
Logical Methods in Computer Science
Volume 15, Issue 4, 2019, pp. 16:1–16:42
https://lmcs.episciences.org/

Submitted May 11, 2017
Published Dec. 19, 2019

LOGICAL AND ALGEBRAIC CHARACTERIZATIONS

OF RATIONAL TRANSDUCTIONS

EMMANUEL FILIOT a, OLIVIER GAUWIN b, AND NATHAN LHOTE a,b

a Université Libre de Bruxelles
e-mail address: efiliot@ulb.ac.be

b Université de Bordeaux, LaBRI, CNRS
e-mail address: {olivier.gauwin,nlhote}@labri.fr

Abstract. Rational word languages can be defined by several equivalent means: finite
state automata, rational expressions, finite congruences, or monadic second-order (MSO)
logic. The robust subclass of aperiodic languages is defined by: counter-free automata,
star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular,
their algebraic characterization by aperiodic congruences allows to decide whether a regular
language is aperiodic.

We lift this decidability result to rational transductions, i.e., word-to-word functions
defined by finite state transducers. In this context, logical and algebraic characterizations
have also been proposed. Our main result is that one can decide if a rational transduction
(given as a transducer) is in a given decidable congruence class. We also establish a transfer
result from logic-algebra equivalences over languages to equivalences over transductions.
As a consequence, it is decidable if a rational transduction is first-order definable, and we
show that this problem is PSPACE-complete.

Introduction

Logical and algebraic characterizations of rational languages. The theory of rational
languages over finite words is mature and rich with results that stem from their many different
characterizations, such as: finite automata, rational expressions, monadic second-order logic
(MSO) and congruences of finite index, as illustrated in Table 1. One of the main features
of the algebraic approach is the existence, for any rational language, of a canonical object:
the syntactic congruence (also known as Myhill-Nerode congruence) which is minimal in a
strong sense that it is coarser than any congruence recognizing the language, and is related
to the minimal automaton of a language. Furthermore, many correspondences between some
logical fragments of MSO and congruence varieties (see e.g. [Str94]) have been established.
Congruence varieties are sets of congruences of finite index with good closure properties

Key words and phrases: rational word transductions, definability problems, first-order logic, algebraic
characterizations.

This work was partially supported by the ANR ExStream (ANR-13-JS02-0010) and DeLTA (ANR-16-
CE40-0007) projects, the ARC project Transform (French speaking community of Belgium) and the Belgian
FNRS CDR project Flare. Emmanuel Filiot is research associate at F.R.S.-FNRS..

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(4:16)2019
c© E. Filiot, O. Gauwin, and N. Lhote
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

16:2 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

Machine Logic Algebra
(Canonical object)

Languages
syntactic congruence =
minimal automaton [Myh57,
Ner58]

regular automata MSO [Büc60] finite
star-free aperiodic automata FO[<] [MP71] aperiodic [Sch65]
C C-automata F C

Sequential transductions syntactic congruence [Cho03]
= minimal transducer

sequential sequential transducers finite
aperiodic ap. sequential transducers aperiodic
C C-sequential transducers C

Rational transductions
left/right synt. congruence,
minimal bimachines

rational transducers op-MSOT [Boj14] finite [RS91]
aperiodic ap. transducers op-FOT [Boj14] aperiodic
C C-transducers F C

Regular transductions ?

regular 2-way trans., SST MSOT [EH01, AC10]
aperiodic ap. 2-way trans., ap. SST FOT [CD15, FKT14]

C is any congruence class, and F its associated logic. op stands for order-preserving.
Our contributions concern the underlined objects.

Table 1: Logic-automata-algebra characterizations, for languages and transductions.

including closure under coarser congruences1 which means that the syntactic congruence
carries, in some sense, the intrinsic algebraic properties of a language. The most prominent
of the aforementioned results, which was obtained together by Schützenberger [Sch65] and
McNaughton and Papert [MP71], is the correspondence between languages definable in
first-order logic (FO[<]) and languages recognizable by a finite aperiodic congruence. Since
then many other such correspondences have been found (again, see [Str94]), for instance
between the fragment of first-order logic with only two variables and the congruence variety
known as DA [TW98]. The strength of these results is that they give, through the syntactic
congruence, an effective way to decide if a regular language can be expressed in a given
logical fragment. The goal of this article is to lift some of these logic-algebra correspondences
from rational languages to rational transductions.

Rational transductions. Transductions are (partial) functions from finite words to finite
words. At the computational level they are realized by transducers, which are automata
given together with an output function mapping transitions to finite words. Although
transducers have been studied for almost as long as automata, far less is known about them.
A more recent result of [EH01] has sparked some renewed interest in their logical aspect.
This result states that transductions definable by MSO-transducers (MSOT), a logical model

1If some congruence ∼ is in some variety V , any congruence coarser than ∼ is in V as well.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:3

of transducers defined by Courcelle in the general context of graph transductions [CE12],
exactly characterize the transductions realized by two-way transducers. Another model
of one-way transducers with registers, called streaming string transducers, has also been
shown to capture the same class of transductions called regular transductions [AC10]. The
first steps of a logic-algebra relationship for transductions have been made by [FKT14]
and [CD15], where first-order transducers (FOT) are shown to be expressively equivalent
to streaming string transducers (resp. two-way transducers) with an aperiodic transition
congruence. These characterizations are however not effective, and the class of regular
functions still lacks a canonical object similar to the syntactic congruence, which would yield
a way to decide if a given transducer realizes a transduction definable in first-order logic, for
example.

Rational transductions are the transductions realized by one-way transducers, and they
also coincide with transductions definable by rational expressions over the product of two
free monoids (with component-wise concatenation and Kleene star) [BB79]. In this paper, we
define subclasses of rational transductions by restricting the class of transition congruence of
the transducers which define them. The transition congruence of a transducer is just defined
as the transition congruence of its underlying automaton, ignoring the output. The reason
for choosing such a definition is because we obtain nice correspondences between classes of
transition congruences of transducers and logical fragments of MSO-transducers. First of all,
the rational transductions are exactly captured by a natural restriction of MSOT, called
order-preserving MSOT [Boj14, Fil15]. Its first-order fragment was shown to coincide with
rational transduction definable by a one-way transducer with aperiodic transition congruence
in [Boj14]. Other correspondences, for instance with FO2[<], are shown in this paper.

Let us point out that the characterization of first-order rational functions as the functions
defined by aperiodic transducers [Boj14] is not effective since it does not provide a way to
decide if a given transduction is definable in first-order logic. In [CG14] a different kind of
characterization of (non-functional) transductions over a unary alphabet is given, in terms
of rational expressions rather than in terms of transition congruence.

A first result on the existence of a canonical machine for transductions is given in [Cho03],
where the author defines a construction of a syntactic congruence for sequential transducers,
i.e. transducers with a deterministic underlying (input) automaton, which define a strict
subclass of rational transductions. This syntactic congruence, like for languages, is minimal
in a stronger sense than just yielding a sequential transducer with the minimal number of
states: it is minimal in the algebraic sense that it is coarser than any transition congruence
of a sequential transducer realizing the transduction. A second such result is the existence
of a canonical machine for rational functions, shown in [RS91]. However, as the authors
mentioned in this article, this canonical machine is not minimal in any of the ways described
above. In the present paper we refine the approach of [RS91] in order to obtain minimal
machines in terms of both number of states and of transition congruence. This approach
is based on a computational model of transductions called bimachines, which captures
the rational functions. A bimachine is a deterministic model of transductions, introduced
in [Sch61] and further studied (and named) in [Eil74], which can be seen as a sequential
transducer with regular look-ahead, where the look-ahead is given by a co-deterministic
automaton.

In contrast to considering restrictions of the transition congruence of the underlying
automata of transducers, a different way of defining subclasses of rational transductions,
taking into account the outputs, has been proposed in [CKLP15] and [CCP17]. It is based

16:4 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

on the natural notion of continuity, i.e., preserving a class of languages by inverse image.
In [CKLP15], the authors were able to effectively characterize sequential transductions
definable by AC0 circuits. In [CCP17] the authors show how to decide if a transduction is
continuous with respect to many usual varieties and they also compare the two notions of
continuity and realizability.

Contributions. We first restate in our context the results from [Cho03] which give, for
any sequential transduction, a syntactic congruence and thus a minimal transducer. Hence
we show that for any congruence class2 C, C-sequentiality (i.e., realizability by a sequential
transducer with a transition congruence in C) can be reduced to deciding if the syntactic
congruence belongs to C. However the syntactic congruence of a sequential transduction
may not capture all the algebraic properties of the transduction, in the following way: there
exists a congruence class C and a sequential transduction which is C-rational (realizable by
a transducer with transition congruence in C, i.e., a C-transducer) yet not C-sequential.
On the other hand we show that it is not the case for A (the class of aperiodic congruences):
any sequential A-rational function is A-sequential.

We refine techniques used in [RS91] to give an algebraic characterization of rational
functions. It is known [RS95], for a congruence class C, that C-bimachines and unambiguous
C-transducers realize the same class of transductions. It is also known that a functional
transducer can be disambiguated, however the known disambiguation algorithms do not
preserve the class of the transition congruence. We nevertheless are able to show that
unambiguous C-transducers are as expressive as functional C-transducers.

The most important result of this paper is an effective way to compute, for any rational
function, a finite set of minimal bimachines. These bimachines are minimal in the strong sense
that they have the coarsest transition congruences among all bimachines (and transducers)
realizing the function. As a corollary this gives a way to decide if a rational transduction can
be realized by a transducer with transition congruence in any given decidable congruence
class C, just by checking if one of the minimal bimachines is a C-bimachine.

We define a logical formalism to associate with any logical fragment F of MSO a class
of F -definable transductions. For a logical fragment of MSO equivalent to (i.e., recognizing
the same languages as) a congruence class, we give sufficient conditions under which this
equivalence carries over to transductions. To the best of our knowledge these conditions
are satisfied by all logical fragments which are equivalent to a congruence class and which
have access to the linear order predicate. In particular, this gives a way to decide if a given
rational function is definable in FO[<] or in FO2[<].

An entire section is devoted to the particular case of aperiodic transductions, where we
show that this class satisfies a stronger property than an arbitrary class: a transduction
is aperiodic if and only if all its minimal bimachines are aperiodic. This gives a decision
procedure with better complexity, just by “local” minimization instead of computing all
the minimal bimachines. Namely we show that deciding whether a transduction, given as a
bimachine, is aperiodic is PSpace-complete.

2We call congruence class a set of congruences of finite index closed under intersection and coarser
congruences.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:5

Comparison with previous papers. This article compiles the results of two previous
conference articles [FGL16b, FGL16a], as well as some new results. The effective computation
of the set of minimal bimachines of a rational function is given in [FGL16b] and, as
a consequence, the decidability of the first-order definability problem. We have shown
afterwards, in [FGL16a], that the first-order definability problem is actually PSpace-
complete. This article details the proofs of these results and exhibits some new interesting
properties. For instance, testing whether f is a C-transduction can be achieved by testing a
unique bimachine Bf,C. The equivalence (in terms of expressiveness) between unambiguous
C-transducers and functional C-transducers is a new result, as well as the decidability of
the definability in FO2[<] and BΣ1[<].

Contents

Introduction 1
Logical and algebraic characterizations of rational languages 1
Rational transductions 2
Contributions 4
Comparison with previous papers 5
1. Rational languages and rational transductions 6
1.1. Rational languages 6
1.2. Algebraic characterization of rational languages 6
1.3. Rational transductions 8
2. Algebraic characterization of sequential transductions 9
2.1. Minimization of sequential transducers 9
2.2. Determinization preserves aperiodicity 11
3. Bimachines 13
3.1. Bimachines and transductions 14
3.2. Bimachine minimization 15
3.3. Canonical bimachine 20
4. Algebraic characterization of rational transductions 21
4.1. C-transducers and C-bimachines 22
4.2. Bounding minimal bimachines 24
4.3. Characterization of C-rationality and decision 26
5. Characterization of aperiodic transductions 27
5.1. Characterization of aperiodicity 27
5.2. Aperiodicity is PSPACE-complete 30
6. Logical transducers 31
6.1. MSO transductions 32
6.2. Logic-algebra equivalence 34
6.3. Decidable fragments 38
Conclusion 39
Acknowledgement 40
References 40

16:6 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

1. Rational languages and rational transductions

1.1. Rational languages.

1.1.1. Words and languages. An alphabet Σ is a finite set of symbols called letters, a word
over Σ is an element of the free monoid Σ∗, whose neutral element, the empty word, is
denoted by ε. The length of a word w ∈ Σ∗ is denoted by |w| with |ε| = 0. For a non-empty
word w and two positions 1 ≤ i ≤ j ≤ |w| we denote by w[i] the ith letter of w and by
w[i : j] the factor of w beginning with the ith letter and ending with the jth letter of w. For
two words u, v, we write u � v if u is a prefix of v and in this case we denote by u−1v the
unique word v′ such that uv′ = v. The longest common prefix of two words u, v is denoted
by u ∧ v and the prefix distance between u and v is defined as ‖u, v‖= |u|+ |v| − 2|u ∧ v|. A
language L is a set of words and

∧
L denotes the longest common prefix of all the words in

L with the convention that
∧
∅ = ε.

1.1.2. Finite automata. A finite automaton (or simply automaton) over an alphabet Σ is
a tuple A = (Q,∆, I, F) where Q is a finite set of states, ∆ ⊆ Q× Σ×Q is the transition
relation, and I, F ⊆ Q denote the set of initial states and the set of final states, respectively.
A run of A over a word w is a word r = q0 . . . q|w| over Q such that (qi, w[i+ 1], qi+1) ∈ ∆ for
all i ∈ {0, . . . , |w| − 1}. The run r is accepting if q0 ∈ I and q|w| ∈ F . A word w is accepted
by A if there exists an accepting run over it, and the language recognized by A is the set

of words accepted by A and is denoted by JAK. We will use the notation p
w−→A q (or just

p
w−→ q when it is clear from context) to denote that there exists a run r of A over w such

that r[1] = p and r[|r|] = q. An automaton A is called deterministic if its set of initial states
is a singleton and for any two transitions (p, σ, q1), (p, σ, q2) ∈ ∆ it holds that q1 = q2. An
automaton is unambiguous if any word has at most one accepting run over it. We call an
automaton complete if for any p ∈ Q, σ ∈ Σ there exists q ∈ Q such that (p, σ, q) ∈ ∆. A
state q of an automaton A is said to be accessible if there exists a word w and an initial

state q0, such that q0
w−→A q. We say by extension that the automaton A is accessible if

all its states are accessible. Finally, a language is called rational if it is recognized by an
automaton.

1.2. Algebraic characterization of rational languages.

1.2.1. Congruences. It is well known that rational languages are equivalently recognized by
congruences of finite index. Let us define these notions. Let ∼ be an equivalence relation
on Σ∗. The equivalence class of a word w is denoted by [w]∼ (or just [w] when it is clear
from context). We say that ∼ has finite index if the quotient Σ∗/∼ = {[w]∼ | w ∈ Σ∗} is
finite. Let ∼1, ∼2 be two equivalence relations, we say that ∼1 is finer than ∼2 (or that ∼2

is coarser than ∼1) if any equivalence class of ∼2 is a union of equivalence classes of ∼1,
or equivalently for any two words u, v, if u ∼1 v then u ∼2 v. We write ∼1 v ∼2 to denote
that ∼1 is finer than ∼2.

An equivalence relation ∼ over Σ∗ is a right congruence (resp. a left congruence) if for
any words u, v ∈ Σ∗ and letter σ ∈ Σ we have u ∼ v ⇒ uσ ∼ vσ (resp. u ∼ v ⇒ σu ∼ σv).
A congruence is defined as both a left and a right congruence. When ∼ is a congruence,
the quotient Σ∗/∼ is naturally endowed with a monoid structure, with multiplication

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:7

[u]∼ · [v]∼ = [uv]∼ and identity [ε]∼. We say that a congruence ∼ recognizes a language L if
L is a union of equivalence classes of ∼. Let us note that the intersection of two right (resp.
left) congruences ∼1,∼2 over the same alphabet is also a right (resp. left) congruence which
we denote by ∼1 u ∼2.

