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Abstract. In this article we provide effective characterisations of regular languages of
infinite trees that belong to the low levels of the Wadge hierarchy. More precisely we
prove decidability for each of the finite levels of the hierarchy; for the class of the Boolean
combinations of open sets BC(Σ0

1) (i.e. the union of the first ω levels); and for the Borel
class ∆0

2 (i.e. for the union of the first ω1 levels).

1. Introduction

The space of all infinite trees over a finite alphabet is homeomorphic to the Cantor space.
Therefore, it makes sense to ask if a language of infinite trees — in our setting, we are
interested in regular ones — is for instance open, Borel, or of specific descriptive set theoretical
complexity. As witnessed by a number of conjectures and results [Sku93, Mur08b, FMM16,
SW16, CMS17], topologically defined classes often have natural automata counterparts. For
instance, in the case of ω-words, the structure of parity deterministic automata (defined in
terms of Wagner hierarchy) is strictly connected to the Wadge hierarchy, see [Wag79]. In
the case of regular tree languages that are Borel, there is a strong connection between the
Borel rank and priorities used by weak alternating automata (see [DM07] and [CMS17]).

Algorithms that determine if a regular language belongs to a subclass L of regular
languages are known as effective characterisations. Typically, an effective characterisation
comes with a structural description of automata (or algebras) that recognise languages
from L. The seminal example is Schützenberger’s Theorem [Sch65], which says that a regular

Key words and phrases: regular tree languages, topology, algebraic characterisation.
∗ This is an extended version of [BP12] and contains a correction of a proof from [FM14].

The first, second, and fourth authors were supported by Polish National Science Centre grant no.
2016/21/D/ST6/00491.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:27)2019
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Figure 1: The first ω1 + 1 levels of the Wadge hierarchy for infinite trees; together with their
decidability results. The self-dual classes are depicted by •, they are formed by
the intersection of the two consecutive non self-dual classes.

language is star-free if and only if it is recognised by an aperiodic semigroup. For other
examples about finite words, see the survey [PZ15], which discusses effective characterisations
for the low levels of the quantifier alternation hierarchy. For examples on ω-words, including
topologically motivated ones, see [PP04]. For examples on finite trees, see e.g. [BW08] or
a survey [Boj10].

Most of the known effective characterisations speak about languages of words (finite
or infinite) or finite trees. The case of regular languages of infinite trees seems to be much
more difficult, mainly because of the inherent non-determinism needed to recognise these
languages [Blu11, BS13]. Thus, the known examples of effective characterisations are usually
limited either to simple classes of sets (e.g. open sets [KW02, Wal02a]) or to restricted
classes of languages given as the input (e.g. recognised by deterministic automata [Mur08a]).

In this work we focus on the very low levels of the Borel hierarchy: the class BC(Σ0
1)

of Boolean combinations of open sets; and the self-dual class ∆0
2 at the second level of the

hierarchy. We use algebraic methods for infinite trees, i.e. our characterisations are defined
by equations which must be satisfied by the syntactic algebra of a language.

This paper continues a line of work aimed at understanding the algebraic theory of
regular languages of infinite trees [Blu11, BS13, BI09a]. The obtained results show that
even simple algebras (i.e. not strong enough to distinguish all regular languages or not
complete, see Subsection 7.1) can be adequate for characterising classes of languages that are
sufficiently simple. This opens the possibility that a bit more complex algebraic structure
(but a priori not complete) might be enough for the successive levels of the Borel hierarchy,
like ∆0

3.

Contribution of this article. Consider a class Γ of languages (e.g. the class of open
sets Σ0

1). Then, an effective characterisation of Γ is an algorithm for the following decision
problem:

Problem 1.1 (Effective Characterisation of Γ). Given a representation of a regular lan-
guage L, decide if L ∈ Γ.
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As explained above, there are multiple results providing effective characterisations
for various classes of languages. In this article we focus on the classes of the Wadge
hierarchy inside ∆0

2, see Figure 1 (the relevant technical notions are introduced in Section 2).
Notice that, since regular languages are effectively closed under complement, an effective
characterisation of Γ provides at the same time an effective characterisation of Γc and
Γ ∩ Γc. Thus, we will focus on non self-dual classes on one side of the hierarchy. Since TrA
is homeomorphic to 2ω (see Fact 2.2) all the results from Subsections 2.4 and 2.5 apply.
Therefore, the Wadge hierarchy over TrA introduces the following classes of sets:

(1) The class {TrA}. A language L belongs to {TrA} if and only if L = TrA, thus solving
the effective characterisation for that class boils down to checking universality of L,
which reduces to non-emptiness of the complement of L [Rab69].

(2) The class of open sets Σ0
1. That characterisation follows from [KW02, Wal02a].

(3) The classes of the difference hierarchy Dn
(
Σ0

1

)
for 2 ≤ n < ω. These classes are

characterised in this paper, see Theorem 3.8.
(4) The class BC(Σ0

1) =
⋃
n∈ω Dn

(
Σ0

1

)
of Boolean combinations of open sets. This is the

main contribution of this paper, see Theorem 5.1.
(5) The self-dual class ∆0

2 =
⋃
ξ<ω1

Dξ
(
Σ0

1

)
of the Borel hierarchy. This result was claimed

in [FM14], however the arguments there contain a flow, see discussion in Section 6. In
this paper we provide a complete argument, see Theorem 6.1.

(6) The class Σ0
2 from the second level of the Borel hierarchy. This class seems to be out of

reach of the algebras considered in this paper, see Subsection 7.1. However, an effective
characterisation for that class exists, see [CMS17].

What remains open is how to characterise the specific classes Dξ
(
Σ0

1

)
for ω ≤ ξ < ω1. Notice

that there are only countably many regular languages and therefore there must exist ξ0 < ω1

such that no regular language belongs to Dξ
(
Σ0

1

)
for ξ ≥ ξ0. However, the value of ξ0 is not

known. Duparc and Murlak [DM07] have proved that there exist regular languages in any
Wadge degree with Wadge rank less than ωω (i.e. ξ0 ≥ ωω). We do not know if ξ0 = ωω,
even if this is a quite reasonable conjecture.

Related work. First, a series of works [NW05, NW03, Mur08b, FMM16] provide effective
characterisations for almost all natural classes when the input is restricted to deterministic
automata or their dualised variant — the so-called game automata. These results are based
on the pattern method saying that the language recognised by a deterministic automaton
is complex if and only if the automaton itself contains a complex pattern. Unfortunately,
there is no known method allowing to extend these techniques to languages involving
non-determinism.

Recently, certain new techniques have been developed that show how to deal with
the non-determinism of regular languages of infinite trees. The first result of this kind
is the reduction of the general Rabin-Mostowski index problem to a certain boundedness
problem for cost automata [CL08]. Unfortunately, the latter problem is not known to be
decidable. However, the game approach used in the above reduction turned out to work for
the lowest indices [CKLV13]. By adopting these techniques, the authors of [SW16] provided
a characterisation of Borel sets among languages recognisable by Büchi automata. A similar
approach used in [CMS17] provided an effective characterisation of the Borel class Π0

2 among
all regular tree languages. An effective (but not algebraic) characterisation of the class ∆0

2

follows directly from that result, however it does not solve the more difficult case of BC(Σ0
1).
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The paper is based on the conference papers [BP12] and [FM14], see Conclusions for
a discussion on relations between the new paper and the original ones.

Structure. The paper is structured as follows. In Section 2 we recall some basic notions
about words and trees and we set the notation used throughout the article, with a special
emphasis on the topological hierarchies involved. In Section 3 we describe a topological game
that will be used to obtain effective characterisations of the levels of the Wadge hierarchy up
to ω. Subsection 3.1 provides an easy application of the game to prove decidability of each
of the first ω levels of the Wadge hierarchy (i.e. all the finite levels). Subsection 3.2 extends
the game to an infinite variant used later to characterise ∆0

2. In Section 4 we present the
algebraic structure used in this paper to represent regular languages of infinite trees. In
Section 5 we state Theorem 5.1 characterising the class BC(Σ0

1) in terms of equations defined
in the syntactic algebra. The proof of this theorem is spread across Subsections 5.2, 5.3, 5.4
and 5.5. Finally, in Section 6 we state and prove Theorem 6.1 that uses the algebraic tools
from Theorem 5.1 to characterise the Borel class ∆0

2.

2. Basic notions

If f is a function, by dom(f) we denote the domain of f . We denote by ω the first infinite
ordinal and by ω1 the first uncountable ordinal.

2.1. Words and trees. Consider a non-empty set A. We call A an alphabet if A is finite.
Let An be the space of the functions of the form s : {0, . . . , n−1} → A. Such a function can
be represented as a word s = (s(0), . . . , s(n−1)) = s0 · · · sn−1 over A. If s = s0s1 · · · sn−1
then we say that n is the length of s, and we denote it by lt(s). The empty word is denoted
by ε, i.e. lt(ε) = 0 and A0 = {ε}. By A≤n we denote the set of words over A of length at

most n, i.e. A≤n
def
= A0 ∪ A1 ∪ · · · ∪ An. We denote by A∗ the set of all the finite words

over A: A∗
def
=
⋃
n∈ω A

n. By Aω we denote the set of infinite words over the alphabet A,
formally the elements of this space are functions of the form α : ω → A. Such a function
can be represented as an infinite sequence (α(0), α(1), α(2), . . .) = α0α1α2 · · · Finally, we

set A≤ω
def
= A∗ ∪Aω.

If α ∈ A≤ω and n ∈ ω, we define α�n
def
= α0α1 · · ·αn−1 ∈ An (if α is finite this definition

makes sense only if n ≤ lt(α)). We say that s ∈ A∗ is a prefix of α ∈ A≤ω if s = α�n for some
n; in symbols s � α. We write s ≺ α if s � α but s 6= α. The concatenation of s, t ∈ A∗,
where s = s0 · · · sn−1 and t = t0 · · · tm−1, is the word sˆt = st = s0 · · · sn−1t0 · · · tm−1. We
can also consider the concatenation sˆα of a finite word s and an infinite word α defined in
the obvious way: sˆα = s0s1s2 · · · slt(s)−1α0α1 · · ·

Now let us generalise these notions to trees. In this article, we focus on trees with binary
branching, where the two directions are left L and right R. A partial tree over an alphabet A
is a partial function t : {L, R}∗ ⇀ A with a non-empty prefix-closed domain dom(t) (i.e. if
s ∈ dom(t) and s′ � s then s′ ∈ dom(t)). A node u ∈ dom(t) is either an internal node
(i.e. both uˆL and uˆR belong to dom(t)), a unary node (i.e. exactly one of uˆL and uˆR
belongs to dom(t)), or a leaf (i.e. none of uˆL and uˆR belongs to dom(t)). For the sake of
readability, we write u ∈ t to denote that u ∈ dom(t) is a node of t. The empty sequence ε
belongs to every partial tree and it is called the root of a tree. A branch of a partial tree
t is a word π such that π�n ∈ t for any n ≤ lt(π) if π is finite (resp. for any n ∈ ω if π is
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infinite). An infinite branch of a partial tree t is called a path of t. A node u is on a branch
(finite or infinite) π if it is a prefix of π, i.e. if u � π. A partial tree t is finite if its domain
dom(t) is finite. A tree is a partial tree t with dom(t) = {L, R}∗ (i.e. a complete tree). The

set of all trees over an alphabet A is denoted TrA, that is TrA
def
= {t | t : {L, R}∗ → A}.

If p and t are partial trees, we say that p is a prefix of t, and we denote it by p ⊆ t, if
dom(p) ⊆ dom(t) and p(u) = t(u) for any u ∈ dom(p). We write p ⊂ t if p ⊆ t but p 6= t.
Finally, if t is a partial tree and u is a node of t, by t.u we indicate the partial tree t truncated
in u: for any w such that uw ∈ dom(t), we have t.u(w) = t(uw).

For d > 0 a d-prefix of a tree t is the prefix p
def
= t�{L, R}<d, i.e. the prefix of t containing

all the nodes at depths smaller than d. For instance, the 1-prefix of t consists of the root of
t only.

A subset L ⊆ TrA is a tree language. Regular tree languages are the ones recognised by
parity non-deterministic automata or, equivalently, definable in Monadic Second-order Logic
(for this equivalence see for example [GTW02]).

2.2. Polish spaces. The subsequent subsections recall the topological notions coming
from Descriptive Set Theory that we will use throughout the article. We do not aim for
completeness, for more details we refer the reader to [Kec95]. In the first subsection we
define Polish spaces, that are the main objects studied in Descriptive Set Theory. In the
remaining section we introduce the main hierarchies usually considered for Polish spaces,
i.e. the Borel, difference, and Wadge hierarchies.

We denote a topological space by (X, τ), where X is a non-empty set and τ is a family
of subsets of X called open sets. If τ is understood from the context we write just X and
suppress τ from the notation. We say that X is a Polish space if τ is completely metrizable
(i.e. there exists a complete metric on X that generates τ) and separable (i.e. there exists
a countable dense subset of X).

If a space X is known from the context and A ⊆ X then by Ac def
= X \A we denote the

complement of A in X. Similarly, if Γ is a family of subsets of X then Γc def
= {Ac | A ∈ Γ}.

Consider a non-empty at most countable set B. We will now introduce the so-called
prefix topologies on the spaces Bω and TrB by providing explicitly their bases. However, it
is worth noticing that these topologies coincide with the Tychonoff topologies when B is
considered as a discrete topological space, see [Eng89, Section 2.3].

The prefix topology on the space of infinite words Bω over B is generated by the basic
open sets of the form:

Ns = {α ∈ Bω | s ≺ α},
with s ∈ B∗. When B = {0, 1}, we obtain the Cantor space, denoted by 2ω. When B = ω,
we obtain the Baire space, denoted by ωω. Every space of the form Bω with the prefix
topology is Polish. It is easy to check that the prefix topology is completely metrizable: the
metric d(α, β) = 2−n, where n is the minimum index such that α(n) 6= β(n) (and d(α, β) = 0
if α = β), is complete and it generates the prefix topology. Moreover, if we fix a symbol
c ∈ B, the set

D = {sˆccc · · · | s ∈ B∗}
is countable (since B∗ is countable) and dense, so Bω is separable. In particular, the Cantor
space and the Baire space are Polish spaces.
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The prefix topology can easily be generalised to trees TrA, with basic open sets of the
form:

Np = {t ∈ TrA | p ⊂ t},
where p is a finite partial tree. Every Np is actually a clopen (i.e. both open and closed). We
denote this topology by τpref. The topology τpref is generated by several metrics. The usual
metric considered to generate τpref is dpref(t1, t2) = 2−n where n is the minimum length of
a node u such that t1(u) 6= t2(u) (and dpref(t1, t2) = 0 for t1 = t2). Each open ball of dpref is
a basic clopen set Np for a certain finite partial tree p.

Notice that the metric dpref satisfies the following strengthening of the triangle inequality:

dpref(x, z) ≤ max
(
dpref(x, y), dpref(y, z)

)
.

Such a metric is called an ultrametric, see [Kec95, Exercise 2.2]. This property makes dpref
too rigid for our way of choosing optimal witnesses (see Definition 5.16 of optimal strategy
trees). Therefore, we will also consider a different metric, denoted by λ and called the
discounted distance. This metric also generates τpref but has a less intuitive family of open
balls. Fix some enumeration u0, u1, . . . of all the nodes in {L, R}∗. Given two trees t1 and t2,
for any node u, define dist(t1(u), t2(u)) = 0 if t1(u) = t2(u), 1 in the other case. Let

λ(t1, t2)
def
=
∑
n≥0

1

2n
· dist

(
t1(un), t2(un)

)
.

Fact 2.1. Regardless of the enumeration (u0, u1, . . .), the prefix and discounted distances
yield the same topology.

Proof. It is enough to observe that τpref is exactly the product topology obtained by starting
from the discrete topology and the discounted distance is exactly the product metric.

Fact 2.2. TrA with the topology τpref is a Polish space homeomorphic to the Cantor space 2ω.

Proof. The proof is a standard encoding of one compact product space into another. One
can also use a characterisation of the Cantor space, see [Kec95, Theorem 7.4, page 35].

2.3. The Borel hierarchy. Let (X, τ) be a topological space. Recall that ω1 is the first
uncountable ordinal. We define, by a transfinite recursion on 1 ≤ ξ < ω1, the following
classes:

Σ0
1(X)

def
= {A ⊆ X | A is open};

Π0
ξ(X)

def
= {Ac ⊆ X | A ∈ Σ0

ξ(X)} =
(
Σ0
ξ(X)

)c
;

Σ0
ξ(X)

def
=
{⋃

n

An | An ∈ Π0
ξn(X), 1 ≤ ξn < ξ, n ∈ ω

}
.

Moreover, for 1 ≤ ξ < ω1, we define the intersection of the two classes ∆0
ξ(X)

def
= Σ0

ξ(X) ∩
Π0
ξ(X).

Fact 2.3. For each 1 ≤ ξ < ω1, the classes Σ0
ξ(X) and Π0

ξ(X) are closed under finite unions

and finite intersections. The class ∆0
ξ(X) is also closed under complement and therefore

forms a Boolean algebra.
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Figure 2: The first levels of the Borel hierarchy.

The smallest Boolean algebra containing all the sets from Σ0
ξ(X) is denoted BC(Σ0

ξ)(X).

The above fact implies that BC(Σ0
ξ)(X) ⊆ ∆0

ξ+1(X). For uncountable Polish spaces the

inclusion is strict, this fact follows from [Kec95, Exercise 22.26(iii)].
The Borel sets of X are:

B(X) =
⋃
ξ∈ω1

Σ0
ξ(X) =

⋃
ξ∈ω1

Π0
ξ(X) =

⋃
ξ∈ω1

∆0
ξ(X).

When the space X is clear from the context, we omit it and write just Σ0
ξ , Π0

ξ , etc. . .

Notice that if ξ ≤ ξ′ < ω1 then directly from the definition we know that Σ0
ξ ⊆ Σ0

ξ′ .
The following fact shows that the opposite containment does not hold in general.

Fact 2.4 [Kec95, Theorem 22.4]. Let (X, τ) be an uncountable Polish space. Then the Borel
hierarchy of X does not collapse i.e. every class Σ0

ξ is properly contained in Σ0
ξ+1.

For the rest of the article we will focus on the first two levels of the Borel hierarchy, as
depicted in Figure 2.

2.4. The difference hierarchy. The Borel hierarchy is refined by the so-called the differ-
ence hierarchy, see [Kec95, Section 22.E]. First notice that every ordinal θ can be uniquely
written as λ+ n, where λ is 0 or a limit ordinal and n ∈ ω. We say that the parity of θ is
even (resp. odd) if n is even (resp. odd).

Definition 2.5. Let X be a topological space, Γ a family of subsets of X, and θ < ω1

a countable ordinal. A set A ⊆ X is called a θ-difference of Γ sets if and only if there exists
a θ-indexed sequence of sets (Aη)η<θ ⊆ Γ that is non-decreasing (i.e. Aη ⊆ Aη′ if η ≤ η′)

and:

x ∈ A⇐⇒ the minimum η < θ such that x ∈ Aη,
has parity opposite to that of θ.

The family of all θ-differences of Γ sets is denoted Dθ(Γ). In particular, for each ξ < ω1 the
class Dθ

(
Σ0
ξ

)
(X) is the family of all θ-differences of sets from the Borel class Σ0

ξ(X).

The above definition requires the sequence (Aη)η<θ to be non-decreasing and we will

focus on Γ = Σ0
ξ(X). These are important assumptions, because of the following remark.

Remark 2.6. For each ξ < ω1 we have Dω
(
Π0
ξ) = Σ0

ξ+1.

Proof. The inclusion Dω
(
Π0
ξ) ⊆ Σ0

ξ+1 follows directly from the definition. For the opposite

direction, consider a set A ∈ Σ0
ξ+1. It is easy to check that A can be written as

⋃
n∈ω An
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...

A0

A1

A2

An−2

An−1

Figure 3: A set A = A0 ∪ (A2 \A1)∪ · · · ∪ (An−1 \An−1) (A is the union of the black parts)
with A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An−2 ⊆ An−1 and Ai ∈ Σ0

ξ for every i.

with (An)n∈ω non-decreasing and each An in Π0
ξ . Then take A′n

def
= Abnc and notice that this

sequence is also non-decreasing and contains only Π0
ξ sets. However, x ∈ A iff ∃n. x ∈ An

iff the minimum n such that x ∈ A′n is even. Therefore, A is an ω-difference of Π0
ξ sets and

A ∈ Dω
(
Π0
ξ).

