
Logical Methods in Computer Science
Volume 16, Issue 1, 2020, pp. 11:1–11:49
https://lmcs.episciences.org/

Submitted Aug. 17, 2018
Published Feb. 13, 2020

AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES

 LUKASZ CZAJKA

TU Dortmund University, Dortmund, Germany
e-mail address: lukaszcz@mimuw.edu.pl

Abstract. We introduce an operational rewriting-based semantics for strictly positive
nested higher-order (co)inductive types. The semantics takes into account the “limits” of
infinite reduction sequences. This may be seen as a refinement and generalization of the
notion of productivity in term rewriting to a setting with higher-order functions and with
data specified by nested higher-order inductive and coinductive definitions. Intuitively, we
interpret lazy data structures in a higher-order functional language by potentially infinite
terms corresponding to their complete unfoldings.

We prove an approximation theorem which essentially states that if a term reduces to
an arbitrarily large finite approximation of an infinite object in the interpretation of a
coinductive type, then it infinitarily (i.e. in the “limit”) reduces to an infinite object in
the interpretation of this type. We introduce a sufficient syntactic correctness criterion,
in the form of a type system, for finite terms decorated with type information. Using the
approximation theorem, we show that each well-typed term has a well-defined interpretation
in our semantics.

1. Introduction

It is natural to consider an interpretation of coinductive types where the elements of a
coinductive type ν are possibly infinite terms. Each finite term of type ν containing fixpoint
operators then “unfolds” to a possibly infinite term without fixpoint operators in the
interpretation of ν. For instance, one would interpret the type of binary streams as the
set of infinite terms of the form b1 :: b2 :: . . . where b1 ∈ {0, 1} and :: is an infix notation
for the stream constructor. Then any fixpoint definition of a term of this type should
“unfold” to such an infinite term. This kind of interpretation corresponds closely to a naive
understanding of infinite objects and coinductive types.

This paper is devoted to a study of such an interpretation in the context of infinitary
rewriting. Infinitary rewriting extends term rewriting by infinite terms and transfinite
reductions. This enables the consideration of “limits” of terms under infinite reduction
sequences.

Key words and phrases: coinductive types, productivity, infinitary rewriting, programming language
semantics, functional programming.

Supported by the European Union’s Horizon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement number 704111.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(1:11)2020
c© Ł. Czajka
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

11:2 L. Czajka Vol. 16:1

We consider a combination of simple function types with strictly positive nested higher-
order inductive and coinductive types. An example of a higher-order coinductive type is the
type of trees with potentially infinite branches and two kinds of nodes: nodes with a list of
finitely many children and nodes with infinitely many children specified by a function on
natural numbers. In our notation this type may be represented as the coinductive definition
Tree2 = CoInd{c1 : List(Tree2) → Tree2, c2 : (Nat → Tree2) → Tree2} which intuitively
specifies that each element of Tree2 is a possibly infinite term which has one of the forms:

• c1(t1 :: t2 :: . . . :: tn :: nil) where each ti is an element of Tree2 and :: is the finite list
constructor, or
• c2f where f is a term which represents a function from Nat to Tree2.

We interpret each type τ as a subset JτK of the set T∞ of finite and infinite terms. This
interpretation may be seen as a refinement and generalization of the notion of productivity in
term rewriting to a setting with higher-order functions and more complex (co)inductive data
structures. From a programming language perspective, we essentially interpret lazy data
structures in a higher-order functional language by potentially infinite terms corresponding
to their complete unfoldings (i.e. their “limits” under infinite reductions).

For example, the interpretation JStrmK of the coinductive type Strm of streams of natural
numbers with a single constructor cons : Nat→ Strm→ Strm consists of all infinite terms
of the form consn0(consn1(. . .)) where nk ∈ JNatK for k ∈ N. The interpretation JStrm→
StrmK of an arrow type Strm→ Strm is the set of all terms t such that for every u ∈ JStrmK
there is u′ ∈ JStrmK with tu →∞ u′, where →∞ denotes the infinitary reduction relation
(so u′ is the “limit” of a reduction starting with tu). This means that t is productive –
it computes (in the limit) a stream when given a stream as an argument, producing any
initial finite segment of the result using only an initial finite segment of the argument. Note
that the argument u is just any infinite stream of natural numbers – it need not even be
computable. This corresponds with the view that arguments to a function may come from
an outside “environment” about which nothing is assumed, e.g., the argument may be a
stream of requests for an interactive program.

One could informally argue that including infinite objects explicitly is not necessary,
because it suffices to consider finite “approximations” un of “size” n of an infinite argument
object u (which itself is possibly not computable), and if tun reduces to progressively larger
approximations of an infinite object for progressively larger n, then this “defines” the
application of t to u, because to compute any finite part of the result it suffices to take a
sufficiently large approximation as an argument. We actually make this intuition precise in
the framework of infinitary rewriting. We show that if for every approximation un of size n
of an infinite object u the application tun reduces to an approximation of an infinite object
of the right type, with the result approximations getting larger as n gets larger, then there
is a reduction starting from tu which “in the limit” produces an infinite object of the right
type. For nested higher-order (co)inductive types this result turns out to be non-trivial.

The result mentioned above actually follows from the approximation theorem which is
the central technical result of this paper. It may be stated as follows: if t→∞ tn ∈ JνKn for
each n ∈ N then there is t′ with t →∞ t′ ∈ JνK, where ν is a coinductive type and JνKn is
the set of approximations of size n of the (typically infinite) objects of type ν (i.e. of the
terms in JνK).

In the second part of the paper we consider finite terms decorated with type annotations.
We present a type system which gives a sufficient syntactic correctness criterion for such

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:3

terms. The system enables reasoning about sizes of (co)inductive types, similarly as in
systems with sized types. Using the approximation theorem we show soundness: if a finite
decorated term t may be assigned type τ in our type system, then there is t′ ∈ JτK such that
|t| →∞ t′, where |t| denotes the term t with type decorations erased. This means that every
typable term t has a well-defined interpretation in the corresponding type, which may be
obtained as a limit of a reduction sequence starting from |t|.

Our definition of the rewriting semantics is natural and relatively straightforward. It is
not difficult to prove it sound for a restricted form of non-nested first-order (co)inductive
types. However, once we allow parameterized nested higher-order inductive and coinductive
types significant complications occur because of the alternation of least and greatest fixpoints
in the definitions. Our main technical contribution is the proof of the approximation theorem.
This proof involves some heavy infinitary rewriting machinery, but just to apply the theorem
no deep familiarity with infinitary rewriting is needed.

The main purpose of this paper is to define an infinitary rewriting semantics, to precisely
state and prove the approximation theorem, and to show that the approximation theorem
may be used to derive soundness of the rewriting semantics for systems based on sized
types. The type system itself presented in the second part of the paper is not a significant
improvement over the state-of-the-art in type systems based on sized types. It is mostly
intended as an illustration of a system for which our rewriting semantics is particularly
perspicuous.

1.1. Related work. The notion of productivity dates back to the work of Dijkstra [14], and
the later work of Sijtsma [44]. Our rewriting semantics may be considered a generalization of
Isihara’s definition of productivity in algorithmic systems [25], of Zantema’s and Raffelsieper’s
definition of productivity in infinite data structures [46], and of the definition of stream
productivity [16, 15, 19]. In comparison to our setting, the infinite data structures considered
before in term rewriting literature are very simple. None of the papers mentioned allow
higher-order functions or higher-order (co)inductive types. The relative difficulty of our
main results stems from the fact that the data structures we consider may be much more
complex.

Infinitary rewriting was introduced in [29, 28, 30]. See [27] for more references and a
general introduction.

In the context of type theory, infinite objects were studied by Martin-Löf [38] and
Coquand [9]. Gimenez [21] introduced the guardedness condition to incorporate coinductive
types and corecursion into dependent type theory, which is the approach currently used
in Coq. Sized types are a long-studied approach for ensuring termination and productivity
in type theories [24, 7, 2, 4]. In comparison to previous work on sized types, the type system
introduced in the second part of this paper is not a significant advance, but as mentioned
before this is not the point of the present work. In order to justify the correctness of systems
with sized types, usually strong normalization on typable terms is shown for a restriction of
the reduction relation. We provide an infinitary rewriting semantics. Our approach may
probably be extended to provide an infinitary rewriting semantics for at least some of the
systems from the type theory literature. This semantics is interesting in its own right.

In [43] infinitary weak normalization is proven for a broad class of Pure Type Systems
extended with corecursion on streams (CoPTSs), which includes Krishnaswami and Benton’s
typed λ-calculus of reactive programs [36]. This is related to our work in that it provides some
infinitary rewriting interpretation for a class of type systems. The formalism of CoPTSs is

11:4 L. Czajka Vol. 16:1

not based on sized types, but on a modal next operator, and it only supports the coinductive
type of streams.

Our work is also related to the work on computability at higher types [37], but we have
not yet investigated the precise relationships.

Coinduction has been studied from a more general coalgebraic perspective [26]. In this
paper we use a few simple proofs by coinduction and one definition by corecursion. Formally,
they could be justified as in e.g. [35, 39, 26, 11]. Our use of coinduction in this paper is not
very involved, and there are no implicit corecursive function definitions like in [11].

2. Infinitary rewriting

In this section we define infinitary terms and reductions. We assume familiary with the
lambda calculus [5] and basic notions such as α-conversion, substitution, etc. Prior familiarity
with infinitary rewriting or infinitary lambda calculus [27, 30] is not necessary but is helpful.

We assume a countable set V of variables, and a countable set C of constructors. The
set T∞ of all finite and infinite terms t is given by

t ::= x | c | λx.t | tt | case(t; {ck~x⇒ tk | k = 1, . . . , n})

where x ∈ V and c, ck ∈ C. We use the notation ~t (resp. ~x) to denote a sequence of terms
(resp. variables) of an unspecified length.

More precisely, the set T∞ is defined as an appropriate metric completion (analogously
to [27]), but the above specification is clear and the details of the definition are not significant
for our purposes. We consider terms modulo α-conversion. Below (Definition 2.7) we will
present the terms together with the rewrite rules as an iCRS [34], which may be considered
a formal definition of our rewrite system.

There are the following reductions:

(λx.t)t′ →β t[t′/x]
case(ck~u; {cl~x⇒ tl}) →ι tk[~u/~x]

In the ι-rule we require that the appropriate sequences ~u and ~x have the same lengths, all
variables in each ~x are pairwise distinct, and the constructors cl are all distinct. For instance,
case(ct1t2; {cxy ⇒ x, dxy ⇒ y})→ι t1 (assuming c 6= d), but case(ct1; {cxy ⇒ x, dxy ⇒ y}),
case(c′t1t2; {cxy ⇒ x, dxy ⇒ y}) and case(ct1t2; {cxy ⇒ x, cxy ⇒ y}) do not have ι-reducts
(assuming c′ /∈ {c, d}). We usually write t→∗ t′ to denote a finitary reduction t→∗βι t′.

Definition 2.1. Following [20, 17, 18], we define infinitary reduction t→∞ t′ coinductively.

t→∗ x
t→∞ x

t→∗ c
t→∞ c

t→∗ λx.r r →∞ r′

t→∞ λx.r′
t→∗ r1r2 rk →∞ r′k

t→∞ r′1r
′
2

t→∗ case(r; {ck~x⇒ rk}) r →∞ r′ rk →∞ r′k

t→∞ case(r′; {ck~x⇒ r′k})

Intuitively, t→∞ t′ holds if it may be obtained as the conclusion of a potentially infinite
derivation tree built using the above rules. The idea with the definition of the infinitary
reduction →∞ is that the depth at which a redex is contracted should tend to infinity.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:5

This is achieved by defining →∞ in such a way that always after finitely many reduction
steps the subsequent contractions may be performed only at a greater depth. In other
words, if t→∞ t′ then to produce any finite prefix of t′ only a finitary reduction from t is
necessary, i.e., any finite prefix of t′ becomes fixed after finitely many reduction steps and
afterwards all reductions occur only at higher depths. The idea for the definition of →∞
comes from [20, 17, 18].

Our coinductively defined notion of infinitary reduction corresponds to the established
notion of strongly convergent reduction in infinitary rewriting [27] (see Lemma 2.8). This
notion has good formal properties and an intuitive computational interpretation. Note that
this is different from weak (Cauchy) convergence where one requires convergence with respect
to the metric topology on terms, but the depth of the reduction activity is not required to
increase. A reduction sequence may weakly converge to a limit, even though every step is
performed at the root. The term can then be thought of as still changing, even though in
the limit it is being reduced to itself. See [27, Section 12.3] for a more detailed discussion.

The proofs of the next three lemmas follow the pattern from [20, Lemma 4.3-4.5].

Lemma 2.2. If t1 →∞ t′1 and t2 →∞ t′2 then t1[t2/x]→∞ t′1[t
′
2/x].

Proof. Coinduction with case analysis on t1 →∞ t′1, using that t →∗ t′ implies t[t2/x] →∗
t′[t2/x].

Lemma 2.3. If t→∞ t′ →βι t
′′ then t→∞ t′′.

Proof. Induction on t′ →βι t
′′, using Lemma 2.2.

Lemma 2.4. If t→∞ t′ →∞ t′′ then t→∞ t′′.

Proof. By coinduction, analyzing t′ →∞ t′′ and using Lemma 2.3.

The rest of this section contains some technical definitions and results which are needed
for the proof of the approximation theorem. A reader not interested in the infinitary rewriting
details of this proof may skip the remainder of this section.

Definition 2.5. We define the relation→2∞ analogously to→∞, but replacing→∗ with→∞
and →∞ with →2∞ in Definition 2.1.

We may consider →∞ (resp. →2∞) as defining a strongly convergent ordinal-indexed
reduction sequence [27] of length at most ω (resp. ω2), obtained by concatenating the finite
reductions →∗ occurring in the coinductive derivation. The next lemma may be seen as a
kind of compression lemma.

Lemma 2.6. If t→2∞ t′ then t→∞ t′.

Proof. By coinduction, using Lemma 2.4. See for example [11, Lemma 6.3] for details.

The system of βι-reductions on infinitary terms T∞ may be presented as a fully-
extended infinitary Combinatory Reduction System (iCRS) [34]. One checks that this iCRS
is orthogonal. A reader not familiar with the iCRS formalism may skip the following
definition.

Definition 2.7. The signature of the iCRS contains:

• a distinct nullary symbol c for each constructor,
• a binary symbol app denoting application,
• a unary symbol lam denoting lambda abstraction, and

11:6 L. Czajka Vol. 16:1

• for each n ∈ N and each sequence of distinct constructors c1, . . . , cn and each sequence of

natural numbers k1, . . . , kn, a symbol casek1,...,knc1,...,cn of arity n+ 1.

The iCRS has the following rewrite rules:

• app(lam([x]Z(x)), X)→ Z(X),

• for each symbol casek1,...,knc1,...,cn and each i = 1, . . . , n:

casek1,...,knc1,...,cn (app(. . . (app(app(ci, X1), X2) . . .), Xki),
[x1, . . . , xk1]Z1(x1, . . . , xk1), . . . , [x1, . . . , xkn]Zn(x1, . . . , xkn))

→
Zi(X1, . . . , Xki)

We assume x1, . . . , xki to be pairwise distinct, for i = 1, . . . , n.
One sees that this iCRS corresponds to our informal presentation of terms and reductions,

and that it is fully-extended and orthogonal.

Our coinductive definition of the infinitary reduction relation →∞ corresponds to,
in the sense of existence, to the well-established notion of strongly convergent reduction
sequences [34, 27]. This is made precise in the next lemma.

Lemma 2.8. t→∞ t′ iff there exists a strongly convergent reduction sequence from t to t′.

Proof. This follows by a proof completely analogous to [11, Theorem 6.4], [10, Theorem 48]
or [20, Theorem 3]. The technique originates from [20]. Lemma 2.6 is needed in the proof.

Definition 2.9. A term t is root-active if for every t′ with t→∞ t′ there is a βι-redex t′′

such that t′ →∞ t′′. The set of root-active, or meaningless, terms is denoted by U . By ∼U
we denote equality of terms modulo equivalence of meaningless subterms.

Meaningless terms are a technical notion needed in the proofs, because for infinitary
rewriting confluence holds only modulo ∼U . Intuitively, meaningless terms have no “mean-
ingful” interpretation and may all be identified. An example of a meaningless term is
Ω = (λx.xx)(λx.xx). Various other sets of meaningless terms have been considered in the
infinitary lambda calculus [27, 13, 41, 42, 40, 31]. The set of root-active terms is a subset of
each of them.

Because our iCRS is fully-extended and orthogonal, the following are consequences of
some results in [32] and the previous lemma. Note that because all rules are collapsing, in
our setting root-active terms are the same as the hypercollapsing terms from [32].

Lemma 2.10. If t ∼U t′ ∼U t′′ then t ∼U t′′.

Proof. Follows from [32, Proposition 4.12].

Lemma 2.11. If t→∞ w and t ∼U t′ then there is w′ with t′ →∞ w′ and w ∼U w′.

Proof. Follows from [32, Lemma 4.14].

Theorem 2.12. The relation of infinitary reduction →∞ is confluent modulo U , i.e., if
t ∼U t′ and t →∞ u and t′ →∞ u′ then there exist w,w′ such that w ∼U w′ and u →∞ w
and u′ →∞ w′.

Proof. Follows from [32, Theorem 4.17].

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:7

3. Types

In this section we define the types for which we will provide an interpretation in our rewriting
semantics. Some types will be decorated with sizes of (co)inductive types, indicating the
type of approximations of a (co)inductive type of a given size.

Definition 3.1. Size expressions are given by the following grammar:

s ::= ∞ | 0 | i | s+ 1 | min(s, s) | max(s, s)

where i is a size variable. We denote the set of size variables by VS .

We use obvious abbreviations for size expressions, e.g., i + 3 for ((i + 1) + 1) + 1, or
min(s1, s2, s3) for min(min(s1, s2), s3), or max(s) for s, etc. Substitution s[s′/i] of s′ for the
size variable i in the size expression s is defined in the obvious way.

Definition 3.2. We assume an infinite set D of (co)inductive definition names d, d′, d1,
Types τ, α, β are defined by:

τ ::= A | ds(τ1, . . . , τn) | τ1 → τ2 | ∀i.τ
where A ∈ VT is a type variable, s is a size expression, i is a size variable, and d is a
(co)inductive definition name.

A type τ is strictly positive if one of the following holds:

• τ is closed (i.e. it contains no type variables),
• τ = A is a type variable,
• τ = τ1 → τ2 and τ1 is closed and τ2 is strictly positive,
• τ = ∀i.τ ′ and τ ′ is strictly positive,
• τ = d∞(~α) and each αk is strictly positive.

By SV(s) (resp. SV(τ)) we denote the set of all size variables occurring in s (resp. τ).
By TV(τ) we denote the set of all type variables occurring in τ . By FSV(τ) we denote the
set of all free size variables occuring in τ (i.e. those not bound by any ∀).

Substitution τ [τ ′/A], s[s′/i], τ [s′/i] is defined in the obvious way, avoiding size variable

capture. We abbreviate simultaneous substitution τ [α1/A1, . . . , αn/An] to τ [~α/ ~A].

To each (co)inductive definition name d ∈ D we associate a unique (co)inductive
definition. Henceforth, we will use (co)inductive definitions and their names interchangeably.
Remember, however, that strictly speaking (co)inductive definitions do not occur in types,
only their names do.

Definition 3.3. A coinductive definition for d ∈ D is specified by a defining equation of
the form

d(B1, . . . , Bn) = CoInd(A){ck : ~σk | k = 1, . . . ,m}
where A is the recursive type variable, and B1, . . . , Bn are the parameter type variables, and
m > 0, and ck is the kth constructor, and σlk is the kth constructor’s lth argument type, and
the following is satisfied:

• σlk are all strictly positive,

• TV(σlk) ⊆ {A,B1, . . . , Bn},
• FSV(σlk) = ∅.
An inductive definition is specified analogously, but using Ind instead of CoInd.

We assume that each constructor c is associated with a unique (co)inductive defini-
tion Def(c).

11:8 L. Czajka Vol. 16:1

We assume there is a well-founded order ≺ on (co)inductive definitions such that for
every (co)inductive definition d, each (co)inductive definition d′ occurring in a constructor
argument type of d satisfies d′ ≺ d.

The type variable A is used as a placeholder for recursive occurrences of d(~B). We often
write ArgTypes(ck) to denote (σ1k, . . . , σ

nk
k): the argument types of the k-th constructor.

We usually present (co)inductive definitions in a bit more readable format by replacing the
recursive type variable A with the type being defined, presenting the constructor argument
types in a chain of arrow types, and adding the type being defined as the target type of
constructors. For instance, the inductive definition of lists is specified by

List(B) = Ind{nil : List(B), cons : B → List(B)→ List(B)}.
Formally, here σ11 = A, σ12 = B, and σ22 = A.

Example 3.4. The inductive definition of natural numbers is specified by:

Nat = Ind{0 : Nat, S : Nat→ Nat}.
The coinductive definition of streams of natural numbers is specified by:

Strm = CoInd{cons : Nat→ Strm→ Strm}.

Definition 3.5. An expression of the form d(τ1, . . . , τn) is a (co)inductive type, depending
on whether d is an inductive or coinductive definition. A type of the form ds(τ1, . . . , τn)
is a decorated (co)inductive type. We drop the designator “decorated” when clear from
the context. We write c ∈ Constr(ρ) to denote that c is a constructor for a (decorated)
(co)inductive type or definition ρ.

In a (co)inductive type ds(τ1, . . . , τn), the types τ1, . . . , τn denote the parameters.
Intuitively, we substitute τ1, . . . , τn for the parameter type variables B1, . . . , Bn of the
(co)inductive definition d.

By default, dν denotes a coinductive and dµ an inductive definition. We use µ for
inductive and ν for coinductive types, and ρ for (co)inductive types when it is not important
if it is inductive or coinductive. Analogously, we use µs, νs, ρs for decorated (co)inductive
types (with size s). We often omit the superscript ∞ in ρ∞, overloading the notation.

Intuitively, µs denotes the type of objects of an inductive type µ which have size at
most s, and νs denotes the type of objects of a coinductive type ν which have size at least s,
i.e., considered up to depth s they represent a valid object of type ν. For a stream ν = Strm,
the type Strms is the type of terms t which produce (under a sufficiently long reduction
sequence) at least s initial elements of a stream. The type e.g. ∀i.Strmi → Strms is the
type of functions which when given as argument a stream of size i (i.e. with at least i initial
elements well-defined) produce at least s initial elements of a stream, where i may occur
in s.