Example 1.1. Important examples of congruences which we use throughout the article
are: the syntactic congruence ≡L of a language L and the transition congruence ≈A of an
automaton A with set of states Q. When A is deterministic with initial state q0, we also
define ∼A, the right transition congruence of A. These relations are defined as follows, with
u, v ranging over all words:

u ≡L v ⇔ (∀x, y ∈ Σ∗, xuy ∈ L ⇔ xvy ∈ L)

u ≈A v ⇔ (∀p, q ∈ Q, p
u−→A q ⇔ p

v−→A q)
u ∼A v ⇔ (∀q ∈ Q, q0

u−→A q ⇔ q0
v−→A q)

If A recognizes a language L, then its transition congruence ≈A recognizes the same language.
The relation ≡L recognizes the language L and is the coarsest among congruences which do
so. From the two previous remarks, this well-known fact follows: a language is rational if
and only if its syntactic congruence has finite index.

Let A be a complete and deterministic automaton, then an equivalence class [w]∼A can
be identified with the state of A reached by reading the word w. In the following we will
often make this identification, implicitly assuming that A is complete (an automaton can
be made complete in PTime), and will write [w]A rather than [w]∼A to simplify notations.
Furthermore, for two deterministic automata A1,A2 such that ∼A1 v ∼A2 , we will say by
extension that A1 is finer than A2 and write A1 v A2. For example the minimal automaton
of a language L is the coarsest deterministic automaton recognizing L (up to isomorphism).

1.2.2. Congruence classes. A congruence class (class for short) C associates to any finite
alphabet Σ, a set C(Σ) of congruences of finite index over Σ, such that C(Σ) is (1) closed
under intersection and (2) closed under taking coarser congruences. Note that we will often
abuse the notation and write C instead of C(Σ).

An automaton is called a C-automaton if its transition congruence is in C. A language
is a C-language if it is recognized by a C-automaton. Note that since a class is stable by
taking coarser congruences, a language is a C-language if and only if its syntactic congruence
is in C. Let L(C) denote the set of C-languages.

Remark 1.2. Recognizability by a congruence of finite index is equivalent to the notion
of recognizability by a stamp (i.e., a surjective morphism from a free monoid to a finite
monoid). Indeed, a congruence ∼ over an alphabet Σ yields a natural (surjective) morphism
[·]∼ : Σ∗ → Σ∗/∼ which of course recognizes the same language. Conversely, given a
morphism µ : Σ∗ → M with M a finite monoid, one can define the congruence ∼M by
u ∼M v if µ(u) = µ(v). In [PS05], the authors define C-varieties of stamps (a generalization
of the notion of monoid varieties), which are in particular congruence classes as we define
them in this paper. We choose to consider this notion of congruence classes simply because
our results hold in this more general framework.

Note that in [FGL16b] we had chosen the term of congruence variety instead of congru-

ence class which was ill-suited, as was kindly pointed out by Jean-Éric Pin, since the term

16:8 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

variety stems from an equational theory, which does not exist in a context as general as the
one of congruence classes.

1.2.3. Definability problem and decidable classes. Given a set of languages V, the V-
definability problem asks whether a language L, given by an automaton, belongs to V.

A congruence of finite index over an alphabet Σ can be given by a morphism µ : Σ∗ →M ,
with M a finite monoid (two words are equivalent if they have the same image by µ). The
morphism µ can itself be given explicitly by a function m : Σ→M . In the following decision
problems we assume that congruences are given that way.

The C-membership problem asks if a congruence of finite index, given as a morphism, is
in C. In particular, the L(C)-definability problem reduces to the C-membership problem
through the syntactic congruence. A class is called decidable if its membership problem is
decidable.

Examples 1.3. We give several examples of decidable congruence classes.

• The set F of all congruences of finite index is of course a class.
• A simple example of a congruence class is the class I of idempotent congruences. A

congruence ∼ is called idempotent if for any word w, w ∼ w2, and this property is indeed
stable by intersection and taking coarser congruences.
• A central example of congruence class in this paper is the class A of aperiodic congruences.

A congruence ∼ is aperiodic if there exists an integer n such that for any word w,
wn ∼ wn+1. Again, one can easily check that this property is stable by intersection
and taking coarser congruences. It is shown in [DG08] that the aperiodicity problem for
a language, given as an automaton, is PSpace-complete. Moreover, even if the given
automaton is deterministic, this problem remains PSpace-hard [CH91].
• Let us also mention the congruence class DA which was shown to recognize the languages

definable in first-order logic with two variables [TW98]. A congruence of finite index ∼ is in
DA if there exists an integer n such that for any words u, v, w, (uvw)nv(uvwn) ∼ (uvw)n.

1.3. Rational transductions.

1.3.1. Transductions and finite transducers. A transduction over an alphabet Σ is a partial
function3 f : Σ∗ → Σ∗, and its domain is denoted by dom(f).

A finite transducer4 (or simply transducer) over Σ is a tuple T = (A, o, i , t) where A =
(Q,∆, I, F) is the underlying automaton of T , o : ∆→ Σ∗ is the output function, i : I → Σ∗

is the initial output function and t : F → Σ∗ is the final output function. Let u be a word
on which there exists a run q0 . . . q|u| of A, and let v = o(q0, u[1], q1) · · · o(q|u|−1, u[|u|], q|u|),

then we write q0
u|v−−→T q|u| to denote the existence of such a run. If q0 ∈ I and q|u| ∈ F , let

w = i(q0)vt(q|u|), then we say that the pair (u,w) is realized by T . We denote by JT K the
set of pairs realized by T .

A transducer is called functional if it realizes a transduction (i.e., a partial function),
this property is decidable in PTime (see e.g. [BB79]) and in this case we denote (u, v) ∈ JT K

3In this paper transductions are functions although this term may refer to any relation in the literature.
4This type of transducer is sometimes called real-time [Sak09] since in general a transition of a transducer

may be labelled by any word.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:9

transductions

transducers

C sequential A

C sequential A

C-seq.
f1

min(f1)

f2

min(f2)T2

6= ∅ for C = I (Prop 2.3)

Th. 2.1

A-seq.
f3

T3det(T3)

Th. 2.4

= ∅ (Theorem 2.4)

Figure 1: Situation for sequential transductions.

by JT K(u) = v. A transducer T is called unambiguous (resp. sequential) if its underlying
automaton is unambiguous (resp. deterministic) and in both cases T is functional. It is
known that any functional transducer is equivalent to some unambiguous transducer (see
e.g. [BB79]). Finally, a transduction is called rational (resp. sequential) if it is realized by a
functional (resp. sequential) transducer.

1.3.2. C-transducers. Let C be a congruence class. A C-transducer is a transducer whose
underlying automaton is a C-automaton. A transduction is called C-rational (resp. C-
sequential) if it is realized by a functional (resp. sequential) C-transducer. Note that a
C-rational transduction is sometimes called a C-transduction for short.

2. Algebraic characterization of sequential transductions

Sequential transductions can be characterized, as it was shown in [Cho03], by a syntactic
congruence which, like for automata, yields a unique minimal underlying machine. Given
a congruence class C we thus prove that a sequential transduction is C-sequential if and
only if its minimal transducer is a C-transducer, which provides a decision procedure for
C-sequentiality in the case of a decidable congruence class. The second result of this
section is that a sequential A-transduction is also A-sequential, as determinization preserves
aperiodicity. These results are depicted in Figure 1.

2.1. Minimization of sequential transducers. We describe the minimal sequential trans-
ducer given in [Cho03] and refer the reader to the original paper for a proof that the obtained
transducer realizes the same transduction. We then show that the underlying automaton of
the minimal transducer is minimal in the strong algebraic sense that it is the coarsest among
all the underlying automata of sequential transducers realizing the same transduction. We
will thus obtain a decision procedure for C-sequentiality of sequential transductions:

16:10 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

Theorem 2.1. Let C be a decidable congruence class. It is decidable whether a sequential
transduction, given by a transducer, is C-sequential.

Minimal transducer. Let f be a transduction and let us define Tf = (Af , of , if , tf) the
minimal sequential transducer realizing f with Af = (Qf ,∆f , If , Ff). The main idea of the
procedure is to output the letters as soon as possible, and then define a right congruence
which states that two words are equivalent if the outputs are the same for any continuation.

For this we need to define a new transduction f̂ : Σ∗ → Σ∗ by: for any word u, f̂(u) =∧{
f(uw) | w ∈ u−1dom(f)

}
, which captures this “as soon as possible” idea by outputting

the longest common prefix of the images of all words beginning with u. The syntactic
congruence of f is defined by: u ∼f v if (1) for any w ∈ Σ∗, uw ∈ dom(f)⇔ vw ∈ dom(f)

and (2) for any w ∈ u−1dom(f), f̂(u)
−1
f(uw) = f̂(v)

−1
f(vw) for any words u, v. The first

condition only ensures that the congruence recognizes the domain of the transduction, while
the second states that the output due to the continuation w is the same after reading u and
v.

The automaton Af is defined naturally from the congruence ∼f :

• Qf = Σ∗/∼f

• ∆f = {([u], σ, [uσ]) | u ∈ Σ∗, σ ∈ Σ}
• If = {[ε]}
• Ff = {[u] | u ∈ dom(f)}
The outputs are defined using the transduction f̂ .

• o ([u], σ, [uσ]) = f̂(u)
−1
f̂(uσ)

• i([ε]) = f̂(ε)

• t([u]) = f̂(u)
−1
f(u) for u ∈ dom(f)

Before proving Theorem 2.1 we need to check that taking a coarser automaton preserves the
congruence class.

Proposition 2.2. Let C be a congruence class. Let A1,A2 be two deterministic automata
such that A1 v A2 and A2 is accessible. If A1 is a C-automaton then so is A2.

Proof. Let A1 v A2 such that A1 is a C-automaton and A2 is accessible. We only need to
show that ≈A1 v ≈A2 since a congruence class is stable by taking coarser congruences. Let
u ≈A1 v, then for any word w, wu ≈A1 wv and in particular wu ∼A1 wv, hence wu ∼A2 wv.
Since A2 is accessible, we have u ≈A2 v.

Proof of Theorem 2.1. Let C be a congruence class. Let us show that a transduction f
is C-sequential if and only if Tf is a C-transducer. This is enough to prove the theorem
since Tf can be computed, in PTime, from any sequential transducer realizing f , according
to [Cho03].

The “if” direction is trivial since in particular Tf is a sequential C-transducer realizing
f . Now, let T = (A, o, i , t) be a sequential C-transducer realizing f , we want to show that
Af is a C-automaton. Since Af is by definition accessible, we only need to show, according
to Proposition 2.2, that A v Af .

Let u ∼A v, let us show that u ∼f v. Since A recognizes dom(f) we already have
that for any word w, uw ∈ dom(f) ⇔ vw ∈ dom(f). Let w be, if it exists, a word such

that uw ∈ dom(f) and let p
u|x−−→T q

w|z−−→T r denote the corresponding accepting run, and

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:11

0

1

2

a | ε

a | a

a | ε

a | ε

Figure 2: I-transducer.

similarly for v: p
v|y−−→T q

w|z−−→T r. We have f̂(u) = i(p)xz′ and f̂(v) = i(p)yz′ with z′ � zt(r)
the longest common prefix of all outputs from state q to an accepting state. Finally,

f̂(u)
−1
f(uw) =

(
i(p)xz′

)−1 i(p)xzt(r)

= z′−1zt(r)

=
(

i(p)yz′
)−1 i(p)yzt(r)

= f̂(v)
−1
f(vw)

2.2. Determinization preserves aperiodicity. We have shown how to decide if a trans-
duction is C-sequential. One could wonder if a sequential transduction can be C-rational but
not C-sequential. We answer by the affirmative, and show that for the case of aperiodicity
this cannot happen.

Proposition 2.3. There exists a congruence class C and a sequential C-transduction which
is not C-sequential.

Proof. Let us consider the congruence class I of idempotent congruences. We give in Figure 2
an example of an unambiguous I-transducer which realizes a sequential transduction f . Let
us show that f is not I-sequential. We assume by contradiction that there exists a sequential

I-transducer realizing f . Let p
a|ε−→ q be the corresponding accepting run over a. Since

f(a) = ε we have i(p) = t(q) = ε. Moreover, since f(aa) = a and a ∼ aa, we have q
a|a−−→ q.

Hence f(aaa) = aa which yields a contradiction.

In this section we show however that this is not the case for the congruence class A
of aperiodic congruences. This fact is shown by exhibiting a determinization algorithm
which, when it takes as an input an A-transducer realizing a sequential transduction, yields
a sequential A-transducer. As it was shown in [BC02], a transducer defining a sequential
transduction can be determinized using a modified subset construction where the automaton
has to store delays between outputs in its states. This procedure does not preserve the
congruence class in general but does preserve aperiodicity, which allows us to state the
following theorem:

Theorem 2.4. A sequential transduction is A-sequential if and only if it is A-rational.

16:12 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

Determinization algorithm. Let us give the determinization algorithm from [BC02]. The idea
of the algorithm is similar to the subset construction for automata, but taking the outputs
into account: on a transition from a subset to another, the output is the longest common
prefix for all the possible transitions. The rest of the outputs have to be remembered in the
states themselves. Since not all rational transductions are sequential, the algorithm may
not terminate. However it is shown in [BC02] that if the transduction is sequential, the
algorithm does terminate.

Now let us describe the algorithm: Let T = (A, o, i , t) be a transducer realizing a
transduction f , with underlying automaton A = (Q,∆, I, F). We give a construction of
T ′ = (A′, o′, i ′, t ′) a transducer realizing f , with A′ = (Q′,∆′, {S0} , F ′) being deterministic.
Let j =

∧
{i(q) | q ∈ I}. Then S0 = {(q, w) | q ∈ I and i(q) = jw}. From the initial

state we build the states and the transitions of A′ inductively. Let S1 be a state already

constructed and let σ ∈ Σ. We define R2 = {(p, vu) | (q, v) ∈ S1 and q
σ|u−−→T p}. Let

s =
∧
{w | (q, w) ∈ R2}. Then we define a new state of Q′, S2 = {(q, w) | (q, sw) ∈ R2}

and add the transition to ∆′ and the output of the transition: S1
σ|s−−→T ′ S2. Assuming that

f is sequential, the construction must terminate, and we only have left to describe:

• i ′(S0) = j
• F ′ = {S ∈ Q′ | ∃q ∈ F,w ∈ Σ∗, (q, w) ∈ S}
• t ′(S) = wt(q) such that q ∈ F and (q, w) ∈ S
The definition of t ′ may seem ambiguous but it is well-defined due to f being functional.

Proof of Theorem 2.4. Let T = (A, i , o, t), with A = (Q,∆, I, F), be an A-transducer
realizing a sequential function f : Σ∗ → Σ∗. Let T ′ = (A′, i ′, o′, t ′), with A′ = (Q′,∆′, S0, F

′),
be the sequential transducer obtained from T by the powerset construction with delays
described above. We will show that A′ is counter-free, i.e., for any state S, any word u, any

integer n > 0, if S
un−→A′ S then S

u−→A′ S. This condition is sufficient for an automaton to
be aperiodic (see e.g. [DG08]). A is aperiodic so there is an integer n such that ∀u ∈ Σ∗,
un ≈A un+1.

Let u ∈ Σ+ be a word, let k be a positive integer and let

R0
u|α0−−−→T ′ R1

u|α1−−−→T ′ . . .
u|αk−2−−−−→T ′ Rk−1

u|αk−1−−−−→T ′ R0

denote a counter in T ′. Let us assume that k is the size of the smallest such counter, which
means that all Rjs are pairwise distinct, we want to show k = 1.

