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Abstract. For a regular cardinal κ, a formula of the modal µ-calculus is κ-continuous in
a variable x if, on every model, its interpretation as a unary function of x is monotone and
preserves unions of κ-directed sets. We define the fragment Cℵ1(x) of the modal µ-calculus
and prove that all the formulas in this fragment are ℵ1-continuous. For each formula
φ(x) of the modal µ-calculus, we construct a formula ψ(x) ∈ Cℵ1(x) such that φ(x) is
κ-continuous, for some κ, if and only if φ(x) is equivalent to ψ(x). Consequently, we prove
that (i) the problem whether a formula is κ-continuous for some κ is decidable, (ii) up
to equivalence, there are only two fragments determined by continuity at some regular
cardinal: the fragment Cℵ0(x) studied by Fontaine and the fragment Cℵ1(x). We apply our
considerations to the problem of characterizing closure ordinals of formulas of the modal
µ-calculus. An ordinal α is the closure ordinal of a formula φ(x) if its interpretation on
every model converges to its least fixed-point in at most α steps and if there is a model
where the convergence occurs exactly in α steps. We prove that ω1, the least uncountable
ordinal, is such a closure ordinal. Moreover, we prove that closure ordinals are closed under
ordinal sum. Thus, any formal expression built from 0, 1, ω, ω1 by using the binary operator
symbol + gives rise to a closure ordinal.

1. Introduction

The propositional modal µ-calculus [21, 27] is a well established logic in theoretical computer
science, mainly due to its convenient properties for the verification of computational systems.
It includes as fragments many other computational logics, PDL, CTL, CTL∗, its expressive
power is therefore highly appreciated. Also, being capable to express all the bisimulation
invariant properties of transition systems that are definable in monadic second order logic,
the modal µ-calculus can itself be considered as a robust fragment of an already very
expressive logic [17]. Despite its strong expressive power, this logic is still considered as a
tractable one. Its model checking problem, known to be in the class UP ∩ co-UP [20], has
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recently been proved to be quasi-polynomial and fixed-parameter tractable [10]. Moreover,
this problem becomes polynomial if some restricted classes of models are considered [31, 3, 7].
The widespread interest for this logic has triggered further researches that spread beyond
the realm of verification: these concern the expressive power [8, 6], axiomatic bases [40],
algebraic and order theoretic approaches [36], deductive systems [30, 37], and the semantics
of functional programs [16].

The present paper lies at the intersection of two lines of research on the modal µ-
calculus, on continuity [14] and on closure ordinals [11, 2]. Continuity of monotone functions
is a fundamental phenomenon in modal logic, on which well-known uniform completeness
theorems rely [32, 33, 18]. Fontaine [14] characterized the formulas of the modal µ-calculus
that give rise to continuous functions on Kripke models. It is well-known, for example
in categorical approaches to model theory [1], that the notion of continuity of monotone
functions (and of functors) can be generalized to κ-continuity, where the parameter κ is
an infinite regular cardinal. In the work [35] one of the authors proved that ℵ1-continuous
functors are closed under their greatest fixed-points. Guided by this result, we present in
this paper a natural syntactic fragment Cℵ1(x) of the modal µ-calculus whose formulas are
ℵ1-continuous—that is, they give rise to ℵ1-continuous monotone unary functions of the
variable x on arbitrary models. A first result that we present here is that the fragment Cℵ1(x)
is decidable: for each φ(x) ∈ Lµ, we construct a formula ψ(x) ∈ Cℵ1(x) such that φ(x) is ℵ1-
continuous on every model if and only if φ(x) and ψ(x) are semantically equivalent formulas.
We borrow some techniques from [14], yet the construction of the formula ψ(x) relies on a
new notion of normal form for formulas of the modal µ-calculus. A closer inspection of our
proof uncovers a stronger fact: the formulas φ(x) and ψ(x) are equivalent if and only if, for
some regular cardinal κ, φ(x) is κ-continuous on every model. The stronger statement implies
that we cannot find a fragment Cκ(x) of κ-continuous formulas for some cardinal κ strictly
larger than ℵ1; any such hypothetical fragment collapses, semantically, to the fragment
Cℵ1(x). In [15], an extended journal version of the conference paper [14], the fragment
Cℵ1(x) is also studied, yet the semantic property pinpointed there and corresponding to
the syntactic fragment Cℵ1(x) is different from the property that we consider, κ-continuity.
Say that a formula of the modal µ-calculus has the finite width property if, whenever it is
satisfied in a tree model, it is satisfied in a finitely branching subtree of this model. It is
proved in [15] that a formula has the finite width property if and only if it is equivalent
to a formula in Cℵ1(x). Combining these results with ours, we deduce a quite surprising
statement: a formula has the finite width property if and only if it is κ-continuous for
some regular cardinal κ. While it is easy to guess why the finite width property implies
ℵ1-continuity, the converse implication appears to be a non-obvious strong statement, whose
potential consequences and applications need to be uncovered.

Our interest in ℵ1-continuity was wakened once more when researchers started investi-
gating closure ordinals of formulas of the modal µ-calculus [11, 2]. The notion of closure
ordinal was studied in the context of first order inductive definitions [29]. Closure ordinals
for the modal µ-calculus are more directly related to global inductive definability, see [5],
in that a class of structures is being tested, not a single structure. We consider closure
ordinals as a wide field where the notion of κ-continuity can be exemplified and applied; the
two notions—κ-continuity and closure ordinals—are, in our opinion, naturally intertwined
and the results we present in this paper are in support of this thesis. An ordinal α is the
closure ordinal of a formula φ(x) if (the interpretation of) this formula (as a monotone unary
function of the variable x) converges to its least fixed-point µx.φ(x) in at most α steps in
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every model and, moreover, there exists at least one model in which the formula converges
exactly in α steps. Not every formula has a closure ordinal. For example, the simple formula
[ ]x has no closure ordinal; more can be said, this formula is not κ-continuous for any κ.
As a matter of fact, if a formula φ(x) is κ-continuous (that is, if its interpretation on every
model is κ-continuous), then it has a closure ordinal cl(φ(x)) 6 κ—here we use the fact that,
using the axiom of choice, a cardinal can be identified with a particular ordinal, for instance
ℵ0 = ω and ℵ1 = ω1. Our results on ℵ1-continuity show that all the formulas in Cℵ1(x) have
a closure ordinal bounded by ω1. For closure ordinals, our results are threefold. Firstly we
prove that the least uncountable ordinal ω1 belongs to the set Ord(Lµ) of all closure ordinals
of formulas of the propositional modal µ-calculus. Secondly, we prove that Ord(Lµ) is closed
under ordinal sum. It readily follows that any formal expression built from 0, 1, ω, ω1 by
using the binary operator symbol + gives rise to an ordinal in Ord(Lµ). Let us recall that
Czarnecki [11] proved that all the ordinals α < ω2 belong to Ord(Lµ). Our results generalize
Czarnecki’s construction of closure ordinals and give it a rational reconstruction—every
ordinal strictly smaller than ω2 can be generated by 0, 1 and ω by repeatedly using the
sum operation. Finally, even considering that our work does not yield methods to exclude
ordinals from Ord(Lµ), the fact that there are no relevant fragments of the modal µ-calculus
determined by continuity at some regular cardinal other than ℵ0 and ℵ1 implies that the
methodology (adding regular cardinals to Ord(Lµ) and closing them under ordinal sum)
used until now to construct new closure ordinals for the modal µ-calculus cannot be further
exploited.

Let us add some final considerations. The fragment Cℵ1(x) of the propositional modal
µ-calculus has imposed itself by its robustness, which can be recognised in our work as well
as in [15]. We believe Cℵ1(x) is worth investigating further in order to enlighten a hidden
dimension (and thus new tools, new ideas, new perspectives, etc.) of the modal µ-calculus
and of fixed-point logics. As an example, take the modal µ-calculus on deterministic models:
states have at most one successor and it is immediate to conclude that every formula is ℵ1-
continuous on these models. Whether this and other observations can be exploited (towards
understanding alternation hierarchies or reasoning using axiomatic bases, for example) is
part of future research. We also believe that the scope of this work, as well as of the problems
studied within, goes much beyond the pure theory of the modal µ-calculus. For example, our
interest in closure ordinals stems from a previous proof-theoretic investigation of induction
and coinduction [16, 35]. In these works ordinal notations are banned from the syntax
because of an alleged non-constructiveness of the set theory needed to represent ordinals.
However, also considering that elegant constructive theories of ordinals exist, see e.g. [19],
the present work encourages us to develop alternative proof-theoretic frameworks based on
ordinals.

The paper is structured as follows. In Section 2 we introduce the notion of κ-continuity.
In the following Section 3 we illustrate the interactions between κ-continuity and least/greatest
fixed-points of monotone maps. In Section 4 we present the modal µ-calculus and some of
the related theory that we shall need in the following sections. Section 5 presents our results
on the fragment Cℵ1(x). The following Section 6 presents a tool—roughly speaking the ob-
servation that various kind of submodels can be logically described modulo the introduction
of a new propositional variable—that is repeatedly used in the rest of the paper to obtain
results on closure ordinals. In Section 7 we argue that the least uncountable ordinal is a
closure ordinal for the modal µ-calculus. In the final Section 8 we argue that Ord(Lµ), the
set of closure ordinal of formulas of the modal µ-calculus, is closed under ordinal sum.
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2. κ-continuous maps

In this section we consider κ-continuity of monotone maps between powerset Boolean
algebras, where the parameter κ is an infinite regular cardinal. If κ = ℵ0, then κ-continuity
coincides with the usual notion of continuity as found for example in [14, 15]. The reader
might find further information in the monograph [1] where this notion is presented in the
more general context of categories.

In the following κ is an infinite regular cardinal, A and B are sets, for which P (A)
and P (B) denote the corresponding powerset Boolean algebras, and f : P (A) −→ P (B) is
a monotone map. We shall say that a subset X of a set A is κ-small if cardX < κ. For
example, a set X is ℵ0-small if and only if it is finite, and it is ℵ1-small if and only if it is
countable. Regularity of the cardinal κ essentially amounts to the following property: if J
is a κ-small collection of κ-small subsets of A, then

⋃J is κ-small.

Definition 2.1. A subset I ⊆ P (A) is a κ-directed set if every collection J ⊆ I with
cardJ < κ has an upper bound in I. A map f : P (A) −→ P (B) is κ-continuous if
f(
⋃ I) =

⋃
f(I), whenever I ⊆ P (A) is a κ-directed set.
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Observe that if κ′ is a regular cardinal and κ < κ′, then a κ′-directed set is also a
κ-directed set. Therefore, if f is κ-continuous, then it also preserves unions of κ′-directed
sets, thus it is κ′-continuous as well. Also, notice that the wording “monotone κ-continuous”
is redundant: if f is κ-continuous, then it is monotone, since if X ⊆ Y , then {X,Y } is
κ-directed, so f(Y ) = f(Y ∪X) = f(X) ∪ f(Y ), so f(X) ⊆ f(Y ).

For each subset X of A, define

Iκ(X) := {X ′ | X ′ ⊆ X,X ′ is κ-small } .
Notice that

⋃ Iκ(X) = X and Iκ(X) is a κ-directed set. For this latter property, it is useful
to note that if {Xi ⊆ X | i ∈ I } is a κ-small set of κ-small subsets of X, then the union⋃{Xi | i ∈ I } is still κ-small, so it belongs to Iκ(X).

Proposition 2.2. A subset X of A is κ-small if and only if, for every κ-directed set I,
X ⊆ ⋃ I implies X ⊆ I for some I ∈ I.

Proof. We firstly prove that if X is κ-small and I ⊆ P (A) is a κ-directed set such that
X ⊆ ⋃ I, then there exists I ∈ I with X ⊆ I. For each a ∈ X, let Ia ∈ I such that a ∈ Ia.
Then J = { Ia | a ∈ X } is a subfamily of I with cardJ < κ, whence there exists I ∈ I
with Ia ⊆ I, for each a ∈ X; whence X ⊆ I.

For the converse, recall that X =
⋃ Iκ(X) and that Iκ(X) is a κ-directed set. Suppose

therefore that, for every κ-directed set I, X ⊆ ⋃ I implies X ⊆ I for some I ∈ I. Applying
this property when I = Iκ(X) yields X ⊆ X ′ for some κ-small X ′ ⊆ X. Therefore X ′ = X
and X is κ-small.

Proposition 2.3. A monotone map f : P (A) −→ P (B) is κ-continuous if and only if, for
every X ∈ P (A),

f(X) =
⋃
{ f(X ′) | X ′ ⊆ X,X ′ is κ-small } .

Proof. Let f : P (A) −→ P (B) be a κ-continuous monotone map. Notice that the equation
above is f(

⋃ Iκ(X)) =
⋃
f(Iκ(X)), since X =

⋃ Iκ(X). The equation holds since Iκ(X) is
κ-directed and we are supposing that f is κ-continuous.

