
Logical Methods in Computer Science
Volume 16, Issue 1, 2020, pp. 3:1–3:46
https://lmcs.episciences.org/

Submitted Feb. 23, 2018
Published Jan. 14, 2020

NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI IN NATURAL

DEDUCTION STYLE

DELIA KESNER a AND PIERRE VIAL b

a Université de Paris and Institut Universitaire de France (IUF), France
e-mail address: kesner@irif.fr

b Inria (LS2N CNRS), France
e-mail address: pierre.vial@inria.fr

Abstract. In the first part of this paper, we define two resource aware typing systems for
the λµ-calculus based on non-idempotent intersection and union types. The non-idempotent
approach provides very simple combinatorial arguments –based on decreasing measures of
type derivations– to characterize head and strongly normalizing terms. Moreover, typability
provides upper bounds for the lengths of the head-reduction and the maximal reduction
sequences to normal-form.

In the second part of this paper, the λµ-calculus is refined to a small-step calculus called
λµs, which is inspired by the substitution at a distance paradigm. The λµs-calculus turns out
to be compatible with a natural extension of the non-idempotent interpretations of λµ, i.e.
λµs-reduction preserves and decreases typing derivations in an extended appropriate typing
system. We thus derive a simple arithmetical characterization of strongly λµs-normalizing
terms by means of typing.

1. Introduction

The Curry-Howard Isomorphism is the well-known relationship between programming
languages and logical systems. While Curry first introduced the analogy between Hilbert-
style deductions and combinatory logic, Howard highlighted the one between simply typed
lambda calculus and natural deduction. Both examples use intuitionistic logic. The extension
of the Curry-Howard Isomorphism to classical logic took more than two decades, when
Griffin [26] observed that Felleisen’s C operator can be typed with the double-negation
elimination. A major step in this field was done by Parigot [42], who proposed the λµ-
calculus as a simple term notation for classical natural deduction proofs. The λµ-calculus
is an extension of the simply typed λ-calculus that encodes usual control operators as the
Felleisen’s C operator mentioned so far. Other calculi were proposed since then, as for
example Curien-Herbelin’s λµµ̃-calculus [14] based on classical sequent calculus.

The Curry-Howard correspondence has already contributed to the understanding of
many aspects of programming languages by establishing a rich connection between logic
and computation. However, there are still some crucial aspects of computation, like the
use of resources (e.g. time and space), that still need to be logically understood in the

Key words and phrases: lambda-mu-calculus, classical logic, intersection types, normalization.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(1:3)2020
c© D. Kesner and P. Vial
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

3:2 D. Kesner and P. Vial Vol. 16:1

classical setting. Establishing the foundations of resource consumption is nowadays a big
challenge facing the programming language community. It would lead to a new generation of
programming languages and proof assistants, with a clean type-theoretic account of resource
capabilities.

From qualitative . . . Several notions of type assignment systems for λ-calculus have
been defined since its creation, including among others simple types and polymorphic types.
However, even if polymorphic types are powerful and convenient in programming practice,
they have several drawbacks. For example, it is not possible to assign a type to a term
of the form (λz.λy.y(z I)(z K))(λx.x x), where I = λw.w and K = λx.λy.x, which can be
understood as a meaningful program specified by a terminating term. Intersection types,
pioneered by Coppo and Dezani [12, 13], introduce a new constructor ∩ for types, allowing
the assignment of a type of the form ((σ ⇒ σ) ∩ σ)⇒ σ to the term λx.xx. The intuition
behind a term t of type τ1 ∩ τ2 is that t has both types τ1 and τ2. The symbol ∩ is to be
understood as a mathematical intersection, so in principle, intersection type theory was
developed by using idempotent (σ ∩ σ = σ), commutative (σ ∩ τ = τ ∩ σ), and associative
((σ ∩ τ) ∩ δ = σ ∩ (τ ∩ δ)) laws.

Intersection types have been used as a behavioural tool to reason about several opera-
tional and semantic properties of programming languages. For example, a λ-term/program t
is strongly normalizing/terminating if and only if t can be assigned a type in an appropriate
intersection type assignment system. Similarly, intersection types are able to describe
and analyze models of λ-calculus [6], characterize solvability [37], head normalization [37],
linear-head normalization [29], and weak-normalization [37, 35] among other properties.

. . . to quantitative Intersection types: This technology turns out to be a powerful
tool to reason about qualitative properties of programs, but not about quantitative ones.
Indeed, for example, there is a type system characterizing head normalization (i.e. t is
typable in this system if and only if t is head normalizing) and which gives simultaneously a
proof that t is head-normalizing if and only if the head reduction strategy terminates on t.
But the type system gives no information about the number of head-reduction steps that
are necessary to obtain a head normal form. Here is where non-idempotent types come into
play, thus making a clear distinction between σ ∩ σ and σ, because intuitively, using the
resource σ twice or once is not the same from the quantitative point of view. This change
of perspective can be related to the essential spirit of Linear Logic [23], which removes the
contraction and weakening structural rules in order to provide an explicit control of the use
of logical resources, i.e. to give a full account of the number of times that a given proposition
is used to derive a conclusion.

The case of the λ-calculus: Non-idempotent types were pioneered by Philippa
Gardner [22], Assaf Kfoury [32]. But is Daniel de Carvalho [17] who first established in
his PhD thesis a relation between the size of a typing derivation in a non-idempotent
intersection type system for the lambda-calculus and the head/weak-normalization exe-
cution time of head/weak-normalizing lambda-terms, respectively. Relational models of
λ-calculi based on non-idempotent types have been investigated by de Carvalho and Ehrhard
in [17, 18, 21]. The results of de Carvalho are distilled in [18]. Non-idempotency is used
to reason about the longest reduction sequence of strongly normalizing terms in both the
lambda-calculus [8, 16, 9] and in different lambda-calculi with explicit substitutions [9, 29].

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:3

Non-idempotent types also appear in linearization of the lambda-calculus [32], type inference
and inhabitation [33, 38, 10], different characterizations of solvability [41], verification of
higher-order programs [40].

The case of the λµ-calculus: It is essential to go beyond the λ-calculus to focus
on the challenges posed by the advanced features of modern higher-order programming
languages and proof assistants. We want in particular to associate quantitative information
to languages being able to express control operators, as they allow to enrich declarative
programming languages with imperative features.

Related works: The non-idempotent intersection and union types for λµ-calculus
that we present in this article can be seen as a quantitative refinement of Girard’s trans-
lation of classical logic into linear logic. Different qualitative and/or quantitative models
for classical calculi were proposed in [45, 48, 51, 3], thus limiting the characterization of
operational properties to head-normalization. Intersection and union types were also studied
in the framework of classical logic [36, 47, 34, 20], but no work addresses the problem from
a quantitative perspective. Type-theoretical characterization of strong-normalization for
classical calculi were provided both for λµ [49] and λ̄µµ̃-calculus [20], but the (idempotent)
typing systems do not allow to construct decreasing measures for reduction, thus a resource
aware semantics cannot be extracted from those interpretations. Combinatorial strong
normalization proofs for the λµ-calculus were proposed for example in [15], but they do not
provide any explicit decreasing measure, and their use of structural induction on simple
types does not work anymore with intersection types, which are more powerful than simple
types as they do not only ensure termination but also characterize it. Upper bounds for
the λµ-calculus are studied in [7] by passing through standard reduction and the non eras-
ing λµI-calculus. Different small step semantics for classical calculi were developed in the
framework of neededness [5, 43], without resorting to any resource aware semantical argument.

Contributions: Our first contribution is the definition of a resource aware type
system for the λµ-calculus based on non-idempotent intersection and union types. The
non-idempotent approach provides very simple combinatorial arguments, only based on
a decreasing measure, to characterize head and strongly normalizing terms by means of
typability. Indeed, we show that for every typable term t with type derivation Π, if t reduces
to t′, then t′ is typable with a type derivation Π′ such that the measure of Π is strictly
greater than that of Π′. In the well-known case of the λ-calculus, such a measure is simply
based on the structure of type tree derivations and it is given by the number of its nodes,
which strictly decreases along reduction. However, in the λµ-calculus, the creation of nested
applications during µ-reduction may increase the number of nodes of the corresponding type
derivations, so that such a simple definition of measure is not decreasing anymore. We then
need to also take into account the structure (multiplicity) of certain types appearing in the
type derivations, thus ensuring an overall decreasing of the measure during reduction. This
first result has been previously presented in [31].

The second contribution of this paper is the definition of a new small-step operational
semantics for λµ, called λµs, inspired from the substitution at a distance paradigm [2], which
is compatible with the non-idempotent typing system characterizing strong normalization
for λµ, in that the latter extends to λµs. The operational semantics of λµs is linear, i.e. a
single reduction step only implements substitution/replacement on one (free) occurrence

3:4 D. Kesner and P. Vial Vol. 16:1

of some variable/name at a time. We then extend the typing system for λµ characterizing
strong normalization, so that the small-step reduction calculus λµs preserves (and decreases
the size of) typing derivations. We generalize the type-theoretical characterization of strong
normalization to this explicit classical calculus, thus particularly simplifying existing proofs
of strong normalization for small-step operational semantics of classical calculi [44].

2. The λµ-Calculus

This section gives the syntax (Section 2.1) and the operational semantics (Section 2.2) of
the λµ−calculus [42]. But before this we first introduce some preliminary general notions
of rewriting that will be used all along the paper, and that are applicable to any system
R. We denote by →R the (one-step) reduction relation associated to system R. We write
→∗R for the reflexive-transitive closure of →R, and →n

R for the composition of n-steps of
→R, thus t→n

R u denotes a finite R-reduction sequence of length n from t to u. A term t is
in R-normal form, written t ∈ R-nf, if there is no t′ s.t. t →R t′; and t has an R-normal
form iff there is t′ ∈ R-nf such that t→∗R t′. A term t is said to be strongly R-normalizing,
written t ∈ SN (R), iff there is no infinite R-sequence starting at t. When R is finitely
branching and strongly R-normalizing, ηR(t) denotes the maximal length of an R-reduction
sequence starting at t, we simply write η(t) if R is clear from the context.

2.1. Syntax. We consider a countable infinite set of variables x, y, z, . . . and continuation
names α, β, γ, The set of objects (Oλµ), terms (Tλµ) and commands (Cλµ) of the
λµ-calculus are given by the following grammars

(objects) o ::= t | c
(terms) t, u, v ::= x | λx.t | tu | µα.c
(commands) c ::= [α]t

We write Tλ for the the set of λ-terms, which is a subset of Tλµ. We abbreviate
(. . . ((tu1)u2) . . . un) as tu1 . . . un or tu when n is clear from the context. The grammar
extends λ-terms with two new constructors: commands [α]t and µ-abstractions µα.c. Free
and bound variables of objects are defined as expected, in particular fv(µα.c) := fv(c)
and fv([α]t) := fv(t). Free names of objects are defined as expected, in particular
fn(µα.c) := fn(c) \ {α} and fn([α]t) := fn(t)∪{α}. Bound names are defined accordingly.

We work with the standard notion of α-conversion i.e. renaming of bound variables and
names, thus for example [δ](µα.[α](λx.x))z ≡ [δ](µβ.[β](λy.y))z. Substitutions are (finite)
functions from variables to terms specified by the notation {x1/u1, . . . , xn/un} (n ≥ 0).
Application of the substitution σ to the object o, written oσ, may require α-conversion in
order to avoid capture of free variables/names, and it is defined as expected. Replacements
are (finite) functions from names to terms specified by the notation {α1//u1, . . . , αn//un}
(n ≥ 0). Intuitively, the operation {α//u} passes the term u as an argument to any command
of the form [α]t, so that it replaces every occurrence of [α]t in a term by [α]tu. Formally, the
application of the replacement Σ to the object o, written oΣ, may require α-conversion
in order to avoid the capture of free variables/names, and is defined as follows:

x{α//u} := x (λz.t){α//u} := λz.t{α//u}
([α]t){α//u} := [α](t{α//u})u (tv){α//u} := t{α//u}v{α//u}
([γ]t){α//u} := [γ]t{α//u} (γ 6= α) (µγ.c){α//u} := µγ.c{α//u}

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:5

For example, if I = λz.z, then (x(µα[α]y)(λz.zx)){x/I} = I(µα[α]y)(λz.zI), and
([α]x(µβ.[α]y)){α//I} = [α](xµβ.[α]yI))I.

2.2. Operational Semantics. We consider the following set of contexts:

(term contexts) T := 2 | T t | t T | λx.T | µα.C
(command contexts) C := [α]T
(contexts) O := T | C

The hole 2 can be replaced by a term: indeed, T[t] and C[t] denote the replacement of 2 in
the context by the term t.

The λµ-calculus is given by the set of objects introduced in Section 2.1 and the reduction
relation →λµ, sometimes simply written →, which is the closure by all contexts of the
following rewriting rules:

(λx.t)u 7→β t{x/u}
(µα.c)u 7→µ µα.c{α//u}

defined by means of the substitution and replacement application notions given in Section 2.1.
A redex is a term of the form (λx.t)u or (µα.c)u.

An alternative specification of the µ-rule [4] is given by (µα.c)u 7→µ µγ.c{α//γ.u}, where
{α//γ.u} denotes the fresh replacement meta-operation assigning [γ](t{α//γ.u})u to [α]t
(thus changing the name of the command), in contrast to the standard replacement operation
{α//u} introduced in Section 2.1. We remark however that the resulting terms µα.c{α//u}
and µγ.c{α//γ.u} are α-equivalent; thus e.g. µα.([α]x){α//u} = µα.[α]xu ≡ µγ.[γ]xu =
µγ.([α]x){α//γ.u}. We will come back to this alternative definition of µ-reduction in
Section 7.

A simple example is given by the following λµ-reduction sequence:

(λx.µα.[α]x(λy.µδ.[α]y)) I I →β

(µα.[α](I(λy.µδ.[α]y)))I →β

(µα.[α](λy.µδ.[α]y))I →µ

µα.[α](λy.µδ.[α]yI)I →β

µα.[α](µδ.[α]II) →β

µα.[α](µδ.[α]I)

Another typical example, given by Parigot [42], which illustrates the expressivity of
the λµ-calculus is the control operator call-cc [26], coming from Scheme and enabling
backtracking, specified in the λµ-calculus by the term λx.µα.[α]x(λy.µδ.[α]y). The term
call-cc is assigned ((A→ B)→ A)→ A (Peirce’s Law) in the simply typed λµ-calculus.

A reduction step o → o′ is said to be erasing iff o = O[(λx.u)v] and x /∈ fv(u) and
o′ = O[u{x/v}] = O[u], or o = O[(µα.c)u] and α /∈ fn(c) and o′ = O[µα.c{α//u}] = O[µα.c].
Thus e.g. (λx.z)y →β z and (µα.[β]x)I →µ µα.[β]x are erasing steps. A reduction step
o → o′ which is not erasing is called non-erasing. Note that reduction is stable by
substitution and replacement.

A head-context is a context defined by the following grammar:

HO ::= HT | HC
HT ::= 2 t1 . . . tn (n > 0) | λx.HT | µα.HC
HC ::= [α]HT

A head-normal form is an object of the form HO[x], where x is any variable replacing the
constant 2. Thus for example µα.[β]λy.x(λz.z) is a head-normal form. An object o ∈ Oλµ is

3:6 D. Kesner and P. Vial Vol. 16:1

said to be head-normalizing, written o ∈ HN (λµ), if o→∗λµ o′, for some head-normal form

o′. Remark that o ∈ HN (λµ) does not imply o ∈ SN (λµ) while the converse necessarily
holds. We write HN (λ) and SN (λ) when t is restricted to be a λ-term and the reduction
system is restricted to the β-reduction rule.

A redex r in an object of the form o = HO[r] is called the head-redex of t. The
reduction step o→λµ o

′ contracting the head-redex of o is called a head-reduction step.
The head reduction strategy is a deterministic strategy on the set Oλµ performing always
head-steps, so that the head reduction strategy only stops on head normal forms. If the
head-strategy starting at o terminates, then o ∈ HN (λµ), while the converse direction is
not straightforward (cf. Theorem 4.4).

3. Quantitative Type Systems for the λ-Calculus

As mentioned before, our results rely on typability of λµ-terms in suitable systems with
non-idempotent types. Since the λµ-calculus embeds the λ-calculus, we start by recalling
the well-known [22, 17, 10] quantitative type systems for λ-calculus, called here Hλ and Sλ.
We then reformulate them, using a different syntactical view, resulting in the typing systems
H′λ and S ′λ, that are subsumed by the formalisms we adopt in Section 4 for λµ.

We start by fixing a countable set of base types a, b, c . . ., then we introduce two
different categories of types specified by the following grammars:

(Intersection Types) I ::= [σk]k∈K
(Types) σ, τ ::= a | I ⇒ σ

An intersection type [σk]k∈{1..n} is a multiset that can be understood as a type σ1 ∩ . . . ∩ σn,
where ∩ is associative and commutative, but non-idempotent. Thus, [] is the empty
intersection type. The non-deterministic choice relation R∗ between intersection types
is defined by [σk]k∈KR∗[σk]k∈K when K 6= ∅ and [σk]k∈KR∗[τ] (for any type τ) when
K = ∅. By making a slight abuse of notation, this choice relation is going to be used as a
non-deterministic operation ∗ (rather than a relation R∗) as follows:

[σk]
∗
k∈K :=

{
[τ] if K = ∅ and τ is any arbitrary type
[σk]k∈K if K 6= ∅

Variable assignments (written Γ) are total functions from variables to intersection
types. We may write ∅ to denote the variable assignment that associates the empty
intersection type [] to every variable. The domain of Γ is given by dom(Γ) := {x | Γ(x) 6= []},
so that when x /∈ dom(Γ), then Γ(x) stands for []. We write x : I (even when I = []) for
the assignment mapping x to I and all y 6= x to []. We write Γ ∧ Γ′ for x 7→ Γ(x) + Γ′(x),
where + is multiset union, so that dom(Γ ∧ Γ′) = dom(Γ) ∪ dom(Γ′). When dom(Γ) ∩ dom(Γ′),
then Γ ∧ Γ′ may also be written as Γ; Γ′. We write Γ \\x for the assignment defined by
(Γ \\x)(x) = [] and (Γ \\x)(y) = Γ(y) if y 6= x.

To present/discuss different typing systems, we consider the following derivability notions.
A type judgment is a triple Γ ` t : σ, where Γ is a variable assignment, t a term and σ a
type. A (type) derivation in system X is a tree obtained by applying the (inductive) rules
of the type system X , where each node corresponds to the application of some typing rule.
We write Φ .X Γ ` t : σ if Φ is a type derivation concluding with the type judgment Γ ` t : σ,
and just .X Γ ` t : σ if there exists Φ such that Φ .X Γ ` t : σ. A term t is X -typable iff
there is a derivation in X typing t, i.e. if there is Φ such that Φ .X Γ ` t : σ. We may omit
the index X if the name of the system is clear from the context.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:7

3.1. Characterizing Head β-Normalizing λ-Terms. We discuss in this section typing
systems being able to characterize head β-normalizing λ-terms. We first consider system
Hλ in Figure 1, first appearing in [22], then in [17].

(ax)
x : [τ] ` x : τ

Γ ` t : τ
(⇒i)

Γ \\x ` λx.t : Γ(x)⇒ τ

Γ ` t : [σk]k∈K ⇒ τ (Γk ` u : σk)k∈K
(⇒e)

Γ ∧ ∧k∈KΓk ` t u : τ

Figure 1: System Hλ

Rule (ax) Rule (⇒i)
(Γk ` t : σk)k∈K

(∧)
∧k∈KΓk
 t : [σk]k∈K

Γ ` t : I ⇒ σ Γ′
 u : I
(⇒e)

Γ ∧ Γ′ ` t u : σ

Figure 2: System H′λ

Notice that K = ∅ in rule (⇒e) allows to type an application t u without necessarily
typing the subterm u. Thus, if Ω = (λx.xx)(λx.xx), then from the judgment x : [σ] ` x : σ
we can derive for example x : [σ] ` (λy.x)Ω : σ.

System Hλ characterizes head β-normalization:

Theorem 3.1. Let t∈ Tλ. Then t is Hλ-typable iff t∈ HN (λ) iff the head-strategy terminates
on t.

