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ABSTRACT. The parameterized model-checking problem for a class of first-order sentences
(queries) asks to decide whether a given sentence from the class holds true in a given
relational structure (database); the parameter is the length of the sentence. We study the
parameterized space complexity of the model-checking problem for queries with a bounded
number of variables. For each bound on the quantifier alternation rank the problem becomes
complete for the corresponding level of what we call the tree hierarchy, a hierarchy of
parameterized complexity classes defined via space bounded alternating machines between
parameterized logarithmic space and fixed-parameter tractable time. We observe that a
parameterized logarithmic space model-checker for existential bounded variable queries
would allow to improve Savitch’s classical simulation of nondeterministic logarithmic space
in deterministic space O(log2 n). Further, we define a highly space efficient model-checker
for queries with a bounded number of variables and bounded quantifier alternation rank.
We study its optimality under the assumption that Savitch’s Theorem is optimal.

1. INTRODUCTION

The model-checking problem Mc(FO) for first-order logic FO asks whether a given first-order
sentence ¢ holds true in a given relational structure A. This problem is of paramount
importance throughout computer science, and especially in database theory [SSS10]. The
problem is PSPACE-complete in general and even its restriction to primitive positive
sentences and two-element structures stays NP-hard (cf. [CM77]). Hence neither syntactic nor
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structural restrictions seem to allow to get a handle on this problem. An important exception
is the observation that the natural bottom-up evaluation algorithm takes only polynomial
time on sentences with a bounded number of variables (see [Var95, Proposition 3.1], or
the proof of Imm82, Theorem B.5]). Indeed, this algorithm runs in time O(|¢| - |A|®) on
instances (A, ¢) where ¢ is in FO?, i.e. contains at most s many variables.

Following Chandra and Merlin’s seminal paper [CM77, Section 4], it has repeatedly been
argued in the literature (see e.g. [SSS10, FGO01]) that measuring computational resources
needed to solve MC(FO) by functions in the length of the input only is unsatisfactory. It
neglects the fact that in typical situations in database theory we are asked to evaluate a
relatively short ¢ (the query) against a relatively large A (the database). Parameterized
complexity theory measures computational resources by functions taking as an additional
argument a parameter associated to the problem instance. For the parameterized model-
checking problem p-Mc(FO) one takes the length |p| of ¢ as parameter and asks for
fixed-parameter tractable restrictions of p-MC(FO), i.e. restrictions decidable in fpt time
f(el) - JA]°M where f : N — N is an arbitrary computable function.

This relaxed tractability notion allows for effective but inefficient formula manipulations
and thereby the transfer of logical methods to the study of the problem (see [Grol4, Gro08,
GK11] for surveys). For example, a sequence of works constructing algorithms exploiting
Gaifman’s locality theorem [EF99, Theorem 2.5.1] recently led to an fpt time algorithm
solving p-MC(FO) on nowhere dense graph classes [GKS17]. For graphs of bounded degree one
even gets an algorithm that runs in parameterized logarithmic space [FG03|. Parameterized
logarithmic space, denoted by para-L, relaxes logarithmic space in much the same way
as FPT relaxes polynomial time [CCDF97, FGO03].

Concerning restrictions on the syntactical side one can naturally stratify the problem
into subproblems p-MC(31), p-MC(22),...,p-MC(FO) according to quantifier alternation
rank. These problems stay intractable in the sense that they are well known to be complete
for the levels of the A-hierarchy A[1] C A[2] C --- C AW[*]. The completeness stays true
even in the presence of function symbols [FG06, p. 201].

One of the main research questions is to understand for which sets ® of first-order
sentences, the problem p-McC(®) is tractable. In this introductory exposition let us restrict
attention to decidable sets ® in a (relational) vocabulary that has bounded arity.

Today, the situation is well understood for sets ® of primitive positive sentences,
i.e. conjunctive queries in database terminology [CM77]. Indeed, under the assumption
A[1] # FPT, the model-checking problem p-mc(®) is fixed-parameter tractable if [DKV02]
and only if [GSS01, Gro07] there is some constant s € N such that every query in @ is
logically equivalent to a conjunctive query whose primal graph has treewidth at most s + 1.
Now, these are precisely those conjunctive queries that can be written with at most s many
variables [KV00, Lemma 5.2, Remark 5.3] (see also [DKV02, Theorem 12] and [Chel4,
Theorem 4] for similar statements). In other words, if p-MC(®) is fixed-parameter tractable
at all, then it can be decided by first preprocessing the query to one with a bounded number
of variables and then run the natural evaluation algorithm. As pointed out in [Chel4], this
is a recurring paradigm. In fact, most known sets ® (not necessarily primitive positive) with
a tractable p-MC(®) are contained in FO® up to logical equivalence.

This gives special interest to the computational complexity of p-mc(FO?). Moreover,
already for s = 2 this problem encompasses problems of independent interest. For example,
a directed graph with two vertices named by constants s and ¢ contains a path from s to ¢ of
length at most k if and only if it satisfies the sentence ¢ (s) € FO? (allowing constants s, t)
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where @ (z) is defined as follows:
wo(x) = ax=t,
Prr1(z) = 31/((@/:9: V Exy) A 3z(z=y A m(@))

There is some recent work concerning the fine-grained time complexity of p-mc(FO?),
see [GIKW19]. But given the central importance of p-MC(FO?) it seems surprising that, to
the best of our knowledge, its space complexity has not been thoroughly studied. It is known
that MC(FO?) is P-complete for s > 2 under logarithmic space reductions (see [Imm82,
Var95]). But, even assuming P # L, this leaves open the possibility that p-MC(FO?®) could
be solved in parameterized logarithmic space, that is, (deterministic) space f(|¢|)+O(log|Al)
for some computable f : N — N. The central question of this paper is whether this is the
case.!

As we shall see, answering this question either positively or negatively would have
breakthrough consequences in classical complexity theory. It is one of the central open
questions or, in Lipton’s words [Lip10, p.137], “one of the biggest embarrassments of all
complexity theory” whether Savitch’s upper bound NL € SPACE(log? n) can be improved.
This is open since 1969 and there is a tangible possibility that Savitch’s Theorem is optimal,
i.e?

(1.1)

NL ¢ SPACE(o(log?n)).
See [HOT94, Pot17] for more information about this problem. We observe the following
implications:
P=L = p-MCc(FO®) € para-L. = Savitch’s Theorem is not optimal.

For the second implication, note that running the assumed model-checker on the sen-
tences (1.1) solves the parameterized problem
P-STCON<

Instance: A directed graph G, two vertices s and ¢, and k € N.
Parameter: k.

Problem: 1Is there a directed path of length at most £ from s to ¢t in G?

On n-node graphs this requires only space f(k) 4+ O(logn) for some computable f. Then
there is a logspace computable unbounded function h such that the algorithm runs in
logarithmic space on instances with k£ < h(n). It is well known that such an algorithm
implies that Savitch’s theorem is not optimal (see e.g. [Wig92]). We shall give the details of
this argument, and in fact prove something stronger. More precisely, the contributions of
this paper are as follows.

Our contributions. Our central question asks for the complexity of p-mc(FO?) up to pa-
rameterized logarithmic space reductions, i. e. pl-reductions. An obvious approach is to strat-
ify the problem again according to quantifier alternation rank into subproblems p-MC(33),
p-MC(X35),.... It turns out that there exist pl-reductions from p-Mc(FO?) to p-mc(FO?),
and for each fixed t from p-MC(Xf) to p-Mc(¥?) (see Theorem 1.1 below). On the other
hand we do not know whether one can reduce p-Mc(X7, ) to p-Mc(Xf) for any s.

IRelatedly, it has been asked by Flum and Grohe [FG03, Remark 26] whether p-Mc(FO®) is in para-NL.
2By the space hierarchy theorem SPACE(s(n)) # SPACE(log? n) holds for the Turing machine model
and for all (not necessarily space constructible) s(n) < o(log®n).
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Clearly, all these problems lie between para-L and FPT. But unfortunately not much
is known about this complexity landscape, and only recently there is a slowly emerging
picture [EST15, CM15, CM17, CM14]. In particular, [EST15] introduced a parameterized
analogue of NL, called PATH in [CM15], and [CM15] introduced the class TREE, a parame-
terized analogue of LOGCFL. Unlike their classical counterparts [Sze87, Imm88, BCD'89],
PATH and TREE are not known to be closed under complementation (this is a question
from [CM15]). We thus face the naturally defined alternation hierarchy built above TREE
(see Definition 3.1). We call it the tree hierarchy:

para-L. C PATH C TREE = TREE|[1] C TREE[2] C --- C TREE[+] C FPT. (1.2)
Our first result reads as follows:

Theorem 1.1. Let s > 2 and t > 1.
(1) p-Mc(X7) is complete for TREE[t] under pl-reductions.
(2) p-MC(FO?) is complete for TREE[*] under pl-reductions.

We shall also prove that these results stay true in the presence of function symbols (Theo-
rem 4.6). This situation within FPT is thus fully analogous to the situation with unboundedly
many variables and the A-hierarchy. The proofs, however, are quite different. A further
difference is that the tree hierarchy satisfies a collapse theorem (Corollary 4.2) like the
polynomial hierarchy while such a theorem is unknown for the A-hierarchy.

The connection to the classical question whether Savitch’s Theorem is optimal reads,
more precisely, as follows:

Theorem 1.2. If Savitch’s Theorem is optimal, then PATH ¢ para-L.

