
Logical Methods in Computer Science
Volume 15, Issue 4, 2019, pp. 15:1–15:26
https://lmcs.episciences.org/

Submitted Apr. 09, 2019
Published Dec. 18, 2019

ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI
NETS AND RELATED SYSTEMS

JÉRÔME LEROUX, M PRAVEEN, PHILIPPE SCHNOEBELEN, AND GRÉGOIRE SUTRE

LaBRI, Univ. Bordeaux & CNRS, France

Chennai Mathematical Institute, India

LSV, ENS Paris-Saclay & CNRS, France

LaBRI, Univ. Bordeaux & CNRS, France

Abstract. We consider numerical functions weakly computable by grammar-controlled
vector addition systems (GVASes, a variant of pushdown Petri nets). GVASes can weakly
compute all fast growing functions Fα for α < ωω, hence they are computationally more
powerful than standard vector addition systems. On the other hand they cannot weakly
compute the inverses F−1

α or indeed any sublinear function. The proof relies on a pumping
lemma for runs of GVASes that is of independent interest.

1. Introduction

Pushdown Petri nets are Petri nets extended with a pushdown stack. They have been
used to model asynchronous programs [34] and, more generally, recursive programs with
integer variables [2]. They sometimes appear under a different but essentially equivalent
guise: stack/pushdown/context-free vector addition systems [19, 22, 26], partially blind multi-
counter machines [10] with a pushdown stack, etc. It is not yet known whether reachability
is decidable for pushdown Petri nets and this is one of the major open problems in computer
science. However, a series of recent results improved our understanding of the computational
power of these models: coverability, reachability and boundedness are Tower-hard [19, 21],
and boundedness is solvable in hyper-Ackermannian time [22].

With the present article, we contribute to this line of work. We recall Grammar-Controlled
Vector Addition Systems [26], or GVAS, a variant model, close to Pushdown Petri nets, where
the pushdown stack is replaced by a context-free restriction on the firing of rules. The
runs are now naturally organized in a derivation tree, and the stack is not actually present
in the configurations: this leads to a simplified mathematical treatment, where the usual
monotonicity properties of VASes can be put to use.

Key words and phrases: Petri nets, pushdown vector addition systems, weak computation, fast-growing
functions, pumping lemma.

This work was partly supported by grant ANR-17-CE40-0028 of the French National Research Agency
ANR (project BRAVAS), and by the Indo-French CNRS UMI 2000 ReLaX. .

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(4:15)2019
c© J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

15:2 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

As a step towards understanding the expressive power of these GVASes, we consider the
number-theoretical functions that are weakly computable in this model. Restricting to weakly
computing a numerical function is a natural idea when dealing with models like VASes and
GVASes that lack zero-tests, or, more precisely, that cannot initiate a given action on the
condition that a counter’s value is zero, only on the condition that it is not zero.

This notion has been used since the early days of Petri nets and has proved very useful in
hardness or impossibility proofs: For Petri nets and VASSes, the undecidability of equivalence
problems, and the Ackermann-hardness of the same problems for bounded systems, have
been proved using the fact that multivariate polynomials with positive integer coefficients
—aka positive Diophantine polynomials— and, respectively, the fast-growing functions (Fi)i∈N
in the Grzegorczyk hierarchy, are all weakly computable [12, 28, 16]. More recently, the
nonelementary complexity lower bound for VASS reachability is obtained thanks to a uniform
(polynomial size) family of systems computing (exactly) n-EXP(2) from n [5].

The above results rely on showing how some useful functions are weakly computable
by Petri nets and VASSes. But not much is known about exactly which functions are
weakly computable or not. It is known that all such functions are monotonic. They are all
primitive-recursive. The class of weakly computable functions is closed under composition.

In this article, we show that functions weakly computable by GVASes go beyond those
weakly computable by VASSes, in particular we show how to weakly compute the Fast
Growing (Fα) for all α < ωω.

A folklore conjecture states that the inverses of the fast-growing functions are not weakly
computable by Petri nets. It is stated as fact in [32, p.252] but no reference is given. In this
article, we settle the issue by proving that any unbounded function weakly computable by
Petri nets and more generally by GVASes is in Ω(x), i.e., it eventually dominates c · x for
some constant c > 0. Thus any function that is sublinear, like x 7→ b

√
xc, or x 7→ blog xc,

is not weakly computable by GVASes. The proof technique is interesting in its own right:
it relies on a pumping lemma on runs of GVASes that could have wider applications. This
pumping lemma follows from a well-quasi-ordering on the set of runs that further directs it.

Beyond Petri nets and VASSes. Petri nets and VASSes are a classic example of well-
structured systems [1, 8]. In recent years, weakly computing numerical functions has
proved to be a fundamental tool for understanding the expressive power and the complexity
of some families of well-structured systems that are more powerful than Petri nets and
VASSes [33, 14, 11]. For such systems, the hardness proofs rely on weakly computing fast-
growing functions (Fα)α∈Ord that extend Grzegorczyk’s hierarchy. These hardness proofs
also crucially rely on weakly computing the inverses of the Fα’s.

There are several extensions of Petri nets for which reachability (or coverability or
boundedness) remains decidable: nets with nested zero-tests [30], recursive VASSes [3] and
Branching VASSes [7], VASSes with pointers to counters [6], unordered data Petri nets [20],
etc., and of course pushdown VASes and GVASes. For the latter, while coverability and
reachability are still open in general, partial decidability results have been obtained by looking
at sub-classes, namely GVASes with finite-index grammars [2] and GVASes of dimension
one [26]. In many cases, it is not known how these extensions compare in expressive power
and in complexity. We believe that weakly computable functions can be a useful tool when
addressing these questions.

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:3

Related models. The GVAS model can simulate counter machines extended with nested
zero-tests (from [30]), and the vector addition systems extended with a pushdown stack
(from [22]). The first simulation was shown in [2] and holds even for GVASes with finite-index
grammars. The second one comes from the classical transformation of a pushdown automaton
into a context-free grammar that recognizes the same language. There exists still other
models that extend vector addition systems with stack-related mechanisms, e.g., Mayr’s
Process Rewrite Systems [29] or Haddad and Poitrenaud’s Recursive Petri Nets [13]. Pending
some further, more formal, comparison, it seems that these models are less expressive than
Pushdown VASes since they only allow limited interactions between stack and counters.

Outline of the paper. Section 2 introduces GVASes and fixes some notation. In Section 3,
we introduce flow trees, a tree-shaped version of runs of GVASes for which we develop our two
main tools: a well-quasi-ordering between flow trees and an Amalgamation Theorem. The
following two sections explore applications of the Amalgamation Theorem in understanding
the computing power of GVASes: via GVAS-definable sets in Section 4, via weakly computable
function in Section 5. Finally, we show in Section 6 that GVASes can weakly compute all
Fast-Growing functions Fα for α < ωω.

2. Grammar-Controlled Vector Addition Systems

This section recalls the model of grammar-controlled vector addition systems, originally
from [26]. In a nutshell, these are intersections of classical VAS with context-free grammars.
Remark 2.3 relates them with the equivalent model of pushdown vector addition systems.

Vector Addition Systems. For a dimension d ∈ N, we consider configurations that are
vectors c,d,x,y, . . . in Nd, and actions that are vectors a ∈ Zd. We write x

a−→ y for two
configurations x,y in Nd if y = x + a. A vector addition system (a VAS) is a transition
system of the form (Nd, { a−→}a∈A) generated by a finite set A ⊆ Zd of actions.

In a VAS, the one-step transition relations { a−→}a∈A are composed in a natural way:
with any word w = a1 · · ·ak ∈ A∗ of actions, we associate the binary relation w−→ defined
over configurations by x

w−→ y iff there exists a sequence c0, . . . , ck of configurations such
that c0 = x, ck = y and such that cj−1

aj−→ cj for every 1 ≤ j ≤ k. Those relations are
monotonic:

x
w−→ y and v ∈ Nd implies x + v

w−→ y + v . (2.1)

Notation. When writing configurations c ∈ Nd, we sometimes split the vector in parts,
writing e.g., c = (x,y) for some x ∈ Nd1 and y ∈ Nd2 with d = d1 + d2. We also write 0d for
the null vector in Nd, often leaving the dimension implicit.

15:4 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

Grammar-controlled Vector Addition Systems. A d-dimensional grammar-controlled
vector addition system (a GVAS) can be seen as a context-free grammar using terminals
from Zd, or equivalently as a VAS where the valid sequences of actions are generated by a
context-free grammar. Formally, a d-dimensional GVAS is some G = (V,A, R, S) where V is
a finite set of nonterminals, where A ⊆ Zd is a finite set of terminals called actions, where
R ⊆ V × (V ∪A)∗ is a finite set of production rules, and S ∈ V is the start symbol. Following
the usual convention, a rule (T, u) is also written T → u. We denote nonterminals from V
with capital letters like S, T, . . . while symbols from the larger set V ∪A are denoted with
X,Y, Words in (V ∪A)∗ are denoted with w, u, v, As usual, ε denotes the empty
word.

For all words w,w′ ∈ (V ∪A)∗, we say that w ==⇒ w′ is a derivation step of G if there
exist two words v, v′ in (V ∪A)∗ and a rule (T, u) in R such that w = vTv′ and w′ = vuv′.
Let ∗

==⇒ denote the reflexive and transitive closure of ==⇒. The language LG ⊆ A∗ generated
by G seen as a grammar is defined as usual with w ∈ LG

def⇔ S
∗

==⇒ w ∈ A∗. More generally,
for any u ∈ (V ∪A)∗, the language LG(u) is {w ∈ A∗ | u ∗

==⇒ w}.
When G is a GVAS, we are interested in what sequences of actions may occur between

configurations in Nd. For this, we extend the definition of the w−→ relation and consider u−→
for any u ∈ (V ∪A)∗. Formally, we let

x
u−→ y

def⇔ ∃w ∈ LG(u) : x
w−→ y . (2.2)

A labeled pair x
u−→ y is called a run of the GVAS, and should not be confused with the

derivations w ∗
==⇒ w′ that only involve the grammar part.

Like VASes, GVASes are monotonic:

x
u−→ y and v ∈ Nd implies x + v

u−→ y + v . (2.3)

The underlying grammar G is left implicit in the above notation. We sometimes write x G−→ y

instead of x S−→ y, where S is the start symbol of G, when several grammars are considered
simultaneously.

Example 2.1. Let d = 1, V = {S, T}, and consider the 1-dimensional GVAS given by the
following four rules in Backus-Naur form:

S → 1
∣∣ −1S T , T → 0

∣∣ −1T 2 .

