+} we define −g as follows: −Min = Max,−Max = Min and −g = g for
g ∈ {SumB,Sum}.

Lemma 6.3. For every g ∈ FinVal \ {Sum+}, every deterministic (Sup; g)-automaton (resp.
(LimSup; g)-automaton) A1 accepting almost-all words can be transformed to a deterministic
(Inf;−g)-automaton (resp. (LimInf;−g)-automaton) A2 of the same size such that for
almost all words w we have LA1(w) = −LA2(w).

Proof. The automaton A2 is obtained from A1 by multiplying all the weights by −1.

Remark 6.4 (Limited duality). As we work under the almost-sure acceptance assumption,
the above duality result implies that all complexity results for NWA with Inf (resp,. LimInf)
master value function transfer to NWA with Sup (resp., LimSup) master value function.
However, this duality does not extend to the classical problems of emptiness and universality.
Indeed, if A1 does not have an accepting run over w then LA1(w) = LA2(w) = ∞ (where
A1,A2 are from Lemma 6.3). This cannot be fixed with a different construction as the master
automaton in NWA has Büchi acceptance conditions and deterministic Büchi automata
are not closed under complementation. This leads to different complexity results for these
automata. In particular, the emptiness problem for deterministic (Sum,Sum)-automata
is undecidable, while the universality problem for deterministic (Inf,Sum)-automata is
PSpace-complete (Table 1).
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6.3. Basic facts about Markov chains. Labeled Markov chains with weights. A
labeled Markov chain with weights is a (labeled) Markov chain M with a function r, which
associates rationals with edges of M. Formally, a (labeled) Markov chain with weights is a
tuple 〈Σ, S, s0, E, r〉, where 〈Σ, S, s0, E〉 is a labeled Markov chain and r : S × Σ× S 7→ Q.

Graph properties on Markov chains. Standard graph notions have their counterparts
on Markov chains by considering edges with strictly positive probability as present and edges
with probability 0 as absent. For example, we consider the following graph notions:

• (reachability): A state s is reachable from s′ in a Markov chain if there exists a sequence
of edges with positive probability starting in s′ and ending in s.
• (SCCs): A subset of states Q of a Markov chain is a strongly connected component (SCC)

if and only if from any state of Q all states in Q are reachable.
• (bottom SCCs): An SCC Q is a bottom SCC if and only if there are no edges leaving Q.

The product of an automaton and a Markov chain. Let A = 〈Σ, Q, q0, δ, F, C〉 be a
deterministic weighted automaton and letM = 〈Σ, S, s0, E, r〉 be a Markov chain. We define
the product of A and M, denoted by A×M, as a Markov chain 〈Σ, Q× S, 〈q0, s0〉, E′, r′〉,
where (1) E′(〈q1, s1〉, a, 〈q2, s2〉) = E(s1, a, s2) if (q1, a, q2) ∈ δ and E′(〈q1, s1〉, a, 〈q2, s2〉) = 0
otherwise, and (2) r′(〈q1, s1〉, a, 〈q2, s2〉) = C(q1, a, q2) + r(s1, a, s2).

The expected value and distribution questions can be answered in polynomial time for
deterministic weighted automata with value functions from InfVal [CDH09b].

Fact 6.5. Let f ∈ InfVal. Given a Markov chain M, a deterministic f -automaton A and a
value λ, the values EM(A) and DM,A(λ) can be computed in polynomial time.

7. Results on limit value functions

In this section we study NWA with LimInf,LimSup and LimAvg value functions for
the master automaton. All these value functions are prefix independent and hence in a
(deterministic) strongly-connected almost-surely accepting NWA, returning a value λ is a
tail event, which has probability either 0 or 1. It follows that almost all words have the same
value. We use this property to establish polynomial-time algorithms for all probabilistic
questions.

Throughout this section we assume that all NWA that are almost-surely accepting,
i.e., for almost all words w, the run on w is accepting. In the classical setting of weighted
automata, which have no accepting condition, the almost-sure acceptance is trivially satisfied.
This is a conceptually interesting case as we are mainly interested in the quantitative aspect
of (nested) weighted automata. Moreover, we can check whether a given deterministic NWA
is almost-surely accepting in polynomial time (Proposition 6.1). If it is not, the expected
value is either infinite or undefined and hence the complexity of the expected question does
not change. However, the complexity of the distribution question changes and we discuss it
in Section 10.1.

7.1. LimInf and LimSup value functions. In this section we study NWA with LimInf
and LimSup value functions for the master automaton. We start with a result for the special
case when the master automaton is strongly connected w.r.t. the Markov chain.
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An automaton strongly connected on a Markov chain. We say that a deterministic
automaton A is strongly connected on a Markov chain M if and only if the states reachable
(with positive probability) in A×M from the initial state form an SCC.

The key ideas. The value functions LimInf and LimSup return values that occur infinitely
often. Therefore, in a strongly connected Markov chain, for every finite word u, the set
of infinite words that contain u infinitely many times has probability 0 or 1. We extend
this property to establish some sort of 0-1 law for NWA with LimInf or LimSup master
value function (Lemma 7.1), which states that if the product of the Markov chain and the
master automaton of A form an SCC, then almost all words have the same value which is
the infimum returned by slave automata of A.

In the following result we do not assume that a given NWA accepts almost surely.

Lemma 7.1. Let g ∈ FinVal, M be a Markov chain, and A be a deterministic (Inf; g)-
automaton (resp., (LimInf; g)-automaton). Assume that the master automaton of A is
strongly connected on M. Then, the following conditions hold:

(1) either runs on almost all words are accepting or runs on almost all words are rejecting,
(2) there exists a unique value λ such that PM({w | LA(w) = λ}) = 1,
(3) |λ| ≤ |A| · |M| or λ is extreme, i.e., λ ∈ {−∞,∞} for g ∈ {Sum,Sum+} or λ ∈
{−B,B,∞} for g = SumB, and

(4) given M and A, the value λ can be computed in polynomial time in |M|+ |A|.

Proof. We first show duality (1) and then consider the case of almost-surely accepting NWA.

Duality. Since A is deterministic, all runs of A on the distribution given by M correspond
to the paths in Amas ×M, where Amas is the master automaton of A. Since Amas ×M is
strongly connected, any finite path occurs infinitely often with the probability either 0 or
1 [BK08]. Therefore, either almost all runs satisfy the Büchi condition of Amas or almost all
runs violate it. We can check in polynomial time which of these two cases holds.

Now, either in almost all words all slave automata accept or there is a state (q, s) of
Amas ×M, where the master automaton invokes some slave automaton Bi, which does
not accept with positive probability. In the latter case, almost all words are rejected by
A. Observe that there exists a finite word u generated by M in state s such that no finite
extension of u (generated by M in state s) is accepted by Bi. Again, since Amas ×M is
strongly connected, the sequence of states (q, s) followed by states forming the word u occurs
infinitely often in almost all words. It follows that on almost all words A does not have an
accepting run. We can check existence of (q, s), which is visited infinitely often in Amas×M
and some invoked slave automaton rejects with positive probability, in polynomial time in
|A|+ |M|.

Recall that for a word w, the run of A on w is accepting if and only if the run of Amas

on w is accepting (it satisfies its Büchi condition), and the runs of all invoked slave automata
are accepting. In summary, one of the following holds: (i) on almost all words w, the run of
A on w is accepting, or (ii) on almost all words w, the run of A on w is rejecting, and hence
LA(w) =∞. We can decide in polynomial time which of these cases holds. Moreover, if (ii)
holds, then PM({w | LA(w) =∞}) = 1, i.e., λ =∞. We next assume that (i) holds.

Almost-surely accepting NWA. Assume that A is almost-surely accepting. Consider a state
(q, s) of Amas ×M, where the master automaton invokes some slave automaton Bi, and the
slave automaton Bi attains its minimal value on the following letters. (If Bi does not attain
its minimal value, we consider a sequence that tends to −∞.) Therefore, almost all runs
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contain the considered sequence infinitely often. It follows that the value of almost all runs
is the minimum over reachable states (q, s) from Amas×M and transitions (s, a, s′) ofM of
the minimal value the slave automaton invoked in (q, a, q′) can achieve on all words generated
by M starting with the transition (s, a, s′). This value can be computed in polynomial time
in |M|+ |A|.

Observe that either some invoked slave automaton can reach a cycle with the sum of
weights being negative and iterate over it (i.e., a cycle in Bi×M), and hence the minimum is
−∞ (the minimum is bounded by −B for g = SumB). Otherwise, the minimum is attained
over some word which does not form a cycle in Bi ×M, i.e., the length of this word is
bounded by the number of states of Bi times the size of M. Since we consider weights to
be given in the unary notation, the sum of weights over such a word is bounded by |Bi|
times |M|. Thus, |λ| ≤ |A| · |M| or λ = −∞ (resp., −B for g = SumB). If g = SumB and
B < |A| · |M|, then λ = B.

Lemma 7.1 implies the following main lemma of this section.

The key ideas. Consider a (LimInf; g)-automaton (resp., (LimSup; g)-automaton) A that
accepts almost all words. The value LA(w) depends only on the infinite behavior of the
(unique) run of A on w, which ends up in some bottom SCC (for almost all words w). In a
bottom SSC, almost all words have the same value, which can be computed in polynomial
time (Lemma 7.1). Thus, to compute EM(A), we compute probabilities of reaching each of
the bottom SCCs and values of A in these SSCs. In a similar way, we can compute DM,A(λ).

Lemma 7.2. Let g ∈ FinVal. For a deterministic almost-surely accepting (LimInf; g)-
automata (resp., (LimSup; g)-automata) A and a Markov chain M, given a threshold λ,
both EM(A) and DM,A(λ) can be computed in polynomial time.

Proof. First, we discuss how to compute the expected and the distribution questions of a
deterministic (LimInf;Sum)-automaton A.