Let Γ0 := α0 · · ·αk−1, for 1 ≤ j < k let Γj := αj · · ·αk−1α0 · · ·αj−1 and let us note
that Γjαj = αjΓj+1 mod k. Let R = {q1, . . . , qm} denote the states appearing in R0. For
0 ≤ j < k, the states of Rj are exactly the states which can be reached in A from some

state of R0 by reading ukn+j ≈A ukn. This means that the states of Rj are the same as the
states of R0, namely q1, . . . , qm. Thus let Rj = {(q1, β1,j), . . . , (qm, βm,j)}.

Let i, i′ ∈ {1, . . . ,m}, and let qi
u|αi,i′−−−−→T qi′ denote a run in T when it exists. By

definition of T ′, we have for any 0 ≤ j < k:

βi,jαi,i′ = αjβi′,j+1 mod k

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:13

Let qi0
u−→A qi1 . . . qit−1

u−→A qit such that t = ks is a multiple of k. Thus we obtain for any
0 ≤ j, j′ < k:

βi0,jαi0,i1 · · ·αit−1,it = Γsjβit,j
βi0,j′αi0,i1 · · ·αit−1,it = Γsj′βit,j′

Since Q is finite there must be a state ql ∈ R, such that ql loops by reading a power of

u, meaning that there is an integer t such that ql
ut−→A ql, and we call such a state a looping

state. For a large enough t we can assume by aperiodicity that t is of the form t = ks+ 1.
Let l, i1, . . . , it−1, l denote the state indices of the previous run from ql to ql over ut. Let
Φ := αl,i1 · · ·αit−1,l. We have for 0 ≤ j < k:

βl,jΦ = Γsjαjβl,j+1 (1)

βl,jΦ
k = Γks+1

j βl,j (2)

From (2) we have |Φ| = (ks+ 1) |Γ0|
k . From (1) we thus obtain: |βl,j+1| − |βl,j | = |Γ0|

k − |αj |.
Notice that this holds for any looping state ql but the difference does not depend on the
state itself.

Let us now consider qi, a state which is not necessarily a looping state. Any state must
be reachable from some looping state, since all states in R can be reached from some state
of R by an arbitrarily large power of u. Let ql be a looping state which can reach qi by a
run over uks. Again let l, i′1, . . . , i

′
ks−1, i denote the sequence of indices of such a run and let

Ψ := αl,i′1 · · ·αi′ks−1,i
. We have for 0 ≤ j < k:

βl,jΨ = Γsjβi,j (3)

βl,j+1Ψ = Γsj+1βi,j+1 (4)

Taking the lengths of words of (4) and (5), and taking the difference between the two equalities

we obtain: |βi,j+1| − |βi,j | = |βl,j+1| − |βl,j | = |Γ0|
k − |αj | which again does not depend on i.

Thus we obtain that for any state qi ∈ R, looping or not, |βi,j+1| − |βi,j | = |Γ0|
k − |αj |.

If we assume that Γ0 = ε, then in particular |βi,j+1| = |βi,j | for any state qi. From (1),
we have that βl,j = βl,j+1 for any looping state ql. Then combining (4) and (5) we obtain
βi,j = βi,j+1 for any state qi. Hence all Rjs are identical which means that k = 1.

Let us now assume that Γ0 6= ε. Since equations (4) and (5) can have an arbitrarily
large common suffix, we know that for any state qi, either βi,j is a suffix of βi,j+1 or vice
versa. Note that whether βi,j orβi,j+1 is a suffix of the other does not depend on i since

|βi,j+1| − |βi,j | = |Γ0|
k − |αj |, and furthermore the size of γi does not depend on i either. If

βi,j = γiβi,j+1, since (4) and (5) can have an arbitrarily large common suffix, we have that

γi is a suffix of Γksj+1 which does not depend on i. Hence γi is a common prefix of βi′,j for all

i′ ∈ {1, . . . ,m}, which means that γi = ε by definition of T ′. Thus all Rjs are equal which

means that k = 1. Similarly, if βi,j is a suffix of βi,j+1, then γi is a suffix of Γksj , and with
the same reasoning, we conclude that k = 1.

3. Bimachines

Bimachines are a model of computation as expressive as (functional) transducers, that was
introduced by [Sch61] and further studied (and named) by [Eil74]. One of the main features
of bimachines is their completely deterministic nature. In order to express all the rational
transductions a bimachine needs, as its name suggests, two automata: A right automaton,

16:14 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

which reads words deterministically from right to left and a left automaton (which is just
a deterministic automaton). The roles of the two automata are completely symmetrical,
however the right automaton can be seen intuitively as a regular look-ahead for the left
automaton.

Using a result from [RS91] we show that for a given bimachine, one can minimize the
left automaton with respect to the right one and vice versa. We give a PTime algorithm for
bimachine minimization (in the vein of Moore’s DFA minimization algorithm), but underline
the fact that a given transduction does not have a unique minimal bimachine, in general.

Finally, for a rational transduction f , we describe the canonical bimachine from [RS91]
(i.e., it does not depend on the description of f), which relies on the existence of a canonical
right automaton. Intuitively, this right automaton represents the “minimal” look-ahead
information needed to realize the transduction sequentially.

3.1. Bimachines and transductions.

3.1.1. Right automaton. Formally a right automaton over an alphabet Σ is an automaton
R = (Q,∆, I, F) such that I is a singleton and its transitions are backward deterministic,
meaning that for any two transitions (p1, σ, q), (p2, σ, q) ∈ ∆ it holds that p1 = p2. The only
difference with the classical notion of automaton lies in the definition of accepting runs. A
run r over a right automaton is called accepting if r[1] is final and r[|r|] is initial. Therefore
a right automaton can be thought of as reading words from right to left, deterministically.

A run r of R over the word w will be denoted by r[1]
w←−R r[|r|] to emphasize that R is a

right automaton, and a transition (p, σ, q) will be depicted by an arrow from q to p.

3.1.2. Left congruence. The left transition congruence associated with a right automaton

R = (Q,∆, {r0} , F) is defined by u ∼R v if ∀r ∈ Q, r u←−R r0 ⇔ r
v←−R r0. Exactly like for

left automata, we assume that R is (co-)complete and identify [u]∼R (often denoted by [u]R)

with the unique state r ∈ Q such that r
u←−R r0. We also say that a right automaton R1 is

finer than R2 (denoted by R1 v R2) if ∼R1 v ∼R2 .

3.1.3. Bimachine. A bimachine over an alphabet Σ is a tuple B = (L,R, ω, λ, ρ) where
L = (QL,∆L, {l0} , FL) is a left (i.e., deterministic) automaton, R = (QR,∆R, {r0} , FR) is
a right automaton, ω : QL × Σ×QR → Σ∗ is the output function, λ : FR → Σ∗ is the left
final function and ρ : FL → Σ∗ is the right final function. The two automata L and R are
required to recognize the same language.

We extend naturally the function ω to QL ×Σ∗ ×QR as follows: for all l ∈ QL, r ∈ QR,

ω(l, ε, r) = ε and for all u, v ∈ Σ∗, l′ ∈ QL, r′ ∈ QR such that l
u−→L l′ and r′

v←−R r then
ω(l, uv, r) = ω(l, u, r′)ω(l′, v, r).

We define JBK the transduction realized by B such that dom(JBK) = JLK = JRK, and for
any word u ∈ JLK if l and r are the final states of the runs over u of L and R respectively,
then JBK(u) = λ(r)ω(l0, u, r0)ρ(l).

Example 3.1. Let us give an example of a bimachine B = (L,R, ω, λ, ρ) realizing the
function swap over the alphabet {a, b}, which swaps the first and last letters of a word.
Formally, swap(σwτ) = τwσ for σ, τ ∈ Σ and w ∈ Σ∗, and swap(w) = w if |w| < 2. The
automata of B are given in Figure 3; the role of the left automaton is to remember the first

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:15

l0

la

lb

a

b

a, b

a, b r0

ra

rb

a

b

a, b

a, b

l0 la la la la

a a b b

r0rbrbrbrb

b a b a

ω ω ω ω

input:

output:Left automaton Right automaton

Figure 3: Automata of a bimachine B, and a run of B on the word aabb.

letter of the word and the role of the right automaton is to remember the last letter. The
functions λ and ρ both map any state to ε, and the output function ω maps any triple of
the form (l0, σ, rτ) or (lτ , σ, r0) to τ and any other triple (l, σ, r) to σ, for any letters σ, τ .
An execution of B over the word aabb is illustrated on Figure 3.

Finally, for i = 1, 2, let Bi be a bimachine with Li and Ri as left and right automata.
We say that B1 is finer than B2, denoted by B1 v B2, if L1 v L2 and R1 v R2. A bimachine
B realizing a function f is minimal if for any other bimachine B′ realizing f , either B′ v B
or B′ is incomparable with B. In other words, a bimachine is minimal if there does not
exist a strictly coarser equivalent bimachine. If M is a set of bimachines, we denote by
Min(M) ⊆M the set of minimal bimachines among M .

3.2. Bimachine minimization. Sequential transducers can be minimized by producing
the outputs as soon as possible, and this can be done in PTime (see [Cho03] and Section 2.1).
For transducers in general, no such procedure is known. Nevertheless, it was shown in [RS91]
that, for a bimachine, the left automaton can be minimized when the right automaton is
fixed. This is called left minimization, and it is done in the same “as soon as possible” spirit
but using the look-ahead information given by the right automaton. Symmetrically, one can
minimize the right automaton when the left automaton is fixed (called right minimization).
By applying left minimization followed by right minimization, we obtain a minimal bimachine.
We describe this minimization, generalize some properties from [RS91], and provide a PTime
algorithm for bimachine minimization.

For i = 1, 2, let Bi be a bimachine realizing f with Li and Ri as left and right automata.
We say that B1 is finer than B2, denoted by B1 v B2, if L1 v L2 and R1 v R2. If B1 v B2,
B2 v B1 and JB1K = JB2K then we say that B1 and B2 are equal up to state renaming and
output shifting and we denote it by B1 � B2. A bimachine B realizing a function f is
minimal if for any other bimachine B′ realizing f , either B′ v B or B′ is incomparable with
B. In other words, a bimachine is minimal if there does not exist a strictly coarser equivalent
bimachine. If M is a set of bimachines, we denote by Min(M) ⊆ M the set of minimal
bimachines among M .

3.2.1. Left and right minimization. Let f be a transduction realized by a bimachine B
with a right automaton R. We describe the construction of a bimachine Leftf (B) =(
Leftf (R),R, ω, λ, ρ

)
which realizes f and has the minimal left automaton among all bima-

chines realizing f with right automaton R. We will often write Left(B) and Left(R) when

16:16 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

the transduction is clear from context. Intuitively, B can be seen as a sequential transducer
processing input words the positions of which are annotated by the class (in the transition
congruence of R) of the suffix from that position. Then, left minimization can be seen as
minimizing this sequential transducer. While it is a good intuition behind the construction,
the explicit annotation is however not necessary and we rather give a direct construction
that does not modify the input words.

We first define a family of new transductions, for any words u,w let:

f̂[w]R(u) =
∧{

f(uv)| v ∈ [w]R ∩ u−1dom(f)
}

The word f̂[w]R(u) is the longest possible output from reading u, with the look-ahead
information that the suffix is in [w]R. The states of Left(R) will be the classes of the right
congruence ∼L defined for any words u, v by u ∼L v if:[

∀w ∈ Σ∗, uw ∈ dom(f)⇔ vw ∈ dom(f) and,

if uw ∈ dom(f), then f̂[w]R(u)
−1
f(uw) = f̂[w]R(v)

−1
f(vw)

We define the automaton Left(R) = (Q,∆, {l0} , F) from the congruence ∼L:

• Q = Σ∗/∼L

• ∆ = {([w]∼L , σ, [wσ]∼L)| w ∈ Σ∗, σ ∈ Σ}
• l0 = [ε]∼L

• F = {[w]∼L | w ∈ dom(f)}
Now we can define the outputs of the bimachine:

• ω([u]∼L , σ, [w]R) = f̂[σw]R(u)
−1
f̂[w]R(uσ)

• λ([w]R) = f̂[w]R(ε) for w ∈ dom(f)

• ρ([u]∼L) = f̂[ε]R(u)
−1
f(u) for u ∈ dom(f)

Since we take a definition of ∼L slightly different from [RS91], we show, using the same idea
as in [Cho03] for sequential transductions, that ∼L is indeed a right congruence and that
the outputs of the bimachine are well-defined.

Lemma 3.2. ∼L is a right congruence and the output functions of Leftf (B) are well-defined.

Proof. Let u ∼L v, σ be a letter and let w be a word in (uσ)−1dom(f). We want to show that

f̂[w]R(uσ)
−1
f(uσw) = f̂[w]R(vσ)

−1
f(vσw). We know that f̂[z]R(u)

−1
f(uz) = f̂[z]R(v)

−1
f(vz)

for z ∈ u−1dom(f), and let us denote this word by g(z). Then f(uσw) = f̂[σw]R(u)g(σw)
and we have:

f̂[w]R(uσ)
−1
f(uσw) =

(∧
z∈[w]R

f(uσz)
)−1

f(uσw)

=
(∧

z∈[w]R
f̂[σw]R(u)g(σz)

)−1
f(uσw)

=
(
f̂[σw]R(u)

∧
z∈[w]R

g(σz)
)−1

f(uσw)

=
(∧

z∈[w]R
g(σz)

)−1
f̂[σw]R(u)

−1
f(uσw)

=
(∧

z∈[w]R
g(σz)

)−1
f̂[σw]R(v)

−1
f(vσw)

= f̂[w]R(vσ)
−1
f(vσw)

Hence uσ ∼L vσ and ∼L is indeed a right congruence.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:17

We only have left to show that the output functions ω, λ, ρ are well-defined i.e., they

do not depend on the choices of u and w. First, it is rather immediate by definition of f̂[w]

that this function does not depend on w, and therefore by definition of ω and λ, these two
functions do not depend on the choice of w. Now, let us show that ω does not depend on

the choice of u either, i.e., f̂[σw]R(u)
−1
f̂[w]R(uσ) = f̂[σw]R(v)

−1
f̂[w]R(vσ) for u ∼L v.

f̂[σw]R(u)
−1
f̂[w]R(uσ) = f̂[σw]R(u)

−1
f̂[σw]R(u)

∧
z∈[w]R

g(σz)

=
∧
z∈[w]R

g(σz)

= f̂[σw]R(v)
−1
f̂[w]R(vσ)

Finally, by applying the definition of ∼L to w = ε, one immediately gets ρ([u]∼L) = ρ([v]∼L)
for u, v such that u ∼L v and u, v ∈ dom(f).

Symmetrically, one can define Rightf (L) and Rightf (B). The correctness and effective-
ness of these constructions was shown in [RS91]:

Lemma 3.3 ([RS91]). Rightf (B) and Leftf (B) are equivalent to B, and are both computable.

The following proposition was shown in the case of total transductions in [RS91]. In
our setting (i.e., when both automata recognize the domain) we are able to extend it to
arbitrary transductions.

Proposition 3.4. Let B be a bimachine with automata L and R. Then L v Left(R) and
R v Right(L).