Conversely suppose that f : P (A) −→ P (B) is a monotone map such that f(X) =⋃
f(Iκ(X)) for every X ∈ P (A). Also let I ⊆ P(A) be a κ-directed set, so we aim to

show that f(
⋃ I) =

⋃
f(I). Since f is κ-continuous, f(

⋃ I) =
⋃
f(Iκ(

⋃ I)) . Since f
is monotone, we have

⋃
f(I) ⊆ f(

⋃ I) and therefore we only need to verify the opposite
inclusion. Let Y be a κ-small set contained in

⋃ I. By Proposition 2.2 there exists Z ∈ I
such that Y ⊆ Z. Hence for every Y ∈ Iκ(

⋃ I) there exists Z ∈ I such that Y ⊆ Z and so
also f(Y ) ⊆ f(Z). Thus,

⋃
f(Iκ(

⋃ I)) ⊆ ⋃
f(I). Consequently, we have

f(
⋃
I) =

⋃
f(Iκ(

⋃
I)) ⊆

⋃
f(I) ,

proving the opposite inclusion.

Next we extend the notion of κ-continuity to functions of many variables, that is, to
functions whose domain is a finite product of the form P (A1)× . . .× P (An), the ordering
being coordinate-wise. To achieve this goal, we observe that there is a standard isomorphism
ψ : P (A1 ·∪ . . . ·∪An) −→ P (A1)× . . .×P (An), where ·∪ denotes the disjoint union. Therefore,
we say that a monotone function f : P (A1) × . . . × P (An) −→ P (B) is κ-continuous if the
function of one variable f ◦ ψ : P (A1 ·∪ . . . ·∪ An) −→ P (B) is κ-continuous. The standard
isomorphism associates to a subset S ⊆ A1 ·∪ . . . ·∪An the tuple ψ(S) = 〈S ∩A1, . . . , S ∩An〉.
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The next Lemma (that, for simplicity, we state and prove for n = 2) states the expected
property of κ-continuous functions of many variables: these functions are κ-continuous
exactly when they are κ-continuous in each variable.

Lemma 2.4. A monotone map f : P (A1) × P (A2) −→ P (B) is κ-continuous w.r.t. the
coordinate-wise order on P (A1)× P (A2) if and only if it is κ-continuous in every variable.

Proof. Obviously if f ◦ψ : P (A1 ·∪A2) −→ P (B) is κ-continuous, then it is κ-continuous when
we fix a subset, say X ⊆ A1. Indeed, a family of the form {X ·∪ Yi | i ∈ I, Yi ⊆ A2 } is
κ-directed if and only if {Yi ⊆ A2 | i ∈ I } is κ-directed.

Conversely, suppose that f ◦ ψ : P (A1 ·∪A2) −→ P (B) is κ-continuous in every variable.
First observe that, for any families X = {Xi ⊆ A1 | i ∈ I } and Y = {Yi ⊆ A2 | i ∈ I }, we
have that ⋃

i

{Xi ·∪ Yi | i ∈ I } =
⋃
i,j

{Xi ·∪ Yj | i, j ∈ I } =
⋃
i

(Xi ·∪
⋃
j

Yj)

and when {Xi ·∪ Yi | i ∈ I } is κ-directed also X , Y and {Xi ·∪ Yj | i, j ∈ I } are κ-directed.
Consequently, given a κ-directed set {Xi ·∪ Yi | i ∈ I } with Xi ⊆ A1 and Yi ⊆ A2, the
following holds

(f ◦ ψ)(
⋃
i

Xi ·∪ Yi) = (f ◦ ψ)(
⋃
i,j

Xi ·∪ Yj) = (f ◦ ψ)(
⋃
i

(Xi ·∪
⋃
j

Yj))

=
⋃
i

(f ◦ ψ)(Xi ·∪
⋃
j

Yj) =
⋃
i

⋃
j

(f ◦ ψ)(Xi ·∪ Yj) ,

since f is κ-continuous in each variable,

=
⋃
i,j

(f ◦ ψ)(Xi ·∪ Yj) =
⋃
i

(f ◦ ψ)(Xi ·∪ Yi) .

This concludes the proof of Lemma 2.4.

3. Fixed-points of κ-continuous maps

The interplay between κ-continuity of monotone maps (recall that κ is assumed to be an
infinite regular cardinal) and their least and greatest fixed-points is the focus of the present
section. On the one hand, the Knaster-Tarski theorem [38] states that the least fixed-point
of a monotone map f : P (A) −→ P (A) is the set

⋂{X ⊆ A | f(X) ⊆ X }. On the other
hand, Kleene’s fixed-point theorem states that the least fixed-point of an ℵ0-continuous map
f is constructible by iterating ω-times f starting from the empty set, namely it is equal
to

⋃
n≥0 f

n(∅). Generalisations of Kleene’s theorem appeared later and give ways to build

the least fixed-point of monotone maps by ordinal approximations; see [26] for an historical
account of this family of theorems.

The first result we present in this section is a generalised Kleene’s fixed-point theorem
specifically suited to κ-continuous maps ( we do not claim the authorship of Proposition 3.2,
even if we could not find it stated as it is in the literature).

Definition 3.1. Let f : P (A) −→ P (A) be a monotone map. The approximants fα(∅), with
α an ordinal, are inductively defined as follows:

fα+1(∅) := f(fα(∅)) , fα(∅) :=
⋃
β<α f

β(∅) when α is a limit ordinal.
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We say that f converges to its least fixed-point in at most α steps if fα(∅) is a fixed-point
(necessarily the least one) of f . We say that f converges to its least fixed-point in exactly α
steps if fα(∅) is a fixed-point of f and fβ(∅) ( fβ+1(∅), for each ordinal β < α.

Let us recall that in set theory a cardinal κ is identified with the least ordinal of
cardinality equal to κ. We exploit this, notationally, in the next proposition.

Proposition 3.2. If f : P (A) −→ P (A) is a κ-continuous monotone map, then f converges
to its least fixed-point in at most κ steps.

Proof. Let us argue that fκ(∅) is a prefixed-point of f :

f( fκ(∅) ) = f(
⋃
α<κ

fα(∅) ) =
⋃
α<κ

f(fα(∅)) ⊆
⋃
α<κ

fα(∅) = fκ(∅)

since the regularity of κ implies that { fα(∅) | α < κ } is a κ-directed set. Since the inclusion
fκ(∅) ⊆ f(fκ(∅)) holds by monotonicity of f , fκ(∅) is also a fixed-point of f .

Until now we have focused on least fixed-points of monotone maps. Greatest fixed-points
are dual to least fixed-points: namely, for a monotone map f : P (A) −→ P (A), its greatest
fixed-point is the largest subset Z of A such that f(Z) = Z; by Tarski’s theorem, it is equal
to

⋃{Z ⊆ A | Z ⊆ f(Z) }. Propositions 3.3 and 3.4 relate both kind of (parametrized)
fixed points to continuity; they are specific instances of a result stated for categories in [35].
To clarify their statements, let us recall that if f : P (B) × P (A) −→ P (B) is a monotone
map, then, for each X ∈ P (A), the unary map f(−, X) : P (B) −→ P (B), Z 7→ f(Z,X), is
also monotone. Hence, we may consider the map P (A) −→ P (A) that sends X to the least
(resp. greatest) fixed-point of f(−, X); by using the standard µ-calculus notation, we denote
it by µz.f(z,−) (resp. νz.f(z,−)).1 Let us also recall that f is κ-continuous w.r.t. the
coordinatewise order on P (B)× P (A) if and only if it is κ-continuous in every variable (see
Lemma 2.4 ).

Proposition 3.3. Let f : P (B) × P (A) −→ P (B) be a κ-continuous monotone map. If
κ > ℵ0 then νz.f(z, −) : P (A) −→ P (B) is also κ-continuous.

Proof. Let us write g(x) := νz.f(z, x). We shall show that, for every b ∈ B and for every
X ∈ P (A), if b ∈ g(X), then b ∈ g(X ′) for some κ-small X ′ contained in X. Having shown
this, the continuity of g follows from Proposition 2.3. Let therefore b ∈ g(X) and note
that this condition implies that, for some Z ⊆ B, b ∈ Z and Z ⊆ f(Z,X); let us fix such
Z. Aiming at constructing a κ-small subset X ′ ⊆ A such that b ∈ g(X ′), we recursively
define a family (Xn)n≥1 of κ-small subsets of X and a family (Zn)n≥0 of κ-small subsets of
Z satisfying Zn ⊆ f(Zn+1, Xn+1).

For n = 0 we take Z0 := { b } which is a κ-small subset of f(Z,X). Now suppose we
have already constructed a κ-small set Zn that satisfies Zn ⊆ f(Z,X). Let us consider

I := { f(Z ′, X ′) | X ′ ⊆ X,Z ′ ⊆ Z and X ′, Z ′ are κ-small } .
Since Zn ⊆ f(Z,X) =

⋃ I and I is a κ-directed set, by Proposition 2.2 there exist Zn+1, Xn+1

κ-small such that Zn ⊆ f(Zn+1, Xn+1). Moreover, Zn+1 ⊆ Z ⊆ f(Z,X).

1 Let us mention that later we shall emphasize the distinction syntax/semantics. Then, we shall use lfp

and gfp in the semantics for the symbols µ and ν, respectively, and reserve these symbols for the syntax.
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Let now Xω :=
⋃
n≥1Xn and Zω :=

⋃
n≥0 Zn. Notice that Zω and Xω are κ-small, since

we assume that κ > ℵ0. We have therefore

Zω =
⋃
n≥0

Zn ⊆
⋃
n≥1

f(Zn, Xn) ⊆ f(
⋃
n≥1

Zn,
⋃
n≥1

Xn) ⊆ f(Zω, Xω) .

Whence b ∈ Zω ⊆ νz.f(z,Xω), with Xω ⊆ X and Xω κ-small, proving that νz.f(z,−) is
κ-continuous.

Proposition 3.4. Let f : P (B) × P (A) −→ P (B) be a κ-continuous monotone map. If
κ ≥ ℵ0 then µz.f(z, −) : P (A) −→ P (B) is also κ-continuous.

Proof. We suppose that f is κ-continuous, {Xi | i ∈ I } is a κ-directed set of elements of
P (A) and X =

⋃
i∈I Xi. We are going to show that µx.f(x,X) =

⋃
i∈I µx.f(x,Xi).

Firstly, notice that the relation µx.f(x,X) ⊇ ⋃
i∈I µx.f(x,Xi) follows from monotonicity;

thus we only need to prove the converse relation and, to this end, it is enough to show that⋃
i∈I µx.f(x,Xi) is a fixed-point of f(x,X). This goes as follows:

f(
⋃
i∈I

µx.f(x,Xi), X) =
⋃
i∈I

f(µx.f(x,Xi), X) since f is κ-continuous in its first argument

=
⋃
i∈I

f(µx.f(x,Xi),
⋃
j∈I

Xj)

=
⋃

i∈I,j∈I
f(µx.f(x,Xi), Xj)

since f is κ-continuous in its second argument

=
⋃
i∈I

f(µx.f(x,Xi), Xi) since {Xi | i ∈ I } is κ-directed

=
⋃
i∈I

µx.f(x,Xi) .

This concludes the proof of Proposition 3.4.

Notice that the statement of Proposition 3.4 holds for κ-continuous monotone maps
f : P × Q −→ P , that is, we might only assume that P and Q are complete lattices,
not powerset algebras. Indeed, the corresponding proof is obtained from the proof of
Proposition 3.4 by replacing the set theoretic

⋃
with the supremum symbol

∨
. Similarly,

the statement of Proposition 3.3 is suitable to be generalized to posets P and Q satisfying
appropriate conditions, see [35].

Let F = { fi : P (A)ni −→ P (A) | i ∈ I } be a collection of monotone operations on P (A).
We define the µ-clone of F to be the least set of finitary operations on P (A) that contains F
and the projections and which is closed under the following operations: substitution, taking
parametrized least fixed-points and greatest fixed-points.

Corollary 3.5. Let κ > ℵ0 be a regular cardinal. If all the maps in F are κ-continuous,
then all the maps in the µ-clone of F are also κ-continuous.

Proof. We shall observe that projections are κ-continuous and that the set of κ-continuous
functions is closed under substitution and under the operations of taking least and greatest
fixed-points. Projections are lower and upper adjoints, so they actually preserve all unions
and intersections, see [12, §7.23 and Proposition 7.31]. For substitution, argue first that the
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composition of two κ-continuous maps is κ-continuous. Observe then that if fi : P (A) −→
P (Bi) is κ-continuous, for i = 1, . . . , n, then the unique map 〈f1, . . . , fn〉 : P (A) −→∏

i P (Bi)
such that πi ◦ 〈f1, . . . , fn〉 = fi for each i = 1, . . . , n, is κ-continuous; this is because suprema
are computed coordinatewise in

∏
i P (Bi). Therefore, if f0, f1, . . . , fn are κ-continuous, then

also the composite f0 ◦ 〈f1, . . . , fn〉 is κ-continuous. For least and greatest fixed-points use
Propositions 3.3 and 3.4.