Since we shall claim in Section 5 that this GVAS weakly computes the 2n function, let us
state and prove the main properties of its runs. Formally, for every k, k′, n, n′ ∈ N, one has:

k
T−→ k′ iff k ≤ k′ ≤ 2k , n

S−→ n′ iff 1 ≤ n′ ≤ 2n . (2.4)

Thus, even in dimension 1, the reachability relation may not be semilinear.
To prove (2.4) assume first that k T−→ k′ for some natural numbers k, k′. There exists

m ∈ N such that k −1m02m−−−−−−→ k′. In particular m ≤ k and k′ = k + m. We deduce that
k ≤ k′ ≤ 2k. Conversely, let k, k′ be two natural numbers such that k ≤ k′ ≤ 2k. Observe
that T ∗

==⇒ −1n02n where n is defined as k′ − k. The following relations show that k T−→ k′:

k
−1n−−−→ k − n 0−→ k − n 2n−→ k′ .

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:5

Now, assume that n S−→ n′ for some natural numbers n, n′, There exists m ∈ N such that
n
−1m1Tm−−−−−−→ n′. It follows that m ≤ n, and from the previous paragraph, we deduce that

n′ ≤ (n −m + 1)2m ≤ 2n by observing that x + 1 ≤ 2x for every x ∈ N and by replacing
x by n−m. Conversely, let n, n′ be two natural numbers such that 1 ≤ n′ ≤ 2n. Observe
that S ∗

==⇒ −1n1Tn. Let us introduce a natural number m in {0, . . . , n − 1} such that
2m ≤ n′ ≤ 2m+1. The following relations show that n S−→ n′:

n
−1n−−−→ 0

1−→ 20 T−→ 21 · · · T−→ 2m
T−→ n′

Tn−1−m
−−−−−→ n′ .

Example 2.2. Let G be the 2-dimensional GVAS with a single nonterminal symbol and the
following three rules:

S → S S
∣∣ (−1

2

) ∣∣ (2
−1

)
.

Let w =
(−1

2

)(
2
−1

)(−1
2

)
and observe that S ∗

==⇒ w. We have
(

2
2

) (−1
2

)
−−−→

(
1
4

) (2
−1

)
−−−→

(
3
3

) (−1
2

)
−−−→

(
2
5

)
and hence

(
2
2

) S−→
(

2
5

)
.

Remark 2.3. It is well known that, from a formal language viewpoint, context-free grammars
are equivalent to pushdown automata. Similarly, GVAS can be equivalently presented as
VAS extended with a pushdown stack. Formally, a d-dimensional Pushdown Vector Addition
System (a PVAS) is a transition system of the form (Nd × Γ∗, { p−→}p∈P) generated by a pair
(Γ,P) where Γ is a finite stack alphabet and P ⊆ Γ∗ × Γ∗ × Zd is a finite set of actions. So
configurations are now pairs (x, u) where x ∈ Nd is as for VAS and u ∈ Γ∗ is a word denoting
the contents of the stack. Intuitively, an action p = (α, β,a) pops the string α from the top
of the stack, then pushes the string β onto the top of the stack, and adds a to the vector

of natural numbers. Formally, each action (α, β,a) ∈ P induces a binary relation
(α,β,a)−−−−→

on configurations defined by (x, u)
(α,β,a)−−−−→ (y, v) if y = x + a and there exists w such that

u = αw and v = βw. GVASes can be translated into equivalent PVASes and vice-versa.
For instance, the PVAS corresponding to Example 2.2 is generated by the pair (Γ,P)

where Γ = {S} and P is the set of actions {(S, SS,
(

0
0

)
), (S, ε,

(−1
2

)
), (S, ε,

(
2
−1

)
)}. Corre-

sponding to
(

2
2

) w−→
(

2
5

)
with w =

(−1
2

)(
2
−1

)(−1
2

)
there, we have

(S,
(

2
2

)
)
S,SS,

(
0
0

)
−−−−−→ (SS,

(
2
2

)
)
S,ε,
(
−1
2

)
−−−−−→ (S,

(
1
4

)
)
S,SS,

(
0
0

)
−−−−−→ (SS,

(
1
4

)
)
S,ε,
(

2
−1

)
−−−−−→ (S,

(
3
3

)
)
S,ε,
(
−1
2

)
−−−−−→ (ε,

(
2
5

)
)

in the PVAS.

3. Well-Quasi-Ordering Runs in GVASes

In this section we define flow trees of GVASes and show that they satisfy an amalgamation
property. This property is used in the next section to provide a geometrical decomposition
of GVAS sets, and in the following section to show that unbounded weakly computable
functions are in Ω(n).

15:6 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

S

−1 S T

−1 S T 0

01

3
S−→ 2

3
−1−−→ 2 2

S−→ 2 2
T−→ 2

2
−1−−→ 1 1

S−→ 2 2
T−→ 2 2

0−→ 2

2
0−→ 21

1−→ 2

Figure 1: Continuing Example 2.1: S → 1 | −1S T and T → 0 | −1T 2.
Left: Derivation tree witnessing S ∗

==⇒ w, with w = −1−1100.
Right: Flow tree witnessing 3

w−→ 2.

Let G = (V,A, R, S) be a d-dimensional GVAS. Flow trees of G are trees that combine a
transition x

w−→ y in the VAS part of G with a derivation tree for the corresponding S ∗
==⇒ w

in the grammar part of G.
Flow trees are finite rooted ordered trees labeled with transitions of G: we write

t = σ[t1, . . . , t`] to denote a flow tree t made of a root with ` subtrees t1, . . . , t`. The root is
labeled by a transition σ of G, of the form c

X−→ d with X ∈ V ∪A. We write root(t) = σ.
Formally, F (G) is the least set of trees that contains all (c

a−→ d)[] with a ∈ A and c+ a = d,
and all (c

T−→ d)[t1, . . . , t`] with T ∈ V and t1, . . . , t` ∈ F (G) such that there is a rule
T ==⇒ X1 · · ·X` in R and configurations c0, c1, . . . , c` with c0 = c, c` = d and such that, for
i = 1, . . . , `, the root of ti is labeled with ci−1

Xi−→ ci. A subtree of t = σ[t1, . . . , t`] is either t
itself or a subtree of some ti for i = 1, . . . , `. A (sub)tree (c

X−→ d)[t1, . . . , t`] is a leaf when
` = 0: this requires that X = a ∈ A is an action (and then d = c + a) or that X = T ∈ V is
a non-terminal and T ==⇒ ε is a rule in R (and then d = c).

As is standard, we use positions to identify occurrences of subtrees inside t. Formally,
a position is a finite sequence of natural numbers, and the positions of the subtrees of t,
denoted Pos(t) are given inductively by

Pos(σ[t1, . . . , tl])
def
= {ε} ∪ {i.q | 1 ≤ i ≤ l ∧ q ∈ Pos(ti)} .

For p ∈ Pos(t), the subtree of t at position p is denoted t/p.

Example 3.1. Recall the 1-dimensional GVAS G from Example 2.1. The grammar admits,
among others, a derivation S ∗

==⇒ w for w = −1−1100. Thus 3
w−→ 2 is a transition in G.

In Fig. 1 we display a derivation tree witnessing S ∗
==⇒ w and a flow tree witnessing

c
w−→ d for c = 3 and d = 2.

We now extend to flow trees of GVASes an ordering initially introduced by Jančar for
runs of VASes [15, Def. 6.4].

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:7

3
S−→ 4

3
3−→ 6 6

U−→ 4

6
T−→ 4

6
−2−−→ 4

t0

6≥G 2
S−→ 3

2
3−→ 5 5

T−→ 3

5
−2−−→ 3

t1

≤G 3
S−→ 4

3
3−→ 6 6

T−→ 4

6
V−→ 6 6

T−→ 4

6
−2−−→ 4

t2

Figure 2: Illustration for Example 3.4: S → 3T | 3U , T → −2 | V T , U → T and V → ε.

Definition 3.2 (Ordering GVAS transitions and flow trees). For two transitions σ = c
X−→ d

and θ = c′
X′−→ d′ with X,X ′ ∈ V ∪A, we let

σ ≤ θ def⇔ c ≤ c′ ∧ d ≤ d′ ∧X = X ′ .

The ordering ≤G between flow trees s, t ∈ F (G) is defined by induction on the structure
of trees: s = σ[s1, . . . , sk] ≤G t = θ[t1, . . . , t`] if, and only if, σ ≤ θ and there exists a subtree
t′ of t of the form t′ = θ′[t′1, . . . , t

′
`′] with σ ≤ θ′, `′ = k and sj ≤G t′j for every 1 ≤ j ≤ k.

This definition is well-founded and, since the subtree relation is transitive, ≤G is clearly
reflexive and transitive, i.e., is a quasi-ordering. In the appendix, we prove the following key
property:

Lemma 3.3 (See Appendix A). (F (G),≤G) is a well-quasi-ordering.

In other words, any infinite sequence s0, s1, s2, . . . of flow trees contains an infinite
increasing subsequence si0 ≤G si1 ≤G si2 ≤G · · · .
Example 3.4. The flow trees shown in Fig. 2 illustrate the ordering ≤G, on a 1-dimensional
GVAS with non-terminals S, T, U, V and the following rules: S → 3T | 3U , T → −2 | V T ,
U → T and V → ε. We can see that t1 ≤G t2 from the following orderings on the subtrees of
t1 and t2: t1/1 ≤G t2/1, t1/2 ≤G t2/2 and t1/21 ≤G t2/221. It can be verified that t1 6≤G t0.
However, t1 v t0, where v is the standard homeomorphic embedding 1 of labeled trees. This
can be seen by the following orderings: t1/1 v t0/1, t1/2 v t0/21 and t1/21 v t0/211.

When σ ≤ θ for some σ = c
X−→ d and θ = c′

X−→ d′, we also write σ ≤∆ θ with
∆ = (c′ − c,d′ − d). Similarly, we write s ≤∆

G t for two flow trees s and t when s ≤G t and
root(s) ≤∆ root(t).

The pair ∆ is called a lifting. Note that necessarily ∆ belongs to (Nd)2 and that σ ≤∆ θ

and θ ≤∆′ ρ entail σ ≤∆+∆′ ρ. We write ρ = σ + ∆ when σ ≤∆ ρ. Two liftings ∆ = (a,b)

and ∆′ = (a′,b′) can be chained if b = a′. In this case we let ∆ ·∆′ def
= (a,b′). Note this

partial operation is associative.

1 defined by s = σ[s1, . . . , sk] v t if, and only if, there exists a subtree t′ = θ′[t′1, . . . , t
′
`′] of t such that

σ ≤ θ′, k ≤ `′ and s1 v t′j1 , . . . , sk v t
′
jk

for some subsequence 1 ≤ j1 < · · · < jk ≤ `′.

15:8 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

When t/p = t′ ≤G u we can replace t′ by u inside t but this requires a bit of surgery to
ensure the result is well-formed. First, for a flow tree t and a displacement a ∈ Nd, we let
t+ a be the tree defined via

σ[t1, . . . , t`] + a
def
= (σ + (a,a))[t1 + a, . . . , t` + a] .