Moreover, the implication typability implies termination of the head-strategy can be shown
by simple arithmetical arguments provided by the quantitative flavour of the typing system
Hλ, in contrast to classical reducibility arguments usually invoked in other cases [24, 35].
Actually, the arithmetical arguments give the following quantitative property:

Theorem 3.2. If t is Hλ-typable with tree derivation Π, then the size (number of nodes) of
Π gives an upper bound to the length of the head-reduction strategy starting at t.

To reformulate system Hλ in a different way, we now distinguish two sorts of judg-
ments: regular judgments of the form Γ ` t : σ assigning types to terms, and auxiliary
judgments of the form Γ
 t : I assigning intersection types to terms.

An equivalent formulation of system Hλ, called H′λ, is given in Figure 2, (where we
always use the name (⇒e) for the rule typing the application term, even if the rule is different
from that in system Hλ). There are two inherited forms of type derivations: regular (resp.
auxiliary) derivations are those that conclude with regular (resp. auxiliary) judgments.
Notice that K = ∅ in rule (∧) gives ∅
 u : [] for any term u, e.g. ∅
 Ω : [], so that one
can also derive x : [τ] ` (λy.x)Ω : τ in this system. Notice also that systems Hλ and H′λ
are relevant, i.e. they lack weakening. Equivalence between Hλ and H′λ gives the following
result:

Corollary 3.3. Let t ∈ Tλ. Then t is H′λ-typable iff t ∈ HN (λ) iff the head-strategy
terminates on t.

Auxiliary judgments turn out to substantially lighten the notations and to make the
statements (and their proofs) more readable.

3:8 D. Kesner and P. Vial Vol. 16:1

3.2. Characterizing Strongly β-Normalizing λ-Terms. We now discuss typing systems
being able to characterize strongly β-normalizing λ-terms. We first consider system Sλ in
Figure 3, which appears in [11] (slight variants appear in [16, 9, 29]). Rule (⇒e1) forces the
erasable argument (the subterm u) to be typed, even if the type of u (i.e. σ) is not being
used in the conclusion of the judgment. Thus, in contrast to system Hλ, every subterm of a
typed term is now typed. System Sλ characterizes strong β-normalization:

(ax)
x : [τ] ` x : τ

Γ ` t : τ
(⇒i)

Γ \\x ` λx.t : Γ(x)⇒ τ

Γ ` t : []⇒ τ ∆ ` u : σ
(⇒e1)

Γ ∧∆ ` t u : τ

Γ ` t : [σk]k∈K ⇒ τ (∆k ` u : σk)k∈K K 6= ∅
(⇒e2)

Γ ∧ ∧k∈K∆k ` t u : τ

Figure 3: System Sλ

Rule (ax) Rule (⇒i)
(Γk ` t : σk)k∈K

(∧)
∧k∈KΓk
 t : [σk]k∈K

Γ ` t : I ⇒ τ ∆
 u : I∗
(⇒e∗)

Γ ∧∆ ` tu : τ

Figure 4: System S ′λ

Lemma 3.4. Let t ∈ Tλ. Then t is Sλ-typable iff t ∈ SN (λ).

As before, the implication typability implies normalization can be show by simple
arithmetical arguments provided by the quantitative flavour of the typing system Sλ. Actually,
the proof of Lemma 3.4 gives the following bound:

Theorem 3.5. If t is Sλ-typable with tree derivation Π, then the size (number of nodes) of
Π gives an upper bound to the length of any reduction path starting at t.

An equivalent formulation of system Sλ, called S ′λ, is given in Figure 4. As before, we
use regular as well as auxiliary judgments. Notice that K = ∅ in rule (∧) is still possible,
but derivations of the form
 t : [], representing untyped terms, will never be used. The
choice operation ∗ (defined at the beginning of Section 3) in rule (⇒e∗) is used to impose
arbitrary types for erasable terms, i.e. when t has type []⇒ τ , then u needs to be typed
with an arbitrary type [σ], thus the auxiliary judgment typing u on the right premise of
(⇒e∗) can never assign [] to u. This should be understood as a form of restricted weakening
on the argument u, , which is only performed before the application of rule (⇒e∗) and only
when the functional type is of the form []→ U .

Example 1. Here is an example of type derivation in system S ′λ.

(ax)
x : [σ] ` x : σ

(⇒i)
x : [σ] ` λy.x : []⇒ σ

(ax)
z : [τ] ` z : τ

(∧)
z : [τ]
 z : [τ]

(⇒e∗)
x : [σ], z : [τ] ` (λy.x)z : σ

Since Sλ and S ′λ are equivalent, we also have:

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:9

Corollary 3.6. Let t∈ Tλ. Then t is S ′λ-typable iff t∈ SN (λ).

4. Quantitative Type Systems for the λµ-Calculus

We present in this section two quantitative systems for the λµ-calculus, systems Hλµ (Sec-
tion 4.2) and Sλµ (Section 4.4), characterizing, respectively, head and strong λµ-normalizing
objects. Since λ-calculus is embedded in the λµ-calculus, then the starting points to design
Hλµ and Sλµ are, respectively, systems H′λ and S ′λ, introduced in Section 3.

4.1. Types. We consider a countable set of base types a, b, c . . . and the following categories
of types:

(Object Types) A := C | U
(Command Type) C := #
(Union Types) U ,V ::= 〈σk〉k∈K
(Intersection Types) I,J ::= [Uk]k∈K
(Types) σ, τ ::= a | I ⇒ U
(Blind Types) ξ ::= a | []⇒ 〈ξ〉

The constant # is used to type commands, union types to type terms, and intersection
types to type variables (thus left-hand sides of arrows). We assume K to be any finite
set. Both [σk]k∈{1..n} and 〈σk〉k∈{1..n} can be seen as multisets, representing, respectively,
σ1 ∩ . . . ∩ σn and σ1 ∪ . . . ∪ σn, where ∩ and ∪ are both associative, commutative, but non-
idempotent. We may omit the indices in the simplest case: thus [U] and 〈σ〉 denote singleton
multisets. We define the operator ∧ (resp. ∨) on intersection (resp. union) multiset types by
: [Uk]k∈K ∧ [V`]`∈L := [Uk]k∈K + [V`]`∈L and 〈σk〉k∈K ∨ 〈τ`〉`∈L := 〈σk〉k∈K + 〈τ`〉`∈L, where
+ always means multiset union. The non-deterministic choice operation (resulting from
a non-deterministic choice relation, as in Section 3) is now not only defined on intersection
but also on union types:

[Uk]∗k∈K :=

{
[U] if K = ∅ and U 6= 〈 〉 is any arbitrary non-empty union type
[Uk]k∈K if K 6= ∅

〈σk〉∗k∈K :=

{
〈ξ〉 if K = ∅ and ξ is any arbitrary blind type
〈σk〉k∈K if K 6= ∅

The choice operation for union type is defined so that (1) the empty union cannot be
assigned to µ-abstractions (2) subject reduction is guaranteed in system Hλµ for erasing
steps (µα.c)u→µ µα.c, where α /∈ fn(c). We present concrete examples in Section 4.3 which
illustrates the need of non-empty union types and blind types to guarantee subject reduction.

The arity of types and union multiset types is defined by induction: for types σ, if
σ = I ⇒ U , then ar(σ) := ar(U) + 1, otherwise, ar(σ) := 0; for union multiset types,
ar(〈σk〉k∈K) := Σk∈K ar(σk). Thus, the arity of a type counts the number of its top-level
arrows. The cardinality of multisets is defined by |[Uk]k∈K | = |〈σk〉k∈K | := |K|.

Variable assignments (written Γ), are, as before, total functions from variables to
intersection multiset types. Similarly, name assignments (written ∆), are total functions
from names to union multiset types. The domain of ∆ is given by dom(∆) := {α | ∆(α) 6=
〈 〉}, where 〈 〉 is the empty union multiset, so that when α /∈ dom(∆), ∆(α) stands for 〈 〉. We
may write ∅ to denote the name assignment that associates the empty union type 〈 〉 to every
name. We write ∆ ∨∆′ for α 7→ ∆(α) ∨∆′(α), so that dom(∆ ∨∆′) = dom(∆) ∪ dom(∆′).

3:10 D. Kesner and P. Vial Vol. 16:1

When dom(∆) ∩ dom(∆′) = ∅, we may write ∆; ∆′ for ∆ ∨∆′. We write α : U (even
when α = 〈 〉) for the name assignment mapping α to U and all β 6= α to 〈 〉. We write ∆ \\α
for the name assignment defined by (∆ \\α)(α) = 〈 〉 and (∆ \\β)(α) = ∆(β) if β 6= α.

We now present our typing systems Hλµ and Sλµ, both having regular (resp. auxiliary)
judgments of the form Γ ` t : U | ∆ (resp. Γ
 t : I | ∆), together with their respective
notions of regular and auxiliary derivations. An important syntactical property they enjoy
is that both are syntax directed, i.e. for each (regular/auxiliary) typing judgment j there
is a unique typing rule whose conclusion matches the judgment j. This makes our proofs
much simpler than those arising with idempotent types, which are based on long generation
lemmas (e.g. [9, 47]).

4.2. System Hλµ. In this section we present a quantitative typing system for λµ, called
Hλµ, characterizing head λµ-normalization. It can be seen as a first intuitive step to
understand the typing system Sλµ, introduced later in Section 4.4, and characterizing strong
λµ-normalization. However, to avoid redundancy, the properties of the two systems are not
described in the same way:

• For Hλµ, we provide informal discussions to explain the main requirements needed to
capture quantitative information in the presence of classical feature (names, µ-redexes).
We particularly focus on the necessity of banning empty union types. We do not give the
proofs of the properties of Hλµ, because they are simpler than those of system Sλµ.
• For Sλµ, we provide a more compact presentation, since the main technical key choices

used for Hλµ are still valid. However, full statements and proofs of the properties of Sλµ
are detailed.

The (syntax directed) rules of the typing system Hλµ are presented in Figure 5. Rule

U 6= 〈 〉
(ax)

x : [U] ` x : U | ∅

Γ ` t : U | ∆
(⇒i)

Γ \\x ` λx.t : 〈Γ(x) ⇒ U〉 | ∆

Γ ` t : U | ∆
(#i)

Γ ` [α]t : # | ∆ ∨ {α : U}

Γ ` c : # | ∆
(#e)

Γ ` µα.c : ∆(α)∗ | ∆ \\α

(Γk ` t : Uk | ∆k)k∈K
(∧)

∧k∈KΓk
 t : [Uk]k∈K | ∨k∈K∆k

Γt ` t : 〈Ik ⇒ Uk〉k∈K | ∆t Γu
 u : ∧k∈KIk | ∆u

(⇒e)
Γt ∧ Γu ` tu : ∨k∈KUk | ∆t ∨ ∆u

Figure 5: System Hλµ

(⇒e) is to be understood as a logical admissible rule: if union (resp. intersection) is
interpreted as the OR (resp. AND) logical connective, then ORk∈K (Ik ⇒ Uk) and (ANDk∈K Ik)
implies (ORk∈K Uk). As in the simply typed λµ-calculus [42], the (#i) rule saves a type U
for the name α, however, in our system, the corresponding name assignment ∆ ∨ {α : U},
specified by means of ∨, collects all the types that α has been assigned during the derivation.
Notice that the (#e)-rule is not deterministic since ∆(α)∗ denotes an arbitrary union type
when ∆(α) is 〈 〉, a technical requirement which is discussed at the end of the section.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:11

In the simply typed λµ-calculus, call-cc = λy.µα.[α]y(λx.µβ.[α]x) would be typed with
((a⇒ b)⇒ a)⇒ a (Peirce’s Law), so that the fact that α is used twice in the type derivation
would not be explicitly materialized with simple types (same comment applies to idempotent
intersection/union types). This makes a strong contrast with the derivation in Figure 6,
where A := 〈a〉, B := 〈b〉, Uy := 〈[〈[A] ⇒ B〉] ⇒ A〉, and call-cc is typed with the union
type 〈[〈[〈[A]⇒ B〉]⇒ A〉]⇒ (A ∨A)〉.

(ax)
y : [Uy] ` y : Uy | ∅

(ax)
x : [A] ` x : A | ∅

(#i)
x : [A] ` [α]x : # | α : A

(#e)
x : [A] ` µβ.[α]x : B | α : A

(⇒i)
` λx.µβ.[α]x : 〈[A]⇒ B〉 | α : A

(∧)

 λx.µβ.[α]x : [〈[A]⇒ B〉] | α : A

(⇒e)
y : [Uy] ` y(λx.µβ.[α]x) : A | α : A

(#i)
y : [Uy] ` [α]y(λx.µβ.[α]x) : # | α : A ∨A

(#e)
y : [Uy] ` µα.[α]y(λx.µβ.[α]x) : A ∨A | ∅

(⇒i)
` λy.µα.[α]y(λx.µβ.[α]x) : 〈[〈[〈[A]⇒ B〉]⇒ A〉]⇒ (A ∨A)〉 | ∅

Figure 6: Typing call-cc

This example suggests to distinguish two different uses of names:

• The name α is saved twice by a (#i) rule : once for x and once for y(λx.µβ.[α]x), both
times with type A. After that, the abstraction µα.[α]y(λx.µβ.[α]x) restores the union
of the two types that were previously stored by α (by means of the two (#i)-rules). A
similar phenomenon occurs with rule (⇒i), which restores the types of the abstracted
variables.
• The name β is not free in [α]x, so that a new union type B is introduced to type the

abstraction µβ.[α]x. From a logical point of view, this corresponds to a weakening on
the right hand-side of the sequent, which is necessary, for instance, to derive the non-
idempotent counterpart of Peirce’s Law (cf. Fig. 6). Consequently, λ and µ-abstractions
are not treated symmetrically: when x is not free in t, then λx.t will be typed with
〈[]⇒ σ〉 (where σ is the type of t), and no new arbitrary intersection type is introduced
for the abstracted variable x.

An interesting observation is about the restriction of system Hλµ to the pure λ-calculus:
union types, name assignments and rules (#e) and (#i) are ruled out, so that every union
multiset takes the single form 〈τ〉, which can be simply identified with τ . Thus, the restricted
typing system Hλµ becomes system H′λ in Figure 2.

Another observation is about the property of relevance of assignments. Although there
is a restricted form of weakening in system Hλµ (allowing for example to derive the non-
idempotent counterpart of Peirce’s Law, see the top (#e)-rule in Fig. 6), if Γ ` o : A | ∆
is derivable, then any x ∈ dom(Γ) (resp. α ∈ dom(∆)) has at least one free occurrence in o.
Formally,

3:12 D. Kesner and P. Vial Vol. 16:1

Lemma 4.1 (Relevance for System Hλµ). Let o ∈ Oλµ. If Φ . Γ ` o : A | ∆, then
dom(Γ) ⊆ fv(o) and dom(∆) ⊆ fn(o).

Proof. By induction on Φ.

We define now our notion of derivation size, which is a natural number representing the
amount of information in tree derivations. For any type derivation Φ, sz (Φ) is inductively
defined by the following rules, where we use an abbreviated, self-understanding notation for
the premises.

sz
(

(ax)
x : [U] ` x : U | ∅

)
:= 1

sz

(
Φt � t

(⇒i)
Γ \\x ` λx.t : 〈Γ(x)⇒ U〉 | ∆

)
:= sz (Φt) + 1

sz

(
Φt � t

(#i)
Γ ` [α]t : # | ∆ ∨ {α : U}

)
:= sz (Φt) + ar(U)

sz

(
Φc � c

(#e)
Γ ` µα.c : ∆(α)∗ | ∆ \\α

)
:= sz (Φc) + 1

sz

(
(Φk � t)k∈K

(∧)
∧k∈KΓk
 t : [Uk]k∈K | ∨k∈K∆k

)
:= Σk∈K sz (Φk)

sz

(
Φt � t : 〈Ik → Uk〉k∈K Φu � u

Γ ` tu : ∨k∈KVk | ∆
(⇒e)

)
:= sz (Φt) + sz (Φu) + |K|

System Hλµ behaves as expected, in particular, typing is stable by reduction (Subject
Reduction) and anti-reduction (Subject Expansion):

Property 4.2 (Weighted Subject Reduction for Hλµ). Let Φ.Γ ` o : A | ∆. If o→ o′,
then there exists a derivation Φ′ . Γ ` o′ : A | ∆ such that sz (Φ′) ≤ sz (Φ). Moreover, if
the reduced redex is typed, then sz (Φ′) < sz (Φ).

An important remark is that, if the arity of the types were not taken into account in the
size of the rules (#i), then we would only have sz (Φ′) = sz (Φ) (and not sz (Φ′) < sz (Φ))
for the µ-reduction steps. Intuitively, the µ-reduction (µα.c)u →µ µα.c{α//u} dispatches
the (⇒e)-rule typing the root of the µ-redex (µα.c)u into several created (⇒e)-rules in the
reduct, but neither an increase nor a decrease of the measure is ensured. The solution to
recover this key feature (i.e. the decrease) is suggested by the effect of µ-reduction on the
(#i)-rules associated to α (see Figure 7): indeed, µ-reduction replaces every named term
[α]v by [α]vu, where u is the argument of the µ-redex, so that the saved types are smaller
under the created (⇒e)-rules than the ones in the original derivation.

As expected from an intersection (and union) type system, head normal forms are
typable in system Hλµ. Moreover, subject expansion holds for Hλµ, meaning that typing
is stable under anti-reduction. Note that we do not state a weighted subject expansion
property (although this would be possible) only because this is not necessary to prove the
final characterization property of system Hλµ (cf. Theorem 4.4).

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:13

. . . ` v : 〈Ik → Uk〉k∈K | . . .
(#i)

. . . ` [α]v : # | . . . ∨ {α : 〈Ik → Uk〉k∈K}

becomes
. . . ` v : 〈Ik → Uk〉k∈K |
 u : ∧k∈KIk | . . .

(⇒e)
. . . ` v u : ∨k∈KUk | . . .

(#i)
. . . ` [α]v u : # | . . . ∨ {α : ∨k∈KUk}

Figure 7: Effect of µ-reduction on rule (#i)

Property 4.3 (Subject Expansion for Hλµ). Let Φ′ � Γ′ ` o′ : A | ∆′. If o→ o′, then
there is Φ � Γ′ ` o : A | ∆′.

Note in particular that the head strategy only reduces typed redexes (the head redex of a
head reducible typed term is necessarily typed), so that finally, we can state our type-theoretic
characterization of head normalization for the λµ-calculus:

Theorem 4.4. Let o ∈ Oλµ. Then o is Hλµ-typable iff o ∈ HN (λµ) iff the head-strategy
terminates on o. Moreover, if o is Hλµ-typable with tree derivation Π, then sz (Π) gives an
upper bound to the length of the head-reduction strategy starting at o.

We do not provide the proofs of these properties and the last theorem, because it uses
special cases of the more general technology that we are going to develop later to deal with
strong normalization. Notice however that Theorem 4.4 ensures that the head-strategy is
complete for head-normalization in λµ.

4.3. Discussion. Now that we have stated the main result of this section, based on the
key (weighted) subject reduction property, let us come back to the design choices of our
development, in particular:

• The choice ∗ operator in rule (#e) requires the types to be blind, and
• The union types are non-empty.

Blind types raised in rule (#e) guarantee that terms do not have empty union types,
the necessity of which is a delicate constraint discussed later. In the meantime, we start by
justifying the particular form they adopt (arrows with empty domains), which is easier to
justify. Thus, consider the following example: let t1 = µβ.[γ]x with β 6= γ and x 6= y, so that
t1 y →µ t1. A typing derivation of t1 necessarily concludes with x : [Vx] ` t1 : 〈 〉∗ | γ : Vx, for
some union type Vx. Let us assume, only temporarily, that a non-blind type can be chosen
by the non-deterministic operator in rule (#e) e.g. 〈 〉∗ = 〈[U]⇒ U〉 for some union type U .
If we then assign U to y, the judgment y : [U];x : [Vx] ` t1 y : U | γ : Vx is derivable by rule
(⇒e). However, by relevance (Lemma 4.1), the judgment y : [U];x : [Vx] ` t1 : U | γ : Vx
cannot be derivable since y /∈ fv(t1). Thus, subject reduction simply fails. Note that if 〈 〉∗
chooses a blind type, for example 〈[]⇒ 〈a〉〉, then y is untyped in the derivation of t1y, i.e.
x : [Vx] ` t1 y : U | γ : Vx, so that subject reduction holds.