Proof. Let B = (L,R, ω, λ, ρ) be a bimachine realizing f . We will show that L v Left(R)
and the proof for the right automaton is symmetrical. Let u ∼L v for two words u, v,
we want to show that u ∼L v (using the same notation as above). Since L recognizes
dom(f), we know that for any word w, uw ∈ dom(f) ⇔ vw ∈ dom(f). We only need

to show that for any word w ∈ u−1dom(f), f̂[w]R(u)
−1
f(uw) = f̂[w]R(v)

−1
f(vw). Let

w ∈ u−1dom(f), we have that f(uw) = λ([uw]R)ω([ε]L, u, [w]R)ω([u]L, w, [ε]R)ρ([uw]L). We

obtain f̂[w]R(u) = λ([uw]R)ω([ε]L, u, [w]R)α([u]L, [w]R) where:

α([u]L, [w]R) =
∧
{ω([u]L, z, [ε]R)ρ([uz]L)| z ∼R w}

Finally we have:

f̂[w]R(u)
−1
f(uw) = α([u]L, [w]R)−1ω([u]L, w, [ε]R)ρ([uw]L)

= α([v]L, [w]R)−1ω([v]L, w, [ε]R)ρ([vw]L)

= f̂[w]R(v)
−1
f(vw)

The following result is an immediate consequence of the latter proposition:

Corollary 3.5. Let B = (L,R, ω, λ, ρ) be a bimachine. Then

Left(B) ∈ Min{B′ = (L′,R, ω′, λ′, ρ′) | JB′K = JBK}
Right(B) ∈ Min{B′ = (L,R′, ω′, λ′, ρ′) | JB′K = JBK}

Proof. By definition, Left(B) has Left(R) and R as left and right automata respectively.
Let B′ be a bimachine with L′ and R as left and right automata such that JB′K = JBK. By
Proposition 3.4, one gets L′ v Left(R). The result for Right(B) is shown symmetrically.

16:18 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

3.2.2. Bimachine minimization. By applying left and right minimization successively, we
show that we obtain a minimal bimachine. According to Lemma 3.3, these two steps are
effective, and we call this procedure bimachine minimization.

Proposition 3.6. Let B be a bimachine realizing a transduction f . Then Left(Right(B))
and Right(Left(B)) are minimal bimachines realizing f . Moreover, B v Left(Right(B)) and
B v Right(Left(B)).

Proof. We only show the result for Right(Left(B)), the other result being proved sym-
metrically. Let B = (L,R, ω, λ, ρ). Suppose that Right(Left(B)) is not minimal and let
B′ = (L′,R′, ω′, λ′, ρ′) be a bimachine realizing f such that Right(Left(B)) v B′. Then,
Right(Left(B)) has Left(R) v L′ as left automaton, and Right(Left(R)) v R′ as right
automaton.

By Proposition 3.4, we have L v Left(R) and R v Right(Left(R)), hence

L v Left(R) v L′ R v Right(Left(R)) v R′

SinceR v R′, we can restrict the right automaton of B′ toR and obtain a bimachine realizing
f with L′ as left automaton, and R as right automaton. This bimachine just ignores the extra
information given by R, by setting its output function to ([u]L′ , σ, [v]R) 7→ ω′([u]L′ , σ, [v]R′).
If L′ is strictly coarser than Left(R), this contradicts the minimality of Left(R) among
bimachines realizing f with R as right automaton (Corollary 3.5).

Now, suppose that R′ is strictly coarser than Right(Left(R)). We also show a contra-
diction, by a similar argument. Since Left(R) v L′, we can restrict the left automaton of B′
to Left(R) (the output function ignores the finer information given by Left(R)) and obtain
a bimachine realizing f with Left(R) as left automaton, and R′ as right automaton. This
yields a contradiction since R′ is strictly finer than Right(Left(R)) and Right(Left(R)) is
the minimal automaton among bimachines realizing f with Left(R) as right automaton.

3.2.3. Minimizing bimachines in PTime. According to Lemma 3.3 (shown in [RS91]), we
know that Left(Right(B)) and Right(Left(B)) are computable, for any bimachine B. We
show here that it can be done in PTime.

Theorem 3.7. Let B be a bimachine. One can compute Left(B) and Right(B) in PTime.

Proof. Let B = (L,R, ω, λ, ρ) be a bimachine realizing a transduction f , with automata
L = (QL,∆L, {l0} , FL) and R = (QR,∆R, {r0} , FR). The algorithm to obtain Left(B)
works in two steps: (1) make the outputs earliest, (2) minimize the state space of the left
automaton.

Step 1: We construct B′ = (L,R, ω′, λ′, ρ′), a bimachine with the same automata but with
the earliest outputs, given the automaton R.

ω′([u]L, σ, [v]R) = f̂[σv]R(u)
−1
f̂[v]R(uσ) λ′([v]R) = f̂[v]R(ε) ρ′([u]L) = f̂[ε]R(u)

−1
f(u)

These values can be computed in polynomial time, we use the same idea described in [Cho03,
Section 5], which can be seen as the special case when the right automaton is trivial, and

we give a sketch of the procedure. We first remark that for any words u, v f̂[v]R(u) =
λ([uv]R)ω([ε]L, u, [v]R)α([u]L, [v]R) with:

α([u]L, [v]R) =
∧
{w| ∃x ∈ [v]R, ω([u]L, x, [ε]R)ρ([ux]R) = w}

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:19

As in [Cho03], in order to compute the values α([u]L, [v]R), we consider the directed graph
of the automaton L×R, with the edges (([u]L, [σv]R), ([uσ]L, [v]R)) labelled by the outputs
of ω([u]L, σ, [v]R). In order to account for the outputs of final functions, we add two vertices,
a source s pointing to the initial states, i.e., states ([ε]L, [v]R) for v ∈ dom(f), with an edge
labelled by λ([v]R), and a target t pointing to states ([u]L, [ε]R) with an edge labelled by
ρ([u]L). The value α([u]L, [v]R) is obtained as the longest common prefix of the labels of all
the paths starting at ([u]L, [v]R) and ending in t. According to [Cho03] these values can be
computed in polynomial time.

Step 2: Now we describe a minimization algorithm in the vein of Moore’s minimization
algorithm of DFAs. The idea is to compute an equivalence relation over the state space of
L, by successive refinements. The only difference with Moore’s algorithm is that the initial
equivalence relation must be compatible with the output functions. More precisely, if we
identify states of L with classes of ∼L:

[u]L ∼0 [v]L if [u]L ∈ FL ⇔ [v]L ∈ FL, ρ′([u]L) = ρ′([v]L),
and ∀w, σ, ω′([u]L, σ, [w]R) = ω′([v]L, σ, [w]R)

[u]L ∼i+1 [v]L if [u]L ∼i [v]L and ∀σ, [uσ]L ∼i [vσ]L

Since ∼i+1 v ∼i for any i, this sequence of relations converges in at most |L| steps to a
relation we denote by ∼∗. Moreover, ∼0 can be computed in PTime and each ∼i+1 can also
be computed in PTime from ∼i. The relation ∼∗ can be naturally extended to words by
u ∼∗ v if [u]L ∼∗ [v]L.

We want to show that the algorithm is correct meaning that ∼∗ = ∼L, using the same
notation as in 3.2.1. We show by induction on i ≥ 0 that ∼L v ∼i, and thus ∼L v ∼∗.
Let u ∼L v, we have that u ∈ dom(f)⇔ v ∈ dom(f), f̂[ε]R(u)

−1
f(u) = f̂[ε]R(v)

−1
f(v), and

for all w, σ we have f̂[σw]R(u)
−1
f̂[w]R(uσ) = f̂[σw]R(v)

−1
f̂[w]R(vσ), hence u ∼0 v. Now let

us assume that ∼L v ∼i for some integer i. Let u ∼L v, we have u ∼i v, and for all σ,
uσ ∼L vσ hence uσ ∼i vσ and u ∼i+1 v.

Conversely, let us show by induction on i that if u ∼i v then for any w ∈ Σi, uw ∈
dom(f) ⇔ vw ∈ dom(f) and f̂[w]R(u)

−1
f(uw) = f̂[w]R(v)

−1
f(vw) when uw ∈ dom(f). If

u ∼0 v then u ∈ dom(f) ⇔ v ∈ dom(f) and when u ∈ dom(f) then f̂[ε]R(u)
−1
f(u) =

f̂[ε]R(v)
−1
f(v) by definition of ∼0. Let us assume that the proposition holds at some rank

i, and let u ∼i+1 v. Let w = σw′ ∈ Σi+1. We have by assumption that uσ ∼i vσ which
means that uσw′ ∈ dom(f) ⇔ vσw′ ∈ dom(f). Furthermore, if uσw′ ∈ dom(f) then

f̂[w′]R(uσ)
−1
f(uσw′) = f̂[w′]R(vσ)

−1
f(vσw′) since uσ ∼i vσ. Since in particular, u ∼0 v

then f̂[σw′]R(u)
−1
f̂[w′]R(uσ) = f̂[σw′]R(v)

−1
f̂[w′]R(vσ). Finally we obtain:

f̂[σw′]R(u)
−1
f(uσw′) =

(
f̂[σw′]R(u)

−1
f̂[w′]R(uσ)

)
f̂[w′]R(uσ)

−1
f(uσw′)

=
(
f̂[σw′]R(v)

−1
f̂[w′]R(vσ)

)
f̂[w′]R(vσ)

−1
f(vσw′)

= f̂[σw′]R(v)
−1
f(vσw′)

Hence u ∼i+1 v which concludes the induction. Since∼∗ v ∼i for any i, we have that if u ∼∗ v
then for any w ∈ Σ∗, uw ∈ dom(f)⇔ vw ∈ dom(f) and f̂[w]R(u)

−1
f(uw) = f̂[w]R(v)

−1
f(vw)

when uw ∈ dom(f). In particular we have shown that ∼∗ v ∼L and finally ∼∗ = ∼L.

16:20 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

As a result of applying twice this procedure successively, one obtains that bimachine
minimization is in PTime.

Corollary 3.8. Let B be a bimachine. The minimal bimachines Left(Right(B)) and
Right(Left(B)) can be computed in PTime.

3.3. Canonical bimachine. We have seen how to minimize the left automaton of a bima-
chine with respect to a fixed right automaton. This minimization is canonical in the following
sense: as long as two bimachines B1,B2 realize the same transduction and have the same
right automaton, the left minimization produces the same bimachine Leftf (B1) = Leftf (B2).
We describe here a canonical way of defining a right automaton Rf , which yields, by left
minimisation, a canonical bimachine denoted by Bf . This canonical bimachine has been
initially defined in [RS91]. We recall its construction and exhibit some of its useful properties.

3.3.1. Canonical right automaton. The contribution of [RS91] relies on the existence of a
canonical left congruence which yields a canonical right automaton. This canonical right
automaton can be thought of as the minimal amount of look-ahead information needed to
realize the transduction.

The left congruence of a transduction f is defined by u ↼f v if for any word w,
wu ∈ dom(f) ⇔ wv ∈ dom(f) and sup {‖f(wu), f(wv)‖ | wu ∈ dom(f)} < ∞. Intuitively,
this congruence says that the two suffixes u and v have the same effect with respect to
membership to the domain, and that f(wu) and f(wv) are equal up to a suffix the length of
which is bounded by some constant depending only on u and v. For a rational transduction,
this congruence has always finite index. The converse does not hold, however a transduction
is rational if and only its left congruence has finite index and it preserves rational languages
by inverse image as it was shown in [RS91]. For the rest of this section, [w]↼f

will be
denoted by [w]. The canonical right automaton of f is defined naturally from f : Rf =(
Σ∗/↼f

,∆, {[ε]} , F
)

with ∆ = {([σw], σ, [w]) | w ∈ Σ∗, σ ∈ Σ} and F = {[w]| w ∈ dom(f)}.
We define symmetrically ⇀f the right congruence of a transduction f , and the associated

left automaton Lf .
The automaton Rf (resp. Lf) is minimal in the sense that any bimachine realizing the

same function must have a finer right (resp. left) automaton.

Proposition 3.9. Let B = (L,R, ω, λ, ρ) be a bimachine realizing f . Then L v Lf and
R v Rf .

Proof. Let B = (L,R, ω, λ, ρ) be a bimachine realizing f . We only show that R v Rf ,
the proof for the left automaton being symmetrical. Let u ∼R v for two words u, v, we
want to show that u ↼f v. We know that R recognizes dom(f), hence for any word w,
wu ∈ dom(f)⇔ wv ∈ dom(f). Let w be a word such that wu ∈ dom(f). Since [u]R = [v]R
we have:

f(wu) = λ([wu]R)ω([ε]L, w, [u]R)ω([w]L, u, [ε]R)ρ([wu]L)
f(wv) = λ([wu]R)ω([ε]L, w, [u]R)ω([w]L, v, [ε]R)ρ([wv]L)

Hence we can bound the distance between f(wu) and f(wv) regardless of w:

‖f(wu), f(wv)‖ ≤ |ω([w]L, u, [ε]R)ρ([wu]L)|+ |ω([w]L, v, [ε]R)ρ([wv]L)|
≤ k(|u|+ |v|+ 2)

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:21

where k is the maximum length of a word in the ranges of ω and ρ (considering ω over single
letters). Hence we have shown that u ↼f v which concludes the proof.

Let us show a very similar proposition which will help establish the equivalence between
C-transducers and C-bimachines.

Proposition 3.10. Let T be a transducer, with underlying automaton A, realizing a trans-
duction f . Then ≈A v↼f and ≈A v⇀f .

Proof. Let T = (A, o, i , t) be a transducer realizing f with A = (Q,∆, I, F) its underlying
automaton. We will show that ≈A v ↼f , the proof for the right congruence being
symmetrical. Let u ≈A v, we have to show that u ↼f v. Since A recognizes the domain
of f , we have for any word w that wu ∈ dom(f)⇔ wv ∈ dom(f). Let w ∈ u−1dom(f), we

want to show that ‖f(wu), f(wv)‖ does not depend on w. Let qI
w|x−−→T q

u|y−−→T qF denote

an accepting run of T over wu. Then there is an accepting run qI
w|x−−→T q

v|z−−→T qF . Let
i = i(qI) and t = t(qF). Then we have:

‖f(wu), f(wv)‖ = ‖ixyt, ixzt‖
= ‖yt, zt‖
≤ k(|u|+ |v|+ 2)

where k is the maximal length of a word in the ranges of o and t .

3.3.2. The canonical bimachine. We can now define the canonical bimachine from [RS91].
Note that for a given transduction f , realized by a bimachine B, the left minimization of B
only depends on the right automaton of the bimachine. Hence we can define the canonical
bimachine associated with f by Bf =

(
Leftf (Rf),Rf , ωf , λf , ρf

)
with:

ωf ([u]∼L , σ, [w]Rf
) = f̂[σw]Rf

(u)
−1
f̂[w]Rf

(uσ)

λf ([w]Rf
) = f̂[w]Rf

(ε) for w ∈ dom(f)

ρf ([u]∼L) = f̂[ε]Rf
(u)
−1
f(u) for u ∈ dom(f)

This bimachine is called canonical because its definition does not depend on the description
of f . Furthermore, as it was shown in [RS91], this machine is computable from a transducer
(or a bimachine) realizing f . Again by symmetry, there is actually a second canonical
bimachine with Lf and Right(Lf) as its automata. Note that the canonical bimachine is, in
particular, minimal: right minimization of the canonical bimachine cannot yield a coarser
right automaton than Rf (Proposition 3.9).

4. Algebraic characterization of rational transductions

The purpose of this section is to give a characterization of C-transductions, shown to be
effective when C is a decidable class of congruences. First, we show that C-transductions,
which by definition are the transductions realized by (functional but possibly ambiguous)
C-transducers, also correspond to the transductions realized by the bimachines whose left
and right automata are both C-automata (called C-bimachines). This correspondence
is not as straightforward as it may seem and relies on bimachine minimization. Indeed,
unambiguous C-transducers are canonically equivalent to C-bimachines, as it was stated

16:22 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

transductions

bimachines

C(6= A) A

C(6= A) Aminimal bimachines
(finite by Th. 4.8)

f1

B1

Cor. 4.4

B′1
Left(Right(.))

Right(Left(.))

Prop. 3.6

Left(Right(.))

Right(Left(.))

Prop. 3.6
Bf1,C

f2

B2
(can be
inside A)

Left(Right(.))

Right(Left(.))

Prop. 3.6

Bf2

Th. 5.4

Figure 4: Situation for rational transductions.

in [RS95], however the equivalence was unknown in the case of functional transducers
(except for C = A [FGL16b]). In other words, we (non-trivially) strengthen the known
correspondence between functional transducers and unambiguous transducers [Eil74] to
C-transducers, which by [RS95] implies that (functional) C-transducers and C-bimachines
coincide.