4. The propositional modal µ-calculus

Here we present the propositional modal µ-calculus and some known results on this logic
that we shall need later.

Hereinafter Act is a fixed finite set of actions and Prop is a countable set of propositional
variables. The set Lµ of formulas of the propositional modal µ-calculus over Act is generated
by the following grammar:

φ := y | ¬y | > | φ ∧ φ | ⊥ | φ ∨ φ | 〈a〉φ | [a]φ | µz.φ | νz.φ , (4.1)

where a ∈ Act, y ∈ Prop, and z ∈ Prop is a positive variable in the formula φ, i.e. no
occurrence of z is under the scope of a negation. In general, we shall use x, x1, . . . , xn, . . .
for variables that are never under the scope of a negation nor bound in a formula φ;
y, y1, . . . yn, . . . for variables that are free in formulas; z, z1, . . . , zn, . . . for variables that are
bound in formulas. However, this convention cannot be rigorously enforced, since we shall
often consider the steps from a formula φ with a free occurrence of the variable z to the
formula µz.φ, where z is bound. We think of the grammar (4.1) as a way of specifying
the abstract syntax of a formula, as if it was the specification of an inductive type in a
programming language such as Haskell. Nonetheless, we shall write formulas thus we need
to be able to disambiguate them. To achieve this goal we use standard conventions: ∧ has
higher priority than ∨, unary modal connectors have higher priority than binary logical
connectors. The least and greatest fixed-points operators yield priority instead, the dot
notation emphasizes this. For example, the formula µx.φ ∧ ψ is implicitly parenthesised as
µx.(φ ∧ ψ) instead of (µx.φ) ∧ ψ.

An Act-model (hereinafter referred to as model) is a tripleM = 〈|M|, {Ra | a ∈ Act }, v〉
where: |M| is a set (of worlds or states); for each a ∈ Act, Ra ⊆ |M|×|M| is a (accessibility
or transition) relation; v : Prop −→ P (|M|) is a valuation, i.e., an interpretation of the
propositional variables as subsets of |M|. Given a modelM, the semantics JψKM of formulas
ψ ∈ Lµ as subsets of |M| is recursively defined using the standard clauses from multimodal
logic K (see e.g. [25]). For example, we have

J〈a〉ψKM := { s ∈ |M| | ∃s′ ( sRas′ & s′∈ JψKM) } ,
J[a]ψKM := { s ∈ |M| | ∀s′ ( sRas′ ⇒ s′ ∈ JψKM ) } .

We present next the semantics of the least and greatest fixed-point constructors µ and ν.
For this purpose, given a subset Z ⊆ |M|, we define M[z � Z] to be the model that
possibly differs from M only on the value Z that its valuation takes on z. The clauses for
the fixed-point constructors are the following:

Jµz.ψKM :=
⋂
{Z ⊆ |M| | JψKM[z�Z] ⊆ Z } ,

Jνz.ψKM :=
⋃
{Z ⊆ |M| | Z ⊆ JψKM[z�Z] } .
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A formula φ ∈ Lµ and a variable x ∈ Prop determine on every modelM the correspondence
φxM : P (|M|) −→ P (|M|), that sends each S ⊆ |M| to JφKM[x�S] ⊆ |M|. We shall write
in the following φM for φxM, when x is understood. Coming back to the clauses for the
fixed-point constructors, the syntactic restrictions on the variable z in the productions of
µz.ψ and νz.ψ (z must be positive in ψ) imply that the function ψzM is monotone. By
Tarski’s theorem [38], the above clauses state that Jµz.ψKM and Jνz.ψKM are, respectively,
the least and the greatest fixed-point of ψzM. As usual, we write M, s 
 ψ to mean that
s ∈ JψKM.

4.1. The closure of a formula. For φ ∈ Lµ, we denote by Sub(φ) the set of subformulas
of φ. A substitution is an expression of the form [ψ1/y1, . . . , ψn/yn] where, for i = 1 . . . , n,
yi is a propositional variable and ψi ∈ Lµ. We use φ[ψ1/y1, . . . , ψn/yn] to denote application
of the substitution [ψ1/y1, . . . , ψn/yn] to the formula φ—that is, the result of simultaneously
replacing every free occurrence of the variable yi in φ by the formula ψi, i = 1, . . . , n.
As usual for formal systems with variable binders, we may assume that variable capture
does not arise when applying substitutions to formulas. When we want to emphasize
application (of a substitution to a formula) we use a dot: for example, φ · [ψ1/y1, . . . , ψn/yn]
and φ[ψ1/y1, . . . , ψn/yn] denote the same formula. We also use the symbol · to denote
composition of substitutions. For σ1 := [φ1/x1, . . . , φn/xn] and σ2 := [ψ1/y1, . . . , ψm/ym],
the composite substitution σ1 · σ2 is defined by

σ1 · σ2 := [φ1[ψ1/y1, . . . , ψm/ym]/x1, . . . , φn[ψ1/y1, . . . , ψm/ym]/xn ] .

A formula φ ∈ Lµ is well-named if no bound variable of φ is also free in φ and, for each
bound variable z of φ, there is a unique subformula occurrence ψ of φ of the form Qz.ψ

′,
with Q ∈ {µ, ν }.

It is well-known that every formula φ ∈ Lµ is equivalent to a well-named formula. We
shall use well-named formulas only to have an accurate description of the game semantics,
see § 4.2.

For φ ∈ Lµ well-named and ψ ∈ Sub(φ), the standard context of ψ in φ is the composite
substitution

σφψ := [Qnzn .ψn/zn] · . . . · [Q1
z1 .ψ1/z1]

uniquely determined by the following conditions:

(1) { z1, . . . , zn } is the set of variables that occur bound in φ and free in ψ,
(2) for each i = 1, . . . , n, Qizi .ψi is the unique subformula of φ such that Qi ∈ {µ, ν },
(3) if Qjzj .ψj is a subformula of ψi, then i < j.

The closure of a well-named φ ∈ Lµ, see [21], is the set CL(φ) defined as follows:

CL(φ) := {ψ · σφψ | ψ ∈ Sub(φ) } .
Recall from [21] that CL(φ) can be characterised as the least subset of Lµ such that

• φ ∈ CL(φ),
• if ψ1@ψ2 ∈ CL(φ), then ψ1, ψ2 ∈ CL(φ), with @ ∈ {∧,∨},
• if 〈a〉ψ ∈ CL(φ) or [a]ψ ∈ CL(φ), then ψ ∈ CL(φ),
• if Qz.ψ ∈ CL(φ), then ψ[Qz.ψ/z] ∈ CL(φ), with Q ∈ {µ, ν }.
The definition of CL(φ) implies it is finite.
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4.2. Game semantics. Given φ ∈ Lµ well-named and a model M = 〈|M|, {Ra | a ∈
Act }, v〉, the game G(M, φ) is the two player game of perfect information and possibly
infinite duration—a parity game, see e.g. [4, Chapter 4]—defined as follows. Players of
G(M, φ) are named Eva and Adam. The set of positions is the Cartesian product |M|×CL(φ).
Moves are as in the table below:

Adam’s moves Eva’s moves

(s, ψ1 ∧ ψ2) −→ (s, ψi) , i = 1, 2

(s, [a]ψ) −→ (s′, ψ) , sRas
′

(s, νz.ψ) −→ (s, ψ[νz.ψ/z])

(s, ψ1 ∨ ψ2) −→ (s, ψi), i = 1, 2,

(s, 〈a〉ψ) −→ (s′, ψ), sRas
′,

(s, µz.ψ) −→ (s, ψ[µz.ψ/z]) .

From a position of the form (s,>) Adam loses, and from a position of the form (s,⊥) Eva
loses. Also, from a position of the form (s, p) with p a propositional variable, Eva wins if
and only if s ∈ v(p); from a position of the form (s,¬p) with p a propositional variable, Eva
wins if and only if s 6∈ v(p). The definition of the game is completed by defining infinite
winning plays. To achieve this goal, we choose a rank function ρ : CL(φ) −→ N such that,

when ψ1 is a subformula of ψ2, then ρ(ψ1 · σφψ1
) ≤ ρ(ψ2 · σφψ2

), and such that ρ(µz.ψ) is odd

and ρ(νz.ψ) is even. The winner of an infinite play { (sn, ψn) | n ≥ 0 } is determined by the
parity condition: it is a win for Eva if and only if max{n ≥ 0 | { i | ρ−1(ψi) is infinite } } is
even.

Let us recall the following fundamental result (see for example [9, Theorem 6]):

Proposition 4.1. For each model M and each well-named formula φ ∈ Lµ, M, s 
 φ if
and only if Eva has a winning strategy from position (s, φ) in the game G(M, φ).

4.3. Bisimulations. Let P ⊆ Prop be a subset of variables and let B ⊆ Act be a subset of
actions. Let M and M′ be two models. A (P,B)-bisimulation is a relation B ⊆ |M| × |M′|
such that, for all (x, x′) ∈ B, we have

• x ∈ v(p) if and only if x′ ∈ v′(p), for all p ∈ P ,
• for each b ∈ B,

– xRby implies x′Rby
′ for some y′ such that (y, y′) ∈ B,

– x′Rby
′ implies xRby for some y such that (y, y′) ∈ B.

A pointed model is a pair 〈M, s〉 with M = 〈|M|, {Ra | a ∈ Act }, v〉 a model and s ∈ |M|.
We say that two pointed models 〈M, s〉 and 〈M′, s′〉 are (P,B)-bisimilar if there exists a
(P,B)-bisimulation B ⊆ |M| × |M|′ with (s, s′) ∈ B; we say that they are bisimilar if they
are (Prop,Act)-bisimilar.

Let us denote by Lµ[P,B] the set of formulas whose free variables are in P and whose
modalities are only indexed by actions in B. The following statement is a straightforward
refinement of [9, Theorem 10].

Proposition 4.2. If 〈M, s〉 and 〈M′, s′〉 are (P,B)-bisimilar, then M, s 
 φ if and only if
M′, s′ 
 φ, for each φ ∈ Lµ[P,B].
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5. ℵ1-continuous fragment of the modal µ-calculus

In this section we introduce a fragment of the modal µ-calculus which we name Cℵ1(x).
Formulas in this fragment give rise to ℵ1-continuous maps when interpreted as monotone
maps of the variable x. We show how to construct a formula φ′ ∈ Cℵ1(x) from a given
arbitrary formula φ in order to satisfy the following property: φ is κ-continuous for some
infinite regular cardinal κ if and only if φ and φ′ are equivalent formulas. Our conclusions
are twofold. Firstly, we deduce the decidability of the problem whether a formula is κ-
continuous for some κ is decidable. Decidability relies on the effectiveness of the construction
and on the well-known fact that equivalence for the modal µ-calculus is elementary [13].
Secondly, we observe that if a formula is κ-continuous, then it is already ℵ1-continuous or
even ℵ0-continuous. Thus, there are no interesting notions of κ-continuity for the modal
µ-calculus besides those for the cardinals ℵ0 and ℵ1.

Definition 5.1. A formula φ ∈ Lµ is κ-continuous in x if φM is κ-continuous, for each
model M. If X ⊆ Prop, then we say that φ is κ-continuous in X if φ is κ-continuous in x
for each x ∈ X.

Definition 5.2. We define Cℵ1(X) to be the set of formulas of the modal µ-calculus that
can be generated by the following grammar:

φ := x | ψ | > | ⊥ | φ ∧ φ | φ ∨ φ | 〈a〉φ | µz.χ | νz.χ , (5.1)

where x ∈ X, ψ ∈ Lµ is a µ-calculus formula not containing any variable x ∈ X, and
χ ∈ Cℵ1(X ∪ { z }).

If we omit the last production from the above grammar, we obtain a grammar for the
continuous fragment of the modal µ-calculus, see [14], which we denote here by Cℵ0(X).
For i = 0, 1, we shall write Cℵi(x) for Cℵi({x }). The main result of [14] is that a formula
φ ∈ Lµ is ℵ0-continuous in x if and only if it is equivalent to a formula in Cℵ0(x). It must be
observed that the fragment presented above is the same as the one presented in [15] under
the name of finite width fragment.

Let X = {x1, . . . , xn }; a straightforward induction shows that, for each φ ∈ Cℵ1(X),
the map that sends a tuple (S1, . . . , Sn) ∈ P (|M|)n to JφKM[x1�S1,...,xn�Sn] belongs to the
µ-clone generated by intersections, unions, the modal operators 〈a〉M and the constants
JψKM. Since all these generating operations are ℵ1-continuous maps (actually, they are
ℵ0-continuous) we can use Corollary 3.5 to derive the following statement.

Proposition 5.3. Every formula in the fragment Cℵ1(X) is ℵ1-continuous in X.

5.1. Syntactic considerations.

Definition 5.4. The digraph G(φ) of a formula φ ∈ Lµ is obtained from the syntax tree of
φ by adding an edge from each occurrence of a bound variable to its binding fixed-point
quantifier. The root of G(φ) is φ.