Concerning our central question, these results together with (1.2) imply that, if Savitch’s
Theorem is optimal, then already the lowest level p-Mc(X2) cannot be solved in parameterized
logarithmic space. In fact, we show something stronger:

Theorem 1.3. Let f be an arbitrary function from N to N. If Savitch’s Theorem is optimal,
then p-McC(X?) is not decidable in space o(f(|p|) - log |A]).

A straightforward algorithm solves p-MC(FO?) in space (cf. Lemma 6.2)

O(l¢l - (log || + log |A])).

Theorem 1.3 shows that there might be not too much room for improvement. However,
building on ideas of Ruzzo [Ruz80], we still manage to give a significant improvement for
bounded quantifier alternation rank:

Theorem 1.4. For all s,t € N the problem p-MC(X]) is decidable in space
O(log |¢] - (log || +log |A])).

It is unlikely that the bound on the quantifier alternation rank can be omitted in
this statement. Indeed, it follows from the P-completeness result mentioned above that
p-MC(FO?) cannot be decided in the displayed space unless P C SPACE (log®n).

2. PRELIMINARIES

For a natural number n € N we set [n] = {1,...,n} understanding [0] = 0.
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2.1. Structures. A wvocabulary 7 is a finite set of relation and function symbols. Relation and
function symbols have an associated arity, a natural number. A 7-structure A consists of a
finite nonempty set A, its universe, and for each r-ary relation symbol R € T an interpretation
RA C A" and for each r-ary function symbol f € 7 an interpretation fA : A" — A. A
constant is a function symbol c of arity 0. We identify its interpretation ¢ with its unique
value, an element of A.

A directed graph is an {E}-structure G = (G, E€) for the binary relation symbol E.
We refer to elements of G' as vertices and to elements (a,b) € ES as (directed) edges (from a
to b). Note this allows G to have self-loops, i.e. edges from a to a. A graph is a directed
graph G = (G, ES®) with irreflexive and symmetric ES. A (directed) path in a (directed)
graph G is a sequence (a1, ..., ar41) of pairwise distinct vertices such that (a;,a;41) € EC
for all ¢ € [k]; the path is said to have length k and to be from aj to aj. Note that there is a
path of length 0 from every vertex to itself.

The size of a T-structure A is

|A| == |7| + |A| + 3R |RA| - ar(R) + ¥ |A|er()

where R, f range over the relation and function symbols of 7 respectively, and ar(R), ar(f)
denote the arities of R, f respectively. For example, the size of a (directed) graph with n
vertices and m edges is O(n+m). Note that a reasonable binary (“sparse” or “list”) encoding
of A has length O(|A]-log|A|). The difference between the size as defined and the length
of the binary encoding of a structure plays no role in this paper.

2.2. Formulas. Let 7 be a vocabulary. A 7-term is a variable, or of the form ft;---t,
where f is an r-ary function symbol and %1, ... ¢, are again 7-terms. Atomic T-formulas,
i.e. T-atoms, have the form t=t' or R(t1,...,t,) where R is an r-ary relation symbol in 7
and t,t' t,...,t. are T-terms. General 7-formulas are built from atomic ones by A, V,—
and universal and existential quantification Vx,3z. The vocabulary 7 is relational if it
contains only relation symbols. For a tuple of variables & = (1, ..., x;) we write ¢ = ¢(Z)
to indicate that the free variables of ¢ are among {x1,...,x;}. If A is a 7-structure and
a = (ai,...,a;) € A¥, then A |= ¢(a) means that the assignment that maps z; to a;
for i € [k] satisfies ¢ in A. A sentence is a formula without free variables. The size |p| of a
formula ¢ is the length of a reasonable binary encoding of it.

For s € N let FO?® denote the class of (first-order) formulas over a relational vocabulary
containing at most s variables (free or bound). For ¢t € N we define the classes ¥; and Iy
as follows. Both ¥y and Il are the class of quantifier free formulas; 3,1 (resp. ITi1q) is
the closure of II; (resp. ;) under positive Boolean combinations (i.e. applying V, A) and
existential (resp. universal) quantification. We set

- 37 =FO° Ny,
— II} := FO* N1l,.

Example 2.1. The formulas (1.1) in the introduction do not qualify as FO? because they
use constants s,t. They are evaluated in structures G = (G, EG, 5%, t%) where (G, E®) is
a directed graph and s&,t% € G are two vertices. Let S, T be unary relation symbols and
consider the {E, S, T}-structure G’ = (G, ES’, S, T¢") with EG’ .= E, §¢ .= {5G} and
TG .= {tG}. Define formulas ¢}, () as ¢y, (z) but with )(z) := T(z). Then Iz(S(z) Ap),(x))
is in Y2 and

G E ¢i(s) <= G' | 3x(S(z) A pi(2)).
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2.3. Parameterized complexity. A (classical) problem is a subset @ C {0,1}", where
{0,1}" is the set of finite binary strings; the length of a binary string x is denoted by
|z|. As model of computation we use Turing machines A with a (read-only) input tape
and several worktapes. We shall consider Turing machines with nondeterminism and co-
nondeterminism. For definiteness, let us agree that a nondeterministic Turing machine has
special states c3, cp,c; and can nondeterministically move from state c3 to state ¢, with
b € {0,1}, and we say A existentially guesses the bit b. An alternating Turing machine
additionally has a state cy allowing to universally guess a bit b. For a function ¢ : {0,1}* — N,
the machine is said to use ¢ many (co-)nondeterministic bits if for every x € {0,1}" every
run® of A on z contains at most ¢(z) many configurations with state c3 (resp. ¢y).

A parameterized problem is a pair (Q, k) of a classical problem @ and a parameterization s,
i.e. a logarithmic space computable function & : {0,1}* — N mapping any = € {0,1}" to its
parameter k(x) € N.

We exemplify how we present parameterized problems. The model-checking problem for
a class of first-order sentences ® is the parameterized problem
p-MC(®)

Instance: A first-order sentence ¢ and a structure A.

Parameter: |y].

Problem: ¢ € ® and A = ¢?

More formally, this is the classical problem MC(®) containing all (binary strings encoding)
pairs (¢, A) with p € ® and A | ¢, together with a parameterization that maps binary
strings encoding pairs of formulas and structures to the length of the binary string encoding
the formula, and all other strings to 0.

The class FPT contains those parameterized problems (Q, ) that can be decided in
fot time with respect to r, i.e. in time f(x(z)) - 2|1 for some computable f : N — N.
The class para-L (para-NL) contains those parameterized problems (Q, k) such that @ is
decided (accepted) by some (nondeterministic) Turing machine A that runs in parameterized
logarithmic space with respect to k, i.e. in space f(k(z)) + O(log|x|) for some computable
function f : N — N. We remark that the class XL is defined using space bound f(x(z))-log |z|
instead f(x(z))+ O(log|z|). This class is not known to be contained in FPT. We shall omit
the phrase “with respect to k" if x is clear from context.

Parameterized logarithmic space reductions have been introduced in [FGO03]. We use
the following equivalent definition: a pl-reduction from (Q, k) to (Q',x’) is a reduction
R:{0,1}* — {0,1}* from Q to Q' such that ' (R(z)) < f(k(z)) and |R(z)| < f(k(z))-|z|OD)
for some computable function f : N — N, and R is implicitly pl-computable, that is, the
following problem is in para-L:
p-BITGRAPH(R)

Instance: (x,i,b) with € {0,1}",4 > 1, and b € {0, 1}.
Parameter: k(z).
Problem: Does R(x) have length |R(z)| > i and i-th bit b?

If there is such a reduction, (Q, k) is pl-reducible to (Q’, x'), written (Q, k) <p (@', ). If
also (@', k) <p (@, k), then the problems are pl-equivalent, written (Q, k) =p; (Q’, k).
It is routine to verify that <,; is transitive and =,; an equivalence relation.

3By a run of an alternating Turing machine we mean a sequence of configurations such that each, except
the first, is a successor configuration of the previous one.
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2.4. The classes PATH and TREE. The class PATH has been introduced in [EST15]
(where it is called parafL) and can be viewed as a parameterized analogue of NL:

Definition 2.2. A parameterized problem (Q, k) is in PATH if and only if there exists a
nondeterministic Turing machine that accepts @), runs in parameterized logarithmic space,
and uses f(k(z)) - log |x| many nondeterministic bits for some computable f: N — N.

Example 2.3. To gain some intuition for this definition consider the homomorphism problem
for directed paths:* the input is a directed path P and a directed graph G the question is
whether there is a homomorphism from P into G; the parameter is k := |P|.

Note that k - log |G| nondeterministic bits are enough to guess a solution, they can
however not be stored in parameterized logarithmic space. However, the guess and check
algorithm can nevertheless be implemented in such space by observing that, intuitively,
a solution can be verified locally. More precisely, the algorithm guesses (log |G| bits to
determine) b € G and writes (a,b) on some tape where a is the source of P. It then
repeatedly updates this tape as follows: accept if a is the sink of P; else guess ¥’ € G and
check (b,b') € EB; if this fails, reject; otherwise replace (a,b) by (a’,b') where a’ is the
successor of a in P.

One similarly verifies that p-STCON< is in PATH. In fact, as has been shown in [EST15,
Theorem 3.14]:

Theorem 2.4. The parameterized problem p-STCON< is PATH-complete under pl-reductions.

The class TREE has been introduced in [CM15] and can be viewed as a parameterized
analogue of LOGCFL:®

Definition 2.5. A parameterized problem (@, ) is in TREE if and only if there exists an
alternating Turing machine that accepts ), runs in parameterized logarithmic space, and for
some computable f: N — N uses f(k(z)) - log|z| many nondeterministic bits and f(k(x))
many co-nondeterministic bits.