The value of (LimInf;Sum)-automaton A on a word depends on weights that appear
infinitely often. Since A reaches some bottom SCC with probability 1, we can neglect
values of slave automata returned before the master automaton Amas (of A) reaches a
bottom SCC of Amas ×M. Thus, the expected value of (LimInf;Sum)-automaton A w.r.t.
a Markov chainM can be computed in the following way. Let S1, . . . , Sl be all bottom SCCs
of Amas ×M. We compute probabilities p1, . . . , pl of reaching the components S1, . . . , Sl
respectively. These probabilities can be computed in polynomial time [BK08]. Next, for
every component Si we compute in polynomial time the unique value mi, which A returns
on almost every word whose run ends up in Si (Lemma 7.1). The expected value EM,A is
equal to p1 ·m1 + · · ·+ pl ·ml. Observe that, given a value λ, the distribution DM,A(λ) is
equal to the sum the probabilities pi over such i that mi ≤ λ. Hence, the expected and the
distribution questions can be computed in polynomial time.

Due to Lemma 6.3, the case of LimSup reduces to the case of LimInf. All value
functions from FinVal are special cases of Sum. This concludes the proof.

Lemma 7.2 states the the expected question and the distribution question can be
computed in polynomial time. The remaining probabilistic questions are their special
cases and hence they can be computed in polynomial time as well. The following theorem
summarizes results of this section.
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Theorem 7.3. Let g ∈ FinVal. All probabilistic questions for deterministic almost-surely
accepting (LimInf; g)-automata (resp., (LimSup; g)-automata) can be solved in polynomial
time.

Remark 7.4 (Contrast with classical questions). Consider the results on classical questions
shown in Table 1 and the results for probabilistic questions we establish in Theorem 7.3.
While for classical questions the problems are PSpace-complete or undecidable, we establish
polynomial-time algorithms for all probabilistic questions.

7.2. The expected question for the LimAvg value function. In this section we study
NWA with the LimAvg value function for the master automaton. We essentially show that
to compute the expected value of a given (LimAvg; g)-automaton, it suffices to substitute
in each transition invoking a slave automaton Bi by the expected value of Bi.

We assume that considered (LimAvg; g)-automata are deterministic and accept almost
all words. We discuss the case of almost-surely accepting NWA. This assumption does not
change the complexity of the expected question (Remark 6.2).

Lemma 7.5. Let g ∈ FinVal. Given a Markov chain M and a deterministic almost-surely
accepting (LimAvg; g)-automaton A, the value EM(A) can be computed in polynomial time.

Overview. We present the most interesting case when g = Sum. Let A be a (LimAvg;Sum)-
automaton and let M be a Markov chain. We define a weighted Markov chain MA as the
product Amas ×M, where Amas is the master automaton of A. The weights of MA are the
expected values of invoked slave automata, i.e., the weight of the transition 〈(q, s), a, (q′, s′)〉
is the expected value of Bi, the slave automaton started by Amas in the state q upon reading
a, w.r.t. the distribution given by M starting in s.

In the remaining part of this section we show that the expected value of A w.r.t. M and
the expected value ofMA coincide (Lemma 7.6). The Markov chainMA can be computed in
polynomial time and has polynomial size in |A|+ |M|. Thus, we can compute the expected
values of MA, and in turn EM(A), in polynomial time in |A|+ |M|.

Lemma 7.6. Let A be a deterministic almost-surely accepting (LimAvg;Sum)-automaton.
The values EM(A) and E(MA) coincide.

In the following we prove Lemma 7.6. First, we show that lemma for (LimAvg;Sum)-
automata in which duration of runs of slave automata is bounded by some N ∈ N. Next, we
show how to solve the general case of all (LimAvg;Sum)-automata by the reduction to this
special case.

Note that MA can have silent moves labeled by ⊥. Indeed, an automaton that starts in
the accepting state always returns value ⊥, which is its expected value. Before we continue,
we discuss computing the expected values of Markov chains with silent moves.

Expected limit averages of Markov chains with silent moves. Let Msil be a
Markov chain labeled by Q ∪ {⊥}, where ⊥ corresponds to a silent transition. We consider
the limit average value function with silent moves sil(LimAvg), which applied to a sequence
a1a2 . . . of elements of Q ∪ {⊥} removes all ⊥ symbols are applies the standard LimAvg
function (defined on the sequences of rational numbers in the similar way as for integers) to
the sequence consisting of the remaining elements. The expected value of the limit average
of a path in Msil can be computed by a slight modification of the standard method for
Markov chains without silent transitions [FV96].
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Without loss of generality we can assume that Msil is strongly connected. It if is not,
we can compute bottom strongly connected components B1, . . . , Bk of Msil, then compute

probabilities p1, . . . , pk of reaching these components and E(Msil) =
∑k

i=1 piE(Msil[Bi]),
where Msil[Bi] is Msil with the initial state being some state from Bi.

Assume thatMsil is strongly connected and contains non-silent transitions. We associate
with each transition e = (s, a, s′) of Msil a real-valued variable x[e], which is the frequency
of transition e. Formally, given an infinite path ρ in Msil we define |ρ[1, n]|e as the number
of transitions e among first n transitions of ρ. Let e1, . . . , ek be all non-silent transitions in
Msil. We state a system of equations and inequalities such that for almost all infinite paths
ρ in Msil and all i ∈ {1, . . . , k} we have

lim
n→∞

|ρ[1, n]|ei
|ρ[1, n]|e1 + · · ·+ |ρ[1, n]|ek

= x[ei]. (7.1)

These equations and inequalities are as follows:

(E1) for every transition e = (s, a, s′) we put

x[(s, a, s′)] = E(s, a′, s′) ·
∑

s′′∈SMsil
,a′∈Σ

x[(s′′, a′, s)],

the frequency of (s, a, s′) is the probability of taking (s, a, s′) from s multiplied by the
sum of frequencies of all transitions leading to s,

(E2) x[e1] + · · ·+ x[ek] = 1, where the sum of frequencies of all non-silent transitions is 1,
(E3) 0 ≤ x[e] for every transition e.

Following the argument for Markov chains without silent moves [FV96, BK08], we can show
that the above system of equations has the unique solution and it satisfies (7.1). Then, the
expected limit average of Msil is given as c(e1) · x[e1] + · · ·+ c(ek) · x[ek], where c(ei) is the
cost of transition ei.

7.2.1. The expected value in the bounded-duration case. First, we show that Lemma 7.6
holds if we assume that for some N > 0 all slave automata take at most N transitions.

Lemma 7.7. Let A be an almost-surely accepting deterministic (LimAvg;Sum)-automaton
in which duration of runs of slave automata is bounded by N and let MA be the weighted
Markov chain corresponding to A. The values EM(A) and E(MA) coincide.

Before we proceed with the proof of Lemma 7.7, we present an example.

Example 7.8. Recall the average response time property (ART) presented in Example 1.1.
We consider a variant of ART called N -bounded ART. We define the N -bounded response
time of a request as the minimum of N and the number of steps to the following grant.
The N -bounded ART is the limit average of N -bounded response times over all requests.
The N -bounded ART property can be computed by a (LimAvg;Sum+)-automaton AN
that at each request invokes a slave automaton that takes at most N steps and computes
the N -bounded response time. The NWA AN invokes a dummy slave automaton on the
remaining transitions, which corresponds to taking a silent transition. For simplicity, we
restrict the events to requests and grants only (no idle events).

We consider the uniform probability measure over {r, g}ω (without events i), which can
be given by a single-state Markov chain MU . First, the expected N -bounded response time
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Figure 5. The automaton AN

equals
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)i
· i+N

∞∑
i=N

(
1

2

)i
= 2− (N − 1) ·

(
1

2

)N−1

+N ·
(

1

2

)N−1

= 2−
(

1

2

)N−1

.

The Markov chain MAN has a single state with a self-loop labeled by a grant of the

empty weight ⊥ and a self-loop labeled by a request of weight 2 − (1
2)
N−1

. Therefore,

E(MAN ) = 2− (1
2)
N−1

.
Now, to compute EMU

(AN ) we construct a sil(LimAvg)-automata AN that works as
follows. In each block r∗g, for the first N requests, the automaton AN assigns weights
1, 2, . . . , N , and then for the following requests it assigns weight N . It takes silent transitions
over grants g. The automaton AN is depicted in Figure 5.

Observe that in each block rkg the N -bounded response times are

min(N, k),min(N, k − 1), . . . , 2, 1,

while the weights returned by the automaton A are

1, 2, . . . ,min(N, k − 1),min(N, k).

On all words w with infinitely many grants the values LAN
(w) and LAN

(w) are equal.
Therefore, EMU

(AN ) = EMU
(AN ).

We compute the EMU
(AN ) in the standard way. Let xi be the density of visiting state

qi in Ai. Clearly, for i = 0, . . . , N −1, we have xi = (1
2)
i

and xN = (1
2)
N−1

. Since transitions

labeled with g are silent, EMU
(AN ) = (

∑N−1
i=0 xi · (i+ 1)) +N · xN = 2− (1

2)
N−1

. Thus, the

values EM(AN ) and E(MAN ) coincide.