We now explain why union types are non-empty. In particular, there are two different
typing rules requiring union types to be non-empty: rule (ax) and rule (#e). To illustrate
the necessity of non-empty union types for µ-abstractions, i.e. rule (#e), let us assume, again

3:14 D. Kesner and P. Vial Vol. 16:1

temporarily, that an empty union type is introduced by the rule (#e) when α /∈ dom(∆),
and call such an instance (#empty) when this happens. Similarly, let us also call the instance
of an application rule to be (⇒empty) when the union type of its left-hand side is empty.

Γ ` c : # | ∆ α /∈ dom(∆)
(#empty)

Γ ` µα.c : 〈 〉 | ∆

Γ ` t : 〈 〉 | ∆ ∅
 u : [] | ∅
(⇒empty)

Γ ` tu : 〈 〉 | ∆
For instance, given t1 := µβ.[γ]x, where β 6= γ, every derivation typing t1 concludes

with rule (#empty) typing a judgment of the form x : [Vx] ` t1 : 〈 〉 | γ : Vx.
Assume now that a derivation Πc typing a command c contains k empty rules (#empty)

w.r.t. the name α, and that Πc is a subderivation of some other derivation typing a µ-redex
(µα.c)u for some term u. Let us give an example with k = 2 by setting c := [α]t2, where
t2 := µβ′.[α]t1 and t1 := µβ.[γ]x as before. Then, the (empty union) types of the terms t1
and t2 are saved by α, simply because β (resp. β′) does not occur free in the body of t1
(resp. t2). Thus, while typing command c, the name α is necessarily typed with 〈 〉 ∨ 〈 〉 = 〈 〉.

Formally, let Vx be any (non-empty) union type. Then,
...

(#i)
x : [Vx] ` [γ]x : # | γ : Vx

(#empty for β)
x : [Vx] ` t1 : 〈 〉 | γ : Vx

(#i)
x : [Vx] ` [α]t1 : # | γ : Vx

(#empty for β′)
x : [Vx] ` µβ′.[α]t1 : 〈 〉 | γ : Vx

(#i)
x : [Vx] ` [α](µβ′.[α]t1) : # | γ : Vx

Let us now use c = [α]t2 inside the µ-reduction: t = (µα.[α]t2)u →µ µα.[α](t3u) = t′,
where t3 := µβ′.[α](t1u). Then u is necessarily typed as follows:

(∧)
∅ ` u : [] | ∅

Let us call Π (resp. Π′) the type derivation of t (resp t′). Note that the µ-reduction
transforms each rule (#i) of Π into a rule (⇒empty) followed by (#i) in Π′ (see Figure 8).
Thus, if Πc contains k rules (#i) introducing α, then the derivation obtained by subject
reduction typing c{α//u} contains k new rules (⇒empty), each followed by a rule (#i). Indeed,
one may check in the example above that the derivation Π′ contains two rules (⇒empty) and
two rules (#i) introducing α, whereas Π contains two rules (#i) introducing α, and just
one rule (⇒empty) (the one typing the root of the redex).

In general, one can check that whatever the size definition is for rules (⇒e), (#empty)
and (⇒empty), the derivation size cannot decrease for any choice of k > 0: indeed, if rule
(#empty) is used, the (possibly empty) type of a term µα.c holds no information capturing
the number of free occurrences of α in the command c, so that there is no local way to
know how many times the argument u should be typed in the whole derivation of the term
(µα.c)u (compare Figure 8 to Figure 7).

The reader will notice that the same kind of phenomenon occurs, when in the previous
example, the term t1 is replaced with a variable x of type 〈 〉: then t = (µα.[α](µβ′.[α]x))u→µ

µα.[α]((µβ′.[α](xu))u) = t′, the type derivation of t′ contains two rules (⇒empty) whereas the
type derivation of t contains just one rule (⇒empty). This explains why one cannot assign
the empty union type in the rule (ax).

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:15

. . . ` v : 〈 〉 | . . .
(#i)

. . . ` [α]v : # | . . .
becomes

. . . ` v : 〈 〉 |
 u : [] | . . .
(⇒e)

. . . ` vu : 〈 〉 | . . .
(#i)

. . . ` [α]v u : # | . . .

Figure 8: Effect of µ-reduction on empty types

All these arguments to forbid the empty union type in our system are not only valid for
system Hλµ, but also apply to the system Sλµ, introduced later in Section. 4.4.

4.4. System Sλµ. This section presents a quantitative typing system characterizing strongly
normalizing λµ-terms. The (syntax directed) typing rules of the system Sλµ appear in
Figure 9.

U 6= 〈 〉
(ax)

x : [U] ` x : U | ∅

Γ ` t : U | ∆
(⇒i)

Γ \\x ` λx.t : 〈Γ(x) ⇒ U〉 | ∆

Γ ` t : U | ∆
(#i)

Γ ` [α]t : # | ∆ ∨ {α : U}

Γ ` c : # | ∆
(#e)

Γ ` µα.c : ∆(α)∗ | ∆ \\α

(Γk ` t : Uk | ∆k)k∈K
(∧)

∧k∈KΓk
 t : [Uk]k∈K | ∨k∈K∆k

Γt ` t : 〈Ik ⇒ Uk〉k∈K | ∆t Γu
 u : ∧k∈K I∗k | ∆u

(⇒e∗)
Γt ∧ Γu ` tu : ∨k∈KUk | ∆t ∨ ∆u

Figure 9: System Sλµ

As in system S ′λ, the non-deterministic choice operator ∗ is used to choose arbitrary types
for erasable terms, so that no subterm is untyped, thus ensuring strong λµ-normalization.
The use of ∗ in the (#e)-rule (raising a non-empty union type) can be seen as a weakening
on the name α (on the right hand-side of the sequent) followed by a µ-abstraction, while
its use in rule (⇒e∗) (raising a non-empty intersection type) should be seen weakening on
the left-hand side (domain) of an arrow type. We still consider the definition of size given
before, as the choice operator does not play any particular new role here.

As in system Hλµ, every term is typed with a non-empty union type:

Lemma 4.5. If .Γ ` t : U | ∆, then U 6= 〈 〉.

As well as in the case of Hλµ, system Sλµ can be restricted to the pure λ-calculus.
By the same observations made at the end of Section 4.2, we get the typing system S ′λ in
Figure 4 that characterizes strong β-normalization.

Relevance in system Sλµ is stated as follows:

Lemma 4.6 (Relevance for System Sλµ). Let o ∈ Oλµ. If Φ . Γ ` o : A | ∆, then
dom(Γ) = fv(o) and dom(∆) = fn(o).

Proof. By induction on Φ.

3:16 D. Kesner and P. Vial Vol. 16:1

Note the difference between Lemma 4.1 (inclusion) and Lemma 4.6 (equality): this is
because in Sλµ we use a choice operator in the (⇒e∗)-rule to prevent any subterm of a typed
term to be left untyped.

The definition of sz () is extended to system Sλµ as expected. Hence, sz (Φ) ≥ 1 holds
for any regular derivation Φ, whereas, by definition, the derivation of the empty auxiliary
judgment ∅
 t : [] | ∅ has size 0.

5. Typing Properties

This section shows two fundamental properties of reduction (i.e. forward) and anti-reduction
(i.e. backward) of system Sλµ. In Section 5.1, we analyze the subject reduction (SR) property,
and we prove that reduction preserves typing and decreases the size of type derivations (that
is why we call it weighted SR). The proof of this property makes use of two fundamental
properties (Lemmas 5.2 and 5.3) guaranteeing well-typedness of the meta-operations of
substitution and replacement. Section 5.2 is devoted to subject expansion (SE), which
states that non-erasing anti-reduction preserves types. The proof uses the fact that reverse
substitution (Lemma 5.5) and reverse replacement (Lemma 5.6) preserve types.

We start by stating an interesting property, to be used in our forthcoming lemmas, that
allows us to split and merge auxiliary derivations typing the same term:

Lemma 5.1. Let I = ∧k∈KIk. Then Φ . Γ
 t : I | ∆ iff there exist (Γk)k∈K , (∆k)k∈K
s.t. (Φk . Γk
 t : Ik | ∆k)k∈K , Γ = ∧k∈KΓk and ∆ = ∨k∈K∆k. Moreover, sz (Φ) =
Σk∈Ksz (Φk).

5.1. Forward Properties. We first state the substitution lemma, which guarantees that
typing is stable by substitution. The lemma also establishes the size of the derivation tree
of a substituted object from the sizes of the derivations trees of its components.

Lemma 5.2 (Substitution). Let Θu . Γu
 u : I | ∆u. If Φo . Γ;x : I ` o : A | ∆, then
there is Φo{x/u} such that

• Φo{x/u} � Γ ∧ Γu ` o{x/u} : A | ∆ ∨∆u.

• sz
(
Φo{x/u}

)
= sz (Φo) + sz (Θu)− |I|.

Proof. By induction on Φo using Lemmas 4.6 and 5.1. See the Appendix for details.

Typing is also stable by replacement. Moreover, we can specify the exact size of the
derivation tree of the replaced object from the sizes of its components.

Lemma 5.3 (Replacement). Let Θu . Γu
 u : ∧k∈K (I∗k) | ∆u where α /∈ fn(u). If
Φo . Γ ` o : A | α : 〈Ik ⇒ Vk〉k∈K ; ∆, then there is Φo{α//u} such that :

• Φo{α//u} . Γ ∧ Γu ` o{α//u} : A | α : ∨k∈KVk; ∆ ∨∆u.

• sz
(
Φo{α//u}

)
= sz (Φo) + sz (Θu).

Proof. By induction on Φ using Lemmas 4.6 and 5.1. See the Appendix for details.

Notice that the type of α in the conclusion of the derivation Φo{α//u} (which is ∨k∈KVk)
is strictly smaller than that of the conclusion of the derivation Φo (which is 〈Ik ⇒ Vk〉k∈K)
if and only if K 6= ∅.

Lemmas 5.2 and 5.3 are used in the proof of the following key property.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:17

Πr

r : U
λx

λx.r : 〈[]→ U〉
@

Γr + Γs ` (λx.r)s : U | ∆r + ∆s

Πs

s : V

x /∈ fv(r)

Πr

Γr ` r : U | ∆r

Figure 10: Proof reduction (erasing β-redex)

Property 5.4 (Weighted Subject Reduction for Sλµ). Let Φ . Γ ` o : A | ∆. If
o → o′ is a non-erasing step, then there exists a derivation Φ′ . Γ ` o′ : A | ∆ such that
sz (Φ) > sz (Φ′).

Proof. By induction on o → o′ using Lemmas 4.6, 5.2 and 5.3. See the Appendix for
details.

It is now worth discussing the erasing cases. Note that variable and name assignments are
not necessarily preserved by erasing reductions. For example, consider t = (λy.x)z → x = t′.
The term t is typed with a variable assignment whose domain is {x, z}, while t′ can only be
typed with an assignment whose domain is {x}. Concretely, starting from a derivation of
x : [〈a〉], z : [〈b〉] ` (λy.x)z : 〈a〉 (see Example 1 on page 8), we can derive x : [〈a〉] ` x : 〈a〉
but not x : [〈a〉], z : [〈b〉] ` x : 〈a〉, so that the type is preserved while the variable assignment
is not.

Type systems lacking (full) subject reduction are unusual, but (1) our restricted form of
subject reduction, for non-erasing steps only, is sufficient for our purpose (see how we deal
with the erasing steps in the proof of Lemma 6.2), (2) strong normalization differs from head
normalization in that, whereas “(λx.r)s is HN” is equivalent to “r{x/r} is HN”, “(λx.r)s
is SN” not equivalent to “r{x/s} is SN” (except in the non-erasing cases). In other words,
contrary to the HN case, erasing reductions lose information about the fact that terms
are or are not SN. This loss of information (occurring in the erasing case) is what makes
subject reduction in system Sλµ fail in general. This is illustrated in Fig. 10: there are two
derivations Πr .Γr ` r : U | and Πs .Γs ` s : V | ∆s with x /∈ fv(r), which are subderivations
of Π typing the redex (λx.r)s, which concludes with Γr + Γs ` (λx.s)r | ∆r + ∆s (this is
represented on the left-hand side of Fig. 10). The type V can be seen as an instance of the
choice operator []∗. The derivation typing the reduct r is just Πr (on the right-hand side).
All typing information pertaining to s has disappeared (i.e. has been lost), which explains
why the variable/name assignments are modified (Γr/∆r instead of Γr + Γs/∆r + ∆s). We
will come back to the semantics of strong normalization in Section 6.2.

5.2. Backward Properties. Subject expansion is based on two technical properties: the
first one, called reverse substitution, allows us to extract type information for an object o
and a term u from the type derivation of o{x/u}; similarly, the second one, called reverse
replacement, gives type information for a command c and a term u from the type derivation

3:18 D. Kesner and P. Vial Vol. 16:1

of c{α//u}. Both of them are proved by induction on derivations using Lemmas 4.6 and 5.1.
Formally,

Lemma 5.5 (Reverse Substitution). Let Φ′ . Γ′ ` o{x/u} : A | ∆′ Then there exist
Γ,∆, I,Γu,∆u such that:

• Γ′ = Γ ∧ Γu,
• ∆′ = ∆ ∨∆u,
• .Γ;x : I ` o : A | ∆
• .Γu
 u : I | ∆u.

Proof. By induction on Φ′ using Lemmas 4.6 and 5.1. See the Appendix for details.

Lemma 5.6 (Reverse Replacement). Let Φ′ � Γ′ ` o{α//u} : A | α : V; ∆′, where
α /∈ fn(u). Then there exist Γ,∆,Γu,∆u, (Ik)k∈K , (Vk)k∈K such that:

• Γ′ = Γ ∧ Γu,
• ∆′ = ∆ ∨∆u,
• V = ∨k∈KVk,
• .Γ ` o : A | α : 〈Ik → Vk〉k∈K ; ∆, and
• .Γu
 u : ∧k∈KI∗k | ∆u

Proof. By induction on Φ′ using Lemmas 4.6 and 5.1. See the Appendix for details.

The following property will be used in Section 6 to show that normalization implies typability.

Property 5.7 (Subject Expansion for Sλµ). Assume Φ′ � Γ′ ` o′ : A | ∆′. If o→ o′ is
a non-erasing step, then there is Φ � Γ′ ` o : A | ∆′.

Proof. By induction on → using Lemma 4.6, 5.5 and 5.6. See the Appendix for details.

6. Strongly Normalizing λµ-Objects

6.1. Type-theoretic characterization, with quantitative bounds. In this section, we
show the characterization of strongly-normalizing terms of the λµ-calculus by means of
the typing system introduced in Section 4, i.e. we show that an λµ-object o is strongly-
normalizing iff t is Sλµ-typable.

As defined in Section 2, for any λµ-object o, we write η(o) for the length of the maximal
reduction sequence starting at o. Remark that η(o) < ∞ iff o ∈ SN (λµ). The following
equations will play a key role in our proof of Lemma 6.2.

Lemma 6.1.

η(x t1 . . . tn) = +i=1...nη(ti)
η(λx.t) = η(t)
η(µα.c) = η(c)
η([α]t) = η(t)
η((λx.t)u v) = η(t{x/u}v) + 1 if x ∈ fv(t)
η((λx.t)u v) = η(u) + η(tv) + 1 if x /∈ fv(t)
η((µα.c)uv) = η((µα.c{α//u})v) + 1 if α ∈ fv(c)
η((µα.c)uv) = η(u) + η((µα.c)v) + 1 if α /∈ fv(c)

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:19

Proof. The proof follows the same lines of that of the λ-calculus (see [50], Fundamental
Lemma of Maximality 3.18). We only briefly discuss the two last cases.

• Let o = (µα.c)u v, where α ∈ fv(c). Take any reduction sequence ρ to normal form starting
at o, it is straightforward to see that ρ must reduce the head redex (µα.c)u, so that ρ
has necessarily the form o→∗λµ (µα.c′)u′ v′ →λµ (µα.c′{α//u′})v′ →λµ . . ., where c→∗λµ c′,
u →∗λµ u and v →∗λµ v′. Then ρ can be transformed into another (potentially longer)

reduction sequence ρ′ of the form o →λµ (µα.c{α//u})v →∗λµ µα.c′{α//u′})v′ →λµ

Thus η((µα.c)u v) ≤ η((µα.c{α//u})v) + 1 holds. The converse inequality is easy.
• Let o = (µα.c)u v, where α /∈ fv(c). Again, take any reduction sequence ρ to normal form

starting at o, it is again straightforward to see that ρ must reduce the head redex (µα.c)u, so
that ρ has necessarily the form o→∗λµ (µα.c′)u′ v′ →λµ (µα.c′)v′ →λµ . . ., where c→∗λµ c′,
u →∗λµ u and v →∗λµ v′. Then ρ can be transformed into another (potentially longer)

reduction sequence ρ′ of the form o →∗λµ (µα.c)nf(u) v →λµ (µα.c)v →∗λµ (µα.c′)v′ →λµ

. . ., where nf(u) denotes the normal form of u. Thus, η((µα.c)u v) ≤ η(u)+η((µα.c)v)+1.
The converse inequality is easy.

The proof of our main result (Theorem 6.4) relies on the following two ingredients:

• Every Sλµ-typable object is in SN (λµ) (Lemma 6.2).
• Every object in SN (λµ) is Sλµ-typable (Lemma 6.3).

We first show that any typable object o belongs to SN (λµ).

Lemma 6.2. If o is Sλµ-typable, i.e. Φ . Γ ` o : A | ∆, then η(o) ≤ sz (Φ). Thus
o ∈ SN (λµ).

Proof. We show η(o) ≤ sz (Φ) by induction on sz (Φ), where Φ . Γ ` o : A | ∆. When
Φ does not end with the rule (⇒e) the proof holds straightforwardly by the i.h. so we
consider that Φ ends with (⇒e), where A = U and o = x t1 . . . tn or o = (µα.c)t1 . . . tn or
o = (λx.u)t1 . . . tn, with n ≥ 1.

In all the three cases for o, there are subderivations (Φi)i∈{1...n} such that sz (Φi) < sz (Φ)
so that the i.h. gives η(ti) ≤ sz (Φi). Now, there are three different cases to consider:

(1) If o = x t1 . . . tn, then there are non-empty subderivations Φ1 . . .Φn of Φ typing t1 . . . tn
respectively. Since +i=1...nsz (Φi) + n + 1 ≤ sz (Φ), the i.h. gives η(ti) ≤ sz (Φi) for
1 ≤ i ≤ n. We conclude since η(x t1 . . . tn) = +i=1...nη(ti).

(2) If o = (µα.c)t1 . . . tn, there are two cases:
– α ∈ fn(c). Using Property 5.4, we get Φ′ . Γ ` (µα.c{α//t1})t2 . . . tn : U | ∆ and
sz (Φ′) < sz (Φ). Then the i.h. gives η((µα.c{α//t1})t2 . . . tn) ≤ sz (Φ′). We conclude
since η(o) = η((µα.c{α//t1})t2 . . . tn) + 1 ≤ sz (Φ′) + 1 ≤ sz (Φ).

3:20 D. Kesner and P. Vial Vol. 16:1

– α /∈ fn(c). Then Φ is of the form:

Φµα.c ` µα.c : 〈ξ0〉 | . . .

Φ1 ` t1 : V1 | . . .

. . . ` t1 : [V1] | . . .

. . . ` (µα.c)t1 : 〈ξ1〉 | . . .
...

Φn ` tn : Vn | . . .

. . . ` tn : [Vn] | . . .

. . . ` o : 〈ξn〉 | . . .
with U = 〈ξn〉. The type 〈ξ0〉 is obtained by choice because Lemma 4.6 guarantees
that no α is typed in the name assignments of the left derivations. Note that sz (Φ) =
+i=1...nsz (Φi) + sz (Φµα.c) + n since the ξi are all blind. We then build the following
derivation:

Φo′ =
Φ′µα.c ` µα.c : 〈ξ1〉 | . . .