Example 2.6. Again to gain some intuition consider the homomorphism problem for directed
binary trees: the input is a full binary tree T with edges directed away from the root, and a
directed graph Gj; the question is whether there is a homomorphism from T into G; the
parameter is k := |T'|.

To see that this problem belongs to TREE we note that a solution can be locally verified
with the help of universal guesses, namely with h -log k many co-nondeterministic bits where
h = logk — 1 is the height of T. As in the previous example the algorithm maintains
a pair (a,b) € T x G on some tape, starting with a being the root of T. The tape is
updated as follows: if a is a leaf of T, accept; otherwise universally guess (logk bits to
determine) o’ € T and check (a,a’) € ET; if this fails, accept; else existentially guess b’ € G
and check (b, ') € ES; if this fails, reject; else replace (a,b) by (a/, V).

As outlined in the introduction the classes PATH and TREE play a central role in
this article. For this reason we provide more background on these classes in the following
by explaining their key role to understanding the parameterized space complexity of the

4The homomorphism problems for directed paths and binary trees (see Example 2.6) are known to be
PATH- and TREE-complete under pl-reductions, respectively [CM15].
5The analogy is based on the characterization of LOGCFL as logspace uniform SAC; [Ven91].
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model-checking problem for structurally restricted primitive positive sentences. We restate
the relevant results reformulated in our context. They are not needed later on.

Recall that a sentence ¢ in a relational vocabulary is primitive positive if it is built
from atoms by means of conjunctions and existential quantifications. To define the primal
graph G(ip) first write ¢ in prenex form (introducing new variables) and then delete each
subformula of the form x=y replacing all occurrences of y by z; the graph G(y) has the
variables of the resulting sentence as vertices, and an edge between two distinct variables if
they occur both in some atomic subformula of ¢. A class ® of primitive positive sentences
has bounded arity if there is a constant r € N such that all relation symbols in all sentences
in ® have arity at most r. Let us say, ® has bounded tree-depth up to logical equivalence if
there is a constant ¢ € N such that every sentence in ® is logically equivalent to a primitive
positive sentence whose primal graph has tree-depth at most c¢. We use a similar mode of
speech for path-width and tree-width.

Then the complexity classification of problems p-MC(®) reads as follows.

Theorem 2.7. Let ® be a decidable class of primitive positive sentences of bounded arity.

(1) If ® has bounded tree-depth up to logical equivalence, then p-MC(®) € para-L.

(2) If ® does not have bounded tree-depth but bounded path-width up to logical equivalence,
then p-mc(®) is PATH-complete under pl-reductions.

(3) If ® does not have bounded path-width but bounded tree-width up to logical equivalence,
then p-mc(®) is TREE-complete under pl-reductions.

(4) If ® does not have bounded tree-width up to logical equivalence, then p-MC(®) is not in
FPT unless A[1] = FPT.

Statement (4) is Grohe’s famous classification [Gro07] (building on [GSS01]). The other
statements are from [CM15]. An even finer classification (including (4)) appears in [CM17].
Note statements (3) and (4) state a complexity gap (assuming A[1] # FPT): if p-mc(®) is
in FPT at all, then it is already in TREE.

Originally these results have been phrased for homomorphism problems. The equivalence
of the problems is well known since Chandra and Merlin’s seminal paper [CM77]. Instead
of logical equivalence of sentences one talks about homomorphic equivalence of relational
structures, that is, structures with isomorphic cores.

Finally, the connection to bounded variable logics mentioned in the introduction follows
from [KV00, Lemma 5.2, Remark 5.3] (see also [DKV02, Theorem 12] and [Chel4, Theorem 4]
for similar statements):

Theorem 2.8. Let s € N and ¢ be a primitive positive sentence. Then ¢ is logically
equivalent to a primitive positive sentence whose primal graph has treewidth less than s if
and only if ¢ is logically equivalent to a primitive positive sentence in FO?.

3. THE TREE HIERARCHY

Theorem 2.7 and the following discussion give some special interest to the class TREE. It
has been asked in [CM15] whether TREE is closed under complementation. If not, then we
get an alternation hierarchy above TREE defined in the usual way (that still might collapse
to a level further up). In this section we define this tree hierarchy and make some initial
observations.
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3.1. Definitions. Following [CM15] we consider machines A with mized nondeterminism.
Additionally to the binary nondeterminism embodied in the states c3, ¢y, ¢y, ¢1 from Sec-
tion 2.3 they use jumps explained as follows. Recall that our Turing machines have an input
tape. During a computation on an input x of length n := |z| > 0 the cells numbered 1 to n of
the input tape contain the n bits of x. The machine has an existential and a universal jump
state j3 resp. jy. A successor configuration of a configuration in a jump state is obtained
by changing the state to the initial state and placing the input head on an arbitrary cell
holding an input bit; the machine is said to existentially resp. universally jump to the cell.

Acceptance is defined as usual for alternating machines. Call a configuration universal
if it has state jy or cy, and otherwise ezistential. The machine A accepts z € {0,1}" if its
initial configuration on x is accepting. The set of accepting configurations is the smallest set
that contains all accepting halting configurations, that contains an existential configuration
if it contains at least one of its successor configurations, and that contains a universal
configuration if it contains all of its successor configurations.

Observe that the number of the cell to which the machine jumps can be computed in
logarithmic space by moving the input head stepwise to the left. Intuitively, a jump should
be thought as a guess of a number in [n].

Each run of A on some input z contains a subsequence of jump configurations (i. e. with
state jg or jy). For a natural number ¢ > 1 the run is t-alternating if this subsequence
consists of ¢ blocks, the first consisting of existential configurations, the second in universal
configurations, and so on. The machine A is t-alternating if every run of A on any input is
t-alternating.

Note that a 1-alternating machine can existentially jump but not universally; it may
however use universal (and existential) bits; in fact, the use of nondeterministic bits is
completely neglected by the above definition.

For f : {0,1}" — N, we say A uses f jumps (bits) if for every x € {0,1}" every
run of A on z contains at most f(x) many jump configurations (resp. configurations
with state c3 or c¢y). As for a more general notation, note that every run of A on x
contains a (possibly empty) sequence of nondeterministic configurations, i.e. with state in
{j3,4v, ca,ev}. The nondeterminism type of the run is the corresponding word over the
alphabet {j3, jv, c3, cy}. For example, being 2t-alternating means having nondeterminism
type in ({j3, 3, ey} {jiv, 3, ev})’. Here and below, we use regular expressions to denote

languages over {j3, jv, c3, ey }.

Definition 3.1. A parameterized problem (Q, ) is in TREE[x] if there are a computable f :
N — N and a machine A with mixed nondeterminism that accepts @, runs in parameterized
logarithmic space (with respect to ) and uses f o k jumps and f o k bits. If additionally A
is t-alternating for some t > 1, then (@, k) is in TREE[t].

The definition of TREEJt] is due to Hubie Chen (personal communication).

3.2. Observations. The following two propositions are straightforward (cf. [CM15, Lem-
mas 4.5, 5.4]):

Proposition 3.2. A parameterized problem (Q, k) is in PATH if and only if there are
a computable f : N — N and a I1-alternating machine with mized nondeterminism that
accepts Q, runs in parameterized logarithmic space (with respect to k) and uses f o k jumps
and 0 bits.
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Proposition 3.3. TREE = TREE[1].

Hence, all inclusions displayed in (1.2) in the introduction are trivial except possibly
the last one TREE[+] C FPT. We prove it in Corollary 4.4. It is likely to be strict:

Proposition 3.4.
(1) para-NL C TREE[*] if and only if NL C L.
(2) FPT C TREE[%] if and only if P C L.

Proof. We prove (1), the proof of (2) is similar. For the backward direction, note that
NL C L implies para-NL C para-L by general results of Flum and Grohe [FG03, Theorem 4,
Proposition 8]. The same results also imply the forward direction noting that TREE[%] is
contained in XL. We include a direct argument: assume para-NL C TREE[«], let @ be a
classical problem which is NL-complete under logarithmic space reductions and let xg be
the parameterization which is constantly 0. Then (@, ko) € para-NL C TREE[*], so there
are a function f and machine A with mixed nondeterminism that accepts ( and on input x
uses f(0) 4+ O(log |z|) space and f(0) jumps and bits. Thus, @ can be decided in logarithmic
space by simulating A for all possible outcomes of these constantly many jumps and bits. []
Remark 3.5. [EST15] observed that para-NL C PATH is equivalent to NL C L.

The following technical lemma will prove useful in the next section.

Lemma 3.6 (Normalization). Let t > 1 and (Q, k) be a parameterized problem.

(1) (@, k) € TREE]t] if and only if there are a computable f : N — N and a t-alternating
machine A with mized nondeterminism that accepts Q, runs in parameterized logarithmic
space and such that for all x € {0,1}" every run of A on x has nondeterminism type:

Y @) (yeq) <) Y2 50 )@t mod 2), (3.1)

( (jaey Jves
(2) (Q, k) € TREE[*] if and only if there are a computable f : N — N and machine A with

mized nondeterminism that accepts @Q, runs in parameterized logarithmic space and such
that for all x € {0,1}" every run of A on x has nondeterminism type:

(jagv) . (3.2)

Proof. We only show (1), the proof of (2) is similar. The backward direction of (1) is obvious.
To prove the forward direction, assume (Q,x) € TREE[t] and choose a parameterized
logarithmic space t-alternating machine A with mixed nondeterminism accepting @) and a
computable function f: N — N such that A on input z € {0,1}" uses f(x(z)) many jumps
and bits.