The canonical bimachine defined in the previous section, while being canonical, cannot
be used to test C-rationality in general:

Proposition 4.1. There exists a congruence class C and a C-transduction f such that Bf
is not a C-bimachine.

Proof. Consider the transducer in Figure 2 and its associated transduction f . The canonical
bimachine Bf has a trivial right automaton (with a single state) and a left automaton
which is just the underlying automaton of the minimal sequential transducer of f . By
Proposition 2.3, f is not I-sequential and thus Bf is not an I-bimachine, while f is an
I-transduction.

We will see however in Section 5 that for the special case of aperiodicity, the setting is
different: we show in Theorem 5.4 that a transduction is aperiodic iff its canonical bimachine
is.

Then, to decide whether a (functional) transducer realizes a C-transduction f , it suffices
to test whether there exists a C-bimachine realizing f . We show — and it is the main result
of this section —, that any transduction has a finite number of minimal bimachines (up to
output functions and state renaming), any of which is bounded in size by a constant that
only depends on f . Since congruence classes are closed under taking coarser congruences,
deciding if f is a C-transduction can be reduced to deciding if one of these minimal machines
is a C-bimachine. We show that the set of minimal bimachines is computable, which gives
an effective procedure to decide C-rationality of f as long as C is decidable. However, we
give a less naive characterisation of C-rationality which also yields a more direct procedure
for testing C-rationality. The situation is depicted in Figure 4.

4.1. C-transducers and C-bimachines. Here we show in two steps that C-transducers
and C-bimachines realize the same transductions. The two steps are done by showing

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:23

how to construct an equivalent C-transducer from a C-bimachine and vice versa. The
transition congruence of a bimachine B with automata L and R is defined as ≈B = ≈L u ≈R.
Intuitively two words are equivalent with respect to B if they are equivalent with respect to
both L and R.

Proposition 4.2. Let B be a bimachine realizing f , then there exists an unambiguous
transducer realizing f with underlying automaton A such that ≈B v ≈A.

Proof. Let B = (L,R, ω, λ, ρ) be a bimachine with automata L = (L,∆L, {l0} , FL) and
R = (R,∆R, {r0} , FR). We construct a transducer T = (A, o, i , t) realizing the same
transduction with A = (Q,∆, I, F) an unambiguous automaton.

Let us define A as the product of L and R:

• Q = L×R
• ∆ = {((l, r), σ, (l′, r′))| (l, σ, l′) ∈ ∆L and (r, σ, r′) ∈ ∆R}
• I = {l0} × FR
• F = FL × {r0}
Since L and R both recognize dom(f), A also recognizes dom(f) and for any word w in
dom(f), A has a unique run over w. Now we can define the outputs of T .

• o((l, r), σ, (l′, r′)) = ω(l, σ, r′)
• i(l0, r) = λ(r) for r ∈ FR
• t(l, r0) = ρ(l) for l ∈ FL
The transducer T is equivalent to B by construction, so we only have left to show that
≈B v ≈A. Let u ≈B v, then we have both u ≈L v and u ≈R v which means that u ≈A v.

Proposition 4.3. Let f be a transduction realized by a transducer with underlying automaton
A, then there exists a bimachine B realizing f such that ≈A v ≈B.

Proof. Let T = (A, o, i , t) be a transducer realizing f with A = (Q,∆, I, F) and let,
in the following, [u]A denote [u]≈A for any word u. We construct a bimachine B =
(Left(R),R, ω, λ, ρ). First we define R = (R,∆, {r0} , F) as the right automaton canonically
associated with ≈A seen as a left congruence:

• R = Σ∗/≈A
• ∆ = {([σu]A, σ, [u]A)| u ∈ Σ∗, σ ∈ Σ}
• r0 = [ε]A
• F = {[u]A| u ∈ dom(f)}
Of course we have ≈A v ∼R since ≈A = ∼R, and we also have according to Proposition 3.10
that ∼R v↼f . Hence we can define B with the left minimization of R as left automaton
(see the previous section) and we obtain a bimachine realizing f [RS91]. We only have left
to show that ≈A v ∼L (using the same notations as in 3.2.1).

Let u, v be two words and let us assume that u ≈A v. We want to show that for all

w, uw ∈ dom(f)⇔ vw ∈ dom(f) and f̂[w]R(u)
−1
f(uw) = f̂[w]R(v)

−1
f(vw) if uw ∈ dom(f).

The first condition is fulfilled, since A recognizes the domain of f . Let w be a word such
that uw ∈ dom(f). Let {p1, . . . , pk} denote the set of states which can be reached in A
by reading u (or v) from an initial state and which can reach a final state by reading w.

For i ∈ {1, . . . , k} let I
u|xi−−→T pi and I

v|yi−−→T pi denote the runs over u and v, respectively,
where the outputs xi, yi are uniquely defined because T realises a function. For any word z
in [w]R, and any i ∈ {1, . . . , k} there is a run on z from pi to a final state, since z and w are

16:24 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

equivalent for R. For i ∈ {1, . . . , k} we define αi =
∧{

αt(q)| pi
z|α−−→T q, q ∈ F, z ∈ [w]R

}
.

By its definition we have for any i ∈ {1, . . . , k} that f̂[w]R(u) = xiαi and f̂[w]R(v) = yiαi.
In particular for i = 1 we have f(uw) = x1α1β and f(vw) = y1α1β where α1β = αt(q) for

some run p1
w|α−−→T q and some q final. Finally we obtain:

f̂[w]R(u)
−1
f(uw) = (x1α1)−1x1α1β

= β

= (y1α1)−1y1α1β

= f̂[w]R(v)
−1
f(vw)

A direct consequence of Propositions 4.2 and 4.3 is that C-bimachines characterize
C-transductions.

Corollary 4.4. Let C be a congruence class. A transduction is C-rational if and only if it
can be realized by a C-bimachine.

Remark 4.5. Going from a bimachine to an unambiguous transducer is done in PTime
according to the proof of Proposition 4.2. However, as shown in the proof of Proposition 4.3,
going from a transducer to a bimachine yields, in general, an exponentially larger bimachine
and is thus in ExpTime.

4.2. Bounding minimal bimachines. In this subsection we show that any minimal bi-
machine realizing a transduction f is bounded in size by some constant that depends only
on f . It is based on properties of the canonical bimachine and implies in particular that the
number of minimal bimachines is finite (up to equivalence under �, see Subsection 3.2), a
result that was left open in [RS91].

The following proposition intuitively shows that the more information you put in the
right automaton of a bimachine, the less information you need in the left automaton, and
symmetrically.

Proposition 4.6. Let B1 and B2 be bimachines realizing a transduction f with automata
L1,R1 and L2,R2, respectively. The following two implications hold true:
R1 v R2 =⇒ Left(R2) v Left(R1) and L1 v L2 =⇒ Right(L2) v Right(L1).

Proof. We only show the result for right automata. The idea of the proof is that R1 gives
more information than R2, hence Left(R2) must compute more information than Left(R1) in
order to realize f . We want to show that there exists a bimachine realizing f with automata
Left(R2) and R1. This will show according to Proposition 3.4 that Left(R2) v Left(R1).
We can assume that R1 is accessible without loss of generality. Identifying states of R1 with
equivalence classes of ∼R1 , we have a well defined function π : Σ∗/∼R1

→ Σ∗/∼R2
since

R1 v R2. Hence if we consider Left(B2) = (Left(R2),R2, ω2, λ2, ρ2), then we can define
B = (Left(R2),R1, ω, λ2, ρ2 ◦ π) where ω([w]R1 , σ, l) = ω2(π([w]R1), σ, l). By construction B
realizes f , which concludes the proof.

We now have all the ingredients necessary to bound the size of the minimal bimachines.

Lemma 4.7. Let B = (L,R, ω, λ, ρ) be a bimachine realizing a transduction f . If B is
minimal, then Left(Rf) v L and Right(Lf) v R.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:25

Proof. We will show the lemma for Right(Left(B)). Assume that B is minimal. Consider
the bimachine Right(Left(B)). According to Proposition 3.6, we have B v Right(Left(B))
but since B is minimal, it implies that the left and right automata of B and Right(Left(B))
are the same, up to renaming of their states. The only possible difference between
B and Right(Left(B)) lies in their output functions. Therefore, we can assume that
Right(Left(B)) = (L,R, ω′, λ′, ρ′) for some output functions ω′, λ′, ρ′, i.e., L = Left(R)
and R = Right(Left(R)).

Intuitively, since Rf contains the minimum information needed for a right automaton,
Left(Rf) contains the maximum information needed for a left automaton, and any additional
information should be removed by minimizing. We first apply the left minimization and obtain
Left(Rf). According to Proposition 3.9, we have R v Rf which implies, by Proposition 4.6,
that Left(Rf) v Left(R) = L. We then use the same reasoning for the second minimization:
According to Proposition 3.9, we have Left(R) v Lf and by Proposition 4.6, we get
Right(Lf) v Right(Left(R)) = R.

Theorem 4.8. Let f be a transduction. The set of minimal bimachines realizing f is finite
(up to �). Moreover, if f is given by a transducer or a bimachine, one can compute a set of
representatives of each class of minimal bimachines.

Proof. The first statement is a direct consequence of Lemma 4.7, since there are finitely
many left and right automata coarser than Left(Rf) and Right(Lf).

Now, to compute a set of representatives, we compute the set

X = {Right(Left(B)) | B = (L,R, ω, λ, ρ), JBK = f and Right(Lf) v R v Rf}
Before proving that this set is finite and is indeed a set of representatives, let us explain how
to compute it. First, by [RS91], the canonical bimachine Bf = (Leftf (Rf),Rf , ωf , λf , ρf)
(defined in Section 3.3) is computable if f is given by a transducer or a bimachine. By
symmetry, so is the canonical bimachine with left and right automata Lf and Rightf (Lf)
respectively. Then, the computation of X is done as follows:

(1) compute the canonical bimachine Bf = (Leftf (Rf),Rf , ωf , λf , ρf),
(2) pick a right automaton R such that Rightf (Lf) v R v Rf (there are finitely many up

to state renaming) and JRK = dom(f),
(3) let B = (Leftf (Rf),R, ω′f , λ′f , ρf) where the output functions ω′f and λ′f are defined

by ω′f ([u]Leftf (Rf), σ, [v]R) = ωf ([u]Leftf (Rf), σ, [v]Rf
) and λ′f ([v]R) = λf ([v]Rf

). It is

well-defined since R v Rf ,
(4) compute B′ = Right(Left(B)) (Theorem 3.7) and add B′ to X,
(5) go back to step 2 as long as there is a right automaton R still left to pick.

It remains to prove that X is finite, and that X is a set of representatives. To show
that X is finite, it suffices to remark that given two bimachines B1 and B2 with the
same right automaton R, and defining the same transduction, we have Right(Left(B1)) =
Right(Left(B2)). It is direct by definition of the operation Left(B) which ignores the left
automaton of B as well as its output functions, and only depends on its right automaton
and f (and symmetrically for the operation Right(.)). Then, finiteness is due to the fact
that only right automata R such that Right(Lf) v R v Rf are considered, and there are
finitely many of them.

Finally, we show that X is a set of representatives, i.e., for any minimal bimachine
B, there exists B′ ∈ X such that B � B′. By Lemma 4.7 and Proposition 3.9, if R is the
right automaton of B, then Rightf (Lf) v R v Rf . Let B′ = Right(Left(B)). Then clearly

16:26 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

B′ ∈ X. By Proposition 3.6 we have B v Right(Left(B)) = B′, and by minimality of B, one
obtains that B � B′.

4.3. Characterization of C-rationality and decision.

4.3.1. Exhaustive search. If C is a decidable class of congruences, then Theorem 4.8 implies
that C-rationality is decidable. Indeed, it suffices to compute a set of representatives of the
minimal bimachines realizing a transduction f (given for instance by a transducer), and
then to test whether one of them is in C.

Lemma 4.9. Let C be a congruence class and let f be a transduction. Then f is a
C-transduction if and only if one of its minimal bimachines is a C-bimachine.

Proof. If a minimal bimachine of f is a C-bimachine, then f is a C-transduction according
to Corollary 4.4. Conversely, let us assume that f is realized by a C-bimachine. Then
according to Proposition 3.6 Left(Right(B)) is a minimal bimachine realizing f and coarser
than B. Hence Left(Right(B)) is a minimal C-bimachine.

Theorem 4.10. Let C be a decidable congruence class. Then, given a transducer, one can
decide if it realizes a C-transduction.

Proof. According to Theorem 4.8 we can compute the minimal bimachines of f , and from
Lemma 4.9 we only need to check if one of the minimal bimachines is a C-bimachine.

4.3.2. Alternative characterization. In this section we consider a slightly different characteri-
zation which only requires to compute one minimal bimachine to check C-rationality.

Let C be a congruence class and let f be a transduction. We define, if it exists, LCf as

the finest C-automaton coarser than Left(Rf) and finer than Lf . Let us define the right

congruence ∼C
f =

d
{∼L| L is a C-automaton s.t. Left(Rf) v L}. If ∼C

f v ∼Lf then we

define LCf as the left automaton associated with ∼C
f and recognizing dom(f). We obtain

the following characterization of C-rationality:

Lemma 4.11. Let C be a congruence class and let f be a transduction. Then f is a
C-transduction if and only if the two following conditions are satisfied:

• ∼C
f v ∼Lf

• Right(LCf) is a C-automaton

Proof. Let f be a transduction. We know from Lemma 4.9 that f is a C-transduction if
and only if it is realized by a minimal C-bimachine. Now, let us assume that f is realized
by a minimal C-bimachine B with left and right automata L and R respectively. We want
to show that ∼C

f v ∼Lf and Right(LCf) is a C-automaton. By Lemma 4.7 we know that

Left(Rf) v L. By definition of ∼C
f , it is finer than ∼L since L is a C-automaton coarser

than Left(Rf). By Proposition 3.9, we have L v Lf and hence ∼C
f v ∼Lf . It remains to

show that Right(LCf) is a C-automaton. First, there is a bimachine B′ with left automaton

LCf which realizes f , obtained by substituting the left automaton L of B by LCf (recall that

LCf v L) and changing the output function so that the extra information given by LCf is

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:27

just ignored. Then, by minimizing the right automaton of B′ (whose right automaton is R),
one obtains R v Right(LCf). Since R is a C-automaton, so is Right(LCf).

Conversely, suppose that ∼C
f v ∼Lf and Right(LCf) is a C-automaton. We show the

existence of a C-bimachine realizing f . Let Bf = (Lf ,Right(Lf), ωf , λf , ρf) be a canonical
bimachine associated with f . We can turn this bimachine into a C-bimachine. First, since
LCf v Lf , one can substitute in Bf the left automaton Lf by LCf , change its outputs so

that they ignore the extra information given by LCf , and obtain a bimachine realizing f

with LCf as left automaton. By applying once the right minimization on this new bimachine,

one obtains a C-bimachine realizing f with LCf and Right(LCf) as left and right automata

respectively.

Note that we could define RC
f symmetrically and have a similar characterization.

Now we define a bimachine Bf,C, which will be a C-bimachine if and only if f is a

C-transduction. Let Lf,C = Lf u LCf , if LCf exists, and Lf,C = Lf otherwise. Then Bf,C is

the bimachine obtained with left automaton Lf,C, and right automaton Right(Lf,C) which
is well defined since by definition, Lf,C v Lf .

Theorem 4.12. Let C be a congruence class and let f be a transduction. Then f is a
C-transduction if and only if the bimachine Bf,C is a C-bimachine.

Proof. The proof mainly relies on the previous lemma. First, if Bf,C is a C-transduction,
since it realizes f by definition, then f is a C-transduction by Corollary 4.4. Conversely, if
f a C-transduction then by Lemma 4.11, we have both:

• ∼C
f v ∼Lf

• Right(LCf) is a C-automaton

Hence Lf,C = LCf which is a C-automaton and Right(Lf,C) = Right(LCf) which also is a

C-automaton, hence Bf,C is a C-bimachine.