Obviously, t + a is a valid flow tree, with t ≤(a,a)
G (t + a). Now, when t/p = t′ ≤∆

G u for
∆ = (a,b), we define t[u]p by induction on p in the following way:

t[u]ε
def
= u, t[u]i.q

def
= (σ + ∆)[t1 + a, . . . , ti−1 + a, ti[u]q, ti+1 + b, . . . , tk + b].

Claim 3.5. If t/p ≤∆
G u then t[u]p is a valid flow tree satisfying t ≤∆

G t[u]p.

Proof. By induction on p. If p = ε the claim holds trivially. Assume p = i.q with 1 ≤ i ≤ k
and let u′ = ti[u]q. By induction hypothesis, ti ≤∆

G u′. This implies that t[u]p is a well-defined
flow tree. Since furthermore tj ≤G tj + a when 1 ≤ j < i, and symmetrically, tj ≤G tj + b
when i < j ≤ k, we see that t ≤G t[u]p. Finally, we observe that root(t) ≤∆ root(t[u]p).

Lemma 3.6. Let t = σ[t1, . . . , tk] and assume ti ≤∆i
G ui for i = 1, . . . , k. If ∆1·∆2 · · ·∆k = ∆

is defined, then u = (σ + ∆)[u1, . . . , uk] is a valid flow tree satisfying t ≤∆
G u.

Proof. Since ∆ = ∆1 · · ·∆k is defined, we can write ∆i = (ai−1,ai) and ∆ = (a0,ak).
Assume σ = c0

X−→ ck, with root(ti) = ci−1
Yi−→ ci for i = 1, . . . , k. Then root(ui) =

(ci−1 + ai−1)
Yi−→ (ci + ai) and u is a valid transition. That t ≤G u is immediate.

Theorem 3.7 (Amalgamation). If s ≤∆1
G t1 and s ≤∆2

G t2 then there exists s′ s.t. t1 ≤∆2
G s′

and t2 ≤∆1
G s′ (further entailing s ≤∆1+∆2

G s′).

Proof. By induction on s. Assume s = σ[s1, . . . , sk]. Since s ≤∆1
G t1, there is a subtree

t1/p = t1 = ρ1[t11, . . . , t
1
k] of t1 such that σ ≤ ρ1 and sj ≤G t1j for all j = 1, . . . , k. Assume

that σ ≤∆′1 ρ1 and that sj ≤
Γj
G t1j for j = 1, . . . , k. Since s and t1 are valid flow trees, we

deduce that ∆′1 = Γ1 · · ·Γk. Symmetrically, from s ≤∆2
G t2, we know that there is a subtree

t2 = t2/q of t2, of the form t2 = ρ2[t21, . . . , t
2
k] with σ ≤∆′2 ρ2, sj ≤

Γ′j
G t2j for j = 1, . . . , k, and

∆′2 = Γ′1 · · ·Γ′k.
By the induction hypothesis, there exists flow trees s′1, . . . , s′k such that t1j ≤

Γ′j
G s′j and

t2j ≤
Γj
G s′j for all j = 1, . . . , k. We now define

u
def
= (ρ2 + ∆′1)[s′1, . . . , s

′
k], u′

def
= t2[u]q, s′

def
= t1[u′]p,

and claim that these are valid flow trees, s′ being the flow tree witnessing the Lemma.
To begin with, and since ∆′1 = Γ1 · · ·Γk, u is well-formed by Lemma 3.6 and satisfies

t2 ≤∆′1
G u. Since ρ2 + ∆′1 = ρ1 + ∆′2, and since ∆′2 = Γ′1 · · ·Γ′k, one also has t1 ≤∆′2

G u.
Then, and since t2 ≤∆′1

G u, we have t2 = t2[t2]q ≤
∆′1
G t2[u]q = u′ as in Claim 3.5. Thus

the root of u′ is σ + ∆2 + ∆′1 = ρ1 + ∆2. We deduce t1 ≤∆2
G u′, relying on t1 ≤G u. As in

Claim 3.5, we obtain t1 ≤∆2
G t1[u′]p = s′, proving the first half of the Lemma.

On the other hand, from t2 ≤G u′ we get t2 ≤∆1
G s′ by just checking that the root of t2,

i.e., σ + ∆2, is smaller than the root of s′, i.e., σ + ∆1 + ∆2. This provides the other half
and completes the proof.

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:9

4. GVAS-Definable Predicates

We explore in this section a natural notion of computable sets and relations for the GVAS
model, defined as projections of reachability sets. The context-free grammar ingredient of
GVASes is essential in the proof that the class of computable sets is closed under intersection,
while the Amalgamation Theorem proves that computable sets are finite union of shifted
periodic sets.

Definition 4.1. A n-dimensional GVAS-definable predicate is a subset X of Nn such that
there exists a d-dimensional GVAS G with d = n+ ` for some ` ∈ N such that:

X = {x ∈ Nn | ∃e ∈ N` : 0d
G−→ (x, e)} . (†)

When (†) holds, we say that G defines X using ` auxiliary counters.

The class of GVAS-definable predicates is clearly closed under union, cartesian product 2,
and by projecting away some components. We will provide additional closure properties
in the remainder of this section. GVAS-definable predicates form a rich class that strictly
contains all Presburger sets, i.e., subsets of Nn that are definable in FO(N; +), the first-order
theory of natural numbers with addition.

Remark 4.2. Presburger sets are GVAS-definable predicates. The proof is obtained by
introducing the class of semilinear sets as follows. A linear set of Nn is a set of the form
{b+λ1p1 + · · ·+λkpk | λj ∈ N} where b and p1, . . . ,pk are vectors in Nn. A semilinear set
of Nn is a finite union of linear sets of Nn. Let us recall that a subset of Nn is Presburger if,
and only if, it is semilinear [9]. Since the class of GVAS-definable predicates is closed under
union, it is sufficient to show that every linear set is GVAS-definable. We associate with a
linear set X = {b + λ1p1 + · · ·+ λkpk | λj ∈ N} the n-dimensional GVAS G that generates
the regular language bp∗1 . . .p

∗
k. Notice that G defines the linear set X (using no auxiliary

counter).

Example 4.3. Let G be the 2-dimensional GVAS given by the following four rules:

S →
(

0
1

) ∣∣ (1
0

)
S T , T →

(
0
0

) ∣∣ (0
−1

)
T
(

0
2

)
.

This GVAS is a variant of the 1-dimensional GVAS given in Example 2.1. Analogously to
that example, it can be shown that G defines the set X = {(x, y) ∈ N2 | 1 ≤ y ≤ 2x}, which
is not semilinear.

A geometrical decomposition of the GVAS-definable predicates can be shown thanks to
the periodic sets. A subset P of Nd is said to be periodic [27] if it contains the zero vector,
and if x + y ∈ P for every x,y ∈ P. Note that a periodic P is not necessarily finitely
generated, hence not necessarily semilinear (see Example 4.5). The following Proposition
extends the known decomposition of Presburger sets into linear sets.

Proposition 4.4. Every GVAS-definable predicate X ⊆ Nn can be decomposed into a finite
union of sets of the form b + P where b ∈ Nn and P is a periodic subset of Nn.

Proof. There exists a d-dimensional GVAS G that defines the set X with ` auxiliary counters.
Let us consider the set T of flow trees t such that root(t) = (0d, S, (x, e)) for some x ∈ Nn,
e ∈ N` and where S is the start symbol of G. For such a flow tree t in T , we denote by µ(t)

2defined via X×Y
def
= {(x,y) | x ∈ X, y ∈ Y}.

15:10 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

the vector x. With each s ∈ T we associate the set ↑s = {t ∈ T | s ≤G t}. Since (T,≤G) is a
wqo, there exists a finite subset T0 of T such that

T =
⋃
s∈T0

↑s .

Given s ∈ T , we introduce the set Ps = {µ(t)− µ(s) | t ∈ ↑s}. Theorem 3.7 shows that Ps

is a periodic set. Now, just observe that the following equality holds:

X =
⋃
s∈T0

µ(s) + Ps .

The proposition is proved.

Example 4.5. Continuing Example 4.3, the set X = {(x, y) ∈ N2 | 1 ≤ y ≤ 2x} may be
decomposed into X = (0, 1) + P where P is the periodic set P = {(x, y) ∈ N2 | 0 ≤ y < 2x}.

The rest of this section discusses various closure properties of GVAS-definable predicates.
We start with boolean operations. As mentioned previously, GVAS-definable predicates are
closed under union. In order to prove closure under intersection, we first provide a technical
lemma that shows how auxiliary counters of a GVAS can be assumed to be zero at the end
of the computation.

Lemma 4.6. For every d-dimensional GVAS G and for every subset I of {1, . . . , d}, there
is a (d+ 1)-dimensional GVAS GI such that for every x ∈ Nd and for every c ∈ N, we have:

0d+1
GI−−→ (x, c) iff 0d

G−→ x ∧ c = 0 ∧
∧
i∈I

x[i] = 0 . (4.1)

Proof. The idea of the proof is to put the counters in I “on a budget” (see, e.g., [33] for details
on the budgeting construction) and to harness the expressive power given by context-free
grammars to non-deterministically initialize the total budget, simulate G with the given
budget, and finally check that the budget is fully restored at the end of the computation,
which guarantees that the counters in I are zero.

Formally, let us introduce the function ∆I that maps vectors x of Zd to the number
∆I(x) =

∑
i∈I x[i]. We also introduce the mapping µI : Zd → Zd+1 defined by µI(x) =

(x,−∆I(x)). This mapping is extended over words of actions as a word morphism, and over
languages by µI(L) = {µI(w) | w ∈ L}. Let us introduce the actions a+ = (0d, 1), and
a− = (0d,−1). In linear time, from G we can define a (d+ 1)-dimensional GVAS GI that
generates the following language:

LGI =
⋃
k∈N

ak+µI(LG)ak− .

Let us prove that this GVAS satisfies the lemma. We consider x ∈ Nd and c ∈ N.

Assume first that 0d+1
GI−−→ (x, c). In that case, there exists k ∈ N and w ∈ LG such that

0d+1

ak+µI(w)ak−−−−−−−−→ (x, c). Observe that we have

0d+1

ak+−−→ (0d, k)
µI(w)−−−→ (x, c+ k)

ak−−−→ (x, c) .

Since µI(w) preserves the sum of the counters in I and of the last counter, it follows that
∆I(0d) + k = ∆I(x) + c+ k. Thus c+ ∆I(x) = 0. It follows that c = 0 and x[i] = 0 for every
i ∈ I. Moreover, from 0d

w−→ x we derive 0d
G−→ x.