Every run of A on x consists of at most t blocks. The first block is the sequence of
configurations from the starting configuration until the first configuration in state jy, the
second block is the sequence starting from this configuration until the first following configu-
ration in state jg, and so on. We can assume that the first nondeterministic configuration is
a jump configuration and thus has state j3.

Define the machine A’ as follows. On an input z of length at least 2, A’ simulates A
on z and additionally stores the parity of (the number of) the current block of the run. In
an odd (even) block A’ replaces A’s existential (universal) guesses of a bit b by existential
(universal) jumps. Namely, it first computes the number m of the cell currently read on the
input tape, then performs an existential (universal) jump, then computes the parity b of the
cell it jumps to, then moves the input head back to cell m and then continues the run of A
with guessed bit b (i.e. in state ¢p).
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Then A’ accepts @ and every run of A’ on z does not have any configuration with
state c3 (cy) in an odd (even) block. More precisely, and assuming ¢ = 3 for notational
simplicity: every run of A’ on z has a nondeterminism type which is a prefix of a word in

ja{Cv,ja}gf(n(x))jv{ca,jv}gf(n(x))ja{cv,ja}gf(n(x))~ (3.3)

Since « is computable in logarithmic space, the number k := f(x(x)) can be computed in

parameterized logarithmic space. Define a machine A” which on z first computes k := f(k(z))

and then simulates A’ keeping record of the nondeterminism type of the sofar simulated run.

Moreover, A” uses the record to do appropriate dummy nondeterministic steps to ensure its
nondeterminism type to be

ja(evga)* eviv(caje) P eajaleyia)Fey. a

4. MODEL-CHECKING PROBLEMS AND THE TREE HIERARCHY

In Section 4.1 we prove Theorem 1.1 (1) as Theorem 4.1, and draw some corollaries to its
proof in Section 4.2. In particular, Theorem 1.1 (2) is proved as Corollary 4.3, and the
collapse theorem announced in the introduction is proved as Corollary 4.2. In Section 4.3
we prove that the completeness results stay true when function symbols are allowed.

4.1. Completeness results. It is easy to see that p-Mc(FO?®) € para-L for s = 1. We
prove completeness results for s > 2.

Theorem 4.1. Lett > 1 and s > 2. Then p-MC(X7) is complete for TREE[t] under
pl-reductions.

Proof. (Containment) We first show that p-mc(X7) € TREE[t]. This is done by a straight-
forward algorithm A as follows. At any moment it keeps in memory a formula 1 and an
assignment « to its free variables. For simplicity we assume that all negation symbols of
appear only in front of atoms.

In case 9 is an atom or a negated atom, A accepts if a satisfies ¢ in A and rejects
otherwise. If 4 is a disjunction (¢oV 1) (conjunction (1o /\1/}1)), the algorithm A existentially
(universally) guesses a bit b and recurses replacing 1 by ¥, and « by its restriction to the free
variables in ¢p. If 1 is 1)y (resp. V), then A makes an existential (resp. universal) jump
to guess a € A and recurses replacing 1 by 1y and « by the assignment which extends «
mapping x to a. Here we assume x occurs freely in ¢y — otherwise A simply recurses on
with a unchanged.

When started on a ¥7-sentence ¢ and the empty assignment, the formulas occurring
during the recursion are subformulas of ¢ and thus contain as most s variables, so each of
the assignments computed during the recursion can be stored in space roughly s -log|A|.

(Hardness) We now show that p-Mc(X2) is hard for TREE[t] under pl-reductions. Given
a problem decided by a t-alternating machine B in small space, we construct a structure
akin to the configuration graph of B. Its universe consists of all small nondeterministic
configurations of B. We draw a directed edge from one such configuration to another if there
exists a deterministic computation of B leading from the first configuration to the second.
We then express acceptance by a short (parameter bounded) sentence which is constructed
in two steps: first we give a direct and intuitive construction using function symbols. Then,
in a second step, we show how to eliminate these functions symbols. Details follow.
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Let (@, k) € TREE[t] be given and choose a computable f and a t-alternating machine B
with f ok jumps and f ok bits such that B accepts @ and runs in space f(k(z))+ O(log|z|).

Given z € {0,1}" compute an upper bound s = f(x(x))+O(log|z|) on the space needed
by B on z. Since x is computable in logarithmic space, such a number s can be computed
in parameterized logarithmic space. We can assume that B on x always halts after at
most m = 2/(s(@)) . |$|O(1) steps. Note the binary representation of m can be computed in
parameterized logarithmic space.

For two space s configurations ¢, ¢ of B on x, we say that B reaches ¢’ from c if
there is a computation of B leading from c to ¢’ of length at most m that does neither
pass through a nondeterministic configuration nor through a configuration of space larger
than s. In particular, ¢ cannot be nondeterministic but ¢’ can. We assume that B reaches a
nondeterministic configuration from the initial configuration, i.e. the computation of B on x
is not deterministic.

We define a structure A whose universe A comprises all (length O(s) binary codes of)
nondeterministic space s configurations of B on z. It interprets a binary relation symbol E,
unary function symbols sg, s; and unary relation symbols S, F, J3, Jv, C3, Cy as follows.

A pair (c,c’) € A? is in E? if there exists a successor configuration ¢’ of ¢ such that B
reaches ¢ from ¢’. The relation symbol S is interpreted by S = {cgst} Where cgrg is the
(unique) first configuration in A reached by B from the initial configuration of B on . The
relation symbols J3, Jy, C3 and Cy are interpreted by the sets of configurations in A with
states j3, jv, c3 and oy respectively. Obviously these sets partition A.

The relation symbol F is interpreted by the set A of those ¢ € A such that one of the
following holds:

- cé€ C’ﬁ‘ U Jf‘ and B reaches a space s accepting halting configuration from at least one
successor configuration of ¢;

- cé€ C'VA U J\f‘ and B reaches a space s accepting halting configuration from all successor
configurations of c.

Finally, the function symbols sp and s; are interpreted by any functions 50 ,51 A A
such that for every ¢ € C4 U CH with {d | (¢,d) € EA} # () we have:

{SOA(C),S{S‘(C)} ={de 4 | (c,d) € EA}.

It is easy to check that A is computable from x in parameterized logarithmic space. For
example, to check whether a given pair (¢,c’) € A2 is in EA we simulate B starting from c
for at most m steps; if the simulation wants to visit a configuration of space larger than s or
a nondeterministic configuration # ¢/, then we stop the simulation and reject.

For a word w of length |w| > 1 over the alphabet {j3, jv, c3, cv} we define a formula ., ()
with (free or bound) variables z,y as follows. We proceed by induction on the length |w].

If lw| =1, define ¢, (z) := F(x). For |w| > 1 define:

e (@) = Cy(@) A (pu(s0(@)) A pu(si(2))),

Pesuw(@) = C3(x) A (P (s0(2)) V Pu(s1(2))),

Pizw() = J3(x) A y(E(z,y) AJz(z = y A pu(z))),
Pivw (@) 1= Jo(2) AVY (~E(z,y) VVa(~z =y V pu ().
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Let |w| > 1 and assume that ¢ € A is a configuration such that every run of B on z
starting at ¢ has nondeterminism type w and consists of space s configurations; then

c is accepting <= A = ¢y (c). (4.1)

This follows by a straightforward induction on |w|. Now we look for A’ and ¢!, € ¥? with
this property but in a relational vocabulary.

By the Normalization Lemma 3.6 we can assume that all runs of B on x have nonde-
terminism type w of the form (3.1). For such a w we observe that ¢,,(z) has the required
quantifier structure: in the notation of the next Section 4.3 it is in func-%2, i.e. the class of
formulas defined as X7 but allowing function symbols.

Furthermore, o, () does not contain nested terms, in fact, all its atomic subformulas
containing some function symbol are of the form E(sy(x),y), J3(sp(x)), or Jy(sp(z)). For
b € {0,1} we introduce binary relation symbols Ej and unary relation symbols Jy, and J=,
and then replace the atomic subformulas E(sy(x),y), J3(sp(x)), Jv(sp(z)) in ¢u(x) by
Ey(z,y), Jap(z), Jvp(x) respectively. This defines the formula ¢/, (). Since () € func-X2,
we have ¢/, (z) € ¥2.

To define A’ we expand A by interpreting the new symbols by:

B = {(c,;d) | (si(c),d) € EAY,
JEIb/ = {C ‘ 3?(0) € Jf}v
J& = {c| st (c) € JQA‘}

We have for all ¢ € A:

Al pu(c) = A,
As the assumption of (4.1) is satisfied for cyst, and cqyst is accepting if and only if B accepts x,
that is, if and only if x € Q, we get

TEQR <~ A’ ’: SO{LU(CﬁI‘St)'
Setting ¢ := Jx(S(x) A ¢, ()) we get a reduction as desired by mapping z to (¢, A’). [

4.2. Corollaries. The easy elimination of function symbols in the proof of Theorem 4.1 rests
on the fact that it is applied only to formulas where function symbols are not nested. We
shall treat the general case in the next subsection. Before that we draw some consequences
of the last theorem and its proof.

Corollary 4.2. Lett' >t > 1. If TREE[t] is closed under complementation, then
TREE[t'] = TREE[{].

Proof. Tt is sufficient to show this for ¢/ = ¢ + 1. Assume TREE[{] is closed under comple-
mentation. By the previous theorem it suffices to show p-mc (37 +1) € TREE[t], and we know
p-MC(X?) € TREE[t]. By assumption we find a computable f and a t-alternating machine A’/
with f ok jumps and f o k bits that runs in parameterized logarithmic space and accepts
the complement of p-Mc(X2).