The plan of the proof . We define a sil(LimAvg)-automaton A that simulates runs of
A; the value on A on every word coincides with A. Then, we transform the Markov chain
A ×M into a Markov chain ME by adjusting its weights only. We change all weights
to the empty weight ⊥ except for the transitions corresponding to the invocation of slave
automata, where the weight is the expected value of the invoked slave automaton w.r.t.
the distribution given by M in the current state. In the proof we argue that the expected
values of limit average of A×M and ME coincide. We show that by looking at the linear
equations corresponding to computing the expected limit average of each of the Markov
chains. Basically, the frequency of each transition is the same in both Markov chains and
changing the value of the slave automaton from its actual value to the expected value does
not affect the solution to the set of equations. Next, we observe that runs of slave automata
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past the first transition do not matter. Indeed, all runs of slave automata are accepting and
all weights past the first transition are 0. Thus, we can reduce ME to a Markov chain MR

by projecting out information about the runs of slave automata past the first transition.
Finally, we observe that the Markov chain MR is in fact MA. Hence, we have shown that

EM(A) = EM(A) = E(ME) = E(MR) = E(MA)

Proof. Every slave automaton of A takes at most N steps. Therefore, A has width bounded
by N . Moreover, without loss of generality, we assume that each slave automaton takes
transitions of weight 0 except for the last transition, which may have a non-zero weight,
and all slave automata are either trivial, i.e., they start in the accepting state and take no
transitions, or they take precisely N transitions. Basically, slave automata may keep track
of the accumulated values and the number of steps in their states.
The automaton A. Let Qmas be the set of states of the master automaton of A and let Qs
be the union of the set of states of the slave automata of A. We define A as a sil(LimAvg)

automaton over the set of states Qmas× (Qs ∪ {⊥})N . The component Qmas is used to keep

track of the run of the master automaton while the component (Qs ∪ {⊥})N is used to keep
track of up to N slave automata running concurrently. The symbol ⊥ corresponds to an
empty slot that can be used to simulate another slave automaton. Since A has width bounded
by N , the automaton A can simulate the Boolean part of the run of A. The weight of a
transition of A is either ⊥ if no automaton terminates or it is the value of a terminating slave
automaton (non-trivial slave automata take precisely N steps, so at most one can terminate
at each position). Transitions at which no slave automaton terminates are silent transitions.
The automata A and A encounter the same weights but differ in their aggregation. The
value of a slave automaton is associated to the position at which it is invoked, while in A it
is associated with the position at which the slave automaton terminates. However, these
positions differ by N , therefore the limit averages of both sequences coincide. Hence, for
every word w, the values LA(w) and LA(w) coincide. It follows that EM(A) = EM(A).
The Markov chain ME . We defineME as A×M with altered weights defined as follows.
All transitions which correspond to the invocation of a slave automaton Bi with the state
of the Markov chain M being s have weight equal to the expected value of Bi w.r.t. the
distribution given by M starting in the state s. Other transitions are silent.
Expected values of Amas ×M and ME coincide. Assume that Amas ×M and ME

are strongly connected. If they are not, we can apply the following reasoning for all bottom
strongly connected components of both Markov chains as they have the same underlying
structure.

Recall that the expected limit average of a Markov chain with silent moves is given by
c(e1) · x[e1] + · · ·+ c(ek) · x[ek] where variables x[e], over all transitions e, form a solution
to the system of equations and inequalities (E1), (E2) and (E3), and e1, . . . , ek are all
non-silent transitions. Now, observe that the equations (E1) and inequalities (E3) are the
same for both Markov chains A×M and ME as they have the same structure with the
same probabilities. The equation (E2) is, in general, different for A ×M and for ME .
However, non-silent transitions of A ×M, denoted by e1, . . . , ek, are all states at which
at least one slave automaton terminates, while non-silent transitions of ME , denoted by
e′1, . . . , e

′
l are all states at which some (non-trivial) slave automaton is invoked. Observe

that every terminating slave automaton has been invoked, and, in A, every invoked slave
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automaton terminates. Therefore, the sum of frequencies of invocations and terminations of
slave automata are equal, i.e., equations (E1) imply

x[e1] + · · ·+ x[ek] = x[e′1] + · · ·+ x[e′l].

It follows that the unique solution to equations and inequalities (E1), (E2) and (E3)
corresponding to A×M and to ME are the same. It remains to show that

c(e1) · x[e1] + · · ·+ c(ek) · x[ek] = c′(e′1) · x[e′1] + · · ·+ c′(e′l) · x[e′l],

where c (resp. c′) are weights in A×M (resp., ME).
Since c′(e′) is the expected value of the slave automaton started at e′, the expected

value c′(e′) is given by c′(e′) =
∑

e′′∈T p(e
′, e′′) · c(e′′), where T is the set of transitions

that correspond the the final transitions of the slave automaton started at the transition
e′, and p(e′, e′′) is the probability of reaching the transition e′′ from e′ omitting the set
T . Indeed, each (non-trivial) slave automaton takes precisely N transitions, hence at each
position at most one non-trivial slave automaton terminates and c(e′′) is the value of the
slave automaton terminating at e′′. Therefore, c′(e′) =

∑
e′′∈T p(e

′, e′′) · c(e′′).
Now, we take c′(e′1)·x[e′1]+· · ·+c′(e′l)·x[e′l] and substitute each c(e′i) by the corresponding

c′(e′i) =
∑

e′′∈Ti p(e
′, e′′) · c(e′′). Then, we now group in all the terms by e′′ and we get

c′(e′1) · x[e′1] + · · ·+ c′(e′l) · x[e′l] =

k∑
i=1

c(ei) ·
(
x[e′1] · p(e′1, ei) + · · ·+ x[e′l] · p(e′l, ei)

)
Observe that the frequency of taking the transition ei at which some slave automaton B
terminates is equal to the sum of frequencies on transitions at which this slave automaton
B has been invoked, in which each frequency is multiplied by the probability of reaching the
terminating transition e1 from a given invoking transition. Therefore, we have

x[e′1] · p(e′1, ei) + · · ·+ x[e′l] · p(e′l, ei) = x[ei].

It follows that

c(e1) · x[e1] + · · ·+ c(ek) · x[ek] = c′(e′1) · x[e′1] + · · ·+ c′(e′l) · x[e′l]

and EM(A) = E(ME).
The Markov chain MR. We construct MR from ME by projecting out the component
(Qs ∪ {⊥})N . We claim that this step preserves the expected value. First, observe that the
distribution is given by an unaffected component M and the weights depend only on the
state of the Markov chainM and the state of the master automaton Amas. Thus, projecting
out the component (Qs ∪ {⊥})N does not affect the expected value, i.e., EM(ME) = E(MR).
Now, observe that the set of states of MR is Qmas × QM. Observe that the probability
and the weights of the transitions of MR match the conditions of the definition of MA.
Therefore, MR =MA.

7.2.2. Reduction to the bounded-duration case. Let A be a (LimAvg;Sum)-automaton. For
every N , we define AN as A with the bound N imposed on slaves, i.e., each slave automaton
terminates either by reaching an accepting state or when it takes the N -th step. Let MA

N

be the Markov chain that corresponds to AN . Observe that as N tends to infinity, weights
in MA

N converge to the weights in MA. It remains to be shown that, as N tends to infinity,
the expected values of AN converge to the expected value of A. We show in the following
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Lemma 7.9 that random variables generated by AN converge in probability to the random
variable generated by A, i.e., for every ε > 0 we have

lim
N→∞

PM({w | |LA(w)− LAN (w)| ≥ ε}) = 0

Convergence in probability implies convergence of the expected values. It follows that the
expected values of A and MA coincide.

Lemma 7.9. The random variables defined by {LAN }N≥0 converge in probability to the
random variable defined by A.

Example 7.10. Recall Example 7.8. Lemma 7.9 implies that with N tending to infinity,
the limit of the expected N -bounded ARTs converges to the expected ART. For N > 0,

the expected N -bounded ART is EMU
(AN ) = 2− (1

2)
N−1

. Therefore, the expected ART is
limN→∞ EMU

(AN ) = 2.

Proof. We define an (LimAvgSup;Sum)-automaton A≥N as the automaton obtained from
A in the following way. First, each slave automaton take transitions of weight 0 for
the first (up to) N steps, past which it takes transitions of weight 1 until it terminates.
Second, the value function of the master automaton is LimAvgSup defined on a1, a2, . . .
as LimAvgSup(a1 . . .) = lim supn

1
n

∑n
i=1 ai. Intuitively, the automaton A≥N computes the

limit average (supremum) of the steps slave automata take above the threshold N . Let C
be the maximal absolute weight in slave automata of A. Then, for every word w we have

LAN (w)− C · LA≥N (w) ≤ LA(w) ≤ LAN (w) + C · LA≥N (w).

It follows that

PM({w | |LA(w)− LAN (w)| ≥ ε}) = PM({w | |LA≥N (w)| ≥ ε

C
})

We show that with N increasing to infinity, probabilities PM({w | |LA≥N (w)| ≥ ε
C }) converge

to 0. From that we conclude that random variables LAN converge in probability to LA as N
tends to infinity.

Observe that for every word w and every N we have 0 ≤ LA≥N (w) and LA≥N (w) ≥
LA≥N+1(w). Therefore, we only need to show that for every ε > 0 there for N large enough
EM(A≥N ) ≤ ε. Then, by Markov inequality, PM({w | |LA≥N (w)| ≥

√
ε) <

√
ε.

To estimate the value of EM(A≥N ) we consider sil(LimAvgSup)-automata A[K, i]
defined as follows. The automaton A[K, i] simulates the master automaton A and slaves
that are invoked at positions {K · l + i | l ∈ N}. For every l > 0, the transition at the
position K · (l + 1) + i has the weight 1 if the slave invoked at the position K · l + i works
for at least K steps. Otherwise, this transition has weight 0. On the remaining positions,
transitions have weight 0. Observe that due to distributivity of the limit supremum, the
limit average supremum of the number of slave automata that take at least K steps at a
given word w is bounded by

∑K−1
i=0 LA[K,i](w). It follows that for every word w we have

LA≥N (w) ≤
∑

K≥N
∑K−1

i=0 LA[K,i](w). Therefore,

(*) EM(A≥N ) ≤
∑
K≥N

K−1∑
i=0

EM(A[K, i]).

Now, we estimate EM(A[K, i]). Let n be the maximal size of a slave automaton in
A and let k be the number of slave automata. We assume, without loss of generality,
that every state of slave automata is reached along some run on words generated by M.
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Now, observe that from every state of slave automata some accepting state is reachable.
Otherwise, there would be a set of strictly positive probability at which A does not accept.
Moreover, as it is reachable, it is reachable within n steps. Therefore, the probability
p such that any slave automaton in any state terminates after next n steps is greater

than 0. It follows that EM(A[K, i]) ≤ 1
K p
bK
n
c. We apply this estimate to (*) and obtain

EM(A≥N ) ≤
∑

K≥N p
bK
n
c ≤ n · p

bNn c

1−p . Therefore, EM(A≥N ) converges to 0 as N increases to

infinity. Finally, this implies that AN converges in probability to A as N tends to infinity.

7.3. The distribution question for the LimAvg value function.

Lemma 7.11. Let g ∈ FinVal. Given a Markov chain M, a deterministic almost-surely
accepting (LimAvg; g)-automaton A and a value λ, the value DM,A(λ) can be computed in
polynomial time.