Note that the parameters to (co)inductive definitions may be other (co)inductive types
with size constraints. For instance List(Listi(τ)) denotes the type of lists (of any length)
whose elements are lists of length at most i with elements of type τ . Note also that the
recursive type variable A may occur as a parameter of a (co)inductive type in the type of
one of the constructors. For these two reasons we need to require that the parameter type
variables occur only strictly positively in the types of the arguments of constructors. One
could allow non-positive occurrences of parameter type variables in general and restrict
the occurrences to strictly positive only for instantiations with types containing free size

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:9

variables or recursive type variables. This would, however, introduce some tedious but
straightforward technicalities in the proofs.

Example 3.6. Infinite binary trees storing natural numbers in nodes may be specified by:

BTree = CoInd{bnode : Nat→ BTree→ BTree→ BTree}.
Trees with potentially infinite branches but finite branching at each node are specified by:

FTree = CoInd{fnode : Nat→ List(FTree)→ FTree}.
Here the type FTree itself (formally, the recursive type variable A) occurs as a parameter
of List in the type of the constructor fnode.

Infinite trees with infinite branching are specified by:

Tree = CoInd{node : Nat→ (Nat→ Tree)→ Tree}.
Here infinite branching is specified by a function from Nat to Tree.

Recall the coinducutive definition of the type Tree2 from the introduction:

Tree2 = CoInd{c1 : List(Tree2)→ Tree2, c2 : (Nat→ Tree2)→ Tree2}.
In this definition both finite branching via the c1 constructor and infinite branching via c2
are possible. In contrast to BTree, FTree and Tree, the nodes of Tree2 do not store any
natural number values.

Example 3.7. As an example of a nested higher-order (co)inductive type we consider
stream processors from [23]. See also [3, Section 2.3]. We define two types:

SPi(B) = Ind{get : (Nat→ SPi(B))→ SPi(B),
put : Nat→ B → SPi(B)}

SP = CoInd{out : SPi(SP)→ SP}
The type SP is a type of stream processors. A stream processor can either read the first
element from the input stream and enter a new state depending on the read value (the get

constructor), or it can write an element to the output stream and enter a new state (the
put constructor). To ensure productivity, a stream processor may read only finitely many
elements from the input stream before writing a value to the output stream. This is achieved
by nesting the inductive type SPi inside the coinductive type SP of stream processors.

The well-founded order ≺ on (co)inductive definitions essentially disallows mutual
(co)inductive types. They may still be represented indirectly thanks to type parameters.

Example 3.8. The types Odd and Even of odd and even natural numbers may be defined
as mutual inductive types:

Odd = Ind{So : Even→ Odd}
Even = Ind{0 : Even, Se : Odd→ Even}

These are not valid inductive definitions in our formalism, but they may be reformulated as
follows:

Odd0(B) = Ind{So : B → Odd0(B)}
Even = Ind{0 : Even, Se : Odd0(Even)→ Even}

Now the type Odd is represented by Odd0(Even).

In the rest of this paper by “induction on a type τ” we mean induction on the lexico-
graphic product of:

11:10 L. Czajka Vol. 16:1

• the multiset extension of the well-founded order ≺ on (co)inductive definitions occurring
in the type, and
• the size of the type.

In this order, if c ∈ Constr(ρ) with ArgTypes(c) = (σ1, . . . , σm) then each σk is smaller
than ρ.

4. Rewriting semantics

In this section we define our rewriting semantics. More precisely, we define an interpretation
JτK ⊆ T∞ for each type τ .

By ∞ we denote a sufficiently large ordinal (see Definition 4.1), and by Ω we denote the
set of all ordinals not greater than ∞. A size variable valuation is a function v : VS → Ω.
Any size variable valuation v extends in a natural way to a function from size expressions
to Ω. More precisely, we define: v(∞) = ∞, v(0) = 0, v(s + 1) = min(v(s) + 1,∞),
v(min(s1, s2)) = min(v(s1), v(s2)), v(max(s1, s2)) = max(v(s1), v(s2)). To save on notation
we identify ordinals larger than ∞ with ∞, e.g., ∞+ 1 denotes the ordinal ∞.

Definition 4.1. We interpret types as subsets of T∞. By ∞ we denote an ordinal large
enough so that any monotone function on P(T∞) (the powerset of T∞) reaches its least and
greatest fixpoint in ∞ iterations. This ordinal exists, as we may take any ordinal larger
than the cardinality of P(T∞).

Given a type variable valuation ξ : VT → P(T∞), a size variable valuation v : VS → Ω,
and a strictly positive type τ , we define a type valuation JτKξ,v ⊆ T∞. This is done by

induction on τ . We simultaneously also define valuation approximations JρKκξ,v and JdKκξ,v.

• Let d(B1, . . . , Bn) = (Co)Ind(A){ck : ~σk → d(~B)}〉 be a (co)inductive definition. We
define a function Φd,ξ,v : P(T∞) → P(T∞) so that Φd,ξ,v(X) for X ⊆ T∞ contains all

terms of the form ckt
1
k . . . t

nk
k such that tlk ∈ JσlkKξ[X/A],v for l = 1, . . . , nk.

For a coinductive definition dν and an ordinal κ ∈ Ω we define the valuation approxi-
mation JdνKκξ,v ⊆ T∞ as follows:

– JdνK0ξ,v = T∞,

– JdνKκ+1
ξ,v = Φdν ,ξ,v(JdνKκξ,v),

– JdνKκξ,v =
⋂

κ′<κJdνKκ
′

ξ,v if κ is a limit ordinal.
For an inductive definition dµ and an ordinal κ ∈ Ω we define the valuation approxima-
tion JdµKκξ,v ⊆ T∞ by:

– JdµK0ξ,v = ∅,
– JdµKκ+1

ξ,v = Φdµ,ξ,v(JdµKκξ,v),
– JdµKκξ,v =

⋃
κ′<κJdµKκ

′
ξ,v if κ is a limit ordinal.

• JρKκξ,v = JdKκ
ξ[~Y / ~B],v

where ρ = d(~α) is a (co)inductive type, Yj = JαjKξ,v, and ~B are the

parameter type variables of d.

• JρsKξ,v = JρKv(s)ξ,v .

• JAKξ,v = ξ(A).

• t ∈ J∀i.τKξ,v if i /∈ FSV(t) and for every κ ∈ Ω there is t′ with t→∞ t′ ∈ JτKξ,v[κ/i].
• t ∈ Jα→ βKξ,v if for every r ∈ JαKξ,v there is t′ with tr →∞ t′ ∈ JβKξ,v.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:11

For a closed type τ the valuation JτKξ,v does not depend on ξ, so we simply write JτKv
instead. Whenever we omit the type variable valuation we implicitly assume the type to be
closed.

In general, the interpretation JτK of a type τ may contain terms which are not in normal
form. This is because of the interpretation of function types and quantification over size
variables (∀i). If τ is a simple first-order (co)inductive type whose constructor argument
types contain neither function types (τ1 → τ2) nor quantification over size variables (∀i.τ ′),
then JτK contains only normal forms.

Thus, we do not show infinitary weak normalization for terms having function types.
Nonetheless, our interpretation of t ∈ Jτ1 → τ2K is very natural and ensures productivity
of t regarded as a function: we require that for u ∈ Jτ1K there is u′ ∈ Jτ2K with tu→∞ u′.
Intuitively, this means that for any u ∈ Jτ1K the application tu reduces “in the limit” to
a term u′ ∈ Jτ2K, using only a finite initial part of u to produce a finite initial part of u′.
Moreover, it is questionable in the first place how sensible infinitary normalization is as a
“correctness” criterion for terms of function types.

Example 4.2. Recall the definitions of the types Nat and Strm from Example 3.4:

Nat = Ind{0 : Nat, S : Nat→ Nat}
Strm = CoInd{cons : Nat→ Strm→ Strm}

The elements of JNatK are the terms: 0, S(0), S(S(0)), We use common number notation,
e.g. 1 for S(0), etc. We usually write e.g. 1 :: 2 :: t instead of cons 1 (cons 2 t). The elements
of JStrmK are all infinite terms of the form n1 :: n2 :: n3 :: . . . where ni ∈ JNatK.

Consider the term
tl = λt.case(t; {consx y ⇒ y})

We have tl ∈ JStrm→ StrmK. Indeed, let t ∈ JStrmK. Then t = n :: t′ with n ∈ JNatK and
t′ ∈ JStrmK. Thus tl(t)→ case(n :: t′; {consx y ⇒ y})→ t′ ∈ JStrmK.

Example 4.3. Recall the definitions of BTree, FTree and Tree form Example 3.6:

BTree = CoInd{bnode : Nat→ BTree→ BTree→ BTree}
FTree = CoInd{fnode : Nat→ List(FTree)→ FTree}

Tree = CoInd{node : Nat→ (Nat→ Tree)→ Tree}
The interpretation JBTreeK consists of all infinite terms of the form

bnoden1,1 (bnoden2,1 (. . .) (. . .))(bnoden2,2 (. . .) (. . .))

where n1,1, n2,1, n2,2, . . . ∈ JNatK. The interpretation JFTreeK consists of all potentially
infinite terms of the form fnoden1,1 ((fnoden2,1 (. . .)) :: (fnoden2,2 (. . .)) :: . . . :: nil) where
n1,1, n2,1, n2,2, . . . ∈ JNatK. Finally, JTreeK consists of all terms of the form noden f where
n ∈ JNatK for every m ∈ JNatK there is t ∈ JTreeK such that fm→∞ t.

Example 4.4. Recall the definition of stream processors from Example 3.7:

SPi(B) = Ind{get : (Nat→ SPi(B))→ SPi(B),
put : Nat→ B → SPi(B)}

SP = CoInd{out : SPi(SP)→ SP}
An example stream processor, i.e., an example element of JSPK is an infinite term odd

satisfying the identity:

odd = out(get(λx.get(λy.putx odd)))

11:12 L. Czajka Vol. 16:1

The stream processor odd drops every second element of a stream, e.g., it transforms the
stream 1 :: 2 :: 3 :: 4 :: . . . into 1 :: 3 :: 5 :: But e.g. the infinite term

out(get(λx1.get(λx2.get(λx3.get(. . .)))))

is not in JSPK, because it nests infinitely many gets.

Lemma 4.5. If v(i) = v′(i) for every i ∈ FSV(τ) then JτKξ,v = JτKξ,v′. Moreover, JdKκξ,v =

JdKκξ,v′ for any v, v′.

Proof. Follows by induction on τ , using the fact FSV(σlk) = ∅ for σlk a constructor argument
type as in Definition 3.3.

Lemma 4.6.

(1) If ξ(A) = ξ′(A) for A ∈ TV(τ) then JτKξ,v = JτKξ′,v.

(2) If ξ(Bi) = ξ′(Bi) for each parameter type variable Bi of d, then JdKκξ,v = JdKκξ′,v.

Proof. Induction on τ , generalizing over ξ, ξ′ and v.

Corollary 4.7. If ξ(Bi) = ξ′(Bi) for each parameter type variable Bi of d, then Φd,ξ,v =
Φd,ξ′,v.

Lemma 4.8. Assume ξ ⊆ ξ′, i.e., ξ(A) ⊆ ξ′(A) for all type variables A.

(1) If τ is strictly positive then JτKξ,v ⊆ JτKξ′,v.

(2) If d is a (co)inductive definition then JdKκξ,v ⊆ JdKκξ′,v.

(3) If X ⊆ X ′ then Φd,ξ,v(X) ⊆ Φd,ξ′,v(X
′). In particular, the function Φd,ξ,v is monotone.

Proof. Induction on τ , generalizing over ξ, ξ′, v.

From the third point in the above lemma it follows that JdνKκ1
ξ,v ⊆ JdνKκ2

ξ,v for κ2 ≤ κ1, and

JdµKκ1
ξ,v ⊆ JdµKκ2

ξ,v for κ1 ≤ κ2. Also, for a (co)inductive definition d, by the Knaster-Tarski

fixpoint theorem [45], the function Φd,ξ,v has the least and greatest fixpoints, which may
be obtained by “iterating” Φd,ξ,v starting with the empty or the full set, respectively, as in
the definition of valuation approximations. For an inductive definition dµ, the least fixpoint
of Φdµ,ξ,v is then JdµK∞ξ,v, by how we defined ∞. Analogously, for a coinductive definition dν
the greatest fixpoint of Φdν ,ξ,v is JdνK∞ξ,v. Note that for κ ≥ ∞ we have JdKκξ,v = JdK∞ξ,v.

The next definition and the ensuing lemma are needed in the proof of the approximation
theorem. A reader not interested in the details of this proof may skip the rest of this section.

Definition 4.9. A set X ⊆ T∞ is stable when:

(1) if t ∈ X and t ∼U t′ then t′ ∈ X,
(2) if t ∈ X and t→∞ t′ then t′ ∈ X.

A type variable valuation ξ is stable if ξ(A) is stable for each type variable A. The following
lemma implies that the interpretations of closed types are in fact stable.

Lemma 4.10. Assume τ, ρ are strictly positive.

(1) If ξ is stable then so is JτKξ,v.

(2) If ξ is stable then so is JρKκξ,v.

(3) If ξ and X ⊆ T∞ are stable then so is Φdρ,ξ,v(X).

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:13

Proof. We show the first point by induction on τ , generalizing over ξ, v. The remaining two
points will follow directly from this proof.

First assume τ = ρs with ρ = d(~α). Then JτKξ,v = JρKv(s)ξ,v = JdKv(s)
ξ[~Y / ~B],v

where Yj =

JαjKξ,v and each αj is strictly positive. By the inductive hypothesis each Yj is stable. Hence

ξ1 = ξ[~Y / ~B] is also stable. We show that if X ⊆ T∞ is stable then so is Φd,ξ1,v(X). From
this it follows by induction that JρKκξ,v is stable for any κ ∈ Ω, and thus JτKξ,v is stable.

Let t ∈ Φd,ξ1,v(X). Then t = ct1 . . . tn where tk ∈ JσkKξ1[X/A],v and c ∈ Constr(ρ) and

ArgTypes(c) = (σ1, . . . , σn). Note that ξ1[X/A] is stable, because X is. Hence JσkKξ1[X/A],v
is stable by the inductive hypothesis.

(1) Assume t ∼U t′. Then t′ = ct′1 . . . t
′
n with tk ∼U t′k. We have t′k ∈ JσkKξ1[X/A],v

because JσkKξ1[X/A],v is stable. Thus t′ ∈ Φd,ξ1,v(X).

(2) Assume t →∞ t′. Then t′ = ct′1 . . . t
′
n with tk →∞ t′k. We have t′k ∈ JσkKξ1[X/A],v

because JσkKξ1[X/A],v is stable. Thus t′ ∈ Φd,ξ1,v(X).

If τ = A is a type variable then JτKξ,v = ξ(A) is stable because ξ is.

Assume τ = ∀i.τ ′. Let t ∈ JτKξ,v.
(1) Assume t ∼U t′. Let κ ∈ Ω. There is t0 with t →∞ t0 ∈ Jτ ′Kξ,v[κ/i]. By Lemma 2.11

there is t′0 with t0 ∼U t′0 and t′ →∞ t′0. By the inductive hypothesis Jτ ′Kξ,v[κ/i] is stable,

so t′0 ∈ Jτ ′Kξ,v[κ/i]. Thus t′ ∈ JτKξ,v (without loss of generality i /∈ FSV(t′)).

(2) Assume t→∞ t′. There is t0 with t→∞ t0 ∈ Jτ ′Kξ,v[κ/i]. By confluence modulo U there

are t1, t2 with t0 →∞ t1 ∼U t2 and t′ →∞ t2. By the inductive hypothesis Jτ ′Kξ,v[κ/i] is

stable, so t2 ∈ Jτ ′Kξ,v[κ/i]. Thus t′ ∈ JτKξ,v.

Finally, assume τ = τ1 → τ2 with τ1 closed and τ2 strictly positive. Let t ∈ JτKξ,v. By

the inductive hypothesis Jτ2Kξ,v is stable.

(1) Assume t ∼U t′. We need to show t′ ∈ JτKξ,v. Let r ∈ Jτ1Kξ,v. Then tr →∞ t0 ∈ Jτ2Kξ,v.
We have tr ∼U t′r, so by Lemma 2.11 there is t′0 with t0 ∼U t′0 and t′r →∞ t′0.
Because Jτ2Kξ,v is stable, t′0 ∈ Jτ2Kξ,v.

(2) Assume t→∞ t′. We need to show t′ ∈ JτKξ,v. Let r ∈ Jτ1Kξ,v. Then tr →∞ t0 ∈ Jτ2Kξ,v.
We have tr →∞ t′r, so by confluence there are t1, t2 with t0 →∞ t1 ∼U t2 and t′r →∞ t2.
Because Jτ2Kξ,v is stable, t2 ∈ Jτ2Kξ′,v.

5. Approximation theorem

In this section we prove the approximation theorem: if t→∞ tn ∈ JνKnv for n ∈ N then there
exists t∞ ∈ JνK∞v such that t→∞ t∞.

The approximation theorem is an easy consequence of the following result: if tn →∞ tn+1

and tn ∈ JνKnv for n ∈ N, then there exists t∞ such that t0 →∞ t∞ ∈ JνK∞v . If ν is a simple
coinductive type, e.g., it is a stream with a single constructor c where ArgTypes(c) = (σ,A),
the type σ is closed, and A is the recursive type variable of ν, then the argument is not
complicated. It follows from the assumption that tn+1 = cun+1wn+1 with un+1 ∈ JσKv,
wn+1 ∈ JνKnv and wn+1 →∞ wn+2. We coinductively construct w∞ with w1 →2∞ w∞ ∈ JνK∞v
(note that JνK∞v treated as a unary relation may be defined coinductively). Take t∞ = cu1w∞.
We have t0 →2∞ t∞ ∈ JνK∞v , which suffices by Lemma 2.6. This reasoning captures the gist

11:14 L. Czajka Vol. 16:1

of the argument. With higher-order (co)inductive types the core idea remains the same but
significant technical complications occur because of the alternation of least and greatest
fixpoints in the definition of J−Kξ,v. We construct the term t∞ by coinduction, and show

t0 →∞ t∞ by coinduction, and then show t∞ ∈ JνK∞v by an inductive argument. To be
able to even state an appropriately generalized inductive hypothesis, we first need some
definitions.

A reader not interested in the infinitary rewriting details of the proof of the approximation
theorem may skip directly to Theorem 5.22.

Definition 5.1. Let τ be a strictly positive type and Ξ = {ξn}n∈N a family of type variable
valuations. A τ,Ξ-sequence (with v) is a sequence of terms {tn}n∈N satisfying tn ∈ JτKξn,v
and tn →∞ tn+1 for n ∈ N.

By Ξνv = {ξνn}n∈N we denote the family of type variable valuations such that ξνn(A) = JνKnv
for all A and n ∈ N. We usually write Ξν instead of Ξνv when v is irrelevant or clear from
the context. If T = {τA}A∈VT is a family of strictly positive types and Ξ = {ξn}n∈N a family
of type variable valuations, then ΞJT Kv denotes the family {ξ′n}n∈N where ξ′n(A) = JτAKξn,v.
Again, the subscript v is usually omitted.

A family Ξ of type variable valuations is ν-hereditary (with v) if Ξ = Ξνv or, inductively,
Ξ = Ξ′JT Kv for some ν-hereditary Ξ′ and a family T of strictly positive types.

A heredity derivation D is either ∅, or, inductively, a pair (D′, T) where D′ is a heredity
derivation and T a family of strictly positive types. The ν-hereditary family ΞD determined
by a heredity derivation D is defined inductively: Ξ∅ = Ξν and Ξ(D,T) = ΞDJT K.

A family Ξ = {ξn}n∈N is stable if each ξn is stable.

For the sake of readability we usually talk about ν-hereditary families, but we always
implicitly assume that for any given ν-hereditary family Ξ we are given a fixed heredity
derivation D such that Ξ = ΞD.

Lemma 5.2. Any ν-hereditary family Ξ is stable.

Proof. By induction on the definition of a ν-hereditary family, using Lemma 4.10.

Lemma 5.3. If a family Ξ determined by a heredity derivation D is ν-hereditary with v and
the size variable i is fresh, i.e., it does not occur in ν or any of the types in the type families
in D, then Ξ is ν-hereditary with v[κ/i] and determined by the same heredity derivation D.

Proof. Induction on D. If D = ∅ then Ξ = Ξνv = Ξνv[κ/i] by Lemma 4.5, because i does

not occur in ν. If D = (D′, T) and Ξ = ΞD
′JT K, then by the inductive hypothesis ΞD

′

is ν-hereditary with v[κ/i] and determined by the heredity derivation D′. Assuming

Ξ = {ξn}n∈N and ΞD
′

= {ξ′n}n∈N, we have ξn(A) = JτAKξ′n,v = JτAKξ′n,v[κ/i] by Lemma 4.5

because i /∈ FSV(τA). So Ξ is ν-hereditary with v[κ/i] and determined by D.

Lemma 5.4. If {tn}n∈N is a A,Ξν-sequence, then tn+1 = ct1n+1 . . . t
m
n+1 for n ∈ N, and

{tkn+1}n∈N is a σk,Ξ
′-sequence for each k = 1, . . . ,m where c ∈ Constr(ν) and ArgTypes(c) =

(σ1, . . . , σm) and ν = dν(~α) and Ξ′ = ΞνJT K where T = {τA′}A′∈VT and τBj = αj and
τA′ = A′ for A′ /∈ {B1, . . . , Bl} and B1, . . . , Bl are the parameter type variables of dν .

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:15

Proof. Let Ξ′ = {ξ′n}n∈N. We have

tn+1 ∈ JAKξνn+1,v

= JνKn+1
v

= JdνKn+1
ξ,v

= Φdν ,ξ,v(JdνKnξ,v)
= Φdν ,ξ,v(JνKnv)

where ξ(Bj) = JαjKv and B1, . . . , Bl are the parameter type variables of dν . Then tn+1 =

cn+1t
1
n+1 . . . t

mn+1

n+1 with tkn+1 ∈ Jσn+1
k Kξ[JνKnv /A],v where ArgTypes(cn+1) = (σn+1

1 , . . . , σn+1
mn+1

)

and A is the recursive type variable of dν . Since tn →∞ tn+1 for n ∈ N we must have cn+1 = c
and mn+1 = m and σn+1

k = σk for fixed c,m, σk not depending on n. Also tkn+1 →∞ tkn+2

for k = 1, . . . ,m and n ∈ N. Because ξ[JνKnv/A] and ξ′n are identical on {A,B1, . . . , Bl}, by
Lemma 4.6 we have tkn+1 ∈ JσkKξ′n,v. Thus {tkn+1}n∈N is a σk,Ξ

′-sequence.

Lemma 5.5. If τ = d∞(~α) and {tn}n∈N is a τ,Ξ-sequence, then tn = ct1n . . . t
m
n and

{tkn}n∈N is a σk,Ξ
′-sequence for each k = 1, . . . ,m where c ∈ Constr(d) and ArgTypes(c) =

(σ1, . . . , σm) and Ξ′ = ΞJT K where T = {τA′}A′∈VT and τA = τ and τBj = αj and τA′ = A′

for A′ /∈ {A,B1, . . . , Bl} and B1, . . . , Bl are the parameter type variables of d and A is the
recursive type variable of d.