We describe a machine B accepting p-MC(X7,,). On input (¢, A) with a sentence
¢ € X7 we first eliminate all void universal quantifiers, i.e. replace all subformulas Va1
by 1 whenever x does not appear free in ). The machine B starts simulating the recursive
algorithm A for p—MC(E? 1) described in the previous proof. The simulation is stopped
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when A recurses to a subformula of ¢ of the form V1. In this case, Va1) has at most one free
variable y and the current assignment o maps it, say, to a € A. The machine B simulates A’
on (x,A’) where A’ expands A interpreting a new unary relation symbol C' by {a} and
where  is a ¥?-sentence logically equivalent to =Vay(C(y) — ¥).

It is clear that B accepts p—MC(Ef +1)- Observe that B does not make universal jumps
before it starts simulating A’. Hence, since A’ is t-alternating, so is B. The number of
jumps and guesses in a run of B before the simulation of A’ is clearly bounded by |¢|, the
parameter. Furthermore, B can be implemented in parameterized logarithmic space: for
the simulation of A’ it stores (¢),a) and relies on the implicit pl-computability of (x, A’)
from (¢, a, A). Thus, B witnesses that p-Mc(¥7,,) € TREE[t]. []

Corollary 4.3. Let s > 2. Then p-MC(FO?®) is complete for TREE[x| under pl-reductions.

Proof. That p-Mc(FO?®) € TREE[«] can be seen as in the proof of Theorem 4.1. Hardness
of p-MC(FO?) also follows as in this proof, but the argument is actually simpler: let
(Q,k) € TREE[#] and choose a machine accepting it according to the Normalization
Lemma 3.6 (2). Observe that the formula ¢,, does not contain the function symbols sg, s
for w as in (3.2). Hence the reduction can simply map z € {0,1}" to (Jz(S(z) A pw(x)), A”)

)f('”v(w))

where w = (j3jv and A” is obtained from A by forgetting the interpretations of sq, s1.

It follows from (4.1) that this defines a pl-reduction from (Q, k) to p-Mc(FO?). []
Corollary 4.4. TREE[*] C FPT.
Proof. By Corollary 4.3 and the fact that Mc(FO?) is in P. (]

The introduction mentioned the result that the classical problem MC(FO?) is P-complete
for s > 2. As a further corollary we get that the parameterized analogue of this completeness
result is likely false:

Corollary 4.5. Unless P = L, there is no s € N such that p-MC(FO?) is FPT-complete
under pl-reductions.

Proof. If p-Mc(FO?) is FPT-complete, then (we can assume s > 2 and thus) TREE[«] = FPT
by Corollary 4.3. This implies P = LL by Proposition 3.4. []

4.3. Function symbols. Let func-X; be defined as ¥; except that function symbols are
allowed. It is not hard to show (see e.g. [FG06, Example 8.55]) that p-MC(func-%;) is
equivalent to p-MC(X;) under fpt-reductions (even pl-reductions). An analogous statement
for the model-checking problems characterizing the classes of the W-hierarchy is not known.
In fact, allowing function symbols gives problems complete for the presumably larger classes
of the W™ hierarchy. We refer to [CFG05] for more information.

Let func-¥7 and func-FO® be defined as 3 and FO?, respectively, except that function
symbols are allowed.
Theorem 4.6. Let s > 2 and t > 1. Then
(1) p-Mc(X§) =p p-MC(func-X3).
(2) p-MC(FO?®) =,; p-MC(func-FO?).
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Proof. The second statement will be an easy corollary to the proof of the first. We first
give a rough, informal sketch of this proof. The idea is, as usual, to replace functions by
their graphs and translate formulas to the resulting relational vocabulary using formulas
value,(x, T) expressing that z is the value of the term ¢ at z. This formula implements the
bottom-up evaluation of ¢ at Z in a straightforward way. However, to do so, the formula
needs to quantify over tuples of intermediate values. To do this using a single variable we
extend the structure to contain tuples of appropriate lengths. This enables us to write
value,(x,Z) and the whole translation with only a constant overhead of new variables. To
preserve the quantifier alternation rank we write two versions of value;(x, z), an existential
and a universal one. Details follow.

To prove statement (1) it suffices, by Theorem 4.1, to show
p-Mc(func-35) <, p-Mo(XiH3).

Let A be a structure of a vocabulary 7 with |A| > 2. We define a relational vocabulary 7/
which depends on 7 only, and a 7/-structure A’. The universe A’ is the union

— of A;
— for each relation symbol R € 7 of arity r, of the set

{(al,...,ai) ‘ 2<i<rand (ay,...,a;,Qt1,...,0;) € RA for some Wit 1y, 0p € A},
i. e. the set of all ‘partial’ tuples that can be extended to some tuple in R®; note that the

size of this set is bounded by (r — 1) - |[RA|;
— for each function symbol f € 7 of arity r, of the set

U2§i§r Al
We identify A! with A and it is therefore that the union Jy,;., A’ starts at i = 2. Recall
we assumed |A| > 2, 50 Jy<;<, A’ has size at most [A]"*1. Altogether, |A’] < |A[2.
Now we define the vocabulary 7" and the 7/-structure A’ in parallel:
— 7/ contains a unary relation symbol U interpreted by the original universe of A, that is,
UA = A

— For every constant symbol ¢ € 7, the vocabulary 7/ contains a unary relation symbol U,
which is interpreted as

A A
U = {c*}.
— For every r-ary relation symbol R € 7, the vocabulary 7/ contains a unary relation
symbol Ur and we set

Uj%/ ={bed ! b= (ay,...,a,) for some (ai,...,a,) € RA}.

- For every r-ary function symbol f € 7, the vocabulary 7' contains a binary relation
symbol F; and we define

Fy Ti= {((a1,...,ar),a) € A" | (a1,...,a,;) € A" and Aa, ... a,) = a}.
— 7/ contains a ternary relation symbol R.; the ‘tuple extending relation’ R‘Q/ is defined by
Rfl = {(b, a,b)ye A x Ax A ’ there are 1 > 1 and ay,...,a; € A such that
b=(a1,...,a;) € A and b' = (ay,...,a5,a) € A},
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Now, for any sentence ¢ € func-%7, we construct two sentences trans? and trans’, such that

¢ @

AEp = A'E tmnsi
— A'E tmnsz.
We start by defining, for every term m(z) with = x1,...,zs, two formulas

(4.2)

value? (z,Z) and  wvaluel,(z, )
which respectively are in Ei+3 and Hi+3 up to logical equivalence. Furthermore, for every
a € A" and every aq,...,as € A it holds that
a=m?(ay,... a;) <= A’ = Ualue?n(a, a,...,as)
— A'E valueyn(a, a,...,as).
If m is a variable z;, then value, := value?, ;== x = x;. If m is a constant ¢, then
valuel, = value?, = U,(z).

If m is the composed term f(m1,...,m,), then
valuel (z,T) == EIy(EIx(ac =y Atuple,,,  m (2,3)) A Fy(y, ac)),

value? (z,T) == Vy(ﬁEla:(az =y Atuple,, o, (2,T))V F(y, 33)),

where tuple,, is defined inductively on r as follows.

LyeeesMp

tuple,,, (x, ) := value,am(ac, z),
tuple,, x,T) = JyIz (Re(y, z,x) A3z (x =y Atuple,, . (z,T))

11---7mi+1<
Az(z =2z A value?ni (x, i‘)))

It is easy to verify that tuple,, € E‘TF?’ and for every b € A’ and every aq,...,as € A

1yeeesMp

b= (mf‘(al, Cas), .. mPay, . as)) — A= tuple,,  ,.(ba,. .. a).

For formulas ¢ we define tmnsi
3

mi=ma

and tmnsz by induction as follows:
trans = EI:U(chlue3 (z,Z) A value?, ,(2,7)),
tmnsm1 —my = V:L“(ﬂvalue (z,Z) V value, ,(2,2)),
tmnsle my =3z (Ur(z) A tuple,,, . (x,T)),
transfy,,  m. = Vm(—'tuple e (x, z)V Ug(z)).

If ¢ = =, then tmn% = ﬂtmnsdj and tmnsw = ﬂtransi If ¢ = (¢1V 42), then

tmns?p = (tmnsa1 V tmnsi) and tmnsz = (tmnsz V tmnsdl ) The case for (11 A o) is
similar. If ¢ = Jz;4, we define
tmnscP = Ja; (Ua(zi) A tmnsw) and  trans’ () := Fa; (Ua(zi) A tmnsz).

Similarly, for o = Va,

trans’ —sz(—'UA(xZ)\/tmnsw) and  trans’

o = V:I:Z(—'UA(:JJZ) Vv tmnsw)

o
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It is routine to verify (4.2). Moreover, if ¢ is odd, then trans? is equivalent to a Ef”—sentence;

©
and if ¢ is even, then tmnsz is equivalent to a Ef+3-sentence. For simplicity, we denote the

3

corresponding X5 sentence and X 3-sentence by transg,

every structure A and ¢ € func-%j

and tmnsz again. Therefore, for

(A’, tmnsa) if ¢ is odd,
A )
(A ) = {(A’, trans) if t is even

gives the desired pl-reduction from p-Mc(func-X§) to p-Mc(X53). This finishes the proof of
statement (1).

The proof of statement (2) is now easy. By Corollary 4.3, it is enough to show
p-MC(func-FO?) <, p-Mc(FO*T?).