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:11

Conversely, let us assume that 0d
G−→ x, c = 0 and x[i] = 0 for every i ∈ I. There exists

w ∈ LG such that 0d
w−→ x. There exists k ∈ N large enough such that (0d, k)

µI(w)−−−→ (x, k −

∆I(x)) = (x, k). It follows that 0d+1

ak+µI(w)ak−−−−−−−−→ (x, 0) = (x, c). Thus 0d+1
GI−−→ (x, c).

We are now ready to prove that GVAS-definable predicates are closed under intersection.3

Lemma 4.7. The class of GVAS-definable predicates is closed under intersection.

Proof. Let X,Y ⊆ Nn be GVAS-definable. Since the class of GVAS-definable predicates
is closed under cartesian product, it follows that X ×Y is also GVAS-definable. Hence,
there exists a d-dimensional GVAS H with ` auxiliary counters that defines that set. Let
us consider the mapping µ : Zd → Zn × Zd defined by µ(x,y, e) = (0n,x,y, e) for every
x,y ∈ Zn and e ∈ Z`. The mapping µ is extended as a word morphism. We introduce the
action ai in Zn+d defined as follows:

ai = (ii,n,−ii,n,−ii,n,0`) .
Obviously, we can build a (d+n)-dimensional GVAS G such that LG = µ(LH)a∗1 · · ·a∗d. Now,
let I = {n+1, . . . , 3n} and let us apply Lemma 4.6 on G and I. We obtain a (d+n+1)-GVAS
that defines X ∩Y.

Remark 4.8. The class of GVAS-definable predicates is not closed under taking complements,
see Proposition 5.6.

We now investigate closure under sum 4 and under the associated Kleene star, which we
call periodic hull. Formally, the periodic hull of a subset X ⊆ Nn is the set of finite sums
of vectors in X. It turns out that the class of GVAS-definable predicates is closed under
sum and periodic hull. Closure under sum can be proved along the same lines as closure
under intersection (see Lemma 4.7). The detailed proof is left as an exercise. Closure under
periodic hull is more involved and requires well-behaved GVASes.

In the definition of a GVAS-definable predicate X given in (†), the vector e can be seen
as auxiliary counters that can have arbitrary values at the end of the computation. We say
that a d-dimensional GVAS G defining a predicate X ⊆ Nn using ` auxiliary counters is
auxiliary-resetting if for every (x, e) ∈ Nn × N` such that 0d

G−→ (x, e) we have e = 0`. We
also say that G is output-increasing if every action of G is an element of Nn × Z` meaning
that the output counters x cannot be decremented during a computation.

Let us first prove that GVAS-definable predicates can be defined by auxiliary-resetting
output-increasing GVAS. To do so, we introduce, for every k ∈ N, the unit vector ii,k of Nk
defined by ii,k[j] = 0 if j 6= i and ii,k[i] = 1.

Lemma 4.9. For every d-dimensional GVAS G defining a set X ⊆ Nn, there is a (d+n+1)-
dimensional auxiliary-resetting output-increasing GVAS defining X.

Proof. We introduce the mapping µ : Zd → Zn+d defined by µ(a) = (0n,a). This mapping
is extended as a word morphism. Observe that there exists a (d+ n)-dimensional GVAS G′
satisfying the following equality:

LG′ = µ(LG)(i1,n,−i1,n,0`)∗ · · · (in,n,−in,n,0`)∗(0n,0n,−i1,`)∗ · · · (0n,0n,−i`,`)∗ .

3By contrast, we believe that “VAS-definable” predicates are not closed under intersection (unless one
requires auxiliary counters to be zero at the end of the computation). This conjecture remains to be proved.

4defined via X+Y
def
= {x+ y | x ∈ X, y ∈ Y}.

15:12 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

This GVAS G′ satisfies 0d+n
G′−→ (x,0n,0`) with x ∈ Nn if, and only if, there exists e ∈ N`

such that 0d
G−→ (x, e). Moreover, actions of that GVAS are in Nn × Zd. By applying the

construction given in the proof of Lemma 4.6 on G′ with I = {n, . . . , d+ n} observe that we
get a (d+ n+ 1)-dimensional auxiliary-resetting output-increasing GVAS defining X.

Corollary 4.10. The class of GVAS-definable predicates is closed under periodic hull.

Proof. Assume that a predicate X ⊆ Nn is GVAS-definable. Lemma 4.9 shows that X is
defined by a d-dimensional auxiliary-resetting output-increasing GVAS G using ` auxiliary
counters. As context-free languages are closed under Kleene star, there exists a GVAS G′
satisfying LG′ = L∗G. We show that G′ defines the periodic hull of X. Let y = x1 + · · ·+ xk

with k ∈ N and x1, . . . ,xk ∈ X and let us prove that 0d
G′−→ (y,0`). We introduce

yj = x1 + · · · + xj for every j ∈ {0, . . . , k}. Let i ∈ {1, . . . , k}. Since xi ∈ X and G is
auxiliary-resetting, we get 0d

G−→ (xi,0`). By monotony, we can add on both sides the vector
(yi−1,0`) and derive (yi−1,0`)

G−→ (yi,0`). We get (y0,0`)
G−→ (y1,0`) · · ·

G−→ (yk,0`). Since
y0 = 0n and yk = y, we have proved that 0d

G′−→ (y,0`). Conversely, let y ∈ Nn and e ∈ N`

such that 0d
G′−→ (y, e) and let us prove that y is in the periodic hull of X. Since LG′ = L∗G,

we have (y0, e0)
G−→ (y1, e1) · · · G−→ (yk, ek) for some sequence (y0, e0), . . . , (yk, ek) such that

(y0, e0) = 0d and (yk, ek) = (y, e). Since G is output-increasing we deduce that xi, defined
as xi = yi − yi−1, is in Nn and satisfies (0n, ei−1)

G−→ (xi, ei). As G is auxiliary-resetting, by
induction we deduce that ei = 0 for every i. It follows that xi ∈ X. As y = x1 + · · ·+ xk,
we conclude that y is in the periodic hull of X.

To conclude this section, we discuss closure under relational composition and under the
associated Kleene star (namely, the reflexive-transitive closure). For the purpose of GVAS-
definability, we view binary relations on Nn as subsets of N2n. The class of GVAS-definable
binary relations on Nn is closed under relational composition. This claim follows from closure
of GVAS-definable predicates under cartesian product, intersection and projection. However,
GVAS-definable binary relations are not closed under reflexive-transitive closure in general,
as the following example shows.

Example 4.11. Consider the binary relation R on N defined by R = {(x, 2x) | x ∈ N}.
The binary relation R is clearly GVAS-definable. However, its reflexive-transitive closure
R∗ = {(x, 2kx) | x, k ∈ N} is not GVAS-definable. Indeed, if R∗ were GVAS-definable then,
by Proposition 4.4, there would exist some b ∈ N2, some periodic P ⊆ N2 and two distinct
powers 2 ≤ 2k < 2` such that

(1, 2k), (1, 2`) ∈ b + P ⊆ R∗ .

We now use the assumption that P is periodic and derive a contradiction. Let us write
b = (b1, b2). Note that b1 ≤ 1 and b2 ≤ 2k since (1, 2k) ∈ b + P. There are three cases.
• If b = 0 then (1, 2k) and (1, 2`) are both in P, hence, (2, 2k + 2`) is also in P by periodicity,
and so (2, 2k + 2`) ∈ R∗. This is impossible since 2k + 2` is not a power of two (as k 6= `).
• If b1 > 0 then b1 = 1, hence, (1, 2`) = (1, b2) + (0, p2) for some (0, p2) ∈ P. Note that
p2 > 0 since b2 ≤ 2k < 2`. Since b+P ⊆ R∗, we get by periodicity that (1, b2 +np2) ∈ R∗

for every n ∈ N. This means that b2 + np2 is a power of two for every n ∈ N, which is
impossible as p2 > 0.

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:13

• If b1 = 0 and b2 > 0 then (1, 2`) = (0, b2) + (1, p2) for some (1, p2) ∈ P. Since b+P ⊆ R∗,
we get by periodicity that (n, b2 +np2) ∈ R∗ for every n ∈ N. Taking n = b2 + 1, we derive
that (b2 + 1, b2 + (b2 + 1)p2) ∈ R∗. This is impossible since b2 > 0 and y is a multiple of x
for every (x, y) ∈ R∗.

5. Weakly Computable Functions

There is a classical notion of number-theoretical functions weakly computable by Petri
nets [12]. In this section, we extend the idea to GVASes.

As we argued in the introduction, the notion of weakly computable functions has recently
gained new relevance with the development of well-structured systems that go beyond Petri
nets and VASSes in expressive power, while sharing some of their characteristics.

The expected way for a GVAS to compute a numerical function f : N→ N is to start
with some input number n stored in a designated input counter and, from that configuration,
eventually reach a configurations with f(n) in a designated output counter. In order for
that GVAS to be correct (as a computer for f), it should be impossible that it reaches a
value differing from f(n) in the output counter. In that case, we say that the GVAS strongly
computes f . This notion of correctness is fine with other models like Minsky machines but it
is too strong for GVASes and does not lead to an interesting family of computable functions.
In fact, GVAS are essentially nondeterministic devices, and the above notion of strongly
computing some function does not accommodate nondeterminism nicely.

With this in mind, and in the setting of VASes, Rabin defined a notion of “weakly
computing f ” that combines the following two principles:
Completeness: For any n ∈ N, there is a computation with input n and output f(n);
Safety: Any computation from input n to some output r satisfies r ≤ f(n).
This leads to our definition of weak GVAS computers, where the input and output counters
are the first two components.

Definition 5.1 (Weak GVAS computers). Let f : N→ N be a total function. A weak GVAS
computer (with ` auxiliary counters) for f is a d-dimensional GVAS G with d = 2 + ` that
satisfies the following two properties:

∀n : ∃n′, e : (n, 0,0`)
G−→ (n′, f(n), e) , (CO)

∀n, n′, r, e : (n, 0,0`)
G−→ (n′, r, e) implies r ≤ f(n) . (SA)

We say that f is weakly computable, or WC, if there is a weak GVAS computer for it.

For convenience, Definition 5.1 assumes that the input is given in the first counter of G,
and that the result is found in the second counter. Note that G may use its ` last counters
for auxiliary calculations. We focus on total functions over the natural numbers rather than
total functions over the vectors of natural numbers to simplify the presentation. However,
results given in this section can be easily extended to this more general setting.

Example 5.2 (A weak computer for exponentiation). Example 2.1 shows that the function
f : N→ N defined by f(n) = 2n is WC.

15:14 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

Only monotonic functions can be weakly computed in the above sense. This is an
immediate consequence of the monotonicity of GVASes (see (2.3)). Recall that a total
function f : N→ N is non-decreasing if n ≤ m implies f(n) ≤ f(m).

Proposition 5.3 (Monotonicity of WC functions). If f is WC then f is non-decreasing.