Notice that for a natural number n we have A ∈ Dn
(
Σ0
ξ

)
if and only if it can be written

as follows (see Figure 3):

A = A0 ∪ (A2 \A1) ∪ · · · ∪ (An−1 \An−2) if n is odd, (2.1)

A = (A1 \A0) ∪ · · · ∪ (An−1 \An−2) if n is even, (2.2)

with A0, . . . , An−1 belonging to Σ0
ξ .

As one can easily check from the definition, the classes Dη
(
Σ0
ξ

)
are monotone both in η

and in ξ.

Fact 2.7. For each η ≤ η′ and ξ ≤ ξ′ we have

Dη
(
Σ0
ξ

)
⊆ Dη′

(
Σ0
ξ′
)
.

The following theorem shows that the difference hierarchy over Σ0
ξ saturates the succes-

sive class ∆0
ξ+1.

Theorem 2.8 (Hausdorff, Kuratowski, see [Kec95, Theorem 22.27, page 176]). In Polish
spaces and for any 1 ≤ ξ < ω1 we have that

∆0
ξ+1 =

⋃
1≤θ<ω1

Dθ
(
Σ0
ξ

)
.

Similarly, the first ω levels of the hierarchy coincide with the class BC(Σ0
ξ):
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Theorem 2.9 [Kec95, Exercise 22.30, page 177]. In Polish spaces and for any 1 ≤ ξ < ω1

we have that
BC(Σ0

ξ) =
⋃

1≤θ<ω
Dθ
(
Σ0
ξ

)
.

2.5. The Wadge hierarchy. We are now in the position to define the Wadge hierarchy
of a general topological space. Later in the article we will focus on the specific case of the
Wadge hierarchy of the Cantor space 2ω.

Definition 2.10. Let X, Y be two topological spaces. We say that a set A ⊆ X continuously
reduces to B ⊆ Y if there is a continuous function f : X → Y such that the pre-image
f−1(B) = {x ∈ X | f(x) ∈ B} is equal to A (i.e. x ∈ A⇔ f(x) ∈ B for every x ∈ X).

The following proposition shows that continuous reductions preserve the topological
classes defined above.

Proposition 2.11. Let Γ be a level of the Borel hierarchy or of the difference hierarchy.
Then Γ is closed under continuous preimages: if B is a subset of a topological space Y such
that B ∈ Γ(Y ) and f : X → Y is a continuous function from a topological space X to Y ,
then f−1(B) ∈ Γ(X).

Now we are in place to define the Wadge order.

Definition 2.12. Let X and Y be two topological spaces and let A ⊆ X and B ⊆ Y . We
say that A is Wadge reducible to B, and we denote it by A ≤W B, if there exists a continuous
reduction of A to B. We say that A is Wadge equivalent to B, in symbols A ≡W B, if
A ≤W B and B ≤W A. Finally, we write A <W B if A ≤W B and B ≤W A does not hold.

Fact 2.13. ≤W is an equivalence relation.

The relation ≤W induces a partial order between the ≡W-classes, called Wadge degrees,
of subsets of topological spaces. If we fix a space X and we restrict the ordering induced by
≤W to the sets of X, we obtain the Wadge hierarchy of X. If A is a subset of X, then by
[A]W we denote its Wadge degree:

[A]W = {B ⊆ X | B ≡W A}.
Even tough the Wadge hierarchy can be defined for any topological space, its shape for

a generic space can be very complicated (for example the Wadge hierarchy of many non
zero-dimensional topological spaces, including the space of real numbers, is very complicated:
see for instance [MRS14] and [MRSS15]). Also, the good properties of the hierarchy (like
its width or well-foundedness) depend on the determinacy of related games. Therefore, in
our work we will restrict our attention to the order ≤W restricted to the first levels of the
Borel hierarchy of the Cantor space 2ω. We refer the reader to [AC13] for a description of
the structure of the Wadge hierarchy for 2ω.

Theorem 2.14 (Wadge’s lemma, see [Kec95, Theorem 21.14, page 156]). For any A,B ∈
B(2ω) it holds that

A ≤W B or Bc ≤W A.

Theorem 2.15 (Wadge, Martin, Monk, see [Kec95, Theorem 21.15, page 158]). The ordering
≤W among the Borel sets of 2ω is well-founded.
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Definition 2.16. A set which is Wadge reducible to its complement is called self-dual,
otherwise it is called non self-dual.

Example 2.17. It is easy to check that every non-trivial (i.e. different than ∅ and 2ω)
clopen subset of 2ω is self-dual.

Since the notion of self-duality is invariant under ≡W we can speak of self-dual and non
self-dual Wadge degrees. If [A]W is a non self-dual Wadge degree then we say that the pair
{[A]W, [A

c]W} is a non self-dual pair.

Corollary 2.18. The anti-chains in the Wadge degrees have length at most 2 and are of
the form {

[A]W, [A
c]W
}
,

with A non self-dual.

Notice that technically every Wadge degree does not contain the elements contained
in the previous degrees of the hierarchy. For example, the Wadge degree [C]W, where C is
a clopen set different from 2ω and ∅, contains all the clopen sets except the whole space
2ω and the empty set ∅. This is obvious, since any Wadge degree is an equivalence class
of the relation ≡W. We define the Wadge class of a set as the union of its Wadge degree
with all its predecessors in the hierarchy. For example the Wadge class ∆0

1 is obtained by
taking the union of the Wadge degree ∆0

1 \ {∅, 2ω} with its predecessors {∅} and {2ω}. It is
clear that the two hierarchies, the one of Wadge degrees and the one of Wadge classes, are
isomorphic as orders, so we can treat both the hierarchies in the same way. In the pictures
of this section we show the hierarchy of the Wadge classes, because they are more intuitive
and easier to describe.

Theorem 2.19 (See [AC13]). In the Cantor space, [2ω]W = {2ω} and [∅]W = {∅} are the
two minimal Wadge degrees and they clearly form a non self-dual pair. Then we have the
Wadge degree formed by any clopen set different from 2ω and ∅ and this is a self-dual Wadge
degree. The hierarchy continues with a constant alternation of a non self-dual pair and one
self-dual Wadge degree. All the limit levels of the Wadge hierarchy consist of a non self-dual
pair. Certain specific Wadge classes coincide with the levels of the Borel hierarchy.

Hence, the Wadge hierarchy of the Cantor space has the shape as depicted in Figure 1.
Now we can assign an ordinal to any level of the hierarchy. This ordinal is the Wadge

rank of a Wadge degree (or of the corresponding Wadge class). The two bottom Wadge
degrees {∅} and {2ω} have Wadge rank 1, the Wadge degree ∆0

1 \ {∅, 2ω} has Wadge rank 2
(so it has the Wadge class ∆0

1), and so on.
Among the non self-dual Wadge classes we find the classes Σ0

n and Π0
n. The classes Σ0

1

and Π0
1 are immediately after the Wadge class ∆0

1, so their Wadge rank is 3. Then, between
the non self-dual pair

{Σ0
n,Π

0
n}

and the successive
{Σ0

n+1,Π
0
n+1}

there are ω
ω
. .

.
ω1

n times
1

1 Wadge classes. In particular, there are ω1 Wadge classes between the
pair {Σ0

1,Π
0
1} and {Σ0

2,Π
0
2}. Hence, the Wadge rank of the Wadge classes Σ0

2 and Π0
2 is ω1,

and the Borel class ∆0
2 contains ω1 different levels of the Wadge hierarchy.
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{2ω}

{∅}

∆0
1

Σ0
1

Π0
1

. . .ω1 alternations

Σ0
2

Π0
2

. . .ωω1
1 alternations

Σ0
3

Π0
3

. . .

Figure 4: An initial fragment of the Wadge hierarchy inside the Borel hierarchy of 2ω.

Now we focus on the segment that we will study in this article, that is the initial segment
from the beginning of the hierarchy until the Wadge classes Σ0

2 and Π0
2. Using this notion

we can express a characterisation of the first ω1 levels of the Wadge hierarchy in 2ω in terms
of the difference hierarchy.

Theorem 2.20 (See [AC13]). For every m ≥ 1 every class Dθ
(
Σ0
m

)
corresponds to a Wadge

class of a non self-dual pair. For m = 1 these are essentially all Wadge classes: there is no
non self-dual Wadge class between Dθ

(
Σ0

1

)
and Dθ+1

(
Σ0

1

)
. Therefore, Figure 1 depicts the

first ω1 levels of the Wadge hierarchy.

Hence, in the Cantor space the difference hierarchy is an important tool to understand
the Wadge hierarchy, especially in the initial part up to Σ0

2. Beyond that level, the difference
hierarchy becomes much coarser (i.e. it skips a lot of Wadge degrees).

3. The game for Wadge ranks

In this section we define a game that we will use in this article to obtain results of decidability
of Wadge degrees with Wadge ranks up to ω (i.e. the classes Dn

(
Σ0

1

)
for n ∈ ω). This game

is played by two players, named Alternator and Constrainer and it is a finite duration game.
In this article we work on the space TrA, but a priori this game can be defined in any
topological space and the characterization that it gives holds in general. Yet, in the case of
regular languages of trees, it is possible to decide which player wins the game. This fact will
be crucial to state the results about decidability.

Let us describe the game. Let X be a topological space, U0 ⊆ X open and non-empty,
and let X1, . . . , Xn be arbitrary subsets of X. We define the game

HU0(X1, . . . , Xn)

played by Constrainer (choosing open subsets of X) and Alternator (choosing points of X).
The game will last for n rounds, a round i for 1, . . . , n of the game is played as follows:

(1) Alternator chooses a point xi ∈ Ui−1 ∩ Xi. If there is no such point xi, the game is
interrupted and Constrainer wins immediately.

(2) Constrainer chooses an open set Ui ⊆ Ui−1 that contains xi and the next round is played.

If Alternator manages to survive n rounds then he wins, otherwise Constrainer wins.
A special variant of the game, when U0 = X is the whole space, is denoted simply as

H(X1, . . . , Xn). Now we prove some properties of this game.
Let (X, τ) be a topological space, U ⊆ X open non-empty, and let X1, . . . , Xn be subsets

of X. Consider the game HU (X1, . . . , Xn). In this framework we can represent a position of
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a play trough a tuple
〈U0, x1, U1, x2, U2, . . . , xi, Ui〉,

where x1, . . . , xi ∈ X and U0, U1, . . . , Ui ∈ τ with U0 = U . A strategy for Constrainer in the
game HU (X1, . . . , Xn) is a function

σ : X≤n → τ.

If s is a word belonging to X≤n compatible with the game H and with σ, then σ(s) is the
open set played by Constrainer in the position

〈s0, σ(s0), s1, σ(s0s1), . . . , slt(s)−1, σ(s)〉.
If s does not represent a position compatible with the game H and with σ (for example
because the second letter of s is not an element of X2 or it is not an element of σ(s0)),
then we put σ(s) = ∅ by convention. As usual, a strategy σ for Constrainer is winning if
Constrainer wins every play where he follows σ. In a specular way we could define strategies
for Alternator, but we will not use them in this article.

Since the duration of the game is finite, it is determined — one of the players has
a winning strategy. The following remark is not used in this article but provides a simplified
form for the strategies of the players.

Remark 3.1. The game HU (X1, . . . , Xn) is positionally determined: the winner of the
game does not change if we insist that the players’ strategies depend only on the number of
the round and the last move of the opponent. This means that we can freely assume that
Alternators’s point xi depends only on i and the current open set Ui−1; while Constrainer’s
open set Ui depends only on i, the current point xi, and the previous open set Ui−1.

The first property we prove is Refinement Lemma, that states that if the sets X1, . . . , Xn

are split into finitely many parts each and Alternator wins H(X1, . . . , Xn) then he can win
for some choice of parts of X1, . . . , Xn.

Lemma 3.2 (Refinement Lemma). Let X1, . . . , Xn be subsets of a topological space X. For
i ∈ {1, . . . , n}, let Yi a finite family of sets partitioning Xi. For any non-empty open U ⊆ X,
if Alternator wins

HU (X1, . . . , Xn)

then there exist Y1 ∈ Y1, . . . , Yn ∈ Yn such that Alternator wins

HU (Y1, . . . , Yn).

Proof. We prove the theorem by induction on n. The induction base is immediate, because
Alternator always wins when n = 0 and he wins when n = 1 if and only if X1 6= ∅. Now
prove the induction step. Consider the first move by Alternator, and assume that he chooses
the same point x ∈ U as chosen by his winning strategy in HU (X1, . . . , Xn). This point
necessarily belongs to some Y1 ∈ Y1. For i ∈ ω, let Ui be the open ball around x of radius 1

i .
By the definition of the game, we know that for every i < ω Alternator wins

HUi(X1, . . . , Xn).

Thus, he also wins HUi(X2, . . . , Xn) and by the inductive assumption, we know that for

every i there exist Y
(i)
2 ∈ Y2, . . . , Y

(i)
n ∈ Yn such that Alternator wins

HUi(Y
(i)
2 , . . . , Y (i)

n ).
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By Pigeon-hole Principle, there must be some Y2, . . . , Yn such that

(Y2, . . . , Yn) = (Y
(i)
2 , . . . , Y (i)

n )

holds for infinitely many i. Since the game HV (Y2, . . . , Yn) grows more difficult for Alternator
as the open set V becomes smaller, and since every open set V that contains x contains
some Ui, we conclude that Alternator wins

HV (Y2, . . . , Yn)

for every V that contains x. By viewing V as a response of Constrainer to Alternator’s
move x ∈ Y1, we conclude that Alternator wins the game

HU (Y1, . . . , Yn).

Now let Y be a subset of our topological space X and consider a particular case of the
game where the sets X1, . . . , Xn alternate between Y and its complement, i.e. we consider
H(X1, . . . , Xn) where Xi is Y if i is odd, Y c otherwise. We denote by H∈,/∈(Y, n) that game

and by H∈,/∈U (Y, n) the variant relativised to a non-empty open set U ⊆ X.

Example 3.3. Consider the game where the topological space X is the space of real
numbers R and Y = Q, i.e. the rational numbers. Then for every n, Alternator wins the
game H∈,/∈(Y, n).

Remark 3.4. Notice that if Alternator wants to survive in H∈,/∈(Y, n) as long as possible,
he has to avoid to play points in the interior1 of Y and the interior of Y c. For example, if
at the first round Alternator plays x belonging to the interior of Y then Constrainer can
play (a subset of) the interior of Y and Alternator loses because he cannot go outside Y any
more.

Example 3.5. In the real numbers R, let Y be the complement of { 1n ∈ R | n ∈ ω}.
Alternator wins H∈,/∈(Y, 3). Indeed, in the first round Alternator can play 0 ∈ Y . In the
second round, Alternator plays 1

n /∈ Y for some large n depending on Constrainer’s move.

In the third round, Alternator plays 1
n + ε ∈ Y , for some small ε depending on Constrainer’s

move.
We now argue that Constrainer wins H∈,/∈(Y, n) for n ≥ 4. Notice that since x2 must

belong to Y c = { 1n ∈ R | n ∈ ω}, Constrainer can choose U2 ⊆ U1 in such a way to guarantee
that x2 ∈ U2 but 0 /∈ U2. Then Alternator chooses a point x3 ∈ Y ∩ U2 that must be
distinct from 0. Thus, there exists an open set U3 such that x3 ∈ U3 ⊆ U2 but U3 ⊆ Y . This
guarantees that Alternator is not able to choose x4 ∈ Y c ∩ U3, making him lose the game
H∈,/∈(Y, 4).

Remark 3.6. Let σ1 and σ2 be two strategies for Constrainer such that σ1(s) ⊆ σ2(s) for
any finite word s ∈ X≤n. If σ2 is winning for Constrainer then σ1 is winning for Constrainer
too.

Lemma 3.7. Choose some basis B for the topology of the topological space X. If Constrainer
has a winning strategy in H∈,/∈(Y, n) then he has a winning strategy which uses only basic
open sets from B.

1Recall that the interior of a set Y is the union of all open sets contained in Y .



27:14 M. Bojańczyk, F. Cavallari, T. Place, and M. Skrzypczak Vol. 15:3

Proof. Consider any function f that to every pair (U, x), where U is an open set and x ∈ U ,
assigns a basic open set V ∈ B such that x ∈ V and V ⊆ U . Let σ be a winning strategy for
Constrainer. We can define another winning strategy σ̄ that always takes sets from B: given
a finite word s of length i, we define σ̄(s) = f

(
σ(s), si

)
. Since σ was winning for Constrainer,

by Remark 3.6 also σ̄ is winning.

Now we are ready to give a characterization of Dn
(
Σ0

1

)
sets in terms of the game H.

Theorem 3.8. Let X be a topological space and let Y ⊆ X. The following conditions are
equivalent:

(1) Y belongs to Dn
(
Σ0

1

)
.

(2) Constrainer wins the game H∈,/∈(Y, n+ 1).

Proof. We have to prove both directions separately.

Implication 1⇒ 2. Suppose that n is odd and let

Y = A0 ∪ (A2 \A1) ∪ · · · ∪ (An−1 \An−2), (3.1)

where A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An−2 ⊆ An−1 and every Ai is open for 0 ≤ i ≤ n− 1. Then,
a winning strategy for Constrainer in H∈,/∈(Y, n) is to play An−1 as the first move, An−2
as the second move, and so on. Equation (3.1) implies that this is a valid strategy of
Constrainer. The nth move will be A0, and since A0 ⊆ Y , at that point Alternator loses at
the (n+1)th round. The case of n even is completely dual, in that case A0 ⊆ Y c.

Implication 2⇒ 1. Suppose that n is odd, the opposite case can be solved by an entirely
dual argument. Our aim is to present Y as in (3.1). For i = 0, 1, 2, . . . define sets

Ai
def
=
⋃{

U | Constrainer wins H∈,/∈U (Y, i+ 1)
}

for odd i

Ai
def
=
⋃{

U | Constrainer wins H∈,/∈U (Y c, i+ 1)
}

for even i

where the unions range over open sets U ⊆ X. Notice that if Constrainer wins H∈,/∈U (Y, i)

then he also wins H∈,/∈U (Y c, i+ 1) by the same strategy, just playing U in the first round.
Therefore, the family (Ai) is increasing. By the definition, all the sets Ai are open. Clearly,

the assumption that Constrainer has a winning strategy in H∈,/∈(Y, n+ 1) implies that An
is the whole space. Thus, it is enough to inductively prove the following claim.

Claim 3.9. For i = 0, 1, . . . the following holds

Y ∩Ai = A0 ∪ (A2 \A1) ∪ · · · ∪ (Ai−1 \Ai−2) for odd i

Y c ∩Ai = (A1 \A0) ∪ (A3 \A2) ∪ · · · ∪ (Ai−1 \Ai−2) for even i

Notice that by the definition A0 ⊆ Y — whenever there exists x ∈ U∩Y c then Alternator

wins H∈,/∈U (Y c, 1) by playing x. Therefore, the above claim holds for i = 0 as Y c ∩A0 = ∅.
Assume that Claim 3.9 holds for i−1 and consider the two cases for i.
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The case of odd i. In that case we need to prove that Y ∩ Ai is of the form from (3.1).
Consider a point x ∈ Ai. First consider the case that x ∈ Ai−1. Then by the inductive
assumption x ∈ Y if and only if

x /∈ (A1 \A0) ∪ (A3 \A2) ∪ · · · ∪ (Ai−2 \Ai−3)
what is equivalent to the disjunction of x ∈ (Ai−1 \Ai−2) or

x ∈ A0 ∪ (A2 \A1) ∪ · · · ∪ (Ai−3 \Ai−4).
Thus, x ∈ Y if and only if

x ∈ A0 ∪ (A2 \A1) ∪ · · · ∪ (Ai−1 \Ai−2).
Thus, the statement of Claim 3.9 holds in that case.

Now assume that x /∈ Ai−1. We will prove that in that case x /∈ Y . Assume contrarily
that x ∈ Y . Since x ∈ Ai, there exists an open set U such that x ∈ U ⊆ Ai and Constrainer

wins H∈,/∈U (Y, i + 1). Consider the first round of H∈,/∈U (Y, i + 1) in which Alternator plays
x and a winning strategy of Constrainer replies with V 3 x. This means that Constrainer

has a winning strategy in H∈,/∈V (Y c, i) and therefore by the definition x ∈ V ⊆ Ai−1,
a contradiction.