Proof. The proof is analogous to the proof of Lemma 5.4, but using the fact that JdK∞ξ,v =

Φd,ξ,v(JdK∞ξ,v).

Definition 5.6. Let Sν be the set of triples (τ,Ξ, {tn}n∈N) such that τ is strictly positive,
Ξ = {ξn}n∈N is ν-hereditary, and {tn}n∈N is a τ,Ξ-sequence. By corecursion we define a
function fν : Sν → T∞. Let {tn}n∈N be a τ,Ξ-sequence. First note that if τ = A then we
may assume Ξ = Ξν , because as long as τ = A and Ξ = Ξ′JT K, the sequence {tn}n∈N is also
a τA,Ξ

′-sequence, so we may use the definition for the case τ = τA and Ξ = Ξ′.

• If τ is closed then fν(τ,Ξ, {tn}n∈N) = t0.
• If τ = A then without loss of generality Ξ = Ξν and by Lemma 5.4 for n ∈ N we have
tn+1 = ct1n+1 . . . t

m
n+1 and {tkn+1}n∈N is a σk,Ξ

′-sequence for each k = 1, . . . ,m. Then

define fν(τ,Ξ, {tn}n∈N) = cr1 . . . rm where rk = fν(σk,Ξ
′, {tin+1}n∈N).

• If τ = d∞(~α) then by Lemma 5.5 we have tn = ct1n . . . t
m
n and {tkn}n∈N is a σk,Ξ

′-
sequence for each k = 1, . . . ,m. Then define fν(τ,Ξ, {tn}n∈N) = cr1 . . . rm where rk =
fν(σk,Ξ

′, {tkn}n∈N).
• If τ = ∀i.τ ′ then fν(τ,Ξ, {tn}n∈N) = t0.
• If τ = τ1 → τ2 then fν(τ,Ξ, {tn}n∈N) = t0.

We usually denote fν(τ,Ξ, {tn}n∈N) by t∞ when τ,Ξ and {tn}n∈N are clear from the context.

Lemma 5.7. If Ξ is ν-hereditary and {tn}n∈N is a τ,Ξ-sequence then t0 →∞ t∞.

Proof. By Lemma 2.6 it suffices to show t0 →2∞ t∞. We proceed by coinduction. By the
definition of t∞ there are the following possibilities.

• If τ is closed then t∞ = t0 so t0 →2∞ t∞.
• If τ = A then without loss of generality Ξ = Ξν and for n ∈ N we have tn+1 = ct1n+1 . . . t

m
n+1

and {tkn+1}n∈N is a σk,Ξ
′-sequence for k = 1, . . . ,m. Then t∞ = cr1 . . . rm with rk =

fν(σk,Ξ
′, {tkn+1}n∈N). By the coinductive hypothesis tk1 →2∞ rk. Because t0 →∞ ct11 . . . t

m
1 ,

we have t0 →2∞ t∞.

11:16 L. Czajka Vol. 16:1

• If τ = d∞(~α) then tn = ct1n . . . t
m
n and {tkn}n∈N is a σk,Ξ

′-sequence for each k = 1, . . . ,m.
Then t∞ = cr1 . . . rm where rk = fν(σk,Ξ

′, {tkn}n∈N). By the coinductive hypothesis
tk0 →2∞ rk, so t0 →2∞ t∞.
• If τ = ∀i.τ ′ or τ = τ1 → τ2 then t∞ = t0, so t0 →2∞ t∞.

We want to show that if Ξ is ν-hereditary and {tn}n∈N is a τ,Ξ-sequence, then t∞ ∈⋂
n∈NJτKξn,v (Corollary 5.19). Together with the above lemma and some auxiliary results

this will imply the approximation theorem (Theorem 5.22). First, we need a few more
definitions and auxiliary lemmas.

Definition 5.8. Let Ξ = {ξn}n∈N and Ξ′ = {ξ′n}n∈N. We write Ξ ⊆ Ξ′ if ξn ⊆ ξ′n for n ∈ N.

Lemma 5.9. If Ξ ⊆ Ξ′ and {tn}n∈N is a τ,Ξ-sequence, then {tn}n∈N is also a τ,Ξ′-sequence.

Proof. Follows from definitions and Lemma 4.8.

Lemma 5.10. If t→∞ tn ∈ JτnKξn,v and ξn is stable for n ∈ N then there exists a sequence

of terms {t′n}n∈N such that t→∞ t′0 and t′n ∈ JτnKξn,v and t′n →∞ t′n+1 for n ∈ N.

Proof. By induction we define the terms wn and t′n such that tn →∞ wn ∼U t′n and {t′n}n∈N
satisfies the required properties. See Figure 1. We take t′0 = w0 = t0. For the inductive
step, assume wn and t′n are defined. By Lemma 2.4 and confluence modulo U there are wn+1

and w′n+1 such that tn+1 →∞ wn+1 ∼U w′n+1 and wn →∞ w′n+1. By Lemma 2.11 there
is t′n+1 with t′n →∞ t′n+1 and w′n+1 ∼U t′n+1. By Lemma 2.10 we have wn+1 ∼U t′n+1.
Because ξn+1 is stable, by Lemma 4.10 so is Jτn+1Kξn+1,v

. Since tn+1 ∈ Jτn+1Kξn+1,v
and

tn+1 →∞ wn+1 ∼U t′n+1 we obtain t′n+1 ∈ Jτn+1Kξn+1,v
.

t

∞vv
∞�� ∞## ∞)) ∞++t0

∞��

. . . tn

∞��

tn+1

∞��

tn+2

∞��

. . .

t0

o

. . . wn

o ∞""

wn+1

o ∞##

wn+2

o

. . .

t0

o

. . . w′n

o

w′n+1

o

w′n+2

o

. . .

t0
∞// . . .

∞// t′n
∞// t′n+1

∞// t′n+2
∞// . . .

Figure 1: Proof of Lemma 5.10.

Definition 5.11. A ν-hereditary Ξ = {ξn}n∈N is semi-complete with Z, ι if Z ⊆ Ξ is stable
and for every type variable A and every A,Z-sequence {tn}n∈N (which is also a A,Ξ-sequence
by Lemma 5.9) we have t∞ = fν(A,Ξ, {tn}n∈N) ∈ ι(A). The family Ξ is complete if it is
semi-complete with Ξ, ξm for each m ∈ N.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:17

Remark 5.12. Note that the definition of “semi-complete” depends on the implicit size
variable valuation v, through Ξ and the function fν . Let Ξ be ν-hereditary (with v)
and semi-complete with Z, ι, with the implicit valuation v. Let i be a fresh size variable.
Then by Lemma 5.3 the family Ξ is ν-hereditary with v[κ/i] and determined by the same
heredity derivation. It is also semi-complete with Z, ι, with the implicit valuation v[κ/i].
This is because if Ξ is ν-hereditary with v[κ/i] and {tn}n∈N a τ,Ξ-sequence with v[κ/i],
then it follows from Definition 5.6 and the statements of Lemma 5.4 and Lemma 5.5 that
only the type τ , the heredity derivation and the sequence {tn}n∈N determine the value
of fν(τ,Ξ, {tn}n∈N). Also note that the property of being an A,Z-sequence does not depend
on v, because A is a type variable.

We are now going to show that if Ξ = {ξn}n∈N is complete and {tn}n∈N is a τ,Ξ-sequence,
then t∞ = fν(τ,Ξ, {tn}n∈N) ∈

⋂
n∈NJτKξn,v (Corollary 5.14). This is a consequence of the

following a bit more general lemma. Its proof is rather long and technical, and therefore
delegated to an appendix to make the overall structure of the proof of the approximation
theorem clearer.

Lemma 5.13. If Ξ = {ξn}n∈N is ν-hereditary with v and semi-complete with Z, ι, and
{tn}n∈N is a τ, Z-sequence (and thus a τ,Ξ-sequence by Lemma 5.9), then:

t∞ = fν(τ,Ξ, {tn}n∈N) ∈ JτKι,v.

Corollary 5.14. If Ξ = {ξn}n∈N is complete and {tn}n∈N is a τ,Ξ-sequence, then t∞ =
fν(τ,Ξ, {tn}n∈N) ∈

⋂
n∈NJτKξn,v.

We are now going to show that every ν-hereditary family Ξ is complete. To achieve this
we show that Ξν is complete (Corollary 5.16), and that if Ξ is complete then so is ΞJT K
(Lemma 5.17).

Lemma 5.15. If Ξ is semi-complete with Z, ι then ΞJT K is semi-complete with ZJT K, ι′
where T = {τA}A∈VT and ι′(A) = JτAKι,v.

Proof. Let Ξ = {ξn}n∈N and Ξ′ = ΞJT K = {ξ′n}n∈N and Z = {ζn}n∈N and Z ′ = ZJT K =
{ζ ′n}n∈N. We have ζ ′n(A) = JτAKζn,v ⊆ JτAKξn,v = ξ′n(A) by Lemma 4.8 because Z ⊆ Ξ

and thus ζn ⊆ ξn. Hence Z ′ ⊆ Ξ′. Let {tn}n∈N be a A,Z ′-sequence, i.e., tn →∞ tn+1

and tn ∈ JAKζ′n,v = ζ ′n(A) = JτAKζn,v for n ∈ N. Then {tn}n∈N is also a τA, Z-sequence.

Because Ξ is semi-complete with Z, ι, by Lemma 5.13 we have t∞ = fν(A,Ξ′, {tn}n∈N) =
fν(τA,Ξ, {tn}n∈N) ∈ JτAKι,v = ι′(A).

Corollary 5.16. If Ξ is complete then so is ΞJT K.

Lemma 5.17. Ξν is complete.

Proof. We show by induction on m ∈ N that Ξν is semi-complete with Ξν , ξνm. We
have Ξν ⊆ Ξν . Also Ξν is stable. Let {tn}n∈N be a A,Ξν-sequence. We need to show
t∞ = fν(A,Ξν , {tn}n∈N) ∈ ξνm(A) = JνKmv . If m = 0 then JνKmv = T∞, so t∞ ∈ ξνm(A).
Assume m = m′ + 1. We have tn ∈ ξνn(A) = JνKnv . Then by Lemma 5.4 we have
tn+1 = ct1n+1 . . . t

k
n+1 for n ∈ N, and {tin+1}n∈N is a σi,Ξ

′-sequence for each i = 1, . . . , k
where c ∈ Constr(ν) and ArgTypes(c) = (σ1, . . . , σk) and ν = dν(~α) and Ξ′ = ΞνJT K where
T = {τA}A∈VT and τBj = αj and τA = A for A /∈ {B1, . . . , Bl} and B1, . . . , Bl are the
parameter type variables of dν . By the inductive hypothesis Ξν is semi-complete with Ξν , ξνm′ .
By Lemma 5.15 we conclude that Ξ′ is semi-complete with Ξ′, ι where ι(A) = JτAKξν

m′ ,v
, i.e.,

11:18 L. Czajka Vol. 16:1

ι = ξνm′ [Jα1Kv/B1, . . . , JαlKv/Bl]. Because {tin+1}n∈N is a σi,Ξ
′-sequence, by Lemma 5.13 we

have ti∞ ∈ JσiKι,v. Thus t∞ = ct1∞ . . . t
k
∞ ∈ Φdν ,ι,v(ι(A

′)) = Φdν ,ι,v(JνKm
′

v) = JνKmv , where A′

is the recursive type variable of dν . Hence t∞ ∈ ξνm(A).

Corollary 5.18. Every ν-hereditary family is complete.

Proof. Follows by induction from Lemma 5.17 and Corollary 5.16.

Corollary 5.19. If Ξ = {ξn}n∈N is ν-hereditary and {tn}n∈N is a τ,Ξ-sequence, then
t∞ = fν(τ,Ξ, {tn}n∈N) ∈

⋂
n∈NJτKξn,v.

Proof. Follows from Corollary 5.14 and Corollary 5.18.

We are now going to show that JνKωv = JνK∞v , i.e., ω iterations suffice to reach the
fixpoint for any coinductive type. For this we need the following lemma about intersection
of valuations. We define

⋂
n∈N ξn by (

⋂
n∈N ξn)(A) =

⋂
n∈N ξn(A) for any A.

Lemma 5.20. If Ξ = {ξn}n∈N is complete then
⋂
n∈NJτKξn,v ⊆ JτK⋂

n∈N ξn,v
for any strictly

positive τ .

Proof. Induction on τ . The proof is similar to the proof the auxiliary Lemma A.1 in
Appendix A. We treat three cases that differ more substantially.

• If τ = dsµ(~α) then
⋂
n∈NJτKξn,v =

⋂
n∈NJµKv(s)ξn,v

where µ = dµ(~α). By induction on κ we

show
⋂
n∈NJµKκξn,v ⊆ JµKκ⋂

n∈N ξn,v
. There are three cases.

(1) κ = 0. Then
⋂
n∈NJµKκξn,v =

⋂
n∈N ∅ = ∅ = JµKκ⋂

n∈N ξn,v
.

(2) κ = κ′ + 1. Let t ∈
⋂
n∈NJµKκξn,v. Then t = cu1 . . . uk with ui ∈

⋂
n∈NJσiKξ′n,v

where A is the recursive type variable of dµ and c ∈ Constr(dµ) and ArgTypes(c) =
(σ1, . . . , σk) and B1, . . . , Bl are the parameter type variables of dµ and Ξ′ = ΞJT K
and Ξ′ = {ξ′n}n∈N and T = {τA}A∈VT and τBj = αj and τA = µi and τA = A′

for A′ /∈ {A,B1, . . . , Bl} where i is a fresh size variable such that v(i) = κ′ (by
Lemma 4.5 we may assume such a size variable exists). So Ξ′ is also complete by
Corollary 5.16. By the main inductive hypothesis ui ∈ JσiKξ,v where ξ =

⋂
n∈N ξ

′
n.

We have ξ(A) =
⋂
n∈NJµKκ′ξn,v ⊆ JµKκ′⋂

n∈N ξn,v
by the inductive hypothesis. Also

(
⋂
n∈N ξ

′
n)(Bj) =

⋂
n∈N ξ

′
n(Bj) =

⋂
n∈NJαjKξ′n,v ⊆ JαjK⋂

n∈N ξ
′
n,v

= JαjK⋂
n∈N ξn,v

by the

inductive hypothesis and Lemma 4.6, because we may assume B1, . . . , Bl /∈ TV(αj).
Hence

ξ = (
⋂
n∈N ξn)[JµKκ′⋂

n∈N ξn,v
/A,

Jα1K⋂
n∈N ξn,v

/B1,

. . . ,
JαlK⋂

n∈N ξn,v
/Bl].

Therefore t ∈ JµKκ⋂
n∈N ξn,v

.

(3) κ is a limit ordinal. Let t ∈
⋂
n∈NJµKκξn,v =

⋂
n∈N

⋃
κn<κJµKκnξn,v. Then for each n ∈ N

there is κn < κ with t ∈ JµKκnξn,v, i.e., t ∈
⋂
n∈NJµKκnξn,v. We have κn > 0 is a successor

ordinal for n ∈ N, because JµK0ξn,v = ∅. Because Ξ is stable by Lemma 5.2, using

Lemma A.2 we conclude t ∈
⋂
n∈NJµKκ0

ξn,v
. Then t ∈ JµKκ0⋂

n∈N ξn,v
⊆ JµKκ⋂

n∈N ξn,v
by an

argument as in the previous point.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:19

• If τ = ∀i.τ ′ then let t ∈
⋂
n∈NJτKξn,v. Let κ ∈ Ω. For n ∈ N there is tn with t→∞ tn ∈

Jτ ′Kξn,v[κ/i]. By Lemma 5.2 and Lemma 5.10 there exists a sequence of terms {t′n}n∈N
such that t →∞ t′0 and t′n ∈ Jτ ′Kξn,v[κ/i] and t′n →∞ t′n+1 for n ∈ N. Thus {t′n}n∈N is a

τ ′,Ξ-sequence (with v[κ/i]). Because Ξ is complete, by Corollary 5.14 there is tκ with
t →∞ tκ ∈

⋂
n∈NJτ ′Kξn,v[κ/i]. By the inductive hypothesis tκ ∈ Jτ ′K⋂

n∈N ξn,v[κ/i]
. Since

κ ∈ Ω was arbitrary, this implies t ∈ JτK⋂
n∈N ξn,v

.

• If τ = τ1 → τ2 then let t ∈
⋂
n∈NJτ1 → τ2Kξn,v and w ∈ Jτ1K⋂

n∈N ξn,v
. We have w ∈⋂

n∈NJτ1Kξn,v by Lemma 4.8. Hence there exists a sequence of terms {wn}n∈N with

tw →∞ wn ∈ Jτ2Kξn,v. By Lemma 5.2 and Lemma 5.10 there exists a sequence of

terms {w′n}n∈N such that tw →∞ w′0 and w′n ∈ Jτ2Kξn,v and w′n →∞ w′n+1 for n ∈ N.

Thus {w′n}n∈N is a τ2,Ξ-sequence. Because Ξ is complete, by Corollary 5.14 we have
w′∞ ∈

⋂
n∈NJτ2Kξn,v. By the inductive hypothesis w′∞ ∈ Jτ2K⋂

n∈N ξn,v
. By Lemma 5.7 and

Lemma 2.4 we also have tw →∞ w′∞. This shows t ∈ JτK⋂
n∈N ξn,v

.

The following lemma shows that for a coinductive type ν we have JνKωv = JνK∞v . Because
we allow only strictly positive coinductive types, ω iterations suffice to reach the fixpoint. A
similar result was already obtained in e.g. [1].

Lemma 5.21. JνKωv = JνK∞v .

Proof. It suffices to show JνKωv ⊆ JνKω+1
v . So let t ∈ JνKωv . Then t ∈ JνKmv for each

m ∈ N. So t = cu1 . . . uk where ui ∈ JσiKξ′m,v for m ∈ N where Ξ′ = {ξ′m}m∈N and

Ξ′ = ΞνJT K and T = {τA}A∈VT and τBj = JαjKv and τA = A for A /∈ {B1, . . . , Bl} and
ν = dν(~α) and B1, . . . , Bl are the parameter type variables of dν . Note that Ξ′ is complete
by Corollary 5.18. Hence by Lemma 5.20 we have ui ∈ JσiK⋂

m∈N ξ
′
m,v

. Let ξ′ =
⋂
m∈N ξ

′
m.

We have ξ′(A) =
⋂
m∈N ξ

′
m(A) =

⋂
m∈N ξ

ν
m(A) =

⋂
m∈NJνKmv = JνKωv where A is the recursive

type variable of dν , and ξ′(Bj) = JαjKv. Therefore t ∈ JνKω+1
v .

Finally, we prove the approximation theorem. Lemma 5.10, Lemma 5.7, Corollary 5.19
and Lemma 5.21 are used in the proof.

Theorem 5.22 (Approximation Theorem). If t→∞ tn ∈ JνKnv for n ∈ N then there exists
t∞ ∈ JνK∞v such that t→∞ t∞.

Proof. By Lemma 5.10 there exists a sequence of terms {tn}n∈N such that t →∞ t0 and
tn ∈ JνKnv and tn →∞ tn+1 for n ∈ N. Hence {tn}n∈N is a A,Ξνv-sequence. By Lemma 5.7
we have t0 →∞ t∞, and hence t →∞ t∞ by Lemma 2.4. By Corollary 5.19 we have
t∞ ∈

⋂
n∈NJAKξνn,v =

⋂
n∈N ξ

ν
n(A) =

⋂
n∈NJνKmv = JνKωv . Also JνKωv = JνK∞v by Lemma 5.21,

so t∞ ∈ JνK∞v .

We now precisely formulate the result about approximations of infinite objects informally
described in the introduction: if for every approximation un of size n of an infinite object u
the application tun reduces to an approximation of an infinite object of the right type, with
the result approximations getting larger as n gets larger, then there is a reduction starting
from tu which “in the limit” produces an infinite object of the right type. We show that
this follows from the approximation theorem.

First, we show that a weak version of this is a direct consequence of Theorem 5.22.

11:20 L. Czajka Vol. 16:1

Proposition 5.23. Let t ∈ T∞ and let f : N→ N be such that limn→∞ f(n) =∞. Assume

that for every n ∈ N and every un ∈ Jν1Kn there is wn with tun →∞ wn ∈ Jν2Kf(n). Then
t ∈ Jν1 → ν2K, i.e., for every u ∈ Jν1K there is w with tu→∞ w ∈ Jν2K.

Proof. Let u ∈ Jν1K Because Jν1K = Jν1K∞ ⊆ Jν1Kn, for each n ∈ N there is wn with

tu →∞ wn ∈ Jν2Kf(n). Because limn→∞ f(n) = ∞, we may choose a strictly increasing
subsequence {f(nk)}k∈N from the sequence {f(n)}n∈N. Then f(nk) ≥ k for k ∈ N. Hence

Jν2Kf(nk) ⊆ Jν2Kk. This implies that for each k ∈ N there is wnk with tu →∞ wnk ∈ Jν2Kk.
Now by Theorem 5.22 there is w with tu→∞ w ∈ Jν2K∞.

The above result is, however, a bit unsatisfying in that the valuation approximations Jν1Kn
contain too many terms, i.e., they contain all terms which nest at least n constructors of
the coinductive type ν1. In particular, the infinite object u is an approximation of itself,
on which the above proof relies. It would be closer to informal intuition to weaken the
hypothesis in Proposition 5.23 by requiring the approximants of size n to nest exactly n
constructors of the approximated coinductive type.

Definition 5.24. Let ⊥ = (λx.xx)(λx.xx). Note that ⊥ is the only reduct of ⊥.
For a coinductive definition dν and n ∈ N we define the strict valuation approxima-

tion JdνKn⊥,ξ,v ⊆ T∞ as follows: JdνK0⊥ξ,v = {⊥}, JdνKn+1
⊥,ξ,v = Φdν ,ξ,v(JdνKn⊥,ξ,v). We set

JνKn⊥,ξ,v = JdKn
⊥,ξ[~Y / ~B],v

where ν = dν(~α) is a coinductive type, Yj = JαjKξ,v, and ~B are the

parameter type variables of dν .
The relation � is defined coinductively.

t � ⊥ x � x c � c

t � t′
λx.t � λx.t′

t1 � t′1 t2 � t′2
t1t2 � t′1t′2

t � t′ tk � t′k
case(t; {ck~x⇒ tk}) � case(t′; {ck~x⇒ t′k})

In other words, t � t′ if t′ is t with some subterms replaced by ⊥. If t � t′, t ∈ JνK and
t′ ∈ JνKn⊥ then t′ is an approximant of t of size n.

Lemma 5.25. If t � t′ → u′ then there is u with t→≡ u � u′.