Φ2 ` t2 : V2 | . . .

. . . ` t2 : [V2] | . . .
...

Φn ` tn : Vn | . . .

. . . ` tn : [Vn] | . . .

. . . ` o′ : 〈ξn〉 | . . .
with o′ = (µα.c)t2 . . . tn and Φ′µα.c the derivation Φµα.c where the choice operator raises
ξ1 instead of ξ0 (actually, any blind type of arity ≥ n − 1 would do). In particular,
sz
(
Φ′µα.c

)
= sz (Φµα.c), so that sz (Φo′) = +i=2...nsz (Φi) + sz (Φµα.c) +n− 1 < sz (Φ).

We also have sz (Φ1) < sz (Φ). The i.h. then gives η(o′) ≤ sz (Φo′) and η(t1) ≤ sz (Φ1).
We conclude since:

η((µα.c)t1 . . . tn) = η((µα.c)t2 . . . tn) + η(t1) + 1
≤i .h. sz (Φo′) + sz (Φ1) + 1
= +i=2...nsz (Φi) + sz (Φµα.c) + n− 1 + sz (Φ1) + 1
= sz (Φ)

(3) If o = (λx.u)t1 . . . tn, we reason similarly to the previous case.

Lemma 6.3. If o ∈ SN (λµ), then o is Sλµ-typable.

Proof. By induction on 〈η(o), |o|〉. If o is not an application t u, the inductive step is
straightforward. We only detail the case when o is an application.

• If o = x t1 . . . tn, the property is straightforward.
• If o = (µα.c)t1 . . . tn, we set o′ = (µα.c{α//t1})t2 . . . tn. There are two cases:
– α ∈ fn(c). Then η(o) = η(o′) + 1. By the i.h., there is Φo′ . Γ′ ` o′ : U | ∆′. By

Property 5.7, there is Φ . Γ′ ` o : U | ∆′ and we are done.
– α /∈ fn(c). Then o′ = (µα.c)t2 . . . tn and η(o) = η(o′) + η(t1) + 1. By the i.h., there

are typing derivations Φo′ . Γ′ ` o′ : U | ∆′ and Φ1 . Γ1 ` t1 : V1 | ∆1. Since α /∈ fn(c),
Lemma 4.6 entails that Φo′ is of the following form, where ξ1 is a blind type:

Φ′µα.c . µα.c : 〈ξ1〉

Φ2 . t2 : V2
t2 : [V2]

...

Φn . tn : Vn
tn : [Vn]

Γ′ ` o : 〈ξn〉 | ∆′

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:21

We then set Φ as follows:

Φµα.c . µα.c : 〈ξ0〉

Φ1 . Γ1 ` t1 : V1 | ∆1

t1 : [V1]

(µα.c)t1 : 〈ξ1〉

Φ2 . t2 : V2
t2 : [V2]

...

Φn . tn : Vn
tn : [Vn]

Γ′ + Γ1 ` o : 〈ξn〉 | ∆′ + ∆1

where Φµα.c is exactly as Φ′µα.c except that we raise the blind type ξ0 = []→ 〈ξ1〉 instead
of ξ1 (actually, any blind type of arity ≥ n would do).
• If o = (λx.t)u v, we reason similarly to the previous case.

Lemmas 6.2 and 6.3 allow us to conclude with the main result of this paper which is the
equivalence between typability and strong-normalization for the λµ-calculus. Notice that no
reducibility argument was used in the whole proof.

Theorem 6.4. Let o ∈ Oλµ. Then o is typable in system Sλµ iff o ∈ SN (λµ). Moreover, if
o is Sλµ-typable with tree derivation Π, then sz (Π) gives an upper bound to the maximal
length of a reduction sequence starting at o.

6.2. Discussion. As we have observed in the end of Section 5.1, subject reduction for
erasing steps fails in system Sλµ. The same is true for subject expansion. This naturally
rise the question: why subject reduction and expansion should hold in system Hλµ (related
to HN) and not in Sλµ (related to SN)? The difference of treatment lies in the semantics of
what these two systems are designed to capture:

• Hλµ captures head normalization (Theorem 4.4) i.e. a λµ-object o reduces to a HNF iff o
is Hλµ-typable. The first crucial observation about these first results is that no ”semantic
information” with respect to head normalization is lost during (arbitrary) reduction. We
make this notion more concrete below. Indeed, if o → o′ (whether this step is erasing
or not), then, by confluence, o is HN iff o′ is HN, and this is why we want both subject
reduction and subject expansion for Hλµ to hold. Moreover, o and o′ have head normal
forms of the same shape. Intuitively, it is no more difficult to prove that o′ is HN than to
prove that o is HN, and vice-versa. Of course, the step o→ o′ may erase some reduction
paths that exist in o, but these (erased) reduction paths are irrelevant to the fact that o
is HN or not: no semantic information pertaining to HN has been lost. This situation is
very different in system Sλµ.
• Sλµ captures strong normalization (Theorem 6.4), which is different from weak and head

normalization because it is a property about the finiteness of all reduction paths, and not
about the existence of at least one reduction path to a normal form. This difference is
materialized by the following three observations.
– If o→ o′, then “o is SN” and “o′ is SN” are not equivalent propositions, e.g.(λx.y)Ω→ y,

(λx.y)Ω is not SN whereas y is. In particular, no type system characterizing SN satisfies
subject expansion.

– If o→ o′ and “o is SN”, then “o′ is always SN”, but some important semantic information
may be lost with respect to strong normalization! For instance, if u is SN but the normal
form of u cannot be reached in less than 1000 reductions steps, then (λx.y)u is also SN,

3:22 D. Kesner and P. Vial Vol. 16:1

but the (erasing) reduction step (λx.y)u→ y loses information regarding the reduction
paths starting at (λx.y)u: the reduction obliterates reduction paths in u (intuitively,
on may not know if y originates from (λx.y)u, or (λx.y)x, or (λx.y)Ω. . .). This is a
loss, which explains why full subject reduction does not hold for system Sλµ. Moreover,
this also suggests that full subject reduction would arguably be less faithful to the
semantics of strong normalization. Note that (full) subject reduction could be obtained
by just allowing weakening in the typing system, while preserving the characterization
theorem. But weakening does not restore subject expansion, since SN is not stable
under expansion.

– If o → o′ and “o′ is SN implies o is SN”, then the reduction step is called perpetual:
perpetual strategies are precisely those that are used to study strong normalization.

Again, it is interesting to note that, when o → o′ is non-erasing, then o is SN iff o′ is
SN, and any reduction path in o has residuals in o′. This explains why a typing system
for strong normalization should satisfy subject reduction and subject expansion for non-
erasing steps (which is sufficient to prove the characterization theorem), while this is not
necessary for erasing steps.

These observations summarize why our typing systems enjoy full subject reduction and
subject expansion in one case (Hλµ) and only subject reduction and subject expansion for
non-erasing steps in the other (Sλµ).

7. The λµs-calculus

This section introduces the syntax (Section 7.1) and the operational semantics (Section 7.2)
of the λµs-calculus, a small-step refinement of λµ, for which the typing system Sλµ naturally
extends. The restriction of the λµs-calculus to intuitionistic logic is known as the linear
substitution calculus [1], deeply studied in rewriting theory and complexity analysis.

7.1. Syntax. The set of objects (Oλµs), terms (Tλµs) and commands (Cλµs) of the
λµs-calculus are given by the following grammars

(objects) o ::= t | c
(terms) t, u ::= x | λx.t | tu | µα.c | t[x/u]
(commands) c ::= [α]t | c〈α//β.u〉

The construction [x/u] (resp. 〈α//β.u〉) is called an explicit substitution (ES) (resp.
explicit replacement (ER)). Remark that ES do not apply to commands and ER do
not apply to terms. An ES [x/u] implements the meta-substitution operator {x/u} while
an ER 〈α//β.u〉 implements the fresh replacement meta-operator {α//β.u} introduced in
Section 2.2, i.e. the small step computation of c〈α//β.u〉 replaces only one occurrence of [α]t
inside c by [β]t〈α//β.u〉u. As in Section 2.1, the size of an object o is denoted by |o|.

The notions of free and bound variables and names are extended as expected, in
particular fv(t[x/u]) := (fv(t)\{x})∪fv(u) and fn(c〈α//β.u〉) := (fn(c)\{α})∪{β}∪fn(u).
The derived notion of α-conversion (i.e. renaming of bound variables and names) will be
assumed in the rest of the paper. Thus e.g. ([γ]x[x/y])〈γ//β.z〉 =α ([γ′]x′[x′/y])〈γ′//β.z〉.
The number of free occurrences of the variable x (resp. the name α) in o is denoted by
|o|x (resp. |o|α).

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:23

List (L), term (TT, CT, OT), and command (TC, CC, OC) contexts are respectively de-
fined by the following grammars:

L ::= 2 | L[x/u]
TT ::= 2 | λx.TT | TT t | t TT | µα.CT | TT[x/t] | t[x/TT]
CT ::= [α]TT | CT〈α//β.u〉 | c〈α//β.TT〉
OT ::= TT | CT
TC ::= λx.TC | TC t | t TC | µα.CC | TC[x/t] | t[x/TC]
CC ::= � | [α]TC | CC〈α//β.u〉 | c〈α//β.TC〉
OC ::= TC | CC

The hole 2 (resp. �) can be replaced by a term (resp. a command). Indeed, L[t] denotes the
replacement of 2 in L by the term t (similarly for TT[t], CT[t] and OT), while CC[c] denotes the
replacement of � in CC by the command c (similarly for TC and OC). Every meta-expression
XY with X ∈ {T, C} and Y ∈ {T, C} must be interpreted as a context taking an object Y and
yielding an object X: e.g. TC denotes a context that takes a command (C on the right) and
outputs a term (T on the left).

We write OTS for a term context OT which does not capture the free variables and names
in the set S, i.e. there are no abstractions and substitutions in the context that bind the
symbols in S. For instance TT = λy.2 can be specified as TTx while TT = λx.2 cannot. In
order to emphasize this particular property we may write TTS [[t]] instead of TTS [t], and we
may omit S when it is clear from the context. Same concepts apply to command contexts,
i.e. OCS does not capture the variables and names in S and the notation used for that is
OCS [[c]].

7.2. Operational Semantics. The reduction rules of the λµs-calculus aim to give a small-
step semantics to the λµ-calculus, based on the substitution/replacement at a distance
paradigm [2, 1]. The reduction relation λµs of the calculus is given by the context closure of
the following rewriting rules.

L[λx.t]u 7→B L[t[x/u]]
TT[[x]][x/u] 7→cv TT[[u]][x/u] if |TT[[x]]|x > 1
TT[[x]][x/u] 7→dv TT[[u]] if |TT[[x]]|x = 1
t[x/u] 7→wv t if x /∈ fv(t)
L[µα.c]u 7→M L[µγ.c〈α//γ.u〉] if γ is fresh
CC[[[α]t]]〈α//γ.u〉 7→cn CC[[[γ]tu]]〈α//γ.u〉 if |CC[[[α]t]]]|α > 1
CC[[[α]t]]〈α//γ.u〉 7→dn CC[[[γ]tu]] if |CC[[[α]t]]|α = 1
c〈α//γ.u〉 7→wn c if α /∈ fn(c)

where TT is to be understood as TTx and CC as CCα,γ .
We use →w for the reduction relation generated by the set of rules {7→wv , 7→wn} and

→λµs for the non-erasing reduction relation →λµs \ →w. For instance, the big step
reduction

(µα.[α]x(µβ.[α]λx.xx))u→µ µγ.[γ]x(µβ.[γ](λx.xx)u))u

where α has been alpha-renamed to γ, can be now emulated by 3 small steps :

(µα.[α]x(µβ.[α]λx.xx))u
→M µγ.([α]x(µβ.[α]λx.xx))〈α//γ.u〉
→cn µγ.([α]x(µβ.[γ](λx.xx)u))〈α//γ.u〉
→dn µγ.[γ]x(µβ.[γ](λx.xx)u))u

3:24 D. Kesner and P. Vial Vol. 16:1

Notice that the occurrences of α are (arbitrarily) replaced by γ one after another, thus
replacement is linearly processed. When there is just one occurrence of α left, the small
reduction step dn performs the last replacement and erases the remaining ER 〈α//γ.u〉 to
complete the operation.

More generally, not only the syntax of the λµs-calculus can be seen as a refinement of
the λµ-calculus, but also its operational semantics. Formally,

Lemma 7.1. If o ∈ Oλµ, then o→λµ o
′ implies o→+

λµs
o′.

Proof. By induction on the reduction relation →λµ.

Moreover, we can project λµs-reduction sequences into λµ-reduction sequences. In-
deed, consider the projection function P() computing all the explicit substitutions and
replacements of an object, thus in particular P(t[x/u]) := P(t){x/P(u)} and P(c〈α//α′.u〉) :=
P(c){α//α′.P(u)}. Then,

Lemma 7.2. If o ∈ Oλµs, then o→λµs o
′ implies P(o)→∗λµ P(o′).

Proof. By induction on the reduction relation →λµs .

7.3. Typing System. In this section we extend the (quantitative) typing system Sλµ
in order to capture the λµs-calculus, the aim being to characterize the set of strongly
λµs-normalizing objects by using quantitative arguments.

More precisely, system Sλµ is enriched with the two typing rules in Figure 11. Rule

Γt;x : I ` t : U | ∆t Γu
 u : I∗ | ∆u
(s)

Γt ∧ Γu ` t[x/u] : U | ∆t ∨∆u

Γc ` c : # | ∆c;α : 〈Ik → Vk〉k∈K Γu
 u : (∧k∈KI∗k)∗ | ∆u
(r)

Γc ∧ Γu ` c〈α//α′.u〉 : # | ∆c ∨∆u ∨ α′ : ∨k∈KVk

Figure 11: Additional Rules for System Sλµs

(s) is inspired by the derivation tree typing the term (λx.t)u: indeed, any derivation
.Γ ` (λx.t)u : V | ∆ induces two derivations .Γt, x : I ` t : V | ∆t and .Γu
 u : I∗ | ∆u,
from which we can type t[x/u]. Likewise, the rule (r) is motivated by the derivation tree
typing a µ-redex. In particular, when K = ∅ (i.e. when α /∈ fn(c)), then (∧k∈∅I∗k)∗ = []∗, so
that the outer star in (∧k∈KI∗k)∗ gives an arbitrary multiset [σ] ensuring the typing (and
thus the SN property) of the replacement argument u. Notice that Lemma 4.5 still holds
for Sλµs i.e. if .SλµsΓ ` t : U | ∆, then U 6= 〈 〉.

As one may expect, system Sλµs encodes a non-idempotent and relevant system for
intuitionistic logic with ES [29]. More precisely, restricting rule (s) to λ-terms with ES gives
the following rule:

Γ;x : I ` t : σ Γ′
 u : I∗

Γ ∧ Γ′ ` t[x/u] : σ
Relevance also holds for λµs:

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:25

Lemma 7.3 (Relevance). Let o ∈ Oλµs. If Φ . Γ ` o : A | ∆ (resp. Φ . Γ
 t : I | ∆
with I 6= []), then fv(o) = dom(Γ) and fn(o) = dom(∆) (resp. fv(t) = dom(Γ) and
fn(t) = dom(∆)).

Proof. By induction on Φ.

We now extend the function sz () introduced in Section 4.4 by adding the following
cases:

sz

(
Φt � t Φu � u

(s)
Γt ∧ Γu ` t[x/u] : U | ∆ ∨∆u

)
:= sz (Φt) + sz (Φu)

sz

(
Φc � Γ ` c : # | ∆, α : 〈Ik → U〉k∈K Φu � u

(r)
Γc ∧ Γu ` c〈α//α′.u〉 : # | ∆c ∨∆u

)
:= sz (Φc) + sz (Φu) + |K| − 1

2

Notice that sz (Φ) > 1 still holds for any regular derivation Φ.

As explained in Section 5.1, weighted subject reduction holds for µ-reduction steps
like t = (µα.c)u →µ µγ.c{α//γ.u} = t′ because γ is typed in t′ with smaller arity than
that of α in t. The (big) step above is emulated in the λµs-calculus by the (small) steps
t →M µγ.c〈α//γ.u〉 →+

cn,dn,wn t
′, where cn and dn perform linear replacements, so they are

also naturally expected to decrease the size of type derivations. However, for the first step
t = (µα.c)u →M µγ.c〈α//γ.u〉 = t′, even if no real replacement has taken place yet, we
should still have a quantifiable decrease of the form sz (Φt) > sz (Φt′). This is the reason
we use ”−1

2” when defining the size of explicit replacements, which does not compromise
the forthcoming weighted subject reduction property.

One may naively think that the ”−1
2” component in the size definition of an ER can

compromise the decrease of the size for a step t = µγ.c〈α//γ.u〉 →dn µα.c{α//γ.u} = t′, when
c holds exactly one occurrence of α : indeed, removing the ER 〈α//γ.u〉 induces an increase
of the measure equal to 1

2 . However, the arity contribution of (the unique occurrence of)
α in t is greater than that of the new occurrence of γ in t′: the replacement operation
then induces a decrease of the measure which is equal to some k > 1; and thus the overall
decrease of the measure is in the worst case k − 1

2 > 0, which still grants sz (Φ) > sz (Φ′).
The decrease of the measure for a wn-step is more evident. Last, but not least, the fact that
sz (Φ) is a half-integer greater or equal to one ensures that the measure is still well-founded.

8. Typing Properties

As in the case of the λµ-calculus, we show that the refined λµs-calculus is well-behaved
w.r.t. the extended typing system Sλµs . This is done by means of forward (Section 8.1) and
backward (Section 8.2) properties.

8.1. Forward Properties. Weighted Subject Reduction for the λµs-calculus (Property 1)
is based on two key properties, called respectively the Linear Substitution and the Linear
Replacement Lemmas. These properties may simply be understood as a refinement of the
Substitution Lemma 5.2 and the Replacement Lemma 5.3 to the case of the small-step λµs-
calculus. Their precise statements and proofs can be found in the Appendix (Lemmas 10.1
and 10.2).

3:26 D. Kesner and P. Vial Vol. 16:1

Property 1 (Weighted Subject Reduction for λµs). Let Φ . Γ ` o : A | ∆. If o→ o′

is a non-erasing step, then Φ′ . Γ ` o′ : A | ∆ and sz (Φ) > sz (Φ′).

Proof. By induction on the relation → using Lemma 4.5, Lemma 7.3 and the Linear
Substitution and Replacement Lemmas mentioned above. See the Appendix for details.

8.2. Backward Properties. As in the implicit case (Section 5.2), subject expansion for
non-erasing λµs-step relies on (Linear) Reverse Substitution and (Linear) Reverse
Replacement Lemmas: if Φ′.Γ ` o′ : A | ∆ and o′ has been obtained from o by substituting
one occurrence of x by u (or one subcommand [α]t by [α′]tu), then, informally speaking, it
is possible to decompose Φ′ into a regular derivation Φ0 typing o and an auxiliary derivation
Θu typing u. The precise statements and proofs can be found in the Appendix (Lemma 10.3
and 10.4).

Property 2 (Subject Expansion for λµs). Let Φ′ . Γ ` o′ : A | ∆. If o →λµs o
′ (i.e. a

non-erasing λµs-step), then Φ . Γ ` o : A | ∆.

Proof. By induction on →λµs using the Linear Reverse Lemmas mentioned above. See the
Appendix for details.

9. Strongly Normalizing λµs-Objects

In this section we show a characterization of the set of strongly λµs-normalizing terms
by means of typability. The proof is done in several steps. The first key point is the
characterization of the set of strongly λµs-normalizing terms (instead of strongly normalizing
λµs-terms). For that, SR and SE lemmas for the type system are used. The second
key point is the equivalence between strongly λµs and λµs-normalizing terms. While
the inclusion SN (λµs) ⊆ SN (λµs) is straightforward, the fact that every w-reduction
step can be postponed w.r.t. any λµs-step (Lemma 9.2) turns out to be crucial to show
SN (λµs) ⊆ SN (λµs).

