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Abstract. This paper gives a systematic account of various metrics on probability distri-
butions (states) and on predicates. These metrics are described in a uniform manner using
the validity relation between states and predicates. The standard adjunction between con-
vex sets (of states) and effect modules (of predicates) is restricted to convex complete metric
spaces and directed complete effect modules. This adjunction is used in two state-and-effect
triangles, for classical (discrete) probability and for quantum probability.

1. Introduction

Metric structures have a long history in program semantics, see the overview book [3]. They
occur naturally, for instance on sequences, of inputs, outputs, or states. In complete metric
spaces solutions of recursive (suitably contractive) equations exist via Banach’s fixed point
theorem. The Hausdorff distance on subsets is used to model non-deterministic (possibilistic)
computation. In general, metrics can be used to measure to what extent computations can
be approximated, or are similar.

This paper looks at metrics on probability distributions (often called states), as outcomes
of probabilistic computations. Various such metrics exist for measuring the (dis)similarity
in behaviour between computations, see e.g. [7, 12, 5]. This paper does not develop new
applications, but contributes to the theory behind distances in a probabilistic setting. In
particular, it shows how distances:

• arise in an abstract uniform way, both on distributions and on fuzzy predicates, see
Equations (1.1) and (1.2) below for more information;
• on distributions and on predicates can be related, via adjunctions in so-called state-and-

effect triangles, see Diagrams (1.3) below.

A salient feature of this paper is that it uniformly covers standard distance functions, not
only on classical discrete probability distributions, but also on quantum distributions. For
discrete probability we use the familiar and well-studied total variation distance, which
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is a special case of the Kantorovich distance, see e.g. [14, 6, 33, 32]. This total variation
distance is investigated both on sets and on metric spaces. For quantum probability we use
the well-known trace distance for states (quantum distributions) on Hilbert spaces, and the
more general operator norm distance for states of von Neumann algebras. One contribution
of this paper is a uniform description of all these distances on states as ‘validity’ distances.

In each of these cases we shall describe a validity relation |= between states ω and
predicates p, so that the validity ω |= p is a number in the unit interval [0, 1]. This validity
relation |= plays a central role in the definition of various distances. What we call the
‘validity’ distance on states is given by the supremum (join) over predicates p in:

d(ω1, ω2) =
∨

p

∣∣ω1 |= p− ω2 |= p
∣∣. (1.1)

In general, states are closed under convex combinations. We shall thus study combinations
of convex and complete metric spaces, in a category ConvCMet.

We also study metrics on predicates. The algebraic structure of predicates will be
described in terms of effect modules. Here we show that suitably order complete effect
modules are Archimedean, and thus carry an induced metric, such that limits and joins
of ascending Cauchy sequences coincide. This result requires an extension of the theory
of effect modules, which is developed in Section 3. In our main examples, we use fuzzy
predicates on sets and effects of von Neumann algebras as predicates; their distance can also
be formulated via validity |=, but now using a join over states ω in:

d(p1, p2) =
∨

ω

∣∣ω |= p1 − ω |= p2

∣∣. (1.2)

The ‘duality’ between the distance formulas (1.1) for states (distributions) and (1.2) for
predicates is a new insight.

A basic ‘dual’ adjunction in a probabilistic setting is of the form EModop � Conv,
between effect modules and convex sets. Effect modules are the probabilistic analogues of
Boolean algebras, serving as ‘algebraic probabilistic logics’ (see below for details). Convex
sets capture the algebraic structure of states. This adjunction thus expresses the essentials
of a probabilistic duality between predicates and states. Since predicates are often called
‘effects’ in a quantum setting, one also speaks of a duality between states and effects.

This paper restricts this adjunction to an adjunction DcEModop � ConvCMet
between directed complete effect modules and convex complete metric spaces. This restriced
adjunction is used in two ‘state-and-effect’ triangles, of the form:

DcEModop
--

> ConvCMetmm DcEModop
--

> ConvCMetmm

K̀ fin(D)

Pred

dd

Stat

::

vNAop
Pred

dd

Stat

::

(1.3)

Details will be provided in Section 4. Thus, the paper culminates in suitable order/metrically
complete versions of the state-and-effect triangles that emerge in the effectus-theoretic [17, 10]
description of state and predicate transformer semantics for probability (see also [21, 20]).