Proof. Induction on t′ → u′.

Lemma 5.26. If t � t′ →∞ u′ then there is u with t→∞ u � u′.

Proof. By coinduction, analysing t′ →∞ u′ and using Lemma 5.25. More precisely, one
defines an appropriate function f : T∞ × T∞ × T∞ → T∞ by corecursion and shows
t→∞ f(t, t′, u′) and f(t, t′, u′) � u′ by coinduction separately.

A set X ⊆ T∞ is approximation expansion closed if t′ ∈ X and t � t′ imply t ∈ X.

Lemma 5.27. Assume ξ(A) is approximation expansion closed for every A. Then JτKξ,v is
approximation expansion closed.

Proof. Induction on τ , using Lemma 5.26 for the cases τ = τ1 → τ2 and τ = ∀i.τ ′.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:21

Theorem 5.28. Let t ∈ T∞ and let f : N→ N be such that limn→∞ f(n) =∞. Let u ∈ Jν1K.

If for every n ∈ N and every un ∈ Jν1Kn⊥ with u � un there is wn with tun →∞ wn ∈ Jν2Kf(n),
then there is w with tu→∞ w ∈ Jν2K.

Proof. Let n ∈ N and let un ∈ Jν1Kn⊥ be such that u � un. There is wn with tun →∞
wn ∈ Jν2Kf(n). We have tu � tun. By Lemma 5.26 there is vn with tu →∞ vn � wn. By

Lemma 5.27 we have vn ∈ Jν2Kf(n). Now, because limn→∞ f(n) = ∞, by an argument
like the one in the proof of Proposition 5.23, we may conclude that there is w with
tu→∞ w ∈ Jν2K.

6. The type system λ♦

In this section we define the type system λ♦ which provides a syntactic correctness criterion
for finite terms decorated with type information. In the next section we use the approximation
theorem to prove soundness: if a finite decorated term t has type τ in the system λ♦ then
its erasure infinitarily reduces to a t′ ∈ JτK.

Decorated terms are given by:

t ::= x | c | λx : τ.t | tt | ts | Λi.t | case(t; {ck~x⇒ tk}) | fix f : τ.t | cofix jf : τ.t

where x ∈ V , and c, ck ∈ C, and τ is a type, and j is a size variable, and s is a size expression.
We define s1 ≤ s2 iff v(s1) ≤ v(s2) for every size variable valuation v.
The function tgt that gives the target of a type is defined as follows:

• tgt(A) = A, tgt(ρs) = ρs,
• tgt(τ1 → τ2) = tgt(τ2),
• tgt(∀i.τ) = tgt(τ).

By chgtgt(τ, α) we denote the type τ with the target exchanged for α. Formally, chgtgt(τ, α)
is defined inductively:

• chgtgt(A,α) = α, tgt(ρs, α) = α,
• chgtgt(τ1 → τ2, α) = τ1 → chgtgt(τ2, α),
• chgtgt(∀i.τ, α) = ∀i.chgtgt(τ, α).

Note that free size variables in α may be captured as a result of this operation.
A context Γ is a finite map from type variables to types. We write Γ, x : α to denote

the context Γ′ such that Γ′(x) = α and Γ′(y) = Γ(y) for x 6= y. A judgement has the form
Γ ` t : α. The rules of the type system λ♦ are presented in Figure 2. Figure 3 defines the
subtyping relation used in Figure 2. A closed decorated term t is typable if ` t : τ for some τ .
In Figure 2 all types are assumed to be closed (i.e. they don’t contain free type variables,
but may contain free size variables). In Figure 2 the type variable A denotes the recursive

type variable of the (co)inductive definition considered in a given rule, and ~B denote the
parameter type variables.

We now briefly explain the typing rules. The rules (ax), (sub), (lam), (app), (inst), (gen)
are standard. The rule (con) allows to type constructors of (co)inductive types. It states
that if each argument tk of the constructor c of a (co)inductive type ρ may be assigned an
appropriate type with the size of the recursive occurrences of ρ being s, then ct1 . . . tn has
type ρs+1. For instance, for the type of lists of natural numbers List(Nat), the rule (con)
says that if x : Nat and y : Listi(Nat) then consx y : Listi+1(Nat).

11:22 L. Czajka Vol. 16:1

Γ, x : τ ` x : τ
(ax)

Γ ` t : τ τ v τ ′
Γ ` t : τ ′

(sub)

ArgTypes(c) = (σ1, . . . , σn) Def(c) = d ρ = d(~τ)

Γ ` tk : σk[ρ
s/A][~τ/ ~B] for k = 1, . . . , n

Γ ` ct1 . . . tn : ρs+1
(con)

Γ, x : α ` t : β

Γ ` (λx : α.t) : α→ β
(lam)

Γ ` t : α→ β Γ ` t′ : α
Γ ` tt′ : β

(app)

Γ ` t : ∀i.τ
Γ ` ts : τ [s/i]

(inst)
Γ ` t : τ i /∈ FSV(Γ)

Γ ` Λi.t : ∀i.τ (gen)

ArgTypes(ck) = (σ1k, . . . , σ
nk
k) δlk = σlk[ρ

s/A][~τ/ ~B] ρ = d(~τ)
Γ ` t : ρs+1 Γ, x1k : δ1k, . . . , x

nk
k : δnkk ` tk : τ

Γ ` case(t; {ck ~xk ⇒ tk | k = 1, . . . , n}) : τ
(case)

Γ, f : ∀j1 . . . jn.µi → τ ` t : ∀j1 . . . jn.µi+1 → τ i /∈ FSV(Γ, µ, τ, j1, . . . , jn)

Γ ` (fix f : ∀j1 . . . jn.µ→ τ.t) : ∀j1 . . . jn.µ→ τ
(fix)

Γ, f : chgtgt(τ, νmin(s,j)) ` t : chgtgt(τ, νmin(s,j+1))
tgt(τ) = νs

j /∈ FSV(Γ) j /∈ SV(τ)

Γ ` (cofix jf : τ.t) : τ
(cofix)

Figure 2: Rules of the type system λ♦

A v A

αk v βk s ≤ s′

dsµ(~α) v ds′µ (~β)

αk v βk s ≥ s′

dsν(~α) v ds′ν (~β)

τ v τ ′
∀i.τ v ∀i.τ ′

α′ v α β v β′

α→ β v α′ → β′

Figure 3: Subtyping rules

The (case) rule allows to type case expressions. If the decorated term t that is matched
on has a (co)inductive type ρs+1, and for each k = 1, . . . , n under the assumption that the
arguments of the constructor ck have appropriate types (with the recursive occurrences of ρ
having size s) the branch tk may be given the type τ , then the case expression has type τ .

The (fix) rule allows to type recursive fixpoint definitions. It essentially requires that
we may type the body t under the assumption that f already “works” for smaller elements.

The (cofix) rule allows to type corecursive fixpoint definitions. Essentially, it requires
that we may type the body t under the assumption that f already produces a smaller

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:23

coinductive object, i.e., that if f produces an object defined up to depth j then t produces
an object defined up to depth j + 1. The size variable j in cofix jf : τ.t may occur in t.
Example 6.3 below shows how this may be used.

Definition 6.1. Let Y = (λx.λf.f(xxf))(λx.λf.f(xxf)) be the Turing fixpoint combinator.
Note that Yt→∗ t(Yt) for any term t.

The erasure |t| of a decorated term t is defined inductively:

• |x| = x, |c| = c,
• |λx : τ.t| = λx.|t|, |Λi.t| = |t|,
• |t1t2| = |t1||t2|, |ts| = |t|,
• |case(t; {ck~x⇒ tk})| = case(|t|; {ck~x⇒ |tk|}),
• |fix f : τ.t| = Y(λf.|t|), |cofix f : τ.t| = Y(λf.|t|).

6.1. Examples. In this section, we give a few examples of typing derivations in the sys-
tem λ♦. For the sake of readability, we only indicate how to derive the typings. It is
straightforward but tedious to translate the examples into the exact formalism of λ♦.

Example 6.2. We reuse the definitions of Nat and Strm from Example 3.4 (see also
Example 4.2). Consider the function

tl = Λi.λs : Strmi+1.case(s; {consx t⇒ t})
To type tl we use the (gen), (lam) and (case) rules. Assume s : Strmi+1. To type the
match we need to type the branch. Assuming x : Nat and t : Strmi we have t : Strmi, so the
match has type Strmi by the (case) rule. Hence, by the (lam) and (gen) rules we obtain
` tl : ∀i.Strmi+1 → Strmi.

Similarly, the function

hd = Λi.λs : Strmi+1.case(s; {consx t⇒ x})
may be assigned the type ∀i.Strmi+1 → Nat.

Example 6.3. We return to the stream processors from Example 3.7 and Example 4.4.
The function run which runs a stream processor on a stream is defined by:

run = cofix run : SP→ Strm→ Strm.
λx : SP.λy : Strm.
case(x; {out z ⇒ runi z y})

where

runi = fix runi : SPi(SP)→ Strm→ Strmj+1.
λz : SPi(SP).λy : Strm.
case(z; {get f ⇒ runi (f(hd∞ y)) (tl∞ y), putnx′ ⇒ n :: runx′ y})

Recall that Strm with no decorations is an abbreviation for Strm∞.
We have ` run : SP→ Strm→ Strm. Indeed, to use the (cofix) typing rule assume

run : SP→ Strm→ Strmj

and x : SP and y : Strm.

• To type runi assume runi : SPik(SP) → Strm → Strmj+1 and z : SPik+1(SP) and
y : Strm. We apply the (case) rule to type the match inside runi. For this purpose we
need to type both branches.

11:24 L. Czajka Vol. 16:1

– Assuming f : Nat → SPik(SP), we have runi (f(hd∞ y)) (tl∞ y) : Strmj+1 by the
(inst), (sub) and (app) rules (note that ∞+ 1 ≤ ∞ on size expressions).

– Assuming n : Nat and x′ : SP, we have runx′ y : Strmj by the (app) rule. Thus
n :: runx′ y : Strmj+1 by (con).

Hence the match has type Strmj+1 by (case). Thus

runi : SPi(SP)→ Strm→ Strmj+1

by the (fix) typing rule.
• To type the match inside run we use the (case) rule. Under the assumption z : SPi(SP)

the term runi z y has type Strmj+1 by the (app) rule. Hence the match has type Strmj+1

by the (case) rule.

Now using the (lam) rule we conclude that under the assumption

run : SP→ Strm→ Strmj

the body of run may be typed with SP→ Strm→ Strmj+1. Hence run : SP→ Strm→ Strm
by the (cofix) rule.

Remark 6.4. Strictly speaking, it is possible to type non-productive terms in our system.
For instance, the term t = cofix f : Strm0.f has type Strm0. However, this is not a problem
and it agrees with an intuitive interpretation of the type system: if ` t : Strm0 then t should
produce at least 0 elements of a stream, which does not put any restrictions on t. One could
exclude such terms by requiring that s in νs in the (cofix) typing rule should tend to infinity
when the sizes of the arguments having coinductive types tend to infinity. We did not see a
compelling reason to incorporate this requirement explicitly into the type system.

6.2. Type checking. Type checking in λ♦ is decidable and coNP-complete. Each decorated
term has a minimal type, and there exists a polynomial algorithm to infer (a compact
representation of) the minimal type. Type checking then reduces to deciding the subtyping
relation between the minimal type and the type being checked.

The proof of the following theorem and the details of the type checking algorithm may
be found in Appendix C. We only briefly mention this theorem as an interesting ancillary
result. We move the details to an appendix, because this result has no connection with the
infinitary rewriting semantics which is the main theme of this paper.

Theorem 6.5. Type checking in the system λ♦ is coNP-complete. More precisely, given
Γ, t, τ the problem of checking whether Γ ` t : τ is coNP-complete.

Despite the theoretically high complexity, we believe that the type checking algorithm is
practical. It is based on a polynomial reduction of the type-checking problem to the validity
of a set of constraints in quantifier-free Presburger arithmetic. Deciding the validity of the
constraints is coNP-complete [8, 22], but in practice may probably be checked using an
SMT-solver such as Z3 [12] or CVC4 [6].

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:25

7. Soundness

In this section we show soundness: if ` t : τ then there is t′ ∈ JτK with |t| →∞ t′. We show
that soundness of the (cofix) typing rule follows from the approximation theorem. This
is the main result of the present section. The justification of the remaining rules of λ♦ is
straightforward if a bit tedious.

We first prove a lemma justifying the correctness of the (cofix) typing rule. This lemma
follows from the approximation theorem.

Lemma 7.1. Let r = Y(λf.t) with tgt(τ) = νs. Let r0 = r and rn+1 = t[rn/f] for n ∈ N.

Let τ ′ = chgtgt(τ, νmin(s,j)) where j /∈ SV(s, ν, τ). If for every n ∈ N there is r′n with
rn →∞ r′n ∈ Jτ ′Kv[n/j], then there is r′ with r →∞ r′ ∈ JτKv.

Proof. Note that r →∞ rn for n ∈ N follows by induction, using Lemma 2.2. Thus also
r →∞ r′n for n ∈ N by Lemma 2.4.

Without loss of generality assume τ = ∀i1.νi11 → ∀i2.ν
i2
2 → νs. Let κ1,κ2 ∈ Ω and let

u1 ∈ Jν1Kκ1

v[κ1/i1]
and u2 ∈ Jν2Kκ2

v[κ1/i1,κ2/i2]
. Then because j /∈ SV(s, ν, τ), using Lemma 4.5,

we conclude that for every n ∈ N there is r′′n with r′nu1u2 →∞ r′′n ∈ JνKmin(m,n)
v[κ1/i1,κ2/i2]

where

m = v[κ1/i1,κ2/i2](s). It suffices to find r′ with ru1u2 →∞ r′ ∈ JνKmv[κ1/i1,κ2/i2]
.

First assume m < ω. Then r′′m ∈ JνKmv[κ1/i1,κ2/i2]
, so we may take r′ = r′′m, because

ru1u2 →∞ r′mu1u2 →∞ r′′m. So assume m ≥ ω. Then for every n ∈ N we have r′′n ∈
JνKnv[κ1/i1,κ2/i2]

. Since ru1u2 →∞ r′nu1u2 →∞ r′′n for n ∈ N, by Lemma 2.4 and Theorem 5.22

there is r′ with ru1u2 →∞ r′ ∈ JνK∞v[κ1/i1,κ2/i2]
.

The next lemma is needed for the justification of the (sub) subtyping rule.

Lemma 7.2. If τ v τ ′ then JτKv ⊆ Jτ ′Kv.

Proof. Induction on τ . If τ = dsµ(~α) v τ ′ = ds
′
µ (~β) then s ≤ s′ and αi v βi. We have

JτKv = Jdµ(~α)Kv(s)v = JdµK
v(s)
ξ,v where ξ(Bi) = JαiKv. By the inductive hypothesis JαiKv ⊆ JβiKv.

Let ξ′(Bi) = JβiKv. Then ξ ⊆ ξ′. By Lemma 4.8 we obtain JdµK
v(s)
ξ,v ⊆ JdµK

v(s)
ξ′,v . Also

v(s) ≤ v(s′) and Jτ ′Kv = JdµK
v(s′)
ξ′,v . Thus JτKv(s)v = JdµK

v(s)
ξ,v ⊆ JdµK

v(s)
ξ′,v ⊆ JdµK

v(s′)
ξ′,v = Jτ ′Kv.

If τ = dsν(~α) v τ ′ = ds
′
ν (~β) then the argument is analogous to the previous case.

If τ = ∀i.τ1 v τ ′ = ∀i.τ ′1 then τ1 v τ ′1. Thus by the inductive hypothesis Jτ1Kv[κ/i] v
Jτ ′1Kv[κ/i] for κ ∈ Ω. Hence JτKv ⊆ Jτ ′Kv.

Finally, assume τ = τ1 → τ2 v τ ′ = τ ′1 → τ ′2. Then τ ′1 v τ1 and τ2 v τ ′2. Let t ∈ JτKv.
Then for every r ∈ Jτ1Kv there is t′ with tr →∞ t′ ∈ Jτ2Kv. Let r ∈ Jτ ′1Kv. Since Jτ ′1Kv ⊆ Jτ1Kv
by the inductive hypothesis, there exists t′ with tr →∞ t′ ∈ Jτ2Kv. But Jτ2Kv ⊆ Jτ ′2Kv by the
inductive hypothesis. Hence t ∈ Jτ ′Kv.

Theorem 7.3 (Soundness). If Γ ` t : τ with Γ = x1 : τ1, . . . , xn : τn then for every size
variable valuation v : VS → Ω and all t1 ∈ Jτ1Kv, . . . , tn ∈ JτnKv there exists t′ such that
|t|[t1/x1, . . . , tn/xn]→∞ t′ ∈ JτKv.

Proof. By induction on the length of the derivation of the typing judgement, using Lemma 7.1
and Lemma 7.2. Lemma 7.1 is needed to justify the (cofix) typing rule. The proof is rather
long but straightforward. The details may be found in an appendix.

11:26 L. Czajka Vol. 16:1

8. Conclusions

We introduced an infinitary rewriting semantics for strictly positive nested higher-order
(co)inductive types. This may be seen as a refinement and generalization of the notion of
productivity in term rewriting to a setting with higher-order functions and with data specified
by nested higher-order inductive and coinductive definitions. We showed an approximation
theorem: t→∞ tn ∈ JνKnv for n ∈ N then there exists t∞ ∈ JνK∞v such that t→∞ t∞, where ν
is a coinductive type.

In the second part of the paper, we defined a type system λ♦ combining simple types
with nested higher-order (co)inductive types, and using size restrictions similarly to systems
with sized types. We showed how to use the approximation theorem to prove soundness: if
a finite decorated term t has type τ in the system then its erasure infinitarily reduces to a
t′ ∈ JτK. Together with confluence modulo U of the infinitary reduction relation and the
stability of JτK, this implies that any finite typable term has a well-defined interpretation in
the right type. This provides an operational interpretation of typable terms which takes
into account the “limits” of infinite reduction sequences.

In particular, if a decorated term t has in the system λ♦ a simple (co)inductive type ρ
such that JρK contains only normal forms, then the term |t| is infinitarily weakly normalizing.
It then follows from [33] that any outermost-fair, possibly infinite but weakly continuous,
reduction sequence starting from |t| ends in a normal form. Intuitively, this means that any
“fair” reduction strategy always produces a normal form “in the limit”. For instance, Strm
mentioned in the introduction is such a type, i.e., all terms in JStrmK are normal forms. If
all elements of JρK are additionally finite, as e.g. with ρ = Nat, then |t| is in fact finitarily
weakly normalizing.

We have not shown infinitary weak normalization for terms having function types.
Nonetheless, our interpretation of t ∈ Jτ1 → τ2K is very natural and ensures the productivity
of t regarded as a function: we require that for u ∈ Jτ1K there is u′ ∈ Jτ2K with tu→∞ u′.

In general, it seems desirable to strengthen our rewriting semantics so as to require all
maximal (in some sense) infinitary reduction sequences to yield a term of the right type,
not just the existence of such a reduction. Or one would want to prove strong infinitary
normalization for erasures of typable terms. This, however, does not seem easy to establish
at present.

Our proof of the approximation theorem is classical. We do not expect any significant
problems to arise in an attempt to constructivise our development, but we did not pay
enough attention to constructivity issues to claim this with complete certainty.

References

[1] A. Abel. Termination and productivity checking with continuous types. In TLCA 2003, pages 1–15,
2003.

[2] A. Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD thesis, Ludwig-
Maximilians-Universität München, 2006.

[3] A. Abel and B. Pientka. Wellfounded recursion with copatterns: a unified approach to termination and
productivity. In ICFP 2013, pages 185–196, 2013.

[4] A. Abel and B. Pientka. Well-founded recursion with copatterns and sized types. J. Funct. Program.,
26:e2, 2016.

[5] H. Barendregt. The lambda calculus: its syntax and semantics. North-Holland, 1984.
[6] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and C. Tinelli.

CVC4. In CAV 2011, pages 171–177, 2011.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:27

[7] G. Barthe, M.J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive
definitions. Mathematical Structures in Computer Science, 14(1):97–141, 2004.

[8] I. Borosh and L. Treybing. Bounds on positive integral solutions of linear Diophantine equations. In
Proceedings of the American Mathematical Society, volume 55, pages 299–304, 1976.

[9] T. Coquand. Infinite objects in type theory. In TYPES’93, pages 62–78, 1993.
[10] L. Czajka. Confluence of nearly orthogonal infinitary term rewriting systems. In RTA 2015, pages

106–126, 2015.
[11] L. Czajka. A new coinductive confluence proof for infinitary lambda-calculus. Submitted, 2018.
[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS 2008, volume 4963 of LNCS, pages

337–340. Springer, 2008.
[13] F.-J. de Vries. On undefined and meaningless in lambda definability. In FSCD 2016, pages 18:1–18:15,

2016.
[14] E.W. Dijkstra. On the productivity of recursive definitions. 1980.
[15] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream productivity. In LPAR 2008, volume

5530 of LNCS, pages 79–96. Springer, 2008.
[16] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity of stream definitions.

Theoretical Computer Science, 411(4-5):765–782, 2010.
[17] J. Endrullis, H.H. Hansen, D. Hendriks, A. Polonsky, and A. Silva. A coinductive framework for infinitary

rewriting and equational reasoning. In RTA 2015, 2015.
[18] J. Endrullis, H.H. Hansen, D. Hendriks, A. Polonsky, and A. Silva. Coinductive foundations of infinitary

rewriting and infinitary equational logic. Logical Methods in Computer Science, 14(1), 2018.
[19] J. Endrullis and D. Hendriks. Lazy productivity via termination. Theoretical Computer Science,

412(28):3203–3225, 2011.
[20] J. Endrullis and A. Polonsky. Infinitary rewriting coinductively. In TYPES 2011, pages 16–27, 2011.
[21] E. Giménez. Codifying guarded definitions with recursive schemes. In TYPES’94, pages 39–59, 1994.
[22] C. Haase. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In CSL-LICS ’14, pages

47:1–47:10, 2014.
[23] P. Hancock, D. Pattinson, and N. Ghani. Representations of stream processors using nested fixed points.

Logical Methods in Computer Science, 5(3:9), 2009.
[24] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized types. In

POPL’96, pages 410–423, 1996.
[25] A. Isihara. Productivity of algorithmic systems. SCSS 2008, pages 81–95, 2008.
[26] B. Jacobs and J.M.M. Rutten. An introduction to (co)algebras and (co)induction. In Advanced Topics

in Bisimulation and Coinduction, pages 38–99. Cambridge University Press, 2011.
[27] R. Kennaway and F.-J. de Vries. Infinitary rewriting. In Terese, editor, Term Rewriting Systems,

volume 55 of Cambridge Tracts in Theoretical Computer Science, chapter 12, pages 668–711. Cambridge
University Press, 2003.