The key ideas. We show that the distribution is discrete. More precisely, let A be the
product of the Markov chain M and the master automaton of A. We show that almost
all words, whose run end up in the same bottom SCC of A, have the same value, which
is equal to the expected value over words that end up in that SCC. Thus, to answer the
distribution question, we have to compute for every bottom SCC C of A, the expected
value over words that end up in C and the probability of reaching C. Both values can be
computed in polynomial time (see Lemma 7.5).

Proof. Let A be a deterministic (LimAvg;Sum)-automaton with the master automaton
Amas and let M be a Markov chain. Moreover, let MA be the Markov chain obtained
from M and A. We show that the distribution DM,A and the distribution defined by MA

coincide.
The single-SCC case. Assume that Amas ×M is an SCC. Observe that the event “the
value of A equals λ” is a tail event w.r.t. the Markov chain M, i.e., it does not depend on
finite prefixes. Therefore, its probability is either 0 or 1 [Fel71]. It follows that the value of
almost all words is equal to the expected value of A. Now, MA is structurally the same as
Amas ×M, hence it is also an SCC. Therefore, also in MA almost all words have the same
value, which is equal to E(MA). As EM(A) = E(MA) (Lemma 7.6) we have DM,A and the

distribution defined by MA coincide.

The general case. Consider the case where Amas ×M consists multiple bottom SCCs
S1, . . . , Sk. Using conditional probability, we can repeat the single-SCC-case argument to
show that in all bottom SCCs S1, . . . , Sk the values of A are the same and equal to the
expected values in these SCCs. Similarly, in each bottom SCC of MA, all words have the
same value, which is equal to the expected value in that SCC. Since Amas×M is structurally
the same as MA, each SCC S1, . . . , Sk corresponds to an SCC in MA. Lemma 7.6 states
that EM(A) = E(MA). By applying Lemma 7.6 to M and A with different initial states of
M and Amas (in each S1, . . . , Sk), we infer that in every SCC S1, . . . , Sk the expected values
of A and MA coincide. Therefore, the distribution DM,A and the distribution defined by

MA coincide.

Theorem 7.12. Let g ∈ FinVal. All probabilistic questions for deterministic almost-surely
accepting (LimAvg; g)-automata can be solved in polynomial time.
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Remark 7.13 (Contrast with classical questions). Our results summarized in Theorem 7.12
contrast the results on classical questions shown in Table 1. While classical questions are
PSpace-complete, in ExpSpace or open, we establish polynomial-time algorithms for all
probabilistic questions.

8. Results on non-limit value functions

In this section we study NWA with Inf,Sup value functions for the master automaton. In
contrast to LimInf and LimSup value functions, for which all probabilistic questions can
be answered in polynomial time (Theorem 7.3), we show #P-hardness, PSpace-hardness
and uncomputability results for Inf,Sup value functions as well as exponential-time upper
bounds in some cases.

In contrast to LimInf and LimSup value functions the almost-sure acceptance condition
does not change the complexity of the probabilistic questions. We show the lower bounds
under the almost-sure acceptance condition. However, for the upper bounds we do not
assume almost-sure acceptance of NWA. We first present several hardness results for Inf
and Sup value functions.

8.1. Lower bounds for all value functions for slave automata. We present the key
ideas of the hardness results.

PSpace-hardness. NWA can invoke multiple slave automata working independently over the
same finite subword, which we use to express the problem: is the intersection of given regular
languages empty, which is PSpace-complete. We transform given DFA A1, . . . ,Ak into slave
automata that return 1 if the original automaton accepts and 0 otherwise. The resulting
NWA A is deterministic, accepts almost all words and DU ,A(0) = 1 if the intersection
is empty. Note however, that words of the minimal length in the intersection can have
exponential length and their probability can be doubly-exponentially small. Therefore, even if
DU ,A(0) 6= 1, the difference between DU ,A(0) and 1 can be small and hence PSpace-hardness
does not apply to the approximation problems (which we establish below).

#P -hardness. We show #P -hardness of the approximate probabilistic questions by reduction
from #SAT, which is #P -complete [Val79, Pap03]. The #SAT problem asks for the number
of variable assignments satisfying a given CNF formula ϕ. In the proof, the input word gives
an assignment, and each slave automaton checks the satisfaction of one clause and returns 1
if it is satisfied and 0 otherwise. Therefore, all slave automata return 1 if and only if all
clauses are satisfied, and hence we can compute the number of satisfying assignments of ϕ
from EU (A) and DU ,A(0), where U is the uniform distribution over infinite words. The lower
bounds hold even under the additional almost-sure acceptance condition.

Lemma 8.1 (Hardness results). Let g ∈ FinVal be a value function, and U denote the
uniform distribution over the infinite words.

(1) The following problems are PSpace-hard: Given a deterministic almost-surely accepting
(Inf; g)-automaton (resp., (Sup; g)-automaton) A, decide whether EU (A) = 0; and decide
whether DU ,A(0) = 1?

(2) The following problems are #P-hard: Given ε > 0 and a deterministic almost-surely
accepting (Inf; g)-automaton (resp., (Sup; g)-automaton) A, compute EU (A) up to pre-
cision ε; and compute DU ,A(0) up to precision ε.
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Proof. We present the following argument for g = Min. The same proof works for g = Max.
Lemma 6.3 implies that problems in (1) and (2) for nested weighted automaton with
Sup value function reduce to the corresponding problems for nested weighted automaton
with Inf value function. Since Min can be regarded as a special case of SumB,Sum+ or
Sum, the result holds for these functions as well. Hence, we consider only the case of
(Inf,Min)-automata.
PSpace-hardness: We show PSpace-hardness by reduction from the emptiness problem
for the intersection of regular languages. Let L1, . . . ,Ln ⊆ {a, b}∗ be regular languages
recognized by deterministic finite automataA1, . . . ,An. We define a deterministic (Inf;Min)-
automaton A that at the first n steps starts slave automata B1, . . . ,Bn and then it invokes
only a dummy slave automaton that returns 1 after a single step. For every i, the slave
automaton Bi first reads n− i letters which it ignores, then it simulates Ai until the first #
when it terminates. It returns 1 if the simulated automaton Ai accepts and 0 otherwise. More
precisely, Bi works on subwords uv#, where u ∈ {a, b,#}n−i, v ∈ {a, b}∗ and returns 1 if
v ∈ Li and 0 otherwise. Observe that on a word w = uv#w′ where u ∈ {a, b,#}n, v ∈ {a, b}∗
and w′ ∈ {a, b,#}ω, the automaton A returns 1 if and only if all automata A1, . . . ,An accept
v. Otherwise, A assigns value 0 to w. In consequence, the following conditions are equivalent:
(1) the intersection L1 ∩ . . . ∩ Ln is empty, (2) the expected value EU (A) is 0, and (3) the
distribution DU ,A(0) = 1. Note that the almost-sure distribution question in PSpace-hard
as well.

Observe that if the intersection L1 ∩ . . .∩Ln is non-empty it might be the case that the
word of the minimal length in the intersection consists of a single word of exponential length.
In such a case, the values EU (A) and |1− DU ,A(0)| are non-zero, but doubly-exponentially
small. Therefore, we cannot use this reduction to show hardness of the approximate versions
of the probabilistic problems.
#P -hardness: We show #P-hardness by reduction from the #SAT problem, which, given
a propositional formula ϕ in conjunctive normal form asks for the number of valuations
that satisfy ϕ. Let n be the number of variables of ϕ and let C1, . . . , Cm be the clauses of
ϕ. For every i ∈ [1,m], we define a slave automaton Bi (associated with Ci) that ignores
the first m − i letters, next considers the following n letters 0, 1 as the valuation of the
successive variables and checks whether this valuation satisfies the clause Ci. If it does, the
slave automaton returns 1, otherwise it returns 0. The master automaton first invokes slave
automata B1, . . . ,Bm and then it invokes a dummy slave automaton that returns 1 after
a single step. Observe that for w = uvw′, where u ∈ {0, 1}m, v ∈ {0, 1}n and w′ ∈ {0, 1}ω,
the automaton A returns 1 on w if and only if the valuation given by v satisfies all clauses
C1, . . . , Cm, i.e., it satisfies ϕ. Otherwise, A returns 0 on w. Therefore, the values EU(A)
and 1− DU ,A(0) are equal, and multiplied by 2n give the number of valuations satisfying ϕ.
In follows that all approximate probabilistic questions are #P -hard.

8.2. Upper bounds for value functions g ∈ FinVal \ {Sum+,Sum}. We now present
upper bounds for value functions for (Inf; g)-automata and (Sup; g)-automata, where
g ∈ FinVal \ {Sum+,Sum}.
Overview. We begin with the discussion on the bounded-sum value function. We show the
translation lemma (Lemma 8.2), which states that deterministic (Inf;SumB)-automata can
be translated to deterministic Inf-automata with exponential blow-up. Moreover, this blow-
up can be avoided by considering NWA of bounded width and the bound in the sum B given
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in unary. Since the probabilistic questions can be solved for Inf-automata in polynomial
time, Lemma 8.2 implies that all probabilistic questions can be solved in exponential time
for deterministic (Inf;SumB)-automata. Next, we use Lemma 8.2 to show the upper bounds
on the probabilistic questions for all slave value functions g ∈ FinVal \ {Sum+,Sum}.
The key ideas. It has been shown in [CHO17] that for f ∈ InfVal and g ∈ FinVal \
{Sum+,Sum}, (f ; g)-automata can be transformed to exponential-size f -automata. In
the original transformation the threshold B is fixed. We slightly modify the construction
from [CHO17], to show the case of variable threshold for (Inf;SumB)-automata.

Lemma 8.2. (1) Given B > 0 in the binary notation and a deterministic (Inf;SumB)-
automaton A, one can construct in exponential time an exponential-size deterministic Inf-
automaton A such that for every word w we have LA(w) = LA(w). (2) Let k > 0. Given
B > 0 in the unary notation and a deterministic (Inf;SumB)-automaton A of width bounded
by k, one can construct in polynomial time a polynomial-size deterministic Inf-automaton
A such that for every word w we have LA(w) = LA(w).