These technical tools are now used to prove that SN (λµs) coincides exactly with the
set of typable terms. To close the picture, i.e. to show that also SN (λµs) coincides with
the set of typable terms, we establish an equivalence between SN (λµs) and SN (λµs).

As defined in Section 2, for any λµs-object o, we write now η(o) for the length of the
maximal reduction sequence starting at o. The following equations will play a key role in
our proof of Theorem 9.4.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:27

Lemma 9.1.

η(x t1 . . . tn) = +i=1...nη(ti)
η(λx.t) = η(t)
η(µα.c) = η(c)
η([α]t) = η(t)
η((λx.u)vt) = η(u[x/v]t)
η((µα.c)vt) = η((µα′.c〈α//α′.v〉)t)
η(t[x/s]) = η(t) + η(s) + 1 if |t|x = 0
η(c〈α//α′.s〉) = η(c) + η(s) + 1 if |c|α = 0
η(TT)[[x]][x/u] = η(TT[[u]]) if |TT[[x]]|x = 1
η(CC[[[α]t]]〈α//α′.v〉) = η(CC[[[α′]tv]]) if |CC[[[α]t]]|α = 1
η(TT[[x]][x/u]) = η(TT[[u]][x/u]) if |TT[[x]]|x > 1
η(CC[[[α]t]]〈α//α′.v〉) = η(CC[[[α′]tv]]〈α//α′.v〉) if |CC[[[α]t]]|α > 1
η((tu)[x/s]) = η(t[x/s]u) if |u|x = 0

In order to infer SN (λµs) ⊆ SN (λµs), the following postponement property is crucial.

Lemma 9.2 (Postponement). Let o ∈ Oλµs. If o→+
w→λµso

′ then o→λµs→+
w o
′.

Proof. We first show by cases o →w→λµs o
′ implies o →λµs→+

w o′. Then, the statement
holds by induction on the number of w-steps from o.

Lemma 9.3 (From λµs to λµs). Let o ∈ Oλµs. If o ∈ SN (λµs), then o ∈ SN (λµs).

Proof. We show that any reduction sequence ρ : o →λµs . . . is finite by induction on the
pair 〈o, n〉, where n is the maximal integer such that ρ can be decomposed as ρ : o →n

w

o′ →λµs o
′′ → . . . (this is well-defined since →w is trivially terminating). We compare the

pair 〈o, n〉 using →λµs for the first component (this is well-founded since o ∈ SN (λµs) by
hypothesis) and the standard order on natural numbers for the second one. When the
reduction sequence starts with at least one w-step we conclude by Lemma 9.2. All the other
cases are straightforward.

We conclude with the main theorem of this section:

Theorem 9.4. Let o ∈ Oλµs. Then o ∈ SN (λµs) iff o is typable.

Proof. Let Φ . Γ ` o : τ | ∆. Assume o /∈ SN (λµs) so that there exists an infinite sequence
o = o0 →λµs o1 →λµs o2 →λµs · · · . By Lemma 1 Φi . Γ ` oi : τ | ∆ for every i, and there
exists an infinite sequence sz (Φ0) > sz (Φ1) > sz (Φ2) > . . ., which leads to a contradiction
because sz () is a half-integer > 1. Therefore, o ∈ SN (λµs) ⊆Lemma 9.3 SN (λµs).

For the converse, o ∈ SN (λµs) ⊆ SN (λµs) because →λµs⊆→λµs . We then show that
o ∈ SN (λµs) implies o is typable. For that, we use the equalities in Lemma 9.1 to reason
by induction on η(t). The cases (1)-(6) and (13) are straightforward while the cases (7)-(12)
use Lemma 2 (Partial Subject Expansion).

It is worth noticing that the proof of Theorem 9.4 is self-contained: we do not use at all
the previous characterization of strongly normalizing objects in the λµ-calculus that we have
developed in Section 6. We remark however that an alternative proof of this theorem can be
given in terms of the projection function defined in Section 7.2, an appropriate preservation
of strong normalization-like property [27], and Theorem 6.4.

3:28 D. Kesner and P. Vial Vol. 16:1

10. Conclusion

This paper provides non-idempotent type assignment systems Hλµ and Sλµ for the λµ-
calculus, characterizing, respectively, head and strongly normalizing terms. These systems
feature intersection and union types and can be used to get quantitative information of
λµ-reduction sequences in the following sense:

• Whenever o is typable in system Hλµ, then its type derivation gives a measure providing
an upper bound to the length of the head-reduction strategy starting at o.
• The same happens with system Sλµ with respect to the maximal length of a reduction

sequence starting at o.
• Systems Hλµ and Sλµ have suggested the definition of the calculus λµs, which implements

a small-step operational semantics for classical natural deduction that is an extension of
the substitution at a distance paradigm to the classical case.
• The calculus λµs was endowed with an extension of the typing system Sλµ presented for

the λµ-calculus. The resulting system does not only characterize strong-normalization of
small-step reduction but also gives quantitative information about it.

Following Chapter 3 of [35] (resp. [11]) in the framework of idempotent (resp. non-
idempotent) intersection types for the λ-calculus, it is also possible to use system Hλµ to
characterize weak normalization of λµ-terms. This can be done by considering a restricted
class of judgments based on positive/negative occurrences of the empty type []. This
characterization also gives a certification of the fact that the leftmost-outermost strategy is
complete for weak normalization in the λµ-calculus.

This work suggests many perspectives in the close future, including:

• Quantitative types are a powerful tool to provide relational models for λ-calculus [17, 3].
The construction of such models for λµ should be investigated, particularly to understand
in the classical case the collapse relation between quantitative and qualitative models [21].
• We expect to be able to transfer the ideas in this paper to a classical sequent calculus

system, as was already done for focused intuitionistic logic [30]. In particular, the relational
model proposed for the λ̄µ-calculus [51] could be useful for this purpose.
• The fact that idempotent types were already used to show observational equivalence

between call-by-name and call-by-need [28] in intuitionistic logic suggests that our typing
system Sλµs could be used in the future to provide a type-theoretical view of the fact that
classical call-by-name and classical call-by-need are not observationally equivalent [43].
• Moreover, as in [8], it should be possible to obtain exact bounds (and not only upper

bounds) for the lengths of the head-reduction and the maximal reduction sequences.
Although this result remains as future work, we remark that the difficult and conceptual
part of the technique relies on a decreasing measure for λµ-reduction, which is precisely
one of the contributions of this paper.
• The inhabitation problem for λ-calculus is known to be undecidable for idempotent

intersection types [46], but decidable for the non-idempotent ones [10]. We may conjecture
that inhabitation is also decidable for Hλµ.

Acknowledgment: We would like to thank Vincent Guisse, who started a reflexion
on quantitative types for the λµ-calculus during his M1 internship in Univ. Paris-Diderot.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:29

References

[1] B. Accattoli, E. Bonelli, D. Kesner, and C. Lombardi. A nonstandard standardization theorem. In
P. Sewell, editor, Proceedings of the 41st Annual ACM Symposium on Principles of Programming
Languages (POPL), pages 659–670. ACM Press, 2014.

[2] B. Accattoli and D. Kesner. The structural lambda-calculus. In A. Dawar and H. Veith, editors,
Proceedings of 24th EACSL Conference on Computer Science Logic, volume 6247 of Lecture Notes in
Computer Science, pages 381–395. Springer-Verlag, Aug. 2010.

[3] S. Amini and T. Ehrhard. On Classical PCF, Linear Logic and the MIX Rule. In S. Kreutzer, editor, 24th
EACSL Annual Conference on Computer Science Logic (CSL 2015), volume 41 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 582–596. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2015.

[4] Y. Andou. Church-Rosser property of a simple reduction for full first-order classical natural deduction.
Annals of Pure Applied Logic, 119(1-3):225–237, 2003.

[5] Z. M. Ariola, H. Herbelin, and A. Saurin. Classical call-by-need and duality. In Ong [39], pages 27–44.
[6] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of

type assignment. Bulletin of Symbolic Logic, 48:931–940, 1983.
[7] P. Battyányi and K. Nour. An estimation for the lengths of reduction sequences of the λµρθ-calculus.

Logical Methods in Computer Science, 14(2), 2018.
[8] A. Bernadet and S. Lengrand. Complexity of strongly normalising λ-terms via non-idempotent intersection

types. In M. Hofmann, editor, Foundations of Software Science and Computation Structures (FOSSACS),
volume 6604 of Lecture Notes in Computer Science, pages 88–107. Springer-Verlag, 2011.

[9] A. Bernadet and S. Lengrand. Non-idempotent intersection types and strong normalisation. Logical
Methods in Computer Science, 9(4), 2013.

[10] A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca. The inhabitation problem for non-idempotent
intersection types. In Dı́az et al. [19], pages 341–354.

[11] A. Bucciarelli, D. Kesner, and D. Ventura. Non-idempotent intersection types for the lambda-calculus.
Logic Journal of the IGPL, 2017.

[12] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms. Archive for Mathematical
Logic, 19:139–156, 1978.

[13] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the λ-calculus.
Notre Dame Journal of Formal Logic, 4:685–693, 1980.

[14] P. Curien and H. Herbelin. The duality of computation. In M. Odersky and P. Wadler, editors, Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal,
Canada, September 18-21, 2000., pages 233–243. ACM, 2000.

[15] R. David and K. Nour. A short proof of the strong normalization of classical natural deduction with
disjunction. J. Symb. Log., 68(4):1277–1288, 2003.

[16] E. De Benedetti and S. Ronchi Della Rocca. Bounding normalization time through intersection types. In
Graham-Lengrand and Paolini [25], pages 48–57.

[17] D. de Carvalho. Sémantiques de la logique linéaire et temps de calcul. These de doctorat, Université
Aix-Marseille II, 2007.

[18] D. de Carvalho. Execution time of λ-terms via denotational semantics and intersection types. Mathemat-
ical Structures in Computer Science, 28(7):1169–1203, 2018.

[19] J. Dı́az, I. Lanese, and D. Sangiorgi, editors. Proceedings of the 8th International Conference on Theoretical
Computer Science (TCS), volume 8705 of Lecture Notes in Computer Science. Springer-Verlag, 2014.

[20] D. J. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the Curien-
Herbelin symmetric lambda calculus: Extending the coppo-dezani heritage. Theoretical Computer
Science, 398(1-3):114–128, 2008.

[21] T. Ehrhard. Collapsing non-idempotent intersection types. In P. Cégielski and A. Durand, editors,
Proceedings of 26th EACSL Conference on Computer Science Logic, volume 16 of LIPIcs, pages 259–273.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[22] P. Gardner. Discovering needed reductions using type theory. In M. Hagiya and J. C. Mitchell, editors,
Theoretical Aspects of Computer Software, International Conference TACS ’94, Sendai, Japan, April
19-22, 1994, Proceedings, volume 789 of Lecture Notes in Computer Science, pages 555–574. Springer,
1994.

[23] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

3:30 D. Kesner and P. Vial Vol. 16:1

[24] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1990.
[25] S. Graham-Lengrand and L. Paolini, editors. Proceedings of the Sixth Workshop on Intersection Types and

Related Systems (ITRS), Dubrovnik, Croatia, 2012, volume 121 of Electronic Proceedings in Theoretical
Computer Science, 2013.

[26] T. Griffin. A formulae-as-types notion of control. In 17th Annual ACM Symposium on Principles of
Programming Languages (POPL), pages 47–58. ACM Press, 1990.

[27] D. Kesner. A theory of explicit substitutions with safe and full composition. Logical Methods in Computer
Science, 5(3:1):1–29, 2009.

[28] D. Kesner. Reasoning about call-by-need by means of types. In B. Jacobs and C. Löding, editors,
Foundations of Software Science and Computation Structures - 19th International Conference, FOSSACS
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9634 of Lecture Notes in Computer
Science, pages 424–441. Springer-Verlag, 2016.

[29] D. Kesner and D. Ventura. Quantitative types for the linear substitution calculus. In Dı́az et al. [19],
pages 296–310.

[30] D. Kesner and D. Ventura. A resource aware computational interpretation for Herbelin’s syntax. In
M. Leucker, C. Rueda, and F. D. Valencia, editors, Theoretical Aspects of Computing - ICTAC 2015 -
12th International Colloquium Cali, Colombia, October 29-31, 2015, Proceedings, volume 9399 of Lecture
Notes in Computer Science, pages 388–403. Springer-Verlag, 2015.

[31] D. Kesner and P. Vial. Types as resources for classical natural deduction. In D. Miller, editor, Proceedings
of the 2nd International Conference on Formal Structures for Computation and Deduction, FSCD 2017,
volume 84 of LIPIcs, pages 24:1–24:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Sept. 2017.

[32] A. Kfoury. A linearization of the lambda-calculus and consequences. Technical report, Boston Universsity,
1996.

[33] A. Kfoury and J. Wells. Principality and type inference for intersection types using expansion variables.
Theoretical Computer Science, 311(1-3):1–70, 2004.

[34] K. Kikuchi and T. Sakurai. A translation of intersection and union types for the λµ-calculus. In
J. Garrigue, editor, Programming Languages and Systems - 12th Asian Symposium, APLAS 2014,
Singapore, November 17-19, 2014, Proceedings, volume 8858 of Lecture Notes in Computer Science, pages
120–139. Springer-Verlag, 2014.

[35] J.-L. Krivine. Lambda-calculus, types and models. Ellis Horwood, 1993.
[36] O. Laurent. On the denotational semantics of the untyped lambda-mu calculus, 2004. Unpublished note.
[37] B. V. Mario Coppo, Mariangiola Dezani-Ciancaglini. Functional characters of solvable terms. Mathemat-

ical Logic Quarterly, 27:45–58, 1981.
[38] P. M. Neergaard and H. G. Mairson. Types, potency, and idempotency: why nonlinearity and amnesia

make a type system work. In C. Okasaki and K. Fisher, editors, Proceedings of the Ninth ACM SIGPLAN
International Conference on Functional Programming (ICFP), pages 138–149. ACM Press, 2004.

[39] L. Ong, editor. Typed Lambda Calculi and Applications - 10th International Conference, TLCA 2011,
Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of Lecture Notes in Computer Science.
Springer-Verlag, 2011.

[40] L. Ong and S. J. Ramsay. Verifying higher-order functional programs with pattern matching algebraic
data type s. In T. Ball and M. Sagiv, editors, Proceedings of the 38th Annual ACM Symposium on
Principles of Programming Languages (POPL), pages 587–598. ACM Press, 2011.

[41] M. Pagani and S. Ronchi Della Rocca. Solvability in resource lambda-calculus. In L. Ong, editor,
Foundations of Software Science and Computation Structures, volume 6014 of Lecture Notes in Computer
Science, pages 358–373. Springer-Verlag, 2010.

[42] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In A. Voronkov,
editor, International Conference on Logic Programming and Automated Reasoning, volume 624 of Lecture
Notes in Computer Science, pages 190–201. Springer-Verlag, July 1992.

[43] P. Pédrot and A. Saurin. Classical by-need. In P. Thiemann, editor, Programming Languages and
Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 616–643. Springer-Verlag,
2016.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:31

[44] E. Polonovski. Substitutions explicites, logique et normalisation. Thèse de doctorat, Université Paris 7,
2004.

[45] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-mu calculus.
Mathematical Structures in Computer Science, 11(2):207–260, 2001.

[46] P. Urzyczyn. The emptiness problem for intersection types. Journal of Symbolic Logic, 64(3):1195–1215,
1999.

[47] S. van Bakel. Sound and complete typing for lambda-mu. In E. Pimentel, B. Venneri, and J. B. Wells,
editors, Proceedings Fifth Workshop on Intersection Types and Related Systems, ITRS 2010, Edinburgh,
U.K., 9th July 2010., volume 45 of EPTCS, pages 31–44, 2010.

[48] S. van Bakel, F. Barbanera, and U. de’Liguoro. A filter model for the λµ-calculus - (extended abstract).
In Ong [39], pages 213–228.

[49] S. van Bakel, F. Barbanera, and U. de’Liguoro. Characterisation of strongly normalising lambda-mu-terms.
In Graham-Lengrand and Paolini [25], pages 1–17.

[50] F. van Raamsdonk, P. Severi, M. H. Sørensen, and H. Xi. Perpetual reductions in lambda-calculus. Inf.
Comput., 149(2):173–225, 1999.

[51] L. Vaux. Convolution lambda-bar-mu-calculus. In S. Ronchi Della Rocca, editor, Typed Lambda Cal-
culi and Applications, 8th International Conference, TLCA 2007, Paris, France, June 26-28, 2007,
Proceedings, volume 4583 of Lecture Notes in Computer Science, pages 381–395. Springer-Verlag, 2007.

Appendix

Lemma 5.2 (Substitution). Let Θu . Γu
 u : I | ∆u. If Φo . Γ;x : I ` o : A | ∆, then
there is Φo{x/u} such that

• Φo{x/u} � Γ ∧ Γu ` o{x/u} : A | ∆ ∨∆u.

• sz
(
Φo{x/u}

)
= sz (Φo) + sz (Θu)− |I|.

Proof. We prove a more general statement, namely:
Let Θu . Γu
 u : I | ∆u.

• If Φo . Γo;x : I ` o : A | ∆o, then there is Φo{x/u} such that

Φo{x/u} � Γo ∧ Γu ` o{x/u} : A | ∆o ∨∆u

• If Φo . Γo;x : I
 t : J | ∆o, then there is Φo{x/u} such that

Φo{x/u} � Γo ∧ Γu
 t{x/u} : J | ∆o ∨∆u

In both cases sz
(
Φo{x/u}

)
= sz (Φo) + sz (Θu)− |I|.

We proceed by induction on the structure of Φo.

• (ax):
– If o = x, then I = [U] is a singleton, A = U , Γo = ∆o = ∅ and o{x/u} = u. The

derivation Θu is necessarily of the following form

Φ′u . Γu ` u : U | ∆u
(∧)

Γu
 u : [U] | ∆u

We then set Φx{x/u} = Φ′u. Then sz
(
Φx{x/u}

)
= sz (Φx)+sz (Θu)−|I|, since sz (Φx) =

1 = |I| and sz (Θu) = sz (Φ′u).
– If o = y 6= x, then I = [] and o{x/u} = y. Moreover, Θu is necessarily :

(∧)
∅
 u : [] | ∅

We set Φy{x/u} = Φy. Then sz
(
Φy{x/u}

)
= sz (Φy) + sz (Θu) − |I| since |I| = 0 and

sz (Θu) = 0.
• (⇒i) : then o = λx.t and the derivation Φo has the following form

3:32 D. Kesner and P. Vial Vol. 16:1

Φt � Γo;x : I; y : J ` t : Ut | ∆o
(⇒i)

Γo;x : I ` λy.t : 〈J ⇒ Ut〉 | ∆o

By the i.h. we have Φt{x/u} � (Γo; y : J) ∧ Γu ` t{x/u} : U | ∆o ∨∆u with sz
(
Φt{x/u}

)
=

sz (Φt) + sz (Θu) − |I|. By α-conversion y /∈ fv(u) so that y /∈ dom(Γu) by Lemma 4.6,
thus (Γo; y : J) ∧ Γu = (Γo ∧ Γu); y : J . We then set Φ(λy.t){x/u} equal to

Φt{x/u}
(⇒i)

Γo ∧ Γu ` λy.t{x/u} : 〈J ⇒ Ut〉 | ∆o ∨∆u

We have sz
(
Φ(λy.t){x/u}

)
= sz

(
Φt{x/u}

)
+ 1 =i .h. sz (Φt) + sz (Θu)− |I|+ 1 = sz (Φ) +

sz (Θu)− |I|.
• (∧): then o is a term t and Φo has the following form

(Γk;x : Ik ` t : Uk | ∆k)k∈K
(∧)

Γo =;x : I
 t : [Uk]k∈K | ∆o

where I = ∧k∈KIk, Γo = ∧k∈KΓk and ∆o = ∨k∈K∆k. By Lemma 5.1 there are auxiliary
derivations (.Γku
 u : Ik | ∆k

u)k∈K such that Γu = ∧k∈KΓku and ∆u = ∨k∈K∆k
u. The i.h.

gives derivations (.Γk ∧ Γku ` t{x/u} : Uk | ∆k ∧∆k
u)k∈K and we construct the following

auxiliary derivation to conclude

(Γk ∧ Γku ` t{x/u} : Uk | ∆k ∧∆k
u)k∈K

(∧)
∧k∈KΓk ∧ Γku
 t{x/u} : [Uk]k∈K | ∨k∈K∆k ∧∆k

u

We have ∧k∈KΓk ∧ Γku = Γo ∧ Γu and ∨k∈K∆k ∧ ∆k
u = ∆o ∨ ∆u as desired. The size

statement trivially holds by the i.h.
• (⇒e∗): then o = tv and the derivation Φo has the following form

Φt � Γt;x : It ` t : 〈Ik ⇒ Vk〉k∈K | ∆t Φv � Γv;x : Iv
 v : ∧k∈KI∗k | ∆v
(⇒e∗)

Γo;x : I ` tv : ∨k∈KVk | ∆o

where Γo = Γt ∧ Γv, ∆o = ∆t ∨∆v and I = It ∧ Iv.
Moreover, by Lemma 5.1 we can split Θu in Θt

u.Γtu
 u : It | ∆t
u and Θv

u.Γvu
 u : Iv | ∆v
u

s.t. sz (Θu) = sz
(
Θt
u

)
+ sz (Θv

u).