Definition 5.5. A path in G(φ) is bad if one of its nodes corresponds to a subformula
occurrence of the form [a]ψ. A bad cycle in G(φ) is a bad path starting and ending at the
same vertex.

Recall that a path in a digraph is simple if it does not visit twice the same vertex. The
rooted digraph G(φ) is a tree with back-edges; in particular, it has the following property:
for every node, there exists a unique simple path from the root to this node.
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Definition 5.6. We say that an occurrence of a free variable x of φ is

(1) bad if there is a bad path in G(φ) from the root to it;
(2) slightly-bad (or boxed) if the unique simple path in G(φ) from the root to it is bad;
(3) very-bad if it is bad and not boxed.

Example 5.7. Figure 1 represents the digraph of the formula

(µz1 .y0 ∧ (νz0 .z0 ∧ [ ]z1)) ∨ (〈 〉y0 ∧ y1) .

From the figure we observe that:

• The free occurrence of z1 in the digraph of νz0 .z0∧ [ ]z1 (in dashed) is bad but slightly-bad.
• The free occurrence of y0 in the left branch of the digraph (in bold) is very-bad. The

other occurrence of y0 is not bad.
• The unique free occurrence of y1 in φ is not bad.

∨

µz1 ∧

∧ 〈 〉 y1

νz0y0 y0

∧

[ ]z0

z1

Figure 1: The digraph of a formula in Lµ.

Lemma 5.8. For every set X of variables and every φ ∈ Lµ, the following are equivalent:

(1) φ ∈ Cℵ1(X),
(2) no occurrence of a variable x ∈ X is bad in φ.

Proof. Let X be a set of variables and φ ∈ Lµ.
(1) implies (2). The proof is by induction on the structure of formulas. Consider a

formula φ ∈ Cℵ1(X) and observe that the only way to introduce a bad path from the root of
G(φ) to an occurrence of some variable x ∈ X is either by using a modal operator [a]—which,
however, is excluded by the grammar defining the fragment Cℵ1(X)—or by a fixed-point
formation rule. Therefore, we focus on the case where φ is of the form Qz.χ, for Q ∈ {µ, ν}
and χ ∈ Cℵ1(X ∪ { z }), inductively assuming that no occurrence of a variable x ∈ X ∪ { z }
is bad in χ. Suppose that there is an occurrence of a variable x ∈ X and a bad path from
the root of G(Qz.χ) to this occurrence. Since this occurrence of x is not bad in χ, this path
necessarily crosses an edge from an occurrence of the variable z to the root of G(Qz.χ). But
then this occurrence of z is bad in G(χ), contradicting the inductive hypothesis.
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(2) implies (1). Suppose there exist pairs of the form (X,φ) where X is a finite set of
variables, φ 6∈ Cℵ1(X) and, for each x ∈ X, φ has no bad occurrence of x. Among these pairs,
consider (X,φ) with φ of least complexity, where we define the complexity of a formula φ
as the number of vertices in G(φ). Clearly, φ has to be of the form Qz.χ. Moreover, by
the second production of the grammar (5.1), it must contain a free occurrence of a variable
x ∈ X. Observe that χ has no bad occurrence of any x ∈ X, since such a bad occurrence
yields a bad occurrence of x in Qz.χ. Also, if an occurrence of z is bad in χ, then any
occurrence of some x ∈ X is bad in Qz.χ. Therefore, χ has no bad occurrence of any variable
in X ∪ { z }. By the minimality assumption on (X,φ), χ belongs to Cℵ1(X ∪ { z }) and so
φ ∈ Cℵ1(X), a contradiction.

5.2. The Cℵ1(x)-flattening of formulas. We aim at defining the Cℵ1(x)-flattening φ[x of
any formula φ of the modal µ-calculus. This will go through the definition of the intermediate
formula φ]x which has one more new free variable x. The formula φ]x is obtained from φ by
renaming to x all the boxed occurrences of the variable x. In the definition of φ]x below, we
assume that x has no bound occurrences in φ. The formal definition is given by induction
as follows:

y]x = y (¬y)]x = ¬y
>]x = > ⊥]x = ⊥

(ψ0@ψ1)]x = ψ]x0 @ψ]x1 with @ ∈ {∧,∨},
(〈a〉ψ)]x = 〈a〉ψ]x ([a]ψ)]x = [a]ψ[x/x]

(Qz.ψ)]x = Qz.ψ
]x with Q ∈ {µ, ν }.

The following fact is proved by a straightforward induction.

Lemma 5.9. For each φ ∈ Lµ, we have

φ]x · [x/x] = φ . (5.2)

The Cℵ1(x)-flattening φ[x of formula φ ∈ Lµ is then defined by:

φ[x := φ]x · [⊥/x]

and henceforward we shorten it to φ[.
Let us notice that φ]x (or φ[) does not in general belong to Cℵ1(x). For example,

(µz.x∨ [a]z)[ = µz.x∨ [a]z 6∈ Cℵ1(x) since x∨ [a]z 6∈ Cℵ1({x, z}). Yet, the following definition
and lemma partially justify the choice of naming.

Definition 5.10. A formula φ is almost-good w.r.t. a set X of variables if no occurrence of
a variable x ∈ X is very-bad. A formula φ is almost-good if it is almost-good w.r.t. {x }.
Remark 5.11. Let ψ be a well-named variant of a formula φ, so ψ is obtained from φ by
renaming some bound variables. The digraphs G(ψ) and G(φ) differ only for the labelling
of some pairs of nodes lying on a back edge from an occurrence of a bound variable to its
binding fixed-point quantifier. Now let P be a property of formulas defined by means of the
digraphs G(φ) without mentioning the labels of nodes on any of those back-edges. Then a
formula φ has the property P if and only if any of its well-named variant has the property
P . One such P is the property of being almost-good. Therefore, if φ is almost-good, then so
it is any of its well-named variants.
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Lemma 5.12. If φ is an almost-good formula, then both φ]x and φ[ belong to Cℵ1(x).

Proof. We prove the result for φ]x. Consider a bad occurrence of x in φ]x. After substituting
x for x, such an occurrence yields a bad occurrence of x in φ. Since there are no very-bad
occurrences of x in φ, then this occurrence should be slightly-bad, that is, under the scope
of a necessity modal operator [a]. But then this same occurrence of x in φ would correspond
to an occurrence of x in φ]x and not to an occurrence of x as assumed.

We aim to transform a formula φ into an equivalent formula in which there are no
very-bad occurrences of the variable x. The transformation that we define next achieves this
goal. For φ ∈ Lµ and a finite set X of variables not bound in φ, we define a formula ψ�X ,
with all the occurrences of a bad variable x ∈ X boxed (aka slightly-bad). We let

ψ�X := ψ , if no occurrence of a variable x ∈ X is very-bad in ψ,

and, otherwise,

(〈a〉ψ)�X := 〈a〉(ψ)�X ,

(ψ1@ψ2)�X := (ψ1)�X@ (ψ2)�X , with @ ∈ {∧,∨},
(Qz.ψ)�X := ψ0[ψ1/z] , where

ψ0 := Qz.ψ2, ψ2 := (ψ�X∪{z})]z , and ψ1 := Qz.ψ0 ,

with Q ∈ {µ, ν }. That is, in the last clause, ψ2 is obtained from ψ�X∪{z} by renaming all
the boxed occurrences of z to z. A key point of the definition of (Qz.ψ)�X is that, when we
split, with ψ2, the fixed-point variable z into its boxed/unboxed parts, we also split, with ψ1

and ψ0, the respective fixed-point bindings, see Figure 2. Observe that the first defining
clause implies that

x�X = x if x ∈ X,

ψ�X = ψ if ψ contains no variable x ∈ X,

([a]ψ)�X = [a]ψ .

Example 5.13. Consider the formula ψ := x ∨ µz. x∨ z ∨ [a](x ∧ z), where only the second
occurrence of x is very-bad. For X = {x } we have

ψ�X = x ∨ µz.x ∨ z ∨ [a](x ∧ µz.µz.x ∨ z ∨ [a](x ∧ z))
where no occurrence of x is very-bad and so the formula ψ�X is almost-good.

Proposition 5.14. The formula φ�X is almost-good w.r.t. X and it is equivalent to the
formula φ.

We split the proof of the proposition in two lemmas.

Lemma 5.15. The formula φ�X is equivalent to φ.

Proof. The statement of the proposition is obvious if a formula matches the base case of
the definition. Also, in the cases of a modal formula 〈a〉ψ and of a formula ψ1@ψ2 with
@ ∈ {∧,∨}, the statement is an immediate consequence of the inductive hypothesis. In
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case of a formula of the form (Qz.ψ)�X with Q ∈ {µ, ν }, we argue as follows:

(Qz.ψ)�X = ψ0[Qz.ψ0/z] ≡ Qz.ψ0 , by the fixed-point equation,

= Qz.Qz.ψ2 ≡ Qz.ψ2[z/z] , by the equational properties of fixed-points,

= Qz.((ψ
�X∪{z})]z[z/z]) = Qz.(ψ

�X∪{z}) , by equation (5.2),

≡ Qz.ψ , by the inductive hypothesis.

Lemma 5.16. The formula φ�X is almost-good, that is, it has no very-bad occurrence of a
variable x ∈ X.

Figure 2 illustrates the proof of this lemma.

Proof. The statement of the proposition is obvious if a formula matches the base case of
the definition. Also, in the cases of a modal formula 〈a〉ψ and of a formula ψ1@ψ2 with
@ ∈ {∧,∨}, the statement is an immediate consequence of the inductive hypothesis. The
only non-trivial case is that of a formula of the form (Qz.ψ)�X with Q ∈ {µ, ν }.

Let us firstly recall that (Qz.ψ)�X is of the form ψ0[Qz.ψ0/z] with ψ0 = Qz.ψ2 and

ψ2 = (ψ�X∪{z})]z. Also, for the sake of readability, we have let ψ1 := Qz.ψ0 in the definition,
so (Qz.ψ)�X = ψ0[ψ1/z]. In particular, every occurrence of a variable x ∈ X is located
within ψ0, or it is located in some subtree of ψ0[ψ1/z] rooted at some occurrence of the
subformula ψ1.

We argue next that every occurrence of a variable x ∈ X within ψ0 = Qz.ψ2 is not
very-bad. By the induction hypothesis, such an occurrence of x is not very-bad within ψ2;
the only reason for becoming very-bad in ψ0 is then the existence of a cycle going through
an edge from some occurrence of the variable z to the formula Qz.ψ2. Such a bad cycle
can arise for two reasons: either (a) there is a necessity modal operator [a] from ψ2 to this
occurrence of z, or (b) there is a bad cycle in some subformula of ψ2 of the form Qw.χ, with
this subformula lying on the path from ψ2 to the occurrence of z. Yet (a) is not possible:

recall that ψ2 = (ψ�X∪{z})]z, thus all the occurrences of z within ψ2 are not boxed (such

an occurrence in ψ�X∪{z} has been renamed to z in ψ2). Also (b) is not possible, since
otherwise the occurrence of z in ψ2 is very-bad. Yet we know that the same occurrence of z
is not very-bad in ψ�X∪{ z }, and renaming the boxed occurrences of z to z in this formula
cannot transform another occurrence of z into a very-bad occurrence.

Finally, we argue that there is no very-bad occurrence of some variable x ∈ X in
ψ0[ψ1/z]. Suppose there is such an occurrence of x. If this occurrence is located within
ψ0, then this would also be a bad occurrence for ψ0, which we have excluded. Thus, such
an occurrence is located within some occurrence of the subformula ψ1. But since every
occurrence of the variable z within ψ0 is boxed, all the variable occurrences of x within ψ1

become boxed in the formula ψ0[ψ1/z].
Therefore, no occurrence of x ∈ X is very-bad in ψ0[ψ1/z].

We can finally state our first main result.

Theorem 5.17. Every formula φ is equivalent to a formula ψ with ψ]x and ψ[ in Cℵ1(x).
Moreover, we can choose ψ well-named.

In the theorem we can take ψ to be a well-named variant of the almost-good formula
φ�{x }. Then, by Remark 5.11, ψ is almost-good and therefore, by Lemma 5.12, ψ]x and ψ[

belong to Cℵ1(x).
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Figure 2: Illustration of the proof of Lemma 5.16

5.3. Comparing the closures of φ and φ[. In the following, let φ be a well-named
formula. Observe that both φ]x and φ[ are also well-named—we verify this for φ]x, the
argument for φ[ is similar. Indeed, φ]x has the same bound variables as φ and therefore x,
assumed to be new, cannot be bound in φ]x. Next, if z is bound in φ]x, then it is bound in
φ and there is a unique subformula occurrence of φ of the form Qz.ψ and therefore a unique
subformula occurrence of φ]x of the form Qz.ψ

′, the latter being either Qz.ψ
]x or Qz.ψ[x/x].