[28] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary lambda calculi and Böhm models.
In RTA’95, pages 257–270, 1995.

[29] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Transfinite reductions in orthogonal term
rewriting systems. Information and Computation, 119(1):18–38, 1995.

[30] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary lambda calculus. Theoretical
Computer Science, 175(1):93–125, 1997.

[31] R. Kennaway, V. van Oostrom, and F.-J. de Vries. Meaningless terms in rewriting. Journal of Functional
and Logic Programming, 1:1–35, 1999.

[32] J. Ketema and J.G. Simonsen. Infinitary combinatory reduction systems: Confluence. Logical Methods
in Computer Science, 5(4), 2009.

[33] J. Ketema and J.G. Simonsen. Infinitary combinatory reduction systems: Normalising reduction strategies.
Logical Methods in Computer Science, 6(1), 2010.

[34] J. Ketema and J.G. Simonsen. Infinitary combinatory reduction systems. Information and Computation,
209(6):893–926, 2011.

[35] D. Kozen and A. Silva. Practical coinduction. Mathematical Structures in Computer Science, 27(7):1132–
1152, 2017.

[36] N.R. Krishnaswami and N. Benton. Ultrametric semantics of reactive programs. In LICS 2011, pages
257–266, 2011.

11:28 L. Czajka Vol. 16:1

[37] J. Longley. Notions of computability at higher types I. In Logic Colloquium, volume 19, pages 32–142,
2000.

[38] P. Martin-Löf. Mathematics of infinity. In COLOG-88, pages 146–197, 1988.
[39] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press, 2012.
[40] P. Severi and F.-J. de Vries. Order structures on Böhm-like models. In CSL 2005, pages 103–118, 2005.
[41] P. Severi and F.-J. de Vries. Decomposing the lattice of meaningless sets in the infinitary lambda calculus.

In WoLLIC 2011, pages 210–227, 2011.
[42] P. Severi and F.-J. de Vries. Weakening the axiom of overlap in infinitary lambda calculus. In RTA 2011,

pages 313–328, 2011.
[43] P. Severi and F.-J. de Vries. Pure type systems with corecursion on streams: from finite to infinitary

normalisation. In ICFP’12, pages 141–152, 2012.
[44] B. Sijtsma. On the productivity of recursive list definitions. ACM Trans. Program. Lang. Syst., 11(4):633–

649, 1989.
[45] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,

5(2):285–309, 1955.
[46] H. Zantema and M. Raffelsieper. Proving productivity in infinite data structures. In RTA 2010, pages

401–416, 2010.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:29

Appendix A. Proofs for Section 5

This section provides the proof of Lemma 5.13. First, we need two auxiliary lemmas, which
are needed only for the proof of Lemma 5.13 (they are not used outside of this appendix).

Lemma A.1. If τ is strictly positive and ξ1, ξ2 are stable then JτKξ1,v ∩ JτKξ2,v = JτKξ1∩ξ2,v,

where we define (ξ1 ∩ ξ2)(A) = ξ1(A) ∩ ξ2(A) for any type variable A.

Proof. Induction on τ . Note that it suffices to show JτKξ1,v ∩ JτKξ2,v ⊆ JτKξ1∩ξ2,v, because

the inclusion in the other direction follows from Lemma 4.8 (noting that ξ1 ∩ ξ2 ⊆ ξi for
i = 1, 2).

• If τ is closed then JτKξ1,v ∩ JτKξ2,v = JτKξ1,v ∩ JτKξ1,v = JτKξ1∩ξ2,v by Lemma 4.6.

• If τ = A then JτKξ1,v ∩ JτKξ2,v = ξ1(A) ∩ ξ2(A) = JτKξ1∩ξ2,v.

• If τ = dsµ(~α) then JτKξ1,v ∩ JτKξ2,v = JdµK
v(s)
ξ′1,v
∩ JdµK

v(s)
ξ′2,v

where ξ′n(Bj) = JαjKξn,v and

ξ′n(A′) = ξn(A′) for A /∈ {B1, . . . , Bl} and B1, . . . , Bl are the parameter type variables
of dµ. By induction on κ we show JdµKκξ′1,v ∩ JdµKκξ′2,v ⊆ JdµKκξ′1∩ξ′2,v. There are three cases.

(1) κ = 0. Then JdµKκξ′1,v ∩ JdµKκξ′2,v = ∅ ∩ ∅ = ∅ = JdKκξ′1∩ξ′2,v.
(2) κ = κ′ + 1. Let t ∈ JdµKκξ′1,v ∩ JdµKκξ′2,v. Then t = cu1 . . . uk with

ui ∈
⋂

n∈{1,2}

JσiKξ′n[JdµKκ′
ξ′n,v

/A],v

where A is the recursive type variable of dµ and c ∈ Constr(dµ) and ArgTypes(c) =
(σ1, . . . , σk). By the main inductive hypothesis ui ∈ JσiKξ,v where

ξ =
⋂

n∈{1,2}

ξ′n[JdµKκ
′

ξ′n,v
/A].

We have
ξ(A) =

⋂
n∈{1,2}

JdµKκ
′

ξ′n,v
= JdµKκ

′

ξ′1∩ξ′2,v

by the inductive hypothesis. Hence

ξ = (ξ′1 ∩ ξ′2)[JdµKκ
′

ξ′1∩ξ′2,v
/A].

Therefore t ∈ JdµKκξ′1∩ξ′2,v.
(3) κ is a limit ordinal. Let

t ∈
⋂

n∈{1,2}

JdµKκξ′n,v =
⋂

n∈{1,2}

⋃
κn<κ

JdµKκnξ′n,v.

Then for each n ∈ {1, 2} there is κn < κ with t ∈ JdµKκnξ′n,v. We have κn > 0 is

a successor ordinal for n = 1, 2, because JdµK0ξ′n,v = ∅. Thus t = cu1 . . . uk with

ui ∈
⋂
n∈{1,2}JσiKξ′n[JdµKκn−1

ξ′n,v
/A],v

where A is the recursive type variable of dµ and

c ∈ Constr(dµ) and ArgTypes(c) = (σ1, . . . , σk). By the main inductive hypothesis

ui ∈ JσiKξ,v where ξ =
⋂
n∈{1,2} ξ

′
n[JdµKκn−1ξ′n,v

/A]. Without loss of generality assume

κ1 ≤ κ2. We have ξ(A) =
⋂
n∈{1,2}JdµK

κn−1
ξ′n,v

⊆ JdµKκ2−1
ξ′1,v

∩ JdµKκ2−1
ξ′2,v

. Hence by the

inductive hypothesis ξ(A) ⊆ JdµKκ2−1
ξ′1∩ξ′2,v

. Thus by Lemma 4.8 we have ui ∈ JσiKξ′,v
where ξ′ = (ξ′1 ∩ ξ′2)[JdµK

κ2−1
ξ′1∩ξ′2,v

/A]. Therefore t ∈ JdµKκ2

ξ′1∩ξ′2,v
⊆ JdµKκξ′1∩ξ′2,v.

11:30 L. Czajka Vol. 16:1

We have thus shown JτKξ1,v ∩ JτKξ2,v ⊆ JdµK
v(s)
ξ′1∩ξ′2,v

. Note that ξ′1, ξ
′
2 are stable by

Lemma 4.10. We have (ξ′1∩ ξ′2)(Bj) = ξ′1(Bj)∩ ξ′2(Bj) = JαjKξ′1,v ∩ JαjKξ′2,v = JαjKξ′1∩ξ′2,v =

JαjKξ1∩ξ2,v by the inductive hypothesis and Lemma 4.6, because we may assumeB1, . . . , Bl /∈
TV(αj). Hence JτKξ1,v ∩ JτKξ2,v ⊆ Jdµ(~α)Kv(s)ξ1∩ξ2,v = JτKξ1∩ξ2,v by Lemma 4.6.

• If τ = dsν(~α) then JτKξ1,v ∩ JτKξ2,v = JdνK
v(s)
ξ′1,v
∩ JdνK

v(s)
ξ′2,v

where ξ′n(Bj) = JαjKξn,v and

ξ′n(A′) = ξn(A′) for A /∈ {B1, . . . , Bl} and B1, . . . , Bl are the parameter type variables
of dν . Note that ξ′1, ξ

′
2 are stable by Lemma 4.10. First, by induction on κ we show

JdνKκξ′1,v ∩ JdνKκξ′2,v ⊆ JdνKκξ′1∩ξ′2,v. If κ = 0 then JdνKκξ′1,v ∩ JdνKκξ′2,v = T∞ ∩ T∞ = T∞ =

JdνKκξ′1∩ξ′2,v. So assume κ = κ′ + 1. Let t ∈ JdνKκξ′1,v ∩ JdνKκξ′2,v. Then t = cu1 . . . uk

with ui ∈
⋂
n∈{1,2}JσiKξ′n[JdνKκ′

ξ′n,v
/A],v

where A is the recursive type variable of dν and

c ∈ Constr(dν) and ArgTypes(c) = (σ1, . . . , σk). By Lemma 4.10 and the main inductive

hypothesis ui ∈ JσiKξ,v where ξ =
⋂
n∈{1,2} ξ

′
n[JdνKκ

′
ξ′n,v

/A]. By the inductive hypothesis

ξ(A) = JdνKκ
′

ξ′1,v
∩ JdνKκ

′

ξ′2,v
= JdνKκ

′

ξ′1∩ξ′2,v
.

Hence t ∈ JdνKκξ′1∩ξ′2,v. Finally, assume κ is a limit ordinal. Then⋂
n∈{1,2}JdνK

κ
ξ′n,v

=
⋂
n∈{1,2}

⋂
κ′<κJdνKκ

′
ξ′n,v

=
⋂

κ′<κ
⋂
n∈{1,2}JdνK

κ′
ξ′n,v

⊆
⋂

κ′<κJdνKκ
′

ξ′1∩ξ′2,v
= JdνKκξ′1∩ξ′2,v.

Now like in the previous point

(ξ′1 ∩ ξ′2)(Bj) = ξ′1(Bj) ∩ ξ′2(Bj)
= JαjKξ′1,v ∩ JαjKξ′2,v
= JαjKξ′1∩ξ′2,v
= JαjKξ1∩ξ2,v

by the inductive hypothesis and Lemma 4.6. Hence

JτKξ1,v ∩ JτKξ2,v = JdνKmξ′1,v ∩ JdνKκξ′2,v
⊆ JdνKκξ′1∩ξ′2,v
= Jdν(~α)Kκξ1∩ξ2,v
= JτKξ1∩ξ2,v

by Lemma 4.6.
• Suppose τ = ∀i.τ ′. Let t ∈ JτKξ1,v ∩ JτKξ2,v and κ ∈ Ω. There are t1, t2 with t →∞ t1 ∈

Jτ ′Kξ1,v[κ/i] and t→∞ t2 ∈ Jτ ′Kξ2,v[κ/i]. By confluence modulo U there are t′1, t
′
2 such that

t1 →∞ t′1 ∼U t′2 and t2 →∞ t′2. Using Lemma 4.10 we obtain t′2 ∈ Jτ ′Kξ1,v[κ/i] ∩ Jτ ′Kξ2,v[κ/i].
Hence t →∞ t′2 ∈ Jτ ′Kξ1∩ξ2,v[κ/i] by the inductive hypothesis. Thus t ∈ JτKξ1∩ξ2,v. This

shows JτKξ1,v ∩ JτKξ2,v ⊆ JτKξ1∩ξ2,v.
• Suppose τ = τ1 → τ2. Let t ∈ Jτ1 → τ2Kξ1,v ∩ Jτ1 → τ2Kξ2,v. Let w ∈ Jτ1Kξ1∩ξ2,v. We

have w ∈ Jτ1Kξ1,v ∩ Jτ1Kξ2,v. Hence there are w1, w2 with tw →∞ w1 ∈ Jτ2Kξ1,v and

tw →∞ w2 ∈ Jτ2Kξ2,v. By confluence modulo U there are w′1, w
′
2 such that w′1 ∼U w′2 and

wi →∞ w′i. By Lemma 4.10 both Jτ2Kξ1,v,Jτ2Kξ2,v are stable, and thus so is Jτ2Kξ1,v∩Jτ2Kξ2,v.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:31

Hence w′1 ∈ Jτ2Kξ1,v ∩ Jτ2Kξ2,v. By the inductive hypothesis w′1 ∈ Jτ2Kξ1∩ξ2,v. This shows

JτKξ1,v ∩ JτKξ2,v ⊆ JτKξ1∩ξ2,v.

Lemma A.2. If ξ1, ξ2 are stable then JµKκ1
ξ1,v
∩ JµKκ2

ξ2,v
⊆ JµKκ1

ξ2,v
.

Proof. Induction on κ1. We may assume κ1 < κ2. If κ1 = 0 then JµKκ1
ξ1,v
∩ JµKκ2

ξ2,v
=

∅ ∩ JµKκ2
ξ2,v

= ∅ = JµKκ1
ξ2,v

.

If κ1 is a limit ordinal then there exists κ0 < κ1 with t ∈ JµKκ0
ξ,v and we may use the

inductive hypothesis.
If κ1 = κ′1 + 1 then we may assume κ2 = κ′2 + 1. Let t ∈ JµKκ1

ξ1,v
∩ JµKκ2

ξ2,v
. Then

t = ct1 . . . tk with ti ∈ JσiKζ1,v ∩ JσiKζ2,v, c ∈ Constr(µ), ArgTypes(c) = (σ1, . . . , σk) and

(using Lemma 4.6)

ζl = ξl[JµKκ
′
l
ξl,v
/A, Jα1Kξl,v/B1, . . . , JαkKξl,v/Bk]

for l = 1, 2, and µ = dµ(~α), and B1, . . . , Bk are the parameter type variables of dµ, and A
is the recursive type variable of dµ. By Lemma 4.10 the valuations ζ1, ζ2 are stable. By
Lemma A.1 we have ti ∈ JσiKζ1∩ζ2,v. Using the inductive hypothesis, Lemma A.1 and

Lemma 4.8 we conclude that ti ∈ JσiKζ,v where

ζ = ξ′[JµKκ
′
1
ξ2,v

/A, Jα1Kξ1∩ξ2,v/B1, . . . , JαkKξ1∩ξ2,v/Bk].

By Lemma 4.8 we have ζ ⊆ ζ ′ where

ζ ′ = ξ2[JµKκ
′
1
ξ2,v

/A, Jα1Kξ2,v/B1, . . . , JαkKξ2,v/Bk].

Hence ti ∈ JσiKζ′,v by Lemma 4.8. But this by definition implies t ∈ JµKκ1
ξ2,v

.

Lemma 5.13. If Ξ = {ξn}n∈N is ν-hereditary with v and semi-complete with Z, ι, and
{tn}n∈N is a τ, Z-sequence (and thus a τ,Ξ-sequence by Lemma 5.9), then

t∞ = fν(τ,Ξ, {tn}n∈N) ∈ JτKι,v.

Proof. We proceed by induction on τ . So let Z = {ζn}n∈N be stable and let Ξ = {ξn}n∈N be
ν-hereditary with v and semi-complete with Z, ι, and let {tn}n∈N be a τ, Z-sequence. By
the definition of t∞ there are the following possibilities.

• If τ is closed then t∞ = t0 ∈ JτKξ0,v = JτKι,v by Lemma 4.6.

• If τ = A then t∞ ∈ ι(A) = JτKι,v because Ξ is semi-complete with Z, ι.
• If τ = µ∞ with µ = dµ(~α) then let Ξ′ = ΞJT K where T = {τA′}A′∈VT with τA = τ ,
τBj = αj and τA′ = A′ for A′ /∈ {A,B1, . . . , Bl}, where B1, . . . , Bl are the parameter type
variables of dµ, and A is the recursive type variable of dµ. Note that Ξ′ is ν-hereditary,
because Ξ is. Let Z ′ = {ζ ′n}n∈N where ζ ′n = ζn[Jα1Kζn,v/B1, . . . , JαlKζn,v/Bl]. Note that

Z ′ ⊆ Ξ′ follows from Lemma 4.8, because ζn ⊆ ξn and thus JαjKζn,v ⊆ JαjKξn,v. Also, Z ′

is stable by Lemma 4.10, because Z is. Let ι′(A′) = JτA′Kι,v for any A′. We show the
following.

(?) Let X = {χn}n∈N be such that χn(A′) = ζ ′n(A′) for A′ 6= A. If Ξ′ is semi-complete
with X, ι′ then Ξ′ is semi-complete with X ′, ι′ where X ′ = {χ′n}n∈N and

χ′n = χn[Φdµ,ζ′n,v(χn(A))/A].

11:32 L. Czajka Vol. 16:1

First note that because Ξ′ is semi-complete with X, ι′ we have X ⊆ Ξ′, so χn(A) ⊆
ξ′n(A) = JτAKξn,v = JµK∞ξn,v = JdµK∞ξ′n,v by Lemma 4.6 because ξ′n(Bj) = JαjKξn,v. Also

ζ ′n ⊆ ξ′n because Z ′ ⊆ Ξ′. Therefore

χ′n(A) = Φdµ,ζ′n,v(χn(A))
⊆ Φdµ,ξ′n,v(JdµK

∞
ξ′n,v

)

= JdµK∞ξ′n,v
= ξ′n(A)

by Lemma 4.8. Thus X ′ ⊆ Ξ′. Note that X ′ is stable by the third point in Lemma 4.10.
It remains to show that for any A′ and any A′, X ′-sequence {wn}n∈N we have w∞ =
fν(A′,Ξ′, {wn}n∈N) ∈ ι′(A′). If A′ 6= A then {wn}n∈N is also a A′, X-sequence, so
w∞ ∈ ι′(A′) follows from the fact that Ξ′ is semi-complete with X, ι′. If A′ = A then wn ∈
Φdµ,ζ′n,v(χn(A)) for n ∈ N. Therefore there exists c ∈ Constr(µ) such that wn = cw1

n . . . w
k
n

and win →∞ win+1 and win ∈ JσiKζ′n[χn(A)/A],v where ArgTypes(c) = (σ1, . . . , σk). Because

χn(A′) = ζ ′n(A′) for A′ 6= A, we have ζ ′n[χn(A)/A] = χn. Hence win ∈ JσiKχn,v. Thus

{win}n∈N is a σi, X-sequence. Note that σi is smaller than τ . Because Ξ′ is semi-complete
with X, ι′, by the inductive hypothesis we have wi∞ = fν(σi,Ξ

′, {win}n∈N) ∈ JσiKι′,v. Note
that

w∞ = fν(A,Ξ′, {wn}n∈N)
= fν(τA,Ξ, {wn}n∈N)
= fν(τ,Ξ, {wn}n∈N)
= cw1

∞ . . . w
k
∞.

Hence w∞ ∈ Φdµ,ι′,v(ι
′(A)). We have ι′(A) = JτKι,v = JdµK∞ι′,v by Lemma 4.6 because

ι′(Bj) = JαjKι,v for j = 1, . . . , l. Hence w∞ ∈ Φdµ,ι′,v(JdµK∞ι′,v) = JdµK∞ι′,v = JτKι,v = ι′(A).

We have thus shown (?).
Let Zκ = {ζκn }n∈N be such that ζκn = ζ ′n[JµKκζn,v/A]. Then Zκ ⊆ Ξ′ follows from

Lemma 4.8. Also Zκ is stable by Lemma 4.10, because Z,Z ′ are. By induction on κ we
show that Ξ′ is semi-complete with Zκ, ι′. We distinguish three cases.
– κ = 0. Then ζκn = ζ ′n[JµK0ζn,v/A] = ζ ′n[∅/A]. We show that for every A′ and every

A′, Z0-sequence {wn}n∈N we have w∞ = fν(τA′ ,Ξ, {wn}n∈N) ∈ ι′(A′) = JτA′Kι,v. Let

{wn}n∈N be a A′, Z0-sequence. If A′ 6= A then ζ0n(A′) = ζ ′n(A′) = JτA′Kζn,v, so {wn}n∈N
is a τA′ , Z-sequence. Moreover, τA′ = αj or τA′ = A′, so τA′ has smaller size than τ .
Thus by the (main) inductive hypothesis we have fν(τA′ ,Ξ, {wn}n∈N) ∈ JτA′Kι,v, i.e.,

w∞ ∈ ι′(A′). If A′ = A then ζ0n(A) = ∅, so there does not exist a A,Z0-sequence.
– κ = κ′ + 1. Then

ζκn = ζ ′n[JµKκ
′+1

ζn,v
/A]

= ζ ′n[Φdµ,ζ′n,v(JµKκ′ζn,v)/A]

= ζκ
′

n [Φdµ,ζ′n,v(ζ
κ′
n (A))/A].

By the inductive hypothesis Ξ′ is semi-complete with Zκ′ , ι′. Hence Ξ′ is semi-complete
with Zκ, ι′ by (?).

– κ is a limit ordinal. We need to show that for all A′ and every A′, Zκ-sequence {wn}n∈N
we have

w∞ = fν(A′,Ξ′, {wn}n∈N)
= fν(τA′ ,Ξ, {wn}n∈N) ∈ ι′(A′).

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:33

If A′ 6= A then the argument is the same as the one used in showing that Ξ′ is semi-
complete with Z0, ι′. So assume A′ = A. Then wn ∈ ζκn (A) = JµKκζn,v for n ∈ N. Since κ
is a limit ordinal, for each n ∈ N there is κn < κ such that wn ∈ JµKκnζn,v. Because

w0 →∞ wn for n ∈ N and ζ0, ζn are stable, by Lemma A.2 we obtain wn ∈ JµKκ0
ζn,v

for n ∈ N. So {wn}n∈N is a A,Zκ0-sequence. By the inductive hypothesis Ξ′ is
semi-complete with Zκ0 , ι′, so w∞ ∈ ι′(A).
Now taking κ = ∞ we conclude that Ξ′ is semi-complete with Z∞, ι′. Note that

ζ∞n (A) = JτKζn,v for n ∈ N. Hence {tn}n∈N is a A,Z∞-sequence, because it is a τ, Z-

sequence and τA = τ . Therefore t∞ = fν(τ,Ξ, {tn}n∈N) ∈ ι′(A) = JτKι,v.
• If τ = ν0

∞ with ν0 = dν0(~α) then let Ξ′ = ΞJT K where T = {τA′}A′∈VT with τA = τ ,
τBj = αj and τA′ = A′ for A′ /∈ {A,B1, . . . , Bl}, where B1, . . . , Bl are the parameter type
variables of dν0 , and A is the recursive type variable of dν0 . Note that Ξ′ is ν-hereditary,
because Ξ is. Let Z ′ = {ζ ′n}n∈N where ζ ′n(A′) = JτA′Kζn,v for all A′. Note that Z ′ ⊆ Ξ′

follows from Lemma 4.8, because ζn ⊆ ξn and thus JτA′Kζn,v ⊆ JτA′Kξn,v. Also Z ′ is stable

by Lemma 4.10, because Z is. Let ι′(A′) = JτA′Kι,v for any A′. We show the following.
(?) Let ι0 be a type variable valuation such that ι0(A

′) = ι′(A′) for A′ 6= A. If Ξ′ is semi-
complete with Z ′, ι0 then Ξ′ is semi-complete with Z ′, ι1 where ι1 = ι0[Φdν0 ,ι0,v

(ι0(A))/A].