By the i.h. there is Φt{x/u} � Γ′t ` t{x/u} : 〈Ik ⇒ Vk〉k∈K | ∆′t, where Γ′t = Γt ∧ Γtu and

∆′t = ∆t ∨∆t
u and sz

(
Φt{x/u}

)
= sz (Φt) + sz (Θu)− |It|.

Also by the i.h. there is Φv{x/u} � Γ′v
 v{x/u} : ∧k∈KI∗k | ∆′v, where Γ′v = Γv ∧ Γvu and

∆′v = ∆v ∨∆v
u and sz

(
Φv{x/u}

)
= sz (Φv) + sz (Θv

u)− |Iv|.
We set then

Φo{x/u} =
Φt{x/u} Φv{x/u}

(⇒e∗)
Γ′ ` (tv){x/u} : ∨k∈KVk | ∆′

where Γ′ = (Γt ∧ Γtu) ∧ (Γv ∧ Γvu) = Γo ∧ Γu and ∆′ = (∆t ∨∆t
u) ∨ (∆v ∨∆v

u) = ∆o ∨∆u

as desired. We conclude since

sz
(
Φo{x/u}

)
= sz

(
Φt{x/u}

)
+ sz

(
Φv{x/u})+ |K|

=i .h. (sz (Φt) + sz
(
Θt
u

)
− |It|) + (sz (Φv) + sz (Θv

u)− |Iv|) + |K|
= sz (Φ) + sz (Θu)− |I|

• All the other cases are straightforward.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:33

Lemma 5.3 (Replacement). Let Θu . Γu
 u : ∧k∈K (I∗k) | ∆u where α /∈ fn(u). If
Φo . Γo ` o : A | α : 〈Ik ⇒ Vk〉k∈K ; ∆o, then there is Φo{α//u} such that :

• Φo{α//u} . Γo ∧ Γu ` o{α//u} : A | α : ∨k∈KVk; ∆o ∨∆u.

• sz
(
Φo{α//u}

)
= sz (Φo) + sz (Θu).

Proof. We prove a more general statement, namely:
Let Θu . Γu
 u : ∧k∈KI∗k | ∆u where α /∈ fn(u).

• If Φo . Γo ` o : A | α : 〈Ik ⇒ Vk〉k∈K ; ∆o, then there is Φo{α//u} such that
Φo{α//u} . Γo ∧ Γu ` o{α//u} : A | α : ∨k∈KVk; ∆o ∨∆u.
• If Φo . Γo
 t : J | α : 〈Ik ⇒ Vk〉k∈K ; ∆o, then there is Φo{α//u} such that

Φo{α//u} . Γo ∧ Γu
 t{α//u} : J | α : ∨k∈KVk; ∆o ∨∆u

In both cases, sz
(
Φo{α//u}

)
= sz (Φo) + sz (Θu).

We reason by induction on Φo. Let us call Uα = 〈Ik ⇒ Vk〉k∈K and U ′α = ∨k∈KVk.
• (ax): o = x, thus we have by construction

Φo .
(ax)

x : [U] ` x : U | ∅
so that K = ∅. Thus, ∧k∈KI∗k = [] and Γu = ∆u = ∅, then Θu is :

(∧)
∅
 u : [] | ∅

Thus sz (Θu) = 0.
We set Φo{α//u} = Φo and the first result holds because the derivation has the desired

form. We conclude since sz
(
Φo{α//u}

)
= sz (Φo) + sz (Θu) as desired.

• (⇒i): then o = λx.t, o{α//u} = λx.(t{α//u}) and by construction we have

Φλx.t =
Φt . x : I; Γo ` t : U | α : Uα; ∆o

(⇒i)
Γo ` λx.t : 〈I ⇒ U〉 | α : Uα; ∆o

By i.h. it follows that

Φt{α//u} . (x : I; Γo) ∧ Γu ` t{α//u} : U | α : U ′α; ∆o ∨∆u

with sz
(
Φt{α//u}

)
= sz (Φt) + sz (Θu). By α-conversion we can assume that x /∈ fv(u),

thus by Lemma 4.6 x /∈ dom(Γu), so that (x : I; Γo) ∧ Γu = x : I; Γo ∧ Γu.
We thus obtain Φλx.t{α//u} of the form:

Φt{α//u}
(⇒i)

Γo ∧ Γu ` λx.t{α//u} : 〈I ⇒ U〉 | α : U ′α; ∆o ∨∆u

We conclude since

sz
(
Φλx.t{α//u}

)
= sz

(
Φt{α//u}

)
+ 1 =i .h. sz (Φt) + sz (Θu) + 1 = sz (Φλx.t) + sz (Θu)

• (⇒e∗): then o = tv, o{α//u} = t{α//u}v{α//u} and by construction we have Φo =

Φt . Γt ` t : Ut | α : 〈Ik ⇒ Vk〉k∈Kt ; ∆t Φv . Γv
 v : Jv | α : 〈Ik ⇒ Vk〉k∈Kv ; ∆v
(⇒e∗)

Γo ` o : U | α : 〈Ik ⇒ Vk〉k∈K ; ∆o

where Ut = 〈J` ⇒ U`〉`∈L, Jv = ∧`∈LJ ∗` , U = ∨`∈LU` (those types are of no matter here,
except they satisfy the typing constraint of⇒e∗), Γo = Γt∧Γv, ∆o = ∆t∨∆v, K = Kt]Kv.

3:34 D. Kesner and P. Vial Vol. 16:1

Moreover, by Lemma 5.1, we can split Θu in Θt
u . Γtu
 u : ∧k∈KtI∗k | ∆t

u and
Θv
u . Γvu
 u : ∧k∈KvI∗k | ∆v

u s.t. sz (Θu) = sz
(
Θt
u

)
+ sz (Θv

u).

By i.h. we have Φt{α//u}�Γt∧Γtu ` t{α//u} : Ut | α : ∨k∈KtVk; ∆t∨∆t
u (since α /∈ fn(u))

with sz
(
Φt{α//u}

)
= sz (Φt) + sz

(
Θt
u

)
.

Also by i.h. we have Φv{α//u} � Γv ∧ Γvu
 v{α//u} : Jv | α : ∨k∈KvVk,∆v ∨∆v
u with

sz
(
Φv{α//u}

)
= sz (Φv) + sz (Θv

u).
We can now construct the following derivation

Φt{α//u} Φv{α//u}
(⇒e∗)

Γ′ ` o{α//u} : U | α : ∨k∈KVk; ∆′

where Γ′ = (Γt∧Γtu)∧(Γv∧Γvu) = (Γt∧Γv)∧(Γtu∧Γvu) = Γo∧Γu and likewise, ∆′ = ∆o∨∆u

as desired. Moreover,

sz
(
Φ(tv){α//u}

)
= sz

(
Φt{α//u}

)
+ sz

(
Φv{α//u}

)
+ |L|

=i .h. (sz (Φt) + sz
(
Θt
u

)
) + (sz (Φv) + sz (Θv

u)) + |L|
= (sz (Φt) + sz (Φv) + |L|) + (sz

(
Θt
u

)
+ sz (Θv

u)) = sz (Φtv) + sz (Θu)

• If o = [α]t, then o{α//u} = [α]t{α//u}u and by construction we have a derivation Φ[α]t of
the form:

Φt . Γo ` t : 〈Ik ⇒ Vk〉k∈Kt | α : 〈Ik ⇒ Vk〉k∈Kα ; ∆o
(#i)

Γo ` [α]t : # | α : 〈Ik ⇒ Vk〉k∈K ; ∆o

where K = Kt]Kα.
Moreover, by Lemma 5.1, we can split Θu in Θt

u . Γtu
 u : ∧k∈KtI∗k | ∆t
u and

Θα
u . Γαu
 u : ∧k∈KαI∗k | ∆α

u s.t. sz (Θu) = sz
(
Θt
u

)
+ sz (Θα

u).
By the i.h. we have Φt{α//u} .Γo∧Γαu ` t{α//u} : 〈Ik ⇒ Vk〉k∈Kt | α : ∨k∈KαVk; ∆o∨∆α

u

with sz
(
Φt{α//u}

)
= sz (Φt) + sz (Θα

u).
We can then construct the following derivation Φ[α]t{α//u}u:

Φt{α//u} Θt
u

(⇒e∗)
Γ′ ` t{α//u}u : ∨k∈KtVk | α : ∨k∈KαVk; ∆′

(#i)
Γ′ ` [α]t{α//u}u : # | α : ∨k∈KVk; ∆′

with Γ′ = Γo∧Γαu ∧Γtu = Γo∧Γu and likewise ∆′ = ∆o∨∆u (since α /∈ fn(u)) as expected.
We conclude since

sz
(
Φ[α]t{α//u}u

)
= sz

(
Φt{α//u}u

)
+ ar(∨k∈KtVk)

= sz
(
Φt{α//u}

)
+ sz

(
Θt
u

)
+ |Kt|+ ar(∨k∈KtVk)

=i .h. (sz (Φt) + sz (Θα
u)) + sz

(
Θt
u

)
+ ar(〈Ik ⇒ Vk〉k∈Kt)

= sz (Φt) + sz (Θu) + ar(〈Ik ⇒ Vk〉k∈Kt) = sz
(
Φ[α]t

)
+ sz (Θu)

• All the other cases are straightforward.

Property 5.4 (Weighted Subject Reduction for Sλµ). Let Φ . Γ ` o : A | ∆. If
o → o′ is a non-erasing step, then there exists a derivation Φ′ . Γ ` o′ : A | ∆ such that
sz (Φ) > sz (Φ′).

Proof. By induction on the relation →. We only show the main cases of reduction at the
root, the other ones being straightforward.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:35

• If o = (λx.t)u, then o′ = t{x/u} and x ∈ fv(t). The derivation Φ has the following form:

Φt � Γt;x : I ` t : U | ∆t
(⇒i)

Γt ` λx.t : 〈I ⇒ U〉 | ∆t Θu � Γu
 u : I∗ | ∆u
(⇒e∗)

Γ ` o : U | ∆
where Γ = Γt ∧ Γu, ∆ = ∆t ∨∆u. Indeed, x ∈ fv(t) implies by Lemma 4.6 that I 6= [] so
that I∗ = I = [Uk]k∈K for some K 6= ∅ and some (Uk)k∈K .

Lemma 5.2 yields a derivation Φ′t{x/u} � Γt ∧ Γu ` t{x/u} : U | ∆t ∨ ∆u with

sz
(

Φ′t{x/u}

)
= sz (Φt) + sz (Θu) − |K| (|I| = |K|). We set Φ′ = Φ′t{x/u} so that

sz (Φ) = sz (Φt) + 1 + sz (Θu) + 1 > sz (Φ′).

• If o = (µα.c)u, then o′ = µα.c{α//u} and α ∈ fn(c).
The derivation Φ has the following form:

Φc . Γc ` c : # | α : Vc; ∆c
(#e)

Γc ` µα.c : V∗c | ∆c Θu . Γu
 u : I∗u | ∆u
(⇒e∗)

Γc ∧ Γu ` (µα.c)u : U | ∆c ∨∆u

where V∗c = Vc = 〈Ik ⇒ Vk〉k∈K , I∗u = Iu = ∧k∈KI∗k , U = ∨k∈KVk, Γ = Γc ∧ Γu
and ∆ = ∆c ∨ ∆u. Indeed, the hypothesis α ∈ fn(c) implies K 6= ∅ by Lemma 4.6,
and thus V∗c = Vc and I∗u = Iu. Lemma 5.3 then gives the derivation Φc{α//u} .
Γc ∧ Γu ` c{α//u} : # | α : ∨k∈KVk; ∆c ∨∆u. We can then construct the following deriva-
tion Φ′:

Φc{α//u}
(#e)

Γc ∧ Γu ` µα.c{α//u} : ∨k∈KVk | ∆c ∨∆u

We conclude since

sz (Φ′) = sz
(
φc{α//u}

)
+ 1 =Lemma5.3 sz (Φc) + sz (Θu) + 1 <

sz (Φc) + 1 + sz (Θu) + |K| = sz (Φµα.c) + sz (Θu) + |K| = sz (Φ)

The step < is justified by K 6= ∅.

The reader should notice that the fact that the choice operator produces a blind type
for union types is not used in the proof of Property 5.4. Indeed, by Lemma 4.6, the variable
(resp. name) of a β-redex (resp. µ-redex) has an empty intersection (resp. union) type in
system Sλµ only when this redex is erasing, a case that is not in the scope of Property 5.4.
However, note that blind types are involved in the proof of the subject reduction property
in system Hλµ, which can easily be adapted from that of Property 5.4.

Lemma 5.5 (Reverse Substitution). Let Φ′ . Γ′ ` o{x/u} : A | ∆′ Then there exist
Γo,∆o, I,Γu,∆u such that:

• Γ′ = Γ ∧ Γu,
• ∆′ = ∆ ∨∆u,
• .Γ;x : I ` o : A | ∆
• .Γu
 u : I | ∆u.

Proof. We prove a more general statement, namely:

3:36 D. Kesner and P. Vial Vol. 16:1

• If Φ′ . Γ′ ` o{x/u} : A | ∆′, then .Γo;x : I ` o : A | ∆o, .Γu
 u : I | ∆u, where
Γ′ = Γo ∧ Γu, ∆′ = ∆o ∨∆u for some I, Γo, Γu, ∆o, ∆u.
• If Φ′ . Γ′
 t{x/u} : J | ∆′, then .Γo;x : I
 t : J | ∆o, .Γu
 u : I | ∆u, where

Γ′ = Γo ∧ Γu, ∆′ = ∆o ∨∆u for some I, Γo, Γu, ∆o, ∆u.

We proceed by induction on the structure of Φ′.

• (ax)
– If o = y 6= x, then y{x/u} = y. By construction one has that Γ′ = y : [U] and A = U .

The result thus holds for I = [], Γo = Γ′, ∆o = ∆′, Γu = ∅ and ∆u = ∅ as ∅
 u : [] | ∅
is derivable by the (∧) rule.

– If o = x, then x{x/u} = u. By construction one has that A = U . We type x with the
axiom rule:

∅
(ax)

x : [U] ` x : U | ∅
so that the property holds for Γo = ∆o = ∅, I = [U], Γu = Γ′, ∆u = ∆′, where
.Γu
 u : I | ∆u is obtained by the rule (∧) from Γ′ ` u : U | ∆′.

• (⇒i) o = λy.t and (λy.t){x/u} = λy.t{x/u}. Then Φ′ is of the form

Φ′t . Γ′; y : J ` t{x/u} : V | ∆′
(⇒i)

Γ′ ` λy.t{x/u} : 〈J ⇒ V〉 | ∆′

where U = 〈J ⇒ V〉.
By the i.h. Γ′; y : I = Γt∧Γu and ∆′ = ∆t∨∆u, .Γt;x : I ` t : V | ∆t and .Γu
 u : I |

∆u. By α-conversion we can assume that y /∈ fv(u), so that y /∈ dom(Γu) by Lemma 4.6
and thus Γt = Γ′t; y : J and Γ′ = Γ′t ∧ Γu. Hence, we obtain Γ′t;x : I ` λy.t : U | ∆t by the
rule (⇒i). We conclude by setting Γo = Gam′t and ∆o = ∆t.
• (⇒e∗) o = tv and (tv){x/u} = t{x/u}v{x/u}. By construction we have that Γ′ = Γ′t ∧ Γ′v

and ∆′ = ∆′t ∨ ∆′v and .Γ′t ` t{x/u} : Ut | ∆′t, .Γ
′
v
 v : Jv | ∆′v with Ut = 〈Jk ⇒

Uk〉k∈K , Jv = ∧k∈KJ ∗k (those types are of no matter here, except they satisfy the typing
constraint of (⇒e∗)). By the i.h. there are:
– Γt, It, ∆t, Γtu, ∆t

u s.t. Γ′t = Γt ∧ Γtu, ∆′t = ∆t ∨ ∆t
u, .Γt;x : It ` t : Ut | ∆t and

.Γtu
 u : It | ∆t
u.

– Γv, Iv, ∆v, Γvu, ∆v
u s.t. Γ′v = Γv ∧ Γvu, ∆′v = ∆v ∨∆v

u, .Γv;x : Iv
 v : Jv | ∆v and
.Γvu
 u : Iv | ∆v

u.
Thus, we can type tv with :

.Γt;x : It ` t : Ut | ∆t . Γv;x : Iv
 v : Jv | ∆v
(⇒e∗)

Γo;x : I ` tv : U | ∆o

where Γo = Γt ∧ Γu, ∆o = ∆t ∨∆u, I = It ∨ Iv.
We obtain .Γu
 u : I | ∆u with Γu = Γtu ∧ Γvu, ∆u = ∆t

u ∨∆v
u by Lemma 5.1.

• The other cases are similar.

Lemma 5.6 (Reverse Replacement). Let Φ′ � Γ′ ` o{α//u} : A | α : V; ∆′, where
α /∈ fn(u). Then there exist Γo,∆o,Γu,∆u, (Ik)k∈K , (Vk)k∈K such that:

• Γ′ = Γ ∧ Γu,
• ∆′ = ∆ ∨∆u,
• V = ∨k∈KVk,
• .Γ ` o : A | α : 〈Ik → Vk〉k∈K ; ∆, and
• .Γu
 u : ∧k∈KI∗k | ∆u

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:37

Proof. We prove a more general statement, namely :

• If Φ′ � Γ′ ` o{α//u} : A | α : V; ∆′, then

.Γo ` o : A | α : 〈Ik → Vk〉k∈K ; ∆o, .Γu
 u : ∧k∈KI∗k | ∆u

where Γ′ = Γo∧Γu, ∆′ = ∆o∨∆u, V = ∨k∈KVk for some Γo, Γu, ∆o, ∆u, (Vk)k∈K , (Ik)k∈K .
• If Φ′ � Γ′
 t{α//u} : J | α : V; ∆′, then

.Γo
 t : J | α : 〈Ik → Vk〉k∈K ; ∆o, .Γu
 u : ∧k∈KI∗k | ∆u

where Γ′ = Γo∧Γu, ∆′ = ∆o∨∆u, V = ∨k∈KVk for some Γo, Γu, ∆o, ∆u, (Vk)k∈K , (Ik)k∈K .

We proceed by induction on the structure of Φ’.

• (ax) o = x and o{α//u} = x. Then Φ′ is of the form x : [U] ` x : U | ∅ and we have V = 〈 〉
so that we set Γo = x : [U], Γu = ∆u = ∆o = ∅, K = ∅. Notice that ∅
 u : [] | ∅ always
holds.