We develop here some syntactic considerations that allow us to relate the closures of φ
and φ[. In turn, that will make it possible to relate the positions of the games G(M, φ) and

G(M, φ[), and so to construct, in the proof of Proposition 5.21, a winning strategy in the
latter game from a winning strategy in the former.

Recall that we use Sub(φ) for the set of subformulas of φ.

Remark 5.18. If x and y are distinct variables and χ is a formula that does not contain
the variable y, then

[ψ/y] · [χ/x] = [χ/x] · [ψ[χ/x]/y] . (5.3)

Also, if x is a variable occurring free in φ and γ is either a variable or a constant, then
Sub(φ · [γ/x]) = {ψ · [γ/x] | ψ ∈ Sub(φ) }.

The above remark is easily justified considering that for terms t, s over an arbitrary
signature we have Sub(t[s/x]) = { t′[s/x] | t′ ∈ Sub(t) } ∪ Sub(s), whenever x is a variable
occurring free in t, where now Sub(t) denotes the set of subterms of t.

Lemma 5.19. If x is a free variable of φ and γ is either a variable not bound in φ or a
constant, then

CL(φ · [γ/x]) = {ψ · [γ/x] | ψ ∈ CL(φ) } .
In particular, we have

CL(φ) = {φ′ · [x/x] | φ′ ∈ CL(φ]x) } , CL(φ[) = {φ′ · [⊥/x] | φ′ ∈ CL(φ]x) } .
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The second statement of the lemma is an immediate consequence of the first, considering
that φ = φ]x · [x/x] and φ[ = φ]x · [⊥/x].

Proof. By repeatedly using equation (5.3) with χ = γ, we have

σφψ · [γ/x] = [Qnyn.ψn/yn] · . . . · [Q1y1.ψ1/y1] · [γ/x]

= [γ/x] · [Qnyn.ψn · [γ/x]/yn] · . . . · [Q1y1.ψ1 · [γ/x]/y1] .

Inspection of the three properties defining the standard context σφψ shows that the equality

σ
φ·[γ/x]
ψ·[γ/x] = [Qnyn.ψn · [γ/x]/yn] · . . . · [Q1y1.ψ1 · [γ/x]/y1]

holds. From this we deduce

(ψ · [γ/x]) · σφ·[γ/x]
ψ·[γ/x] = (ψ · σφψ) · [γ/x] . (5.4)

Thus φ′ ∈ CL(φ · [γ/x]) iff φ′ = ψ · σφ·[γ/x]
ψ for some ψ ∈ Sub(φ · [γ/x])

iff φ′ = ψ · [γ/x] · σφ·[γ/x]
ψ·[γ/x] for some ψ ∈ Sub(φ)

iff φ′ = ψ · σφψ · [γ/x] for some ψ ∈ Sub(φ)

iff φ′ = φ′′ · [γ/x] for some φ′′ ∈ CL(φ).

This concludes the proof of Lemma 5.19.

5.4. The continuous fragments. Now we aim to prove some sort of converse of Proposi-
tion 5.3, namely that every κ-continuous formula φ of the propositional modal µ-calculus is
equivalent to φ[, where κ is still assumed to be an infinite regular cardinal.

A pointed model 〈M, s〉 is a tree model if the rooted digraph 〈|M|,⋃a∈ActRa, s〉 is a
tree. Let κ be a cardinal. A tree model 〈M, s〉 is κ-expanded if, for each a ∈ Act, whenever
xRax

′, there are at least κ a-successors of x that are bisimilar to x′. The following lemma is
straightforward, see e.g. [14, Proposition 1] for the case where κ = ℵ0.

Lemma 5.20. For each pointed model 〈M, s〉 there exists a κ-expanded tree model 〈T , t〉
bisimilar to 〈M, s〉.
Proposition 5.21. If M, s 
 φ and φ is κ-continuous in x, then M, s 
 φ[.

Proof. Suppose that M = (|M|, {Ra | a ∈ A }, v) is a model and that s0 
 φ. We want

to prove that s0 
 φ[. Notice first that, by Lemma 5.20, we can assume that 〈M, s0〉 is a
κ-expanded tree model.

Since φ is κ-continuous in x and s0 ∈ φM(v(x)), there exists U ⊆ v(x), with cardinality
of U strictly smaller than κ, such that s0 ∈ φM(U), so M[x � U ], s0 
 φ. We shall argue

that M[x � U ], s0 
 φ[, from which it follows that s0 ∈ φ[M(U) ⊆ φ[M(v(x))—since φ[M is

monotone—thus M, s0 
 φ[.
In the following let N =M[x � U ] (notice that N is not anymore κ-expanded). Since

N , s0 
 φ, let us fix a winning strategy for Eva in the game G(N , φ) from position (s0, φ).

We define next a strategy for Eva in the game G(N , φ[) from position (s0, φ
[). Observe first

that, by Lemma 5.19, positions in G(N , φ) (respectively, G(N , φ[)) are of the form (s, ψ[x/x])
(resp., (s, ψ[⊥/x])) for a formula ψ ∈ CL(φ]x). Therefore, at the beginning of the play, Eva

plays in G(N , φ[) simulating the moves of the given winning strategy for the game G(N , φ).



Vol. 15:4 ℵ1 AND THE MODAL µ-CALCULUS 1:19

The simulation goes on until the play reaches a pair of positions p := (s, [a]χσφ
]x

[a]χ · [x/x])

and p′ := (s, [a]χσφ
]x

[a]χ · [⊥/x]), for some subformula [a]χ of φ]x, where χ = χ′[x/x] for some

subformula χ′ of φ.

Claim 5.22. The positions p and p′ are respectively of the form (s, [a]ψ) ∈ G(N , φ) and

(s, [a]ψ′) ∈ G(N , φ[) for some ψ and ψ′ such that ψ[⊥/x]→ ψ′ is a tautology.

Proof of Claim. In the computations that follows we use the notation φ ≥ φ′ (for φ, φ′ ∈ Lµ)
to mean that JφKM ⊇ Jφ′KM for every M (i.e., φ′ → φ is a tautology).

We let ψ := χσφ
]x

χ · [x/x] and observe that

ψ = χσφ
]x

χ · [x/x] = χ′[x/x] · σφ]xχ′[x/x] · [x/x]

= χ′[x/x] · [x/x] · σφ
]x·[x/x]
χ′[x/x]·[x/x] , by equation (5.4),

= χ′ · σφχ′ ,

On the other hand, we let ψ′ := χσφ
]x

χ · [⊥/x], so that

ψ′ = χσφ
]x

χ · [⊥/x] = χ′[x/x] · σφ]xχ′[x/x] · [⊥/x] = χ′[x/x] · [⊥/x] · σφ
]x·[⊥/x]
χ′[x/x]·[⊥/x]

= χ′[⊥/x] · σφ
]x·[⊥/x]
χ′[⊥/x] , since χ′ does not contain the variable x,

≥ χ′[⊥/x] · σφ
]x·[⊥/x,⊥/x]
χ′[⊥/x] , since [⊥/x] ≥ [⊥/x,⊥/x] and φ]x is monotone in x and x,

= χ′[⊥/x] · σφ
]x·[x/x]·[⊥/x]
χ′[⊥/x] = χ′[⊥/x] · σφ[⊥/x]

χ′[⊥/x]

= χ′ · σφχ′ · [⊥/x] = ψ[⊥/x] , by the previous computations. � Claim.

Thus, Eva needs to continue playing in the game G(N , φ[) from a position of the form
(s, [a]ψ′) where ψ[⊥/x]→ ψ′ is a tautology. We construct a winning stategy for Eva from
this position as follows. Since the play has reached the position (s, [a]ψ) of G(N , φ) we also
know that s ∈ J[a]ψKN . We argue then that s ∈ J[a]ψKN implies s ∈ J[a]ψ[⊥/x]KN . Since
J[a]ψ[⊥/x]KN ⊆ J[a]ψ′KN , Eva also has a winning strategy from position (s, [a]ψ′) of the

game G(N , φ[), which she shall use to continue the play.

Claim 5.23. s ∈ J[a]ψKN implies s ∈ J[a]ψ[⊥/x]KN .

Proof of Claim. The statement of the claim trivially holds if s has no successors. Let s′ be a
fixed a-successor of s (i.e. sRas

′), so N , s′ 
 ψ; we want to show that N , s′ 
 ψ[⊥/x]. To
this goal, recalling that ψ[⊥/x] ∈ Lµ[Prop \ {x}, Act] and using Proposition 4.2, it is enough
to prove that 〈N , s′〉 is (Prop\{x}, Act)-bisimilar to some 〈N , s′′〉 such that N , s′′ 
 ψ[⊥/x].

Let S be the set

{ t | sRat, 〈M, t〉 is bisimilar to 〈M, s′〉, and ↓ t ∩ U 6= ∅ },
where we have used ↓ t to denote the subtree of 〈M, s0〉 rooted at t. Recall that the cardi-
nality of U is strictly smaller than κ and so is the cardinality of S once it is at most equal
to the cardinality of U . But the cardinality of { t | sRat, 〈M, t〉 is bisimilar to 〈M, s′〉 }
is at least κ (recall 〈M, s0〉 is a κ-expanded tree model). Consequently, there must be a
successor s′′ of s such that 〈M, s′′〉 is bisimilar to 〈M, s′〉 and which does not belong to
S, that is ↓s ′′ ∩ U = ∅ (i.e. no states in U are reachable from s′′). Since N , s′′ 
 ψ and
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↓s ′′ ∩ U = ∅, we have N , s′′ 
 ψ[⊥/x]. Yet 〈M, s′′〉 and 〈M, s′〉 are bisimilar and since N
is obtained from M just by modifying the value of the variable x, 〈N , s′′〉 and 〈N , s′〉 are
(Prop\{x }, Act)-bisimilar. As stated before, this and N , s′′ 
 ψ[⊥/x] imply N , s′ 
 ψ[⊥/x].

� Claim.

To complete the proof of Proposition 5.21 we need to argue that the strategy so defined
for Eva to play in the game G(M, φ[) is winning. The only difficulty in asserting this is
to exclude the case where the initial simulation leads to a pair of positions of the form
(s, x[x/x]) and (s, x[⊥/x]). This is however excluded since in φ]x all the occurrences of x
are boxed, so we are enforced to go through the second step of the strategy.

Proposition 5.24. If, for some regular cardinal κ, φ ∈ Lµ is κ-continuous, then φ is

equivalent to φ[.

Proof. Notice that, by monotonicity in the variable x, φ[ → φ is a tautology. Proposition 5.21
exhibits the converse implication as another tautology.

Theorem 5.25. If for some regular cardinal κ, φ ∈ Lµ is a κ-continuous formula, then φ is
equivalent to a formula φ′ ∈ Cℵ1(x).

Proof. Suppose that φ is κ-continuous. By Corollary 5.17, φ is equivalent to a formula ψ with
ψ[ ∈ Cℵ1(x). Clearly, ψ is κ-continuous as well, so it is equivalent to ψ[ by Proposition 5.24.

It follows that φ is equivalent to ψ[ ∈ Cℵ1(x).

A fragment of the modal µ-calculus is a subset of Lµ. For an infinite regular cardinal κ,
we let Cκ(x) be the set of κ-continuous formulas φ(x) ∈ Lµ, cf. Definition 5.1. We say that
a fragment F of the modal µ-calculus is determined by a continuity condition if, for some
infinite regular cardinal κ, F = Cκ(x). Combining the main result of [14] and Theorem 5.25,
we immediately obtain the following result.

Theorem 5.26. There are only two fragments of the modal µ-calculus determined by
continuity conditions: the fragment Cℵ0(x) and the fragment Cℵ1(x).

Theorem 5.27. The following problem is decidable: given a formula φ(x) ∈ Lµ, is φ(x)
κ-continuous for some regular cardinal κ?

Proof. From what has been exposed above, φ is κ-continuous if and only if it equivalent
to the formula φ′ ∈ Cℵ1(x), where φ′ = (φ�x)[. It is then enough to observe that there are
effective processes to construct the formula φ′ and to check whether φ is equivalent to φ′.

6. On p-definability

We collect in this section some technical results, mainly on relating different types of
submodels via formulas, that we shall use later to prove two main results on closure ordinals
of the modal µ-calculus, Theorem 7.6 and Theorem 8.1.

We start recalling the usual notion of Kripke frame (hereinafter referred to as frame).
An Act-frame (or simply, a frame, if Act is understood) is a pair F = 〈|F|, {Ra | a ∈ Act }〉
where |F| is a set and Ra ⊆ |F| × |F|, for each a ∈ Act – in other words, a frame is a model
without a valuation of propositional variables. If v : Prop −→ P (|F|) is a valuation, then
we denote by Fv the model 〈F , v〉. The complex algebra F ] of a frame F is the Boolean
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algebra of subsets of |F| endowed with (the interpretation of) the modal operators 〈a〉F] ,
a ∈ Act, defined by

〈a〉F](S) := { s ∈ |F| | ∃s′ ∈ S s.t. sRas
′ }, for S ⊆ |F|.