Proof. (1): Let Qm be the set of states of the master automaton and Qs be the union
of the sets of states of slave automata of A. We define an Inf-automaton A over the set
of states Qm × (Qs × [−B,B] ∪ {⊥})|Qs|. Intuitively, A simulates runs of A by simulating
(a) the run of the master automaton using the component Qm and (b) selected runs of up to

|Qs| slave automata using the component (Qs × [−B,B])|Qs|. Slave automata are simulated
along with their values, which are stored in the state, i.e., the state (q, l) encodes that a
given slave automaton is in the state q and its current value is l. Then, the value of a given
transition of A is the minimum over the values of simulated slave automata that terminate
at the current step. Finally, the symbol ⊥ denotes “free” components in the product

(Qs × [−B,B] ∪ {⊥})|Qs|, which can be used to simulate newly invoked slave automata. We
need to convince ourselves that we need to simulate at most |Qs| slave automata. Therefore,
every time a new slave automaton is invoked, we have a free component to simulate it.

Observe that if at some position two slave automata B1,B2 are in the same state q and
they have computed partial sums of weights l1 ≤ l2, then we can discard the simulation of the
automaton B2, which computed the value l2. Indeed, since slave automata are deterministic
and recognize prefix-free languages, the remaining runs of both slave automata B1,B2 are
the same, i.e., they either both reject or both return values, respectively, l1 + v and l2 + v
for some common v. Thus, the run of B2 does not change the value of the infimum and we
can stop simulating it, i.e., we can substitute (q, l2) by ⊥. Therefore, at every position at
most |Qs| components are necessary. It follows from the construction that the values of A
and A coincide on every word.
(2): If B is given in the unary notation and the width is bounded by k, we can basi-
cally repeat the construction as above for the automaton with the set of states Qm ×
(Qs × [−B,B] ∪ {⊥})k, which is polynomial in A. Thus, the resulting automaton has
polynomial size in A and can be constructed in polynomial time (in A).

Key ideas. We consider almost surely accepting automata and hence by Lemma 6.3, the results
of Lemma 8.2 apply to (Sup;SumB)-automata. The bounded-sum value function SumB

subsumes all value functions from g ∈ FinVal \ {Sum+,Sum}, and hence Lemma 8.2 implies
that a deterministic (Inf; g)-automaton (resp., (Sup; g)-automaton) can be transformed to
an equivalent exponential-size Inf-automaton (resp., Sup-automaton). Therefore, using
Fact 6.5, both EM(A) and DM,A(λ) can be computed in exponential time.
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Lemma 8.3. Let g ∈ FinVal \ {Sum+,Sum} be a value function. (1) Given a Markov chain
M, a deterministic (Inf; g)-automaton (resp., (Sup; g)-automaton) A, and a threshold λ
in binary, both EM(A) and DM,A(λ) can be computed in exponential time. (2) If A has
bounded width, then the above quantities can be computed in polynomial time.

Remark 8.4. Observe the following:

(1) We show in Lemma 8.3 a polynomial-time upper bound for NWA with bounded width,
which gives a polynomial-time upper bound for automata with monitor counters.

(2) For g = SumB, the value B can be given in binary in input, and the complexity in (1)
from Lemma 8.3 does not change.

We first prove Lemma 8.3 for g ∈ FinVal \ {Sum,Sum+}. Next, in Lemma 8.7 we show that
Lemma 8.3 holds for deterministic (Inf;Sum+)-automata. The statement of Lemma 8.7 is
more general though.

Proof. Observe that deterministic Min-automata and Max-automata can be transformed
in polynomial time to equivalent deterministic SumB-automata. Basically, a deterministic
SumB-automaton simulating a Min-automaton (resp., Max-automaton) uses its bounded
sum to track the currently minimal (resp., maximal) weight taken by the automaton.
Therefore, we focus on g = SumB. Consider a deterministic (Inf;SumB)-automaton A. By
Lemma 8.2, A can be transformed in exponential time into an equivalent exponential-size
deterministic Inf-automaton A and hence EM(A) = EM(A) and DM,A(λ) = DM,A(λ) (for
all λ). The values EM(A),DM,A(λ) can be computed in polynomial time in A (Fact 6.5),
which amounts to exponential time in A. Observe, however, that for A of bounded width
the automaton A has polynomial size (assuming that the bound on the width is constant),
and the values EM(A),DM,A(λ) can be computed in polynomial time in A.

Now, we turn to deterministic (Inf;Sum)-automata.

8.3. The Sum+ and Sum value functions for slave automata. We now establish the
result when g ∈ {Sum,Sum+}. First we establish decidability of the approximation problems,
and then undecidability of the exact questions. Finally, we show that for deterministic
(Inf;Sum+)-automata all probabilistic questions are decidable.

The key ideas. The main difference between Inf and LimInf value functions is that the
latter discards all values encountered before the master automaton reaches a bottom SCC
where the infimum of values returned by slave automata coincides with the limit infimum
and hence it can be computed in polynomial time (Lemma 7.1). We show that we can bound
the values returned by slave automata and the expected values and the distributions do not
change much. More precisely, given A and ε, we show that for some B, exponential in |A| and
polynomial in the binary representation of ε, the probability that any slave automaton collects
a (partial) sum outside the interval [−B,B] is smaller than ε. Therefore, to approximate
EM(A) and DM,A(λ) up to precision ε, we can regard a given (Inf;Sum)-automaton (resp.,

(Sup;Sum)-automaton) as (Inf;SumB)-automaton (resp., (Sup;SumB)-automaton) and
use Lemma 8.3.

Lemma 8.5. Let g ∈ {Sum+,Sum}. Given ε > 0, a Markov chain M, a deterministic
(Inf; g)-automaton (resp., (Sup; g)-automaton) A, a threshold λ, both EM(A) and DM,A(λ)
can be computed up to precision ε in exponential time in A, polynomial time in M and the
binary representation of ε.
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Proof. Consider a deterministic (Inf;Sum)-automaton A. Let Alim be A considered as a
(LimInf;Sum)-automaton. First, we assume that Alim has finite expected value (in particular
it accepts almost all words). We can check whether this assumption holds in polynomial
time by computing EM(Alim) (Lemma 7.2). Then, we show the following claim: for every
ε > 0, there exists B > 0, exponential in |A| and linear in | log(ε)| such that for AB defined
as A considered as an (Inf;SumB)-automaton we have |EM(A)− EM(AB)| ≤ ε.
The claim implies the lemma. Observe that due to Lemma 8.3 with the following
remark on B, the expected value EM(AB) can be computed in polynomial time in AB , hence
exponential time in A and polynomial time in M. Therefore, we can approximate EM(A)
up to ε in exponential time in A and polynomial time in M. Due to Markov inequality, for
every λ we have DM,A(λ+ ε)− DM,AB

(λ− ε) < ε. However, the values of A are integers,
therefore for ε < 0.5 we get |DM,A(λ)− DM,AB

(λ)| < ε. Therefore, again by Lemma 8.3, we
can approximate DM,A(λ) in exponential time in A, polynomial time in M and | log(ε)|.
The proof of the claim. First, we observe that every run ends up in some some SCC of
Amas ×M, and, hence, Lemma 7.1 implies that values of all words are bounded from above
by |A| · |M|. Next, the values of all slave automata invoked in bottom SCCs of Amas ×M
are bounded from below. Otherwise, the expected value of A as a (LimInf;Sum)-automaton
is −∞. Assume that the values of all slave automata invoked in bottom SCCs of Amas ×M
are bounded from below, which implies that they are bounded by −|A|. Then, we need
to estimate the influence on the expected value of the slave automata invoked before the
master automaton reaches a bottom SCC of Amas ×M.

Let YB be a random variable on finite words such that YB(u) is the maximum of 0
and the number of steps of any slave automaton on A takes on u minus B. Let E2 be the
expected number of steps of the master automaton before it reaches a bottom SCC. It
follows that for B > |A| and C being the maximal absolute weight in slave automata of A,
we have |EM(A)− EM(AB)| < CE(YB) · E2.

Let p be the minimal positive probability that occurs in M and let n = |A|. We show

that for B > n
pn | log n2

pn ε|, we have E(YB) · E2 < ε. We first estimate E2. Observe that

starting from every state, there exists at least one word of length at most |Amas| upon
which the master automaton reaches a bottom SCC of Amas ×M. Therefore, the master
automaton reaches a bottom SCC in |Amas| steps with probability at least p|Amas|, and,
hence, the number of steps before Amas reaches a bottom SCC is estimated from above by
|Amas| multiplied by the geometric distribution with the parameter p|Amas|. Hence, E2 is
bounded by n

pn .

Now, we estimate E(YB). Observe that for every reachable state q of any slave automaton
B, there exists a word of the length at most |B| such that B, starting in q terminates
upon reading that word. Therefore, the probability ql(B) that B works at least l steps is

bounded by (1− p|B|)
l
|B| . Now, E(YB) is bounded by the maximum over slave automata

B of
∑

l≥B ql(B). We have
∑

l≥B ql(B) ≤ n
pn · (1− p

n)
B
n . Hence, E(YB) ≤ n

pn · (1− p
n)

B
n

and E(YB) · E2 ≤ n2

pn · (1− p
n)

B
n . Observe that for B > n

pn s, where s = | log n2

pn ε|, we have

n2

pn · (1− p
n)

B
n ≤ n2

pn · (
1
2)
s

and E(YB) · E2 ≤ ε. Observe that n
pn · | log n2

pn ε| is exponential in

|A| and linear in | log(ε)|.
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Lifting the assumption. Now, we discuss how to remove the assumption that EM(Alim)
is finite. First, we check in polynomial time whether A accepts almost all words (Proposi-
tion 6.1). For the expected question, observe that EM(A) ≤ EM(Alim), hence if the latter is
−∞, we can return the answer EM(A) = −∞ if A accepts almost all words, and otherwise
the expected value is undefined. For the distribution question, consider threshold λ. Observe
that for every w, we have LA(w) ≤ LAB

(w). Moreover, LA(w) < λ while LAB
(w) ≥ λ

holds only if there is a slave automaton run before Amas reaches a bottom SCC which
runs more than B steps. Therefore, the probability PM({w | LA(w) ≤ λ ∧ LAB

(w) ≥ λ})
is bounded from above by E(YB) · E2. Thus, by the previous estimate on E(YB) · E2,

for B > max(λ + 1, npn log n2

pn ε|) we have PM({w | LA(w) ≤ λ ∧ LAB
(w) ≥ λ}) < ε and

|DM,A(λ)− DM,AB
(λ)| < ε. Again, DM,AB

(λ) can be computed in exponential time in |A|
and polynomial in M and | log(ε)|.