The case of even i. This case is entirely dual: we take x ∈ Ai and consider the case that
x ∈ Ai−1. Then the following conditions are equivalent:

x /∈ Y
x /∈ A0 ∪ (A2 \A1) ∪ · · · ∪ (Ai−2 \Ai−3)
x ∈ (A1 \A0) ∪ (A3 \A2) ∪ · · · ∪ (Ai−3 \Ai−4) or x ∈ (Ai−1 \Ai−2)
x ∈ (A1 \A0) ∪ (A3 \A2) ∪ · · · ∪ (Ai−1 \Ai−2)

and therefore Claim 3.9 holds in that case. If x /∈ Ai−1 then we need to prove that x ∈ Y .

Since x ∈ Ai, we know that x ∈ U ⊆ Ai with Constrainer winning H∈,/∈U (Y c, i+ 1) for some
open U . Assume contrarily that x /∈ Y and as before we see a contradiction, as x is a valid

move of Alternator in H∈,/∈U (Y c, i+ 1) and therefore x ∈ Ai−1.

Corollary 3.10. The following conditions are equivalent for a set Y :

(1) Y belongs to
⋃
n∈ω Dn

(
Σ0

1

)
= BC(Σ0

1).

(2) Constrainer wins the game H∈,/∈(Y, n) for all but finitely many n.

Proof. It follows directly from Theorem 3.8 and Fact 2.7.

Since the family of sets defined by prefixes Np for all finite prefixes p is a basis of the
topology on TrA, we obtain the following corollary for the case X = TrA.

Corollary 3.11. Assume that X = TrA is the space of all trees and L ⊆ TrA. Then, when
considering strategies of Constrainer in H∈,/∈(L, n) we can assume that each open set Ui
played by him is a basic open set, i.e. Ui+1 = Np for a finite prefix p of the currently played
tree ti. Then the condition that Ui+2 ⊆ Ui+1 boils down to the assumption that pi+2 ⊇ pi+1.
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3.1. Decidability of finite levels of the Wadge hierarchy. In this short subsection
we use the game H(L1, . . . , Ln) to show that, given a natural number n, it is decidable if
a regular language L is an n-difference of open sets (i.e. belongs to Dn

(
Σ0

1

)
). Recall that,

without loss of generality (see Corollary 3.11) we can assume that Constrainer plays finite
prefixes of the trees played by Alternator, and Alternator has to extend the finite prefixes
played by Constrainer.

Example 3.12. Consider the language

L = {t ∈ TrA | infinitely many letters a appear in t}.
L is regular and it is easy to check that Alternator wins the game H∈,/∈(L, n) for every n ∈ ω.
This is because every finite prefix can be extended to a tree with finitely many a or to a tree
with infinitely many a. So L is not a Boolean combination of open sets (it is easy to see,
indeed, that L is a Π0

2 set but it is not a Σ0
2 set).

Lemma 3.13. Given regular tree languages L1, . . . , Ln, one can decide who wins the game
H(L1, . . . , Ln). In particular, given L and n, one can decide who wins H∈,/∈(L, n).

Proof. We prove the statement for two regular languages L1, L2. It is easy to generalise it to
n regular languages. The sentences “Alternator wins the game H(L1, L2)” and “Constrainer
wins the game H(L1, L2)” can be effectively formalized in Monadic Second-order Logic on
the complete binary tree. For instance, the sentence for

“Alternator wins the game H(L1, L2)”

is:
there exists a tree t1 ∈ L1 such that for any finite prefix p of t1

there exists a tree t2 ∈ L2 that extends p.

In a similar way we can write the sentence that says that Constrainer wins for n > 2.

So we obtain:

Corollary 3.14. It is decidable, given a regular tree language L and n ∈ ω, whether L is
an n-difference of open sets.

Proof. It directly follows from Theorem 3.8 and Lemma 3.13.

Hence, since Wadge degrees with Wadge ranks below ω are formed by Boolean combina-
tions of the levels of the difference hierarchy, we easily obtain:

Theorem 3.15. Given a regular language L and a Wadge degree [A]W with Wadge rank
less than ω, it is decidable if L belongs to [A]W .

3.2. The infinite variant of the game. We denote by H∞(Y ) the infinite variant of

H∈,/∈(Y, n): H∞(Y ) is the infinite duration game played the same way as H∈,/∈(Y, n) but
the winning condition for Alternator is that he has to survive for infinitely many turns. By
H∞U (Y ) we denote the relativised game.
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Remark 3.16. The game H∞(Y ) is determined: every play where Constrainer wins is
finite. Therefore, the winning condition for Constrainer is an open condition, while the
winning condition for Alternator is a closed condition, both in the space2

(
X × τ

)ω
, where

the sets X and τ are taken with the discrete topology. Hence, the game is determined by
Gale–Stewart Theorem [GS53] (see also [Mar75] for the more general result for Borel sets).

Remark 3.17. In the same fashion as in the case of the finite game, without loss of
generality we can assume that Constrainer in his strategies uses only basic open sets, see
Corollary 3.11.

The following fact follows directly from the definition of the two variants of the game.

Fact 3.18. If Alternator wins H∞(Y ) then he wins H∈,/∈(Y, n) for any n.

Proposition 3.19. The converse to Fact 3.18 is not true, even for regular tree languages
L.

This proposition follows a posteriori from Theorem 5.1 and Proposition 3.20, using the
fact that the involved games are determined and there exist sets in ∆0

2 \ BC(Σ0
1). However,

the proof provided here is supposed to provide an informative illustration of the considered
games.

Proof. We have to exhibit a counterexample. To do that it is convenient to work with
an alphabet with three different symbols, so let A be the alphabet {a, b, c}. For the sake of
this example, assume that if t1, . . . , tn are trees, by [t1, . . . , tn] we denote the tree

a

t1 a

t2

a

tn b

Now let L be the language of all the trees of the form [t1, . . . , tn] where for every i ∈ {1, . . . , n}
the tree ti is

(1) either a tree with every node labelled by a,
(2) or a tree that contains only finitely many letters different than c, i.e. a tree for which

there exists a finite prefix p of ti such that ti(u) = c for any node u /∈ p.
If ti respects the first condition we say that ti is a first case tree, if it respects the second
condition we say it is a second case tree. We first prove that Alternator wins H∈,/∈(L, n) for
any n. Fix a natural number n, we provide a winning strategy for Alternator for the game
H∈,/∈(L, 2n). We define the following sets of trees:

2Since Alternator chooses points in X and Constrainer chooses open sets in τ , each round of the game can
be represented as an element of X × τ . Thus, the winning condition of the game is a subset of

(
X × τ

)ω
.
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• For i ∈ {1, . . . , n} let Li be the set of trees [t1, . . . , tn] such that the trees t1, . . . , ti−1 are
second case trees and the trees ti, . . . , tn are first case trees. It is clear that Li ⊆ L for
any i.
• We define L′i as Li except that the tree ti contains both a and b nodes, but no c nodes.

Obviously L′i is disjoint from L.

Every prefix of a tree in Li can be completed into a tree in L′i and every prefix of a tree in
L′i can be completed into a tree in Li+1. It follows that Alternator wins the game

H(L1, L
′
1, L2, L

′
2, . . . , Ln, L

′
n)

and therefore also Alternator wins H∈,/∈(L, 2n).
Now we move to a proof that Alternator loses H∞(L). Consider the tree played by

Alternator in the first round. Since this tree belongs to L, it must be of the form [t1, . . . , tn]
with t1, . . . , tn either first case trees or second case trees. Let p1 be a finite prefix of this
tree which contains the node R

n. Constrainer uses a strategy, which preserves the following
properties:

(1) All prefixes played by Constrainer extend the prefix p1. Consequently, all the trees
played by Alternator are of the form [s1, . . . , sn]. Indeed, the prefix p1 guarantees that
the played trees t satisfy t(Rn) = b and t(Rk) = a for k < n. Hence, all the modifications
done by Alternator are relative to the trees t1, . . . , tn and therefore for k ∈ {1, . . . , n}
it is meaningful to talk about the kth coordinate of the tree played by Alternator in
a round which refers to the tree sk.

(2) Suppose that Alternator plays a tree [s1, . . . , sn] in some round i. Let pi be a finite
prefix of this tree such that for every coordinate k ∈ {1, . . . , n} we have:
• If sk is a second case tree then pi contains a prefix of sk such that under that prefix

every node is labelled by c.
• If sk contains some b then pi contains some b in the subtree sk.
In the next round Constrainer chooses pi. Consequently, if i, j are rounds with i < j
and k ∈ {1, . . . , n} then
• If the kth coordinate of Alternator’s tree in round i is a second case tree then also the
kth coordinate of Alternator’s tree in round j has to be a second case tree.
• If the kth coordinate of Alternator’s tree in round i contains a b then also the kth

coordinate of Alternator’s tree in round j contains a b.
So, in an odd-numbered round, Alternator’s tree belongs to the language and therefore all
the coordinates with a b are second case trees. In an even-numbered round, Alternator’s
tree is outside the language. Therefore, when going from an odd-numbered round to the
next even-numbered round, Alternator must change some coordinate from a first case
tree without b to a tree with b. It follows that the number coordinates with b increases
in each even-numbered round. Since this can happen at most n times, Alternator must
lose after at most 2n rounds.

The proof is complete.

Now we can give a non-effective characterisation of the class ∆0
2 for topological spaces

that are completely metrizable (for the levels Dn
(
Σ0

1

)
we gave a characterisation that holds

in general for any topological space, but here we are forced to require complete metrizability).

Proposition 3.20. Let X be a completely metrizable topological space with a countable basis
of the topology (i.e. X is second-countable). The following conditions are equivalent for
a subset Y of X:
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(1) Constrainer wins H∞(Y ).
(2) Y ∈∆0

2(X).

Proof. The proof is very similar to the analysis of other games of this kind, for instance
Banach–Mazur game, see [Kec95, Section 8.H].

Implication 1 ⇒ 2. Assume that Constrainer has a winning strategy σ in H∞(Y ). By
Remark 3.17 we can assume that σ plays only basic open sets.

Notice that σ (seen as a tree) is well-founded because the strategy is winning and
therefore it admits no infinite play. We will prove by induction on the structure of σ that if
〈U0, x1, U1, . . . , Ui−1〉 is a position compatible with σ then Y ∩ Ui−1 ∈ ∆0

2. Consider such
a position P = 〈U0, x1, U1, . . . , Ui−1〉 and assume that the thesis holds for all the positions
extending that one. If the position P is instantly winning for Constrainer (i.e. Alternator
cannot play a single round from P ) then, depending on parity of i, either Ui−1 ⊆ Y c or
Ui−1 ⊆ Y . In both cases the inductive thesis holds. Now assume that P is not instantly
winning for Constrainer. By the symmetry lets assume that i is odd, i.e. Alternator is forced
to play xi ∈ Ui−1 ∩ Y . Let (Bx)x∈Ui−1∩Y be the indexed family of basic open sets Bx played

by σ as a response to Alternator playing x. By the inductive assumption we know that for
each x ∈ Ui−1 ∩ Y we have Y ∩Bx ∈∆0

2.
By the definition of the family Bx we know that

Y ∩ Ui−1 =
⋃

x∈Ui−1∩Y

(
Bx ∩ Y

)
,

where the union is in fact countable since there is only countably many basic open sets in X.
As every set taken in the union is Σ0

2 (in fact ∆0
2) we know that Y ∩ Ui−1 is Σ0

2. Dually

Y c ∩ Ui−1 =

Ui−1 \ ⋃
x∈Ui−1∩Y

Bx

 ∪ ⋃
x∈Ui−1∩Y

(
Bx ∩ Y c

)
,

which again is a Σ0
2 presentation of Y c ∩ Ui−1.

Thus, the above induction implies that Y ∩ U0 = Y ∩X = Y is ∆0
2.

Implication 2 ⇒ 1. We need to prove that if Y ∈ ∆0
2 then Constrainer wins H∞(Y ).

Indeed, if Y is in ∆0
2 we can write Y and its complement as

Y =
⋂
j∈ω

Aj and Y c =
⋂
j∈ω

Bj ,

where all the sets Ai and Bi are open. Now we can describe a winning strategy for Constrainer
in H∞(Y ). Suppose i = 1, 2, . . . is the round we are playing and i is odd (resp. i is even).
Let j = b i−12 c. Assume that Ui−1 is the open set that was played last (U0 = X) and let xi
be the point played by Alternator in the current round. By the definition of the game, if i
is odd then xi ∈ Y and otherwise xi ∈ Y c. Let Constrainer play Ui such that Ui ⊆ Ui−1;
Ui ⊆ Aj (resp. Ui ⊆ Bj); and the diameter of Ui is smaller than 2−i. Such a set exists
because xi ∈ Ui−1 ∩Aj (resp. xi ∈ Ui−1 ∩Bj).

Clearly it is a valid strategy of Constrainer. Consider an infinite play consistent with
this strategy. Since X is Polish and the sets Ui are of decreasing diameter with Ui ⊆ Ui−1,
there must exists x ∈

⋂
n∈ω Ui. But by the construction of Ui, such x must belong to both⋂

j∈ω Aj = Y and
⋂
j∈ω Bj = Y c, a contradiction. Thus, each play consistent with the above

strategy is finite and therefore winning for Constrainer.
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Corollary 3.21. Let X be a completely metrizable topological space and Y be a subset of X.
Then Y ∈ ∆0

2 \ BC(Σ0
1) if and only if Alternator wins H∈,/∈(Y, n) for all n but he loses

H∞(Y ).

4. The algebra on trees

Our next goal is decidability of the class
⋃
n∈ω Dn

(
Σ0

1

)
= BC(Σ0

1). Notice that Corollary 3.14

gives us a semi-algorithm for deciding if a regular language is in
⋃
n∈ω Dn

(
Σ0

1

)
. Indeed, for

n = 1, 2, . . . we can use Corollary 3.14 to decide if L ∈ Dn
(
Σ0

1

)
. If for some n this is the

case then L ∈
⋃
n∈ω Dn

(
Σ0

1

)
and the algorithm terminates. Otherwise, the algorithm does

not terminate. Section 5 provides an alternative algebraic algorithm that always terminates
and solves the above decision problem.

The algebraic approach we define in this section is based on the so-called Myhill–Nerode
equivalence that allows to distinguish trees based on their behaviour when put into certain
contexts.

Definition 4.1. A multicontext over an alphabet A is a partial tree t over A t {2} where
2 /∈ A such that: t does not contain any unary nodes and a node of t is a leaf if and only if
it is labelled 2. A port of a multicontext C is any node of t that is labelled 2 (i.e. any leaf
of t).

The number of ports is called the arity of the multicontext. A priori a multicontext
may have infinitely many ports and in that case the arity is ∞. A multicontext with exactly
one port is called a context. Given a multicontext C and a valuation η which maps ports
of C to trees in TrA, we write C[η] for the tree obtained by replacing each port u by the
tree η(u). The tree C[η] is said to extend the multicontext C. If L is a set of trees and C is
a multicontext then by C[L] we denote the set of trees obtained by plugging trees of L in
the ports of C in all the possible ways. The set of all trees extending a multicontext C is
denoted by C[∗]. If C is a multicontext, possibly with infinitely many ports, and t is a tree,
we denote by C[t] the tree obtained by putting t in every port of C.

Example 4.2. The multicontext C0 consists of only one node — the root. It is called
the trivial context and denoted 2. C1 is a tree, it has no ports, and C1[∗] is {C1}. The
multicontext C2 is a context and if we complete C2 with a tree we obtain a tree where the
root label is a and the left subtree of the root is labelled with only letters b. Finally, C3 is
a finite multicontext and C3[∗] = {t | t(ε) = a}.

C0

a

C1

b a

a

C2

b

a

C3

Now we focus on contexts, i.e. multicontexts with exactly one port. We write CtA for the
set of all non-trivial contexts over A. Given two contexts C,D we write C ·D for the context
obtained by replacing the port of C with D. Moreover, if C 6= 2 (i.e. C is non-trivial) then
we write C∞ for the infinite tree

C · C · C · C · · ·
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Notice that the above definition does not construct a tree for C = 2 (the trivial context).
That is why we restrict the set of contexts CtA to only non-trivial ones.

Remark 4.3. It is easy to verify that · is associative, therefore
(
CtA t {2}, ·

)
is an infinite

monoid, with · associative and the trivial context 2 as the neutral element.

Now we define the two Myhill–Nerode equivalence relations: one for trees and one for
contexts. These equivalence relations depend on a fixed language L ⊆ TrA.

Definition 4.4. In the Myhill–Nerode equivalence for trees, we say that two trees t and t′

are L-equivalent (denoted t
Tr
≈L t′) if

C[t] ∈ L⇐⇒ C[t′] ∈ L for every multicontext C.

Remark 4.5. Notice that because of the duality between L and the complement Lc in the

above definition, we know that the equivalence relations
Tr
≈L and

Tr
≈Lc coincide. Moreover,

since 2 (i.e. the trivial context) is a multicontext we know that if t ∈ L and t′ ∈ Lc then

t 6
Tr
≈L t′.

The above remark says that the equivalence relation
Tr
≈L is always able to distinguish

trees from L from those not in L. In the following example these are the only two classes of
Tr
≈L, i.e.

Tr
≈L is not able to distinguish anything else.

Example 4.6. Consider the language L = {t ∈ TrA | t(ε) = a}. In this case we have just
two equivalence classes that are L and the complement Lc. The multicontext that establishes
if a tree belongs to L or Lc is the trivial context 2.

To give a similar definition for contexts, we use a variant of multicontexts where the
ports can be substituted by contexts and not trees.

Definition 4.7. A context environment over an alphabet A is a partial tree labelled by
A t {2} such that: t has no leaves and a node of t is unary if and only if it is labelled 2.
A port of a context environment is any node of t that is labelled 2 (i.e. any unary node of t).

Given a context environment E and a non-trivial context C, we write E[C] for the tree
obtained by substituting C for every port of E in the following way. For each port v of E
we first plug a copy of C into that port and then plug the subtree of E below that port into
the port of C. Notice that there may be more than one occurrence of 2 on a branch of E
and the above plugging needs to be performed in each of them, see the left-most branch of
E[C] in Example 4.8. This guarantees that E[C] is a tree — it does not contain any port
of E nor any of the copies of the port of C.

The assumption that C is non-trivial is important in the above construction, because if
E is a unary tree labelled everywhere 2 (i.e. a 2-labelled infinite path) and C = 2 is the
trivial context, then E[C] (if defined at all) does not contain any node.

Example 4.8. In the following figure, C is a context, E is a context environment, and E[C]
is a tree.
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c
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d

e

E

f g

h
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e

E[C]

c c

d df g

hc

di

Definition 4.9. We define two non-trivial contexts C and C ′ to be L-equivalent (denoted

C
Ct
≈L C ′) if

E[C] ∈ L⇐⇒ E[C ′] ∈ L for every context environment E.

4.1. The syntactic tree algebra (HL, VL). We denote by HL the set of the equivalence
classes of trees with respect to L, the elements of HL are called tree types. Similarly we
denote by VL the set of the equivalence classes of non-trivial contexts with respect to L, the
elements of VL are called context types. By 1L we denote an additional type corresponding to
the trivial context 2. Since VL denotes types of the non-trivial contexts, in general 1L /∈ VL.

We will now prove a number of results, showing that the sets HL and VL bear certain
algebraic structure. We start with a simple fact following directly from the definition of
L-equivalence.

Fact 4.10. For every multicontext D and context environment E, the following two opera-
tions preserve the L-equivalence:

(1) the operation t→ D[t], i.e. if t
Tr
≈L t′ then D[t]

Tr
≈L D[t′],

(2) the operation C → E[C], i.e. if C
Ct
≈L C ′ then E[C]

Tr
≈L E[C ′].

The following corollary follows directly from Fact 4.10.

Corollary 4.11. Given a multicontext D, a context environment E, and elements h ∈ HL,
v ∈ VL, the sets

D[h]
def
= {D[t] | t ∈ h} ⊆ TrA,

E[v]
def
= {E[C] | C ∈ v} ⊆ TrA.

are L-equivalence classes, i.e. elements of HL.

Thus, each multicontextD (resp. context environment E) induces an operationHL → HL

(resp. VL → HL).
As expressed by the next lemma, the following natural operations on contexts and trees

respect the L-equivalence.

Lemma 4.12. The following operations respect L-equivalence.
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(1) The composition of contexts (C1, C2)→ C1 · C2.
(2) Substituting a tree in the port of a context (C, t)→ C[t].
(3) Infinite iteration of a non-trivial context C → C∞.
(4) For every symbol c ∈ A, the operations t 7→ c(t,2) and t 7→ c(2, t), that produce new

contexts with roots labelled c, and t plugged as the left or the right subtree under the root,
respectively.

Proof. We prove all the items.