We consider next two frames F and G such that |G| ⊆ |F|. F and G might have different
sets of actions: say that F is an A-frame, G is a B-frame, while we do not suppose that
A = B. To ease the reading, we let F := |F| and G := |G|, so G ⊆ F .

The following definition formalizes the idea that each modal operator 〈b〉 of the algebra
G] is described using a term of the algebra F ].
Definition 6.1. Let Ψ = {ψb ∈ Lµ[p, q] | b ∈ B } be a collection of formulas containing only
the free variables p, q in positive position. If F and G are frames as above, then we say that
G is p-defined in F by Ψ if, for each b ∈ B and each S ⊆ F ,

〈b〉G](G ∩ S) = Jψb(p, q)KF[G/p,S/q]
.

Above [G/p, S/q] is the valuation that sends p to G and q to S (and, say, any other
propositional variable to ∅). In this sense, F[G/p,S/q] denotes the model 〈F , [G/p, S/q]〉.
Example 6.2. Suppose that G is a subframe of F = 〈F, {Ra | a ∈ A }〉, by which we mean
that A = B, G = 〈G, {R′a | a ∈ A }〉 with R′a = Ra ∩ G × G, for each a ∈ A. Then G is
p-defined in F by the collection of formulas { p ∧ 〈a〉(p ∧ q) | a ∈ A }. � Example 6.2.

The two examples we present below illustrate the notion of p-definability. Moreover,
they both shall allow (in conjunction with Proposition 6.7) to transfer results from a bimodal
setting (that is, when card (Act) = 2) to a monomodal one (card (Act) = 1). In particular,
the second example shall be used to prove Theorem 7.6.

In the following B := {h, v } and A is a singleton. The choice of the letters is suggested
by the construction in Section 7.1 where the actions h and v are interpreted respectively as
horizontal and vertical transitions.

Example 6.3. We are thankful to an anonymous referee for suggesting the following
construction. Given a bimodal frame G, we define a monomodal frame F on the disjoint
union of the sets |G| and Rv by letting the accessibility relation be as follows:

xR y , when xRhy ,

xR (x, y) and (x, y)Ry , when xRvy .

Clearly |G| embeds into |F|. By identifying |G| with its image in |F|, G is p-defined in F by
Ψ = {ψv, ψh }, where

ψh(p, q) = p ∧ 〈 〉(p ∧ q) ,
ψv(p, q) = p ∧ 〈 〉(¬p ∧ 〈 〉(p ∧ q)) . � Example 6.3.

Example 6.4 ( Thomason’s coding of bimodal logic into monomodal logic). In [39], see
also [24, Section 4], Thomason constructs:

(i) a monomodal formula φsim, for each (fixed-point free) bimodal formula φ;
(ii) a monomodal model Msim and an injective function (−)◦ : |M| −→ |Msim|, for each

bimodal model M.

These data have the following property:

Fact 6.5. For each s ∈ |M|, M, s 
 φ if and only if M sim, s◦ 
 φsim.
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We recall how Msim is defined: for a {h, v }-model M, Msim is the monomodal model
with |Msim| = |M|×{h, v } ·∪{ p0 }, such that v(x, i) = v(x) and whose accessibility relation
R is described as follows:

(x, h)R (y, h) , when xRhy ,

(x, v)R (y, v) , when xRvy ,

(x, v)R (x, h) , (x, h)R (x, v) , and (x, h)Rp0 ,

for each x, y ∈ |M|. Since the function sending x ∈ |M| to x◦ := (x, h) ∈ |Msim| is injective,
we can identify |M| with a subset of |Msim|. Call N the image of M within |Msim|, call
G the underlying frame of N and F the underlying frame of |Msim|. Fact 6.5 relies on G
being p-defined in F by Ψ = {ψh, ψv }, where

ψh(p, q) = p ∧ 〈 〉(p ∧ q) ,
ψv(p, q) = p ∧ 〈 〉(¬p ∧ 〈 〉(¬p ∧ 〈 〉(p ∧ q))) .

The reader has remarked the similarity with the previous example. Thomason’s construction
is slightly more subtle: by adding the pit p0 to Msim and transitions as in the third line of
the above display, the image of M under the embedding becomes definable by the formula
〈 〉[ ]⊥. Consequently, the monomodal formula φsim does not contain p as an additional
propositional variable. � Example 6.4.

We tackle next the proof of the main technical result of this section, Proposition 6.7.
This proposition allows lifting standard simulation results (such as Thomason’s one) from
modal logic to the modal µ-calculus.

Definition 6.6. Let p 6∈ Prop be a fresh variable and let Ψ := {ψb ∈ Lµ[p, q] | b ∈ B }. The
formula trΨ(φ) is defined by induction as follows:

trΨ(y) := p ∧ y trΨ(¬y) := p ∧ ¬y
trΨ(⊥) := ⊥ trΨ(>) := p

trΨ(ψ0@ψ1):= trΨ(ψ0)@trΨ(ψ1) , @ ∈ {∧,∨}
trΨ(〈b〉ψ) := ψb[tr

Ψ(ψ)/q]

trΨ([b]ψ) := p ∧ ψopb [trΨ(ψ)/q]

trΨ(µz.ψ) := µz.tr
Ψ(ψ) trΨ(νz.ψ) := νz.tr

Ψ(ψ) .

In the above definition, ψopb is a formula dual to ψb, thus semantically behaving as
¬ψb[¬q/q]. We need this since in the grammar (4.1) we allowed negation only on propositional
variables.

Aiming at a proof of the next Proposition, let us introduce/recall some notation: we let
π : P (F ) −→ P (G) be defined by π(S) := S∩G; if v : Prop −→ P (F ), then π◦v : Prop −→ P (G)
is the valuation in G such that (π ◦ v)(y) := G ∩ v(y), for each y ∈ Prop.
Proposition 6.7. Let p,Ψ, and trΨ be as in Definition 6.6. If G is p-defined in F by Ψ,
then, for each valuation v : Prop −→ P (F ),

JφKGπ◦v = JtrΨ(φ)KFv [p�G] . (6.1)

Remark 6.8. For a formula φ, let us denote by JtrΨ(φ)KF [p�G] the mapping from P (F )Prop

to P (F ) sending a valuation v ∈ P (F )Prop to JtrΨ(φ)KFv [p�G] ∈ P (F ); let us denote by
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JφKG the mapping sending a valuation v′ ∈ P (G)Prop to JφKGv′ ∈ P (G). The statement of

Proposition 6.7 implies that JtrΨ(φ)KF [G/p] takes values in P (G) and, moreover, that the
following diagram commutes:

P (F )Prop

π◦
��

JtrΨ(φ)KF[G/p]

((
P (G)Prop

JφKG
// P (G) .

Proof of Proposition 6.7. The proof that equation (6.1) holds is by induction on formulas.
The basic cases are treated below:

JtrΨ(y)KFv [p�G] = Jp ∧ yKFv [p�G] = G ∩ v(y) = JyKGπ◦v ,

JtrΨ(¬y)KFv [p�G] = Jp ∧ ¬yKFv [p�G] = G ∩ v(¬y) = G ∩ v(y)c

= G ∩ (G ∩ v(y))c = J¬yKGπ◦v ,
JtrΨ(⊥)KFv [p�G] = J⊥KFv [p�G] = ∅ = J⊥KGπ◦v ,

JtrΨ(>)KFv [p�G] = JpKFv [p�G] = G = J>KGπ◦v .

For formulas of the form ψ0@ψ1 with @ ∈ {∧,∨}, the result is immediate by induction.
We give below explicit computations for formulas whose main logical connector is a modal
operator:

JtrΨ(〈b〉ψ)KFv [p�G] = Jψb[trΨ(ψ)/q]KFv [p�G]

= JψbKFv [p�G,q� JtrΨ(ψ)KFv [p�G]]

= J〈b〉qKGπ◦v [q� JψKGπ◦v ] = J〈b〉ψKGπ◦v ,

JtrΨ([b]ψ)KFv [p�G] = Jp ∧ ¬ψb[¬trΨ(ψ)/q]KFv [p�G]

= G ∩ ( Jψb[¬trΨ(ψ)/q]KFv [p�G] )
c

= G ∩ ( JψbKFv [p�G,q�Sc] )c with S = JtrΨ(ψ)KFv [p�G] = JφKGπ◦v
= G ∩ ( J〈b〉qKGπ◦v [G∩Sc/q] )c

= J¬〈b〉¬qKGπ◦v [q�S]

= J[b]qKGπ◦v [q�S]

= J[b]qKGπ◦v [q� JψKGπ◦v ]

= J[b]ψKGπ◦v .

We finally consider least and the greatest fixed-point formulas of the form µz.φ and νz.φ.
Consider the two functions defined by

f(S) := JtrΨ(φ)KFv [p�G,z�S] and g(T ) := JφKGπ◦v [z�T ]

and remark firstly their typing, that is we have f : P (F ) −→ P (F ) and g : P (G) −→ P (G).
Since by the inductive hypothesis we have

JtrΨ(φ)KFw[p�G] = JφKGπ◦w
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for each valuation w, this in particular holds for the valuation v[z � S], with S ⊆ F ; that
is, we have

f(S) = g(S ∩G) , (6.2)

for each S ⊆ F . Let us denote by Preh the set of prefixed-points of a monotone function
h and by lfp.h its least element.2 It immediately follows from equation (6.2) that Preg is
included in Pref and that S ∈ Pref implies π(S) ∈ Preg. Therefore the inclusion of Preg is
into Pref has π as an upper adjoint, so it is a lower adjoint and therefore (as usual for lower
adjoints) it preserves the least element: lfp.g = lfp.f . We obtain

JtrΨ(µz.ψ)KFv [p�G] = lfp.f = lfp.g = Jµz.ψKGπ◦v .

For the greatest fixed-point, denote by Posh the set of postfixed-points of some monotone
function h and by gfp.h its greatest element. Using equation 6.2, observe that S ⊆ f(S)
implies S ⊆ G. It immediately follows that Posf = Posg, so

JtrΨ(µz.ψ)KFv [p�G] = gfp.f = gfp.g = Jµz.ψKGπ◦v .

This concludes the proof of Proposition 6.7.

It has been easier for us to expose the proof of Proposition 6.7 using frames. Next,
we recast our previous observations using models, for the particular cases of submodels
(Example 6.2) and of bimodal models (Examples 6.3 and 6.4).

If M = 〈|M|, {RMa | a ∈ Act }, v〉 and N = 〈|N |, {RNa | a ∈ Act }, vN 〉 are models,
then we say that N is a submodel of M if |N | is a subset of |M| and, for each y ∈ Prop
and each a ∈ Act,

vN (y) = vM(y) ∩ |N | and RNa = |N | × |N | ∩RMa .

Thus, N is a submodel of M if and only if, for some frame F , for a valuation v : Prop −→
P (|F|), and for a subframe G of F , M = Fv and N = Gπ◦v. Every subset S of |M| induces
the submodel M�S of M defined as follows:

M�S := 〈S, {Ra ∩ S × S | a ∈ Act }, v′〉 (6.3)

where v′(y) = v(y) ∩ S, is a submodel of M and it is called the submodel of M induced by
S. We write tr(φ) in place of trΨ(φ) if Ψ is the collection of formulas given in Example 6.2.
Proposition 6.7 instantiates then to models and submodels as follows:

Proposition 6.9. For each formula φ ∈ Lµ, the formula tr(φ) ∈ Lµ (which contains p as
a new propositional variable) has the following property: for each model M, each subset
S ⊆ |M|, and each s ∈ |M|,

M[p � S], s |= tr(φ) iff s ∈ S and M�S , s |= φ .

A subset S of |M| is closed if s ∈ S and sRas
′ imply s′ ∈ S, for every a ∈ Act. A

submodel N ofM is closed if |N | is a closed subset of |M|. The attentive reader might have
already observed that if S is a closed subset of M, then the statement of Proposition 6.9
holds with the simpler p ∧ φ in place of the recursively defined tr(φ).

Let us fix Ψ from one of Example 6.3 or 6.4. The translating function trΨ has now the
following properties:

2We prefer to use here the notation lfp in place of µ so to reserve the symbol µ for the syntax and to
emphasize the gap between semantics and syntax that we are trying to fill.
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(i) it associates to each bimodal formula φ of the modal µ-calculus a monomodal formula
trΨ(φ) of the modal µ-calculus,

(ii) the formula trΨ(φ) contains a new propositional variable,
(iii) the formula trΨ(φ) belongs to Cℵ1(x) if φ does.

Moreover, in case Ψ comes from Example 6.4, then (ii) can be strengthened to the stament
that trΨ(φ) has exactly the same propositional variables as φ. Proposition 6.7 then yields
the following result.

Proposition 6.10. For each bimodal model M there is a monomodal model Msim and an
injective function (−)◦ : |M| −→ |Msim| such that, for each s ∈ |M|, M, s 
 φ if and only if
Msim[p � S], s◦ 
 trΨ(φ), where S is the image of |M| under the injective function (−)◦.