This is witnessed by the reduction mapping an instance (A, ) of p-MC(func-FO?) to the
instance (A’ tmnsi), defined as above. L]

5. PATH AND OPTIMALITY OF SAVITCH’S THEOREM

Savitch’s Theorem is a milestone result linking nondeterministic space to deterministic space.
STCON

Instance: A directed graph G and two vertices s,t € G.
Problem: 1s there a (directed) path from s to ¢ in G?

Theorem 5.1 (Savitch [Sav70]). sTcon € SPACE(log?n). In particular,
NL C SPACE(log® n).

The second statement follows from the first via the following proposition, itself a direct
consequence of the fact that STCON is complete for NL under logarithmic space reductions
(see e.g. [AB09, Theorem 4.18]).

Proposition 5.2. Let s : N — N and assume sTCON € SPACE(s). Then
NL C SPACE <5(n0(1)) + log n) .

In this section we prove a stronger version of Theorem 1.2 and Theorem 1.3. Additionally,
we explain what a collapse of the parameterized classes PATH and para-L means in terms
of classical complexity classes.

5.1. Proof of Theorem 1.2. Recall we say Savitch’s Theorem is optimal if
NL ¢ SPACE(o(log®n)).
In this subsection we prove:

Theorem 1.2. If Savitch’s Theorem is optimal, then PATH ¢ para-L.

In fact, we shall prove something stronger, namely Theorem 5.3 below: its assumption
for computable f is equivalent to PATH C para-L by Theorem 2.4; its conclusion implies that
Savitch’s Theorem is not optimal via Proposition 5.2. We shall use this stronger statement
when proving Theorem 1.3 in the next subsection.
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Theorem 5.3. Assume there is an algorithm deciding p-STCON< that on instance (G, s, t, k)
TUNS 1N Space

f(k) + O(log |G)) (5.1)
for some f: N — N (not necessarily computable). Then STCON € SPACE (o(log?n)).
Proof. Choose an algorithm A and a function f according to the assumption. Without loss
of generality, assume that f(k) > k for every k € N. Let ¢ : N — N be a non-decreasing and
unbounded function such that for all n € N

£(e(n) < logn, (5.2)
and hence
t(n) <logn. (5.3)
Note that we might not know how to compute ¢(n).

Now let G be a directed graph, s,t € G, n := |G|, and k > 2. We compute in space
O(log k + logn) the minimum ¢ := {(k) € N with

kE>n—1, (5.4)
which implies
logn
<0 . 5.5
- <logk> 55

Then we define a sequence of directed graphs (Gf) with self-loops, as follows. For

1€{0,...,¢}
every i > 0 the vertex set G¥ of GF is G, the vertex set of G. There is an edge in G¥ from
a vertex u to a vertex v if and only if there is a directed path from u to v in G of length at

most k. In particular, EG6 is the reflexive closure of E¢. By (5.4)
there is a path from s to t in G <= there is an edge from s to t in G§. (5.6)
Furthermore, for every i € [{] and u,v € G¥ =GF | =G
there is an edge from u to v in G¥
<= there is a path from u to v in Gf_l of length at most k.

This can be decided by the following recursive algorithm:

Algorithm C
input: a directed graph G, k,7 € N, and u,v € G
output: decide whether there is an edge in Gf from u to v.
1. if i = 0 then output whether (u = v or (u,v) € EG) and return
simulate A on (Gf_l, u, v, k:)

2
3. if in the simulation of A queries “(u/,v") € ESa
4 then call C(G, k,i — 1,u/,v").

For every k > 2 let CF be the algorithm which on every directed graph G and s,t € G
first computes ¢ = ¢(k) as in (5.4) and then simulates C(G,k, ¢, s,t). Thus, C* decides
whether there is a path from s to ¢ in G by (5.6). We analyse its space complexity. First,
the depth of the recursion tree is ¢, as C* recurses on i = ¢, —1,...,0. As usual, C* has to
maintain a stack of intermediate configurations for the simulations of

AGY, k), AGE |, _k),...,A(GE, _ _ k).
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For the simulation of each A(Gé€ , - - k), the size of the configuration is linearly bounded by
f(k) + O(logn) because of (5.1). Therefore, the total space required is

f(k) -logn +log®n
log k

O(logk+logn+€-(f(k)+logn)) §O<logk+ (5.7)
by (5.5). As a consequence, in case k = «(n), (5.2) and (5.3) imply that (5.7) is bounded
by o(log2 n). So if ¢(n) would be computable, we could replace it with a logspace computable
function, and then the result would follow. In particular, under the assumption PATH =
para-L of Theorem 1.2, we can assume f is computable, and hence find a computable ¢.

In order to circumvent the possible uncomputability of ¢(n) we adopt the strategy
underlying Levin’s optimal inverters [Lev73, CF14]. Namely, we simulate all the algorithms
C2,C3,... in a diagonal fashion, while slowly increasing the allowed space.

Algorithm S

input: a graph G and s,t € G

output: decide whether there is a path in G from s to ¢.
1. S+ 2

2. for alli=2to S do

3. simulate C* on (G, s,t) in space S

4. if the simulation accepts or rejects in space S
5. then accept or reject accordingly

6. S+ S+1

7. goto 2.

Clearly, S decides STCON. We prove that its space complexity is o(log2 n) on every input
graph G with n := |G|. To that end, let k := +(n) and s* be the space needed by C*(G, s, 1).
As argued before, we have s* < o(log?n). Observe that S must halt no later than S reaches
the value max(:(n), s*), which is again bounded by o(log®n) due to (5.3). This concludes
the proof. L]

5.2. Proof of Theorem 1.3. For the reader’s convenience, we repeat the statement of the
theorem:

Theorem 1.3. Let f be an arbitrary function from N to N. If Savitch’s Theorem is optimal,
then p-MC(X2?) is not decidable in space o(f(|p|) - log |A]).

Note that neither f nor the function hidden in the of...)-notation is assumed to be
computable. It is here where our stronger version Theorem 5.3 of Theorem 1.2 becomes
useful.

Proof. Assume p-MC(X?) is decidable in space o( f(|p|) -log |A|) for some function f : N — N,
i.e. space g(f(|¢|) - log|Al) for some function g : N — N with
lim g(m) =0. (5.8)
m—0o0 m
By Theorem 5.3 it suffices to show that there exist an arbitrary function h : N — N and an
algorithm deciding p-STCON< that on an instance (G, s, t, k) runs in space

h(k) + O(log |G]). (5.9)
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Example 2.1 defines a pl-reduction from p-STCON< to p-MC(X?) that maps an instance
(G, s,t,k) of p-STCON< to an instance (p, A) of p-Mc(X?) such that |A| < O(|G|) and
|p| < ¢-k for some constant ¢ € N. Then, by the assumption and this reduction, there is an
algorithm A which decides p-STCON< in space

9(f(c k) -log|Gl),
Here, we assume without loss of generality that f is non-decreasing, so f(|¢|) < f(c- k).
By (5.8), for every ¢ € N there is my € N such that for every m > my we have

glm) _ 1
m ~/
Thus, for £ := f(c-k) and m := f(c- k) - log |G|
m
9(f(c-K) 105 |GI) = g(m) < max g(m) + " = max g(m) +log|C|.

m<my

Note max,<m, g(m) only depends on ¢, and hence only on the parameter k. Consequently
the space required by A can be bounded by (5.9) for an appropriate function »: N — N. [

5.3. Bounded nondeterminism in logarithmic space. We close this section showing
that the collapse of the parameterized classes para-L and PATH can be characterized as a
collapse of classical classes L and NL restricted to ‘arbitrarily few but non-trivially many’
nondeterministic bits.

Definition 5.4. Let ¢ : N — N be a function. The class NL|¢|] contains all classical
problems @ that are accepted by some nondeterministic Turing machine which uses ¢(|z|)
many nondeterministic bits and runs in logarithmic space.

Proposition 5.5. The following are equivalent.
(1) para-L = PATH.
(2) There exists a space-constructible® function c(n) > w(log(n)) such that NL[c] = L.

Proof. To see that (1) implies (2), assume para-L = PATH. Then there is a machine A
deciding p-STCON< which on an instance (G, s,t, k) runs in space f(k) 4+ O(log|G|) for
some computable f : N — N. We can assume that f is increasing and space-constructible
(see [FG06, Lemma 1.35] for a similar construction). Then there is an unbounded, logarithmic
space computable ¢ : N — N such that f(¢(n)) < logn for all n € N. Then

c(n) :=(n) -logn

is space-constructible and ¢(n) > w(log(n)). We claim that NL[¢] = L.

Let @ € NL[c| be given. Choose a machine B accepting @) that on input = uses at most
s = O(log |z|) space and at most ¢(|x|) - log |x| many nondeterministic bits. We assume there
is at most one accepting space s configuration c,.. that can possibly appear in any run of B
on x.

The digraph G has as vertices all space s configurations of B on z and an edge from u
to v if there is a computation of B started at u leading to v which uses at most log |z| many
nondeterministic bits and space at most s. Note this can be decided in logarithmic space by
simulating B exhaustively for all possible outcomes of guesses.

O6Recall, ¢: N — N is space-constructible if ¢(n) can be computed from n in space O(c(n)).
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Since ¢ is logarithmic space computable, the instance (G, Cstarts Caces L(|JJD) of p-STCON<
is implicitly logarithmic space computable from x; here, cgq is the starting configuration
of B on x. This is a “yes” instance if and only if € ). Given this input, A needs space

f((|z])) + O(log |G]) < O(log |]).