Proof. Assume that n ≤ m and pick any weak GVAS computer G for f . By (CO), we
have (n, 0,0`)

G−→ (n′, f(n), e) for some n′ ∈ N and e ∈ N`. By monotonicity, it follows that
(n+ (m− n), 0,0`)

G−→ (n′ + (m− n), f(n), e). We get f(n) ≤ f(m) by (SA).

We may now relate WC computability with GVAS-definability.

Lemma 5.4. A total function f : N→ N is WC if, and only if, f is non-decreasing and the
following set is GVAS-definable.

{(x, y) ∈ N× N | y ≤ f(x)} .

Proof. Assume first that f is WC. There exists a weak GVAS computer (with ` auxiliary
counters) for f given as a d-dimensional GVAS G with d = 2 + ` that satisfies (CO) and (SA).
Let us consider the mapping µ : Zd → Zd+1 defined by µ(a, b, e) = (0, b, a, e) for every a, b ∈ Z,
and e ∈ Z`. The mapping µ is extended as a word morphism. Let us show that a GVAS G′
such that LG′ = (1, 0, 1,0`)

∗µ(LG)(0,−1, 0,0`)
∗ is defining the set {(x, y) ∈ N×N | y ≤ f(x)}.

Let (x, y) in that set. From (CO), there exists a word σ ∈ LG, x′ ∈ N and e ∈ N` such
that (x, 0,0`)

σ−→ (x′, f(x), e). The word σ′ = (1, 0, 1,0`)
xµ(σ)(0,−1, 0,0)f(x)−y shows that

(0, 0, 0,0`)
σ′−→ (x, y, x′, e). As σ′ ∈ LG′ , we get (0, 0, 0,0`)

G′−→ (x, y, x′, e). Conversely,
assume that (0, 0, 0,0`)

σ′−→ (x, y, x′, e) for some x, y, x′ ∈ N, e ∈ N` and σ′ ∈ LG′ , and let
us prove that y ≤ f(x). By definition of G′, there exists n,m ∈ N and a word σ ∈ LG such

that σ′ = (1, 0, 1,0`)
nµ(σ)(0,−1, 0,0`)

m. It follows that (n, 0, n,0`)
µ(σ)−−−→ (x, y + m,x′, e).

Since actions occurring in µ(σ) cannot modify the first counter, we get n = x. Moreover,
(x, 0,0`)

σ−→ (x′, y +m, e). From (SA), we derive y +m ≤ f(x). Hence y ≤ f(x). We have
proved that {(x, y) ∈ N× N | y ≤ f(x)} is GVAS-definable.

Conversely, let us assume that f is non-decreasing and that {(x, y) ∈ N× N | y ≤ f(x)}
is GVAS-definable. There exists a d-dimensional GVAS G with d = 2 + ` such that:

{(x, y) | y ≤ f(x)} = {(x, y) | ∃e ∈ N` : (0, 0,0`)
G−→ (x, y, e)} .

Let us consider the mapping µ : Zd → Zd+1 defined by µ(a, b, e) = (−a, b, a, e) for every
a, b ∈ Z, and e ∈ Z`. The mapping µ is extended as a word morphism. Let us show
that a GVAS G′ such that LG′ =

⋃
k∈N(1, 0, 0,0`)

kµ(LG)(−1, 0, 0,0`)
k is a weak GVAS

computer for f . Let us first consider x ∈ N. By definition of G, there exists a word σ ∈ LG
and e ∈ N` such that (0, 0,0`)

σ−→ (x, f(x), e). Notice that for k large enough, we have

(k + x, 0, 0,0`)
µ(σ)−−−→ (k, f(x), x, e). The word σ′ = (1, 0, 0,0`)

kµ(σ)(−1, 0, 0,0`)
k is such

that (x, 0, 0,0`)
σ′−→ (0, f(x), x, e). Hence (CO) is satisfied by G′. Finally, let us assume

that (x, 0, 0,0`)
σ′−→ (z, y, x′, e) for a word σ′ ∈ LG′ and x′, y, z ∈ N and e ∈ N`. There

exists k ∈ N and σ ∈ LG such that σ′ = (1, 0, 0,0`)
kµ(σ)(−1, 0, 0,0`)

k. It follows that

(x+ k, 0, 0,0`)
µ(σ)−−−→ (z+ k, y, x′, e). By definition of µ, since the effect of the sum of the first

and third counters is zero, we get x+ k + 0 = z + k + x′. Hence x′ ≤ x and in particular
f(x′) ≤ f(x). Moreover, we have (0, 0,0`)

σ−→ (x′, y, e). By definition of G, we get y ≤ f(x′).

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:15

We have proved that y ≤ f(x). Hence (SA) is satisfied by G′. We have proved that G′ is a
weak GVAS computer for f

By combining Lemma 5.4 and the decomposition of GVAS-definable sets given by
Proposition 4.4, we obtain two interesting, albeit negative, results on WC functions and
GVAS-definable sets.

Proposition 5.5. Let f be an unbounded WC function. Then there exists a rational number
c > 0 and some z ∈ Z such that f(n) ≥ cn+ z for every n ∈ N.

Proof. Lemma 5.4 shows that the set X defined as {(n,m) | m ≤ f(n)} is GVAS-definable.
Proposition 4.4 shows that X can be decomposed into a finite union of sets of the form
(a, b) + P where (a, b) ∈ N2 and P is a periodic subset of N2. Since f is unbounded, there
exists (p, q) ∈ P such that q > 0. It follows (a, b) + k(p, q) ∈ X for every k ∈ N. In particular
f(a+ kp) ≥ b+ kq for every k ∈ N. As f(a) ∈ N and q > 0, we deduce that p > 0. Let us
consider n ∈ N such that n ≥ a and observe that there exists k ∈ N such that:

k ≤ n− a
p

< k + 1 .

It follows that a + kp ≤ n and in particular f(a + kp) ≤ f(n). Hence f(n) ≥ b + kq ≥
b+ (n−ap − 1)q. Introducing c = q

p , we deduce that f(n)− cn ≥ b− c(a+ p) for every n ≥ a.
We have proved the lemma with any z ∈ Z satisfying z ≤ f(n)− cn for every 0 ≤ n < a and
z ≤ b− c(a+ p).

Proposition 5.6. The complement of a GVAS-definable set is not always GVAS-definable.

Proof. Recall from Example 5.2 that the function f : N→ N defined by f(n) = 2n is WC.
We derive from Lemma 5.4 that X def

= {(n,m) | m ≤ 2n} is GVAS-definable. Assume, by way
of contradiction, that the complement Y

def
= {(n,m) | 2n < m} is GVAS-definable. From

a GVAS defining Y, we easily derive a GVAS defining Z
def
= {(n,m) | 2m ≤ n + 1}, by

swapping the first two counters and then decrementing the first counter by two at the end.
It follows from Lemma 5.4 that the mapping g : N→ N defined by g(n) = blog2(n+ 1)c is
WC, contradicting Proposition 5.5 since g is unbounded and sublinear. Hence Y, i.e., N2 \X,
cannot be GVAS-definable.

6. Hyper-Ackermannian GVAS

In this section we construct GVASes that weakly compute functions from the Fast Growing
Hierarchy. Our main result is the following.

Theorem 6.1. The Fast Growing functions (Fα)α<ωω are weakly computable (by GVASes).

Note that these are exactly the multiply-recursive functions Fα. They include functions
that are not primitive-recursive (the Fα for ω ≤ α < ωω) and that are thus not weakly com-
putable by VASSes (see [17, section 2]). We do not know whether Fωω is weakly computable
by a GVAS, or whether there exist WC functions that are not multiply-recursive.

The rest of this section proves Theorem 6.1. The detailed proof illustrates how the
GVAS model makes it manageable to define complex constructions precisely, and to formally
prove their correctness. By contrast, observe how in less abstract models e.g., the Timed-Arc

15:16 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

Petri Nets of [14], only schematic constructions are given for weakly computing functions,
and only an outline for a correctness proof can be provided.

We follow notation and definitions from [31] and consider functions Fα : N→ N indexed
by an ordinal α < ε0 (though we shall only build GVASes for functions with α < ωω).
Any such ordinal can be written in Cantor normal form (CNF) α = ωα1 + · · ·+ ωαm with
α > α1 ≥ · · · ≥ αm. When m = 0, α is 0. When αm = 0, α is a successor of the form β+ω0,
i.e., β + 1, and when αm > 0, α is a limit ordinal. When α 6= 0, we often decompose α under
the form α = γ + ωαm so that the smallest summand in α’s CNF is exposed. CNFs are
often written more concisely using coefficients, as in α = ωα1 · c1 + · · ·+ ωαm · cm, with now
α > α1 > · · · > αm and ω > c1, . . . , cm > 0.

With each limit ordinal λ < ε0, one associates a fundamental sequence (λ(n))n<ω such
that λ = supn λ(n). These are defined inductively as follows.

(γ + ωβ+1)(n) = γ + ωβ · (n+ 1) , (L1)

(γ + ωλ)(n) = γ + ωλ(n) . (LL)

For instance, Eq. (L1) gives ω(n), i.e., ω1(n) = ω0 ·(n+1) = n+1 and (ω3 ·6+ω2 ·3)(n) =

ω3 · 6 + ω2 · 2 + ω · (n+ 1). Similarly, Eq. (LL) gives ωω(n) = ωω(n) = ωn+1. Note that the
fundamental sequences satisfy λ(0) < · · · < λ(n) < λ(n+ 1) < · · · < λ for any limit ordinal
λ and index n.

We may now define our fast growing functions Fα : N→ N for α < ε0 by induction on
the α index.

F0(x) = x+ 1 , (F0)
Fα+1(x) = Fω(x)

α (x) =

x+1 times︷ ︸︸ ︷
Fα(· · · (Fα(x)) · · ·) , (F1)

Fλ(x) = Fλ(x)(x) . (FL)

As shown —e.g., in [31]— these functions are strictly expansive and monotonic, i.e., for all
ordinals α < ε0 and all n, n′ ∈ N:

n < Fα(n) , (FX)

n ≤ n′ =⇒ Fα(n) ≤ Fα(n′) . (FM)

Given two ordinals in Cantor normal form α = ωβ1 + · · ·+ωβm and α′ = ωβ
′
1 + · · ·+ωβ

′
n ,

we denote by α⊕ α′ their natural sum
∑m+n

k=1 ωγk , where γ1 ≥ . . . ≥ γm+n is a reordering of
β1, . . . , βm, β

′
1, . . . , β

′
n. The Fα functions are not monotonic in the ordinal index, i.e., α ≤ α′

does not always entail Fα(n) ≤ Fα′(n), see [31, section A.2]. However, our construction relies
on similar monotonicity properties, albeit for special cases of α and α′, that we now state.

Lemma 6.2. For any ordinals α, α′ < ε0 and any n ∈ N, Fα(n) ≤ Fα⊕α′(n).