Since Z ′ ⊆ Ξ′ and Z ′ is stable, it suffices to show that for every A′, Z ′-sequence {wn}n∈N we
have w∞ = fν(A′,Ξ′, {wn}n∈N) ∈ ι1(A′). So let {wn}n∈N be a A′, Z ′-sequence, i.e. wn ∈
JA′Kζ′n,v = ζ ′n(A′) and wn →∞ wn+1. If A′ 6= A then ι1(A

′) = ι0(A
′). Because Ξ′

is semi-complete with Z ′, ι0, we have w∞ ∈ ι0(A
′) = ι1(A

′). If A′ = A then wn ∈
JτKζn,v = Φdν0 ,ζ

′
n,v(JτKζn,v). Hence wn = cw1

n . . . w
k
n and win ∈ JσiKζ′n,v and win →∞ win+1

where c ∈ Constr(ν0), ArgTypes(c) = (σ1, . . . , σk). Thus {win}n∈N is a σi, Z
′-sequence.

Because Ξ′ is semi-complete with Z ′, ι0 and σi is smaller than τ , by the inductive hypothesis
wi∞ = fν(σi,Ξ

′, {win}n∈N) ∈ JσiKι0,v. Note that w∞ = cw1
∞ . . . w

k
∞ by Definition 5.6.

Hence w∞ ∈ Φdν0 ,ι0,v
(ι0(A)) = ι1(A) by Corollary 4.7. We have thus shown (?).

Let ι0 = ι′[T∞/A]. We show that Ξ′ is semi-complete with Z ′, ι0. We have already
shown Z ′ ⊆ Ξ′ and that Z ′ is stable. So let {wn}n∈N be a A′, Z ′-sequence. We show
w∞ = fν(A′,Ξ′, {wn}n∈N) ∈ ι0(A′). We have wn ∈ JA′Kζ′n,v = JτA′Kζn,v. If A′ 6= A then

wn ∈ ζ ′n(A′) = JτA′Kζn,v, so {wn}n∈N is a τA′ , Z-sequence. Since τA′ is smaller than τ

(because τA′ = A′ or τA′ = αj) and Ξ is semi-complete with Z, ι, by the inductive
hypothesis w∞ = fν(A′,Ξ′, {wn}n∈N) = fν(τA′ ,Ξ, {wn}n∈N) ∈ JτA′Kι,v = ι′(A′) = ι0(A

′).
If A′ = A then ι0(A) = T∞, so w∞ ∈ ι0(A).

Now let ικ = ι′[Jν0Kκι,v/A] for an ordinal κ (recall that Jν0K0ι,v = T∞). We show by
induction on κ that Ξ′ is semi-complete with Z ′, ικ. For κ = 0 we have shown this in the
previous paragraph. If κ = κ′ + 1 then this follows from (?) because Φdν0 ,ικ′ ,v

(ικ′(A)) =

Φdν0 ,ικ′ ,v
(Jν0Kκ

′
ι,v) = Φdν0 ,ι

′,v(Jdν0Kκ
′

ι′,v) = Jν0Kκ
′+1

ι,v by Corollary 4.7 and Lemma 4.6 (note

that ικ(Bj) = ι′(Bj) = JαjKι,v). So let κ be a limit ordinal. We have already shown Z ′ ⊆ Ξ′

and that Z ′ is stable. So let {wn}n∈N be a A′, Z ′-sequence. By the inductive hypothesis
Ξ′ is semi-complete with Z ′, ικ′ for κ′ < κ. So if A′ = A then w∞ ∈

⋂
κ′<κ ικ′(A) =⋂

κ′<κJν0Kκ
′

ι,v = Jν0Kκι,v = ικ(A). If A′ 6= A then w∞ ∈ ι0(A′) = ικ(A′).
Now because {tn}n∈N is a τ, Z-sequence and τA = τ , the sequence {tn}n∈N is also a

A,Z ′-sequence. Because Ξ′ is semi-complete with Z ′, ι∞ and

fν(A,Ξ′, {tn}n∈N) = fν(τ,Ξ, {tn}n∈N) = t∞,

11:34 L. Czajka Vol. 16:1

by Definition 5.11 we have t∞ ∈ ι∞(A) = Jν0K∞ι,v = JτKι,v.
• If τ = ∀i.τ ′ with i fresh then t∞ = t0. We need to show t0 ∈ JτKι,v. Let κ ∈ Ω. For n ∈ N

we have t0 →∞ tn ∈ JτKζn,v, so for each n ∈ N there exists t′n with t0 →∞ t′n ∈ Jτ ′Kζn,v[κ/i].
Because Z is stable, by Lemma 5.10 there is a sequence {t′′n}n∈N such that t0i →∞ t′′0
and t′′n →∞ t′′n+1 and t′′n ∈ Jτ ′Kζn,v[κ/i] for n ∈ N. Hence {t′′n}n∈N is a τ ′, Z-sequence (with

v[κ/i]). The family Ξ is ν-hereditary with v[κ/i] by Lemma 5.3. Because Ξ is also
semi-complete with Z, ι, by Remark 5.12 and the inductive hypothesis there is tκ with
t0 →∞ tκ ∈ Jτ ′Kι,v[κ/i]. Because κ ∈ Ω was arbitrary, this implies t0 ∈ JτKι,v.
• If τ = τ1 → τ2 with τ1 closed and τ2 strictly positive, then t∞ = t0. We need to show
t0 ∈ JτKι,v. For n ∈ N we have t0 →∞ tn ∈ JτKζn,v. Let r ∈ Jτ1Kι,v. Because τ1 is closed,

by Lemma 4.6 we have r ∈ Jτ1Kζn,v for each n ∈ N. Hence for each n ∈ N there is t′n with

t0r →∞ tnr →∞ t′n ∈ Jτ2Kζn,v. Because Z is stable, by Lemma 5.10 there is a sequence

{t′′n}n∈N such that t0r →∞ t′′0 and t′′n →∞ t′′n+1 and t′′n ∈ Jτ2Kζn,v for n ∈ N. Hence {t′′n}n∈N
is a τ2, Z-sequence. By the inductive hypothesis there is t′∞ ∈ Jτ2Kι,v with t′′0 →∞ t′∞.
Since t0r →∞ t′′0, also t0r →∞ t′∞. We have thus shown t0 ∈ JτKι,v.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:35

Appendix B. Proofs for Section 7

This section provides the details of the proof of Theorem 7.3. First, we need two auxiliary
lemmas, which are needed only for the proof of Theorem 7.3 (they are not used outside of
this appendix).

Lemma B.1. Jτ [τ ′/A]Kξ,v = JτKξ[Jτ ′Kξ,v/A],v.

Proof. Induction on τ . Let ξ′ = ξ[Jτ ′Kξ,v/A]. If τ = ρs and ρ = d(~α) then Jτ [τ ′/A]Kξ,v =

JdKv(s)
ξ[~X/~B],v

where Xj = Jαj [τ ′/A]Kξ,v and ~B are the parameter type variables of d. By the

inductive hypothesis Xj = JαjKξ′,v. By Lemma 4.6 we have Jτ [τ ′/A]Kξ,v = JdKv(s)
ξ[~X/~B],v

=

JdKv(s)
ξ′[~X/~B],v

= JτKξ′,v.
If τ = A then Jτ [τ ′/A]Kξ,v = Jτ ′Kξ,v = JτKξ′,v.
If τ = ∀i.τ1 then let t ∈ Jτ [τ ′/A]Kξ,v. Let κ ∈ Ω. There is t′ such that t →∞ t′ ∈

Jτ1[τ ′/A]Kξ,v[κ/i]. By the inductive hypothesis t′ ∈ Jτ1Kξ[Jτ ′K
ξ,v[κ/i]/A],v[κ/i]

. This implies

t ∈ JτKξ[Jτ ′Kξ,v/A],v, using Lemma 4.5 (we may assume i /∈ FSV(τ ′)). The other direction is

analogous.
If τ = τ1 → τ2 then let t ∈ Jτ [τ ′/A]Kξ,v. Let r ∈ Jτ1Kξ′,v. Then r ∈ Jτ1[τ ′/A]Kξ,v by

the inductive hypothesis. Thus tr →∞ t′ ∈ Jτ2[τ ′/A]Kξ,v. By the inductive hypothesis

t′ ∈ Jτ2Kξ′,v. The inclusion in the other direction is analogous.

Lemma B.2. Jτ [s/i]Kv = JτKv[v(s)/i].

Proof. Induction on τ .

Theorem 7.3 (Soundness). If Γ ` t : τ with Γ = x1 : τ1, . . . , xn : τn then for every size
variable valuation v : VS → Ω and all t1 ∈ Jτ1Kv, . . . , tn ∈ JτnKv there exists t′ such that
|t|[t1/x1, . . . , tn/xn]→∞ t′ ∈ JτKv.

Proof. By induction on the length of the derivation of the typing judgement. We consider
the last rule in the derivation.

(ax) If Γ, x : τ ` x : τ then the claim follows directly from definitions.
(sub) Assume x1 : τ1, . . . , xn : τn ` t : τ ′ because of x1 : τ1, . . . , xn : τn ` t : τ and

τ v τ ′. Let t1 ∈ Jτ1Kv,. . . ,tn ∈ JτnKv. By the inductive hypothesis there is t′ with
|t|[t1/x1, . . . , tn/xn]→∞ t′ ∈ JτKv. By Lemma 7.2 we also have t′ ∈ Jτ ′Kv.

(con) Assume Γ ` cr1 . . . rn : ρs+1 because of Γ ` rk : σk[ρ
s/A][~α/ ~B] for k = 1, . . . , n and

ArgTypes(c) = (σ1, . . . , σn) and Def(c) = d and ρ = d(~α) and Γ = x1 : τ1, . . . , xm : τm.
Let t1 ∈ Jτ1Kv,. . . ,tm ∈ JτmKv. By the inductive hypothesis for k = 1, . . . , n there is r′k
with |rk|[t1/x1, . . . , tn/xn] →∞ r′k ∈ Jσk[ρs/A][~α/ ~B]Kv. By Lemma B.1 and Lemma 4.6
we have r′k ∈ JσkK

ξ[JρKv(s)v /A],v
where ξ(Bj) = JαjKv. Hence

|cr1 . . . rn|[t1/x1, . . . , tm/xm]→∞ cr′1 . . . r
′
n ∈ JρKv(s+1)

v .

(lam) Assume Γ ` (λx : α.t) : α → β because of Γ, x : α ` t : β and Γ = x1 : τ1, . . . , xn : τn.
Let t1 ∈ Jτ1Kv,. . . , tn ∈ JτnKv. Let r ∈ JαKv. By the inductive hypothesis there is t′ with
|t|[t1/x1, . . . , tn/xn, r/x]→∞ t′ ∈ JβKv. Hence

|λx : α.t|[t1/x1, . . . , tn/xn]r →∞ t′ ∈ JβKv.

This implies |λx : α.t|[t1/x1, . . . , tn/xn] ∈ Jα→ βKv.

11:36 L. Czajka Vol. 16:1

(app) Assume Γ ` tt′ : β because of Γ ` t : α → β and Γ ` t′ : α and Γ = x1 : τ1, . . . , xn : τn.
Let t1 ∈ Jτ1Kv,. . . , tn ∈ JτnKv. By the inductive hypothesis there are r, r′ such that

|t|[t1/x1, . . . , tn/xn]→∞ r ∈ Jα→ βKv
and

|t′|[t1/x1, . . . , tn/xn]→∞ r′ ∈ JαKv.
Hence there is r′′ with |tt′|[t1/x1, . . . , tn/xn]→∞ rr′ →∞ r′′ ∈ JβKv.

(inst) Assume Γ ` ts : τ [s/i] because of Γ ` t : ∀i.τ , where Γ = x1 : τ1, . . . , xn : τn. Let
t1 ∈ Jτ1Kv,. . . ,tn ∈ JτnKv. By the inductive hypothesis |t|[t1/x1, . . . , tn/xn]→∞ t′ ∈ J∀i.τKv.
Hence there is t′′ with t′ →∞ t′′ ∈ JτKv[v(s)/i]. So |t|[t1/x1, . . . , tn/xn] →∞ t′′ ∈ Jτ [s/i]Kv
by Lemma B.2.

(gen) Assume Γ ` Λi.t : ∀i.τ because of Γ ` t : τ with i /∈ FSV(Γ) and Γ = x1 : τ1, . . . , xn :
τn. Let t1 ∈ Jτ1Kv,. . . ,tn ∈ JτnKv. Let κ ∈ Ω. Since i /∈ FSV(Γ) by Lemma 4.5 we
have tk ∈ JτkKv[κ/i] for k = 1, . . . , n. By the inductive hypothesis there is rκ with

|Λi.t|[t1/x1, . . . , tn/xn] = |t|[t1/x1, . . . , tn/xn]→∞ rκ ∈ JτKv[κ/i]. This implies

|t|[t1/x1, . . . , tn/xn] ∈ J∀i.τKv.
(case) Assume Γ ` case(t; {ck ~xk ⇒ tk | k = 1, . . . , n}) : τ because of Γ ` t : ρs+1 and Γ, x1k :

δ1k, . . . , x
nk
k : δnkk ` tk : τ and ArgTypes(ck) = (σ1k, . . . , σ

nk
k) and δlk = σlk[ρ

s/A][~α/ ~B] and
ρ = d(~α) and Γ = x1 : τ1, . . . , xm : τm. Let r1 ∈ Jτ1Kv,. . . ,rm ∈ JτmKv. By the inductive

hypothesis there is u with |t|[r1/x1, . . . , rm/xm]→∞ u ∈ Jρs+1Kv = JρKv(s+1)
v = JρKv(s)+1

v

(note that we may have v(s+1) = v(s) =∞, but then the last equation still holds because∞
is the fixpoint ordinal). Hence u = cku1 . . . unk where ui ∈ JσikKξ,v and ξ(Bj) = JαjKv and

ξ(A) = JρKv(s)v . Then by Lemma B.1 we have ui ∈ JσikKξ,v = JδikKv. Hence by the inductive

hypothesis there is w with |tk|[r1/x1, . . . , rm/xm, u1/x1k, . . . , unk/x
nk
k]→∞ w ∈ JτKv. Note

that also (we may assume x1k, . . . , x
nk
k /∈ TV(r1, . . . , rm)):

case(|t|; {ck ~xk ⇒ |tk| | k = 1, . . . , n})[r1/x1, . . . , rm/xm]
→∞ case(u; {ck ~xk ⇒ |tk|[r1/x1, . . . , rm/xm]})
→ |tk|[r1/x1, . . . , rm/xm, u1/x1k, . . . , unk/x

nk
k]

→∞ w.

(fix) Assume Γ ` (fix f : ∀j1 . . . jm.µ→ τ.t) : ∀j1 . . . jm.µ→ τ because of

Γ, f : ∀j1 . . . jm.µi → τ ` t : ∀j1 . . . jm.µi+1 → τ

where i /∈ FSV(Γ, µ, τ, j1, . . . , jm) and Γ = x1 : τ1, . . . , xn : τn. Let t1 ∈ Jτ1Kv, . . . , tn ∈
JτnKv. Let t′ = |t|[t1/x1, . . . , tn/xn] and r = Y(λf.t′). Note that r = |fix f : ∀j1 . . . jm.µ→
τ.t|[t1/x1, . . . , tn/xn]. By induction on κ ∈ Ω we show r ∈ J∀j1 . . . jm.µi → τKv[κ/i]. Let

κ1, . . . ,κm ∈ Ω. We need to show that for every u ∈ JµKκv′ there is r′ with ru→∞ r′ ∈ JτKv′ ,
where v′ = v[κ1/j1, . . . ,κn/jn] (recall i /∈ FSV(µ, τ)). There are three cases.
– κ = 0. Then JµKκv′ = ∅.
– κ = κ′+ 1. By the inductive hypothesis for κ we have r ∈ J∀j1 . . . jm.µi → τKv[κ′/i]. By

the main inductive hypothesis t′[r/f] ∈ J∀j1 . . . jm.µi → τKv[κ/i]. Let u ∈ JµKκv′ . Then

there is r′ with ru→∗ t′[r/f]u→∞ r′ ∈ JτKv′ .

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:37

– κ is a limit ordinal. Let u ∈ JµKκv′ . Then u ∈ JµKκ′v′ for some κ′ < κ. By the
inductive hypothesis for κ we have r ∈ J∀j1 . . . jm.µi → τKv[κ′/i]. Hence, there is r′ with

ru→∞ r′ ∈ JτKv′ .
We have thus shown that r ∈ J∀j1 . . . jm.µi → τKv[κ/i] for all κ ∈ Ω. In particular, this

holds for κ =∞, which implies r ∈ J∀j1 . . . jm.µ→ τKv because i /∈ FSV(µ, τ).

(cofix) Assume Γ ` (cofix jf : τ.t) : τ because Γ, f : chgtgt(τ, νmin(s,j)) ` t : chgtgt(τ, νmin(s,j+1))
and tgt(τ) = νs and j /∈ FSV(Γ) and j /∈ SV(τ) and Γ = x1 : τ1, . . . , xn : τn. Let
t1 ∈ Jτ1Kv,. . . ,tn ∈ JτnKv. Let t′ = |t|[t1/x1, . . . , tn/xn] and r = Y(λf.t′). Let r0 = r and

rn+1 = t′[rn/f] for n ∈ N. Let τ ′ = chgtgt(τ, νmin(s,j)) and τ ′′ = chgtgt(τ, νmin(s,j+1)).
By induction on n we show that for each n there is r′n with rn →∞ r′n ∈ Jτ ′Kv[n/j].

For n = 0, we have r0 = r ∈ Jτ ′Kv[0/j] directly from definitions and the fact that

j /∈ SV(τ), because Jνmin(s,j)Kv′[0/j] = JνK0v′[0/j] = T∞ for any v′. So assume rn →∞ r′n ∈
Jτ ′Kv[n/j]. Because Γ, f : τ ′ ` t : τ ′′, by the main inductive hypothesis there is t′′ with

t′[r′n/f]→∞ t′′ ∈ Jτ ′′Kv[n/j]. We have rn+1 = t′[rn/f]→∞ t′[r′n/f]→∞ t′′. Take r′n+1 = t′′.

Because r′n+1 ∈ Jτ ′′Kv[n/j] and j /∈ SV(τ), it follows from definitions and Lemma B.2 that

r′n+1 ∈ Jτ ′Kv[n+1/j].

We have thus shown that for each n ∈ N there exists r′n such that

rn →∞ r′n ∈ Jchgtgt(τ, νmin(s,j))Kv[n/j].

Now by Lemma 7.1 there is r′ with

|cofix jf : τ.t|[t1/x1, . . . , tn/xn] = r →∞ r′ ∈ JτKv.

11:38 L. Czajka Vol. 16:1

Appendix C. Type checking and type inference

In this section we show that type checking in λ♦ is decidable and coNP-complete. First,
we show that each decorated term has a minimal type. We give an algorithm to infer the
minimal type. Type checking then reduces to deciding the subtyping relation between the
minimal type and the type being checked.

C.1. Minimal typing. In this section we show that if t is typable in a context Γ, then there
exists a minimal type T (Γ; t) such that Γ ` t : T (Γ; t) and for every type τ with Γ ` t : τ we
have T (Γ; t) v τ . To define T (Γ; t) we first need the definitions of the operations t and u
on types.

Definition C.1. We define τ1 t τ2 and τ1 u τ2 inductively.

• (α→ β) t (α′ → β′) = (α u α′)→ (β t β′).
• (α→ β) u (α′ → β′) = (α t α′)→ (β u β′).
• (∀i.α) t (∀i.α′) = ∀i.α t α′.
• (∀i.α) u (∀i.α′) = ∀i.α u α′.
• (dsµ(~α)) t (ds

′
µ (~β)) = d

max(s,s′)
µ (~γ) where γi = αi t βi.

• dsµ(~α) u ds′µ (~β) = d
min(s,s′)
µ (~γ) where γi = αi u βi.

• dsν(~α) t ds′ν (~β) = d
min(s,s′)
ν (~γ) where γi = αi t βi.

• dsν(~α) u ds′ν (~β) = d
max(s,s′)
ν (~γ) where γi = αi u βi.

Lemma C.2. τ1 u τ2 v τi v τ1 t τ2.

Proof. By induction on τi.

Lemma C.3. If τ is strictly positive and τ v τ ′ and α v β then τ [α/A] v τ ′[β/A].
Conversely, if τ [α/A] v γ (resp. γ v τ [α/A]) then γ = τ ′[β/A] with τ v τ ′ (resp. τ ′ v τ)
and α v β (resp. β v α).

Proof. Induction on τ .

Lemma C.4. If s1 ≤ s2 then s[s1/i] ≤ s[s2/i] and s1[s/i] ≤ s2[s/i].

Proof. Induction on the structure of size expressions.

Definition C.5. A subexpression occurrence s0 in a size expression s is superfluous in s if
it does not occur within a subexpression of the form s1 + 1. For a size expression s satisfying
s ≥ 1 we define the size expression s as follows. Let s′ be obtained from s by replacing
with 0 each superfluous occurrence of a size variable. Then by using obvious identities on
size expressions (max(0, s) = s, max(s1 + 1, s2 + 1) = max(s1, s2) + 1, max(∞, s) = ∞,
etc) transform s′ into s+ 1 (note that s′ = 0 is not possible because s ≥ 1). For any size
expression s we define the size expression s as follows. Let s′′ be obtained from s by replacing
with i+ 1 each superfluous occurrence of i. Then by using the identities on size expressions
transform s′′ into s+ 1 (note that s′′ ≥ 1).

For instance, if s = max(i + 1,min(i, j + 1)) then s = i and s = max(i,min(i, j)). If
s = 0 then s = 0.

Lemma C.6.

(1) If s ≥ 1 then s ≥ s+ 1.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:39

(2) s ≤ s+ 1.

Proof. Follows from definitions and Lemma C.4.

Lemma C.7. Assume s1 ≤ s2.

(1) If s1 ≥ 1 then s1 ≤ s2.
(2) s1 ≤ s2.

Proof. Follows from definitions and Lemma C.4.

Lemma C.8. If s ≥ s0 + 1 then s ≥ s0.