Item 1. Let C1, C2, D1, D2 be contexts such that C1 is L-equivalent with D1 and C2 is
L-equivalent with D2. Let E be some context environment, we prove that

E[C1 · C2] ∈ L⇔ E[D1 ·D2] ∈ L.
We construct from E, C1 and E, D2 respectively two new context environments EC and
ED such that

EC [C2] = E[C1 · C2] and ED[D1] = E[D1 ·D2].

By the symmetry, lets focus on EC . This context environment is obtained from E by
inserting into each occurrence of 2 a whole copy of C1 (including its own 2). Thus, the
overall number of holes of EC and E is the same and the above equality follows.

Using the L-equivalence, we have:

ED[C1] ∈ L ⇔ ED[D1] ∈ L
EC [C2] ∈ L ⇔ EC [D2] ∈ L

Note that by the definition of EC and ED we have EC [D2] = ED[C1]. It follows that

E[C1 · C2] ∈ L⇔ EC [C2] ∈ L⇔ EC [D2] ∈ L⇔ ED[C1] ∈ L⇔ ED[D1] ∈ L.
Therefore, C1 · C2 and D1 ·D2 are L-equivalent.

Item 2. Let C, C ′ be L-equivalent contexts and t, t′ be L-equivalent trees. We want to
prove that C[t] and C ′[t′] are two L-equivalent trees. Let D be a generic multicontext. We
prove that

D[C[t]] ∈ L⇔ D[C ′[t′]] ∈ L.
Let D′ be a multicontext such that D′[t] = D[C[t]] and E a context environment such that
E[C ′] = D[C ′[t′]]. Using the L-equivalence we have:

D′[t] ∈ L ⇔ D′[t′] ∈ L,
E[C] ∈ L ⇔ E[C ′] ∈ L.

By the definition of E and D′ we have D′[t′] = E[C]. It follows that

D[C[t]] ∈ L⇔ D′[t] ∈ L⇔ D′[t′] ∈ L⇔ E[C] ∈ L⇔ E[C ′] ∈ L⇔ D[C ′[t′]] ∈ L.
Therefore, C[t] and C ′[t′] are L-equivalent.
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Item 3. Let C, C ′ be L-equivalent non-trivial contexts. We want to prove that C∞ and
C ′∞ are two L-equivalent trees. Let D be some multicontext, we prove that

D[C∞] ∈ L⇔ D[C ′∞] ∈ L.
Consider a context environment E constructed from D by replacing each port of D with an
infinite chain of ports. Using L-equivalence of C and C ′ we get:

E[C] ∈ L⇔ E[C ′] ∈ L
By definition of E we have E[C] = D[C∞] and E[C ′] = D[C ′∞]. It follows that

D[C∞] ∈ L⇔ D[C ′∞] ∈ L.
Therefore, C∞ and C ′∞ are L-equivalent.

Item 4. We only do the proof for t 7→ c(t,2), the other operations is handled symmetrically.
Let t, t′ be L-equivalent trees. Let E be some context environment, we prove that

E[c(t,2)] ∈ L⇔ E[c(t′,2)] ∈ L.
By inserting c into the ports of E we construct a multicontext C such that for all trees s,
C[s] = E[c(s,2)]. Using L-equivalence of t and t′ we get:

C[t] ∈ L⇔ C[t′] ∈ L
Therefore, c(t,2) and c(t′,2) are L-equivalent.

Corollary 4.13. The above operations on TrA and CtA induce the following algebraic
structure on (HL, VL):

• composition of context types VL 3 u, v 7−→ u · v ∈ VL,
• action of VL on HL i.e. VL ×HL 3 (u, h) 7−→ u · h ∈ HL,
• infinite composition VL 3 u 7−→ u∞ ∈ HL,
• creation of contexts HL 3 h 7−→ c(2, h), c(h,2) ∈ VL for c ∈ A.

Moreover, (VL, ·) is a semigroup acting over HL via ·,
(
VL t {1L}, ·

)
is a monoid, and

(HL, VL) satisfy the axioms of a Wilke algebra [Wil93].

A pair of sets (H,V ), equipped with the operations as in Corollaries 4.11 and 4.13, is
called a tree algebra. Once restricted to the operations from Corollary 4.13, it becomes a thin
algebra3. An advantage of a thin algebra is that (given that H and V are finite) it can be
represented effectively on a computer by giving the sets and the multiplication tables for the
five involved operations. Because of the simplicity of the considered classes of topological
complexity, the operations involved in our characterisations involve only operations of thin
algebras, see Equations (5.1) and (5.2).

Notice that the pair (TrA,CtA) with the actual operations of composition of trees and
contexts is in fact a tree algebra, we call it the free tree algebra.

The syntactic morphism of a language L, denoted by αL, is the two-sorted function

αL : (TrA,CtA)→ (HL, VL),

that maps a tree t ∈ TrA into its
Tr
≈L-equivalence class αL(t) ∈ HL and a context C ∈ CtA

into its
Ct
≈L-equivalence class αL(C) ∈ VL.

3The name comes from the theory of thin trees, sometimes called scattered trees, see [ISB16].
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The next fact is considered folklore, see for instance [PP04, Proposition 1.11 in Annex A
on page 442]. The usual notation for the number ] is ω, however it is better not to use that
symbol in this paper to avoid confusion with the infinite repetition.

Fact 4.14. Given any finite semigroup V , there is a number ]V (denoted just ] if V is
known from the context) such that for each element v of V the element v] is an idempotent,
i.e. v] = v] · v].

4.2. Congruences. To be able to compute the syntactic tree algebra (HL, VL) we will need
to start with its approximation. This notion is formalised as follows.

Definition 4.15. Consider a two-sorted function α : (TrA,CtA)→ (H,V ) that is surjective
onto a pair of sets (H,V ). We say that it is a congruence if the following two conditions
hold:

• for every multicontext D and every pair of trees t, t′ ∈ TrA such that α(t) = α(t′) we have

α
(
D[t]

)
= α

(
D[t′]

)
,

• for every context environment E and every pair of contexts C,C ′ ∈ CtA such that
α(C) = α(C ′) we have

α
(
E[C]

)
= α

(
E[C ′]

)
.

We say that α recognises a set of trees L ⊆ TrA if L = α−1(S) for some subset S ⊆ H.

Remark 4.16. If α is a congruence that recognises L then its kernel is finer than the
L-equivalence in the sense that for each pair of trees t, t′ and pair of contexts C, C ′ we have:

α(t) = α(t′)⇒ t
Tr
≈L t′ and α(C) = α(C ′)⇒ C

Ct
≈L C ′.

Proof. Assume that S ⊆ H is such that α−1(S) = L. Consider the first claim and take two

trees t, t′ ∈ TrA such that α(t) = α(t′). We need to prove that t
Tr
≈L t′. Take a multicontext D

and assume by the symmetry that D[t] ∈ L, i.e. α
(
D[t]

)
∈ S. However, the assumption that

α is a congruence implies that α
(
D[t′]

)
= α

(
D[t]

)
and therefore D[t′] ∈ α−1(S) = L.

Corollary 4.11 implies that the syntactic morphism αL : (TrA,CtA) → (HL, VL) is
a congruence. Lemma 4.12 implies that αL is a homomorphism of thin algebras, i.e. it
commutes with the operations of these algebras — for instance for the operation v · v′ one
needs to observe that for every two contexts C,C ′ ∈ CtA we have

αL(C) · αL(C ′) = αL
(
C · C ′

)
.

Additionally, Remark 4.5 implies that αL recognises L.

4.3. Computing (HL, VL). We will now prove that the syntactic algebras can be constructed
effectively, as stated by the following proposition.

Proposition 4.17. If L is a regular language then both HL and VL are finite. Moreover,
given a parity non-deterministic automaton A recognising L, one can compute in EXPTime
the syntactic algebra (HL, VL) for L, together with the structure of thin algebra on (HL, VL).
Additionally, both HL and VL have at most exponentially many elements in the number of
states of A.
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The following remark shows that finiteness of HL and VL is not sufficient for regularity
(the remark is motivated by Running Example 2 in [Boj15a]).

Remark 4.18. Both HL and VL are finite for any language defined in mso+u (see [Boj04]).

The rest of this subsection is devoted to a proof of Proposition 4.17. We follow implicitly
the approach from [Boj15a], see [Boj15b, Theorem 3.1] in the full version of the paper.
A very similar construction is also given in [BI09b, Appendices D.1 and D.2] or [Idz12].

The proof is divided into two stages. The first stage shows how to construct some
congruence α : (TrA,CtA)→ (H,V ) recognising L, such that the sets H and V are at most
exponential in the number of states of A — a non-deterministic automaton recognising L.
The second stage merges certain elements of that congruence to obtain the syntactic algebra
(HL, VL).

The first stage — a congruence α. We assume the notions of parity automata over
infinite trees as in [Tho96]: such an automaton is a tuple A = 〈A,Q, q I, δ,Ω〉, where A is
an alphabet, Q is a set of states, q I ∈ Q is an initial state, δ ⊆ Q×A×Q2 is a transition
relation and Ω: Q→ {i, . . . , j} is a priority assignment. We use the standard concepts of
an accepting run of a given automaton over a given tree.

Define a two-sorted function α : (TrA,CtA)→
(

2Q, 2Q×{i,...,j}×Q
)

as follows:

α(t)
def
=
{
q ∈ Q | A has an accepting run over t from q

}
,

α(C)
def
=
{

(q, `, q′) ∈ Q× {i, . . . , j} ×Q |
A has an accepting run over C that:

starts from q in the root of C,

reaches q′ in the port of C,

and the maximal priority seen in that run

on the path to from the root to the port equals `
}
.

Let (H,V ) be the range of α. Intuitively, the value α(t) says from which states the
automaton A can accept a given tree. In particular, t ∈ L if and only if q I ∈ α(t) (thus, α
recognises L). Similarly, the value α(C) for a context C contains information about the
relation between the states A can have in the root and in the port of C. However, as our
algebra needs to deal with the operation C∞, we additionally need to know what is the
maximal priority on the considered path, to make sure that it satisfies the parity condition
once repeated infinitely many times.

Claim 4.19. α is a congruence.

Proof. We start with the first bullet of the definition (the second bullet speaking about
contexts is analogous). Consider two trees t, t′ ∈ TrA such that α(t) = α(t′) = h ∈ H and
let D be a multicontext. Our aim is to prove that α

(
D[t]

)
= α

(
D[t′]

)
. Assume by the

symmetry that q ∈ α
(
D[t]

)
, i.e. the tree D[t] can be accepted from a state q ∈ Q. We need

to prove that q ∈ α
(
D[t′]

)
(the symmetric case is analogous). There exists a run of A over

D[t] that is accepting and starts from the state q in the root of D[t]. By the assumption that
α(t) = α(t′) we can construct a new run of A over D[t′] that is also accepting and starts
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from q, it is enough to replace the runs over t by the respective runs over t′, below each of
the ports of D.

We will now define explicitly the operations of thin algebra on (H,V ), for h ∈ HA,
v, v′ ∈ VA, and c ∈ A:

v · v′ def= {(q,max(`, `′), q′′) | (q, `, q′) ∈ v, (q′, `′, q′′) ∈ v′},

v · h def
= {q ∈ Q | (q, `, q′) ∈ v, q′ ∈ h},

v∞
def
= (v])

∞
see Fact 4.14,

e∞
def
= {q ∈ Q | (q, `, q′) ∈ e, (q′, 2`′, q′) ∈ e} for e ∈ V idempotent,

c(2, h)
def
= {(q,Ω(q), qL) | (q, c, qL, qR) ∈ δ, qR ∈ h},

c(h,2)
def
= {(q,Ω(q), qR) | (q, c, qL, qR) ∈ δ, qL ∈ h}.

It is relatively easy to check that the above operations are compatible with α, i.e. α is
a homomorphism of thin algebras. Thus, we have constructed a congruence α : (TrA,CtA)→
(H,V ) that recognises L and additionally we have given explicitly a structure of thin algebra
on (H,V ).

The second stage — a quotient of (H,V ). We now provide a sketch of the second stage
of the construction: computing the equivalence relation ≈ on (H,V ) defined as:

t
Tr
≈L t′ ⇔ α(t) ≈ α(t′) and C

Ct
≈L C ′ ⇔ α(C) ≈ α(C ′). (4.1)

First notice that this is a correct definition that does not depend on the choice of witnesses
because of Remark 4.16.

For the sake of simplicity we will focus on the case of trees, i.e. we need to compute
in EXPTime if h ≈ h′. However, Equation (4.1) says that h 6≈ h′ if and only if there
exists a multicontext D such that D[h] ∈ L⇔ D[h′] /∈ L (the question whether D[h] ∈ L is
well-posed because α is a congruence recognising L).

This goal is achieved by constructing a non-deterministic parity tree automaton Ch
of size polynomial in A, that recognises the language of those multicontexts D such that
D[h] ∈ L. The automaton Ch non-deterministically guesses an accepting run of A over D[t]
for some hypothetical tree t. When it reaches a port of D, it verifies if the current state q of
A belongs to h. Once these automata are constructed, the question whether h ≈ h′ boils
down to checking if L(Ch) = L(Ch′), which can be done in EXPTime .

Now, that the equivalence relation ≈ is computed, it is enough to divide (H,V ) by it.
Because of (4.1), there is a bijection between the quotient (H,V )/ ≈ and the syntactic
algebra (HL, VL). Moreover, since both α and αL are homomorphisms of thin algebras, the
thin algebra operations in (H,V ) must preserve ≈. This means that we can obtain the
structure of a thin algebra on (H,V )/ ≈ that corresponds to the thin algebra structure of
(HL, VL). This concludes the proof of Proposition 4.17.

4.4. Quotients. Similarly as in the case of finite words, the syntactic algebra induces
a natural notion of a quotient of a language: given a multicontext D with n holes and
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a language K of trees, by D−1(K) we denote the set of tuples (t1, . . . , tn) such that the
valuation η mapping the ith port of D into ti satisfies

D[η] ∈ K.
Notice that if D is a context then in fact D−1(K) is a set of 1-tuples of trees, which we
identify with trees, i.e. D−1(K) ⊆ TrA.

If L is a language recognised by a morphism αL then the fact whether D[t] ∈ L depends
only on αL(D) ∈ VL t {1L} and αL(t) ∈ HL. Therefore, it makes sense to write v−1(L)
for v ∈ VL t {1L}. Also in that case v−1(L) is a language recognised by the morphism αL.
Directly from the definition we get that

(vu)−1(L) = u−1
(
v−1(L)

)
. (4.2)

4.5. The game on types. Now we want to extend the definition of the game H to sets
of contexts. Recall that contexts are defined as a special case of partial trees, with an
additional port label that appears in exactly one leaf. Notice that if p is a finite partial
context (i.e. p has exactly one leaf labelled 2) then every context in the basic open set Np

must have the same port as p — in such a case we say that p fixes the port. Also, if U is
an open set of contexts and C ∈ U then there exists a sufficiently big prefix p ⊂ C such that
C ∈ Np ⊆ U and p fixes the port. Thus, without loss of generality we can assume that we
consider only those basic open sets Np where p does fix the port. This means that every
two contexts C,C ′ ∈ Np must have the same position of the port.

This yields the definition of a game V(K1, . . . ,Kn) for a sequence K1, . . . ,Kn of context
languages (i.e. subsets of CtA t {2}), which is played by Alternator and Constrainer. The
game is played in n rounds. Round i = 1 is special: Alternator chooses a context C1 ∈ K1.
Let u be the port of the context C1. This port will stay fixed for the rest of the game;
all contexts produced by Alternator will have their port in the node u. Next, Constrainer
chooses a finite prefix D1 of C1, which has one of its leaves in the node u (i.e. fixes the
port).

A subsequent round i ∈ {2, . . . , n} is played as follows. Let Di−1 be the finite partial
tree over A t {2} chosen by Constrainer in the previous round with a leaf in the node u.

• Alternator provides a context Ci, which extends Di−1, belongs to Ki, and has its port
in the node u. If there is no such context, the game is interrupted and Constrainer wins
immediately.
• Constrainer chooses a finite prefix Di of Ci and which has a leaf in the node u.

If Alternator manages to survive n rounds then he wins. Recall that by the definition of the
syntactic morphism, a tree type h ∈ HL is actually equal to the set of trees α−1L (h), similarly
for a context type v ∈ VL. Therefore, it makes sense to talk about the games H(h1, . . . , hn),
and V(v1, . . . , vn) for sequences of types. Using these games we define the following sets of
sequences of types:

Definition 4.20. We define two sets:

HL = {(h1, . . . , hn) ∈ (HL)∗ | Alternator wins H(h1, . . . , hn)},
VL = {(v1, . . . , vn) ∈ (VL)∗ | Alternator wins V(v1, . . . , vn)}.

A comment on notation is in order here. The sets HL and VL contain words, over
alphabets HL and VL, respectively. Usually when dealing with words, one omits the brackets
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and commas and writes abc instead of (a, b, c). When the alphabet is VL this leads to
ambiguity, since the expression vwu can be interpreted as a word with a single letter
obtained by multiplying the three context types v, w, and u, or a three-letter word over the
alphabet VL. These two interpretations should not be confused, so we write (v1, . . . , vn) for
n-letter words over the alphabet VL. For the sake of uniformity, we also write (h1, . . . , hn)
for n-letter words over the alphabet HL, although there is no risk of ambiguity here.

It turns out that the sets of words HL and VL have specific structure. We say that
a word u is a subword of w if u can be obtained from w by removing some letters.

Fact 4.21. Both sets HL and VL are closed under removing letters, i.e. if u is a subword of
w and w ∈ HL then also u ∈ HL (similarly for VL).

Proof. It is clear from the definitions of the games H and V.

The order induced by the subword relation (known also as the Higman’s order) has the
following finiteness property.

Lemma 4.22 (Higman’s Lemma, see [Hig52]). The set of finite words A∗ over a finite
alphabet A with the subword ordering is a well-quasi order: there is no infinite antichain nor
an infinite descending chain.

Fact 4.23. If L ⊆ A∗ is closed under removing letters then L is regular.

Proof. Consider L ⊆ A∗ that is closed under removing letters. Then L forms a down-
ward-closed set with respect to the subword relation. Thus, Higman’s Lemma implies that
there exists a finite set of words w1, . . . , wN such that w does not belong to L if and only if
one of w1, . . . , wN is a subword of w. Such a condition is a regular condition.

Corollary 4.24. Both HL and VL are regular languages of finite words.

Proof. Both languages are closed under removing letters and therefore Fact 4.23 applies.

The above corollary is amusing, but useless for our needs, because it does not say how
to compute automata for HL and VL as a function of a representation of the language L.

Lemma 4.25. The following properties hold for each context C and context environment E:

(1) (h1, . . . , hn) ∈ HL implies (C[h1], . . . , C[hn]) ∈ HL.
(2) (v1, . . . , vn) ∈ VL implies (E[v1], . . . , E[vn]) ∈ HL.
(3) (v1, . . . , vn), (w1, . . . , wn) ∈ VL implies (v1w1, . . . , vnwn) ∈ VL.
(4) (v1, . . . , vn) ∈ VL, (h1, . . . , hn) ∈ HL implies (v1h1, . . . , vnhn) ∈ HL.
(5) (v1, . . . , vn) ∈ VL implies (v∞1 , . . . , v

∞
n ) ∈ HL.

(6) (h1, . . . , hn) ∈ HL implies (c[2, h1], . . . , c[2, hn]) ∈ VL.
(7) (h1, . . . , hn) ∈ HL implies (c[h1,2], . . . , c[hn,2]) ∈ VL.

Proof. All properties are proved by composing strategies, we prove the first one. All
other properties are proved similarly. Assume that (h1, . . . , hn) ∈ HL, and consider some
multicontext C (possibly with infinitely many ports). For all i ≤ n let Li be the set of trees
that are Alternator’s first move in some winning strategy for H(hi, . . . , hn). Note that since
(h1, . . . , hn) ∈ HL, Li is non-empty for all i.

Lemma 4.25 follows directly from the following claim.

Claim 4.26. For all i ≤ n, for all trees t obtained by plugging trees of Li in the ports of C,
Alternator has a winning strategy in H(C[hi], . . . , C[hn]) such that the tree chosen in round
1 is t.
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Proof. We proceed by induction on i. For i = n this is obvious. Assume the result holds for
i and we prove it for i− 1. Let p be a prefix of t, for all subtree s plugged into a port of C, p
yields some (possibly empty) prefix ps of s. Since s ∈ Li−1, ps can be completed into a tree
s′ ∈ Li. It follows that p can be completed into t′ obtained by plugging trees of Li in the
ports of C. By induction hypothesis, Alternator has winning strategy in H(C[hi], . . . , C[hn])
such the tree chosen in round 1 is t′. Finally we conclude that Alternator has winning
strategy in H(C[hi−1], . . . , C[hn]) such the tree chosen in round 1 is t.