2. Distances between states

This section will describe distance functions (metrics) on various forms of probability
distributions, which we collectively call ‘states’. In separate subsections it will introduce
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discrete probability distributions on sets and on metric spaces, and quantum distributions
on Hilbert spaces and on von Neumann algebras. A unifying formulation will be identified,
namely what we call a validity formulation of the metrics involved, where the distance
between two states is expressed via a join over all predicates using the validities of these
predicates in the two states, as in (1.1).

2.1. Discrete probability distributions on sets.

A finite discrete probability distribution on a set X is given by ‘probability mass’ function
ω : X → [0, 1] with finite support and

∑
x ω(x) = 1. This support supp(ω) ⊆ X is the set

{x ∈ X | ω(x) 6= 0}. We sometimes simply say ‘distribution’ instead of ‘finite discrete
probability distribution’. Often such a distribution is called a ‘state’. The ‘ket’ notation
| − 〉 is useful to describe specific distributions. For instance, on a set X = {a, b, c, d} we
may write a distribution as ω = 1

2 |a〉+ 1
8 |b〉+ 3

8 |c〉. This corresponds to the probability

mass function ω : X → [0, 1] given by ω(a) = 1
2 , ω(b) = 1

8 and ω(c) = 3
8 .

We write D(X) for the set of distributions on a set X. The mapping X 7→ D(X) forms
(part of) a well-known monad on the category of sets, see e.g. [16, 18, 21] for additional
information, using the same notation as used here. We write K̀ (D) for the associated Kleisli
category, and EM(D) for the category of Eilenberg-Moore algebras. The latter may be
identified with convex sets, that is, with sets in which formal convex sums can be interpreted
as actual sums. Thus we often write Conv = EM(D); morphisms in Conv are ‘affine’
functions, that preserve convex sums. Convex sets have a rich history, going back to [38],
see [30, Remark 2.9] for an extensive description.

Definition 2.1. Let ω1, ω2 ∈ D(X) be two distributions on the same set X. Their total
variation distance tvd(ω1, ω2) is the positive real number defined as:

tvd(ω1, ω2) = 1
2

∑
x∈X

∣∣ω1(x)− ω2(x)
∣∣. (2.1)

The historical origin of this definition is not precisely clear. It is folklore that the total
variation distance is a special case of the ‘Kantorovich distance’ (also known as ‘Wasserstein’
or ‘earth mover’s distance’) on distributions on metric spaces, when applied to discrete
metric spaces (sets), see Subsection 2.2 below.

We leave it to the reader to verify that tvd is a metric on sets of distributions D(X),
and that its values are in the unit interval [0, 1].

Example 2.2. Consider the sets X = {a, b} and Y = {0, 1} with ‘joint’ distribution
ω ∈ D(X ×Y ) given by ω = 1

2 |a, 0〉+
1
2 |b, 1〉. The first and second marginal of ω, written as

ω1 ∈ D(X) and ω2 ∈ D(Y ), are: ω1 = 1
2 |a〉+ 1

2 |b〉 and ω1 = 1
2 |0〉+ 1

2 |1〉. We immediately
see that ω is not the same as the product ω1 ⊗ ω2 ∈ D(X × Y ) of its marginals, since
ω1 ⊗ ω2 = 1

4 |a, 0〉+
1
4 |a, 1〉+

1
4 |b, 0〉+

1
4 |b, 1〉. This means ω is ‘entwined’, see [25, 21]. One

way to associate a number with this entwinedness is to take the distance between ω and the
product of its marginals. It can be computed as:

tvd
(
ω, ω1 ⊗ ω2

)
= 1

2

∑
x∈X,y∈Y

∣∣ω(x, y)− (ω1 ⊗ ω2)(x, y)
∣∣

= 1
2

(
|12 −

1
4 |+ |0−

1
4 |+ |0−

1
4 |+ |

1
2 −

1
4 |
)

= 1
2 .
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For a function f : X → D(Y ) there are two associated ‘transformation’ functions, namely
state transformation (aka. Kleisli extension) f∗ : D(X)→ D(Y ) and predicate transformation
f∗ : [0, 1]Y → [0, 1]X . They are defined as:

f∗(ω)(y) =
∑

x f(x)(y) · ω(x) and f∗(q)(x) =
∑

y f(x)(y) · q(y). (2.2)

Maps p ∈ [0, 1]X are called (fuzzy) predicates on X. In the special case where the outcomes
p(x) are in the (discrete) subset {0, 1} ⊆ [0, 1], the predicate p is called sharp. These sharp
predicates correspond to subsets U ⊆ X, via the indicator function 1U : X → {0, 1}.