Lemma 6.3. For any ordinal α < ε0 and limit ordinal λ < ωω, for any m,n ∈ N, if m ≤ n
then Fα⊕λ(m)(n) ≤ Fα⊕λ(n).

For these two results, detailed proofs are given in the appendix. We note that Lemma 6.2
is a rewording of Lemma 2.2a from [4], however that paper uses a different definition for the
fundamental sequences (λ(n))n∈N, resulting in slightly different Fα functions, hence the need
of an independent proof. Similarly, Lemma 6.3 is a generalization of Lemma VI.5 from [22],
using different notation and allowing a simpler proof.

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:17

We now define weak GVAS computers for the Fα functions such that α < ωω. Our
construction is in two steps: we first pick an arbitrary exponent d ∈ N and define Gd, a GVAS
with a structure suitable for correctness proofs. We then obtain a weak GVAS computer for
Fα by slightly modifying Gd, provided α < ωd. The whole construction is an adaptation into
the GVAS framework of the pushdown VAS from [22].

The dimension of Gd is d+ 2 and we use d+ 2 counters named r, r, κ0, . . . , κd−1, in this
order. The set of actions A ⊆ Zd+2 consists of all vectors dx and ix where x is one of the
d + 2 counters: formally dx is the vector that decrements x, while ix

def
= −dx increments

it. For instance, dκ0 = (0, 0,−1,0d−1) and ir = (1, 0,0d). The set of non-terminals of Gd
is V = {F, Rec, Pop, Lim1, . . . , Limd−1}. The start symbol is F. The other non-terminals are
used for intermediate steps (see the rules below).

The first two counters, r and r, are used to manipulate the arguments of the functions
being computed. The other d counters are used as a data structure representing an ordinal
α < ωd. Formally, with any d-tuple 〈c0, . . . , cd−1〉 of natural numbers, we associate the
ordinal α = ωd−1 · cd−1 + · · ·+ ω0 · c0. We will follow the convention of writing the contents
of the counters of our GVAS in the form 〈n,m,α〉, where n and m are the value of r and r,
respectively, and where α is the ordinal associated with the values in κ0, . . . , κd−1.

The rules of Gd are given below. The rules involving the Limi non-terminals are present
for every i ∈ {1, . . . , d− 1}.

F→ ir , (R1)
F→ dκ0 Rec F iκ0 , (R2)
F→ dκiiκi−1 Limi dκi−1iκi , (R3i)

Rec→ Pop , (R4)
Rec→ drir Rec F , (R5)
Pop→ ε , (R6)
Pop→ irdr Pop , (R7)
Limi → Pop F , (R8i)
Limi → dririκi−1 Limi dκi−1 . (R9i)

Our first goal is to prove that Gd has computations of the form 〈n, 0, α〉 F−→ 〈Fα(n), 0, α〉,
for any n ∈ N and α < ωd. We start with a lemma exposing some specific sentential forms
that can be derived from F and Pop. As will be clear from the proof of Lemma 6.5, these
derivations (namely (D0), (D1) and (DL)) correspond to our inductive definition of the fast
growing functions Fα (namely (F0), (F1) and (FL)).

Lemma 6.4. For every n ∈ N and 0 < i < d, Gd admits the following derivations:

F
∗

==⇒ ir , (D0)

F
∗

==⇒ dκ0 (drir)
n Pop (F)n+1 iκ0 , (D1)

F
∗

==⇒ dκiiκi−1 (dririκi−1)n Pop F (dκi−1)n+1 iκi , (DL)

Pop
∗

==⇒ (irdr)
n . (DP)

15:18 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

Proof. Derivation (D0) is an immediate consequence of rule (R1) and derivation (DP) similarly
follows from rules (R6) and (R7). To prove derivation (D1), we use

F
(R2)

===⇒ dκ0 Rec F iκ0
(R5)

===⇒ · · · (R5)
===⇒ dκ0 (drir)

n Rec (F)n F iκ0
(R4)

===⇒ dκ0 (drir)
n Pop (F)n+1 iκ0 .

Finally, derivation (DL) is obtained with

F
(R3i)

===⇒ dκiiκi−1 Limi dκi−1iκi
(R9i)

===⇒ · · · (R9i)
===⇒ dκiiκi−1 (dririκi−1)n Limi (dκi−1)n dκi−1iκi

(R8i)
===⇒ dκiiκi−1 (dririκi−1)n Pop F (dκi−1)n+1 iκi .

Lemma 6.5. For every ordinal α < ωd and every n ∈ N, Gd has a computation 〈n, 0, α〉 F−→
〈Fα(n), 0, α〉.

Proof. We first observe that Gd has a computation 〈0, n, α〉 Pop−−→ 〈n, 0, α〉 for every ordinal
α < ωd and every n ∈ N. This computation exists because Gd admits derivation (DP), i.e.,
Pop

∗
==⇒ (irdr)

n. We now prove the lemma by induction on α.
For the base case α = 0, we use derivation (D0), i.e., F ∗

==⇒ ir, yielding the following
computation: (

n
0
0

)
F−→
(
n+1

0
0

)
=
(F0(n)

0
0

)
.

In the case of a successor ordinal α = β + 1, we use derivation (D1), i.e., F
∗

==⇒
dκ0 (drir)

n Pop (F)n+1 iκ0 , leading to the following computation (recall that Fα(n) = Fn+1
β (n)

by Eq. (F1)):(
n
0
α

)
dκ0−−→

(
n
0
β

)
(drir)

n

−−−−→
(

0
n
β

)
Pop−−→

(
n
0
β

)
Fn+1

−−−−−→
ind. hyp.

(Fn+1
β (n)

0
β

)
iκ0−−→

(Fn+1
β (n)

0
β+1

)
=
(Fα(n)

0
α

)
.

Finally, in the case of a limit ordinal α = λ, say of the form λ = γ+ωi where 0 < i < d, we
use derivation (DL), i.e., F ∗

==⇒ dκiiκi−1 (dririκi−1)n Pop F (dκi−1)n+1 iκi . Before inspecting
the computation below, note that if λ = γ + ωi is represented by the values in κ0, . . . , κd−1,
then one obtains a representation for γ by decrementing κi. Then, by incrementing (n+ 1)
times κi−1, one obtains γ + ωi−1 · (n+ 1) which is λ(n) by (L1). This leads to the following
computation (recall that Fλ(n) = Fλ(n)(n) by Eq. (FL)):(

n
0
λ

)
dκi−−→

(
n
0
γ

) iκi−1 (dririκi−1)n

−−−−−−−−−−−→
(

0
n

λ(n)

)
Pop−−→

(
n
0

λ(n)

)
F−−−−−→

ind. hyp.

(Fλ(n)(n)
0

λ(n)

)
, and

(Fλ(n)(n)
0

λ(n)

)
=
(Fλ(n)

0
λ(n)

) (dκi−1)n+1

−−−−−−−→
(Fλ(n)

0
γ

)
iκi−−→

(Fλ(n)
0
λ

)
.

In all three cases, Gd has a computation 〈n, 0, α〉 F−→ 〈Fα(n), 0, α〉.

We showed in Lemma 6.5 that there are computations of Gd that end in Fα(n). This
corresponds to the completeness of weak computers. We will now show the safety part, i.e.,
that no successful computation of Gd may reach a value greater than Fα(n).

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:19

Lemma 6.6. For all n, n′,m,m′ ∈ N, α, α′ < ωd, and 0 < i < d, the following hold:

〈n,m,α〉 F−→ 〈n′,m′, α′〉 =⇒ α′ = α ∧ n′ +m′ ≤ Fα(n+m) , (6.1)

〈n,m,α〉 Rec−−→ 〈n′,m′, α′〉 =⇒ α′ = α ∧ n′ +m′ ≤ Fnα (n+m) , (6.2)

〈n,m,α〉 Pop−−→ 〈n′,m′, α′〉 =⇒ α′ = α ∧ n′ +m′ = n+m , (6.3)

〈n,m,α〉 Limi−−→ 〈n′,m′, α′〉 =⇒ α′ = α ∧ n′ +m′ ≤ Fα⊕(ωi−1·n)(n+m) . (6.4)

Proof. By structural induction on the flow trees witnessing the transitions.
Top rule is (R1) F→ ir: Then the flow tree has the following shape (in this and following

illustrations, we only display the top node of each immediate subtree of the flow tree under
consideration): (

n
m
α

)
F−→
(
n′

m′

α′

)

(
n
m
α

)
ir−→
(
n′

m′

α′

)
Using action ir in the subtree implies n′ = n + 1, and also α′ = α and m′ = m. With
(FX), we deduce n′ +m′ = n+m+ 1 ≤ Fα(n+m) as required by (6.1).

Top rule is (R2) F→ dκ0 Rec F iκ0: We note that the first action, dκ0 , can only be fired
if α is a successor ordinal β + 1. Then decrementing κ0 transforms α into β, and the flow
tree has the following form. (

n
m
α

)
F−→
(

n′

m′

β′+1

)

(
n
m
α

)
dκ0−−→

(
n
m
β

) (
n
m
β

)
Rec−−→

(
n1
m1
β1

) (
n1
m1
β1

)
F−→
(
n′

m′

β′

) (
n′

m′

β′

)
iκ0−−→

(
n′

m′

β′+1

)
Invoking the induction hypothesis on the second and third subtrees yields

β1 = β , n1 +m1 ≤ Fnβ (n+m) ,

β′ = β1 , n′ +m′ ≤ Fβ1(n1 +m1) .

Combining these results, we obtain β′ + 1 = α as needed, and

n′ +m′ ≤ Fβ1(n1 +m1) ≤ Fβ1(Fnβ (n+m)) by (FM)

= Fn+1
β (n+m)

≤ Fn+m+1
β (n+m) by (FX)

= Fβ+1(n+m) = Fα(n+m) . by (F1)

Finally, n′ +m′ ≤ Fα(n+m) as required by (6.1).
Top rule is (R3i) F→ dκiiκi−1 Limi dκi−1iκi: The flow tree has the following form.