Proposition 6.7 also yields the following result, needed to transfer results on closure
ordinals:

Proposition 6.11. Let φ ∈ Lµ with x occurring positively in φ.

(i) If M is a model and S ⊆ |M|, then

tr(φ)αM[p�S](∅) = φαM�S
(∅) .

(ii) If M is a model and S ⊆ |M| is closed, then

(p ∧ φ)αM[p�S](∅) = φαM�S
(∅) .

(iii) If M is a bimodal model and both Ψ and the construction Msim come from one of
the Examples 6.3 or 6.4, then

trΨ(φ)αMsim[p�S](∅) = [φαM(∅) ]◦ ,

where S is the image of |M| under the injective function (−)◦.

Proof. Let F , G, F , G and v : Prop −→ P (F ) be as in the statement of Proposition 6.7. If S
is a subset of G, then

trΨ(φ)Fv [p�G](S) = JtrΨ(φ)KFv [p�G][x�S] = JtrΨ(φ)KFv [x�S][p�G]

= JφKGπ◦v [x�S] = φGπ◦v(S) .

Then, by induction, we easily derive

(trΨ(φ)Fv [p�G])
α(∅) = φαGπ◦v(∅) ,

for each ordinal α. The three statements above follow considering Examples 6.2, 6.3, and
6.4.

Finally, consider again Example 6.4 and formulas (resp. models) φ′ (resp. M′) defined
by

φ′ := trΨ(ψ)[ 〈 〉[ ]⊥/p ] , M′ :=Msim[ p � J〈 〉[ ]⊥/pKM ] .

Let us identify the injective function (−)◦ : |M| −→ |Msim| with an inclusion (so that, instead
of embedding M into M sim, we are actually extending it into some bigger model). We
derive henceforth the following simpler statement that we shall use in the next section to
argue that ω1 is the closure ordinal of a monomodal formula. In the statement the role of
the special variable p is not transparent anymore.
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Proposition 6.12. For each bimodal formula φ there is a monomodal formula φ′ (with the
same free variables of φ) such that if φ ∈ Cℵ1(x), then φ′ ∈ Cℵ1(x), and with the following
property: for each bimodal model M there is a monomodal model M′ (that does not depend
on φ) such that,

(i) |M| ⊆ |M′|,
(ii) M, s 
 φ if and only if M′, s 
 φ′, for each s ∈ |M|,
(iii) (φ′M′)

α(∅) = φαM(∅), for each ordinal α.

7. An uncountable closure ordinal

In this section we firstly formally define the notion of closure ordinal, present some tools
required later, here and in the next section, and then we prove that ω1, the least uncountable
ordinal, is a closure ordinal of a formula of the modal µ-calculus. We firstly prove it in a
bimodal setting and then, using the tools developed in the previous section, we argue that
ω1 is also the closure ordinal of a monomodal µ-formula.

For a formula φ(x) of the modal µ-calculus and a Kripke model M, let clM(φ) be the

least ordinal β for which φβM(∅) = φβ+1
M (∅). Recall from Definition 3.1 that we say that φM

converges to its least fixed-point in exactly α steps when clM(φ) = α.

Definition 7.1. Let φ(x) be a formula of the modal µ-calculus. We say that an ordinal α
is the closure ordinal of φ (and write cl(φ) = α) if, for each model M, the function φM
converges to its least fixed-point in at most α steps, and there exists a model M in which
φM converges to its least fixed-point in exactly α steps.

Elsewhere in the literature, see e.g. [2], the closure ordinal of a formula φ(x) w.r.t. a
class of models K is defined as the supremum of the ordinals clM(φ) for M∈ K. If K is the
class of Kripke models, then this definition coincides with the one given above. This is a
consequence of the class of Kripke models being closed under disjoint unions: consider a
family {Mi | i ∈ I } such that α = sup{ clMi(φ) }; then the disjoint union

⋃· i∈I |Mi| carries
a canonical structure of a Kripke model, call it M, and it is easily seen that clM(φ) = α.

The notions of closure ordinal of a formula on a structure and of closure ordinal of a
structure appear in the monograph [29, Chapter 2B]. The notion of closure ordinal presented
here is on the other hand strictly related to global inductive definability, see [5]. Indeed,
it is well-known that each fixed-point-free modal formula ψ can be transformed into some
equivalent first order logic sentence STy(ψ), known as the standard translation of ψ. The
formula STy(ψ) contains y as the only free-variable and is related to ψ by the equivalence
M, s 
 ψ if and only ifM |= STy(ψ)(s), whereM is considered as a relational structure for
first-order logic. The closure ordinal of a fixed-point-free modal formula φ(x), as defined
here and when it exists, coincides with the global closure ordinal of the first-order inductive
definition given by STy(φ(x)).

Let us recall that formulas may have no closure ordinal. For example φ(x) := [ ]x has
no closure ordinal. Indeed, it is not difficult to construct, for each ordinal α, a model Mα

such that φαM(∅) is strictly included in φα+1
M (∅). We collect with the following Proposition

the observations developed in the course of the paper that are relevant to closure ordinals.

Proposition 7.2. If a formula φ(x) belongs to the syntactic fragment Cℵ1(x), then it has a
closure ordinal cl(φ(x)) and ω1 is an upper bound for cl(φ(x)).
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Proof. The formula φ belongs to the syntactic fragment Cℵ1(x), thus it is ℵ1-continuous
and, for every model M, φM is ℵ1-continuous. It follows then from Proposition 3.2
that φM converges to its least fixed-point in at most ω1 steps. Therefore, for such φ,
sup{ clM(φ) | M a Kripke model } ≤ ω1. As we have seen at the beginning of this section,
there exists a model M such that clM(φ) = sup{ clM(φ) | M a Kripke model }.

The following Lemma will be useful in the next section, when we shall show that closure
ordinals of the modal µ-calculus are closed under ordinal sum.

Lemma 7.3. Let α 6= 0 be a closure ordinal of the modal µ-calculus. Among the formulas
that have α as its closure ordinal there exists one formula φ(x) such that µx.φ(x) is total in
some model M where the convergence occurs in exactly α steps, that is,

|M| = Jµx.φ(x)KM = φαM(∅) 6= φα
′
M(∅) , for every α′ < α.

Proof. For a formula ψ(x), let (µx.ψ(x))op be a formula semantically equivalent to the
negation of µx.ψ(x) and define then

φ(x) := (µx.ψ(x))op ∨ ψ(x ∧ µx.ψ(x) ) .

Observe that φ(x) is not well-named, yet this will not be a concern here. For the sake of
readability, let µ := lfp.ψM. We verify next that

φγM(∅) = µ→ ψγM(∅) , for each ordinal γ ≥ 1. (7.1)

The symbol→ used above stands for the Heyting implication of the Boolean algebra P (|M|).
Equation (7.1) clearly holds if γ = 1. Assuming the equation holds for γ, then

φγ+1
M (∅) = µ→ ψM( (µ→ ψγM(∅)) ∩ µ )

= µ→ ψM(ψγM(∅) ∩ µ )

= µ→ ψM(ψγM(∅) ) , since ψγM(∅) ⊆ lfp.ψM = µ,

= µ→ ψγ+1
M ( ∅ ) .

The inductive step to a limit ordinal is obvious. From equation (7.1) it follows that, for each

γ 6= 0, φγ+1
M (∅) ⊆ φγM(∅) if and only if ψγ+1

M (∅) ⊆ ψγM(∅), so clM(φ) = clM(ψ) provided that
clM(ψ) > 0. Finally, Jµx.φ(x)KM = lfp.φM = µ→ µ = |M|.

7.1. ω1 is a closure ordinal. We are going to prove that ω1 is the closure ordinal of the
following bimodal formula:

Φ(x) := (νz.〈v〉x ∧ 〈h〉z) ∨ [v]⊥ . (7.2)

For the time being, consider Act = {h, v}; if M = 〈|M|, Rh, Rv, v〉 is a model, we think
of Rh as a set of horizontal transitions and of Rv as a set of vertical transitions. Thus, for
s ∈ |M|,M, s 
 Φ(x) if either (i) there are no vertical transitions from s, or (ii) there exists
an infinite horizontal path from s such that each state on this path has a vertical transition
to a state s′ such that M, s′ 
 x.

By Proposition 7.2, the formula Φ(x) has a closure ordinal and cl(Φ(x)) 6 ω1. In order to
prove that cl(Φ(x)) = ω1, we are going to construct a modelMω1 where Φω1

Mω1
(∅) 6⊆ Φα

Mω1
(∅)

for each α < ω1.

The construction relies on a few combinatorial properties of posets and ordinals that we
recall here. For a poset P and an ordinal α, an α-chain in P is a subset { pβ | β < α } ⊆ P ,
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with pβ ≤ pγ whenever β ≤ γ < α. An α-chain { pβ | β < α } ⊆ P is cofinal in P if, for
every p ∈ P there exists β < α with p ≤ pβ. The cofinality κP of a poset P is the least
ordinal α for which there exists an α-chain cofinal in P . Recall that an ordinal α might
be identified with the poset {β | β is an ordinal, β < α } and so κα = ω, whenever α is a
countable infinite limit ordinal; this means that, for such an α, it is always possible to pick
an ω-chain cofinal in α.

For a given ordinal α ≤ ω1, let

Sα := { (n, β) | 0 ≤ n < ω, β is an ordinal, β < α } .
We defineMω1 to be the model 〈Sω1 , Rh, Rv, v〉 where v(y) = ∅, for each y ∈ Prop, horizontal
transitions are of the form (n, β)Rh(n+1, β), for each n < ω and each ordinal β, and vertical
transitions from a state (n, β) ∈ Sω1 are as follows:

• if β = 0, then there are no vertical transitions outgoing from (n, 0);
• if β = γ + 1 is a successor ordinal, then the only vertical transitions are of the form

(n, γ + 1)Rv(0, γ);
• if β is a countable limit ordinal distinct from 0, then vertical transitions are of the form

(n, β)Rv(0, βn), where the set {βn | n < ω } is a chosen ω-chain cofinal in β.

Lemma 7.4. For each countable ordinal α, we have

φMω1
(Sα) = Sα+1.

Consequently, for each ordinal α ≤ ω1, we have φαMω1
(∅) = Sα.

Proof. If α = 0, then Sα = ∅ and

φMω1
(S0) = φMω1

(∅) = Jνz.(〈h〉z ∧ 〈v〉x) ∨ [v]⊥KMω1 [x� ∅]

= J[v]⊥KMω1
= { (n, 0) | n < ω } = S1 .

Consider now an ordinal α > 0.

Let us argue firstly that Sα+1 ⊆ φMω1
(Sα). Let (n, β) ∈ Sα+1, so β < α + 1 implies

β ≤ α. From (n, β), there is the infinite horizontal path { (m,β) | n ≤ m < ω } and each
vertex on this path has a vertical transition to a vertex (0, β′) with β′ < β ≤ α, in particular
(0, β′) ∈ Sα. Therefore (n, β) ∈ φMω1

(Sα).

Next, we argue that the converse inclusion, φMω1
(Sα) ⊆ Sα+1, holds. Suppose (n, β) ∈

φ(Sα). If there are no vertical transitions from (n, β) then β = 0 and (n, β) = (n, 0) ∈ S1 ⊆
Sα+1, since Sβ ⊆ Sγ for β ≤ γ. Otherwise β > 0, there is an infinite horizontal path from
(n, β) and each vertex on this path has a transition to some vertex in Sα. Notice that such
an infinite horizontal path is, necessarily, the path π := { (m,β) | n ≤ m < ω }.

If β = γ + 1 is a successor ordinal then the unique outgoing vertical transition from
(n, β) is to (0, γ). Hence (0, γ) ∈ Sα, thus γ < α, β = γ + 1 < α + 1 and (n, β) ∈ Sα+1.
Otherwise β is a limit ordinal distinct from 0 and, for each m > n, there is a vertical
transition (m,β)Rv(0, βm) with (0, βm) ∈ Sα, so βm < α. If α + 1 ≤ β, then α < β, that
is, α ∈ β. Since the ω-chain {βk | k ∈ ω } is cofinal in β, we can find k ∈ ω such that
α ≤ βk. Since βk ≤ βk′ for k ≤ k′ ∈ ω, we can also suppose that n ≤ k. But we obtain here
a contradiction, since we mentioned before that βm < α for m ≥ n, in particular βk < α.

The proof of the second statement is now a straightforward induction on the ordinal α.
If α = β + 1 is a successor ordinal, then

φαMω1
(∅) = φMω1

(φβMω1
(∅)) = φMω1

(Sβ) = Sβ+1 .
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If α is a limit ordinal, then

φαMω1
(∅) =

⋃
β<α

φβMω1
(∅) =

⋃
β<α

Sβ = Sα .

This concludes the proof of Lemma 7.4.

We conclude the section by stating its main result.

Theorem 7.5. The closure ordinal of Φ(x) is ω1.