To see that (2) implies (1), assume ¢(n) > w(log(n)) is space-constructible and NL[¢] = L.
There is a logarithmic space computable, non-decreasing and unbounded function ¢ : N — N
such that ¢(n) > «(n) - [logn] for all n € N. By Theorem 2.4 it suffices to show that
P-STCON< can be decided in parameterized logarithmic space.

Define the classical problem

Q = {(G,s,t, k) € sTcoN< | k < (|G])}.

Then @ € NL[¢] by a straightforward guess and check algorithm. By assumption, @ is
decided by a logarithmic space algorithm A. Then we solve p-STCON< as follows using some
arbitrary “brute force” (deterministic) algorithm B deciding p-STCON<. Given an instance
(G, s,t, k) we check whether k& < ¢(|G|); if this is the case, we run A and otherwise B. In the
first case we consume only logarithmic space. In the second case, the space is effectively
bounded in k because the instance size is. Indeed, if & > «(|G]), then |G| < f(k), where f is
a computable function such that fow(n) > n for all n € N. ]

Remark 5.6. There are similar characterizations of W[P| = FPT in [CCDF95, Theorem 3.8],
EW[P] = EPT in [FGWO06, Theorem 4], and BPFPT = FPT in [MM13, Theorem 5.2].

We find it worthwhile to point out explicitly the following direct corollary.

Corollary 5.7. If Savitch’s Theorem is optimal, then L # NL]c]| for all space-constructible
functions c¢(n) > w(logn).

Proof. By Proposition 5.5 and Theorem 1.2. L]

6. A DETERMINISTIC MODEL-CHECKER
In this section we prove
Theorem 1.4. For all s,t € N the problem p-MC(X$) is decidable in space
O(log e - (log || + log |A[)).

This claims for each s € N the existence of an algorithm. Our algorithm is going to be
uniform in s, so we give a more general statement formulating the space bound using the
width w(p) of a formula ¢. This is the maximal number of free variables in some subformula
of .

Being interested in the dependence of the space complexity on the parameter |p|, we
formulate all results as statements about the classical model-checking problem Mc(®) for
various classes ® of first-order sentences. In this section we allow besides relation symbols
also constants in the vocabulary of formulas in ®. Abusing notation we continue to use
notation like ¥; and Il;, now understanding that the formulas may contain constants.
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Besides || it is technically convenient to also consider another size measure of ¢, namely
the number of subformulas ||¢|| of ¢ counted with repetitions. In other words this is the
number of nodes in the syntax tree of ¢. Formally, it is defined by a recursion on the syntax:

lel = 1 for atomic ¢
D)l = T+ ell + ¢l for e {A, v}
I=ell = 1+l
1Qzell = 1+l for @ € {v,3}

Clearly we have ||¢| < |¢|. Hence, the following result, which is the main result of this
section, implies Theorem 1.4.

Theorem 6.1. For allt > 1 there is an algorithm deciding MC(X;) that on an instance (¢, A)
of MC(3;) runs in space

O(log [l - w(ep) - log | Al +log || - log || + log |A]).

We first give an intuitive outline of the proof. The heart of the argument is the proof
for the case t = 1, the extension to t > 1 is straightforward. The case t = 1 is isolated as
Proposition 6.3, and proved by a recursive divide and conquer approach. Namely, given
an instance (A, ¢) of MC(X;), our model-checker views ¢ as a tree and computes a node
that splits the tree in a 1/3-2/3 fashion. More precisely, it computes a subformula ¢ (7)
of ¢ of size ||¢o(7)|| between 1/3 and 2/3 of |¢||. Our model-checker loops through all
possible assignments b to the free variables 4 of (%) and recurses to g(b). Returning from
this call it recurses to the “rest” formula 4. Intuitively this is the formula obtained by
replacing o(b) by its truth value.

As long as the formulas in the recursion are large enough, they shrink in each recursive
step by a constant fraction. When the recursion reaches a small formula it applies “brute
force”. Hence the recursion tree is of depth O(log||¢||). Since the tuples b from the
loops can be stored in space O(w(p) - log|Al), this sketch should explain the main term
log |||l - w(ep) - log |A| in the final space bound.

We first describe the “brute force” subroutine mentioned above, a folklore, straightfor-

wardly defined model-checker:

Lemma 6.2. There is an algorithm deciding MC(FO) that on an instance (¢, A) of MC(FO)
TUNS 1N Space

O(|l¢ll - log |A] +log || + log |A]).
Proof. We describe an algorithm B that decides the slightly more general (classical) problem

Instance: a formula ¢ = ¢(Z), a structure A and a tuple a € Al
Problem: A = ¢(a)?

in space O(||¢| - log|A| 4+ logn) on an instance (¢, A,a) of length n. The algorithm B
implements a straightforward recursion on the logical syntax of ¢.

If p(z) = (x(T) A (), it calls B(x(Z), A, a). Upon returning from this call, B stores
its answer, i.e. the bit b giving the truth value of A = x(a). Then B calls B(¢(Z), A, a).
Upon returning from this call with answer ', B answers the bit b - ¥'.

If p(z) = Jzx(Z, z), then B loops over b € A and calls B(¢(z, x), A, ab); it answers with
the maximal answer bit obtained.

The cases where ¢ is a negation, a disjunction or starts with V are similarly explained.
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If  is atomic, it has the form ¢;=ts or R(t1,...,t,) where R is an r-ary relation symbol
and the t;’s are constants or variables. Assume the latter. Then B checks whether there
exists j € [[R®|] such that for all i € [r] it holds that ¢/ equals the i-th component of the
j-th tuple in R™. Here, tf‘ is ¢ if t; is a constant ¢; otherwise t; is a free variable in ¢
and tf‘ is the corresponding component of a.

To implement the recursion B stores a stack collecting the b’s of the loops and the answer
bits generated by the recursion as described. Scanning the whole stack allows us to determine
in space O(logn) the formula v(Z, §) and tuple b such that the corresponding recursive call
is B(¢(z, ), A,ab). The depth of the recursion is at most ||¢||, so the stack can be stored in
space ||| - (log|A|+1). On an atomic formula B needs space log |A|+log |¢| < O(logn) for
the loops on j and i, and again O(logn) for the equality checks. Altogether we see that B
can be implemented within the claimed space. []

The following proposition is the heart of the argument. The advantage with respect
to the “brute force” algorithm from the previous proposition is that the factor ¢ in the
space bound is replaced by log ||¢||. But since other factors are worsened this algorithm is
not in general more space efficient.

Proposition 6.3. There is an algorithm deciding MC(X1) that on an instance (p, A)
of MC(X1) runs in space

O(log ||l - w(e) - log |A| +log||¢l| - log || + log |A]). (6.1)
Proof. We describe an algorithm A deciding the problem

Instance: a Yp-formula ¢, a natural number w > w(p), a structure A and a € A".
Problem: A = ¢(a)?

on an instance (¢, w, A, a) of length n in allowed space
O(log ||| - w - log |A| + log [ o] - log || + logn).

Notationally, A = ¢(a) means that the assignment that maps the i-th free variable in ¢
to the i-th component of a satisfies ¢ in A. Here we suppose an order on the variables
in ¢, say according to appearance in ¢. All we need is that the value assigned to a given
variable in a given subformula of ¢ according to a given tuple @ € A" can be determined in
space O(logn).

For a sufficiently large constant ¢ € N to be determined in the course of the proof, A
checks that

ol > ¢ w+e. (6.2)

If this is not the case, then A uses “brute force”, that is, it runs the algorithm from
Lemma 6.2.

Now suppose (6.2) holds. Choosing ¢ > 3 this implies that the syntax tree of ¢ has at
least 3 nodes. Then A computes in space O(log|¢|) a subformula ¢g of ¢ such that

lell/3 < lleoll < 2[[ll/3. (6.3)
Observe that ¢g is a ¥-formula. Let § = y; - - - yjy list the free variables of ¢y and note

9] < w(po) < w(p) < w. (6.4)
Recall from the intuitive sketch of the proof that we intend to call A recursively on a

“rest” formula % where b is a |g|-tuple from A. To define this formula, let ci, . .. s Conaxc{|],1}
be new constant symbols. For every free variable y; of ¢g check whether it has an occurrence
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in g which is not a free occurrence in . If such an occurrence exists, all the free occurrences
of y; in o appear within a uniquely determined subformula Jy;x of ¢ containing (g as
a subformula, where Jy; binds these occurrences, that is, the free occurrences of y; in g
are also free in x. Replace in ¢ the subformula Jy;x by Jy;(yi=c; A x). Let 1 denote the
resulting formula. Note that 1 does not depend on the order of how these replacements for
the y; are performed.

Moreover, using (6.4),

1]l < lleoll + 217l < Nl + 2w. (6.5)
The algorithm A then loops through b = (b, ... ;b)) € Al7l and does two recursive calls:
(RO) Recursively call A(pg,w, A, b) to check whether A |= ¢o(b). If A = g(b), then replace
the subformula (g in ¢1 by c1=c1; otherwise by —c1=c;.
Let ¢? be the resulting formula. Further, let A’ be the expansion of A that
interprets the constants ci, ..., ¢ by b1, ..., by respectively.

(R1) Recursively call A(gp?, w, AB, C_l) and output its answer.

Note that in (R1) we have w(gp§) < w(yp) < w, so the algorithm recurses to an instance of
our problem. It is routine to verify that

A = (@) <= there exists b € APl such that AP E (p?(&).

Thus, A correctly decides whether A = ¢(a). It remains to show that A can be
implemented in the allowed space.