This completes the proof of Lemma 4.25.

Definition 4.27. We define the alternation of a finite word to be the length of the word
obtained by iteratively eliminating letters that are identical to their predecessors. We say
that a set of words has unbounded alternation if it contains words with arbitrarily large
alternation. In the other case we say that a set has bounded alternation. A word is alternating
if every two consecutive letters are distinct.

For example the alternation of abccbbb is 4 and abcb is the alternating word witnessing
that. The notion of alternation gives us another characterization of the class BC(Σ0

1).

Lemma 4.28. For a regular language L of infinite trees, the following conditions are
equivalent:

(1) Alternator wins the game H∈,/∈(L, n) for infinitely many n.
(2) The set HL has unbounded alternation.

Clearly, if n ≤ n′ and Constrainer wins the game H∈,/∈(L, n) then he also wins the game

H∈,/∈(L, n′). This means that in fact there are only two possibilities: either Alternator wins

H∈,/∈(L, n) for all n; or Constrainer wins H∈,/∈(L, n) for all except finitely many n. Thus,
the conditions of Lemma 4.28 are in fact equivalent to saying that Alternator wins the game
H∈,/∈(L, n) for all n.

Proof. We have to prove both implications.

1⇒ 2. We show that for n ∈ ω if Alternator wins the game H∈,/∈(L, n), then HL contains

an alternating word of length n. Suppose that Alternator wins H∈,/∈(L, n). Both L
and Lc can be partitioned into tree types, see Remark 4.5. By Lemma 3.2, Alternator
wins H(h1, . . . , hn) for some sequence of types, such that hi is included in L or its
complement, depending on the parity of i. In particular, the consecutive types are
different.

2⇒ 1. Suppose that HL has unbounded alternation. By Fact 4.21 we know that HL is
closed under removing letters. We will now argue that there must be some g, h ∈ HL

with g 6= h such that HL contains all the words

(g, h), (g, h, g, h), (g, h, g, h, g, h), . . .

Assume contrarily and use finiteness of HL: there must exist a global bound B
on the number of times any pair of distinct types g 6= h can appear in a word
in HL in the alternating way as above. Consider an alternating word of length
|HL|2 · (B + 1) + 1 in HL. This word contains |HL|2 · (B + 1) pairs of consecutive
distinct letters and therefore some pair of those must appear there at least B + 1
times — a contradiction.

Since g and h are different elements of the syntactic algebra, it follows that there
must be some multicontext C such that the tree type C[g] is contained in L, while
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the tree type C[h] is disjoint with L. By the first item of Lemma 4.25, we can
conclude that HL contains all the words(
C[g], C[h]

)
,
(
C[g], C[h], C[g], C[h]

)
,
(
C[g], C[h], C[g], C[h], C[g], C[h]

)
, . . .

It follows that Alternator can alternate arbitrarily long between the language L and
its complement.

Lemma 4.29. If VL has unbounded alternation then so does HL.

Proof. Assume that VL has unbounded alternation. Take n > 0, we will find a sequence

in HL of alternation at least n. Let N
def
= 2 · n · |VL|2 and let (v1, . . . , vN ) be an alternating

sequence in VL of length N — such a sequence exists by the assumption and Fact 4.21. By
Pigeon-hole Principle, there exist two types v 6= v′ ∈ VL such that the word (v, v′)n can be
obtained from (v1, . . . , vN ) by removing letters. By the definition of VL (see Definition 4.9)
we know that there exists a context environment E such that E[v] 6= E[v′]. Thus, by Item 2
of Lemma 4.25 we know that the word

(
E[v], E[v′]

)n
is a member of HL. Since this word is

alternating and has length 2n, the claim holds.

5. Effective characterisation of BC(Σ0
1)

In this section we state the crucial result of the paper, providing an effective characterisation
of the class of regular tree languages in BC(Σ0

1).

Theorem 5.1. For a regular language L of infinite trees, the following conditions are
equivalent.

(1) L is a Boolean combination of open sets, i.e. L ∈ BC(Σ0
1).

(2) Constrainer wins the game H∈,/∈(L, n) for all but finitely many n.
(3) The set HL has bounded alternation.
(4) The following identities are satisfied in the algebra (HL, VL):

u]uw] = u]vw] = u]ww] if (u, v, w) ∈ VL or (w, v, u) ∈ VL (5.1)

(u2w
]
2v)

]
u1w

∞
1 = (u2w

]
2v)
∞

if v ∈ VL and (u1, u2), (w1, w2) ∈ VL (5.2)

We have already proved the implications 1 ⇔ 2 ⇔ 3 respectively in Corollary 3.10 and
Lemma 4.28. It remains to prove 3⇔ 4. The direction 3⇒ 4 is not hard and we prove it in
the next section, whereas the direction 4⇒ 3 forms the technical core of the paper.

Corollary 5.2. The problem whether a regular language L belongs to BC(Σ0
1) is EXP-

Time -complete, when the language L is given as a parity non-deterministic automaton A
recognising L.

Proof. Given a representation of L, one can compute the algebra (HL, VL) in EXPTime,
see Fact 4.17. Then, verifying the equations from condition 4 of Theorem 5.1 can be done in
time polynomial in the size of the algebra (which is exponential in the number of states of
the given automaton for L).

Hardness follows immediately from EXPTime hardness of the universality problem for
non-deterministic automata over finite trees [Sei89], see [Wal02b, Theorem 4.1, page 8] for
a generic reduction of problems about complexity of infinite tree languages to universality of
finite tree languages.
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5.1. Overview of the proof. The remaining part of the proof of Theorem 5.1 consists of
two implications: 3⇒ 4 (Subsection 5.2) and 4⇒ 3 (Subsection 5.3).

The proof of the implication 3⇒ 4 is rather straightforward: we assume that either (5.1)
or (5.2) is violated and prove that the set HL has unbounded alternation. This is achieved
by providing concrete strategies for Alternator in the game HL.

The proof of the implication 4⇒ 3 is more demanding. First, we introduce a concept of
strategy trees that represent specific strategies of Alternator in H (Subsections 5.3.1 to 5.3.3).
We study properties of the set ΣL of those strategies and notice two distinct cases of their
behaviour: Case (C1) leading to a violation of (5.1); and Case (C2) leading to a violation
of (5.2). See Subsection 5.3.4 for the case distinction.

The first argument, provided in Subsection 5.4, utilises the assumption of Case (C1) to
construct strategy matrices — finite combinatorial objects witnessing the assumptions of
Case (C1). By applying Erdös–Szekeres Theorem and Ramsey Theorem for hypergraphs,
we gradually simplify the structure of these matrices. Ultimately, we construct a strategy
matrix that literally encodes a violation of (5.1) (see Lemma 5.38).

The second argument, given in Subsection 5.5, works under the assumption of Case (C2).
This proof involves another object for representing certain strategies in GL: a strategy graph
GL. The edges of that directed graph encode special types of strategies of Alternator in the
game V , see Lemma 5.40. A relatively easy observation (Lemma 5.43) shows that if the graph
is recursive (i.e. contains certain loops) then it witnesses a violation of (5.2). Subsection 5.5.2
constructs inductively such a loop in GL based on the assumption of Case (C2).

5.2. The implication 3⇒ 4. In this section we prove the implication 3⇒ 4 of Theorem 5.1
in the contra positive, as stated below.

Proposition 5.3. If one of the identities (5.1) and (5.2) of Theorem 5.1 is violated then
the set HL has unbounded alternation.

5.2.1. The case when (5.1) is violated. The assumption that (5.1) is violated says that there
are u, v, w ∈ VL such that

(u, v, w) ∈ VL or (w, v, u) ∈ VL,
but the three context types u]uw], u]vw], and u]ww] are not all equal. If the three context
types are not equal then the second one must be different from either the first one or the
third one. We only do the proof for the case when (u, v, w) ∈ VL and when u]uw] 6= u]vw];
the other cases are entirely dual. For n ≥ 0 and i ∈ {1, . . . , n}, define

~w(i,n)
def
=
( 2(n−i)+1︷ ︸︸ ︷
u, u, . . . , u, v,

2(i−1)︷ ︸︸ ︷
w,w, . . . , w

)
∈ (VL)2n.

This word is obtained from (u, v, w) by duplicating some letters, and therefore it belongs to
VL. For a given n, consider the words

~w(1,n), . . . , ~w(n,n) ∈ VL.
These are n words of length 2n. Let us multiply all these words coordinate-wise, yielding
a word ~wn, also of length 2n, which is depicted in the following picture:
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~w(1,n) = u u u u u u u u u v

~w(2,n) = u u u u u u u v w w

~w(3,n) = u u u u u v w w w w

~w(4,n) = u u u v w w w w w w

~w(5,n) = u v w w w w w w w w

letter 2i−1 letter 2i

un−i+1wi−1 un−ivwi−1

As ~wn is obtained by a coordinate-wise multiplication of the rows of the above matrix,
and all these rows belong to VL, Lemma 4.25 implies that also ~wn ∈ VL.

Recall that ] is a number dependant on VL such that for every z ∈ VL we know that z] is
an idempotent. Choose some k, and take n = k · ]+ 1, and i ∈ {]+1, 2]+1, . . . , (k− 1) · ]+1}.
Consider the letters 2i− 1 and 2i in the word ~wn, which are

un−i+1wi−1 = u]uw] un−ivwi−1 = u]vw].

By the assumption, these letters are different, and therefore the word ~w has alternation
at least k. Because k was chosen arbitrarily, it follows that VL has unbounded alternation.
Lemma 4.29 implies that in that case also HL has unbounded alternation.

5.2.2. The case when (5.2) is violated. The assumption that (5.2) is violated says that VL
contains pairs (u1, u2) and (w1, w2) such that for some v ∈ VL,

e∞ 6= eu1w
∞
1 for e

def
= (u2w

]
2v)

]
.

Let h1 = e∞ and h2 = eu1w
∞
1 , by the above assumption we know that h1 6= h2. It turns

out that a violation of Equation (5.2) has even stronger consequences than a violation of
Equation (5.1), as expressed by the following claim. It speaks about the infinite variant of
the game of types, which is defined analogously to the finite one, see Subsection 4.5.

Claim 5.4. If Equation (5.2) is violated then Alternator wins H∞(h1, h2, h1, . . .).

The above claim implies in particular that for every n the sequence(
h1, h2

)n
belongs to HL, and thus HL has unbounded alternation.

Proof. Let Cu1 , Cw1 be contexts of types u1, w1 that witness that (u1, u2), (w1, w2) ∈ VL
i.e. they are contexts played by Alternator in the first rounds of the respective games.
Let Cu2 , Cw2 , and Cv be any three contexts of types u2, w2, and v respectively. Let

Ce
def
=
(
Cu2C

]
w2Cv

)]
. The type of the context Ce is e.

Our aim is to provide an explicit strategy of Alternator in the game H∞(h1, h2, h1, . . .).
This will be done inductively, considering the consecutive rounds of the game. The outcome
will be a set of trees (ti)i<ω that are played in the considered play of the game, with
αL(ti) = h1 for odd i and αL(ti) = h2 for even i.

The strategy of Alternator starts with the tree t1 =
(
Ce
)∞

. We will demonstrate how it
works for the first three rounds of the game, the rest is analogous.
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Consider a prefix p1 of the tree t1 that is fixed by Constrainer. It must be the case that
p1 is a prefix of

(
Ce
)n1 for some n1. Thus, Alternator can now provide the tree

t2 =
(
Ce
)n1 · Cu1 · C∞w1

.

Now Constrainer chooses a prefix p2 of the above tree, in fact p2 is a prefix of
(
Ce
)n1 ·Cu1 ·C

]·n2
w1

for some n2. Thus, by the assumptions on Cu1 and Cu2 , Alternator is able to provide a tree
of the form

t2 =
(
Ce
)n1 ·

(
Du2 ·D]·n2

w2
· Cv

)
·
(
Ce
)∞
,

where the contexts Du2 and Dw2 depend on the prefix p2 and have types u2 and w2

respectively. Now we proceed inductively as before, because any prefix p3 of t2 must be

a prefix of
(
Ce
)n1 ·

(
Du2 ·D

]·n2
w2 · Cv

)
·
(
Ce
)n3 .

Notice that by the choice of e, the type of the context Du2 ·D
]·n2
w2 · Cv is e. Therefore,

αL(ti) = e∞ = h1 for odd i and αL(ti) = eu1w
∞
1 = h2 for even i.

Consider a pair of trees t1 and t2 of types h1 and h2 respectively. Since t1 6
Tr
≈L t2, there

exists a multicontext C such that4

C[t1] ∈ L ∧ C[t2] /∈ L, (5.3)

see Definition 4.4. Now, by Item 1 of Lemma 4.12 we know that the types αL
(
C[t1]

)
,

αL(C[t2]
)

(and therefore the conditions in (5.3)) do not depend on the actual choice of
the trees t1 ∈ h1 and t2 ∈ h2. Thus, by using the above strategy for Alternator under the
multicontext C, we obtain the following corollary.

Corollary 5.5. If Equation (5.2) is violated then Alternator wins H∞(L).

5.3. The implication 4 ⇒ 3 — case distinction. We now move to the implication
4⇒ 3 of Theorem 5.1, which is the most involved part of the article. To prove it, we need
to introduce a crucial concept witnessing a large alternation of the set HL. The objects
witnessing that will be called strategy trees and locally optimal strategy trees. Using these
objects we will split the proof of that implication into two separate cases, see Subsection 5.3.4.
We deal with these cases in Subsections 5.4 and 5.5..

5.3.1. Strategy trees. First, a type-labelled tree is a tree such that the nodes are labelled with
tree types, i.e. it is a tree over the alphabet HL.

Definition 5.6. If t is a tree over the alphabet A, the type-labelled tree induced by t is
the type-labelled tree σ where the label of a node u is the tree type of the subtree t.u,
i.e. σ(u) = αL(t.u). In particular σ(ε) = αL(t).

Definition 5.7. Let σ be a type-labelled tree and let t be a tree over A. We say that σ is
locally consistent with t if for every node u ∈ {L, R}∗, whose label in t is a, we have that σ(u)
is the type obtained by applying the letter a to the pair of types σ(uL) and σ(uR), that is

σ(u) = a
(
σ(uL),2

)
· σ(uR). (5.4)

In other words, if we take a tree t1 inside σ(uL) and a tree t2 inside σ(uR) and we plug these
two trees as the left and the right children of a, then the type of the result is σ(u).

4We swap h1 and h2 if needed.
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Remark 5.8. The type-labelled tree induced by t is locally consistent with t.

Example 5.9. Consider the language

L = {t ∈ TrA | t contains at least one b}
over the alphabet A = {a, b}. HL contains two tree types that (treated as sets of trees) are
L and Lc. Now consider a type-labelled tree σ where every node is labelled with L. It is
easy to check that σ is locally consistent with every tree t ∈ TrA, even with the tree that
contains only letters a.

Fact 5.10. The set of pairs{
(t, σ) ∈ TrA × TrHL

| σ is locally consistent with t
}

is closed in the product topology.

Proof. As Condition (5.4) speaks about finitely many values of σ and t, it corresponds to
a clopen set of pairs. A type-labelled tree σ is locally consistent with a tree t if they obey
the local consistency conditions from (5.4) in all the vertices. Thus, the above defined set of
pairs is an intersection of a family of clopen sets.

Lemma 5.11. Let (tn)n∈N be a sequence of trees that converges to t∗ and let (σn)n∈N be
a sequence of type-labelled trees that converges to σ∗. If σn is locally consistent with tn for
every n then σ∗ is locally consistent with t∗.

Proof. Follows directly from Fact 5.10.

Now we are ready to define strategy trees, a key concept of this paper.

Definition 5.12. A strategy tree is a tuple σ = (t, σ1, . . . , σn) where:

(1) t is a tree over A, called the support of σ.
(2) σ1 is the type-labelled tree induced by t.
(3) The type-labelled trees σ2, . . . , σn are locally consistent with t.
(4) For each node u of t, the sequence

(
σ2(u), . . . , σn(u)

)
belongs to HL.

Notice that the fourth condition of Definition 5.12 does not mention the type-labelled tree
σ1. By the definition, σ can be interpreted as a single tree over the alphabet A×Hn

L.
Intuitively speaking, a strategy tree represents a special kind of strategy for Alternator.

In the first round, Alternator plays the support t of σ. However, Alternator also declares all
the types that will appear in the nodes of t as the game progresses. More specifically, he
declares that for every node u of t and round k ∈ {2, . . . , n}, he has a strategy so that for
the tree played in the round k, the subtree in the node u has type σk(u).

Alternations. The number n is called the duration of a strategy tree σ = (t, σ1, . . . , σn).
We define the root sequence of a strategy tree to be the sequence of root labels of σ1, . . . , σn.
If the duration is n, the root sequence is in Hn

L. We define the root alternation of a strategy
tree σ to be the alternation of its root sequence. We define the limit alternation of σ to
be the maximal number ` such that infinitely many subtrees of σ have root alternation at
least `. This means that if the limit alternation of σ is ` then there exist infinitely many
nodes u such that their root sequence (i.e. the root sequence of the strategy tree obtained
by truncating σ in the node u) has alternation at least `.
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(∗, ∗)

(b, ∗)

(∗, h1)(c, ∗)

(∗, ∗)(∗, h2)
X

Figure 5: An illustration to the value val(t, σ,X). The grey area is the set X, a label (a, h)
of a node u represents the values of t(u) = a and σ(u) = h respectively. The
symbol ∗ indicates values that are irrelevant for the value of the set X.

Context zones. A context zone is a set X of nodes for which there exists a node u, called
the root of X, and a node y, called the port of X, such that u ≺ y and X contains the nodes
that are in the subtree of u, but not in the subtree of y:

X =
{
x ∈ {L, R}∗ | u � x ∧ y 6� x

}
.

We say that context zones X1, . . . , Xn are consecutive if for each i ∈ {1, . . . , n− 1}, the port
of Xi is the root of Xi+1. The union of consecutive context zones is a context zone.

Consider a tree t, a type-labelled tree σ, and a context zone X. X can be seen as
a context inside t taking into account the types of the subtrees of t as declared in σ. This
is achieved by defining a value val(t, σ,X) ∈ VL. The definition of val(t, σ,X) is inductive
on the number of nodes v in X such that v � y, where y is the port of X. If there is only
one such node then the port y of X is a child of its root u. Let a be the label of u in t and
v ∈ X be the other child of u. We set val(t, σ,X) as a(2, σ(v)) if v is the right child and
a(σ(v),2) if v is the left child. Otherwise, let u be the root of X, y its port and z the child
of u such that z � y. Let X1 be the context zone with root u and port z and X2 the context
zone of root z and port y. We define

val(t, σ,X)
def
= val(t, σ,X1) · val(t, σ,X2).

Figure 5 illustrates an example of a tree and a context zone with

val(t, σ,X) = b(2, h1) · c(h2,2) ∈ VL.

In other words, val(t, σ,X) is the value of the context C
def
= t�X when we assume that the

subtrees of t aside of the branch leading to the port of C have types as declared by σ.
Now assume that σ = (t, σ1, . . . , σn) is a strategy tree. Let X be a context zone of σ

(we can see σ as a single tree). For a round i ∈ {1, . . . , n}, we define the type

val(σ,X, i)
def
= val(t, σi, X) ∈ VL.
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Fact 5.13. Let σ = (t, σ1, . . . , σn) be a strategy tree and X be a context zone. Then(
val(σ,X, 1), . . . , val(σ,X, n)

)
∈ VL.

Proof. This is by construction and Items 3, 6 and 7 of Lemma 4.25.

5.3.2. Existence of strategy trees. We will now prove that whenever Alternator has a strategy
in H then this fact is witnessed by a strategy tree. This fact is expressed by the following
two lemmas. For inductive reasons these lemmas are parametrised by a finite multicontext
C. The games HC(h1, . . . , hn) and VC(h1, . . . , hn) are defined as the games HU (h1, . . . , hn)
and VU (h1, . . . , hn) respectively, where U is the open set of all trees (resp. contexts) that
can be obtained from C, i.e. C[∗].

Lemma 5.14. Let C be a finite multicontext for strategy trees. Consider a sequence of
valuations η1, . . . , ηn that map ports of C to HL. If

(η1(u), . . . , ηn(u)) ∈ HL
for every port u, then Alternator wins the game

HC(C[η1], . . . , C[ηn]).

Proof. For every port u of C, Alternator has a winning strategy for the game

H(η1(u), . . . , ηn(u)).