• (⇒i) o = λy.t and (λy.t){α//u} = λy.t{α//u}. Then Φ′ is of the form

Γ′; y : J ` t{α//u} : Ut | α : V; ∆′

(⇒i)
Γ′ ` λy.t{α//u} : 〈I ⇒ Ut〉 | α : V; ∆′

The i.h. gives Γ′; y : J = Γt ∧ Γu, V = ∨k∈KVk, ∆′ = ∆t ∨∆u, .Γt ` t : Ut | α : 〈Ik →
Vk〉k∈K ; ∆t and .Γu
 u : ∧k∈KI∗k | ∆u. By α-conversion we can assume that y /∈ fv(u),
so that y /∈ dom(Γu) holds by Lemma 4.6 and thus Γt = Γ′t; y : J . Hence, we obtain

.Γ′t; y : J ` t : Ut | α : 〈Ik → Vk〉k∈K ; ∆t

.Γ′t ` λy.t : 〈J ⇒ Ut〉 | α : 〈Ik → Vk〉k∈K ; ∆t

From that, the desired conclusion is straightforward by setting Γo = Γ′t and ∆o = ∆t.
• o = [α]t and o{α//u} = [α]t{α//u}u. Then Φ′ has the following form

Γ′t ` t{α//u} : 〈Ik → Vk〉k∈Kt | α : Vα; ∆′t Γtu
 u : ∧k∈KtI∗k | α : Vu; ∆t
u

(⇒e∗)
Γ′t ∧ Γtu ` t{α//u}u : ∨k∈KtVk | α : Vα; ∆′

(#e)
Γ′ ` [α]t{α//u}u : # | α : ∨k∈KtVk ∨ Vα; ∆′

where Γ′ = Γ′t ∧ Γtu, ∆′ = ∆t ∨∆t
u and V = ∨k∈KtVk ∨ Vα ∨ Vu. Moreover, the hypothesis

α /∈ fn(u) implies Vu = 〈 〉 by Lemma 4.6.
The i.h. gives .Γt ` t : 〈Ik → Vk〉k∈Kt | α : 〈Ik → Vk〉k∈Kα ; ∆t, .Γ

α
u
 u : ∧k∈KαI∗k |

∆α
u where Γ′t = Γt ∧ Γαu , ∆′t = ∆t ∨ ∆α

u , and Vα = ∨k∈KαVk. W.l.o.g we can assume
Kα ∩Kt = ∅. We then set K = Kα]Kt and we define :

.Γt ` t : 〈Ik → Vk〉k∈Kt | α : 〈Ik → Vk〉k∈Kα ; ∆t
(#e)

Γt ` [α]t : # | α : 〈Ik → Vk〉k∈K ; ∆t

By Lemma 5.1, we also have .Γu
 u : ∧k∈KI∗k | ∆u with Γu = Γtu ∧Γαu , ∆u = ∆t
u ∨∆α

u .
We can then conclude by setting Γo = Γt and ∆o = ∆t since Γt ∧ Γu = Γt ∧ (Γαu ∧ Γtu) =
Γ′t ∧ Γtu = Γ′ and likewise ∆t ∨∆u = ∆′.

• o = tv so that o{α//u} = t{α//u}v{α//u}. Then Φ has the following form:

.Γ′t ` t{α//u} : Ut | α : Vt; ∆′t . Γ′v
 v{α//u} : Jv | α : Vv; ∆′v
(⇒e∗)

Γ′ ` t{α//u}v{α//u} : U | α : V; ∆′

3:38 D. Kesner and P. Vial Vol. 16:1

where V = Vt ∨ Vα, Γ′ = Γ′t ∧ Γ′v, ∆′ = ∆′t ∨∆′v, Ut = 〈Jk ⇒ Uk〉k∈K and Jv = ∧k∈KJ ∗k
(those types are of no matter here, except they satisfy the typing constraint of (⇒e∗)).

The property then trivially holds by the i.h. (we proceed as in the complete proof of
Lemma 5.5, case (⇒e∗)).

• The other cases are similar.

Property 5.7 (Subject Expansion for Sλµ). Assume Φ′ � Γ′ ` o′ : A | ∆′. If o→ o′ is
a non-erasing step, then there is Φ � Γ′ ` o : A | ∆′.

Proof. By induction on the reduction relation. We only show the main cases of reduction at
the root, the other ones being straightforward by induction. We can then assume A = U for
some union type U .

• If o = (λx.t)u, then o′ = t{x/u} with x ∈ fv(t). The Reverse Substitution Lemma 5.5
yields
– Γ′ = Γo ∧ Γu,
– ∆′ = ∆o ∧∆u,
– .Γo;x : I ` t : U | ∆o, and
– .Γu
 u : I | ∆u.

Moreover, x ∈ fv(t) implies by Lemma 4.6 that I 6= [], so that I∗ = I. We can then
set :

Φ =

.Γo;x : I ` t : U | ∆o
(⇒i)

Γo ` λx.t : 〈I ⇒ U〉 | ∆o . Γu
 u : I | ∆u
(⇒e∗)

Γ′ ` (λx.t)u : U | ∆′

• If o = (µα.c)u, then o′ = µα.c{α//u} with α ∈ fn(c). Moreover, α ∈ fn(c{α//u}) and Φ′

has the following form:

Γ′ ` c{α//u} : # | α : U ; ∆′

(#e)
Γ′ ` µα.c{α//u} : U | ∆′

where U 6= 〈 〉 holds by Lemma 4.6, since α ∈ fn(c{α//u}), so that the #e rule is correctly
applied. Then the Reverse Replacement Lemma 5.6 yields:
– Γ′ = Γc ∧ Γu,
– ∆′ = ∆c ∨∆u,
– U = ∨k∈KVk,
– .Γc ` c : # | α : 〈Ik → Vk〉k∈K ; ∆c, and
– .Γu
 u : ∧k∈KI∗k | ∆u.
Moreover, U 6= 〈 〉 implies K 6= ∅, thus 〈Ik → Vk〉∗k∈K = 〈Ik → Vk〉k∈K and we conclude
by constructing the following derivation:

.Γc ` c : # | α : Vc; ∆c
(#e)

Γc
 µα.c : Vc | ∆c . Γu
 u : Iu | ∆u
(⇒e∗)

Γ′
 (µα.c)u : U | ∆′

where Vc = 〈Ik → Vk〉k∈K , Iu = ∧k∈KI∗k
Weighted Subject reduction for the λµs-calculus (Lemma 1) is based on the fact that

linear substitution (Lemma 10.1) and linear replacement (Lemma 10.2) preserve types.

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:39

Lemma 10.1 (Linear Substitution). Let Θu . Γu
 u : I | ∆u. If ΦOT[[x]] . Γ;x : I `
OT[[x]] : A | ∆, then there exist I1, I2,Γ1

u,Γ
2
u,∆

1
u,∆

2
u s.t.

• I = I1 ∧ I2, where I1 6= [],
• Γu = Γ1

u ∧ Γ2
u and ∆u = ∆1

u ∨∆2
u,

• Θ1
u . Γ1

u
 u : I1 | ∆1
u,

• Θ2
u . Γ2

u
 u : I2 | ∆2
u,

• ΦT[[u]] . Γ ∧ Γ1
u;x : I2 ` OT[[u]] : A | ∆ ∨∆1

u, and

• sz
(
ΦOT[[u]]

)
= sz

(
ΦOT[[x]]

)
+ sz

(
Θ1
u

)
− |I1|.

Proof. The proof is by induction on the context OT so we need to prove the statement of
the lemma for regular derivations simultaneously with the following one for non-empty
auxiliary derivations: if ΦTT[[x]] . Γ;x : I
 TT[[x]] : J | ∆ and J 6= [], then there exist

I1, I2,Γ1
u,Γ

2
u,∆

1
u,∆

2
u s.t.

• I = I1 ∧ I2, where I1 6= [],
• Γu = Γ1

u ∧ Γ2
u and ∆u = ∆1

u ∨∆2
u,

• Θ1
u . Γ1

u
 u : I1 | ∆1
u,

• Θ2
u . Γ2

u
 u : I2 | ∆2
u,

• ΦTT[[u]] . Γ ∧ Γ1
u;x : I2
 TT[[u]] : J | ∆ ∨∆1

u, and

• sz
(
ΦTT[[u]]

)
= sz

(
ΦTT[[x]]

)
+ sz

(
Θ1
u

)
− |I1|.

Now, we can start the proof. Notice that I 6= [] by Lemma 7.3, since x ∈ fv(OT[[x]]) (resp.
x ∈ fv(TT[[x]])). We only show the case OT = 2 since all the other ones are straightforward.
So assume OT = 2. Then I = [U] for some U and the derivation Φx has the following form :

Φx = (ax)
x : [U] ` x : U | ∅

Thus, sz (Φx) = 1. We set then Θ1
u = Θu and Θ2

u = (∧)

 u : [] |

We have sz (Φu) = sz
(
Θ1
u

)
= sz (Φx) + sz (Θu)− |I1| since |I1| = 1.

Lemma 10.2 (Linear Replacement). Let Θu . Γu
 u : ∧`∈LI∗` | ∆u s.t. α /∈ fv(u). If
ΦOC[[[α]t]].Γ ` OC[[[α]t]] : A | α : 〈I` → V`〉`∈L; ∆, then there exist L1, L2,Γ

1
u,Γ

2
u,∆

1
u,∆

2
u,ΦOC[[[α′]tu]]

s.t.

• L = L1] L2, where L1 6= ∅.
• Γu = Γ1

u ∧ Γ2
u and ∆u = ∆1

u ∨∆2
u,

• Θ1
u . Γ1

u
 u : ∧`∈L1I∗` | ∆1
u,

• Θ2
u . Γ2

u
 u : ∧`∈L2I∗` | ∆2
u,

• ΦOC[[[α′]tu]] . Γ ∧ Γ1
u ` OC[[[α′]tu]] : A | α : 〈I` → V`〉`∈L2 ;α′ : ∨`∈L1V` ∨∆ ∨∆1

u, and

• sz
(
ΦOC[[[α′]tu]]

)
= sz

(
ΦOC[[[α]t]]

)
+ sz

(
Θ1
u

)
.

Proof. The proof is by induction on the context OC so we need to prove the statement of the
lemma for regular derivations simultaneously with the following one for non-empty auxiliary
derivations: if ΦTC[[[α]t]] . Γ
 TC[[[α]t]] : J | α : 〈I` → V`〉`∈L; ∆ and J 6= [], then there exist

L1, L2,Γ
1
u,Γ

2
u,∆

1
u,∆

2
u,ΦTC[[[al′]tu]] s.t.

• L = L1] L2, where L1 6= ∅.
• Γu = Γ1

u ∧ Γ2
u and ∆u = ∆1

u ∨∆2
u,

• Θ1
u . Γ1

u
 u : ∧`∈L1I∗` | ∆1
u,

3:40 D. Kesner and P. Vial Vol. 16:1

• Θ2
u . Γ2

u
 u : ∧`∈L2I∗` | ∆2
u,

• ΦTC[[[α′]tu]] . Γ ∧ Γ1
u
 TC[[[α′]tu]] : J | α : 〈I` → V`〉`∈L2 ;α′ : ∨`∈L1V` ∨∆ ∨∆1

u, and

• sz
(
ΦTC[[[α′]tu]]

)
= sz

(
ΦTC[[[α]t]]

)
+ sz

(
Θ1
u

)
.

Now, we can start the proof. Notice that L 6= ∅ by Lemma 7.3, since α ∈ fn(OC[[[α]t]])
(resp. α ∈ fn(TC[[[α]t]])). We only show the case OC = � since all the other ones are
straightforward.

So assume OC = �. Then the derivation Φ[α]t has the following form, where K 6= ∅ holds
by Lemma 4.5:

Φt . Γ ` t : 〈Ik → Vk〉k∈K | α : 〈I` → V`〉`∈L\K ; ∆
(#i)

Γ ` [α]t : # | α : 〈I` → V`〉`∈L; ∆

Thus, sz
(
Φ[α]t

)
= sz (Φt) + ar(〈Ik → Vk〉k∈K) = sz (Φt) + |K| + ar(∨k∈KVk). We

set L1 = K and L2 = L \ K and we write ∧`∈LI∗` as (∧`∈L1I∗`) ∧ (∧`∈L2I∗`). Then by
Lemma 5.1 there are Θ1

u . Γ1
u
 u : ∧`∈L1I∗` | ∆1

u, Θ2
u . Γ2

u
 u : ∧`∈L2I∗` | ∆2
u s.t.

Γ1
u ∧ Γ2

u = Γu, ∆1
u ∨ ∆2

u = ∆u. We set V = ∨`∈L1V` and then construct the following
derivation Φ[α′]tu:

Φt Θ1
u

(⇒e∗)
Γ ∧ Γ1

u ` t u : ∨`∈L1V` | α : 〈I` → V`〉`∈L2 ; ∆ ∨∆1
u

(#i)
Γ ∧ Γ1

u ` [α′]tu : # | α : 〈I` → V`〉`∈L2 ;α′ : V ∨∆ ∨∆1
u

We have:

sz
(
Φ[α′]tu

)
= sz (Φtu) + ar(∨k∈KVk)

= sz (Φt) + sz
(
Θ1
u

)
+ |K|+ ar(∨k∈KVk)

= sz (Φt) + sz
(
Θ1
u

)
+ ar(〈Ik → Vk〉k∈K)

= sz
(
Φ[α]t

)
+ sz

(
Θ1
u

)
Property 1 (Weighted Subject Reduction for λµs). Let Φ . Γ ` o : A | ∆. If o→ o′

is a non-erasing step, then Φ′ . Γ ` o′ : A | ∆ and sz (Φ) > sz (Φ′).

Proof. By induction on the reduction relation →. We only show the main cases of reduction
at the root, the other ones being straightforward.

• If o = L[(λx.t)]u → L[t[x/u]] = o′: we proceed by induction on L, by detailing only the
case L = 2 as the other one is straightforward.

The derivation Φ has the following form:

Φ =

Φt � Γt;x : I ` t : U | ∆t
(⇒i)

Γt ` λx.t : 〈I → U〉 | ∆t Θu � Γu
 u : I∗ | ∆
(⇒e∗)

Γ ` (λx.t)u : U | ∆
where Γ = Γt ∧ Γu, ∆ = ∆t ∨∆u and A = U . We then construct the following derivation
Φ′:

Φt � Γt;x : I ` t : U | ∆t Θu � Γu
 u : I∗ | ∆u
(s)

Γt ∧ Γu ` t[x/u] : U | ∆t ∨∆u

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:41

We conclude since sz (Φ) = sz (Φt) + sz (Θu) + 2 > sz (Φt) + sz (Θu) = sz (Φ′).
• If o = L[µα.c]u→ L[µα′.c〈α//α′.u〉] = o′: we proceed by induction on L, by detailing only

the case L = 2 as the other one is straightforward. The derivation Φ has the following
form:

Φ =

Φc . Γc ` c : # | α : Vc; ∆c
(#e)

Γc ` µα.c : V∗c | ∆c Θu . Γu
 u : I∗u | ∆u
(⇒e∗)

Γc ∧ Γu ` (µα.c)u : U | ∆u

where V∗c = 〈I` → V`〉`∈L, I∗u = ∧`∈LI∗` , U = ∨`∈LV`, Γ = Γc ∧ Γu and ∆ = ∆c ∨∆u.
Moreover, Lemma 4.5 implies L 6= ∅, so that ∧`∈LI∗` = (∧`∈LI∗`)∗.
We then construct the following derivation Φ′:

Φc Θu
(r)

Γ′ ∧ Γu ` c〈α//α′.u〉 : # | ∆′ ∨∆u;α′ : U
(#e)

Γ′ ∧ Γu ` µα′.c〈α//α′.u〉 : U | ∆′ ∨∆u

We conclude since |L| ≥ 1 in the following equation:

sz (Φ′) = sz
(
Φc〈α//α′.u〉

)
+ 1

= sz (Φc) + sz (Θu) + |L| − 1
2 + 1

= sz (Φµα.c) + sz (Θu) + |L| − 1
2

< sz (Φµα.c) + sz (Θu) + |L| = sz (Φ)

• If o = TT[[x]][x/u] → TT[[u]][x/u] = o′, with |TT[[x]]|x > 1. The derivation Φ has the
following form:

Φ′TT[[x]] . Γ′;x : I ` TT[[x]] : U | ∆′ Θu . Γu ` u : I∗ | ∆u
(s)

Γ′ ∧ Γu ` TT[[x]][x/u] : U | ∆′ ∨∆u

Moreover, |TT[[x]]|x > 1 so that Lemma 7.3 applied to ΦTT[[x]] gives I 6= [] and thus I∗ = I.
We can then apply Lemma 10.1 which gives a derivation

ΦTT[[u]] . Γ′ ∧ Γ1
u;x : I2 ` TT[[u]] : U | ∆′ ∨∆1

u

where I = I1 ∧ I2 and I1 6= [] and Γu = Γ1
u ∧ Γ2

u and ∆u = ∆1
u ∨ ∆2

u. Moreover
Θ1
u .Γ1

u
 u : I1 | ∆1
u, Θ2

u .Γ2
u
 u : I2 | ∆2

u, and sz
(
ΦTT[[u]]

)
= sz

(
ΦTT[[x]]

)
+sz

(
Θ1
u

)
−|I1|.

The hypothesis |T[[x]]|x > 1 implies |T[[u]]|x > 0, then I2 6= [] by Lemma 7.3 applied to
ΦTT[[u]] so that I∗2 = I2. We can then construct the derivation Φ′ as follows:

ΦTT[[u]] Θ2
u

(s)
Γ′ ∧ Γ ` TT[[u]][x/u] : U | ∆′ ∧∆

We conclude since sz (Φ′) = sz
(
ΦTT[[u]]

)
+ sz

(
Θ2
u

)
=Lemma 10.1 sz

(
ΦTT[[x]]

)
+ sz

(
Θ1
u

)
−

|I1|+ sz
(
Θ2
u

)
= sz

(
ΦTT[[x]]

)
+ sz (Θu)− |I1| < sz (Φ).

The step < is justified by I1 6= [].
• If o = TT[[x]][x/u] → TT[[u]] = o′, with |TT[[x]]|x = 1. The derivation Φ has the following

form:
ΦTT[[x]] . Γ′;x : I ` TT[[x]] : U | ∆′ Θu . Γu
 u : I∗ | ∆u

(s)
Γ′ ∧ Γu ` TT[[x]][x/u] : U | ∆′ ∨∆u

3:42 D. Kesner and P. Vial Vol. 16:1

Lemma 7.3 applied to ΦTT[[x]] gives I 6= [] and thus I∗ = I. We can then apply Lemma 10.1
which gives a derivation

ΦTT[[u]] . Γ′ ∧ Γ1
u;x : I2 ` TT[[u]] : U | ∆′ ∨∆1

u

where I = I1 ∧ I2 and I1 6= [] and Γu = Γ1
u ∧ Γ2

u and ∆u = ∆1
u ∨ ∆2

u. Moreover
Θ1
u .Γ1

u
 u : I1 | ∆1
u, Θ2

u .Γ2
u
 u : I2 | ∆2

u, and sz
(
ΦTT[[u]]

)
= sz

(
ΦTT[[x]]

)
+sz

(
Θ1
u

)
−|I1|.

By hypothesis |TT[[x]]|x = 1 so that |TT[[u]]|x = 0, then I2 = ∅ by Lemma 7.3 applied to
ΦTT[[u]]. Thus I = I1. We then set Φ′ = ΦTT[[u]] and conclude since

sz (Φ′) = sz
(
ΦTT[[u]]

)
=Lemma10.1 sz

(
ΦTT[[x]]

)
+ sz

(
Θ1
u

)
− |I1| = sz

(
ΦTT[[x]]

)
+ sz (Θu)− |I| <

= sz
(
ΦTT[[x]]

)
+ sz (Θu) = sz (Φ)

The step < is justified by I = I1 6= [].
• If o = CC[[[α]t]]〈α//α′.u〉 → CC[[[α′]tu]]〈α//α′.u〉 = o′, with |CC[[[α]t]]α > 1. Then Φ has the

following form

Φc . Γc ` CC[[[α]t]] : # | ∆c;α : V ′ Θu . Γu
 u : Iu | ∆u
(r)

Γc ∧ Γu ` CC[[[α]t]]〈α//α′.u〉 : # | ∆c ∨∆u ∨ α′ : ∨`∈LV`
where c = CC[[[α]t]], V ′ = 〈I` → V`〉`∈L, Iu = (∧`∈LI∗`)∗, A = #, Γ = Γc ∧ Γu and

∆ = ∆c ∨∆u ∨ α′ : ∨`∈LV`. Since |CC[[[α]t]]|α > 1 implies L 6= ∅ by Lemma 7.3, we have
that Iu = ∧`∈LI∗` . By Lemma 10.2 there are L1, L2, Γ1

u, Γ2
u, ∆1

u, ∆2
u, ΦCC[[[α′]tu]] s.t.