For a state ω ∈ D(X) we write ω |= p for the validity of predicate p in state ω, defined
as the expected value

∑
x ω(x) · p(x) in [0, 1]. Thus, ω |= 1U =

∑
x∈U ω(x); the latter sum

is commonly written as ω(U). Further, the fundamental validity transformation equality
holds: f∗(ω) |= q = ω |= f∗(q).

We conclude this subsection with a standard redescription of the total variation distance,
see e.g. [14, 39]. It uses validity |=, as described above. Such ‘validity’ based distances will
form an important theme in this paper. The proof of the next result is standard but not
trivial and is included in the appendix, for the convenience of the reader.

Proposition 2.3. Let X be an arbitrary set, with states ω1, ω2 ∈ D(X). Then:

tvd
(
ω1, ω2

)
=

∨
p∈[0,1]X

∣∣∣ω1 |= p− ω2 |= p
∣∣∣ = max

U⊆X
ω1 |= 1U − ω2 |= 1U

We write maximum ‘max’ instead of join
∨

to express that the supremum is actually reached
by a subset (sharp predicate). Completeness of the Kantorovich metric is an extensive topic,
but here we only need the following (standard) result. Since there is a short proof, it is
included.

Lemma 2.4. If X is a finite set, then D(X), with the total variation distance tvd, is a
complete metric space.

Proof. Let X = {x1, . . . , xN} and ωi ∈ D(X) be a Cauchy sequence. For each n we have∣∣ωi(xn) − ωj(xn)
∣∣ ≤ 2 · tvd(ωi, ωj). Hence, the sequence ωi(xn) ∈ [0, 1] is Cauchy too, say

with limit rn. Take ω =
∑

n rn|xn 〉 ∈ D(X). This is the limit of the ωi.

2.2. Discrete probability distributions on metric spaces.

A metric d on a set X is called 1-bounded if it takes values in the unit interval [0, 1], that
is, if it has type d : X ×X → [0, 1]. We write Met for the category with such 1-bounded
metric spaces as objects, and with non-expansive functions f between them, satisfying
d(f(x), f(y)) ≤ d(x, y). From now on we assume that all metric spaces in this paper are
1-bounded. For example, each set carries a discrete metric, where points x, y have distance
0 if they are equal, and 1 otherwise.

For a metric space X and two functions f, g : A→ X from some set A to X there is the
supremum distance given by:

spd(f, g) =
∨
a∈A

d
(
f(a), g(a)

)
. (2.3)

A ‘metric predicate’ on a metric space X is a non-expansive function p : X → [0, 1].
These predicates carry the above supremum distance spd. We use them in the following
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definition of Kantorovich distance, which transfers the validity description of Proposition 2.3
to the metric setting.

Definition 2.5. Let ω1, ω2 be two discrete distributions on (the underlying set of) a metric
space X. The Kantorovich distance between them is defined as:

kvd(ω1, ω2) =
∨

p∈Met(X,[0,1])

∣∣∣ω1 |= p− ω2 |= p
∣∣∣. (2.4)

This makes D(X) a (1-bounded) metric space.

The Kantorovich-Wasserstein duality Theorem gives an equivalent description of this
distance in terms of joint states and ‘couplings’, see [31, 39] for details. Here we concentrate
on relating the Kantorovich distance to the monad structure of distributions. The next
lemma collects some basic, folkore facts.

Lemma 2.6. Let X,Y be metric spaces.

(1) The unit function η : X → D(X) given by η(x) = 1|x〉 is non-expansive.
(2) For each non-expansive function f : X → D(Y ) the corresponding state transformer

f∗ : D(X)→ D(Y ) from (2.2) is non-expansive.
As special cases, the multiplication map µ = (id)∗ : D(D(X))→ D(X) of the monad

D is non-expansive, and validity ((−) |= p) = p∗ : D(X) → D(2) = [0, 1] in its first
argument as well.

(3) If f : X → D(Y ) and q : Y → [0, 1] are non-expansive, then so is f∗(q) : X → [0, 1].
Moreover, the function f∗ : Met(Y, [0, 1])→Met(X, [0, 1]) is itself non-expansive, wrt.
the supremum distance (2.3).

As a result, validity (ω |= (−)) = ω∗ : Met(X, [0, 1]) → Met(1, [0, 1]) = [0, 1] is
non-expansive in its second argument too.