We describe a winning strategy for Alternator in HC(C[η1], . . . , C[ηn]). Alternator starts
with a tree obtained by plugging the initial tree from his winning strategy in the game
H(η1(u), . . . , ηn(u)) in every port u of C. Then every prefix of this tree yields a prefix for
each subtree plugged into a port of C and Alternator can then use his strategies for the
game H(η1(u), . . . , ηn(u)) to answer.

Lemma 5.15. For a sequence (h1, . . . , hn) ∈ H∗L and a finite multicontext C the following
conditions are equivalent:

(1) Alternator wins HC(h1, . . . , hn).
(2) There is a strategy tree whose support extends C, with root sequence (h1, . . . , hn).

Proof. We prove the lemma by induction on n. The base case when n = 0 or n = 1, is trivial.
We do the induction step. Let us begin with the easier implication from 2 to 1. Suppose that

σ ≡ (t, σ1, . . . , σn)

is a strategy tree as in item 2. Alternator’s strategy is as follows. In the first round, he
plays the tree t, which has type h1. Suppose Constrainer chooses a prefix p of t. Let D
be the multicontext obtained from p by labelling all the �-minimal elements outside of
dom(p) by 2. Consider the valuations η2, . . . , ηn that map all the ports of D to HL with
ηi(u) = σi(u) for any port u of D. For every i ∈ {2, . . . , n}, the root label of σi is the same
as D[ηi], because σi is locally consistent with t and D is obtained from a prefix of t. By
Lemma 5.14, Alternator wins the game

HD(D[η2], . . . , D[ηn]).

This shows that for every choice of p, Alternator has a winning strategy in the remaining
part of the game.

Now we move to the more difficult implication from 1 to 2.
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Suppose that Alternator winsHC(h1, . . . , hn). Let t be the tree of type h1 that Alternator
plays in the first round. This tree has prefix C. Also, for every finite prefix D of t, Alternator
wins HD(h2, . . . , hn). By the induction assumption, for every finite prefix D of t, there is
a strategy tree

σD = (tD, σD2 , . . . , σDn)

such that tD has prefix D, and the root sequence of σD is (h2, . . . , hn).
A sequence of finite multicontexts (Di)i∈ω is said to converge to t if all of the multicontexts

are prefixes of t, and for every j ∈ ω, only finitely many multicontexts have some port
at depth at most j. By compactness, there is an infinite sequence of finite multicontexts
(Di)i∈ω which converges to the tree t and such that all of the sequences

(tDi)i∈ω (σDi2)i∈ω . . . (σDin)i∈ω

are convergent. Let the limits of these sequences be

t∗ σ∗2 . . . σ∗n.

Because the sequence (Di)i∈ω converges to t, it follows that t∗ = t. For each D, the type
trees

(σD2, . . . , σDn)

are locally consistent with tD. Therefore, by Lemma 5.11 it follows that the limits σ∗2, . . . , σ∗n
are locally consistent with t. Finally, define σ∗1 to be the unique type tree that is globally
consistent with t. We have just proved that

(σ∗1, . . . , σ∗n)

is a strategy tree. Because root values are preserved under limits, the root value of this
strategy tree is the desired (h1, . . . , hn).

5.3.3. Locally optimal strategy trees. To make the structure of a strategy tree more rigid, we
will introduce the notion of a locally optimal strategy tree. In such a strategy tree, whenever
σi(u) 6= σi+1(u), there is some concrete reason for that fact.

Definition 5.16. Consider a strategy tree (t, σ1, . . . , σn) and let v ∈ VLt{1L}. The strategy
tree is called locally optimal for v if for every i ∈ {2, . . . , n} and for every type-labelled tree
σ′, if σ′ is locally consistent with t and v · σ′(ε) = v · σi(ε), then

λ(σi−1, σi) ≤ λ(σi−1, σ
′),

where λ is the discounted distance.

If σ is optimal for the context type 1L of the trivial context 2 then we just say that σ
is locally optimal. Let ΣL denote the set of all locally optimal strategy trees for L.

Fact 5.17. If σ is locally optimal for u · v then σ is locally optimal for v as well.

Lemma 5.18. Consider a strategy tree σ with root sequence (h1, . . . , hn). Let v ∈ VLt{1L}
be a context type. Then there exists a locally optimal strategy tree σ′ for v with root sequence
(h′1, . . . , h

′
n) such that

v · (h1, . . . , hn) = v · (h′1, . . . , h′n). (5.5)

Proof. Take a strategy tree σ = (t, σ1, . . . , σn). Consider the set Σ2 of type-labelled trees σ′2
that are:
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• locally consistent with t,
• if h (resp. h′) is the root value of σ2 (resp. σ′2) then v · h = v · h′.
Fact 5.10 implies that Σ2 is a closed set. As a closed subset of the compact space of all trees,
Σ2 is compact. It follows that some elements of Σ2 minimise the discounted distance with
respect to σ1. We choose such an element as the new σ2 and we iterate this mechanism to
build a locally optimal strategy tree σ̄. This tree satisfies condition (5.5).

Notice that in the above construction, if v 6= 1L then the root sequence of the new
strategy tree might be different than the original root sequence. However, if v = 1L then
the root sequence is not modified.

Corollary 5.19. If (h1, h2, . . . , hn) ∈ HL then there exists a locally optimal strategy tree σ
with root sequence (h1, . . . , hn).

Using the above properties, without loss of generality we can restrict our attention to
locally optimal strategy trees. One of the direct consequences of working with such strategy
trees is expressed by the following lemma.

Lemma 5.20. If σ is a locally optimal strategy tree, u � y two nodes of σ then for all
i = 1, . . . , n we have

σi(y) 6= σi+1(y)⇒ σi(u) 6= σi+1(u).

Proof. Assume that σi(y) 6= σi+1(y) and σi(u) = σi+1(u). We show that this contradicts
local optimality. Consider the type-labelled tree σ′i+1 defined as follows:

• for every z such that u � z, σ′i+1(z) = σi(z),
• for all other nodes z, σ′i+1(z) = σi+1(z).

By the construction, σ′i+1 is locally consistent with t (this is by the definition for all nodes
z 6= u, and because σi(u) = σi+1(u)). Note that by the definition, for all nodes z:

dist(σi(z), σ
′
i+1(z)) ≤ dist(σi(z), σi+1(z))

Moreover, dist(σi(y), σ′i+1(y)) = 0 and dist(σi(y), σi+1(y)) = 1. Combining all this we obtain:

• λ(σi, σ
′
i+1) < λ(σi, σi+1).

• σ′i+1(ε) = σi+1(ε), as sequences in (HL)n.

This contradicts local optimality of σ.

Corollary 5.21. If σ is a locally optimal strategy tree and u � y are two nodes of σ then
the root alternation of σ.u is not smaller than the root alternation of σ.y.

5.3.4. Case distinction. We can now split the proof of the implication 4⇒ 3 of Theorem 5.1
into two subcases, as discussed below. Then we will treat these cases separately, as expressed
by Propositions 5.22 and 5.23.

Assume for the sake of contradiction that Condition 3 of Theorem 5.1 is violated, what
means that HL has unbounded alternation. Thus, by Corollary 5.19 we know that the root
alternation of the set ΣL of all locally optimal strategy trees for L is unbounded. Now
consider the following two dual subcases:

(C1): ΣL has unbounded root alternation and there exists a subset Σ′ ⊆ ΣL that has
unbounded root alternation but bounded limit alternation.

(C2): ΣL has unbounded root alternation and every subset Σ′ ⊆ ΣL with unbounded root
alternation has also unbounded limit alternation.
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The following two propositions consider these cases separately:

Proposition 5.22. Assuming (C1), Equation (5.1) is violated.

Proposition 5.23. Assuming (C2), Equation (5.2) is violated.

The proofs of these propositions are given in Subsections 5.4 and 5.5. Notice that since
either Case (C1) or Case (C2) must hold, both these propositions together complete the
proof of the implication 4⇒ 3 of Theorem 5.1.

Roughly speaking, Case (C1) corresponds to the situation in which the high alternation
of HL is achieved by modifications in the strategy trees that are spread inside their structure.
On the opposite, Case (C2) corresponds to the situation in which the high alternation occurs
along some infinite branch of the considered strategy trees.

5.4. Case (C1) — limit alternation is bounded. In this section we assume that Σ′ ⊆ ΣL

is a set of locally optimal strategy trees such that the root alternation of Σ′ is unbounded but
the limit alternation of Σ′ is bounded. Under that assumption we prove that Equation (5.1)
is violated. We do this in two steps, using a new object called strategy matrix as an
intermediary. Strategy matrices represent special strategies for Alternator in the game on
tree types. In our first step, we show that if the root alternation of Σ′ is unbounded but the
limit alternation of Σ′ is bounded then there exist special strategy matrices of arbitrarily
large size. Finally we show that the existence of sufficiently large special strategy matrices
violates Equation (5.1).

Definition 5.24. A strategy matrix is a rectangular matrix with entries from VL such that
every row belongs to VL. The value of a column of a strategy matrix is the value in VL
obtained by multiplying the entries in that column in VL in the top-to-bottom order.

Definition 5.25. A strategy matrix M is called parity alternating if for some n ∈ ω it has
2n columns and n rows, and one of the following conditions holds (see Figure 6):

(a) For every i ∈ {1, . . . , n},
• Columns 2i− 1 and 2i have the same entries in all rows except for row i.
• The values of columns 2i− 1 and 2i are different.

(b) Condition (a) holds when the order of columns is reversed.

If the case (a) holds then the matrix is called top-down and if the case (b) holds then it
is called bottom-up. The set of parity alternating matrices with n rows and 2n columns is
denoted by Pn.

Figure 6 depicts a top-down parity alternating strategy matrix in P6. The picture
presents columns 2i − 1 and 2i for i = 3, the entries of these columns agree everywhere
except the third row, where the values x and y are distinct. The differences in all the other
pairs of columns are indicated by grey rectangles, their values are not written down for the
sake of clarity. It is important that the definition of a parity alternating strategy matrix
requires the total values of the respective columns to differ, not only the entries in grey
rectangles.
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u1 u1
u2 u2
x y

w4w4

w5w5

w6w6

column 2i−1 column 2i

Figure 6: A matrix in P6.

5.4.1. Constructing strategy matrices. As we have already said, we want to prove that under
our assumptions we can build arbitrary large strategy matrices: the goal that we aim now,
is to prove that if Σ′ has unbounded root alternation and bounded limit alternation, then
Pn is non-empty for every n ∈ ω.

Fix some arbitrary n ∈ ω. We want to construct a strategy matrix M ∈ Pn. Let ` be
the maximal limit alternation among the strategy trees in Σ′. Choose a strategy tree σ ∈ Σ′

with root alternation at least ` · 2n2
and let m be the duration of σ, i.e. σ = (t, σ1, . . . , σm).

During the proof we will use a known combinatorial fact that we recall now.

Theorem 5.26 (Erdös–Szekeres Theorem, see [ES35]). For given r, s ∈ N, any sequence of
length at least (r−1)(s−1)+1 contains a monotonically increasing subsequence of length r or
a monotonically decreasing subsequence of length s.

Lemma 5.27. There are consecutive contexts zones X1, . . . , Xn in σ and a sequence of
rounds i1, . . . , in ∈ {1, . . . ,m−1} such that the sequence of rounds is either strictly increasing
or strictly decreasing, and

val(σ,Xj , ij) 6= val(σ,Xj , ij+1) for every j ∈ {1, . . . , n}

Proof. For a round i ∈ {1, . . . ,m−1}, define:

changei(σ) = {x ∈ {L, R}∗ | σi(x) 6= σi+1(x)}.
Now we prove three different claims. Once these claims are proved, we easily finish the proof
of the lemma.

Claim 1. Let X be a context zone, and let π be an infinite path that passes through the
root of X, but not through the port. Then

π ⊆ changei(σ) =⇒ val(σ,X, i) 6= val(σ,X, i+1)

holds for every round i ∈ {1, . . . ,m− 1}.

Proof of Claim 1. This is by local optimality of σ. Assume that π ⊆ changei(σ) and
val(σ,X, i) = val(σ,X, i+1) for some round i. We construct a type-labelled tree σ′i+1 that is
closer to σi than σi+1 regarding the discounted distance λ and with the same root value as
σi+1, contradicting local optimality.

Consider the type-labelled tree σ′i+1 defined as follows:

• For nodes x ∈ X σ′i+1(x) = σi(x). Hence, for x ∈ X
dist(σi(x), σ′i+1(x)) = 0 ≤ dist(σi(x), σi+1(x))
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• For other nodes y we define σ′i+1(y) = σi+1(y). Hence

dist(σi(y), σ′i+1(y)) = dist(σi(y), σi+1(y)).

Because π ⊆ changei(σ), there exists at least one node x ∈ X such that s

dist(σi(x), σi+1(x)) = 1.

It follows that:

λ(σi, σ
′
i+1) < λ(σi, σi+1)

Moreover since val(σ,X, i) = val(σ,X, i+1), we have σ′i+1(ε) = σi+1(ε). This contradicts
local optimality of σ.

Claim 2. There is a set Π of at least 2n
2

distinct infinite paths, and a function when : Π→
{1, . . . ,m− 1} such that for every π ∈ Π

π ⊆ changewhen(π)(σ).

Proof of Claim 2. By consistency of a strategy tree, every node in changej(σ) has at least
one child in changej(σ). Therefore, each of the non-empty sets changej(σ) contains at least

one infinite path. By the assumption on the root alternation there are at least ` · 2n2
rounds

j where changej(σ) is non-empty. By the assumption on limit alternation, an infinite path
can be contained in sets changej(σ) for at most ` different values of j.

Claim 3. Let Π be a set of 2k distinct infinite paths in a binary tree. There exist consecutive
context zones X1, . . . , Xk and paths π1, . . . , πk ∈ Π such that for every i ∈ {1, . . . , k}, the
path πi passes through the ports of the context zones X1, . . . , Xi−1, but not through the
port of Xi.

Proof of Claim 3. The proof is by induction on k. The induction base of k = 1 is obvious.
Now assume that the thesis holds for k and consider a set Π of 2k+1 paths. Let u be

the deepest node in the tree that belongs to all paths of Π (u exists since the root belongs
to all paths of Π). Let ΠL (respectively, ΠR) be those paths in Π that pass through the
left child of u (respectively, the right child of u). One of the sets ΠL or ΠR must have at
least half of the paths, i.e. at least 2k paths. By symmetry, assume that ΠL has at least
2k paths and let y be the left child of u. We apply the induction hypothesis to ΠL and
obtain paths π2, . . . , πk+1 ∈ ΠL and consecutive context zones X2, . . . , Xk+1 such that for
every i ∈ {2, . . . , k + 1}, path πi passes through the ports of contexts X2, . . . , Xi−1, but not
through the port of Xi.

We slightly modify X2 by setting y as its root. Note that this does not affect the
properties of the paths π2, . . . , πk+1 ∈ ΠL. Now, we define X1 as the context zone with
the root u and the root of X2 as the port. Let π1 be some arbitrary path in ΠR. By the
definition, X1, . . . , Xk+1 are consecutive context zones. Moreover, the paths π2, . . . , πk+1

are paths of ΠL and therefore pass through y, i.e. the port of XL. Finally, by the definition
π1 passes through the right child of u and therefore not through the port of X1.

Now we can easily complete the proof of Lemma 5.27. Let Π and the function when be as
in Claim 2. Apply Claim 3 to Π, yielding a sequence of paths, τ1, . . . , τn2 , and a sequence of
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context zones, Y1, . . . , Yn2 , such that for every i ∈ {1, . . . , n2}, the path τi passes through the
ports of context zones Y1, . . . , Yi−1, but not through the port of Yi. Consider the sequence

when(τ1), . . . ,when(τn2) ∈ {1, . . . ,m− 1}.
By Erdös–Szekeres Theorem, we can find a sequence of indexes

j1 < · · · < jn ∈ {1, . . . , n2}
such that the sequence

when(τj1), . . . ,when(τjn)

is either increasing or decreasing. For i ∈ {1, . . . , n}, define πi to be τji and Xi to be the
union of the context zones

Yji ∪ · · · ∪ Yji+1−1.

By the construction, we know that the path πi passes through the ports of the context zones
X1, . . . , Xi−1, but not through the port of the context zone Xi. By Claim 1 we know that

val
(
σ,Xi,when(πi)

)
6= val

(
σ,Xi,when(πi)+1

)
.

Therefore, the proof of Lemma 5.27 is complete if we define i1, . . . , in to be

when(π1), . . . ,when(πn).

Definition 5.28. Let M be a matrix and consider a row j and a column i of M which is
not the first column. We define a new column, denoted by

almostcopy 6=ji (M),

as follows: almostcopy 6=ji (M) is equal to column i of M in all rows except for row j, where
it is equal to column i− 1 of M .

Definition 5.29. Let σ be a strategy tree of duration m and let X1, . . . , Xn be consecutive
context zones. We define a matrix with n rows and m columns as follows (for i = 1, . . . ,m
and j = 1, . . . , n):

matrix
(
σ,X1, . . . , Xn

)
[i, j]

def
= val(σ,Xj , i).

Note that it follows from Fact 5.13 that every row of matrix(σ,X1, . . . , Xn) belongs to
VL and therefore it is a strategy matrix.

Lemma 5.30. Let N be a strategy matrix defined by

N = matrix(σ,X1, . . . , Xn),

for some locally optimal strategy tree σ and consecutive context zones X1, . . . , Xn. Let j
be a row and i a column, which is not the first column. If columns i and i− 1 in N have
different entries in row j then the value of the column

almostcopy 6=ji (N)

is different from the value of column i in N .

Proof. This is a consequence of local optimality of σ. The proof is the same as Claim 2 in
the proof of Lemma 5.27.

Now we are ready to prove the first intermediary step: constructing a matrix in Pn.

Proposition 5.31. Under our assumptions about the strategy tree σ we can construct
a matrix M ∈ Pn.



27:44 M. Bojańczyk, F. Cavallari, T. Place, and M. Skrzypczak Vol. 15:3

m

n

N

column ij

M

n

column 2j−1 column 2j

Figure 7: Construction of the matrix M from N . Column 2j − 1 of M equals almostcopy
of column ij + 1 of N (i.e. the dashed part), while column 2j just equals column
ij + 1 of N .

Proof. Let X1, . . . , Xn and i1, . . . , in be as in Lemma 5.27. Consider the strategy matrix
N = matrix(σ,X1, . . . , Xn).

By Lemma 5.27 we know that for every j ∈ {1, . . . , n} the entries in row j are different
in columns ij and ij + 1.

Suppose first that the sequence i1, . . . , in is strictly increasing. Define a new matrix M ,
which has n rows and 2n columns as follows.

• For j ∈ {1, . . . , n}, column 2j − 1 of M is almostcopy 6=jij+1(N).

• For j ∈ {1, . . . , n}, column 2j of M is column ij + 1 of N .

Figure 7 depicts the process of constructing the matrix M . Gray regions in the matrix N
indicate pairs of distinct values in a row j of the consecutive columns ij and ij + 1. We
assume that the sequence ij is strictly increasing (the other case leads to a bottom-up parity
alternating strategy matrix).

Now we show that M ∈ Pn. The dimensions of the matrix M are correct: it has n rows
and 2n columns. We now show that M is a strategy matrix, which means that each row
belongs to VL. For j ∈ {1, . . . , n}, let us see how row j of M

M [j, 1], . . . ,M [j, 2n]

depends on row j of N
N [j, 1], . . . , N [j,m].

By reading the definition of M , we see that the dependency is

• When k 6= j, then M [j, 2k − 1] = M [j, 2k] = N [j, ik + 1].
• When k = j, then M [j, 2k − 1] = N [j, ik] and M [j, 2k] = N [j, ik + 1].
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It follows that row j of M is obtained from row j of N by eliminating some letters and
duplicating some other letters. Since VL is closed under eliminating and duplicating letters,
and since N was a strategy matrix, it follows that also M is a strategy matrix.

By Lemma 5.30, for every j ∈ {1, . . . , n}, the values of columns 2j − 1 and 2j in M are
different. By the construction, columns 2j − 1 and 2j in M have the same entries, except
for row j. So M is parity alternating.

When the sequence i1, . . . , in is strictly decreasing, the matrix M is defined like for
a strictly increasing sequence, except that the columns of M are filled in not from left to
right, but from right to left. Formally speaking:

• For j ∈ {1, . . . , n}, column 2(n− j + 1)− 1 of M is almostcopy 6=jij+1(N).

• For j ∈ {1, . . . , n}, column 2(n− j + 1) of M is column ij + 1 of N .

The proof that M belongs to Pn is the same as above.