– L = L1] L2, where L1 6= ∅.
– Γu = Γ1

u ∧ Γ2
u and ∆u = ∆1

u ∨∆2
u,

– Θ1
u . Γ1

u
 u : ∧`∈L1I∗` | ∆1
u,

– Θ2
u . Γ2

u
 u : ∧`∈L2I∗` | ∆2
u,

– ΦCC[[[α′]tu]] . Γc ∧ Γ1
u ` CC[[[α′]tu]] : A | α : 〈I` → V`〉`∈L2 ;α′ : ∨`∈L1V` ∨∆c ∨∆1

u, and

– sz
(
ΦCC[[[α′]tu]]

)
= sz

(
ΦCC[[[α]t]]

)
+ sz

(
Θ1
u

)
.

Moreover, |CC[[[α]t]]|α > 1 implies |CC[[[α′]tu]]|α > 0 so that L2 6= ∅ holds by Lemma 7.3
and thus ∧`∈L2I∗` = (∧`∈L2I∗`)∗. Then we can build the following derivation Φ′:

ΦCC[[[α′]tu]] Θ2
u

(r)
Γ′ ` CC[[[α′]tu]]〈α//α′.u〉 : # | ∆′

where Γ′ = (Γc ∧ Γ1
u) ∧ Γ2

u = Γ, ∆′ = (α′ : ∨`∈L1V` ∨∆c ∨∆1
u) ∨∆2

u ∨ (α′ : ∨`∈L2V`) = ∆.
We conclude since

sz (Φ′) = sz
(
ΦCC[[[α′]tu]]

)
+ sz

(
Θ2
u

)
+ |L2| − 1

2
=Lemma 10.2 sz

(
ΦCC[[[α]t]]

)
+ sz

(
Θ1
u

)
+ sz

(
Θ2
u

)
+ |L2| − 1

2
= sz

(
ΦCC[[[α]t]]

)
+ sz (Θu) + |L2| − 1

2
< sz

(
ΦCC[[[α]t]]

)
+ sz (Θu) + |L| − 1

2 = sz (Φ)

The step < is justified because L1 6= ∅ and thus |L2| < |L|.
• If o = CC[[[α]t]]〈α//α′.u〉 → CC[[[α′]tu]] = o′, with |CC[[[α]t]]|α = 1. The derivation Φ has the

following form

Φc . Γc ` CC[[[α]t]] : # | ∆c;α : V ′ Θu . Γu
 u : Iu | ∆u
(r)

Γc ∧ Γu ` CC[[[α]t]]〈α//α′.u〉 : # | ∆c ∨∆u ∨ α′ : ∨`∈LV`

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:43

where c = CC[[[α]t]], V ′ = 〈I` → V`〉`∈L, Iu = (∧`∈LI∗`)∗, A = #, Γ = Γc ∧ Γu and
∆ = ∆c ∨∆u ∨ α′ : ∨`∈LV`. Since |CC[[[α]t]]|α = 1 implies L 6= ∅ by Lemma 7.3, we have
that Iu = ∧`∈LI∗` . By Lemma 10.2 there are L1, L2, Γ1

u, Γ2
u, ∆1

u, ∆2
u, ΦCC[[[α′]tu]] s.t.

– L = L1] L2, where L1 6= ∅.
– Γu = Γ1

u ∧ Γ2
u and ∆u = ∆1

u ∨∆2
u,

– Θ1
u . Γ1

u
 u : ∧`∈L1I∗` | ∆1
u,

– Θ2
u . Γ2

u
 u : ∧`∈L2I∗` | ∆2
u,

– ΦCC[[[α′]tu]] . Γc ∧ Γ1
u ` CC[[[α′]tu]] : A | α : 〈I` → V`〉`∈L2 ;α′ : ∨`∈L1V` ∨∆c ∨∆1

u, and

– sz
(
ΦCC[[[α′]tu]]

)
= sz

(
ΦCC[[[α]t]]

)
+ sz

(
Θ1
u

)
.

Moreover, |C[[[α]t]]|α = 1 implies |C[[[α′]tu]]|α = 0 so that L2 = ∅ and L = L1 holds by
Lemma 7.3. Thus, Θ1

u = Θu and so on. We then set Φ′ = ΦC[[[α′]tu]] and conclude since

sz (Φ′) = sz
(
ΦC[[[α′]tu]]

)
=Lemma 10.2 sz

(
ΦC[[[α]t]]

)
+ sz (Θu)

< sz
(
ΦC[[[α]t]]

)
+ sz (Θu) + |L| − 1

2 = sz (Φ)

The step < is justified because L 6= ∅, so that |L| > 1 implies |L| − 1
2 > 0.

Lemma 10.3 (Reverse Partial Substitution). Let Φ . Γ ` OT[[u]] : A | ∆, where x /∈ fv(u).
Then, there exist Γ0,∆0, I0 6= [],Γu,∆u such that

• Γ = Γ0 ∧∆u,
• ∆ = ∆0 ∨∆u,
• ΦOT[[x]] . Γ0 ∧ x : I0 ` OT[[x]] : A | ∆0

• .Γu
 u : I0 | ∆u.

Proof. The proof is by induction on the context OT. For this induction to work, we need
as usual to adapt the statement for auxiliary derivations. We only show the case OT = 2

since all the other ones are straightforward and rely on suitable partitions of the contexts in
the premises. So assume OT = 2, then A = U for some U . We set Γ0 = ∆0 = ∅, I0 = [U],
Γu = Γ, ∆u = ∆ (so that .Γu
 u : I0 | ∆u holds by using the (∧) rule), and

Φx = (ax)
x : [U] ` x : U | ∅

The claimed set and context equalities trivially hold.

Lemma 10.4 (Reverse Partial Replacement). Let Γ ` OC[[[α′]tu]] : A | α′ : V; ∆, where
α, α′ /∈ fn(u). Then there exist Γ0,∆0,V0,K 6= ∅, (Ik)k∈K , (Vk)k∈K ,Γu,∆u such that

• Γ = Γ0 ∧ Γu,
• ∆ = ∆0 ∨∆u,
• V = V0 ∨k∈K Vk,
• .Γ0 ` OC[[[α]t]] : A | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆0, and
• .Γu
 u : ∧k∈KI∗k | ∆u

Proof. The proof is by induction on the context OC. For this induction to work, we need as
usual to adapt the statement for auxilary derivations. Notice that V 6= 〈 〉 by Lemma 7.3,
since α′ ∈ fn(OC[[[α′]tu]]). We only show the case OC = � since all the other ones are
straightforward. So assume OC = �. Then the derivation of [α′]tu has the following form,

3:44 D. Kesner and P. Vial Vol. 16:1

where K 6= ∅:
Φt . Γ0 ` t : 〈Ik → Vk〉k∈K | α′ : V0; ∆0 . Γu
 u : ∧k∈KI∗k | ∆u

(⇒e∗)
Γ0 ∧ Γu ` tu : ∨k∈KVk | α′ : V0; ∆0 ∨∆u

(#i)
Γ0 ∧ Γu ` [α′]tu : # | α′ : V0 ∨k∈K Vk; ∆0 ∨∆u

where Γ = Γ0 ∧ Γu, and ∆ = ∆0 ∨∆u and V = V0 ∨k∈K Vk.
We then construct the following derivation :

Φt . Γ0 ` t : 〈Ik → Vk〉k∈K | α′ : V0; ∆0
(#i)

Γ ` [α]t : # | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆0

Thus, we have all the claimed set and context equalities.

Property 2 (Subject Expansion for λµs). Let Φ′ . Γ ` o′ : A | ∆. If o →λµs o
′ (i.e. a

non-erasing λµs-step), then Φ . Γ ` o : A | ∆.

Proof. By induction on the non erasing reduction relation →λµs. We only show the main
cases of non-erasing reduction at the root, the other ones being straightforward.

• If o = (L[λx.t])u → L[t[x/u]] = o′, we proceed by induction on L, by detailing only the
case L = 2 as the other one is straightforward.

The derivation Φ′ has the following form :

Φt . Γt;x : I ` t : U | ∆t Θu . Γu
 u : I∗ | ∆u
(s)

Γ ` t[x/u] : U | ∆
We then construct the following derivation Φ:

Φt . Γt;x : I ` t : U | ∆t
(⇒i)

Γt ` λx.t : 〈I → U〉 | ∆t Θu . Γu
 u : I∗ | ∆u
(⇒e∗)

Γ ` (λx.t)u : U | ∆
• If o = (L[µα.c])u→ L[µα′.c〈α//α′.u〉] = o′, where α′ is fresh, then we proceed by induction

on L, by detailing only the case L = 2 as the other one is straightforward. Then Φ′ has
the following form :

Φc . Γc ` c : # | α : Vα; ∆c Θu . Γu
 u : Iu | ∆u
(r)

Γc ∧ Γu ` c〈α//α′.u〉 : # | ∆c ∨∆u;α′ : Vα′
(#e)

Γc ∧ Γu ` µα′.c〈α//α′.u〉 : (Vα′)∗ | ∆c ∨∆u

where Vα = 〈I` → V`〉`∈L, Iu = (∧`∈LI∗`)∗, Vα′ = ∨`∈LV`, A = (Vα′)∗ = (∨`∈LV`)∗,
Γ = Γc ∧ Γu and ∆ = ∆c ∨∆u. Notice that the name assignment of the judgment typing
c〈α//α′.u〉 has the form ∆c ∨∆u;α′ : Vα′ since α′ is a fresh name by hypothesis, so that
α′ /∈ dom(∆c ∨∆u) holds by Lemma 7.3. We now consider two cases:
– If L 6= ∅, then 〈I` → V`〉∗`∈L = 〈I` → V`〉`∈L, (∧`∈LI∗`)∗ = ∧`∈LI∗` , A = (∨`∈LV`)∗ =
∨`∈LV`, so that we construct the following derivation Φ:

Φc . Γc ` c : # | α : Vα; ∆c
(#e)

Γc ` µα.c : 〈I` → V`〉`∈L | ∆c Θu . Γu
 u : ∧`∈LI∗` | ∆u
(⇒e∗)

Γc ∧ Γu ` (µα.c)u : ∨`∈LV` | ∆c ∨∆u

Vol. 16:1 NON-IDEMPOTENT TYPES FOR CLASSICAL CALCULI 3:45

– If L = ∅, then, in the derivation above, (Vα′)∗ = (∨`∈LV`)∗ = 〈ξ〉 for some blind type ξ.
Then we choose 〈I` → V`〉∗`∈L to be 〈[]→ 〈ξ〉〉, which is a blind type. We then construct
the following derivation Φ:

Φc . Γc ` c : # | α : Vα; ∆c
(#e)

Γc ` µα.c : 〈[]→ 〈ξ〉〉 | ∆c Θu . Γu
 u : []∗ | ∆u
(⇒e∗)

Γc ∧ Γu ` (µα.c)u : 〈ξ〉 | ∆c ∨∆u

We conclude since A = 〈ξ〉.
• If o = TT[[x]][x/u] → TT[[u]][x/u] = o′, with |TT[[x]]|x > 1. The derivation Φ′ has the

following form:

ΦTT[[u]] . ΓTT;x : I ` TT[[u]] : A | ∆TT Θu . Γu
 u : I∗ | ∆u
(s)

ΓTT ∧ Γu ` TT[[u]][x/u] : A | ∆TT ∨∆u

where x ∈ fv(TT[[u]]) implies I 6= [] by Lemma 7.3, so that I∗ = I.
By Lemma 10.3 applied to ΦTT[[u]], we have Γ′0, ∆0, I0 6= [], Γ′u, ∆′u such that

– ΓTT;x : I = Γ′0 ∧ Γ′u,
– ∆TT = ∆0 ∨∆′u,
– ΦTT[[x]] . Γ′0 ∧ x : I0 ` TT[[x]] : A | ∆0

– .Γ′u
 u : I0 | ∆′u.

We set I ′′ = I ∧ I0, Γ
′′
u = Γu ∧ Γ′u, ∆

′′
u = ∆u ∨∆′u. Thus, in particular, (I ′′)∗ = I ′′ . By

Lemma 7.3, x /∈ dom(Γ′u), so that Γ′0 = Γ0;x : I for some Γ0 and thus Γ′0∧x : I0 = Γ0;x : I ′′ .
By Lemma 5.1, there is a derivation Θ

′′
u.Γ

′′
u
 u : I ′′ | ∆′′u. We then construct the following

derivation Φ :
ΦTT[[x]] Θ

′′
u . Γ

′′
u ` u : I ′′ | ∆′′u

(s)
Γ0 ∧ Γ

′′
u ` TT[[x]][x/u] : A | ∆0 ∨∆

′′
u

We conclude since Γ0 ∧Γ
′′
u = Γ0 ∧Γ′u ∧Γu = ΓTT ∧Γu = Γ and ∆0 ∨∆

′′
u = ∆0 ∨∆′u ∨∆u =

∆TT ∨∆u = ∆.
• If o = TT[[x]][x/u] → TT[[u]] = o′, with |TT[[x]]|x = 1. The derivation Φ′ ends with

Γ ` TT[[u]] : A | ∆ where x /∈ dom(Γ) by Lemma 7.3. By Lemma 10.3 applied to Φ′, we
have Γ0, ∆0, I0 6= [], Γu, ∆u such that
– Γ = Γ0 ∧ Γu,
– ∆ = ∆0 ∨∆u,
– ΦTT[[x]] . Γ0 ∧ x : I0 ` TT[[x]] : A | ∆0

– .Γu
 u : I0 | ∆u.
Thus in particular I∗0 = I0. Since x /∈ dom(Γ), x /∈ dom(Γ0), so that Γ0 ∧x : I0 = Γ0;x : I0.
We then construct the following derivation Φ :

ΦTT[[x]] . Γu
 u : I0 | ∆u
(s)

Γ0 ∧ Γu ` TT[[x]][x/u] : U | ∆0 ∨∆u

We conclude since Γ = Γ0 ∧ Γu and ∆ = ∆0 ∨∆u.

• If o = CC[[[α]t]]〈α//α′.u〉 → CC[[[α′]tu]]〈α//α′.u〉 = o′, with |CC[[[α]t]]α > 1. Then Φ′ has the
following form :

3:46 D. Kesner and P. Vial Vol. 16:1

Φ′0 . ΓCC ` CC[[[α′]tu]] : A | ∆CC;α
′ : Vα′ ;α : Vα Θu . Γu
 u : Iu | ∆u

(r)
ΓCC ∧ Γu ` CC[[[α′]tu]]〈α//α′.u〉 : A | (∆CC;α

′ : Vα′) ∨∆u ∨ α′ : V
where Vα = 〈I` → V`〉`∈L, Iu = (∧`∈LI∗`)∗, V = ∨`∈LV`, Γ = ΓCC ∧ Γu and ∆ = (∆CC;α

′ :
Vα′)∨∆u ∨ α′ : V = (∆CC ∨∆u;α′ : Vα′ ∨ V) since α′ /∈ fn(u) implies α′ /∈ dom(∆u). Since
α ∈ fn(CC[[[α′]tu]]), then L 6= ∅ by Lemma 7.3, so that Iu = ∧`∈LI∗` .

By Lemma 10.4 applied to Φ′0, we have Γ0, ∆′0, Φ0, V0, K 6= ∅, (Ik)k∈K , (Vk)k∈K , Γ′u,∆
′
u,

and Θ′u such that
– ΓCC = Γ0 ∧ Γ′u,
– ∆CC;α : Vα = ∆′0 ∨∆′u,
– Vα′ = V0 ∨k∈K Vk,
– Φ0 . Γ0 ` CC[[[α]t]] : A | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆′0 and
– .Γ′u
 u : ∧k∈KI∗k | ∆′u
We set L

′′
= L]K, Γ

′′
u = Γu ∧ Γ′u, ∆

′′
u = ∆u ∨∆′u and (I ′′u)∗ = I ′′u = ∧

`∈L′′I
∗
` (indeed,

L
′′ ⊇ K 6= ∅). By Lemma 7.3, α /∈ dom(∆′u), so that ∆′0 = ∆0;α : Vα for some ∆0 and

α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆′0 = α′ : V0;α : 〈I` → V`〉`∈L′′ ; ∆0 since α′ /∈ dom(∆′0). By

Lemma 5.1, there is Θ
′′
u . Γ

′′
u
 u : I ′′u | ∆

′′
u. We then construct the following derivation Φ:

Φ0 . Γ0 ` CC[[[α]t]] : A | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆′0 Θ
′′
u . Γ

′′
u
 u : I ′′u | ∆

′′
u

(r)
Γ0 ∧ Γ

′′
u ` CC[[[α]t]]〈α//α′.u〉 : A | α′ : V0 ∨`∈L′′ V`; ∆0 ∨∆

′′
u

We conclude since Γ0∧Γ
′′
u = Γ0∧Γ′u∧Γu = ΓCC∧Γu = Γ, ∆0∨∆

′′
u = ∆0∨∆′u∨∆u = ∆CC∨∆u

and V0 ∨`∈L′′ V` = V0 ∨k∈K Vk ∨`∈L V` = Vα′ ∨`∈L V` = Vα′ ∨ V.

• If o = CC[[[α]t]]〈α//α′.u〉 → CC[[[α′]tu]] = o′, with |CC[[[α]t]]|α = 1, then the derivation Φ′

necessarily ends with the judgment Γ ` CC[[[α′]tu]] : A | ∆CC;α
′ : V , where ∆ = ∆CC;α

′ : V .
By Lemma 10.4 applied to Φ′, we have Γ0, ∆0, V0, K 6= ∅, (Ik)k∈K , (Vk)k∈K , Γu, ∆u,

and Θu such that
– Γ = Γ0 ∧ Γu,
– ∆CC = ∆0 ∨∆u,
– V = V0 ∨k∈K Vk,
– Φ0 . Γ0 ` CC[[[α]t]] : A | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆0 and
– Θu . Γu
 u : ∧k∈KI∗k | ∆u

Notice that K 6= ∅ implies (∧k∈KI∗k)∗ = ∧k∈KI∗k . Moreover, by Lemma 7.3, since
α /∈ fn(CC[[[α′]tu]]), then α /∈ dom(∆), thus α /∈ dom(∆0) and α : 〈Ik → Vk〉k∈K ∨∆0 = α :
〈Ik → Vk〉k∈K ; ∆0. We then construct Φ :

Φ0 . Γ0 ` CC[[[α]t]] : A | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆0 Θu . Γu
 u : ∧k∈KI∗k | ∆u
(r)

Γ ` CC[[[α]t]]〈α//α′.u〉 : A | (∆0;α
′ : V0) ∨∆u ∨ α′ : ∨k∈KVk

We conclude since α′ /∈ fn(u) implies α′ /∈ dom(∆u) by Lemma 7.3 so that (∆0;α
′ :

V0) ∨∆u ∨ α′ : ∨k∈KVk = ∆0 ∨∆u;α′ : V0 ∨k∈K Vk = ∆CC;α
′ : V = ∆ as desired.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. The -Calculus
	2.1. Syntax
	2.2. Operational Semantics

	3. Quantitative Type Systems for the -Calculus
	3.1. Characterizing Head -Normalizing -Terms
	3.2. Characterizing Strongly -Normalizing -Terms

	4. Quantitative Type Systems for the -Calculus
	4.1. Types
	4.2. System H
	4.3. Discussion
	4.4. System S

	5. Typing Properties
	5.1. Forward Properties
	5.2. Backward Properties

	6. Strongly Normalizing -Objects
	6.1. Type-theoretic characterization, with quantitative bounds
	6.2. Discussion

	7. The s-calculus
	7.1. Syntax
	7.2. Operational Semantics
	7.3. Typing System

	8. Typing Properties
	8.1. Forward Properties
	8.2. Backward Properties

	9. Strongly Normalizing s-Objects
	10. Conclusion
	References
	Appendix