Remark 4.13. Among all the minimal bimachines one has to test in order to check whether
a transduction is C-rational, Bf,C has the coarsest right automaton. Note that when C = F,
the class of finite congruences, we have Bf,F = Bf .

5. Characterization of aperiodic transductions

In the aperiodic case (that is, for C = A), we give a stronger characterization than for
arbitrary congruence classes, namely that any minimal bimachine of an aperiodic transduction
is aperiodic. This gives us a PSpace algorithm for deciding aperiodicity of a transduction
given by a bimachine.

5.1. Characterization of aperiodicity. Here we show that the canonical bimachine of
an aperiodic transduction is aperiodic. As it was shown above in Proposition 3.9, the
canonical right automaton of an aperiodic transduction is always aperiodic. The difficulty
lies in showing that the left automaton of the canonical bimachine is also aperiodic, for an
aperiodic transduction. It relies on the decomposition of a transduction as the composition
of a sequential and a right sequential transduction, which is a characterization of rational
transductions [EM65]. A right sequential transduction is simply a transduction realized

16:28 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

by a transducer with an underlying right automaton, which can be seen as a sequential
transducer but reading and writing from right to left.

Let us define labelR the labelling transduction of a right automaton R over the alphabet
Σ. Let Q be the set of states of R and let ΣR = {σq| σ ∈ Σ, q ∈ Q}. We define labelR :
Σ∗ → Σ∗R as the transduction realized by the right-sequential transducer T = (R, o, ε̄, ε̄)
where ε̄ is the constant function which maps any element to ε and o(p, σ, q) = σq. We
also define `f , the unique transduction such that f = `f ◦ labelRf

and whose domain is
{labelR(u) | u ∈ dom(f)}.
Proposition 5.1. `f is a sequential transduction.

Proof. This proposition is a corollary of the existence of the canonical bimachine Bf =
(Left(Rf),Rf , o, λ, ρ). Intuitively, the right automaton does a right to left pass on the input
word, annotating each letter by the current state. Then the left automaton can produce the
outputs deterministically, over this enriched alphabet. Let ∼L denote the right congruence
of Left(Rf), let [u] denote [u]↼f

as in 3.2.1 and let [u]L be used for [u]∼L
. We define

T` = (A`, o`, ε̄, t`) with A` = (Q`, δ`, {q0} , F`) a sequential transducer realizing `f .

• Q` = {([u]L, [v])}] {q0}
• δ` =

{
(([u]L, [σv]), σ[v], ([uσ]L, [v]))

}
∪
{

(q0, σ[v], ([σ]L, [v]))
}

• F` = {([u]L, [ε])| u ∈ dom(f)} and also q0 ∈ F` if ε ∈ dom(f)
• o`(([u]L, [σv]), σ[v], ([uσ]L, [v])) = ω([u]L, σ, [v])

and o`(q0, σ[v], ([σ]L, [v])) = λ([σv])ω([ε], σ, [v])
• t([u]L, [ε]) = ρ([u]L) and t(q0) = λ([ε])ρ([ε]L) if ε ∈ dom(f)

Hence `f is a sequential transduction.

Now we have to show that `f is also an aperiodic transduction whenever f is.

Proposition 5.2. If f is an aperiodic transduction, then `f is also aperiodic.

Proof. Let T be an aperiodic transducer realizing f with an underlying automaton A =
(Q,∆, I, F). We define T ′, a transducer with underlying automaton A′ = (Q′,∆′, I ′, F ′)
defined as the product of A and Rf :

• Q′ = Q× (Σ/↼f
)

• ∆′ = {((p, [σu]), σ, (q, [u]))| (p, σ, q) ∈ ∆}
• I ′ = I × (dom(f)/↼f

)
• F ′ = F × {[ε]}
The outputs of T ′ are exactly the same as the ones of T , ignoring the extra information given
by Rf . The transducer T ′ can thus be seen as T with states enriched with the look-ahead
information of Rf . The automaton A′ is clearly aperiodic since it is the product of two
aperiodic automata (recall that Rf is aperiodic from Proposition 3.10).

Now we modify the automaton A′ to obtain the automaton A` of a transducer T`
realizing `f . For each transition (p, [σu])

σ−→A′ (q, [u]) we set (p, [σu])
σ[u]−−→A`

(q, [u]). By
construction we have f = `f ◦ labelRf

. We have left to show that A` is aperiodic.
Let u ∈ Σ∗Rf

, and let � : Σ∗Rf
→ Σ∗ denote the natural projection morphism. Let us

assume that (p, [u1])
un−→A`

(q, [u2]) for n. By definition of A`, we have [u1] = [unu2] and we
also have u[|u|] = σ[u2] for some letter σ, hence [uu2] = [u2] and [u1] = [u2]. By aperiodicity

of A we have, for a large enough n, p
un+1

−−−→A q. Finally we obtain (p, [u1])
un+1

−−−→A`
(q, [u1])

and A` is aperiodic.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:29

Corollary 5.3. If f is aperiodic, then `f is an A-sequential transduction.

Proof. Using the two previous propositions, and Theorem 2.4 we show the corollary.

From the decomposition of the previous Corollary, we can show that the canonical
bimachine preserves aperiodicity.

Theorem 5.4. A transduction is aperiodic if and only if its canonical bimachine is aperiodic.

Proof. If the canonical bimachine is aperiodic then the transduction is aperiodic, by Corol-
lary 4.4. Conversely, let f be an aperiodic transduction. From Proposition 3.10, Rf is
aperiodic and according to Corollary 5.3 there exists T` an aperiodic sequential transducer
realizing ` such that f = ` ◦ labelRf

. From T` = (A`, o`, i`, t`), we will construct an aperiodic
bimachine B = (D,Rf , ω, λ, ρ) realizing f . This will conclude our proof since, according to
Proposition 3.4, D v Left(Rf), and the aperiodicity of D entails the one of Left(Rf).

The input alphabet of A` is ΣRf
so first we define A` the automaton obtained by

projecting all the input letters of the transitions. The problem is that A` is not deterministic
and by determinizing it, some information which is needed to define the outputs of the
bimachine could be lost. The solution is to first take the product of A` and Rf and
determinize that automaton and this will yield the automaton D.

Let us detail this construction and show it is correct. Let A` = (Q`,∆`, {q0} , F`), we
define naturally A` =

(
Q`,∆`, {q0} , F`

)
with: ∆` = {(p, σ, q)| (p, σ, q) ∈ ∆}. We finally

define D as the deterministic automaton obtained from A` × Rf by subset construction.
States of D are thus subsets of Q` × Σ∗/↼f

. The output function ω is defined by:

ω({(p1, [u1]), . . . , (pn, [un])} , σ, [v]) = o`(pi, σ[v], q) s.t. [σv] = [ui]

Let us show that such a state pi is unique which means that the outputs are well-defined.
We assume, for contradiction, that there exist two states pi, pj such that [ui] = [σv] = [uj].

Let w be a word which reaches both pi and pj in A`, we can define a word z over ΣRf
such

that z = w and for any integer k ∈ {1, . . . , |w|}, z[k] = w[k]c where c is the class of the word

w[k + 1 : |w|]ui. Hence we obtain both q0
z−→A`

pi and q0
z−→A`

pj which is in contradiction
with the deterministic nature of A`.

The final output functions are defined by:

λ([u]) = i`(q0) ρ({(p1, [u1]), . . . , (pn, [un])}) = t`(pi) s.t. [ui] = [ε]

Similarly, the right final output function is well-defined since A` is deterministic.
It remains to show that A` is aperiodic. The conclusion will follow since aperiodicity is

stable by product of automata and subset construction. Let u be a word such that p
un−→A`

q

for some integer n. Let w be a word which reaches a final state of A` from q. Let us define
the word z over ΣRf

by z = un and for i ∈ {1, . . . , |z|}, z[i] = un[i]c where c is the class of

the word un[i+ 1 : |z|]w in Rf . We have by definition that p
z−→A`

q. Since Rf is aperiodic,
we have for m large enough that [um+1w] = [umw]. Then we define y such that y = u and
for i ∈ {1, . . . , |u|}, y[i] = u[i]c where c is the class of the word u[i+ 1 : |u|]umw in Rf . If

we choose n ≥ 2m, we have p
um−−→A`

p′
um−−→A`

q. We have by definition of y that z = ymz′,

which means that p
ym−−→A`

p′
z′−→A`

q. Hence, by aperiodicity of A`, p
ym+1

−−−→A`
p′. Finally,

we have p
ym+1z′−−−−→A`

q and since ym+1z′ = un+1, we obtain p
un+1

−−−→A`
q.

16:30 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

Corollary 5.5. Let B be a bimachine realizing a transduction f . Then f is aperiodic if and
only if Left(Right(B)) is aperiodic if and only if Right(Left(B)) is aperiodic.

Proof. Using both Theorem 5.4 and Lemma 4.7 we have that these bimachines are aperiodic
whenever f is. Conversely, Left(Right(B)) and Right(Left(B)) both realize f , so f is aperiodic
whenever they are, by Corollary 4.4.

5.2. Aperiodicity is PSPACE-complete. Here we show that deciding whether a trans-
duction given by a bimachine is aperiodic is PSpace-complete. The approach is very
similar to [CH91]: first minimize the bimachine in PTime and then check the aperiodicity
of each automaton in PSpace. The hardness is shown by reduction from the problem
of deciding whether a language given by a deterministic automaton is aperiodic, which is
PSpace-complete [CH91].

5.2.1. PSpace algorithm. The fact that the problem is in PSpace is a consequence of
Corollary 5.5.

Corollary 5.6. Deciding if a transduction, given by a bimachine, is aperiodic is in PSpace.

Proof. Let B be a bimachine realizing a transduction f . The algorithm to decide if f is
aperiodic is done in two steps: first minimize the bimachine, i.e., compute Left(Right(B)),
then check the aperiodicity of the obtained bimachine. According to Theorem 3.7 the first
step can be done in PTime. According to [CH91] the second step can be done in PSpace
for each automaton. Finally the characterization of Corollary 5.5 ensures that the obtained
bimachine is aperiodic if and only if the transduction itself is.

5.2.2. Hardness. Deciding the aperiodicity of a language given by a minimal determinis-
tic automaton is PSpace-hard [CH91], hence we deduce that deciding aperiodicity of a
transduction given by a bimachine is a fortiori PSpace-hard.

Proposition 5.7. Deciding if a transduction, given by a bimachine, is aperiodic is PSpace-
hard.

Proof. According to [CH91], deciding whether a minimal deterministic automaton recognizes
an aperiodic language is PSpace-hard. We reduce this problem to the aperiodicity problem
for a transduction given by a bimachine. Let A = (Q, δ, {q0} , F) be a minimal deterministic
automaton recognizing a language L ⊆ Σ∗. We construct, in PTime, a bimachine B such
that B realizes an aperiodic transduction if and only if A is aperiodic. First, we assume that
A is complete since an automaton can be completed in PTime. Since both automata of B
must recognize the same language, we cannot have dom(B) = L because a right automaton
recognizing L may need, in general, a number of states exponentially larger than A. Instead
we define B such that for any word w ∈ Σ∗, JBK(w) = r where r is the run of A on w. Note
that dom(B) = Σ∗ since A is complete.

Let B = (A′,R>, ω, λ, ρ) where A′ = (Q, δ, {q0} , Q) is the same as A but all its states
are final, R> is the trivial complete right automaton with one state q> which is both initial
and final. The output functions are defined by ω(q, σ, q>) = q, λ(q>) = ε, and ρ(q) = q for
any q ∈ Q, σ ∈ Σ.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:31

We claim that B realizes an aperiodic transduction if and only if A is aperiodic. Let us
assume that A is aperiodic, then A′ is aperiodic as well and R> is trivially aperiodic, hence
B is aperiodic and therefore realizes an aperiodic transduction.

Conversely, let us assume that B realizes an aperiodic transduction, which we denote by
f . According to Theorem 5.4, we have that the canonical bimachine Bf is aperiodic. Let us
show that automata of B are isomorphic to those of Bf .

Since dom(f) = Σ∗ and for all u, v, w ∈ Σ∗, ‖f(wu), f(wv)‖≤ |u|+ |v| we have u ↼f v.
Hence the canonical right automaton of f , Rf , which is the right automaton of Bf , is trivial
and isomorphic to R>. Now we study the right congruence ∼L associated with Rf .

Since ↼f is trivial, i.e., for any words u, v, u ↼f v, we will denote f̂[u]↼f
by f̂ . We

have f̂(u) =
∧
{f(uv)| v ∈ Σ∗} = f(u) = ru, the run of A on u, for any word u. Let u, v be

two words, we have for any word w, uw ∈ dom(f)⇔ vw ∈ dom(f) since dom(f) = Σ∗. We

have f(u)−1f(uw) = f(v)−1f(vw)⇔ u ∼A v which means that u ∼L v ⇔ u ∼A v.
We have shown that ∼L = ∼A which means that Left(Rf) is isomorphic to A′, therefore

A′ is aperiodic and so is A.

We can finally state the main theorem of the section.

Theorem 5.8. Deciding if a transduction, given by a bimachine, is aperiodic is PSpace-
complete.

Proof. A consequence of Corollary 5.6 and Proposition 5.7.

6. Logical transducers

The theory of rational languages is rich with results connecting automata, logics and algebra
and some of those results have been successfully lifted to transductions: MSO-transducers
(MSOTs), a logical model of transducers introduced by Courcelle [CE12], have been shown
to be equivalent to deterministic two-way transducers [EH01] as well as a deterministic
one-way model of transducers with registers [AC10]. More recently, an equivalence between
first-order transducers and transducers with an aperiodic transition monoid has been
shown [FKT14, CD15].

However, MSOTs are far more expressive than one-way transducers as they can express
functions that do not preserve the order of the input word, like mirror, which returns the
mirror of a word, or copy, which copies an input word twice. A natural restriction on
MSOTs, called order-preserving MSOT, has been shown to express exactly the rational
functions [Boj14, Fil15]. In the following we will only consider order-preserving MSOTs and
simply call them MSOTs.

Many links have been shown between logical fragments of MSO and algebraic varieties
of monoids (see e.g. [Str94, PS05]) and the strength of those links is that they often give
equational descriptions of the corresponding language varieties, and thus give a way to
decide if a language is definable in some given logical fragment. Our goal is to provide a
framework to attempt to lift some of these results from languages to transductions. We give
sufficient conditions on F , a logical fragment of MSO, to decide if a transduction, given by
an MSOT, can be realized by an F -transducer. In particular we show that it is decidable if
a transduction, given by an MSOT, can be realized by an FOT.

16:32 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

6.1. MSO transductions.

6.1.1. Words as logical structures. A (non-empty) word w over the alphabet Σ is seen as a
logical structure5 w̃ over the signature SΣ =

{
(σ(x))σ∈Σ, x < y

}
. The domain of w̃ is the set

of positions of w, denoted by dom(w), the unary predicate σ is interpreted as the positions
of w with letter σ and the binary predicate < is interpreted as the linear order over the
positions of w. In order to simplify notations, we will write w instead of w̃ in the following.

6.1.2. Monadic second-order logic. Monadic second-order formulas (MSO-formulas) over
SΣ are defined over a countable set of first-order variables x, y, . . . and a countable set of
second-order variables X,Y, . . . by the following grammar (with σ ∈ Σ):

φ ::= ∃X φ | ∃x φ | (φ ∧ φ) | ¬φ | x ∈ X | σ(x) | x < y

The universal quantifier as well as the other Boolean connectives are defined as usual:
∀X φ := ¬∃X ¬φ, ∀x φ := ¬∃x ¬φ, (φ1∨φ2) := ¬(¬φ1∧¬φ2), and (φ1 → φ2) := (¬φ1∨φ2).
We also define the formulas > and ⊥ as being respectively always and never satisfied. We
also allow the equality predicate x = y. We do not define here the semantics of MSO nor
the standard notions of free and bound variables but rather refer the reader to e.g. [EF95]
for formal definitions. We recall that a closed formula, or sentence, is a formula without
free variables. Let φ be an MSO-sentence, we write w |= φ to denote that w satisfies φ. The
language defined by an MSO-sentence φ is the set JφK = {w | w |= φ}. A logical fragment F
of MSO is a subset of MSO formulas, and an F-language is simply a language defined by an
F-sentence.