Proof. By the identities

max(min(s1, s2), s3) = min(max(s1, s3),max(s2, s3))
min(max(s1, s2), s3) = max(min(s1, s3),min(s2, s3))

we may assume that e.g. s = min(max(i + 1, j, . . .),max(. . .), . . .) and s0 = max(min(k +
2, i+ 2, . . .), . . .). Then by the equivalences

min(s1, s2) ≥ s3 ↔ s1 ≥ s3 ∧ s2 ≥ s3
max(s1, s2) ≤ s3 ↔ s1 ≤ s3 ∧ s2 ≤ s3

it suffices to consider the case e.g. s = max(s1, s2, s3) and s0 = min(s′1, s
′
2) with each si, s

′
i of

the form j + c or c, with j a size variable and c ∈ N. Note that the operations performed to
obtain s, s0 of this form do not affect whether the occurrences of size variables are superfluous
or not, i.e., when transforming s to s′ of the required form analogous operations may be
simultaneously performed on s to obtain s′. So it suffices to show s ≥ s0 for s, s0 of the form
as above. Define s′0 by replacing in s0 each i ∈ SV(s) \ SV(s) (i.e. each size variable which
occurs only superfluously in s) with ∞, and simplifying using obvious identities. First note
that we may assume that some i ∈ SV(s) \ SV(s) occurs in s0, because otherwise s ≥ s0
follows from s ≥ s0 + 1 by setting each i ∈ SV(s) \ SV(s) to 0 and simplifying. We have
s′0 ≥ s0. Thus it suffices to show s ≥ s′0. Assume otherwise, i.e., there is a size variable
valuation v such that v(s) < v(s′0). Note that the values of v(s) and v(s′0) do not depend
on v(i) for i ∈ SV(s) \ SV(s). Hence, we may assume v(i) = v(s) + 1 for i ∈ SV(s) \ SV(s).
Then v(s) = max(v(i), v(s+ 1)) = max(v(s) + 1, v(s+ 1)) = v(s) + 1 where i ∈ SV(s)\SV(s)
(by how s is obtained from s). Also v(s0) ≥ min(v(i), v(s′0)) where i ∈ SV(s) \ SV(s). Hence
v(s0) ≥ v(s) + 1, because v(s) + 1 ≤ v(s′0). Thus v(s) + 2 = v(s0) + 1 ≤ v(s) = v(s) + 1.
Contradiction.

Lemma C.9. If s ≤ s0 + 1 then s ≤ s0.

Proof. Analogously to the proof of Lemma C.8, it suffices to consider the case e.g. s =
min(s1, s2, s3) and s0 = max(s′1, s

′
2) with each si, s

′
i of the form j + c or c, with j a

size variable and c ∈ N. Then it suffices to show: if min(i, s1, s2, . . .) ≤ s0 + 1 then
min(i + 1, s1, s2, . . .) ≤ s0 + 1 with s0 of the form max(. . .) as above. We may assume
i /∈ SV(s1, s2, . . .). There are two cases.

• i /∈ SV(s0). Suppose v(s0) + 1 < min(v(i) + 1, v(s1), v(s2), . . .). Then v′(s0) + 1 =
v(s0) + 1 < min(v(i) + 1, v(s1), v(s2), . . .) = v′(min(i, s1, s2, . . .)) for v′ = v[v(i) + 1/i].
Contradiction.
• s0 = max(i+c, s′1, s

′
2, . . .). Then v(s0)+1 = max(v(i)+c, v(s′1), v(s′2), . . .)+1 ≥ v(i)+c+1 ≥

v(i) + 1 ≥ v(min(i+ 1, s1, s2, . . .)).

11:40 L. Czajka Vol. 16:1

To save on notation we introduce a dummy ⊥ type and set ⊥ t τ = τ t ⊥ = τ .
The dummy type ⊥ is not a valid type, it is used only to simplify the presentation of
type sums below. We assume that for every parameter type variable B of a (co)inductive
definition d there exists a constructor c ∈ Constr(d) such that B ∈ TV(σi) for some i, where
ArgTypes(c) = (σ1, . . . , σn). In other words, we do not allow parameter type variables which
do not occur in any constructor argument types.

Definition C.10. For a context Γ and a term t we inductively define a minimal type T (Γ; t)
of t in Γ.

• T (Γ, x : τ ;x) = τ .

• T (Γ; ct1 . . . tn) = µmax(s1,...,sn)+1 if ArgTypes(c) = (σ1, . . . , σn) and µ = dµ(τ1, . . . , τm)
and Def(c) = dµ and T (Γ; ti) = σ′i[d

si
µ (αi1, . . . , α

i
m)/A][βi1/B1, . . . , β

i
m/Bm] (we take si = 0

and αij = ⊥ if A /∈ TV(σi), and βij = ⊥ if Bj /∈ TV(σi)) and σ′i v σi and τj =
⊔n
i=1(αijtβij).

Note that τj 6= ⊥ because of our assumption on the occurrences of Bj .

• T (Γ; ct1 . . . tn) = νmin(s1,...,sn)+1 if ArgTypes(c) = (σ1, . . . , σn) and ν = dν(τ1, . . . , τm) and
Def(c) = dν and T (Γ; ti) = σ′i[d

si
ν (αi1, . . . , α

i
m)/A][βi1/B1, . . . , β

i
m/Bm] (we take si = ∞

and αij = ⊥ if A /∈ TV(σi), and βij = ⊥ if Bj /∈ TV(σi)) and σ′i v σi and τj =
⊔n
i=1(αijtβij).

• T (Γ;λx : α.t) = α→ β if T (Γ, x : α; t) = β.
• T (Γ; tt′) = β if T (Γ; t) = α→ β and T (Γ; t′) v α.
• T (Γ; ts) = τ [s/i] if T (Γ; t) = ∀i.τ .
• T (Γ; Λi.t) = ∀i.τ if T (Γ; t) = τ and i /∈ FSV(Γ).

• T (Γ; case(t; {ck ~xk ⇒ tk | k = 1, . . . , n})) = τ if T (Γ; t) = µs and µ = d(~β) and

ArgTypes(ck) = (σ1k, . . . , σ
nk
k) and δlk = σlk[µs/A][~β/ ~B] and T (Γ, x1k : δ1k, . . . , x

nk
k : δnkk ; tk) =

τk and τ =
⊔n
k=1 τk.

• T (Γ; case(t; {ck ~xk ⇒ tk | k = 1, . . . , n})) = τ if T (Γ; t) = νs and s ≥ 1 and ν = d(~β)

and ArgTypes(ck) = (σ1k, . . . , σ
nk
k) and δlk = σlk[ν

s/A][~β/ ~B] and T (Γ, x1k : δ1k, . . . , x
nk
k :

δnkk ; tk) = τk and τ =
⊔n
k=1 τk.

• T (Γ; fix f : ∀j1 . . . jm.µ→ τ.t) = ∀j1 . . . jm.µ→ τ if

T (Γ, f : ∀j1 . . . jm.µi → τ ; t) v ∀j1 . . . jm.µi+1 → τ

and i /∈ FSV(Γ, µ, τ, j1, . . . , jn).
• T (Γ; cofix f : τ.t) = τ if

T (Γ, f : chgtgt(τ, νmin(s,j)); t) v chgtgt(τ, νmin(s,j+1))

and tgt(τ) = νs and j /∈ FSV(Γ) and j /∈ SV(τ).

In other cases not accounted for by the above points T (Γ; t) is undefined. In particular, if
the result of the operation t is not defined then T (Γ; t) is undefined. Note that if T (Γ; t) is
defined then it is uniquely determined.

Lemma C.11. If T (Γ; t) is defined then Γ ` t : T (Γ; t).

Proof. Induction on the definition of T (Γ; t), using Lemma C.2, Lemma C.3 and Lemma C.6.
We show a few representative cases in detail.

• T (Γ, x : τ ;x) = τ . Then Γ, x : τ ` x : τ .

• T (Γ; ct1 . . . tn) = µmax(s1,...,sn)+1 where ArgTypes(c) = (σ1, . . . , σn) and µ = dµ(τ1, . . . , τm)
and Def(c) = dµ and T (Γ; ti) = σ′i[d

si
µ (αi1, . . . , α

i
m)/A][βi1/B1, . . . , β

i
m/Bm] and σ′i v σi

and τj =
⊔n
i=1(α

i
j t βij). We have Γ ` ti : σ′i[d

si
µ (αi1, . . . , α

i
m)/A][βi1/B1, . . . , β

i
m/Bm] by

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:41

the inductive hypothesis. By Lemma C.2 we have αij v τj . Hence, by Lemma C.3 and

the (sub) typing rule, Γ ` ti : σi[d
max(s1,...,sn)
µ (τ1, . . . , τm)/A][τ1/B1, . . . , τm/Bm]. Thus

Γ ` ct1 . . . tn : µmax(s1,...,sn)+1 by the (con) typing rule.

• T (Γ; case(t; {ck ~xk ⇒ tk | k = 1, . . . , n})) = τ where T (Γ; t) = µs and µ = d(~β)

and ArgTypes(ck) = (σ1k, . . . , σ
nk
k) and δlk = σlk[µ

s/A][~β/ ~B] and T (Γ, x1k : δ1k, . . . , x
nk
k :

δnkk ; tk) = τk and τ =
⊔n
k=1 τk. By the inductive hypothesis Γ ` t : µs and Γ, x1k :

δ1k, . . . , x
nk
k : δnkk ` tk : τk. Since s ≤ s + 1 by Lemma C.6, we have Γ ` t : µs+1

by (sub). By Lemma C.2 and (sub) we have Γ, x1k : δ1k, . . . , x
nk
k : δnkk ` tk : τ . Thus

Γ ` case(t; {ck ~xk ⇒ tk | k = 1, . . . , n}) : τ by (case).

Lemma C.12.

(1) For any type τ we have τ v τ .
(2) If τ1 v τ2 v τ3 then τ1 v τ3.

Proof. By induction. Point (1) is straightforward, using the definition of v. We show a few
representative cases for point (2).

If τ2 = A then we must have τ1 = τ3 = A, so τ1 v τ3. If τ2 = ds2µ (~β) then τ1 = ds1µ (~α)
and τ3 = ds3µ (~γ) and s1 ≤ s2 ≤ s3 and αk v βk v γk. By the inductive hypothesis αk v γk.
Hence τ1 v τ3. If τ2 = α2 → β2 then τ1 = α1 → β1 and τ3 = α3 → β3 and α3 v α2 v α1

and β1 v β2 v β3. By the inductive hypothesis α3 v α1 and β1 v β3. Thus τ1 v τ3.

Lemma C.13.

(1) If τ1 t τ2 v τ then τ1 v τ and τ2 v τ .
(2) If τ v τ1 u τ2 then τ v τ1 and τ v τ2.

Proof. We show both points simultaneously by induction on τ .

(1) Assume τ1 = α→ β, τ2 = α′ → β′ and τ = γ1 → γ2. Then τ1 t τ2 = (α u α′)→ (β t β′)
and thus γ1 v αuα′ and βtβ′ v γ2. Hence by the inductive hypothesis γ1 v α, γ1 v α′,
β v γ2 and β′ v γ2. This implies τ1 v τ and τ2 v τ .

Assume τ1 = ∀i.α1, τ2 = ∀i.α2 and τ = ∀i.γ. Then τ1 t τ2 = ∀i.α1 t α2. Because
α1 t α2 v γ, by the inductive hypothesis α1 v γ and α2 v γ. Thus τ1 v τ and τ2 v τ .

Assume τ1 = ds1µ (~α) and τ2 = ds2µ (~β) and τ = dsµ(~γ). Then τ1 t τ2 = d
max(s1,s2)
µ (~δ)

with δi = αi t βi v γi and max(s1, s2) ≤ s. By the inductive hypothesis αi v γi and
βi v γi. Also s1, s2 ≤ max(s1, s2) ≤ s. Hence τ1 v τ and τ2 v τ .

Assume τ1 = ds1ν (~α) and τ2 = ds2ν (~β) and τ = dsν(~γ). Then τ1t τ2 = d
min(s1,s2)
ν (~δ) with

δi = αi t βi v γi and min(s1, s2) ≥ s. By the inductive hypothesis αi v γi and βi v γi.
Also s1, s2 ≥ min(s1, s2) ≥ s. Hence τ1 v τ and τ2 v τ .

(2) The proof for the second point is analogous to the first one.

Lemma C.14. Assume τ1 v τ ′1 and τ2 v τ ′2. Then:

(1) τ1 t τ2 v τ ′1 t τ ′2,
(2) τ1 u τ2 v τ ′1 u τ ′2.

Proof. We show both points simultaneously by induction on τ1.

(1) If τ1 = α1 → β1 and τ2 = α2 → β2 then τ ′1 = α′1 → β′1 and τ ′2 = α′2 → β′2 with
α′1 v α1, α

′
2 v α2, β1 v β′1 and β2 v β′2. We have τ1 t τ2 = (α1 u α2)→ (β1 t β2) and

τ ′1 t τ ′2 = (α′1 u α′2) → (β′1 t β′2). By the inductive hypothesis α′1 u α′2 v α1 u α2 and
β1 t β2 v β′1 t β′2. Hence τ1 t τ2 v τ ′1 t τ ′2.

11:42 L. Czajka Vol. 16:1

If τ1 = ∀i.α and τ2 = ∀i.β then τ ′1 = ∀i.α′ and τ ′2 = ∀i.β′ with α v α′ and β v β′. By
the inductive hypothesis α t β v α′ t β′. Thus τ1 t τ2 v τ ′1 t τ ′2.

If τ1 = ds1µ (~α) and τ2 = ds2µ (~β) then τ ′1 = d
s′1
µ (~α′) and τ ′2 = d

s′2
µ (~β′) with αi v α′i

and βi v β′i and s1 ≤ s′1 and s2 ≤ s′2. We have τ1 t τ2 = d
max(s1,s2)
µ (~γ) and τ ′1 t τ ′2 =

d
max(s′1,s

′
2)

µ (~γ′), where γi = αi t βi and γ′i = α′i t β′i. By the inductive hypothesis γi v γ′i.
Also max(s1, s2) ≤ max(s′1, s

′
2). Hence τ1 t τ2 v τ ′1 t τ ′2.

If τ1 = ds1ν (~α) and τ2 = ds2ν (~β) then τ ′1 = d
s′1
ν (~α′) and τ ′2 = d

s′2
µ (~β′) with αi v α′i

and βi v β′i and s1 ≥ s′1 and s2 ≥ s′2. We have τ1 t τ2 = d
min(s1,s2)
ν (~γ) and τ ′1 t τ ′2 =

d
min(s′1,s

′
2)

µ (~γ′), where γi = αi t βi and γ′i = α′i t β′i. By the inductive hypothesis γi v γ′i.
Also min(s1, s2) ≥ min(s′1, s

′
2). Hence τ1 t τ2 v τ ′1 t τ ′2.

(2) The proof for the second point is analogous to the first point.

Corollary C.15. If τ1 v τ and τ2 v τ then τ1 t τ2 v τ .

Proof. One shows by induction that τ v τ u τ and τ t τ v τ . Then the corollary follows
from Lemma C.14 and Lemma C.12.

We write Γ v Γ′ if Γ = x1 : τ1, . . . , xn : τn and Γ′ = x1 : τ ′1, . . . , xn : τ ′n and τi v τ ′i for
i = 1, . . . , n.

Note that if αt β is defined and α′ v α and β′ v β then α′ t β′ is also defined. We will
often use this observation implicitly.

Lemma C.16. If Γ′ v Γ and T (Γ; t) is defined then T (Γ′; t) is defined and T (Γ′; t) v T (Γ; t).

Proof. We proceed by induction on the definition of T .
If Γ′ v Γ and τ ′ v τ then T (Γ, x : τ ; t) = τ w τ ′ = T (Γ′, x : τ ′; t).
If Γ′ v Γ and T (Γ; ct1 . . . tn) is defined, then

T (Γ; ct1 . . . tn) = µmax(s1+1,...,sn+1)

where we have ArgTypes(c) = (σ1, . . . , σn) and µ = dµ(τ1, . . . , τn) and Def(c) = dµ and

T (Γ; ti) = σ′i[d
si
µ (αi1, . . . , α

i
m)/A][βi1/B1, . . . , β

i
m/Bm]

(we take si = 0 and αij = ⊥ if A /∈ TV(σi), and βij = ⊥ if Bj /∈ TV(σi)) and σ′i v σi and

τj =
⊔n
i=1(α

i
j t βij). By the inductive hypothesis

T (Γ′; ti) v T (Γ; ti) = σ′i[d
si
µ (αi1, . . . , α

i
m)/A][βi1/B1, . . . , β

i
m/Bm].

By Lemma C.3 we have T (Γ′; ti) = ρi[d
s′i
µ (γi1, . . . , γ

i
m)/A][δi1/B1, . . . , δ

i
m/Bm] with γij v αij

and δij v βij and s′i ≤ si. Since ρi v σ′i v σi, by Lemma C.12 we obtain ρi v σi. Let

τ ′j =
⊔n
i=1(γij t δij). Thus T (Γ′; ct1 . . . tn) = µ

max(s′1+1,...,s′n+1)
1 where µ1 = dµ(τ ′1, . . . , τ

′
m). By

Lemma C.14 we have τ ′j v τj . Also max(s′1 + 1, . . . , s′n + 1) ≤ max(s1 + 1, . . . , sn + 1). Hence

T (Γ′; ct1 . . . tn) v T (Γ; ct1 . . . tn).
If Γ′ v Γ and T (Γ;λx : α.t) is defined then T (Γ;λx : α.t) = α→ β and T (Γ, x : α; t) = β.

By the inductive hypothesis β′ = T (Γ′, x : α; t) v β. Hence T (Γ′;λx : α.t) = α→ β′ v α→
β = T (Γ;λx : α.t).

If Γ′ v Γ and T (Γ; tt′) = β then T (Γ; t) = α → β and T (Γ; t′) v α. By the inductive
hypothesis T (Γ′; t) v α→ β and T (Γ′; t′) v T (Γ; t′). Hence T (Γ′; t) = α′ → β′ with α v α′
and β′ v β. By Lemma C.12 we have T (Γ′; t′) v α′. Hence T (Γ′; tt′) = β′ v β = T (Γ; tt′).

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:43

If Γ′ v Γ and T (Γ; ts) = τ [s/i] then T (Γ; t) = ∀i.τ . By the inductive hypothesis
T (Γ′; t) v ∀i.τ , so T (Γ′; t) = ∀i.τ ′ with τ ′ v τ . Hence T (Γ′; ts) = τ ′[s/i] v τ [s/i] = T (Γ; ts).

If Γ′ v Γ and T (Γ; Λi.t) = ∀i.τ then T (Γ; t) = τ and i /∈ FSV(Γ). By the inductive
hypothesis T (Γ′; t) = τ ′ v τ . Without loss of generality i /∈ FSV(τ ′). Then T (Γ′; Λi.t) =
∀i.τ ′ v T (Γ; Λi.t).

If Γ′ v Γ and T (Γ; case(t; {ck ~xk ⇒ tk | k = 1, . . . , n})) = τ and T (Γ; t) = νs then

ν = d(~β) and s ≥ 1 and ArgTypes(ck) = (σ1k, . . . , σ
nk
k) and δlk = σlk[νs/A][~β/ ~B] and T (Γ, x1k :

δ1k, . . . , x
nk
k : δnkk ; tk) = τk and τ =

⊔n
k=1 τk. By the inductive hypothesis T (Γ′; t) v νs.

Hence T (Γ′; t) = νs
′

0 = ds
′
(~β′) with β′i v βi and s′ ≥ s ≥ 1. Let γlk = σlk[ν

s′
0 /A][~β′/ ~B]. By

Lemma C.3 and Lemma C.7 we have γlk v δlk. So by the inductive hypothesis T (Γ′, x1k :
γ1k , . . . , x

nk
k : γnkk ; tk) = τ ′k v τk. Let τ ′ =

⊔n
k=1 τ

′
k. Then T (Γ′; case(t; {ck ~xk ⇒ tk})) = τ ′ v

τ = T (Γ; case(t; {ck ~xk ⇒ tk})) by Lemma C.14.
Other cases are similar to the ones already considered or follow directly from the

inductive hypothesis.

Theorem C.17. Γ ` t : τ iff Γ ` t : T (Γ; t) and T (Γ; t) v τ .

Proof. The implication from right to left follows directly from definitions. For the other
direction we proceed by induction on the typing derivation. By Lemma C.11 it suffices to
show that T (Γ; t) is defined and T (Γ; t) v τ .

• If Γ, x : τ ` x : τ then T (Γ, x : τ ;x) = τ .
• If Γ ` t : τ ′ because of Γ ` t : τ and τ v τ ′, then by the inductive hypothesis Γ ` t : T (Γ; t)

and T (Γ; t) v τ . Hence also T (Γ; t) v τ ′ by Lemma C.12.

• Assume Γ ` ct1 . . . tn : ρs+1 because of Γ ` tk : σk[ρ
s/A][~τ/ ~B] where ArgTypes(c) =

(σ1, . . . , σn) and Def(c) = d and ρ = d(~τ). Let θk = T (Γ; tk). By the inductive hypothesis

Γ ` tk : θk and θk v σk[ρs/A][~τ/ ~B]. Hence by Lemma C.3 we have θk = σ′k[ρ
sk
k /A][~βk/ ~B]

with σ′k v σk and ρskk v ρs and βjk v τj and ρk = d(~αk) and αjk v τj . We may assume

sk = 0 and αjk = ⊥ if A /∈ TV(σk), and βjk = ⊥ if Bj /∈ TV(σk). Let τ ′j =
⊔m
k=1(α

j
k t β

j
k).

Then T (Γ; ct1 . . . tn) = dm(s1+1,...,sn+1)(~τ ′) where m = max if d is inductive, and m = min
if d is coinductive. by Lemma C.14 we have τ ′i v τi. Together with properties of size
expressions this implies T (Γ; ct1 . . . tn) v ρs+1.
• Assume Γ ` (λx : α.t) : α → β because of Γ, x : α ` t : β. By the inductive hypothesis
β′ = T (Γ, x : α) v β. Then T (Γ;λx : α.t) = α→ β′ v α→ β.
• Assume Γ ` tt′ : β because of Γ ` t : α→ β and Γ ` t′ : α. By the inductive hypothesis
T (Γ; t) v α→ β and T (Γ; t′) v α. Then T (Γ; t) = α′ → β′ with α v α′ and β′ v β. We
have T (Γ; t′) v α′ by Lemma C.12. Hence T (Γ; tt′) = β′ v β.
• Assume Γ ` ts : τ [s/i] because of Γ ` t : ∀i.τ . By the inductive hypothesis T (Γ; t) v ∀i.τ .