We now show that the exact values in probabilistic questions are uncomputable for
deterministic almost-surely accepting (Inf;Sum)-automata (resp., (Sup;Sum)-automata).

The key ideas. To show uncomputability of the distribution question, we show undecidability
of the almost-sure distribution problem. Given a two-counter machine M, we modify
the construction from the proof of Theorem 5.1 and construct a deterministic (Inf;Sum)-
automaton AM such that the following conditions are equivalent: (a) M has an accepting
computation, (b) there exists a finite word u such that for all w = uw′ we have LAM

(w) ≥ 0,
and (c) PM({w | LAM

(w) ≥ 0}) > 0. Condition (c) is equivalent to DU ,A(−1) < 1.
We show uncomputability of the expected question via reduction from the almost-sure
distribution problem to deciding equality of expected values of given to automata. Given an
(Inf;Sum)-automaton AM, we construct A′M such that for all words w we have LA′M(w) =

min(−1,LAM
(w)). Observe that the following conditions are equivalent: (i) the expected

values of A′M and AM are equal, (ii) A′M and AM are equal on almost every word, and
(iii) DU ,AM

(−1) = 1.

Lemma 8.6. Let U be the uniform distribution over the infinite words. The following
problems are undecidable: (1) Given a deterministic almost-surely accepting (Inf;Sum)-
automaton (resp., (Sup;Sum)-automaton) A of width 8, decide whether DU ,A(−1) = 1.
(2) Given two deterministic almost-surely accepting (Inf;Sum)-automata (resp., (Sup;Sum)-
automata) A1,A2 of width bounded by 8, decide whether EU (A1) = EU (A2).

Proof. (1): In the following, we discuss how to adapt the proof of Theorem 5.1 to prove
this lemma.

Given a deterministic two-counter machine M, we construct a deterministic (Inf;Sum)-
automaton AM such that for a word w of the form $u$w′ it returns 0 if u is a valid
accepting computation of M and a negative value otherwise. We use Σ = Q∪{1, 2,#, $} for
convenience; one can encode letters from Σ using two-letter alphabet {0, 1}. On words that
are not of the form $u$w′, the automaton AM returns values less or equal to −1. Basically,
the automaton AM simulates on u the execution of A (as defined in the proof of Theorem 5.1)
with the opposite values of slave automata, i.e., all weights of slave automata are multiplied
by −1. Recall, that the supremum of the values returned by slave automata on a subword
$u$ is 0 if and only if u encodes a valid and accepting computation of M. Otherwise, the
supremum is at least 1. Thus, in our case, the infimum over the values of slave automata is
0 if and only if u encodes a valid and accepting computation of M. Otherwise, the value of
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Inf is at most −1. Therefore, DU ,A(−1) = 1 if and only if M does not have an accepting
computation.
(2): We show that knowing how to compute the expected value of deterministic (Inf;Sum)-
automata, we can decide equality in the distribution question. Let A be an automaton and
we ask whether DU ,A(−1) = 1. We construct another automaton A′ that simulates A, but at
the first transition it invokes a slave automaton that returns the value −1. The values of
automata A and A′ differ precisely on words which have values (assigned by A) greater than
−1. Thus, their expected values EU (A) and EU (A′) differ if and only if DU ,A(−1) is different
than 1. Due to undecidability of the latter problem, there exists no Turing machine that
computes the expected value of (Inf;Sum)-automata over the uniform distribution.

Finally, we have the following result for the absolute sum value function, which guarantees
that the return values are at least 0. We present a slightly more general result. Recall that
we assume that weights in slave automata are given in unary.

Lemma 8.7. Given a Markov chain M, a value λ ∈ Q and a deterministic (Inf;Sum)-
automaton such that the value of every slave automaton is bounded from below, the values
EM(A) and DM,A(λ) can be computed in exponential time in |A| and polynomial time in
|M|.

Proof. Consider a deterministic (Inf;Sum)-automaton A such that the value of every slave
automaton is bounded from below. Let B = |A| · |M| and let A′ be A considered as
a deterministic (Inf;SumB)-automaton. We show that on almost all words w we have
LA(w) = LA′(w). Then, EM(A) = EM(A′) and DM,A(λ) = DM,A′(λ) and the values EM(A′)
and DM,A′(λ) can be computed in exponential time by Lemma 8.3 taking into account the
remark about B being input.

Since the value of every slave automaton Bi is bounded from below, the (reachable part
of) the weighted Markov chain Bi×M considered as a weighted graph does not have negative
cycles. Therefore, the minimal value Bi can achieve is greater than −|Bi| · |M| > −|A| · |M|.
Moreover, every accepting run of A ends up in some SCC of Amas ×M, where almost
all words have the same value (Lemma 7.1), which is either ∞ (if almost all words are
rejected) or bounded from above by |A| · |M|. This value can be computed in polynomial
time. Therefore, the value of almost all words belong to the interval [−|A| · |M|, |A| · |M|]
or it is ∞ if the run on A on this word is rejecting. Finally, the sets of words with accepting
runs in A and A′ coincide.

The above lemma implies that the probabilistic questions for deterministic (Inf;Sum+)-
automata can be answered in exponential time in |A| and polynomial time in |M|. Note
that (Inf;Sum+)-automata and (Sup;Sum+)-automata are not dual. Indeed, in Lemma 6.3
we multiply weights by −1, which turns Sum+-automata into Sum-automata with negative
weights. Thus, we consider separately the distribution question for (Sup;Sum+)-automata.
We show that the distribution question for deterministic (Sup;Sum+)-automata is decidable
in ExpTime.

Lemma 8.8. The distribution question for deterministic (Sup;Sum+)-automata can be
computed in exponential time in |A| and polynomial time in |M|.

Proof. Let A be a deterministic (Sup;Sum+)-automaton, M be a Markov chain and let
λ be a threshold in the distribution question. Consider A′ defined as A considered as a
(Sup;SumB)-automaton with B = λ+ 1. Observe that for every word w we have LA(w) ≤ λ
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if and only if LA′(w) ≤ λ. Therefore, DM,A(λ) = DM,A′(λ). The latter value can be
computed in exponential time in A and polynomial time in |M| (Lemma 8.3).

Theorem 8.9. Let g ∈ FinVal. The complexity results for the probabilistic questions for
(Inf; g)-automata and (Sup, g)-automata are summarized in Table 2, with the exception of
the expected question of (Sup;Sum+)-automata.

Min, Max,
Sum

SumB,Sum+

Expected value
ExpTime (Lemma 8.3, 8.5, 8.8) UncomputableDistribution

PSpace-hard (Lemma 8.1) (Lemma 8.6)Almost sure
distribution

Approximate:
ExpTime (Lemma 8.3, 8.5)

(a) expected value
#P-hard (Lemma 8.1)

(b) distribution

Table 2. The complexity results for various problems for deterministic NWA
with Inf and Sup value functions, with exception of the expected question
of (Sup,Sum+)-automata which is open. Columns represent slave-automata
value functions, rows represent probabilistic questions.

Open question. The decidability of the expected question of (Sup;Sum+)-automata is
open. This open problem is related to the language inclusion problem of deterministic
(Sup;Sum+)-automata which is also an open problem.

Remark 8.10 (Contrast with classical questions). Consider Table 1 for the classical questions
and our results established in Table 2 for probabilistic questions. There are some contrasting
results, such as, while for (Sup,Sum)-automata the emptiness problem is undecidable, the
approximation problems are decidable.

Remark 8.11 (Contrast of LimInf vs Inf). We remark on the contrast of the LimInf vs
Inf value functions. For the classical questions of emptiness and universality, the complexity
and decidability always coincide for LimInf and Inf value functions for NWA (see Table 1).
Surprisingly we establish that for probabilistic questions there is a substantial complexity
gap: while the LimInf problems can be solved in polynomial time, the Inf problems are
undecidable, PSpace-hard, and even #P -hard for approximation.

9. Results on non-deterministic automata

In this section, we briefly discuss non-deterministic NWA evaluated on Markov chains. First,
we discuss the definition of random variables defined by non-deterministic NWA. Next, we
present two negative results.

Non-deterministic NWA as random variables. A non-deterministic NWA A defines a func-
tion h : Σω → R as in the deterministic case via h(w) = LA(w). Recall that LA(w) =
infπ∈Acc(w) f(π), where Acc(w) is the set of accepting runs of A on w. We show that h is
measurable w.r.t. any probability measure given by a Markov chain. It suffices to show
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q0 q1(#, 0)

(a, 1)

(b,−1)

(#, 0)

(a,−1)

(b, 1)

(#, 0)

(#, 0)

Figure 6. An example of non-deterministic automaton, in which non-
deterministic choices has to “depend on the future” in order to obtain
the infimum.

that for every interval (−∞, x], its preimage h−1[(−∞, x]] is measurable. Consider a set
Ax ⊆ Σω×Qωmas×(Z ∪ {⊥})ω of words with runs of A of the value at most x. More precisely,
let f be the the master value function of A. Then, (w,Π, α) ∈ Ax if and only if (1) Π is a
run of the master automaton of A on w, (2) for every i ∈ N, the slave automaton invoked by
the master automaton at position i has a finite run on w[i,∞] of the value α[i], (3) f(α) ≤ x.
Observe that Ax is a Borel set in the product topology. The preimage h−1[(−∞, x]] is the
projection of the Borel set Ax, and hence it is an analytic set, which is measurable [Kec12].