Examples 6.1.

• The fragment of first-order formulas (FO[<]) is defined as the set of formulas which never
use second-order variables.
• The fragment FO2[<] is the set of first-order formulas with only two variables, which can

both be quantified upon any number of time.
• The existential fragment of first-order logic, Σ1[<] is the set of first-order formulas of the

form ∃x1 . . . ∃xnφ where φ is quantifier-free. The fragment BΣ1[<] is the closure under
boolean operations of Σ1[<].

6.1.3. Pointed words. In the model of Courcelle, originally introduced in the more general
context of graph transductions [CE12], a transduction is defined by interpreting the predicates
of the output structure over several copies of the input structure. Since we consider order-
preserving word transductions, we only need to define the unary predicates of the output
structure and those are defined by formulas with one free variable. Models for such formulas
are words with a marked position, called pointed words. Furthermore, we choose a similar
but slightly different approach from formulas with a free variable and consider formulas
with a constant, which can be seen as a variable which is never quantified upon. For MSO
formulas there is no difference between having a free variable and having a constant, but for
logical fragments which restrict the number of variables, this distinction will prove useful.
Pointed words have been briefly studied in [Boj15] and we will make some of the same
remarks.

5For a definition of logical structures see e.g. [EF95]

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:33

A pointed word over an alphabet Σ is a pair (w, i) with w a non-empty word and
i ∈ dom(w). A pointed word can alternatively be seen as a logical structure over the
signature ScΣ =

{
c, (σ(x))σ∈Σ, x < y

}
where c is a constant symbol.

A pointed MSO-formula is obtained from an MSO-formula by substituting some occur-
rences of first order variables inside predicates by the symbol c. We denote the set of pointed
MSO-formula by MSOc. In particular any MSO formula is an MSOc formula. Given F a
fragment of MSO, we define similarly Fc the set of formulas obtained from F-formulas by
substituting in predicates some occurrences of first order variables by the symbol c. Let ψ
be an MSOc-sentence, we write (w, i) |= ψ to denote that the pointed word (w, i) satisfies ψ
where the constant c is interpreted as i. The pointed language defined by an MSOc-sentence
ψ is the set JψK = {(w, i) | (w, i) |= ψ}.

Example 6.2. Let us give an example of an MSOc-sentence over the alphabet Σ ⊇ {α, β, γ}:
γ(c) ∧ ((∃x x < c ∧ α(x)) ∨ (∃x x > c ∧ β(x)))

This formula is in BΣ1[<]c, FO2[<]c, and thus also in FO[<]c.

6.1.4. MSO-transducers. An MSO-transducer (or MSOT) over Σ is a tuple:

T =
(
K,φdom, (ψv)v∈K

)
where K is a finite set of words, φdom is an MSO-sentence and for all v ∈ K, ψv is an MSOc-
sentence. The MSOT T defines a transduction JT K of domain JφdomK. For a non-empty
word u ∈ JφdomK, we have JT K(u) = v1 . . . v|u| such that for i ∈ dom(u), (u, i) |= ψvi . We
remark that in general this relation is not necessarily functional: if for some word u and
position i we have two different words v, v′ ∈ K such that (u, i) |= ψv and (u, i) |= ψv′
then u can have several images. Furthermore this relation may not even be well-defined on
its domain: if there is a word u in the domain and a position i such that for any v ∈ K
we have (u, i) 6|= ψv then the image of u is not well-defined. However these properties are
decidable (reducible to satisfiability of MSO-formulas) and in this paper we always assume
that logical transductions are well-defined and functional. In the following we only consider
transductions that are (partially) defined over non-empty words. This can be simply encoded
up to adding a special symbol. A transduction f : Σ+ → Σ∗ is called MSOT-definable if
there exists an MSOT T such that for any non-empty word u ∈ Σ+, f(u) = JT K(u).

Let us state the equivalence between functional transducers and MSO-transducers.

Theorem 6.3. [Boj14, Fil15] A transduction is rational if and only if it is MSOT-definable.

More generally, given a logical fragment F , an F-transducer over Σ is an MSO-
transducer:

T =
(
K,φdom, (ψv)v∈K

)
where K is a finite set of words, φdom is an F -sentence and for all v ∈ K, ψv is an Fc-sentence.

Remark 6.4. Note that FO2[<] transductions as we define them are more expressive than
transductions using only formulas with two variables, without the c symbol.

16:34 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

6.2. Logic-algebra equivalence. Our goal is to obtain an equivalence between C-trans-
ductions and F-transductions (as for instance A-transductions and FO[<]-transductions).
In this section we give sufficient conditions under which the equivalence holds. For that
purpose, we introduce an intermediate logical model of transductions, based on pairs of
formulas, which is ad hoc to bimachines. Hence, the equivalence between this new formalism
and C-transductions is straightforward, and the only remaining task is to give sufficient
conditions under which this formalism is equivalent with F-transductions. The conditions
we give are, a priori, not necessary, however we try and give conditions that are as general
as possible, so that they can be applied to most known logical fragments of MSO.

6.2.1. Pairs of formulas. For a logical fragment F , we define 2-F formulas over Σ as follows,
where φ1, φ2 denote closed F-formulas and Γ denotes a subset of Σ:

F ::= F ∨ F | (φ1, φ2)Γ

For words u, v and a letter σ, we define (uσv, |u|+ 1) |= F by induction on 2-formulas:

(uσv, |u|+ 1) |= (φ, φ′)Γ if u |= φ and v |= φ′ and σ ∈ Γ
(uσv, |u|+ 1) |= F1 ∨ F2 if (uσv, |u|+ 1) |= F1 or (uσv, |u|+ 1) |= F2

From this we can define the ∧ operator:

(φ1, φ
′
1)Γ1
∧ (φ2, φ

′
2)Γ2

:= (φ1 ∧ φ2, φ
′
1 ∧ φ′2)Γ1∩Γ2

(F1 ∨ F2) ∧ F := (F1 ∧ F) ∨ (F2 ∧ F)
F ∧ (F1 ∨ F2) := (F ∧ F1) ∨ (F ∧ F2)

Similarly we can define the ¬ operator:

¬(φ, φ′)Γ := (>,>)Σ\Γ ∨ (¬φ,>)Σ ∨ (>,¬φ′)Σ

¬(F1 ∨ F2) := ¬F1 ∧ ¬F2

Example 6.5. Let us define the pointed language of Example 6.2 by pairs of formulas:

(∃x α(x),>){γ} ∨ (>, ∃x β(x)){γ}

From this alternative formalism of pairs of formulas we can define logical 2-transducers
which are defined exactly as logical transducers except that MSOc formulas are replaced by
2-MSO formulas. Given a logical fragment F , we say that 2-F and Fc are equivalent if they
define the same pointed languages.

6.2.2. Bimachines and logical transducers. The logical formalism of pairs of formulas is ad
hoc to bimachines, thus we obtain the following unsurprising result:

Lemma 6.6. Let C be a congruence class equivalent to a fragment F . A transduction is
definable by a C-bimachine without final outputs if and only if it is definable by a 2-F-
transducer.

Proof. Let B = (L,R, ω, ε̄, ε̄) be a C-bimachine without final outputs realizing a transduction
f . Let us define a 2-F-transducer T =

(
K,φdom, (ψv)v∈K

)
realizing f . Since L and R

are C-automata, we know that for any word w, there exist F-formulas φ[w]L
and φ[w]R

which respectively recognize the languages [w]L and [w]R. Then we can define φdom =

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:35

∨
u∈dom(f) φ[u]L

, since L recognizes dom(f). Let K = {v | ∃u, σ, w s.t. ω([u]L, σ, [w]R) = v},
then for v ∈ K, we define:

ψv =
∨

ω([u]L,σ,[w]L)=v

(
φ[u]L

, φ[w]R

)
{σ}

By construction, T realizes f .
Conversely let T =

(
K,φdom, (ψv)v∈K

)
be a 2-F-transducer realizing a transduction f .

We define B = (L,R, ω, ε̄, ε̄), a C-bimachine without final outputs realizing f . Given an
F -sentence φ, let Lφ and Rφ denote respectively a left and a right C-automaton recognizing
JφK. Let v ∈ K, and ψv =

∨
i=1,...,nv

(θiv, χ
i
v)Γi

v
, then we define:

L = Lφdom ×
∏

v∈K i=1,...,nv

Lθiv and R = Rφdom ×
∏

v∈K i=1,...,nv

Rχi
v

Finally, the outputs of B are defined by ω([u]L, σ, [w]R) = v if there exists v ∈ K such that
u |= θiv, σ ∈ Γiv and w |= χiv for some i = 1, . . . , nv. Otherwise, it means that uσw does
not belong to the domain of f and we can set ω([u]L, σ, [w]R) = ε. Again, B realizes f by
construction.

The previous lemma does not capture the entire class of C-transductions since we
restrict ourselves to C-bimachines without final outputs. In order to circumvent this issue,
we define the notion of an ε-isolating congruence class, a class C for which the restriction
over final output does not reduce the expressiveness of C-bimachines. The empty word
congruence over an alphabet Σ is the congruence such that for any words u, v, we have
u ∼ v if u = ε ⇔ v = ε. A congruence class which for any given alphabet contains the
corresponding empty word congruence, is called ε-isolating.

Proposition 6.7. Let C be an ε-isolating congruence class. Then any C-transduction can
be realized by a C-bimachine without final outputs.

Proof. Let f : Σ+ → Σ∗ be a C-transduction, and let B = (L,R, ω, λ, ρ) be a C-bimachine
realizing f . We denote by ∼ε the empty word congruence over Σ, and by Lε and Rε
the left and right automata associated with ∼ε, respectively. Since ∼ε ∈ C by hy-
pothesis, Lε and Rε are C-automata. We define B′ = (L × Lε,R×Rε, ω′, ε, ε) with
ω′(([u]L, [u]ε), σ, ([v]R, [v]ε)) = ω([u]L, σ, [v]R) if u, v 6= ε, λ([v]R)ω([u]L, σ, [v]R) if u = ε
and v 6= ε, ω([u]L, σ, [v]R)ρ([u]L) if u 6= ε and v = ε, and λ([v]R)ω([u]L, σ, [v]R)ρ([u]L)
if u, v = ε. By construction B′ realizes f , and since (≈B u ∼ε) v ≈B′ , B′ is indeed a
C-bimachine.

Corollary 6.8. Let C be an ε-isolating congruence class equivalent to a fragment F . Then
a transduction is a C-transduction if and only if it is definable by a 2-F-transducer.

Proof. According to Proposition 6.7, we have that C-bimachines without final outputs
exactly characterize C-transductions. Thus, from Lemma 6.6 we have the equivalence
between C-transductions and 2-F-transductions.

From the previous corollary we can immediately deduce:

Corollary 6.9. Let C be an ε-isolating congruence class equivalent to a fragment F such
that Fc and 2-F define the same pointed languages. Then a transduction is a C-transduction
if and only if it is an F-transduction.

16:36 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

6.2.3. From Fc to 2-F and back. When F is a fragment equivalent to some congruence
class C, logical transductions defined with 2-F formulas trivially have the same expressive
power as C-bimachines. In this section we shall give some sufficient properties on a logical
fragment F under which Fc-formulas and 2-F -formulas are equivalent, i.e., define the same
pointed languages. For this we introduce a third logical formalism for pointed words:

A pointed word over an alphabet Σ can alternatively be seen a logical structure over
SΣ]Σ̇ =

{
(σ(x))σ∈Σ, (σ̇(x))σ∈Σ, x < y

}
, i.e., a word over an extended alphabet which con-

tains a pointed copy of each letter. Note that the number of pointed positions is not
necessarily one. However we will see in the next example that restricting to one pointed
position can be enforced by a formula φpointed.

Example 6.10. The language defined by the formula in Example 6.2 is:{
uαu′γ̇v| u, u′, v ∈ Σ∗

}
∪
{
uγ̇vβv′| u, v, v′ ∈ Σ∗

}
We can define this language by an MSO-sentence over the extended alphabet Σ] Σ̇.

First we define the formula:

φpointed :=
(
∃x Σ̇(x)

)
∧
(
∀x, y Σ̇(x) ∧ Σ̇(y)→ x = y

)
The formula φpointed specifies that exactly one position holds a pointed letter, with predicate

Σ̇(x) being a shortcut for
∨
σ∈Σ σ̇(x). Finally we obtain the formula:

φpointed ∧ ∃c γ̇(c) ∧ ((∃x x < c ∧ α(x)) ∨ (∃x x > c ∧ β(x)))

This is just the formula of Example 6.2 where c is replaced by the variable c which is
existentially quantified, and holds a pointed letter.

Our goal here is to show that Fc-formulas and 2-F-formulas define the same pointed
languages under the following assumption (1)–(3). Assumption (4) is used to show that a
corresponding congruence class would be ε-isolating.

(1) Fc-formulas over an alphabet Σ and F -formulas over the extended alphabet Σ] Σ̇ define
the same pointed languages.

(2) A language over the alphabet Σ is definable by an F-formula over Σ if and only if it is
definable by an F-formula over a larger alphabet Σ ∪ Γ.

(3) F-languages are closed under pointed concatenation, meaning that for any two F-
languages L1, L2 over an alphabet Σ and a fresh symbol], L1 ·] · L2 is an F-language
over Σ] {]}.

(4) {ε} is an F-language.

These assumptions may seem quite strong and not necessary, and they are, however they
cover several well studied logical fragments of MSO, as shown in Section 6.3.

Remark 6.11. It seems that most of the known logical fragments that have access to the
linear order and for which there is an equivalent congruence class satisfy properties (1)–(4).
A non-example is the fragment of first-order logic with successor, FO[+1], which is not
closed under pointed concatenation.

The following results establish that under assumptions (1)–(3), F , Fc and 2-F coincide.
Figure 5 summarizes how these assumptions are used to prove it.

Lemma 6.12. Let F be a fragment equivalent to some congruence class C. Under assump-
tion (2), any F-definable pointed language is 2-F-definable.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:37

Fc F=
(1)

2-F
⊆
⊇

(2)

=⇒

Lemma 6.12

(2)-(3)

=
⇒ Lemma 6.13

Figure 5: Logics F , 2-F and Fc coincide under assumptions (1)–(3).

Proof. Let φ be an F-formula recognizing a pointed language over the extended alphabet.
Since F is equivalent to the congruence class C, let A be a C(Σ] Σ̇)-automaton, with
transition relation ∆, recognizing L(φ). Then we define

ψ =
∨

(p,σ̇,q)∈∆

(φpI , φ
F
q){σ}

where φpI , φ
F
q are defined respectively as F -formulas recognizing the language of words going

from the initial states to p and from q to the final states. These languages are indeed
definable in F , since they are recognized by an automaton obtained from A by changing the
initial and final states (which does not modify the transition congruence). Since the words
recognized by A only have one pointed letter, the formulas defined are F -formulas over the
regular alphabet, under assumption (2).

Lemma 6.13. Let F be a fragment equivalent to some congruence class C. Under assump-
tion (2)–(3), any 2-F-definable pointed language is F-definable.

Proof. Let us show that under assumption (3), a 2-F formula can be transformed into a
disjunction of F-formulas recognizing pointed concatenations of F-languages. Let F =∨

1≤i≤n (φi, φ
′
i)Γi

be a 2-F formula. Up to decomposing (φi, φ
′
i)Γi

into a disjunction, we can

assume that Γi = {σi}. According to assumption (3), there exists an F-formula χi such

that JχiK = JφiKσ̇iJφ′iK. Under assumption (2), these can be seen as F -languages over Σ] Σ̇.
Since F -languages are C-languages, they are closed under Boolean operations. Hence, there
exists an F-formula χ recognizing the pointed language

⋃
1≤i≤nJχiK.