5.4.2. From strategy matrices to violation of (5.1). So now we can do the second intermediary
step. Let us assume that Pn is non-empty for any n. By the symmetry we can assume that
for every n there exists a top-down parity alternating matrix of size n (the other case is
handled symmetrically): under this assumption we prove that Equation (5.1) is violated. To
do that, we need to start from a parity alternating matrix of a large size, and by consecutive
simplifications, construct a small matrix from which the violation can be easily extracted.

Take a strategy matrix M . Our aim is define a matrix obtained form M by merging
two consecutive rows i and i+ 1 of M . Let

(v1,1, . . . , v1,n), . . . , (vk,1, . . . , vk,n) ∈ V n
L .

be the rows in M . The merge operation removes rows

(vi,1, . . . , vi,n) and (v(i+1),1, . . . , v(i+1),n)

and replaces them by the row

(vi,1 · v(i+1),1, . . . , vi,n · v(i+1),n),

which is the product of the two removed rows in the monoid V n
L . Clearly, the result of the

merging operation is also a strategy matrix with the same values of all the columns.
Now we define four safe rules, i.e. rules that preserve parity alternating strategy matrices.

Lemma 5.32. For every M ∈ Pn that is top-down and i ∈ {1, . . . , n}, applying the following
rules yields a parity alternating strategy matrix in Pn−1:

• remove columns 2i− 1 and 2i and then merge row i with i+1;
• remove columns 2i− 1 and 2i and then merge row i−1 with i;
• remove the first two columns and remove the first row;
• remove the last two columns and remove the last row.

The same holds for a bottom-up parity alternating matrices but then we count the columns
in the reversed order.

Proof. Immediate by the definition of the rules.

Notice that ux 6= uy implies that x 6= y, but uvx 6= uvy does not imply that ux 6= uy,
therefore we cannot safely remove columns 2i− 1 and 2i and remove row i except for i = 1
or i = n.



27:46 M. Bojańczyk, F. Cavallari, T. Place, and M. Skrzypczak Vol. 15:3

Consider a parity alternating strategy matrix M ∈ Pn and two indices i ∈ {1, . . . , n}
and j ∈ {1, . . . , 2n}. We say that the entry M [i, j] is above diagonal (resp. below diagonal)
if:

• if M is top-down then 2i must be smaller than j (resp. 2i must be grater than j + 1),
• if M is bottom-up parity alternating then 2(n − i) must be greater than j − 1 (resp.

2(n− i) must be smaller than j − 2).

The following picture depicts the regions above and below the diagonal of a top-down parity
alternating matrix in P6.

above

below

Definition 5.33. A parity alternating strategy matrix M is upper (resp. lower) idempotent
if there exists an idempotent e ∈ VL such that every entry above (resp. below) the diagonal
of M equals e. M is called just idempotent if it is both upper and lower idempotent (possibly
with two distinct idempotents e, e′ ∈ VL).

Fact 5.34. The safe rules preserve the fact that a given parity alternating matrix is upper
(resp. lower) idempotent.

Lemma 5.35. For each m ∈ N there is some n ∈ N such that for any matrix in Pn there is
a sequence of safe rules that yields a matrix N ∈ Pm that is upper (resp. lower) idempotent.

Proof. By the symmetry we will only deal with the upper idempotent case. The proof
uses Ramsey Theorem for hypergraphs with edges of size 3. This theorem says that for
every m ∈ N there exists a number f(m) such that for any complete hypergraph with edges
coloured over VL, there exists a complete sub-hypergraph of size m in which all edges share
the same colour. We choose n = f(m+ 1).

Fix a matrix M ∈ Pn. Again by the symmetry we assume that M is a top-down parity
alternating matrix. Consider the hypergraph where the nodes are {1, . . . , n} and an edge
{i < j < k} is coloured by the value obtained by multiplying, in the monoid VL, the entries
that appear in rows i + 1, . . . , j of column 2k. By the choice of n, we can apply Ramsey
Theorem to this colouring and get a subset of size m+ 1:

I = {i0 < i1 < · · · < im} ⊆ {1, . . . , n}
such that all the hyperedges on I have the same colour, say e ∈ VL. This colour must be an
idempotent, i.e. it must satisfy e = ee. This situation is illustrated below, with a matrix in
P10. The multiplication in VL of the entries in the regions marked by red rectangles always
gives the idempotent e. The regions come in pairs, for columns 2i` and 2i` − 1 but as the
matrix is parity alternating, the entries in these columns agree (except row i`).
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i0 i0

2i0

i1 i1

2i1

i2 i2

2i2

i3 i3

2i3

Now we apply a sequence of safe rules. First, we remove the first i0 rows and first 2i0
columns. Then we remove the last n − im rows and last 2(n − im) columns. We assume
that the indices of rows and columns are shifted accordingly to the operations we perform;

i.e. now i`
def
= i` − i0 for ` = 0, . . . ,m. After these operations, the matrix gets the following

shape.

i0 i0

2i0

i1 i1

2i1

i2 i2

2i2

i3 i3

2i3

Now, for ` = 1, 2, . . . ,m we remove columns 2i`−1 + 1, . . . , 2i` − 2 and merge rows
i`−1 + 1, . . . , i` into one row (with value e in columns 2i`+1, . . . ,2im). This way, we get the
following matrix, which is upper idempotent.

Corollary 5.36. For each m ∈ N there is some n ∈ N such that for any matrix in Pn there
is a sequence of safe rules that yields a matrix N ∈ Pm that is idempotent.

Proof. Since the safe rules preserve the fact that a matrix is upper (resp. lower) idempotent,
we can apply Lemma 5.35 twice, once to get an upper idempotent matrix and then to make
it also lower idempotent.

Fact 5.37. If M is an idempotent parity alternating matrix, the operation that removes
columns 2i and 2i− 1 and removes row i preserves the fact that the matrix is idempotent
parity alternating.

Proof. If i = 1 or i = n then the above operation is safe. For 1 < i < n we use the fact that
the matrix is idempotent, so the values of columns 2i− 1 and 2i depend only on the unique
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entry in that column which is neither above nor below the diagonal. The following picture
depicts an idempotent parity alternating matrix in P6 where the upper idempotent is u and
the lower idempotent is w. Removing row 4 and columns 7 and 8 of that matrix preserves
the fact that the matrix is idempotent parity alternating.

x1 y1
x2 y2

x3 y3
x4 y4

x5 y5
x6 y6

u u

ww

u u

ww

u u

ww

u u

ww

u u

ww

u u

ww

u u

ww

u u

ww

u u

ww u u

ww

u u

ww

u u

ww

u u

ww u u

ww

u u

ww

Lemma 5.38. If Pn is non-empty for arbitrarily big n then there are u,w, x, y ∈ VL such
that u and w are idempotents and P4 contains the matrix

x y

x y

x y

x y

u u

ww

u u

ww

u u

ww

u u

ww

u u

ww u u

ww

Proof. By the hypothesis, we can apply Corollary 5.36 for m = 4 ∗ |VL|2. Let N be the
resulting matrix. Each row of that matrix is of the form w · · ·w ·xi · yi · u · · ·u. Thus, there
exists a pair (x, y) that appears as (xi, yi) in at least 4 rows. Using Fact 5.37 we can remove
all the remaining rows (and the corresponding pairs of columns) from N and the result has
the above form.

We can conclude the proof of Proposition 5.22 by showing that under our assumptions
Equation (5.1) is violated.

Let M be the matrix described in Lemma 5.38. Let {u1, . . . , u8} be the values of all the
columns in M . The matrix is in P4 so u3 6= u4. Because u and w are idempotent,

u3 = uxww = uxw = uuxw = u5

For the same reason, u4 = u6. This is depicted in the picture below

x y

x y

x y

x y

u u

ww

u u

ww

u u

ww

u u

ww

u u

ww u u

ww

u3 u4 u3 u4

Since u3 and u4 are different, at least one of them is different than uw. Without loss of
generality suppose that u3 6= uw. Because each row of the matrix belongs to VL and VL is
closed under removing letters, it follows that

(w, x, u) ∈ VL.
This means that we have a violation of Equation (5.1), which requires that

uw = u] · u · w] = u] · x · w] = u3.

This concludes the proof of Proposition 5.22.
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5.5. Case (C2) — limit alternation is unbounded. In this section we assume that ΣL

has unbounded root alternation and every subset Σ′ ⊆ ΣL with unbounded root alternation
has also unbounded limit alternation. Under that assumption we need to prove that
Equation (5.2) is violated.

We start by constructing a finite directed graph GL (called the strategy graph of L) that
represents very specific strategies of Alternator in the game on types. We then show that the
above assumptions imply that the strategy graph needs to be recursive5 — roughly speaking
it contains complicated connected components. Then we finish the proof of Proposition 5.23
by showing that recursivity of the strategy graph gives rise to a violation of Equation (5.2).

5.5.1. Strategy graph. Given a language L, the strategy graph of L (denoted GL) is defined
as follows. The set of nodes of GL is

(
VL t {1L}

)
×HL. There is an edge from a node (v, h)

to a node (v′, h′) if there exist:

(u1, u2), (w1, w2) ∈ VL, z ∈ VL t {1L}
such that

h = vu1w
∞
1 and v′ = vu2w

]
2z.

Notice that the above definition does not invoke h′ (the value of h′ matters for a successive
edge from (v′, h′)).

The following lemma provides a less explicit definition of edges in GL, via the notion of
path-switching.

Definition 5.39. Consider a tree type h ∈ HL and a pair of context types v, v′ ∈ VL. We
say that the pair (v, h) is path-switching into v′ if there exists a tree t ∈ TrA such that
v ·αL(t) = h and there exists an infinite path π of t such that if D is a finite prefix of t then D
can be completed into a context C ′ with the port located on π such that v · αL(C ′) · z = v′

for some z ∈ VL t {1L}.
Lemma 5.40. There exists an edge from (v, h) to (v′, h′) in GL if and only if (v, h) is
path-switching into v′.

Proof. First assume that there exists an edge from (v, h) to (v′, h′) in GL with (u1, u2),
(w1, w2), z witnessing that. Let Cu, Cw, Cz be contexts of types u1, w1, z respectively. Take

t
def
= Cu · C∞w . In that case v · αL(t) = h and let π be the infinite path that contains all the

ports of the contexts Cu · Ckw for k = 0, 1, . . .
Consider a finite prefix D of t. Let D′ be an extension of D that is also finite, contains

exactly one port, and D′ is a prefix of Cu · C(]·k)
w for some k.

By the definition, D′ can be written as

D = D0 ·D1 · . . . ·D]·k,

where D0, . . . , D]·k are finite prefixes of contexts (i.e. each of them has exactly one port); and
moreover D0 is a prefix of Cu and all D1, . . . , D]·k are prefixes of Cw. By the assumption
that (u1, u2), (w1, w2) ∈ VL we know that we can extend all D0, D1, . . . , D]·k into contexts
C0, C1, . . . , C]·k such that αL(C0) = u2 and αL(Ci) = w2 for i = 1, . . . , ] · k. Take C ′ =
C0 · C1 · . . . · C]·k. Clearly the port of C ′ is located on π. Notice that

αL(C ′) = u2 · w]·k2 = u2 · w]2.
5This notion, used previously in [BP12] and [FM14], has nothing to do with recursion theory, it speaks

about the possibility to traverse certain edges in the graph and to go back to the beginning.
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Therefore, v · αL(C ′) · z = v′ by the assumption that there is an edge from (v, h) to (v′, h′).
Now we assume that (v, h) is path-switching into v′ and we prove that there is an edge

between (v, h) and (v′, h′) in GL. This will be achieved by the Ramsey theorem. Consider
a triple of nodes x ≺ y ≺ δ on π. Let d = |δ| be the depth of δ and let Dd be the (d+1)-prefix

of t (i.e. Dd is t restricted to the subset {L, R}≤d of its domain). Let C ′d be given from the
assumption in Definition 5.39 for D = Dd.

Let u1, u2, w1, w2 be the αL-types of the following context zones:

• u1 (resp. u2) the type of the context zone rooted in ε with the port in x of t (resp. of C ′d);
• w1 (resp. w2) the type of the context zone rooted in x with the port in y of t (resp. of C ′d).

Let z be the type given by the assumption for C ′d.

Define f(x, y, δ) as the quintuple (u1, u2, w1, w2, z) ∈
(
VL t {1L}

)5
. Apply the Ramsey

theorem for triples to f to get an infinite set P of nodes on π. We know that for all the
triples from P the function f is constantly equal a fixed quintuple (u1, u2, w1, w2, z). It
is easy to see that αL(t) = u1 · w∞1 . Thus, h = vu1w

∞
1 . Similarly, the Ramsey theorem

guarantees that w2 ·w2 = w2 and therefore v′ = vu2w
]
2z. Thus, to know that there is an edge

from (v, h) to (v′h,′ ) in GL it is enough to prove that (u1, u2) and (w1, w2) are both elements
of VL.

We will show that Alternator has a winning strategy in the game V(u1, u2) (the case of
V(w1, w2) is analogous). Fix x ≺ y ∈ P and let C1 be the context zone rooted in ε with the
port in x of t. Assume that Alternator plays C1 as the first context in the game V(u1, u2).
Consider a finite prefix D that is played by Constrainer. Since D is finite and P is infinite,

there exists δ ∈ P such that d
def
= |δ| is greater than the depth of all the nodes in D1. Let

Alternator reply with C ′d. By the assumption on d, we know that C ′d indeed extends D. By
the choice of P we know that αL(C ′d) = u2. Thus, we have proved that Alternator wins
V(u1, u2).

Lemma 5.41. The strategy graph GL is transitive.

Proof. Consider an edge between (v, h) and (v′, h′) witnessed by (u1, u2), (w1, w2), and z; and
an edge between (v′, h′) and (v′′, h′′) witnessed by (u′1, u

′
2), (w′1, w

′
2), z

′. Then h = vu1w
∞
1

and v′′ = vu2w
]
2

(
zu′2(w

′
2)
]z′
)
. It means that there is an edge between (v, h) and (v′′, h′′)

with (u1, u2), (w1, w2) ∈ VL, and z′′
def
= zu′2(w

′
2)
]z′.

Recall that a strongly connected component of a directed graph G is a set of nodes X
such that for each x 6= x′ ∈ X there exists a path in G leading from x to x′. If G is transitive
then this condition boils down to saying that there is a single edge from x to x′.

Definition 5.42 (Recursive strategy graphs). We say that a strategy graph GL is recursive
if there exists a strongly connected component of GL that contains two nodes (v, h), (v′, h′)
with h 6= h′.

Lemma 5.43. If the strategy graph GL is recursive then Equation (5.2) is violated.

Proof. Assume contrarily that GL is recursive but Equation (5.2) holds. Consider a pair of
nodes (v, h) and (v′, h′) with h 6= h′ that witness recursivity of GL. By Lemma 5.41 there
must exist edges in GL from (v, h) to (v′, h′) and back. Let (u1, u2), (w1, w2), z; and (u′1, u

′
2),

(w′1, w
′
2), z

′ witness the existence of these edges respectively.
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Apply Equation (5.2) to obtain that:(
u2(w2)

] zu′2(w
′
2)
]
z′
)]
u1(w1)

∞ =
(
u2(w2)

] zu′2(w
′
2)
]
z′
)∞

(
u′2(w

′
2)
]
z′u2(w2)

]z
)]
u′1(w

′
1)
∞

=
(
u′2(w

′
2)
]
z′u2(w2)

]z
)∞

Let W = u2(w2)
]z and W ′ = u′2(w

′
2)
]z′. Then by the assumptions on the edges between

(v, h) and (v′, h′) we get that vW = v′ and v′W ′ = v. Moreover, the above equations get
the form (

WW ′
)]
u1(w1)

∞ =
(
WW ′

)∞(
W ′W

)]
u2(w2)

∞ =
(
W ′W

)∞
And therefore, by using the values of h, h′ and multiplying these equations by v and v′

respectively we get:

h = v · u1(w1)
∞ = v ·

(
WW ′

)]
u1(w1)

∞ = v ·
(
WW ′

)∞
h′ = v′ · u′1(w′1)

∞
= v′ ·

(
W ′W

)]
u′1(w

′
1)
∞

= v′ ·
(
W ′W

)∞
Now since h = v ·

(
WW ′

)∞
= vW ·

(
W ′W

)∞
= v′ ·

(
W ′W

)∞
= h′ we obtain the contradiction

as we assumed that h 6= h′.

5.5.2. Constructing a path in GL. We will now use the assumption that Case (C2) holds
to construct an infinite path in GL such that every two consecutive nodes on that path
(v, h), (v′, h′) satisfy h 6= h′. Since GL is finite, such an infinite path witnesses that some
strongly connected component of GL contains such two nodes and therefore GL is recursive.
By Lemma 5.43 it means a violation of Equation (5.2) and the proof of Proposition 5.23 is
finished.

The construction of the path will be inductive, preserving an invariant that the last
node constructed on the path is alternating : a node (v, h) in GL is alternating if v · HL
contains words that begin with h and have arbitrarily high alternation.

Lemma 5.44. GL contains at least one alternating node.

Proof. This is because HL has unbounded alternation. Therefore, by Pigeon-hole Principle
there exists some h ∈ HL such that HL contains words that begin with h that have arbitrarily
high alternation. By the definition, this means that the node (1L, h) is alternating in GL.

The inductive step of the construction will be based on the following lemma.

Lemma 5.45. If (v, h) is an alternating node of GL and Case (C2) holds then there exists
an edge in GL from (v, h) to (v′, h′) such that h 6= h′ and (v′, h′) is also alternating.

The rest of the section is devoted to a proof of Lemma 5.45. Let Σ(v,h) be the set of all
strategy trees σ (with root sequences of the form (h1, . . . , hn)) such that:

• σ is locally optimal for v (see Definition 5.16),
• v · h1 = h,
• the sequence (vh1, . . . , vhn) is alternating (i.e. every two consecutive values in the sequence

are distinct, see Definition 4.27).
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Fact 5.46. The set Σ(v,h) is a subset of ΣL that has unbounded both root and limit
alternation.

Proof. Fact 5.17 implies that all strategy trees in Σ(v,h) belong also to ΣL. By the fact that
(v, h) is alternating and by Lemma 5.18 we know that Σ(v,h) has unbounded root alternation.
Therefore, Case (C2) guarantees that Σ(v,h) has also unbounded limit alternation.

Now observe that for each g, g′ ∈ HL either (g, g′)k ∈ HL for all k ∈ ω, or there exists

a unique kg,g′ ∈ ω such that (g, g′)kg,g′ ∈ HL but (g, g′)1+kg,g′ /∈ HL. Since the set HL is
finite, there exists a number K that is greater than all the defined numbers kg,g′ . Thus, the
following fact holds.

Fact 5.47. If for some pair g, g′ ∈ HL we have (g, g′)K ∈ HL then (g, g′)k ∈ HL for all
k ∈ ω.

Let `
def
= |HL|2 ·K and let σ = (t, σ1, . . . , σn) be a strategy tree in Σ(v,h) that has limit

alternation greater than `.
We will now construct a path π in t on which the high limit alternation of σ is located.

Let Z be the set of nodes z of t such that the root alternation of σ.z is greater than `. By
Corollary 5.21 we know that Z is prefix closed and by the fact that the limit alternation of
σ is greater than ` we know that Z is infinite. Therefore, by König lemma we know that Z
contains an infinite path π.

Lemma 5.48. There exists an infinite set P ⊆ π and two sequences (h1, . . . , hn) ∈ H∗L and
(v1, . . . , vn) ∈ V ∗L such that for all nodes x ∈ P :

•
(
σ1(x), . . . , σn(x)

)
= (h1, . . . , hn),

•
(
val(σ,X, 1), . . . , val(σ,X, n)

)
= (v1, . . . , vn), where X is the context zone with the root in

ε and port in x.

Moreover, (h1, . . . , hn) ∈ HL and (v1, . . . , vn) ∈ VL.

Proof. The choice of P and the sequences (h1, . . . , hn) ∈ H∗L, (v1, . . . , vn) ∈ V ∗L is just by
Pigeon-hole Principle. By the definition of a strategy tree we know that (h1, . . . , hn) ∈ HL.
By Fact 5.13 we know that also (v1, . . . , vn) ∈ VL.

Since the alternation of (h1, . . . , hn) is greater than ` = |HL|2 ·K, we know that there
exists a pair g 6= g′ ∈ HL and a set of indices I ⊆ {1, . . . , n− 1} such that |I| ≥ K and for
all i ∈ I we have hi = g and hi+1 = g′. Fix as i0 the minimal element of I. By closure of

HL under subwords, we know that (g, g′)K ∈ HL. By Fact 5.47 it implies that

(g, g′)
k ∈ HL for all k ∈ ω. (5.6)

Let u = vi0 and u′ = vi0+1 where i0 is the minimal element of I. We will finish the proof
by showing the following three lemmas.