Conceptual difficulty. The evaluation of a non-deterministic (even non-nested) weighted
automaton over a Markov chain is conceptually different as compared to the standard model
of Markov decision processes (MDPs). Indeed, in an MDP, probabilistic transitions are
interleaved with non-deterministic transitions, whereas in the case of an automaton, it runs
over a word that has been already generated by the Markov chain. In MDPs, the strategy
to resolve non-determinism can only rely on the past, whereas in the automaton model
the whole future is available (i.e., there is a crucial distinction between online vs offline
processing of the word). Below we present an example to illustrate this conceptual problem.

Example 9.1. Consider a non-deterministic LimAvg-automaton A, depicted in Figure 6.
Intuitively, the automaton processes a given word in blocks of letters a, b separated by letters
#. At the beginning of every block it decides whether the value of this block is the number
of a letters na minus the number of b letters nb divided by na + nb (i.e., na−nb

na+nb
) or the

opposite (i.e., nb−na

na+nb
). Let U be the uniform distribution on infinite words over Σ. Suppose

that the expected value of A w.r.t. U is evaluated as in MDPs case, i.e., non-deterministic
choices depend only on the read part of the word. Then, since the distribution is uniform,
any strategy results in the same expected value, which is equal to 0. Now, consider EU (A).
The value of every block is at most 0 as the automaton works over fully generated words
and at the beginning of each block can guess whether the number of a’s or b’s is greater.
Also, the blocks a#, b# with the average −1

2 appear with probability 2
9 , hence EU (A) < −1

9 .
Thus, the result of evaluating a non-deterministic weighted automaton over a Markov chain
is different than evaluating it as an MDP.

Non-deterministic LimAvg-automata under probabilistic semantics. Non-deterministic
LimAvg-automata evaluated over Markov chains have been studied in [MO18]. It has
been established that the expected value or the distribution of such automata (over the
uniform distribution) can be irrational and these values are not computable. This is in stark
contrast to deterministic LimAvg-automata, where the answers are rational and can be
computed in polynomial time [BK08].
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Deterministic Non-deterministic
Emptiness Undecidable (from [CHO17])

Probabilistic
Polynomial time (Theorem 7.3) Uncomputable (Theorem 9.3)

questions

Table 3. Decidability and complexity status of the classical and probabilistic
questions for (LimSup;Sum)-automata. The negative results hold also for
NWA of bounded width and automata with monitor counters.

Computational difficulty. In contrast to our polynomial-time algorithms for the proba-
bilistic questions for deterministic (LimSup,Sum)-automata, we establish the following
undecidability result for the non-deterministic automata with width 1. Lemma 9.2 implies
Theorem 9.3.

Lemma 9.2. The following problem is undecidable: given a non-deterministic (LimSup;Sum)-
automaton AM of width 1, decide whether P({w | LAM

(w) = 0}) = 1 or P({w | LAM
(w) =

−1}) = 1 w.r.t. the uniform distribution on infinite words.

Proof. In the following, we discuss how to adapt the proof of Theorem 5.1 to prove this
lemma. First, observe that we can encode any alphabet Σ using a two-letter alphabet {0, 1},
therefore we will present our argument for multiple-letters alphabet as it is more convenient.
Given a two-counter machine M we construct a non-deterministic (LimSup;Sum)-automaton
AM such that LAM

(w) = 0 if and only if w contains infinitely many subsequences that
correspond to valid accepting computations of M. As in the proof of Theorem 5.1, for every
subsequence $u$, where u does not contain $, we check whether u is an encoding of a valid
accepting computation of M. To do that, we check conditions (C1) and (C2) as in the
proof of Theorem 5.1. At the letter $, the master automaton non-deterministically decides
whether u violates (C1) or (C2) and either starts a slave automaton checking (C1) or (C2).
The slave automaton checking (C1) works as in the proof of Theorem 5.1. It returns −1 if
(C1) is violated and 0 otherwise. The slave automaton checking (C2) non-deterministically
picks the position of invocation of a slave automaton from the proof of Theorem 5.1 that
returns a negative value. Finally, at the letter $ following u, the master automaton starts
the slave automaton that returns the value −1. It follows that the supremum of all values of
slave automata started at u$ is either −1 or 0. By the construction, there is a (sub) run on
u$ such that the supremum of the values of all slave automata is −1 if and only if u does
not encode valid accepting computation of M. Otherwise, this supremum is 0. Therefore,
the value of the word w is 0 if and only if w contains infinitely many subsequences that
correspond to valid accepting computations of M. Now, if M has at least one valid accepting
computation u, then almost all words contain infinitely many occurrences of u and almost
all words have value 0. Otherwise, all words have value −1.

Lemma 9.2 implies that there is no terminating Turing machine that computes any of
probabilistic questions.

Theorem 9.3. All probabilistic questions (Q1-Q5) are undecidable for non-deterministic
(LimSup,Sum)-automata of width 1.
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10. Discussion

In this section we discuss extensions of our main results. We begin with the distribution
question for NWA without the almost-sure acceptance condition. Next, we show how to
apply the obtained results to compute the probabilistic variant of the quantitative inclusion
problem [CDH10b, CHO17]. Finally, we discuss the parametric complexity of the questions
considered in the paper.

10.1. Non almost-sure acceptance. In Section 7 we consider NWA that accept almost
all words, i.e., they assign finite values to almost all words. Dropping almost-sure acceptance
condition does not change the complexity of the expected question, but it influences the
complexity of the distribution question, which we discuss in this section.

We begin with the lower bounds for the distribution question for NWA without almost-
sure acceptance condition.

The key ideas. We show that removing the restriction that almost all words are accepted
changes the complexity of distribution questions. The intuition behind this is that the
condition “all slave automata accept” allows us to simulate (in a restricted way) the Sup
master value function.

Lemma 10.1. For all f ∈ InfVal and g ∈ FinVal, we have

(1) The distribution question for deterministic (f ; g)-automata is PSpace-hard.
(2) The approximate distribution question for deterministic (f ; g)-automata is #P -hard.

Proof. We say that an NWA is simple if it is deterministic, accepts almost all words
and its slave automata have only weights 0 and 1. First, we show that the almost-sure
distribution and the approximate distribution questions for simple (Sup;Max)-automata are
respectively PSpace-hard and #P-hard. Second, we reduce the almost-sure distribution and
the approximate distribution problems for simple (Sup;Max)-automata to the corresponding
problems for deterministic (f ; g)-automata (which are not almost-surely accepting). These
two steps show (1) and (2).

We observe that (Inf;Min)-automata considered in the proof of Lemma 8.1 are simple;
they are deterministic, accept almost all words and all slave automata have only weights 0, 1.
Given an (Inf;Min)-automaton A, let A′ be a (Sup;Max)-automaton obtained from A by
swapping weights 0 and 1 in all slave automata. Note that for all words w, A(w) returns 0
(resp. 1) if and only if A′ returns 1 (resp. 0). Therefore, DU ,A(0) = 1− DU ,A′(0). It follows
that the almost-sure distribution and the approximate distribution questions for simple
(Sup;Max)-automata are respectively PSpace-hard and #P-hard.

Now, we show reduction from simple (Sup;Max)-automata to deterministic (f ; g)-
automata (which are not almost-surely accepting). For a deterministic Max-automaton A
with only weights 0 and 1, we define Ag as a deterministic g-automaton obtained from A by
deletion of transitions of weight 1. Observe that Ag returns 0 whenever A returns 0, and it
rejects whenever A rejects or returns 1. This construction works for all g, which return 0 on
any sequence of 0’s. All value functions g from FinVal have this property. Now, consider
any f ∈ InfVal. Given a simple (Sup;Max)-automaton A, we apply to all slave automata B
of A the transformation B→ Bg. Let Af be the resulting (f ; g)-automaton. This NWA is
deterministic and its slave automata return only value 0 or reject (return ∞). Therefore,
for every f ∈ InfVal and every word w, we have (a) LAf (w) = 0 if and only if LA(w) = 0,
and (b) LAf (w) = ∞ if and only if LA(w) ∈ {1,∞}. It follows that DU ,Af (0) = DU ,A(0).
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Therefore, the almost-sure distribution (resp., the approximate distribution) problem for
simple (Sup;Max)-automata reduces to the almost-sure distribution (resp., the approximate
distribution) problem for deterministic (f ; g)-automata.

We now show the upper bound for the distribution question for NWA considered in
Section 7.

Lemma 10.2. Let f ∈ {LimInf,LimSup,LimAvg} and let g ∈ FinVal be a value function.
Given a Markov chain M, a deterministic (f ; g)-automaton A, and a threshold λ in binary,
the value DM,A(λ) can be computed in exponential time in A and polynomial time in M.
Moreover, if A has bounded width, then the above quantities can be computed in polynomial
time.

Proof. Consider Amas ×M, where Amas is the master automaton of A. For all bottom
SCCs of Amas ×M either almost all words have an accepting run or all words are rejected
(Lemma 7.1 — acceptance is independent of the value function and hence it works for
LimAvg as well). Moreover, in a bottom SCC in which almost all words are accepted,
almost all words have the same value (Lemma 7.1 and Lemma 7.11). We compute these
values in all almost-accepting bottom SCCs. Next, we need to compute the probability of
the set of words, which are accepted by A and reach any almost-accepting bottom SCC, in
which almost all words have the value not exceeding λ.

To do that, we consider A as an (Inf;SumB)-automaton, transform it into an Inf-
automaton A (Lemma 8.2). Then, we compute the probability of reaching the the corre-
sponding SCCs in A×M with the standard reachability analysis [BK08]. Recall that each
state of A contains a state of Amas as a component and hence we can identify states of
A×M that corresponds to the selected SCC of Amas×M. The size of A×M is exponential
in A and polynomial in M. Moreover, if A has bounded width, then A×M is polynomial
in |A|.

10.2. Quantitative inclusion. In this section, we discuss probabilistic inclusion question,
which is the probabilistic variant of the quantitative inclusion problem for weighted automata.
We show how to adapt the results from Section 7 and Section 8 to establish decidability and
complexity of the probabilistic inclusion question.

The following definition is common for weighted automata, automata with monitor
counters and NWA, and hence we refer to them collectively as automata. The probabilistic
inclusion question asks, given two automata A1,A2 and a Markov chain M, to compute the
probability of the set {w | LA1(w) ≤ LA2(w)} w.r.t. the probability measure given by M.