Proposition 6.14. Let F be a fragment equivalent to some congruence class C. Under
assumptions (1)–(3), the logics Fc and 2-F are equivalent.

Proof. According to Lemmas 6.12 and 6.13, under assumptions (2) and (3), a pointed
language is F -definable if and only if it is 2-F -definable. Then, by assumption (1) we obtain
the equivalence.

We give sufficient conditions under which a congruence class corresponding to a logical
fragment is ε-isolating.

Proposition 6.15. Let C be a congruence class equivalent to some fragment F satisfying
properties (1) and (4). Then C is ε-isolating.

Proof. According to (4), {ε} is an F-language, and according to (1), {ε} is an F-language
over any alphabet Σ. Thus for any alphabet Σ there exists a congruence in C(Σ) recognizing
{ε}. Since C is closed under taking coarser congruences, it contains all the empty word
congruences.

16:38 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

Theorem 6.16. Let C be a congruence class equivalent to some fragment F satisfying
properties (1)–(4). Then a transduction is a C-transduction if and only if it is an F-
transduction.

Proof. From Proposition 6.15, we know that C is ε-isolating. Hence from Corollary 6.9 and
Proposition 6.14, we obtain the result.

6.3. Decidable fragments.

Lemma 6.17. The fragments FO[<], FO2[<] and BΣ1[<] all satisfy properties (1)–(4).

Proof. The fragments trivially satisfy (4). Let us show that FO2[<] satisfies properties
(1)–(3). The proof for FO[<] can easily be obtained with the same reasoning. Let us re-state
the assumptions:

(1) FO2[<]c-formulas over an alphabet Σ and FO2[<]-formulas over the extended alphabet

Σ] Σ̇ define the same pointed languages.
(2) A language over the alphabet Σ is definable by an FO2[<]-formula over Σ if and only if

it is definable by an FO2[<]-formula over a larger alphabet Σ ∪ Γ.
(3) F-languages are closed under pointed concatenation, meaning that for any two FO2[<]-

languages L1, L2 over an alphabet Σ and a fresh symbol], L1 ·]·L2 is an FO2[<]-language
over Σ] {]}.

Let us show (1): Let φ be an FO2[<]-formula over the extended alphabet Σ] Σ̇ recognizing
a pointed language. We syntactically replace any atomic formula σ̇(x) by x = c∧σ(x). Thus
we obtain an FO2[<]c-formula recognizing the same pointed language. Conversely let φ be
an FO2[<]c-formula. We define as in Example 6.2 the formula

φpointed :=
(
∃x Σ̇(x)

)
∧
(
∀x, y Σ̇(x) ∧ Σ̇(y)→ x = y

)
which is in FO2[<]. Then we define φ′ which is obtained from φ by syntactically replacing

any atomic formula σ(c) by ∃x σ̇(x), σ(x) by σ(x) ∨ σ̇(x), x < c by ∃y Σ̇(y) ∧ (x < y) and

c < x by ∃y Σ̇(y) ∧ (y < x). Finally we obtain the FO2[<]-formula φpointed ∧ φ′, over the

extended alphabet Σ] Σ̇, recognizing the same pointed language.
Let us show (2): Let φ be an FO2[<]-formula over Σ recognizing some language L.

Then in particular it is an FO2[<]-formula over Σ ∪ Γ. Let α = ¬∃x
∨
γ∈Γ\Σ γ(x) be a

formula which specifies that no new letter appears in a word. Then the formula φ ∧ α is an
FO2[<]-formula over Σ ∪ Γ which recognizes L. Conversely let φ be an FO2[<]-formula over
Σ ∪ Γ recognizing some language L ⊆ Σ∗. Then one only has to syntactically change γ(x)
by ⊥ for every predicate γ ∈ Γ \Σ in φ to obtain a formula φ′ over Σ. One can see that any
model of φ is a model of φ′ and vice versa.

Let us show (3): Given a formula φ, we define φ<c which is the formula φ where
all the quantifications are guarded and restrict variables to positions before the position
c. Formally, if φ = ∃x χ(x), we define φ<c = ∃x (x < c) ∧ χ<c(x). Let φ1, φ2 be two
FO2[<]-languages L1, L2 over an alphabet Σ and let] /∈ Σ be a fresh alphabet symbol. We
define Φ = φ<c

1 ∧ φ>c
2 ∧](c) ∧ ∀x](x) → (x = c), which recognizes the pointed language

L1]̇L2. Finally, from (1) there exists an FO2[<]-formula recognizing the same language.
Now we show that the fragment BΣ1[<] satisfies properties (1)–(3). Let us show (1): Let

φ be a BΣ1[<]-formula over the extended alphabet Σ] Σ̇ recognizing a pointed language. We

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:39

syntactically replace any atomic formula σ̇(x) by x = c ∧ σ(x). Thus we obtain a BΣ1[<]c-
formula recognizing the same pointed language. Conversely let φ be a BΣ1[<]c-formula. We

define the formula φpointed :=
(
∃x Σ̇(x)

)
∧
(
∀x, y Σ̇(x) ∧ Σ̇(y)→ x = y

)
which is in BΣ1[<].

Then we define φ′ which is obtained from φ by syntactically replacing any atomic formula
σ(c) by σ̇(c), σ(x) by σ(x)∨ σ̇(x), x < c by (x < c) and c < x by c < x where c is a variable

which does not appear in φ. Finally we obtain the BΣ1[<]-formula φpointed ∧ ∃c Σ̇(c) ∧ φ′,
over the extended alphabet Σ] Σ̇, recognizing the same pointed language.

Let us show (2): Let φ be a BΣ1[<]-formula over Σ recognizing some language L. Then
in particular it is a BΣ1[<]-formula over Σ∪Γ. Let α = ¬∃x

∨
γ∈Γ\Σ γ(x) be a formula which

specifies that no new letter appears in a word. Then the formula φ ∧ α is a BΣ1[<]-formula
over Σ∪ Γ which recognizes L. Conversely let φ be a BΣ1[<]-formula over Σ∪ Γ recognizing
some language L ⊆ Σ∗. Then one only has to syntactically change γ(x) by ⊥ for every
predicate γ ∈ Γ \Σ in φ to obtain a formula φ′ over Σ. One can see that any model of φ is a
model of φ′ and vice versa.

Let us show (3): Given a formula φ, we define φ<c which is the formula φ where all
the quantifications are guarded and restrict variables to positions before the position c.
Formally, if φ = ∃x1, . . . , xn χ where χ is quantifier-free, we define φ<c = ∃x1, . . . , xn (x1 <
c) ∧ . . . ∧ (xn < c) ∧ χ. If φ = Bool(φ1, . . . , φn) where the φis are Σ1[<]-formulas and
Bool(v1, . . . , vn) is some propositional formula, then we define φ<c = Bool(φ<c

1 , . . . , φ<c
n).

Let φ1, φ2 be two BΣ1[<]-languages L1, L2 over an alphabet Σ and let] /∈ Σ be a fresh
alphabet symbol. We define Φ = φ<c

1 ∧ φ>c
2 ∧](c) ∧ ∀x](x)→ (x = c), which recognizes the

pointed language L1]̇L2. Finally, from (1) there exists a BΣ1[<]-formula recognizing the
same language.

Theorem 6.18. Given a transducer realizing a transduction f , one can decide if:

• f is FO[<]-definable.
• f is FO2[<]-definable.
• f is BΣ1[<]-definable.

Proof. It was shown by [Sch61, MP71] that FO[<] and A are equivalent. It was also shown
in [TW98] that FO2[<] and DA are equivalent. The equivalence between BΣ1[<] and the
class J of J -trivial congruences is due partly to [Sim75] and can be found in [DGK08]. From
Theorem 6.16 and Lemma 6.17 we have the equivalences between FO[<]-transductions and
A-transductions, FO2[<]-transductions and DA-transductions, and BΣ1[<]-transductions
and J-transductions respectively. In the articles mentioned above it is also shown that the
equivalences are effective, meaning that the congruence classes J, DA and A are decidable,
thus from Theorem 4.10 we obtain the result.

Remark 6.19. Extensions of the above fragments with additional predicates can easily
be shown to satisfy assumptions (1)–(4). A table from [DP15] sums up many results
of decidability concerning fragments of FO[<] with additional predicates. For all these
fragments, our Theorem 6.18 should carry over. Similarly, the proof for BΣ1[<] should easily
transfer to BΣi[<], for any positive integer i.

Conclusion

We have shown that the problem of deciding whether a bimachine realizes an aperiodic
transduction is PSpace-complete. A question which remains open is whether the problem

16:40 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

is still in PSpace if the input is given as a transducer instead of a bimachine. Our main
result is that any rational transduction can be completely characterized by a finite set of
minimal bimachines, and we have introduced a logical formalism which allows to lift some
known equivalences from rational languages to rational transductions.

One possible direction of investigation would be to formalize in algebraic terms sufficient,
and possibly necessary, conditions under which a logic-algebra equivalence for languages
can be lifted to transductions. It would also be interesting to investigate the cases which
are precisely not covered by our approach such as the logics MSO[=] or FO[+1]. Another
direction would be to try to lift the present results further to regular functions, i.e., functions
realized by two-way transducers. Indeed a characterization of a regular transduction in
terms of minimal congruences would for instance yield a way to decide if a regular function is
first-order definable. In [Boj14] such a characterization is given, but with the stronger origin
semantics, where every output position originates from an input position, which means that
two transducers which realize the same function but produce outputs at different positions
will not be considered equivalent under this semantics. Obtaining a similar characterization
in origin-free semantics is a very ambitious objective and for now there is no known canonical
way to define a regular function.

Acknowledgement

The authors thank Anca Muscholl for her contribution in early stages of this work.

References

[AC10] Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers. In Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), volume 8 of LIPIcs, pages
1–12, 2010.

[BB79] Jean Berstel and Luc Boasson. Transductions and context-free languages. Ed. Teubner, pages
1–278, 1979.

[BC02] Marie-Pierre Béal and Olivier Carton. Determinization of transducers over finite and infinite
words. Theor. Comput. Sci., 289(1):225–251, 2002.

[Boj14] Miko laj Bojańczyk. Transducers with origin information. In Automata, Languages, and Program-
ming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part II, pages 26–37, 2014.

[Boj15] Miko laj Bojańczyk. Recognisable languages over monads. In Developments in Language Theory -
19th International Conference, DLT 2015, Liverpool, UK, July 27-30, 2015, Proceedings., pages
1–13, 2015.

[Büc60] J.R. Büchi. On a decision method in a restricted second order arithmetic. In Stanford Univ. Press.,
editor, Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science, pages 1–11, 1960.

[CCP17] Michaël Cadilhac, Olivier Carton, and Charles Paperman. Continuity and rational functions. In
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, 2017.

[CD15] Olivier Carton and Luc Dartois. Aperiodic two-way transducers and FO-transductions. In 24th
EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin,
Germany, pages 160–174, 2015.

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

[CG14] Christian Choffrut and Bruno Guillon. An algebraic characterization of unary two-way transducers.
In Mathematical Foundations of Computer Science 2014 - 39th International Symposium, MFCS
2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, pages 196–207, 2014.

Vol. 15:4 RATIONAL TRANSDUCTIONS 16:41

[CH91] Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is PSPACE-complete. Theor.
Comput. Sci., 88(1):99–116, 1991.

[Cho03] Christian Choffrut. Minimizing subsequential transducers: a survey. Theor. Comput. Sci.,
292(1):131–143, 2003.

[CKLP15] Michaël Cadilhac, Andreas Krebs, Michael Ludwig, and Charles Paperman. A circuit complexity
approach to transductions. In Mathematical Foundations of Computer Science 2015 - 40th
International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part
I, pages 141–153, 2015.

[DG08] Volker Diekert and Paul Gastin. First-order definable languages. In Logic and Automata: History
and Perspectives [in Honor of Wolfgang Thomas]., pages 261–306, 2008.

[DGK08] Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments of first-order
logic over finite words. Int. J. Found. Comput. Sci., 19(3):513–548, 2008.

[DP15] Luc Dartois and Charles Paperman. Alternation hierarchies of first order logic with regular
predicates. In Fundamentals of Computation Theory - 20th International Symposium, FCT 2015,
Gdańsk, Poland, August 17-19, 2015, Proceedings, pages 160–172, 2015.

[EF95] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathematical Logic.
Springer, 1995.

[EH01] Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001.

[Eil74] Samuel Eilenberg. Automata, Languages, and Machines. Volume A. Pure and Applied Mathematics.
Academic press, 1974.

[EM65] Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite automata. IBM
Journal of Research and Development, 9(1):47–68, 1965.

[FGL16a] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Aperiodicity of rational functions is
PSpace-complete. In 36th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2016, December 13-15, 2016, Chennai, India, pages
13:1–13:15, 2016.

[FGL16b] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. First-order definability of rational transduc-
tions: An algebraic approach. In Logic in Computer Science (LICS). IEEE, 2016.

[Fil15] Emmanuel Filiot. Logic-automata connections for transformations. In Logic and Its Applications -
6th Indian Conference, ICLA 2015, Mumbai, India, January 8-10, 2015. Proceedings, pages 30–57,
2015.

[FKT14] Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi. First-order definable string
transformations. In 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India, pages
147–159, 2014.

[MP71] Robert McNaughton and Seymour Papert. Counter-free automata. M.I.T. Press, 1971.
[Myh57] J. Myhill. Finite automata and the representation of events. Technical Report 57-624, WADC,

1957.
[Ner58] A. Nerode. Linear automaton transformations. In Proc. American Mathematical Society, volume 9,

pages 541–544, 1958.
[PS05] Jean-Eric Pin and Howard Straubing. Some results on C-varieties. ITA, 39(1):239–262, 2005.
[RS91] Christophe Reutenauer and Marcel-Paul Schützenberger. Minimization of rational word functions.

SIAM J. Comput., 20(4):669–685, 1991.
[RS95] Christophe Reutenauer and Marcel-Paul Schützenberger. Variétés et fonctions rationnelles. Theor.

Comput. Sci., 145(1&2):229–240, 1995.
[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
[Sch61] Marcel-Paul Schützenberger. A remark on finite transducers. Information and Control, 4(2-3):185–

196, 1961.
[Sch65] Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Information and

Control, 8(2):190–194, 1965.
[Sim75] Imre Simon. Piecewise testable events. In Automata Theory and Formal Languages, 2nd GI

Conference, Kaiserslautern, May 20-23, 1975, pages 214–222, 1975.
[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser Verlag,

Basel, Switzerland, Switzerland, 1994.

16:42 E. Filiot, O. Gauwin, and N. Lhote Vol. 15:4

[TW98] Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one quantifier
alternation. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, May 23-26, 1998, pages 234–240, 1998.

	Introduction
	Logical and algebraic characterizations of rational languages
	Rational transductions
	Contributions
	Comparison with previous papers

	1. Rational languages and rational transductions
	1.1. Rational languages
	1.2. Algebraic characterization of rational languages
	1.3. Rational transductions

	2. Algebraic characterization of sequential transductions
	2.1. Minimization of sequential transducers
	2.2. Determinization preserves aperiodicity

	3. Bimachines
	3.1. Bimachines and transductions
	3.2. Bimachine minimization
	3.3. Canonical bimachine

	4. Algebraic characterization of rational transductions
	4.1. C-transducers and C-bimachines
	4.2. Bounding minimal bimachines
	4.3. Characterization of C-rationality and decision

	5. Characterization of aperiodic transductions
	5.1. Characterization of aperiodicity
	5.2. Aperiodicity is PSPACE-complete

	6. Logical transducers
	6.1. MSO transductions
	6.2. Logic-algebra equivalence
	6.3. Decidable fragments

	Conclusion
	Acknowledgement
	References