(4) Taking convex combinations of distributions σi, τi satisfies: for r + s = 1,

kvd
(
r · σ1 + s · σ2, r · τ1 + s · τ2

)
≤ r · kvd(σ1, τ1) + s · kvd(σ2, τ2).

Proof. We do points (1) and (4) and leave the others to the reader. The crucial fact that we
use for (1) is that the unit map η : X → D(X) is non-expansive: (η(x) |= p) = p(x). Hence
we are done because the join in (2.4) is over non-expansive functions p in:

kvd(η(x1), η(x2)) =
∨

p

∣∣∣ η(x1) |= p− η(x2) |= p
∣∣∣ =

∨
p

∣∣∣ p(x1)− p(x2)
∣∣∣

≤
∨

p
d(x1, x2)

= d(x1, x2).

For point (4) we first notice that for Ω ∈ D2(X) and p : X → [0, 1],

(µ(Ω) |= p) =
∑

x µ(Ω)(x) · p(x) =
∑

x

(∑
ω Ω(ω) · ω(x)

)
· p(x)

=
∑

ω Ω(ω) ·
(∑

x ω(x) · p(x)
)

=
∑

ω Ω(ω) ·
(
ω |= p

)
= (Ω |=

(
(−) |= p

)
),
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where µ is the multiplication map defined in Lemma 2.6(2), and ((−) |= p) : D(X)→ [0, 1]
is used as (non-expansive) predicate on D(X). Hence for r, s ∈ [0, 1] with r + s = 1,

kvd
(
r · σ1 + s · σ2, r · τ1 + s · τ2

)
= kvd

(
µ(r|σ1 〉+ s|σ2 〉), µ(r|τ1 〉+ s|τ2 〉)

)
=
∨

p

∣∣µ(r|σ1 〉+ s|σ2 〉) |= p− µ(r|τ1 〉+ s|τ2 〉) |= p
∣∣

=
∨

p

∣∣ r|σ1 〉+ s|σ2 〉 |=
(
(−) |= p

)
− r|τ1 〉+ s|τ2 〉 |=

(
(−) |= p

) ∣∣
=
∨

p

∣∣ r · (σ1 |= p) + s · (σ2 |= p)− r · (τ1 |= p) + s · (τ2 |= p)
∣∣

≤
∨

p
r ·
∣∣σ1 |= p− τ1 |= p

∣∣+
∨

p
s ·
∣∣σ2 |= p− τ2 |= p

∣∣
= r · kvd(σ1, τ1) + s · kvd(σ2, τ2).

Corollary 2.7. The monad D on Sets lifts to a monad, also written as D, on the category
Met, and commutes with forgetful functors, as in:

Met

��

D //Met

��

Sets
D // Sets

(2.5)

We write ConvMet for the category EM(D) of Eilenberg-Moore algebras of this lifted monad,
with ‘convex metric spaces’ as objects, see below.

The lifting (2.5) can be seen as a finite version of a similar lifting result for the
‘Kantorovich’ functor K in [6]. This K(X) captures the tight Borel probability measures on
a metric space X. The above lifting (2.5) is a special case of the generic lifting of functors
on sets to functors on metric spaces described in [4] (see esp. Example 3.3).

The category ConvMet = EM(D) of the monad D : Met → Met contains convex
metric spaces, consisting of:

(1) a convex set X, that is, a set X with an Eilenberg-Moore algebra α : D(X)→ X of the
distribution monad D on Sets;

(2) a metric dX : X ×X → [0, 1] on X;
(3) a connection between the convex and the metric structure, via the requirement that the

algebra map α : D(X) → X is non-expansive: dX(α(ω1), α(ω2)) ≤ kvd(ω1, ω2), for all
distributions ω1, ω2 ∈ D(X).

The maps in ConvMet are both affine and non-expansive. We shall write ConvCMet ↪→
ConvMet for the full subcategory of convex complete metric spaces.

Example 2.8. The unit interval [0, 1] is a convex metric space, via its standard (Euclidean)
metric, and its standard convex structure, given by the algebra map α : D([0, 1]) → [0, 1]
defined by the ‘expected value’ operation:

α(ω) =
∑

x∈R ω(x) · x that is α
(∑

i ri|xi 〉
)

=
∑

i ri · xi.