15:20 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

(
n
m
α

)
F−→
(
n′

m′

α′

)

(
n
m
α

) dκi iκi−1−−−−−→
(
n1
m1
α1

) (
n1
m1
α1

)
Limi−−→

(
n2
m2
α2

) (
n2
m2
α2

) dκi−1 iκi−−−−−→
(
n′

m′

α′

)
Firing the first two actions requires decrementing κi, hence α is some α0⊕ωi. After these
actions, one has n1 = n, m1 = m and α1 = α0 ⊕ ωi−1. Similarly, the last two actions
require decrementing κi−1, hence α2 is some α3 ⊕ ωi−1 and one has n′ = n2, m′ = m2

and α′ = α3 ⊕ ωi. One obtains α1 = α2, hence α′ = α, with the induction hypothesis, as
well as

n′ +m′ = n2 +m2 ≤ Fα1⊕(ωi−1·n1)(n1 +m1) by ind. hyp.
= F(α0⊕ωi−1)⊕(ωi−1·n)(n+m)

= Fα0⊕(ωi(n))(n+m)

≤ Fα0⊕ωi(n+m) by Lemma 6.3
= Fα(n+m) ,

as required by (6.1).
Top rule is (R4) Rec→ Pop: Then the flow tree has the following form.(

n
m
α

)
Rec−−→

(
n′

m′

α′

)

(
n
m
α

)
Pop−−→

(
n′

m′

α′

)
The induction hypothesis gives α′ = α and n′ + m′ = n + m. We deduce n′ + m′ ≤
Fnα (n+m), as required by (6.2), by invoking (FX).

Top rule is (R5) Rec→ drir Rec F: Then n > 0 and the flow tree has the following form.(
n
m
α

)
Rec−−→

(
n′

m′

β

)

(
n
m
α

)
drir−−−→

(
n−1
m+1
α

) (
n−1
m+1
α

)
Rec−−→

(
n1
m1
β1

) (
n1
m1
β1

)
F−→
(
n′

m′

β

)
Here we can use the induction hypothesis on the second subtree, yielding

β1 = α , n1 +m1 ≤ Fn−1
α (n− 1 +m+ 1) = Fn−1

α (n+m) ,

and on the third subtree, yielding

β = β1 , n′ +m′ ≤ Fβ1(n1 +m1) = Fα(n1 +m1) .

Combining these and invoking (FM), yields β = α and n′ + m′ ≤ Fα(n1 + m1) ≤
Fα(Fn−1

α (n+m)) = Fnα (n+m) as required by (6.2).

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:21

Top rule is (R6) Pop→ ε: Then the flow tree (n,m,α)
Pop−−→ (n′,m′, α′) is a leaf, entailing

α′ = α and n′ +m′ = n+m as required by (6.3).
Top rule is (R7) Pop→ irdr Pop: Then the flow tree has the form.(

n
m
α

)
Pop−−→

(
n′

m′

α′

)

(
n
m
α

)
irdr−−−→

(
n+1
m−1
α

) (
n+1
m−1
α

)
Pop−−→

(
n′

m′

α′

)
The induction hypothesis on the second subtree gives α′ = α and n′+m′ = n+1+m−1 =
n+m as required by (6.3).

Top rule is (R8i) Limi → Pop F: The flow tree has the following form.(
n
m
α

)
Limi−−→

(
n′

m′

α′

)

(
n
m
α

)
Pop−−→

(
n1
m1
α1

) (
n1
m1
α1

)
F−→
(
n′

m′

α′

)
On these subtrees, the induction hypothesis yields α′ = α1 = α and n1 +m1 = n+m.
Furthermore we have

n′ +m′ ≤ Fα1(n1 +m1) by ind. hyp.
≤ Fα⊕(ωi−1·n)(n+m) , by Lemma 6.2

as required by (6.4).
Top rule is (R9i) Limi → dririκi−1 Limi dκi−1: The flow tree has the following form.(

n
m
α

)
Limi−−→

(
n′

m′

α′

)

(
n
m
α

) dririκi−1−−−−−−→
(
n1
m1
α1

) (
n1
m1
α1

)
Limi−−→

(
n2
m2
α2

) (
n2
m2
α2

) dκi−1−−−−→
(
n′

m′

α′

)
With its three actions, the first subtree implies

n1 = n− 1 , m1 = m+ 1 , α1 = α⊕ ωi−1 .

Similarly, the last subtree yields

n′ = n2 , m′ = m2 , α2 = α′ ⊕ ωi−1 .

With the second subtree, the induction hypothesis yields α2 = α1 and n2 + m2 ≤
Fα1⊕(ωi−1·n1)(n1 + m1). Combining these gives α′ = α and n′ + m′ = n2 + m2 ≤
Fα1⊕(ωi−1·n1)(n1 +m1) = F(α⊕ωi−1)⊕(ωi−1·(n−1))(n+m) = Fα⊕(ωi−1·n)(n+m) as required
by (6.4).

15:22 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

Now, for any ordinal α < ωd, we may extend Gd and obtain a GVAS GFα that weakly
computes Fα. This new GVAS inherits the counters, actions, non-terminals and rules of Gd.
It furthermore includes two additional non-terminals, S and Pop′, and associated rules. The
start symbol will be S and, if α’s CNF is

∑0
i=d−1 ω

i · ci, the extra rules are:

S→ ic0κ0i
c1
κ1 · · · i

cd−1
κd−1 F Pop′ , (R0)

Pop′ → ε , (R10)

Pop′ → drir Pop
′ . (R11)

It is clear that, since there are no new rules for the non-terminals inherited from Gd, the
properties stated in Lemmas 6.4 to 6.6 hold for GFα as they hold for Gd. Note also that Pop′
behaves as Pop but exchanging the roles of r and r.

Lemma 6.7. GFα weakly computes Fα.

Proof. We start with the completeness part of Definition 5.1. For this it is needed to show
that, for any n ∈ N, GFα has a computation of the form (n, 0,0d)

S−→ (n′, Fα(n), e). For this
we use the rule (R0) and exhibit the following computation:

(n, 0,0d)
i
c0
κ0

i
c1
κ1
···i
cd−1
κd−1−−−−−−−−→ (n, 0, α)

F−→ (Fα(n), 0, α)
Pop′−−→ (0, Fα(n), α) .

The first part of that computation just relies on our convention for reading κd−1, . . . , κ0 as
the encoding of an ordinal, the second (crucial) part is given by Lemma 6.5, and the last
part is by an analog of derivation (DP) for Pop′.

For the safety part, we consider an arbitrary computation of the form (n, 0,0d)
S−→ (n′, r, e).

The only rule for S is (R0), so there must exist some steps of the form

(n, 0,0d)
i
c0
κ0

i
c1
κ1
···i
cd−1
κd−1−−−−−−−−→ (n, 0, α)

F−→ (n′,m′, α′)
Pop′−−→ (n′′, r, e) .

Necessarily, this satisfies n′+m′ ≤ Fα(n) by (6.1). And since Pop′ behaves like Pop, we have
n′′ + r = n′ +m′, as in (6.3). All this entails r ≤ Fα(n) as required by (SA).

7. Concluding Remarks

We proved that Grammar-controlled VASes or Pushdown VASes cannot weakly compute
numerical functions that are sublinear. This was recently shown for plain VASes [24]. We
also proved that GVASes can weakly compute the fast-growing functions Fα for all α < ωω

while VASes can only weakly compute Fα for α < ω.
This research is motivated by verification questions for well-structured systems, in

particular VASes and their extensions. In this area, weakly computable functions have
traditionally been used to prove hardness results. Recent hardness proofs for well-structured
systems crucially rely on the ability to weakly compute both fast-growing and slow-growing
functions.

This work raises some new questions that are left for future work, including whether
GVASes can weakly compute Fωω and whether slow-growing functions can be weakly com-
puted in other VAS extensions like the VASes with nested zero-tests of [30].

Another open question is the decidability of the boundedness problem for GVASes.
Boundedness is decidable for PVASes [22] but the two problems do not coincide: on the
one hand, in GVASes we only consider sequences of actions that are the yields of complete

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:23

derivation trees of a grammar, corresponding to configurations in PVAS that have empty
stack content; on the other hand unboundedness in PVASes can come from unbounded
counters or unbounded stack, while in GVASes only counters are measured. Indeed, the
counter-boundedness problem for PVASes reduces to the boundedness problem for GVASes
and is still open, while the stack-boundedness problem was shown decidable in [25].

The reachability problem for GVASes is also a source of open problems. Recently, the
complexity of the reachability problem for plain VASes was proved to be between F3 and
Fω [5, 23] in the complexity hierarchy set up by Schmitz [31]. Improving the F3 lower bound
in the case of GVASes is an open question, as is the decidability status of the reachability
problem.

References

[1] P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of programs with well
quasi-ordered domains. Information & Computation, 160(1–2):109–127, 2000.

[2] M. F. Atig and P. Ganty. Approximating Petri net reachability along context-free traces. In FSTTCS
2011, volume 13 of LIPIcs, pages 152–163. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[3] A. Bouajjani and M. Emmi. Analysis of recursively parallel programs. In POPL 2012, pages 203–214.
ACM, 2012.

[4] P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel systems. In LICS
2008, pages 205–216. IEEE, 2008.

[5] W. Czerwiński, S. Lasota, R. Lazic, J. Leroux, and F. Mazowiecki. The reachability problem for Petri
nets is not elementary. In STOC 2019, pages 24–33. ACM, 2019.

[6] S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter systems. In LICS
2013, pages 33–42. IEEE, 2013.

[7] S. Demri, M. Jurdziński, O. Lachish, and R. Lazić. The covering and boundedness problems for branching
vector addition systems. Journal of Computer and System Sciences, 79(1):23–38, 2013.

[8] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical Computer
Science, 256(1–2):63–92, 2001.

[9] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and languages. Pacific J. Math.,
16(2):285–296, 1966.

[10] S. A. Greibach. Remarks on blind and partially blind one-way multicounter machines. Theoretical
Computer Science, 7:311–324, 1978.

[11] Ch. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel systems. Logical Methods in
Comp. Science, 10(4:4), 2014.

[12] M. Hack. The equality problem for vector addition systems is undecidable. Theoretical Computer Science,
2(1):77–95, 1976.

[13] S. Haddad and D. Poitrenaud. Recursive Petri nets: Theory and application to discrete event systems.
Acta Informatica, 44(7–8):463–508, 2007.

[14] S. Haddad, S. Schmitz, and Ph. Schnoebelen. The ordinal-recursive complexity of timed-arc Petri nets,
data nets, and other enriched nets. In LICS 2012, pages 355–364. IEEE, 2012.

[15] P. Jančar. Decidability of a temporal logic problem for Petri nets. Theoretical Computer Science,
74(1):71–93, 1990.

[16] P. Jančar. Nonprimitive recursive complexity and undecidability for Petri net equivalences. Theoretical
Computer Science, 256(1–2):23–30, 2001.

[17] M. Jantzen and R. Valk. Formal properties of Place/Transition nets. In Net Theory and Applications,
volume 84 of Lect. Notes Comp. Sci., pages 165–212. Springer, 1980.

[18] J. B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture. Trans. Amer. Math.
Soc., 95(2):210–225, 1960.

[19] R. Lazić. The reachability problem for vector addition systems with a stack is not elementary. CoRR,
abs/1310.1767, 2013.

[20] R. Lazić, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets with tokens which carry data.
Fundamenta Informaticae, 88(3):251–274, 2008.