Proof. As we mentioned before the formula Φ(x) has a closure ordinal and cl(Φ(x)) 6 ω1, by
Proposition 7.2. We claim that ΦMω1

converges to its least fixed-point in exactly ω1 steps,

that is, we have Φω1
Mω1

(∅) 6⊆ Φα
Mω1

(∅) for each α < ω1. Our claim is verified as follows. By

Lemma 7.4, the claim is equivalent to Sω1 6⊆ Sα, for each α < ω1. The latter relation holds
since if α < ω1, then we can find an ordinal β with α < β < ω1, so the states (n, β), n ≥ 0,
belong to Sω1 \ Sα.

Finally, we argue that a bimodal language is not needed for ω1 to be a closure ordinal.
To this goal, let Ψ be as in Example 6.4 and let

Φ′ := trΨ(Φ)[ 〈 〉[ ]⊥/p ] , M′ω1
:=Msim

ω1
[ p � J〈 〉[ ]⊥KMω1

] ,

where Φ is the bimodal formula defined in equation (7.2). As in the statement of Proposi-
tion 6.12, we consider |M′ω1

| as a superset of |Mω1 |.
Theorem 7.6. The monomodal formula Φ′ has closure ordinal ω1.

Proof. Consider the statement of Proposition 6.12. Since the correspondence φ 7→ φ′ sends
formulas in Cℵ1(x) to formulas in Cℵ1(x), Φ′ is ℵ1-continuous and therefore it has a closure
ordinal bounded by ω1. To argue that the closure ordinal of Φ′ is equal to ω1 it is enough to
consider the model M′ω1

and rely on item (iii) of Proposition 6.12.

8. Closure under ordinal sum.

In this section we prove that the ordinal sum of two closure ordinals of the modal µ-calculus
is again a closure ordinal of this logic, as stated in the next theorem.

Theorem 8.1. Suppose φ0(x) and φ1(x) are monomodal formulas that have, respectively, α
and β as closure ordinals. Then there is a monomodal formula Ψ(x), constructible from φ0

and φ1, whose closure ordinal is α+ β.

We prove the theorem through a series of observations. With the first one, Lemma 8.2,
we make use of the master modality [U ] of the propositional modal µ-calculus. In principle,
the use master modality in the proof of Theorem 8.1 may be avoided, at the cost of reducing
its readability. Given a monomodal formula χ this modality is defined as follows:

[U ]χ := νz.(χ ∧ [ ]z ) .

The master modality allows us to focus on those models of a fixed shape since they satisfy,
globally, a given formula. Indeed, the semantics of this modality is the following:

M, s 
 [U ]χ if and only if M, s′ 
 χ, for each s′ reachable from s.

In particular, if M is a tree model, then M 
 χ if and only if M, r 
 [U ]χ, where r is the
root of the tree. Let us mention that the modality [U ] satisfies all the axioms (reflexivity
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and transitivity) of the modal system S4, see e.g. [22, § 2.5], and yields a deduction theorem
for the modal µ-calculus, see [23, 34].

When M 
 [U ]χ (that is, M, s 
 [U ]χ, for each s ∈ |M|), we say that M is χ-
acceptable.

Lemma 8.2. Let χ and ψ(x) be monomodal formulas and define Ψ(x) := [U ]χ ∧ ψ(x).
An ordinal γ is the closure ordinal of the formula Ψ(x) if and only if (i) the formula ψ(x)
converges to its least fixed point in at most γ steps on all the χ-acceptable models, and (ii)
there exists an χ-acceptable model on which the formula ψ(x) converges to its least fixed
point in exactly γ steps.

Proof. If N is an χ-acceptable model, then J[U ]χKN = |N |, so that ΨN = ψN .
On the other hand, if M is any model, then the submodel of M induced by J[U ]χKM

is closed and χ-acceptable. Call N such a submodel of M. Thus, by Proposition 6.11.(ii),
for any ordinal γ ≥ 0, we have

Ψγ
M(∅) = ψγN (∅) . (8.1)

The statement of the lemma immediately follows.

Next, recall that we write tr(φ) in place of trΨ(φ) if Ψ is the collection of formulas
given in Example 6.2. Let φ0(x) and φ1(x) be monomodal formulas as in the statement of
Theorem 8.1. For a variable p occurring neither in φ0 nor in φ1, we define

χ := χ0 ∧ χ1 with χ0 := p ∨ ( [ ]¬p ∧ µz.φ0(z) ) and χ1 := ¬p ∨ µz.tr(φ1(z)) , (8.2)

ψ(x) := (¬p ∧ φ0(x) ) ∨ ( tr(φ1)(x) ∧ [ ](p ∨ x) ) , (8.3)

Ψ(x) := [U ]χ ∧ ψ(x) . (8.4)

From now on, we shall say that a model N is acceptable if it is χ-acceptable, where χ is
the formula given in equation (8.2). We shall argue that Ψ(x) defined in (8.4) has closure
ordinal α+ β using Lemma 8.2.

Next, we continue by studying the structure of an acceptable model N and how ψN acts
on it—where ψ is the formula defined in (8.3). To this goal, let N0 and N1 be the submodels
of N induced by v(¬p) and v(p), respectively. To ease the reading, let N0 := v(¬p), and
N1 := v(p). A model N is acceptable if and only if N0 is a closed subset of |N | (since
N 
 p ∨ [ ]¬p ≡ ¬p→ [ ]¬p) and moreover

N0 ⊆ Jµz.φ0(z) KN , N1 ⊆ Jµz.tr(φ1(z)) KN .

Let also φN0
:= (φ0)N0

and φN1
:= (φ1)N1

, so φN0
: P (N0) −→ P (N0) and φN1

: P (N1) −→
P (N1). We claim that ψN is of the form

ψN (X) = φN0
(X ∩N0) ∪ (φN1

(X ∩N1) ∩∇(X ∩N0)) , (8.5)

with

∇(X) := N1 ∩ [ ]N (N0 → X) . (8.6)
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This is because, for each X ⊆ |N |,
ψN (X) = (ψN (X) ∩N0) ∪ (ψN (X) ∩N1) ,

ψN (X) ∩N0 = φN0
(X ∩N0) ,

ψN (X) ∩N1 = tr(φ1)N1
(X) ∩ [ ]N (N0 → X) = N1 ∩ φN1

(X ∩N1) ∩ [ ]N (N0 → X)

= φN1
(X ∩N1) ∩N1 ∩ [ ]N (N0 → (X ∩N0)) .

We notice now that if N is acceptable, then

N0 = Jµz.φ0(z)KN ∩N0 = Jµz.φ0(z)KN0 = φαN0
(∅) (8.7)

and

N1 = Jµz.tr(φ1(z))KN ∩N1 = Jµz.φ1(z)KN1 = φβN1
(∅) . (8.8)

Observe that ∇(X) = N1 whenever N0 ⊆ X and therefore, using φαN0
(∅) = N0, we have

∇(X) = N1, whenever X ⊇ φαN0
(∅) . (8.9)

Lemma 8.3. On every acceptable model N the equality ψα+β
N (∅) = |N | holds and, conse-

quently, the formula ψ(x) converges within α+ β steps.

Proof. Since N0 is a closed subset of |N |, by Proposition 6.11, we have

ψδN (∅) ∩N0 = ψδN0
(∅) = φδN0

(∅) (8.10)

for each ordinal δ. Consequently, ψα+γ
N (∅) ∩N0 ⊇ ψαN (∅) ∩N0 = φαN0

(∅), for every ordinal γ.

Claim 8.4. The following relation holds for every ordinal γ ≥ 0:

φγN1
(∅) ⊆ ψα+γ

N (∅) ∩N1 . (8.11)

Proof of Claim. Clearly the relation holds for γ = 0. In order to prove the above inclusion,
it will be enough to prove that it holds at a successor ordinal γ + 1, assuming it holds at γ
(the inductive step to a limit ordinal is obvious). We have

ψα+γ+1
N (∅) ∩N1 = φN1

(ψα+γ
N (∅) ∩N1) ∩∇(ψα+γ

N (∅) ∩N0)

= φN1
(ψα+γ
N (∅) ∩N1) ∩∇(φα+γ

N0
(∅)) , by equation (8.10),

= φN1
(ψα+γ
N (∅) ∩N1), by equation (8.9),

⊇ φN1
(φγN1

(∅)) , by the IH,

= φγ+1
N1

(∅) . � Claim.

Therefore

|N | = N0 ∪N1 = φαN0
(∅) ∪ φβN1

(∅) using (8.7) and (8.8)

⊆ (ψα+β
N (∅) ∩N0) ∪ (ψα+β

N (∅) ∩N1) = ψα+β
N (∅) .

This terminates the proof of Lemma 8.3.

Lemma 8.5. There exists an acceptable model N on which ψ(x) converges in exactly α+ β
steps.
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Proof. Since the formulas φ0(x) and φ1(x) have, respectively, α and β as closure ordinals, by
Lemma 7.3 there exist models Mγ = 〈|Mγ |, Rγ , vγ〉, γ ∈ {α, β }, such that for every α′ < α

and β′ < β Jµx.φ0(x)KMα = |Mα| = φ0
α
Mα

(∅) 6= φ0
α′

Mα
(∅) and Jµx.φ1(x)KMβ

= |Mβ| =

φ1
β
Mβ

(∅) 6= φ1
β′

Mβ
(∅).

We construct now the model Mα+β by making the disjoint union of the sets |Mα| and
|Mβ|, endowed with Rα ∪Rβ ∪ { (s, s′) | s ∈ |Mβ|, s′ ∈ |Mα| } and the valuation v defined
by v(q) := |Mβ|, if q = p, and v(q) := vα(q) ∪ vβ(q) otherwise. Let us put N := Mα+β.
Observe now thatMα+β is an acceptable model and that ∇(X) = ∅ for every X ⊆ |N | such
that X ∩N0 ( φαN0

(∅). Because of this, the inclusion (8.11) is actually an equality, as stated

and proved next.

Claim 8.6. Suppose that φδN0
(∅) is strictly included in N0 for δ < α and that ∇(X) = ∅

whenever X is a proper subset of N0. Then, the inclusion (8.11) is an equality, for each
ordinal γ ≥ 0:

φγN1
(∅) = ψα+γ

N (∅) ∩N1 . (8.12)

Proof of Claim. It is enough to verify that the above equality holds for γ = 0. Indeed, for
γ > 0, we can use the same computations as in the proof of the claim in Lemma 8.3, by
substituting an equality for the inclusion in the inductive hypothesis.

If δ < α, then

ψδ+1
N (∅) ∩N1 ⊆ ∇(ψδN (∅) ∩N0) = ∇(φδN0

(∅)) = ∅ ,
since by assumption φδN0

(∅) is strictly included in N0. In particular, if α is a successor

ordinal, we have ψα+γ
N (∅) ∩N1 = ∅. If α is a limit ordinal, then

ψαN (∅) ∩N1 ⊆
⋃
δ<α

ψδ+1
N (∅) ∩N1 ⊆

⋃
δ<α

∇(ψδN (∅) ∩N0) = ∅ . � Claim.

We can then use equations (8.10) and (8.12) to obtain

ψαN (∅) = φαN0
(∅) % φδN0

(∅) = ψδN (∅) and ψα+γ
N (∅) = N0 ∪ φγN1

(∅)
for ordinals γ, δ such that δ < α. Finally,

ψα+β
N (∅) = |N | = N0 ∪ φβN1

(∅) % N0 ∪ φγN1
(∅) = ψα+γ

N (∅) , for γ < β .

This shows that ψ converges in exactly α+ β steps in Mα+β and therefore terminates the
proof of Lemma 8.5.

Now Theorem 8.1 immediately follows from Lemmas 8.2, 8.3 and 8.5 when applied to
the formulas χ, ψ and Ψ defined in 8.2, 8.3 and 8.4 respectively.

In the introduction we used Ord(Lµ) to denote the set of closure ordinals of formulas of
the modal µ-calculus. This section yields an insight on Czarnecki’s work [11] by proving the
closure of Ord(Lµ) under the ordinal sum. The general problem of characterizing Ord(Lµ)
is open. At the time of writing this paper, it is our opinion that still a few ordinals are
known to belong to Ord(Lµ)—all of them can be constructed from the cardinals 1, ω and
ω1 by iterating the binary ordinal sum. Our results from Section 5 show that no other
infinite regular cardinal κ (apart from ω and ω1) can be proved to belong to Ord(Lµ) in
a straightforward way, that is, by relying on the κ-continuity of some formula in Lµ and
on the generalized Kleene theorem (Proposition 3.2). Therefore, any other membership of
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Ord(Lµ) requires a very different justification from the known ones. New questions about
Ord(Lµ) need to be raised, such as whether this set is closed under other ordinal operations.
Let us mention that a recent work [28] exhibits a rich structure for closure ordinals of the
modal µ-calculus on bidirectional models. It is conceivable that studying closure ordinals on
restricted classes of models will eventually yield a finer understanding of the structure of
Ord(Lµ).
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