The key ideas. Let M be a Markov chain, f ∈ {LimInf,LimSup,LimAvg} and let A1,A2

be deterministic (f ;Sum)-automata accepting almost all words. For all such NWA, almost
all words reaching the same bottom SSC (of the product Amas ×M) have the same value
(Section 7), and hence to decide probabilistic inclusion we examine all pairs of bottom SSCs
B1, B2 from A1 and A2 respectively, in which the value of A1 does not exceed the value of
A2 and compute the probability of words that lead to B1 in A1 and B2 in A2. The sum of
such probabilities is the answer to the quantitative inclusion problem. These probabilities
can be computed in polynomial time [BK08].

For f ∈ {Inf,Sup} and g ∈ {Min,Max,SumB}, deterministic (f ; g)-automata A1,A2

are equivalent to deterministic f -automata A1,A2 respectively. The automata A1,A2
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have exponential size in A1 and A2 respectively. The probabilistic inclusion question for
deterministic Inf-automata (resp., Sup-automata) can be computed in polynomial time,
which gives us the exponential-time upper bound in A1 and A2. Finally, the probabilistic
inclusion question subsumes the distribution question, which gives us lower bounds.

Theorem 10.3. The following conditions hold:

(1) For all f ∈ {LimInf,LimSup,LimAvg} and g ∈ FinVal, the probabilistic inclusion
question for deterministic almost-surely accepting (f ; g)-automata can be solved in
polynomial time.

(2) For all f ∈ {Inf,Sup} and g ∈ {Min,Max,SumB}, the probabilistic inclusion question
for deterministic (f ; g)-automata is PSpace-hard and can be solved in exponential time.

(3) For all f ∈ {Inf,Sup, }, the probabilistic inclusion question for deterministic (f ;Sum)-
automata is uncomputable.

Proof. LimInf and LimSup and LimAvg value functions. We discuss the case of
g = Sum as it subsumes other value functions from FinVal. Let M be a Markov chain, f ∈
{LimInf,LimSup,LimAvg} and let A1,A2 be deterministic (f ;Sum)-automata accepting
almost all words. Let A1

mas,A2
mas be the master automata of respectively A1,A2. We

construct the product Markov chain (A1
mas ×A2

mas)×M and compute all its bottom SCCs
S1, . . . , Sk. For almost all words w, both runs of respectively A1,A2 on w finally reach one
of these SCCs. Note that each Si projected to A1

mas ×M or A2
mas ×M is still an SCC

and hence almost all words w, whose run end up in Si have the same value in A1 (resp.,
in A2). We compute these value for all SCCs S1, . . . , Sk and select these components, in
which the value in A1 does not exceed the value in A2. This can be done in polynomial time
for f ∈ {LimInf,LimSup} (Lemma 7.1) and for f = LimAvg (Lemma 7.11). Finally, we
compute the probability of reaching the selected SCCs in (A1

mas ×A2
mas)×M, which can be

done in polynomial time [BK08].

Inf and Sup value functions. We consider the case of f = Inf as the case of f = Sup is
symmetric. First, consider the case of g ∈ {Min,Max,SumB} and consider two deterministic
(Inf; g)-automata A1,A2. These NWA can be transformed to equivalent deterministic
Inf-automata A1,A2 respectively, which have exponential size in A1 and A2 respectively
(Lemma 8.2). Now, let x1, . . . xn be weights of A1. For each of these weights xi, we compute
the probability pi of the set of words such that the value of A1 is xi and the value of A2 is at
least xi. To compute pi, we construct the product Markov chain M×A1

mas ×A2
mas, remove

from it all transitions, which correspond to transition of A1 or A2 of weight less than xi,
and compute the probability of the set of paths which take at least once a transition of A1

of weight xi. Finally, the answer to the probabilistic inclusion question for A1 and A2, and
hence A1 and A2, is the sum of pi.

Observe that for A2 that returns λ for every word, the probabilistic inclusion problem
becomes the distribution question for A1.

10.3. Parametric complexity. The problems we consider correspond to measuring per-
formance (expectation or cumulative distribution) under stochastic environments, when the
specification is an NWA and the system is modeled by a Markov chain. In this section we
discuss the parametric complexity of the probabilistic problems, where the specification,
represented by an NWA, is fixed. We discuss the parametric complexity for different value
functions for the master automaton:
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• For LimInf,LimSup,LimAvg value functions for the master automaton the expected
question solvable in polynomial time in A and M (Theorem 7.3 and Theorem 7.12). The
distribution question is solvable in polynomial time (in A and M) as well, but only for
NWA that are almost-surely accepting (Theorem 7.3 and Theorem 7.12). For NWA that
are not almost-surely accepting Lemma 10.2 states that the distribution question can be
solved in polynomial time in |M|.
• For f ∈ {Inf,Sup} and g ∈ {Min,Max,SumB}, a deterministic (f ; g)-automaton A can

be transformed to an equivalent deterministic f -automaton A (Lemma 8.2). The size of A
is exponential in A. However, if A is fixed, the complexity of all probabilistic questions is
the same as for weighted automata; they can be solved in polynomial time (Lemma 6.5).
• For f ∈ {Inf,Sup} and g ∈ {Sum,Sum+}, the approximate expected question and the

approximate distribution questions for (f ; g)-automata can be solved in polynomial time
in M and the length of the binary representation of ε (Lemma 8.5).
• For f ∈ {Inf,Sup}, the distribution question for (f ;Sum+)-automata can be solved in

polynomial time in |M| (Lemma 8.7 and Lemma 8.8).
• Finally, for deterministic (Inf;Sum)-automata and (Sup;Sum)-automata, surprisingly

the expected question, the distribution question and the almost-sure distribution question
remain uncomputable. We sketch this in the following Lemma 10.4.

In summary, in all computable cases fixing the NWA makes the complexity of all proba-
bilistic problems drop to polynomial time. Interestingly, the uncomputable cases remain
uncomputable. This is similar to the parametric complexity analysis from [CHO17], where
fixing the size of slave automata reduces the complexity of the classic decision questions for
NWA, but the undecidable cases remain undecidable.

The key ideas. We modify the construction from the proof of Lemma 8.6, where given a
Minsky machine M, we construct an (Inf;Sum)-automaton A that returns 0 if the input
word w is of the form u$w′ and u encodes an accepting computation of M. Otherwise it
returns negative values. The constructed NWA checks two types of conditions: (C1) Boolean
conditions stating that the sequence of configurations is consistent with instructions of M,
and (C2) quantitative conditions, which imply that if the counters values are inconsistent
with increments and decrements, the NWA returns negative values. We observe that (C2)
are independent of M, while conditions (C1) are Boolean and can be checked with a finite
automaton, or they can be enforced by the Markov chain. Thus, given a Minsky machine
M, we construct a Markov chain MM checking (C1), while the NWA A′ that checks (C2) is
independent of M, and hence can be fixed.

Lemma 10.4. The following conditions hold:

(1) There exists a deterministic (Inf;Sum)-automaton A such that the problem: given a
Markov chain M, decide whether DA,M(−1) = 1 is undecidable.

(2) There exist deterministic (Inf;Sum)-automata A1,A2 such that the problem: given a
Markov chain M, decide whether EM(A1) = EM(A2) is undecidable.

Proof. Let Σ = {0, 1, 2,#, $}. We construct an NWA working over words of the form u$w′,
where u ∈ (0∗1∗2∗#)∗. Each block 0n1k2j represents a configuration of some Minsky machine
such that the machine is in the state qn the value of the first counter is k and the value of
the second counter is j. We define (Inf;Sum)-automaton A that for each counter invokes
two slave automata, which respectively compute the difference between two consecutive
values of the same counter plus 1 and its inverse. Moreover, A invokes one slave automaton
returning value 0 to ensure that the value of each word is at most 0. Thus, A returns 0
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on an input word u$w′ if the counter values in all blocks differ by at most 1, i.e., for any
infix #0n11k12l1#0n21k22l2# we have |k1 − k2| ≤ 1 and |l1 − l2| ≤ 1. On all other words it
returns values less or equal to −1.

Now, given a Minsky machine M we define a Markov chainM that generates sequences
of the form #0n[0]1k[0]2j[0]#0n[1]1k[1]2j[1] . . . $Σω consistent with the instructions from M.
More precisely, using Boolean conditions we specify that (i) states encoded by 0n change
according to the instructions of M (we can verify zero and non-zero tests), (ii) the first
configuration and the configuration before $ are respectively initial and the final configuration
of M, and (iii) values of counters modulo 3 change according to the instructions of M.
Observe that if there is a word u$w′ generated by M has value 0 assigned by A, then
the values of counters in u change by at most 1 and the change modulo 3 is verified in
condition (iii). Both conditions imply that the counters change according to instructions
of M. Therefore, the word u encodes an accepting computation of M. It follows that
for the NWA A, the problem given a Markov chain M decide whether DA,M(−1) = 1 is
undecidable. In consequence, the expected and the distribution questions are undecidable
(see Lemma 8.6).

For the expected value, we reduce the distribution question to the equality of the
expected values as in the proof of (2) from Lemma 8.6.

11. Conclusions

In this work we study the probabilistic questions related to NWA and automata with monitor
counters. We establish the relationship between NWA and automata with monitor counters,
and present a complete picture of decidability for all the probabilistic questions we consider.
Our results establish a sharp contrast of the decidability and complexity of the classical
questions (of emptiness and universality) and the probabilistic questions for deterministic
automata (see Tables 1, 2 and Theorems 7.3, 7.12). In addition, there is also a sharp
contrast for deterministic and non-deterministic automata. For example, for (LimSup,Sum)-
automata, the classical questions are undecidable for deterministic and non-deterministic
automata, while the probabilistic questions are decidable for deterministic automata, but
remain undecidable for non-deterministic automata (see Table 3). We have some complexity
gap (e.g., ExpTime vs PSpace) which is due to the fact that the computational questions
we consider for Markov chains are in PTime (as compared to NLogSpace for graphs),
and we need to evaluate exponential-size Markov chains. Closing the complexity gap is an
interesting open question.
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