15:24 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

[21] R. Lazić and P. Totzke. What makes Petri nets harder to verify: Stack or data? In Concurrency, Security,
and Puzzles, volume 10160 of Lect. Notes Comp. Sci., pages 144–161. Springer, 2017.

[22] J. Leroux, M. Praveen, and G. Sutre. Hyper-Ackermannian bounds for pushdown vector addition systems.
In CSL-LICS 2014, pages 63:1–63:10. ACM, 2014.

[23] J. Leroux and S. Schmitz. Reachability in vector addition systems is primitive-recursive in fixed dimension.
In LICS 2019. IEEE, 2019.

[24] J. Leroux and Ph. Schnoebelen. On functions weakly computable by Petri Nets and Vector Addition
Systems. In RP 2014, volume 8762 of Lect. Notes Comp. Sci., pages 190–202. Springer, 2014.

[25] J. Leroux, G. Sutre, and P. Totzke. On boundedness problems for pushdown vector addition systems. In
RP 2015, volume 9328 of Lecture Notes in Computer Science, pages 101–113. Springer, 2015.

[26] J. Leroux, G. Sutre, and P. Totzke. On the coverability problem for pushdown vector addition systems
in one dimension. In ICALP 2015, volume 9135 of Lecture Notes in Computer Science, pages 324–336.
Springer, 2015.

[27] Jérôme Leroux. Vector addition system reachability problem: a short self-contained proof. In POPL,
pages 307–316. ACM, 2011.

[28] E. W. Mayr and A. R. Meyer. The complexity of the finite containment problem for Petri nets. Journal
of the ACM, 28(3):561–576, 1981.

[29] R. Mayr. Process rewrite systems. Information and Computation, 156(1/2):264–286, 2000.
[30] K. Reinhardt. Reachability in Petri nets with inhibitor arcs. Electr. Notes Theor. Comput. Sci., 223:239–

264, 2008.
[31] S. Schmitz. Complexity hierarchies beyond Elementary. ACM Trans. Computation Theory, 8(1), 2016.
[32] Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity. Information

Processing Letters, 83(5):251–261, 2002.
[33] Ph. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In

MFCS 2010, volume 6281 of Lect. Notes Comp. Sci., pages 616–628. Springer, 2010.
[34] K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous atomic methods.

In CAV 2006, volume 4144 of Lect. Notes Comp. Sci., pages 300–314. Springer, 2006.

Appendix A. Well-quasi-ordering flow trees

We now prove Lemma 3.3, stating that ≤G is a well-quasi-ordering of F (G), this for any
GVASS G. A simple way to prove this is to reformulate ≤G as an homeomorphic embedding
on flow trees labeled with enriched information equipped with further labels.

With a flow tree t = σ[t1, . . . , tk] we associate a tree adorn(t) made of a root labeled with
〈root(t), root(t1), . . . , root(tk)〉 and having adorn(t1), . . . , adorn(tk) as immediate subtrees.
The nodes of adorn(t) are labeled by tuples of the form 〈(c0, X, ck), (c0, X1, c1), . . . , (ck−1, Xk, ck)〉
where c0, . . . , ck ∈ Nd are configurations and where X ==⇒ X1 · · ·Xk is a rule in R, or X ∈ A
is a terminal action and k = 0. Such a tuple is called an instance of the rule X ==⇒ X1 · · ·Xk

(or of the actionX ∈ A). Given two instances λ = 〈(c0, X, ck), (c0, X1, c1), . . . , (ck−1, Xk, ck)〉
and λ′ = 〈(d0, Y,d`), (d0, Y1,d1), . . . , (d`−1, Y`,d`)〉, we write λ ≤ λ′ when (X ==⇒ X1 · · ·Xk)
and (Y ==⇒ Y1 · · ·Y`) are the same rule or action —entailing k = `— and when cj ≤ dj
for all 1 ≤ j ≤ k. Suppose s is a flow tree with immediate subtrees s1, . . . , sk. We write
adorn(s) v adorn(t) if there is a subtree t′ of t with immediate subtrees t1, . . . , tl such that
root(adorn(s)) ≤ root(adorn(t′)) (entailing k = l) and inductively adorn(sj) v adorn(tj) for
all 1 ≤ j ≤ k. It is easy to see that on derived trees of flow trees, v coincides with the
standard homeomorphic embedding of labeled trees.

Lemma A.1. s ≤G t if, and only if, root(s) ≤ root(t) ∧ adorn(s) v adorn(t).

Proof. We assume s = σ[s1, . . . , sk], t = θ[t1, . . . , t`] and prove the claim by structural
induction.

Vol. 15:4 ON FUNCTIONS WEAKLY COMPUTABLE BY PUSHDOWN PETRI NETS 15:25

=⇒ : Assume s ≤G t. Thus root(s) ≤ root(t) and, by definition of ≤G, t contains a subtree
t′ = θ′[t′1, . . . , t

′
k] with

σ ≤ θ′ ∧ s1 ≤G t′1 ∧ · · · ∧ sk ≤G t′k .
Now this entails root(s) ≤ root(t′) and root(si) ≤ root(t′i) for all i, as well as (by ind. hyp.)
adorn(si) v adorn(t′i) for all i. Hence adorn(s) v adorn(t′), entailing adorn(s) v adorn(t).
⇐= : We assume root(s) ≤ root(t) and adorn(s) v adorn(t). Hence there is a subtree
t′ of t with immediate subtrees t′1, . . . , t′k such that root(adorn(s)) ≤ root(adorn(t′)) and
adorn(si) v adorn(t′i) for all i = 1, . . . , k. From root(adorn(s)) ≤ root(adorn(t′)), we infer
that root(si) ≤ root(t′i) for all i = 1, . . . , k. Now one witnesses s ≤G t by observing that
si ≤G ti by ind. hyp.

Since the instances of rules are well-quasi-ordered by ≤ (there are only finitely many
rules), v is a well-quasi-ordering by Kruskal’s Tree Theorem [18]. With Lemma A.1 we
immediately infer that ≤G is a well-quasi-ordering.

Appendix B. Monotonicity for Fast-Growing functions

We give detailed proofs for the two monotonicity lemmas stated after the definitions of the
Fα functions in section 6.

Lemma 6.2. For any ordinals α, α′ < ε0 and any n ∈ N, Fα(n) ≤ Fα⊕α′(n).

Proof. By induction on α′, then on α. We first observe that, if the claim holds for some given
α and α′, then it entails Fmα (n) ≤ Fmα⊕α′(n) for any m > 0 as a consequence of monotonicity,
i.e., (FM).

We now consider several cases for α and α′:
• If α′ = 0, then α⊕ α′ = α and the claim holds trivially.
• If α = 0 then the claim becomes F0(n) ≤ Fα′(n), which holds since F0(n) = n+ 1 by (F0)
and n+ 1 ≤ Fα′(n) by (FX).
• If α′ = β′ + 1 is a successor then α⊕ α′ is (α⊕ β′) + 1 and we have Fα(n) ≤ Fα⊕β′(n) by
ind. hyp., ≤ Fn+1

α⊕β′(n) by (FX), = Fα⊕β′+1(n) = Fα⊕α′(n), and we are done.
• If α = β+1 is a successor then α⊕α′ is (β⊕α′)+1 and we have Fα(n) = Fn+1

β (n) ≤ Fn+1
β⊕α′(n)

by ind. hyp., = Fα⊕α′(n).
• The only remaining possibility is that both α and α′ are limit ordinals. Then (α⊕ α′)(n)
is α ⊕ α′(n) or α(n) ⊕ α′, depending on which limit has the CNF with smallest last
summand. In the first case we have Fα(n) ≤ Fα⊕α′(n)(n) by ind. hyp. since α′(n) < α′,
= F(α⊕α′)(n)(n) = Fα⊕α′(n). In the second case we have Fα(n) = Fα(n)(n) ≤ Fα(n)⊕α′(n)
by ind. hyp. since α(n) < α, = F(α⊕α′)(n)(n) = Fα⊕α′(n).

Lemma 6.3. For any ordinal α < ε0 and limit ordinal λ < ωω, for any m,n ∈ N, if m ≤ n
then Fα⊕λ(m)(n) ≤ Fα⊕λ(n).

Proof. Let us decompose λ under the form λ = δ+ωk+1 so that λ(m) = δ+ωk · (m+ 1). We
prove the lemma by induction on α. We first observe that, if the claim holds for some given
α, then F pα⊕λ(m)(n) ≤ F pα⊕λ(n) for every p > 0 and every m,n ∈ N such that m ≤ n. This
observation, which is easily proved by induction on p, is a consequence of strict expansivity
and monotonicity, i.e., (FX) and (FM), respectively.

15:26 J. Leroux, M. Praveen, Ph. Schnoebelen, and G. Sutre Vol. 15:4

• If α = 0 we have Fα⊕λ(m)(n) = Fλ(m)(n) ≤ Fλ(n)(n) by Lemma 6.2 since λ(n) =

λ(m)⊕ ωk · (n−m), = Fλ(n) = Fα⊕λ(n) by (FL).
• If α = β + 1 is a successor, we have Fα⊕λ(m)(n) = F(β⊕λ(m))+1(n) = Fn+1

β⊕λ(m)(n) by (F1),
≤ Fn+1

β⊕λ (n) by ind. hyp., = F(β⊕λ)+1(n) = Fα⊕λ(n) again by (F1).
• If α = γ + ωβ is a limit, then α⊕ λ is a limit too and we can compare ωβ and ωk+1, the
last summands of α and λ. There are two subcases:
– If 0 < β ≤ k then (α ⊕ λ)(n) = α(n) ⊕ λ. Moreover, α ⊕ λ(m) is a limit since 0 < k,

and (α ⊕ λ(m))(n) = α(n) ⊕ λ(m). We deduce Fα⊕λ(m)(n) = Fα(n)⊕λ(m)(n) by (FL),
≤ Fα(n)⊕λ(n) by ind. hyp., = F(α⊕λ)(n)(n) = Fα⊕λ(n) again by (FL).

– If k + 1 ≤ β then (α ⊕ λ)(n) = α ⊕ λ(n). We deduce Fα⊕λ(m)(n) ≤ Fα⊕λ(n)(n) by
Lemma 6.2 since m ≤ n, = F(α⊕λ)(n)(n) = Fα⊕λ(n) by (FL) and we are done.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	Beyond Petri nets and VASSes.
	Related models.
	Outline of the paper.

	2. Grammar-Controlled Vector Addition Systems
	Vector Addition Systems
	Notation
	Grammar-controlled Vector Addition Systems

	3. Well-Quasi-Ordering Runs in GVASes
	4. GVAS-Definable Predicates
	5. Weakly Computable Functions
	6. Hyper-Ackermannian GVAS
	7. Concluding Remarks
	References
	Appendix A. Well-quasi-ordering flow trees
	Appendix B. Monotonicity for Fast-Growing functions