We first estimate the depth of the recursion. In (R0) the algorithm recurses to formula ¢
and |l@oll < 2[j¢ll/3 by (6.3). In (R1) the algorithm recurses on ¢4, a formula obtained
from ¢; by replacing the subformula g by an atomic formula or the negation of an atomic
formula. Then

letll < llell + 2w — llwoll +2 < 2l /3 + 2w + 2 = 3|l /4 + 2w + 2 — [l /12)

where the inequalities hold by (6.5) and (6.3), respectively. Provided c¢ in (6.2) is large
enough, this implies ||¢}]| < 3||¢]|/4. It follows that the recursion depth is O(log [|¢||)-

In each recursive call the structure the algorithm recurses to is determined by a tuple b
from the loop. This tuple has length at most w (cf. (6.4)). The formula ¢} in (R1) is
determined by the truth value of A |= ¢o(b). The algorithm recurses either
(P0) to the formula g, or
(P1) to the formula ¢} as defined if A = ¢y(b), or
(P2) to the formula (¢ as defined if A & oq(b).

To implement the recursion, A maintains a sequence of tuples b, ..., by and a sequence of
“possibilities” (py,...,pa) € {0,1,2}%. The length d is bounded by O(log ||¢||), the depth
of the recursion. In a recursive call as described above the sequence of tuples is expanded
by the tuple b from the loop, and the possibility sequence by 0, 1,2 depending on which
recursion from (P0), (P1), (P2) is taken. Both sequences can be stored in allowed space,
namely

O(d - w - log |A]) < O(log ||¢| - w - log |Al).

We still have to explain how, given (b1, ..., bq) and (p1, ..., pa), the algorithm determines
the corresponding formula v and structure B it has to recurse to. The structure B is an
expansion of the input structure A by a sequence of constants interpreted by the sequence
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bi, -+ b, where i1 < --- < i, list those indices j € [d] such that p; # 0. This structure can
be computed from the two sequences and the input in logarithmic space. Note that B is an
expansion of A by interpreting at most w - d many constants, so

log |B| <log(|A|+2-w-d) <log|A|+logw + loglog ||¢|| + O(1). (6.6)

To determine the formula v, consider the function R that maps a formula y and a number
i < 2 to the formula according to (Pi). Since we defined the recursion possibilities (P3)
only on formulas satisfying (6.2), let us agree that R(x,4) := x on formulas violating (6.2).
The desired formula v is obtained by iterating this function along (p1,...,pq): compute
1= R(p,p1), P2 := R(¥1,p2), ... and output ¢ := 1h4. Note that all these formulas have
length O(|¢|), and each iteration step is computable in space O(log|¢|). Hence, the whole
iteration can be implemented in space

O(d - log |p|) < O(log |¢]| - log |]).

If (1, w,B,b) is such that ||1)|| violates (6.2), i.e. |[1| < ¢-w + ¢, then A invokes the
“brute force” algorithm from Lemma 6.2. This requires space

O(w - log |A] + log |¢] + log |B).
By |¢] < O(|¢|) and (6.6), this is allowed space. [

Remark 6.4. Recall Example 2.1 defines a pl-reduction from p-STCON< to p-MC(X?) that
maps an instance (G, s, t, k) of p-STCON< to an instance (A, ¢) of p-Mc(3?) with || < O(k).
Combining with the algorithm from Proposition 6.3 we thus decide p-STCON< in space

O(log k - log |G)). (6.7)

This is a slightly more detailed statement of Savitch’s Theorem 5.3. As pointed out by an
anonymous reviewer, a kind of converse holds, namely, Proposition 6.3 can be derived from
Savitch’s Theorem by means of a reduction:

Sketch of a second proof of Proposition 6.3. Given an instance (A, ¢) of p-MC(31) construct
the following directed graph G. Its vertices G are triples (¢, ,b) where b € {0, 1} is a bit
and ¥, « are as in the proof of Theorem 4.1: 9 is a subformula of ¢ and « is an assignment
of its free variables. Again we assume that negations appear only in front of atoms. Note

Gl <2 gl - 14" (6.8)

The goal is to define the edges of G in such a way that there is a path from s := (¢, 0, 0)
to t := (¢,0,1) in G if and only if A = ¢. Moreover, if this is the case, then there is
such a path of length at most &k := ||¢||. This allows to decide whether A = ¢ by running
Savitch’s algorithm on (G, s,t, k). By (6.7) and (6.8) this needs space (6.1) and thus proves
Proposition 6.3 (it will be clear that this space suffices to construct G).

It remains to define the edges of G. If ¥ is an atom or a negated atom, add an edge
from (¢, ,0) to (¢, r, 1) if and only if « satisfies ¢ in A.

If ¢ is (o V 1), add edges from (1, c, 0) to (¢bg, g, 0) and (¢1,aq,0), and add edges
from (g, ap, 1) and (11,1, 1) to (¢, a, 1); here ap and « are the restrictions of « to the
free variables of vy and )1, respectively.

If Y is WO A ¢1)7 add edges from (wa «, 0) to (wOa Qo, 0)7 from (¢07 &0, 1) to (¢17 aq, 0)>
and from (91, a1,0) to (¢, a, 1); here ag, a; are defined as in the previous case.

If ¢ is Jyx, then add, for every a € A, edges from (1, ,0) to (x,Sq,0) and from
(X, Ba, 1) to (¢, a,1); here, B, equals « if y is not free in y, and otherwise extends « by
mapping y to a. L]
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We now extend the space bound from the previous proposition to MC(%;) for each t > 1.

Proof of Theorem 6.1. Similarly as in the previous proposition, we give an algorithm A
deciding

Instance: a Y;-formula ¢, a natural number w > w(yp), a structure A and a € AY.

Problem: A = ¢(a)?

on an instance (¢, w, A, a) of length n in allowed space
O(logllgll - w - log |A| +log ||| - log || + logn).

For ¢t = 1 this is what has been shown in the proof of Proposition 6.3. So we assume t > 2
and proceed inductively.

Let ¢1,...,9, € II;_1 be such that ¢ results from these formulas by existential quan-
tification and positive Boolean combinations. Of course, such formulas v; are computable
in logarithmic space from ¢. For j € [r] let s; < w(¢) < w be the number of variables
occurring freely in ¢; and let Z; be a length s; tuple listing these variables.

Let A* be the structure with universe A that interprets for each j € [r] an s;j-ary relation
symbol R; by

RY = {be A% | A (b)),
By the induction hypothesis we can compute A* in allowed space. Moreover
|AT] < lloll + [A] + [l - [A]". (6.9)

Define the formula ¢* by replacing for every j € [r] the formula ¢;(z;) in ¢ by R;(Z;).
Clearly, we have ¢* € 3

el < llell and "] < O(|¢])- (6.10)

More importantly,
Abg@ — A F¢)

Since ¢* is a Yj-formula with w(p*) < w(p) < w we have that (¢*,w, A* a) is an
instance of the problem treated in the proof of Proposition 6.3. We can thus decide whether
A* = ¢*(a) in space

O(log [|¢*|| - w - log | A| + log [|¢*|| - log [¢"| + log | A*])
By (6.10) and (6.9), this is allowed space. []

7. SUMMARY AND FUTURE DIRECTIONS

We have studied the parameterized space complexity of model-checking bounded variable
first-order logic, i.e. p-MC(FO?) for fixed s > 2. We stratified the problem into subproblems
according quantifier alternation rank and showed (Theorem 4.1) that the respective subprob-
lems p-MC(%]) are complete for the levels of the tree-hierarchy TREE[t], the alternation
hierarchy above the class TREE from [CM15]. We further showed that allowing function
symbols does not increase the space complexity of these problems (Theorem 4.6). This gives
a quite fine-grained picture of the space complexities up to pl-reductions.

However, it is open whether the tree-hierarchy is strict even under some plausible
complexity assumption. We showed it does not collapse to para-L if Savitch’s Theorem
is optimal, in fact, then already PATH # para-L (Theorem 1.2). It follows that p-mc(¥?)
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cannot be solved in parameterized logarithmic space if Savitch’s Theorem is optimal. Under
this assumption we proved a stronger result (Theorem 1.4) stating, intuitively, that the
naive model-checking algorithm is space-optimal.

Finally, Theorem 1.4 gives a highly space-efficient model-checking algorithm for p-MC(%5).
We presented two constructions, a direct one and another, pointed out to us by an anonymous
reviewer, via a reduction of p—MC(Z%) to p-STCON< and Savitch’s algorithm.

We view the results about the tree hierarchy as a contribution to the fine-structure
theory of FPT (cf. [Miill4]). In fact, Theorems 2.7 and 1.1 indicate that the tree hierarchy
contains many natural parameterized problems. However, as pointed out by an anonymous
reviewer, Theorem 1.1 (2) implies that problems in TREE[*] have shallow circuits, and
hence, intuitively, TREE[%] is a small subclass of FPT. Parameterized circuit complexity
is another emerging theory about the fine-structure of FPT [EST15, BST15, BT18, CF18,
CMY18, CF19].

We repeat the questions whether PATH or TREE are closed under complementation.
We noted that a positive answer for TREE would imply a collapse of the tree hierarchy
(Corollary 4.2). We do not know whether this also follows from PATH being closed under
complementation.

As a further structural question we do not know how para-NL relates to the tree
hierarchy. Proposition 3.4 (1) gives only a partial answer.

We showed that the straightforward model-checking algorithm is space-optimal under
the hypothesis that Savitch’s Theorem is optimal (Theorem 1.3). We conjecture that similar
optimality results can be derived for other natural algorithms as well. Future work will show
to what extent the hypothesis that Savitch’s Theorem is optimal can play a role in space
complexity similar to the one played by the ETH in time complexity.
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