Then T (Γ; t) = ∀i.τ ′ with τ ′ v τ . Thus T (Γ; ts) = τ ′[s/i] v τ [s/i].
• Assume Γ ` case(t; {ck ~xk ⇒ tk}) : τ because of Γ ` t : νs+1 and Γ, x1k : δ1k, . . . , x

nk
k :

δnkk ` tk : τ and ArgTypes(ck) = (σ1k, . . . , σ
nk
k) and δlk = σlk[ν

s/A][~β/ ~B] and ν = d(~β). By

the inductive hypothesis T (Γ; t) v νs+1. Hence T (Γ; t) = ds
′
(~β′) with s′ ≥ s + 1 and

β′i v βi. Let γlk = σlk[d
s′(~τ ′)][~τ ′/ ~B]. By Lemma C.8 we have s′ ≥ s. So by Lemma C.3

we have γlk v δlk. By the inductive hypothesis T (Γ, x1k : δ1k, . . . , x
nk
k : δnkk ; tk) v τ . By

Lemma C.16 we have T (Γ, x1k : γ1k , . . . , x
nk
k : γnkk ; tk) v T (Γ, x1k : δ1k, . . . , x

nk
k : δnkk ; tk), so

T (Γ, x1k : γ1k , . . . , x
nk
k : γnkk ; tk) = τk v τ . Let τ ′ =

⊔n
k=1 τk. Then T (Γ; case(t; {ck ~xk ⇒

tk})) = τ ′. By Corollary C.15 we have τ ′ v τ .

11:44 L. Czajka Vol. 16:1

• Other cases are analogous to the ones already considered or follow directly from the
inductive hypothesis.

C.2. Type checking. We now show that type checking in λ♦ is coNP-complete. For this
purpose we show how to compute the minimal type and how to check subtyping.

The size of a type or a size expression is defined in a natural way as the length of its
textual representation. Let U be a partial finite function from the set of size variables to
the set of size expression satisfying the acyclicity condition: for any choice of j1, . . . , jn with
j1 = i and jk+1 ∈ SV(U(jk)) for k = 1, . . . , n− 1, we have jn 6= i. In other words, there are
no cycles in the directed graph constructed from U by postulating an edge from i to each
j ∈ SV(U(i)). Let S be a set of pairs of size expressions. The size of U (resp. S) is the sum
of the sizes of all size expressions in the pairs in U (resp. S). The pair (U, S) is called a
size constraint. We say that the size constraint (U, S) is valid if for every valuation v such
that v(i) = v(U(i)) holds for all i ∈ dom(U), we have v(s1) ≤ v(s2) for all (s1, s2) ∈ S. We
sometimes identify the function U with the set of equalities {i = U(i) | i ∈ dom(U)}.

The purpose of U is not to express any constraints, but to avoid duplicating size
expressions in the inequalities in S. This is in order to avoid exponential blow-up in the size
of size contraints.

The size of a finite decorated term t is defined in a natural way, except that for each
occurence of a constant c in t we add the size of ArgTypes(c) to the size of t.

For a size expression s, by U(s) we denote the size expression s′ obtained from s by
recursively (i.e. as long as possible) substituting each free occurence of a size variable i ∈
dom(U) with U(i). For example, if U = {i1 = min(i2, i2 + 1), i2 = s} then U(max(i1, i1)) =
max(min(s, s+ 1),min(s, s+ 1)). Because of the acyclicity condition on U the result of this
recursive substitution process is well-defined. We extend this in the obvious way to types,
terms and contexts. Note that (U, S) is valid iff U(s1) ≤ U(s2) for all (s1, s2) ∈ S.

We now show that it suffices to consider size variable valuations v : VS → N with the
codomain restricted to N.

Lemma C.18. If v(s1) ≤ v(s2) for every v : VS → N ∪ {∞}, then v(s1) ≤ v(s2) for every
v : VS → Ω.

Proof. Assume v(s1) > v(s2) for some v : VS → Ω. We show how to construct v′ : VS →
N ∪ {ω} such that v′(s1) > v′(s2). Because SV(s1, s2) is finite, there exist limit ordinals
ι1 < . . . < ιn <∞ such that for each i ∈ SV(s1, s2) either v(i) =∞ or there are k,m ∈ N
with v(i) = ιk +m. Let M ∈ N be maximal such that v(i) = ιk +M for some i, k. Let N
be the maximal nesting of +1 in s1, s2, e.g., for a size expression max(i+ 1, j) + 1 we have
N = 2. Let jk = k(M + N + 1) for k = 1, . . . , n. Now it suffices to set v′(i) = jk + m if
v(i) = ιk +m, and v′(i) =∞ if v(i) =∞.

Corollary C.19. A size constraint (U, S) is valid iff for every v : VS → N such that
v(i) = v(U(i)) for i ∈ dom(U) we have v(s1) ≤ v(s2) for all (s1, s2) ∈ S.

Proof. The implication from left to right follows from definitions. The other direction follows
from Lemma C.18 and the fact that a non-strict inequality is preserved when taking the
limit.

Lemma C.20. The problem of checking whether a size constraint (U, S) is valid is in coNP.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:45

Proof. The complement of the problem may be reduced to the problem of the satisfiability of
a polynomially large formula in quantifier-free Presburger arithmetic, which is in NP [8, 22].
We proceed with the details.

By Corollary C.19 it suffices to consider valuations v : Vs → N with N as codomain.
Using the identities∞+1 = max(∞, s) = max(s,∞) =∞ and min(∞, s) = min(s,∞) =

s we may simplify each size expression in a linear number of steps to either ∞ or a size
expression not containing ∞. If U(i) =∞ for some i ∈ dom(U) then we may substitute ∞
for i in each size expression and set U(i) to undefined. We perform these simplifications for
(U, S) as long as possible, obtaining after a polynomial number of steps an equivalent size
constraint (U ′, S′) (i.e. such that it is valid iff (U, S) is) such that U ′(i) does not contain ∞
and for each (s1, s2) ∈ S′ one of the following holds:

• neither s1 nor s2 contain ∞,
• s2 =∞ – then (s1, s2) may be removed from S because s1 ≤ ∞ always holds,
• s1 =∞ and s2 does not contain ∞ – then (U ′, S′) is not valid, because then v(s2) <∞

for v : VS → N.

Hence, we may assume that none of the size expressions in (U, S) contains ∞.
Thus the answer to our decision problem is negative iff there exists e.g. (s1, s2) ∈ S such

that
i1 = si1 ∧ . . . ∧ ik = sik ∧ s1 >= s2 + 1

is satisfiable in natural numbers, where the equalities il = sil come from U .
Using the identities

max(a, b) + 1 = max(a+ 1, b+ 1)
min(a, b) + 1 = min(a+ 1, b+ 1)

we may further normalize the size expressions so that max and min never occur within the
scope of +1.

Hence, it suffices to show that the satisfiability of conjunctions of normalized size
expression inequalities is in NP. However, noting that

min(a, b) ≤ c ↔ ∃n.(n ≥ a ∨ n ≥ b) ∧ n ≤ c
c ≤ min(a, b) ↔ ∃n.c ≤ n ∧ n ≤ a ∧ n ≤ b
max(a, b) ≤ c ↔ ∃n.a ≤ n ∧ b ≤ n ∧ n ≤ c
c ≤ max(a, b) ↔ ∃n.(n ≤ a ∨ n ≤ b) ∧ n ≤ c

this problem may be reduced to satisfiability of a polynomially large formula in quantifier-free
Presburger arithmetic. The latter problem is in NP [8, 22]. See also the remark at the end
of Section 2.2 in [22].

Lemma C.21. For any types τ1, τ2 there exists S = S(τ1, τ2) such that for any U we have:
U(τ1) v U(τ2) iff (U, S) is valid. Moreover, the size of S is at most polynomial in the size
of τ1, τ2.

Proof. Follows by induction on the definition of v.

Corollary C.22. Given two types τ1, τ2 and a partial finite function U satisfying the
acyclicity condition, checking whether U(τ1) v U(τ2) is in coNP.

Proof. Follows from Lemma C.21 and Lemma C.20.

Lemma C.23. Given k ∈ N, a partial finite function U satisfying the acyclicity condition,
and a size expression s, it is decidable in polynomial time whether U(s) ≥ k.

11:46 L. Czajka Vol. 16:1

Proof. Note that the smallest value of v(U(s)) is when v(i) = 0 for i /∈ dom(U). So it suffices
to evaluate U(s) with all size variables set to 0 and check whether the result is at least k.
This may be done in polynomial time.

Lemma C.24. Given a finite context Γ and a term t, one may compute in polynomial time
a triple (U, S, τ) of polynomial size satisfying:

• (U, S) is valid iff T (Γ; t) is defined,
• if T (Γ; t) is defined then U(τ) = T (Γ; t).

Proof. We semi-informally describe an algorithm to compute (U, S, τ) by the following
definition of a recursive function T ′(U0; Γ; t). To obtain the desired triple one takes U0 = ∅.
• T ′(U0; Γ, x : τ ;x) = (U0, ∅, τ).

• T ′(U0; Γ; ct1 . . . tn) = (U, S, θ) if θ = µmax(s1,...,sn)+1 and ArgTypes(c) = (σ1, . . . , σn) and
µ = dµ(τ1, . . . , τm) and Def(c) = dµ and T ′(U0; Γ; ti) = (Ui, Si, θi) and

θi = σ′i[d
si
µ (αi1, . . . , α

i
m)/A][βi1/B1, . . . , β

i
m/Bm]

(we take si = 0 and αij = ⊥ if A /∈ TV(σi), and βij = ⊥ if Bj /∈ TV(σi); if some θi does

not have the desired form then the present case does not apply) and τj =
⊔n
i=1(α

i
j t βij)

(if
⊔n
i=1(α

i
j t βij) is not defined then the present case does not apply) and U =

⋃n
i=0 Ui

and S =
⋃n
i=1 Si ∪ S(σ′i, σi).

• T ′(U0; Γ; ct1 . . . tn) = (U, S, θ) if θ = νmin(s1,...,sn)+1 and ArgTypes(c) = (σ1, . . . , σn) and
ν = dν(τ1, . . . , τm) and Def(c) = dν and T ′(U0; Γ; ti) = (Ui, Si, θi) and

θi = σ′i[d
si
ν (αi1, . . . , α

i
m)/A][βi1/B1, . . . , β

i
m/Bm]

(we take si = 0 and αij = ⊥ if A /∈ TV(σi), and βij = ⊥ if Bj /∈ TV(σi); if some θi does

not have the desired form then the present case does not apply) and τj =
⊔n
i=1(α

i
j t βij)

(if
⊔n
i=1(α

i
j t βij) is not defined then the present case does not apply) and U =

⋃n
i=0 Ui

and S =
⋃n
i=1 Si ∪ S(σ′i, σi).

• T ′(U0; Γ;λx : α.t) = (U, S, α→ β) if T ′(U0; Γ, x : α; t) = (U, S, β).
• T ′(U0; Γ; tt′) = (U, S, β) if T (U0; Γ; t) = (U1, S1, α → β) and T ′(U0; Γ; t′) = (U2, S2, α

′)
and U = U1 ∪ U2 and S = S1 ∪ S2 ∪ S(α′, α).
• T ′(U0; Γ; ts) = (U ∪ {i = s}, S, τ) if T ′(U0; Γ; t) = (U, S,∀i.τ) with i fresh.
• T ′(U0; Γ; Λi.t) = (U, S,∀i.τ) if T ′(U0; Γ; t) = (U, S, τ) and i /∈ FSV(Γ).
• T ′(U ′; Γ; case(t; {ck ~xk ⇒ tk | k = 1, . . . , n})) = (U, S, τ) if T ′(U ′; Γ; t) = (U0, S0, µ

s)

and µ = d(~β) and ArgTypes(ck) = (σ1k, . . . , σ
nk
k) and δlk = σlk[µ

i/A][~β/ ~B] with i fresh
and T ′(U ′ ∪ {i = s}; Γ, x1k : δ1k, . . . , x

nk
k : δnkk ; tk) = (Uk, Sk, τk) and τ =

⊔n
k=1 τk and

U =
⋃n
i=0 Ui and S =

⋃n
i=0 Si.

• T ′(U ′; Γ; case(t; {ck ~xk ⇒ tk | k = 1, . . . , n})) = (U, S, τ) if T ′(U ′; Γ; t) = (U0, S0, ν
s) and

ν = d(~β) and s ≥ 1 and ArgTypes(ck) = (σ1k, . . . , σ
nk
k) and δlk = σlk[ν

i/A][~β/ ~B] with i
fresh and T ′(U ′ ∪ {i = s}; Γ, x1k : δ1k, . . . , x

nk
k : δnkk ; tk) = (Uk, Sk, τk) and τ =

⊔n
k=1 τk and

U =
⋃n
i=0 Ui and S =

⋃n
i=0 Si.

• T ′(U0; Γ; fix f : (∀j1 . . . jm.µ→ τ).t) = (U, S,∀j1 . . . jm.µ→ τ) if

T ′(U0; Γ, f : ∀j1 . . . jm.µi → τ ; t) = (U, S0, θ)

and i /∈ FSV(Γ, µ, τ, j1, . . . , jm) and S = S0 ∪ S(θ,∀j1 . . . jm.µ→ τ).
• T ′(U0; Γ; cofix f : τ.t) = (U, S, τ) if

T ′(U0; Γ, f : chgtgt(τ, νmin(s,j)); t) = (U, S0, θ)

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:47

and tgt(τ) = νs and j /∈ FSV(Γ) and j /∈ SV(τ) and S = S0 ∪ S(θ, chgtgt(τ, νmin(s,j+1))).
• Otherwise, if none of the above cases hold, we define T ′(U0; Γ; t) = (U0, {1 ≤ 0},⊥) with
⊥ and arbitrary fixed type.

First note that if U ′ ⊇ U where the new size variables from dom(U ′) \ dom(U) do not occur
in S or τ then: (1) (U, S) is valid iff (U ′, S) is valid, and (2) U(τ) = U ′(τ). Note also that
when forming a sum U =

⋃n
i=1 Ui in the above definition, the function (set of equations) U

is well-defined and satisfies the acyclicity condition because the left-hand side variable i in
each newly added equation i = s is always chosen to be fresh. Using these observations one
shows by induction that if T ′(U ′; Γ; t) = (U, S, τ) then:

• (U, S) is valid iff T (U ′(Γ);U ′(t)) is defined,
• if T (U ′(Γ);U ′(t)) is defined then we have U(τ) = T (U ′(Γ);U ′(t)).

It remains to check that the algorithm implicit in the definition of T ′ is polynomial. Let N
be the initial size of the input (i.e. the size of Γ, t). The total number of calls to T ′ is
proportional to N , because in each immediate recursive call in the definition of T ′(U0; Γ; t)
different disjoint proper subterms of t are given as the third argument.

In each immediate recursive call the size of the context Γ grows by at most O(N2).
Indeed, there are essentially two possibilities of what we add to the context Γ.

(1) We add x : α for the case of lambda abstraction λx : α.t′. Then α occurs in the original
term t, so the size of Γ grows by at most N .

(2) We add e.g. x1k : δ1k, . . . , x
nk
k : δnkk where δjk = σjk[µ

i/A][~β/B] or the case of a case-

term. Then µ and ~β occur in the original term t, and σjk is an argument type for the

constructor ck which occurs in t (so the size of σjk counts towards the size of t). Hence

the total size of σ1k, . . . , σ
nk
k is ≤ N , and thus so is the total number of occurences of A, ~B

in σ1k, . . . , σ
nk
k . The size of each of µ, ~β is ≤ N . Therefore, the total size of δ1k, . . . , δ

nk
k is

at most N2 +N .

Hence, the size of the context at any given call to T ′ (during the whole run of the algorithm) is
at most O(N3). Let (U, S, τ) denote the result of calling T ′. At the leaves of the computation
tree (i.e. when there are no more immediate recursive calls) the type τ is taken from the
context, so its size is at most O(N3). At internal nodes, the size of τ is equal to at most the
sum of sizes of the types returned by immediate recursive calls (note that the size of α t β
is equal to at most the sum of sizes of α and β plus a constant), plus possibly the size of a
type occuring in t (which is ≤ N), plus possibly O(N). Hence, each call to T ′ contributes
at most O(N3) towards the size of the final result type. Since there are O(N) calls in total,
for any given call the result type τ of this call has size at most O(N4). Now we count the
final size of S. At the leaves of the computation tree S = ∅, and at each internal node we
add at most O(N) sets S(α, β) where each of α, β is either a subtype of a type returned by
an immediate recursive call or of the term t. So the size of α, β is polynomial in N , and
thus so is the size of S(α, β) by Lemma C.21. Hence, the total final size of S is polynomial
in N . To count the total final size of U , note that we may consider it to be a mutable
global variable which at each call is modified by adding at most one equation of polynomial
size (because the right-hand side size expression has size proportional to the size of a size
expression occuring in a type returned by one of the immediate recursive calls). Thus the
total final size of U is polynomial in N .

We have thus shown that the computed triple (U, S, τ) has polynomial size. Note that in
each of the calls to T ′, the computation time (not counting the immediate recursive calls) is

11:48 L. Czajka Vol. 16:1

proportional to the size of the returned triple, and is thus polynomial (we need Lemma C.23
to decide in polynomial time if U(s0) ≥ 1 in the third-last point in the definition of T ′).
Hence, the whole running time is polynomial.

Theorem 6.5. Type checking in the system λ♦ is coNP-complete. More precisely, given
Γ, t, τ the problem of checking whether Γ ` t : τ is coNP-complete.

Proof. It follows from Theorem C.17, Lemma C.24, Lemma C.20 and Corollary C.22 that
the problem is in coNP.

To show that the problem is coNP-hard we reduce the problem of unsatisfiability of
3-CNF boolean formulas, which is coNP-hard. We show how to construct in polynomial
time an inequality s1 ≤ s2 of size expressions which is equisatisfiable with a given 3-CNF
boolean formula ϕ. For concreteness assume ϕ is

(x ∨ ¬y ∨ z) ∧ (x ∨ ¬z ∨ y).

This formula is translated to the inequality s1 ≤ s2 where

s1 = max(min(x, ȳ, z) + 1,min(x, z̄, y) + 1, 1,
min(x, x̄) + 1,min(y, ȳ) + 1,min(z, z̄) + 1)

s2 = min(1,max(x, x̄),max(y, ȳ),max(z, z̄))

and x̄, ȳ, z̄ are fresh variables intended to represent the negations of x, y, z respectively.
Let v with codom(v) = {>,⊥} be a satifying valuation for ϕ. Define v̄ with codom(v̄) =

{0, 1} by v̄(i) = 0 if v(i) = >, and v̄(i) = 1 if v(i) = ⊥, and v̄(̄i) = 1 − v(i), for any
variable i. Then v̄(max(i, ī)) = v̄(min(i, ī) + 1) = 1 for any variable i, and v̄(min(x, ȳ, z)) =
v̄(min(x, z̄, y)) = 0. Hence v̄(s1) ≤ v̄(s2).

Let v̄ be a satisfying valuation for s1 ≤ s2. The inequality s1 ≤ s2 is equivalent to the
following conjunction of inequalities:

min(x, ȳ, z) + 1 ≤ 1 ∧min(x, ȳ, z) + 1 ≤ max(x, x̄) ∧
min(x, ȳ, z) + 1 ≤ max(y, ȳ) ∧min(x, ȳ, z) + 1 ≤ max(z, z̄) ∧

min(x, z̄, y) + 1 ≤ 1 ∧min(x, z̄, y) + 1 ≤ max(x, x̄) ∧
min(x, z̄, y) + 1 ≤ max(y, ȳ) ∧min(x, z̄, y) + 1 ≤ max(z, z̄) ∧

1 ≤ 1 ∧ 1 ≤ max(x, x̄) ∧ 1 ≤ max(y, ȳ) ∧ 1 ≤ max(z, z̄) ∧
min(x, x̄) + 1 ≤ 1 ∧min(x, x̄) + 1 ≤ max(x, x̄) ∧min(x, x̄) + 1 ≤ max(y, ȳ) ∧

min(x, x̄) + 1 ≤ max(z, z̄) ∧
min(y, ȳ) + 1 ≤ 1 ∧min(y, ȳ) + 1 ≤ max(x, x̄) ∧min(y, ȳ) + 1 ≤ max(y, ȳ) ∧

min(y, ȳ) + 1 ≤ max(z, z̄) ∧
min(z, z̄) + 1 ≤ 1 ∧min(z, z̄) + 1 ≤ max(x, x̄) ∧min(z, z̄) + 1 ≤ max(y, ȳ) ∧

min(z, z̄) + 1 ≤ max(z, z̄).

For each variable i, since 1 ≤ max(i, ī) and min(i, ī) + 1 ≤ 1 occur in this conjunction,
we conclude that exactly one of v̄(i), v̄(̄i) is zero and the other one is nonzero. Define v
with codom(v) = {>,⊥} by v(i) = > if v̄(i) = 0, and v(i) = ⊥ if v̄(i) 6= 0. We have
v̄(min(x, ȳ, z)) = v̄(min(x, z̄, y)) = 0 because of the inequalities min(x, ȳ, z) + 1 ≤ 1 and
min(x, z̄, y) + 1 ≤ 1. This implies that v is a satisfying valuation for ϕ.

Hence for every 3-CNF boolean formula ϕ there exists an equisatisfiable inequality
s1 ≤ s2 of size expressions which may be computed in polynomial time. So ϕ is unsatisfiable
iff s1 > s2 is valid. Because v(s2) 6= ∞ for any valuation v, the inequality s1 > s2 is
equivalent to s1 ≥ s2 + 1. Therefore ϕ is unsatisfiable iff x : νs1 , f : νs2+1 → µ0 ` fx : µ0

for some fixed ν, µ.

Vol. 16:1 AN OPERATIONAL INTERPRETATION OF COINDUCTIVE TYPES 11:49

Remark C.25. The use of the set of equations U is necessary to avoid an exponential
blow-up in the size of size constraints. For instance, consider Γ = f : ∀i.µi → µi and
define t0 = f , tn+1 = Λi.tn max(i, i). Let s0 = i and sn+1 = max(sn, sn). We have
T (Γ; tn) = ∀i.µsn → µsn . The size of sn is proportional to 2n while the size of tn is
proportional to n.

Similarly, suppose µ has two constructors c1 : µ → µ and c2 : µ → µ. Let t0 = x and
tn+1 = case(tn; {c1y ⇒ y, c2y ⇒ y}). Let sn = 0 + 1 + 1 + . . .+ 1 where 1 occurs n times.

By induction on n one shows T (x : µsn ; tn) = µs
′
n where s′0 = 0 and s′n+1 = max(s′n, s

′
n).

The size of s′n is proportional to 2n, while the sizes of tn, sn are proportional to n.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. Related work

	2. Infinitary rewriting
	3. Types
	4. Rewriting semantics
	5. Approximation theorem
	6. The type system
	6.1. Examples
	6.2. Type checking

	7. Soundness
	8. Conclusions
	References
	Appendix A. Proofs for Section ??
	Appendix B. Proofs for Section ??
	Appendix C. Type checking and type inference
	C.1. Minimal typing
	C.2. Type checking