Lemma 5.49. The values vu′g and vu′g′ are distinct.

Proof. Recall that g = hi0 and g′ = hi0+1. Assume that the value vu′g is equal to vu′g′.
Consider a strategy tree σ′ that equals σ except for the subtree σ′i0+1.x where x is the
�-minimal element of X. Over that subtree, let σ′i0+1 be equal to σi0 . Let (h′1, . . . , h

′
n) be

the root sequence of σ′. We know that v · (h′1, . . . , h′n) = (h1, . . . , hn) and dist(σi0 , σ
′
i0+1) is

strictly smaller than dist(σi0 , σi0+1), what contradicts local minimality of σ for v.
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Lemma 5.50. The nodes (vu′, vu′g) and (vu′, vu′g′) are both alternating in GL.

Proof. By (5.6) and Fact 4.25 we know that (vu′g, vu′g′)k ∈ HL for all k ∈ ω. Moreover,
Lemma 5.49 says that vu′g 6= vu′g′.

Now it remains to prove the following lemma.

Lemma 5.51. There exist edges in GL from (v, h) to both (vu′, vu′g) and (vu′, vu′g′).

Proof. Using Lemma 5.40 it is enough to show that (v, h) is path-switching into vu′. Let σ′ be
the strategy tree obtained from σ by removing the first i0 rounds: σ′ = (t, σi0+1, σi0+2, . . . , σn)
(i0 is the minimal element of I).

Consider the tree t from the strategy tree σ and the path π. By the definition of σ we
know that v·αL(t) = h. Let D be a finite prefix of t. The strategy tree σ′ witnesses that D can
be extended into a context C ′ with a port located on π such that that αL(C ′) = vi0+1 = u′.
Therefore v · αL(C ′) · 1VL = vu′. This concludes the proof that (v, h) is path-switching
into vu′.

Thus, Lemma 5.49 implies that at least one of the nodes (vu′, vu′g) and (vu′, vu′g′) has
the second coordinate distinct than h, Lemma 5.50 implies that this node is alternating, and
Lemma 5.51 implies that GL contains an edge from (v, h) to that node. Thus, the proof of
Lemma 5.45 is concluded.

6. Effective characterisation of ∆0
2

This final section is devoted to the effective characterisation of the Borel class ∆0
2 (that

corresponds to the union of the first ω1 Wadge degrees). Decidability of the class ∆0
2 can be

actually obtained as a direct corollary of [CMS17]: in this work the authors proved that it
is decidable if a regular tree language is in the Borel class Π0

2; since regular languages are
closed under complement and ∆0

2 = Π0
2 ∩Σ0

2, we automatically obtain that it is decidable
if a regular tree language is in ∆0

2. However, here we show that the algebraic approach
developed in the previous sections covers the case of the Borel class ∆0

2 as well. What we
will prove is the following:

Theorem 6.1. A regular tree language L belongs to the class ∆0
2 if and only if its syntactic

algebra satisfies Equation (5.2) from Theorem 5.1.

This theorem is the main result of [FM14]; unfortunately the proof provided there is
wrong:

• Proposition 4 in [FM14] cites Lemma G.2 from [BP12] in a wrong way. The logical claim
in Proposition F.2 is of the form: if there is a set Σ of unbounded root alternation then
there is a set Σ′ of unbounded limit alternation6. Lemma G.2 says that if Proposition F.2
is violated then the strategy graph is recursive. Logically, it takes the form: if there is
a set Σ of unbounded root alternation but no set Σ′ has unbounded limit alternation then
the graph is recursive. The way Proposition 4 summarises that statement is: if there
exists a set Σ of unbounded limit alternation then the strategy graph is recursive. This
statement does not follow from [BP12].

6Unbounded limit alternation implies unbounded root alternation.
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• The proof of Theorem 1 in [FM14] in the implication (2)⇒ (1), shows how to construct,
given an infinite strategy tree s∞, a family of strategy trees of unbounded limit alternation.
The first step of the proof is to construct a family G of strategy trees of finite duration
but unbounded root alternation. Then, an invalid application of a compactness argument
(to find the set X) shows that G has in fact unbounded limit alternation. Such a set X
doesn’t need to exist, it can be the case that the limit alternation of s is 2 but for each
pair k < k′ ≤ j there are infinitely many nodes n in s such that σk(n) 6= σk′(n) — it is
enough that the nodes for distinct values k, k′ lie on distinct infinite branches.

Additionally, if it was the case that every set of strategy trees of unbounded root alter-
nation has unbounded limit alternation; Proposition F.1 would hold always, nevertheless
of the assumption of Identity (2).

The proof we provide here follows the logical structure of [FM14], with the following
differences:

• Instead of the wrong reference used in Proposition 4 of [FM14] we show recursivity of GL
using a new Lemma 5.40 that characterises existence of edges in GL.
• Instead of the statement about existence of the set X from the proof of Theorem 1

in [FM14] we provide here a direct construction (Lemma 6.6) showing that a winning
strategy of Alternator in H∞(L) must take a specific structure that fits the characterisation
from Lemma 5.40

As observed in [FM14], the techniques used to characterise BC(Σ0
1) provide a big part of

a proof of Theorem 6.1. First, Proposition 3.20 says that L is ∆0
2 if and only if Constrainer

wins H∞(L). Corollary 5.5 says that if Equation (5.2) is violated then Alternator wins
H∞(L). Thus, the “only if” part of Theorem 6.1 follows.

On the other hand, Lemma 5.43 says that if the strategy graph GL is recursive then
Equation (5.2) is violated. It means that the only remaining statement to prove Theorem 6.1
is expressed by the following proposition.

Proposition 6.2. If Alternator wins H∞(L) then the strategy graph GL is recursive.

The rest of this section is devoted to a proof of the above proposition. During the proof
we will inductively construct an infinite path

(
vn, hn

)
n∈ω in the strategy graph such that

the sequence hn alternates between L and Lc. The invariant of our construction is expressed
by the following definition, using the notions of quotients from Subsection 4.4.

Definition 6.3. Consider a node (v, h) of the strategy graph GL. We say that (v, h)
is prolongable if there exists a winning strategy σ of Alternator in H∞

(
v−1(L)

)
or in

H∞
(
v−1(L)c

)
such that if t is the tree played by σ in the first round then v · αL(t) = h.

We begin with an introduction of an object called essential node and a study of its
properties.

6.1. Essential nodes. Let (v, h) be a prolongable node, as witnessed by a strategy σ and
a tree t. By the symmetry we can assume that σ is winning in H∞

(
v−1(L)c

)
.

Definition 6.4. Consider a node u ∈ {L, R}d for d > 0. Let p be the d-prefix of t (i.e. p
def
=

t�{L, R}<d). We say that u is essential if there exists a context C of a type w ∈ VL, such that

the port of C is in u, C extends p, and we have
(
vw
)−1

(L) /∈∆0
2.
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The last condition implies that Alternator has a winning strategy in7 H∞
((
vw
)−1

(L)
)
.

Let t′ be a tree played by one of such winning strategies of Alternator and let g = αL(t′).
Using the above notions we say that u is (w, g)-essential.

Fact 6.5. If C is a context then the function t 7→ C[t] is continuous. Therefore, if w−1(K) /∈
∆0

2 then also K /∈ ∆0
2. In particular, using (4.2) we obtain that for v, w ∈ VL t {1L} if

(vw)−1(L) /∈∆0
2 then also v−1(L) /∈∆0

2. It means that if ε ≺ u � u′ and u′ is essential then
also u is essential.

The crucial part in the proof of Proposition 6.2 is expressed by the following lemma.

Lemma 6.6. If (v, h) be a prolongable node, witnessed by a strategy σ and a tree t, then
for every d > 0 there exists an essential node u in t such that |u| = d.

The rest of this subsection is devoted to a proof of this lemma. Consider a number

d > 0 and let p be the d-prefix of t. We will find an essential node u ∈ {L, R}d. Let D be the

multicontext obtained from p by making all the nodes in {L, R}d ports; let u1, . . . , uN be the

list of these ports (N = 2d); and U
def
= D[∗] be the basic open set defined by p. Finally, put

M
def
= D−1

(
v−1(L)

)
⊆ TrNA .

Remark 6.7. The fact whether (t1, . . . , tN ) ∈ M depends only on the tuple of types(
αL(t1), . . . , αL(tN )

)
.

Since (v, h) is prolongable and U is a valid response of Constrainer to Alternator playing
t in H∞

(
v−1(L)c

)
, we know that Alternator has a winning strategy in H∞U

(
v−1(L)

)
. This

game is equivalent to the game H∞
(
M
)

played in the topological space TrNA — the N -fold
product of the space TrA, with the induced product topology. Therefore, by Proposition 3.20
we know that M /∈∆0

2.

Definition 6.8. A section of M ⊆ TrNA is any set of the form{
t ∈ TrA | (t1, . . . , ti−1, t, ti+1, . . . , tN ) ∈M

}
.

for i ∈ {1, . . . , N}.

Due to Remark 6.7, taking hj = αL(tj) for j = 1, . . . , N , j 6= i, we can equivalently
define the above section as(

h1, . . . , hi−1,2, hi+1, . . . , hN
) def

={
t ∈ TrA | h1 × · · · × hi−1 × {t} × hi+1 × · · · × hN ⊆M

}
. (6.1)

Notice that the notation from (6.1) naturally extends to formulae with more than
one 2. Such sets are called multisections. The number of holes in a multisection is called its
dimension, i.e. a multisection of dimension n is a subset TrnA. There is one multisection of
the maximal dimension N :

(
2, . . . ,2

)
= M .

Lemma 6.9. Each multisection can be obtained from sections by taking finite unions, finite
intersections, and products.

7We have assumed that σ is winning in H∞
(
v−1(L)c

)
and therefore we have no complement here; in the

dual case σ is winning in H∞
(
v−1(L)

)
and here we consider a winning strategy in H∞

((
vw

)−1
(L)c

)
.
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Proof. The proof will be inductive on the dimension of the given multisection. For the sake
of simplicity of notation we even consider multisections of dimension zero, i.e. expressions of
the form (h1, . . . , hN ) with no holes. Formally such an expression is either the empty set, or
a set containing the empty tuple () (depending on whether h1 × · · · × hN ⊆M or not).

A multisection of dimension 1 is just a section, so the claim follows. Consider a multi-
section of the form (this form is generic up to rearranging the coordinates):

N =
(
2,2, . . . ,2, hi+1, hi+2, . . . , hN

)
.

We will prove that N can be represented as in Lemma 6.9.
Consider a tuple h1, . . . , hi−1. If

(
h1, . . . , hi−1,2, hi+1, . . . , hN

)
is empty then let us put

S(h1, . . . , hi−1) = ∅ and otherwise let S(h1, . . . , hi−1) be⋂
hi⊆
(
h1,...,hi−1,2,hi+1,...,hN

) (2, . . . ,2, hi, . . . , hN)× (h1, . . . , hi−1,2, hi+1, . . . , hN
)
.

Now consider the set K defined as⋃
h1,...,hi−1

S(h1, . . . , hi−1).

By the inductive assumption the set K can be obtained from sections by finite unions, finite
intersections, and products. It remains to prove that K = N .

First consider a tuple of types (g1, g2, . . . , gi) such that

g1 × · · · × gi ⊆ N. (6.2)

We will show that this product is contained in S(g1, . . . , gi−1). First, by (6.2) we know that
gi ⊆

(
g1, . . . , gi−1,2, hi+1, . . . , hN

)
and therefore the later set is not empty. Consider any

value hi ⊆
(
g1, . . . , gi−1,2, hi+1, . . . , hN

)
. By the assumption about the considered values hi

we know that g1 × · · · × gi−1 ⊆
(
2, . . . ,2, hi, . . . , hN

)
. Therefore, g1 × · · · × gi is contained

in the product
(
2, . . . ,2, hi, . . . , hN

)
×
(
h1, . . . , hi−1,2, hi+1, . . . , hN

)
.

Now consider the other implication: take a tuple of types (g1, g2, . . . , gi) such that

g1 × · · · × gi ⊆ S(h1, . . . , hi−1), (6.3)

for some choice of types h1, . . . , hi−1. It means that there must exist a type hi contained
in
(
h1, . . . , hi−1,2, hi+1, . . . , hN

)
, because the later set cannot be empty. Therefore, gi ⊆(

h1, . . . , hi−1,2, hi+1, . . . , hN
)

and it means that gi is among the values hi over which we
take the intersection. Thus

g1 × · · · × gi ⊆
(
2, . . . ,2, gi, . . . , hN

)
×
(
h1, . . . , hi−1,2, hi+1, . . . , hN

)
.

In particular g1 × · · · × gi−1 ⊆
(
2, . . . ,2, gi, . . . , hN

)
what implies that

g1 × · · · × gi ⊆ N.
This concludes the proof that N = K and thus the claim is proved.

Corollary 6.10. There exists a section of M that is not ∆0
2.

Proof. Assume that all the sections of M are ∆0
2. Since ∆0

2 sets are closed under finite unions,
finite intersections, and products, Lemma 6.9 implies that the multisection (2, . . . ,2) = M
is also ∆0

2. A contradiction.
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Let
{
t ∈ TrA | (t1, . . . , ti−1, t, ti+1, . . . , tN ) ∈M

}
be a section of M that is not ∆0

2. Put

C
def
= D[t1, . . . , ti−1,2, ti+1, . . . , tN ].

By the assumption about the chosen section, we have C−1
(
v−1(L)

)
/∈∆0

2. Thus, by putting

w
def
= αL(C) we know that

(
vw
)−1

(L) /∈∆0
2 and therefore the context C witnesses that ui is

essential. This concludes the proof of Lemma 6.6.

6.2. Constructing a path in GL. Lets fix a strategy σ of Alternator in H∞(L) and let
t0 be the tree played by σ in the first round. Let v0 = 1L and h0 = αL(t0). Directly from
the definition we know that (v0, h0) is prolongable. Therefore, to prove Proposition 6.2 it is
enough to prove the following inductive lemma.

Lemma 6.11. If (v, h) is prolongable then there exists a node (v′, h′) in the strategy graph
GL such that h′ 6= h, (v′, h′) is prolongable, and there is an edge from (v, h) to (v′, h′).

Lets fix a node (v, h) that is prolongable, as witnessed by a strategy σ and a tree t. By
the symmetry we can assume that σ is winning in H∞

(
v−1(L)c

)
.

Since there are infinitely many essential nodes in t, and a prefix of an essential node is
also essential (see Fact 6.5), there exists a path π such that for all ε ≺ u ≺ π the node u is
essential. Notice that each of these nodes u comes with at least one pair (wu, gu) ∈ VL ×HL

such that u is (wu, gu)-essential, see Definition 6.4. Let (w, g) be a pair that equals (wu, gu)
for infinitely many u. Let v′ = vw and h′ = vwg. By the choice of h and h′ we know that
h ⊆ Lc and h′ ⊆ L and therefore h′ 6= h. Also, directly from the definition of a (w, g)-essential
node we know that the node (v′, h′) is prolongable.

Therefore, to conclude Lemma 6.11 it is enough check that (v, h) is path-switching into
v′ (see Lemma 5.40). Consider a finite prefix D of t. There must exist an essential node

u ≺ π such that u ∈ {L, R}d for some d > 0; (wu, gu) = (w, g); and D is a prefix of the
d-prefix of t. Since u is essential, D can be completed into a context C with the port located
in u, such that αL(C) = w. Thus, v · αL(C) · 1L = v · w = v′. This fulfils the requirements
of Definition 5.39 and therefore GL contains an edge from (v, h) to (v′, h′).

7. Conclusions

This paper utilises the syntactic algebra of a given regular language L to understand the
topological complexity of L. The main result (Theorem 5.1) says that the language is BC(Σ0

1)
if and only if its syntactic algebra satisfies Identities (5.1) and (5.2).

The first equation speaks about the branching structure of alternations between the
language and the complement. The combinatorial background of this equation is represented
by the three claims from Subsection 5.4.1, which show that one can alternate using distinct
infinite branches of a given tree.

The second equation is focused on alternations that continue along a single branch, see
Lemma 5.40 for the explicit form of such an alternation.

As observed by Facchini and Michalewski [FM14], languages outside the class ∆0
2 should

admit the second kind of alternation. Although the original paper contained certain mistakes,
the claim is correct (Theorem 6.1): a regular language is ∆0

2 if and only if its syntactic
algebra satisfies Identity (5.2).
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7.1. Limitations. In general there is no proper algebraic framework for analysing all regular
languages of infinite trees. The available algebras are either too weak [BI09a, BS13], too
strong [Boj10], or not closed under homomorphic images (i.e. contain a hidden existential
quantifier) [Blu11]. Therefore, effective characterisations based on algebraic approach are
limited either to certain subclasses of languages as the input; or to simple classes that are
being characterised.

In this paper the input is not restricted (i.e. the characterisation works for all regular
languages as the input); but the characterised classes are low in the Borel hierarchy. It is
not surprising, as the structure of the considered algebras is quite weak, as expressed by the
following remark.

Remark 7.1. For every non-trivial language L0 ⊆ TrA the syntactic algebra of the language

{t ∈ TrA | ∀u ∃v � u. t�v ∈ L0}
is the same, with both H and V being two-element sets.

Notice that if L0 = {t ∈ Tr{a,b} | t(ε) = a} then the above language belongs to Π0
2, while

for L0 =
{
t ∈ Tr{a,b,c} | if t(ε) = c then t contains a branch with infinitely many a

}
the

above language is non-Borel (Σ1
1-complete). This shows that the structure of the considered

algebras is not strong enough to distinguish the complexity of languages right above the
class ∆0

2. To climb higher in the Borel hierarchy one should consider some class of algebras
with richer structure; unfortunately there is no natural candidate for such a class at the
moment. The known characterisations of classes higher in the hierarchy8 [SW16, CMS17]
are based directly on games instead of using algebras.

7.2. Comparison with original papers. Comparing to the original work [BP12], this
work provides more detailed and polished proofs, more pictures, and certain minor glitches
corrected. Moreover, the newly added Lemma 5.40 provides an explicit characterisation of
the edges in the strategy graph GL.

As discussed in Section 6, the logical structure of [FM14] is not sound. In this work
we repair the gap by providing a direct proof of existence of certain edges in the strategy
graph GL. For that, we introduce a new concept of an essential node (see Definition 6.4)
and a combinatorial lemma about sections of matrices, see Lemma 6.9.

7.3. Further work. There are still natural classes of languages within ∆0
2 that await

characterisations.

Equations for finite levels. In this work we remark that the finite levels of the difference
hierarchy can be characterised using sentences of mso. It remains open whether these finite
levels correspond to equations (or their ordered variants) in the syntactic algebra of the
language.

8There are other characterisations where the input is restricted to languages with limited use of non-deter-
minism, see [Mur08b, FMM16].
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Bounds for infinite levels. In [DM07] it has been proved that if L1 and L2 are regular
tree languages with Wadge rank α1 and α2 respectively, then we can build regular languages
L1 ⊕L2 and L1 ⊗ ω with Wadge rank α1 + α2 and α1 × ω respectively. Hence, every Wadge
degree with Wadge rank below ωω is inhabited by regular languages. In particular, there are
examples of regular tree languages in ∆0

2 \ BC(Σ0
1). However, as the Wadge hierarchy over

Σ0
1 has length ω1 and there are only countably many regular languages, there must exist

a bound on the levels of the Wadge hierarchy occupied by regular languages. The ordinal
ωω is a natural candidate for the upper bound, as all the examples of the regular languages
inside ∆0

2 exhaust exactly the first ωω levels of the Wadge hierarchy.

Characterisations of transfinite levels. Not only we don’t know how many transfinite
levels of the difference hierarchy are occupied, but there is no effective characterisation of
any transfinite level known. Thus, one can ask for instance how to verify if the Wadge degree
η of a regular tree language verifies ω ≤ η < ω · 2.

Higher in the hierarchy. The operations of the algebras used in this paper seem to be
suited exactly to the classes up to ∆0

2. However, one might imagine enriching their algebraic
structure just a bit in such a way to cover one more level of the Borel hierarchy. This
motivates the following problem.

Problem 7.2. Is there a natural algebraic structure extending the algebras given in this
paper which allow an equational characterisation of the Borel class ∆0

3.
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27:60 M. Bojańczyk, F. Cavallari, T. Place, and M. Skrzypczak Vol. 15:3
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