The identity map id : [0, 1]→ [0, 1] is a predicate on [0, 1] that satisfies:

(ω |= id) =
∑

x ω(x) · id(x) =
∑

x ω(x) · x = α(ω).
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This allows us to show that α is non-expansive:∣∣α(ω1)− α(ω2)
∣∣ =

∣∣ω1 |= id − ω2 |= id
∣∣

≤
∨
p

∣∣ω1 |= p− ω2 |= p
∣∣ = kvd(ω1, ω2).

In fact, we can see this as a special case of non-expansiveness of multiplication maps µ from
Lemma 2.6 (2): indeed, D(2) ∼= [0, 1], for the two-element set 2 = {0, 1}, and the algebra
α : D([0, 1])→ [0, 1] corresponds to the multiplication µ : D(D(2))→ D(2).

2.3. Density matrices on Hilbert spaces.

The analogue of a probability distribution in quantum theory is often simply called a state.
We first consider states of Hilbert spaces (over C), and consider the more general (and
abstract) situation of states of von Neumann algebras in subsection 2.5.

A state of a Hilbert space H is a density operator, that is, it is a positive linear map
% : H → H whose trace is one: tr(%) = 1. Recall that the trace of a positive operator
T : H →H is given by tr(T ) =

∑
〈ei, T (ei)〉, where (ei)i is any orthonormal basis for H ;

this value tr(T ) does not depend on the choice of basis (ei)i, but might equal +∞ [2,
Def. 2.51]. The same formula also works for when T is not necessarily positive, but bounded

with tr(|T |) <∞ — where |T | :=
√
T †T and T † is the adjoint of T and where the square

root is determined as the unique positive operator B with BB = T †T . Such T , which are
aptly called trace-class operators, always have finite trace: tr(T ) <∞, see [2, Def. 2.5{4,6}].
When H is finite dimensional, any operator T : H →H is trace-class, and when represented
as a matrix, its trace can be computed as the sum of all elements on the diagonal. If T is a
density operator, then the associated matrix is called a density matrix. We refer for more
information to for instance [2], and to [35, 36, 41] for the finite-dimensional case.

A linear map A : H → H is called self-adjoint if A = A† and positive if it is of the
form A = BB†. This yields a partial order, with A ≤ B iff B−A is positive. A predicate on
H is a linear map p : H →H with 0 ≤ p ≤ id. It is called sharp (or a projection) if p2 = p.
Predicates are also called effects. We write Ef(H ) for the set of effects of H . For a state %
of H the validity % |= p is defined as the trace tr(% p). To make sense of this definition we
should mention that the product AB of bounded operators A,B : H → H is trace-class
when either A or B is trace-class [2, Def. 2.54] — so % p is trace-class because % is.

Definition 2.9. Let %1, %2 be two quantum states of the same Hilbert space. The trace
distance trd(%1, %2) between them is defined as:

trd(%1, %2) = 1
2tr
(∣∣ %1 − %2

∣∣) = 1
2tr
(√

(%1 − %2)†(%1 − %2)
)
. (2.6)

This definition involves the square root of a positive operator B. With the examples
below in mind it is worth pointing out that in the finite-dimensional case — when B is
essentially a positive matrix — the square root of B can be computed by first diagonalising
the matrix B = V DV †, where D is a diagonal matrix; then one forms the diagonal matrix√
D by taking the square roots of the elements on the diagonal in D; finally the square root

of B is V
√
DV †.

The trace distance trd is an extension of the total variation distance tvd: given two
discrete distributions ω1, ω2 on the same set, then the union of their supports supp(ω1) ∪
supp(ω2) is a finite set, say with n elements. We can represent ω1, ω2 via diagonal n × n
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matrices as density operators ω̂1, ω̂2. They are states, by construction. Then trd(ω̂1, ω̂2) =
tvd(ω1, ω2).

Example 2.10. We describe the quantum analogue of Example 2.2, involving the ‘Bell’
state. As a vector in C2 ⊗ C2 the Bell state is usually described as |b〉 = 1√

2
(|00〉+ |11〉).

The corresponding density matrix β = |b〉〈 b | is the following 4× 4 matrix.

β = 1√
2

(
1
0
0
1

)
1√
2

( 1 0 0 1 ) = 1
2

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
Its two marginals β1, β2 (in this context usually called reduced density operators and obtained
by taking partial traces, see §2.4.3 of [35]) are equal 2× 2 matrices, namely:

β1 = β2 = 1
2 ( 1 0

0 1 ) so that β1 ⊗ β2 = 1
4

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
The product state β1 ⊗ β2 is obtained as Kronecker product, see e.g. [35].

We can now ask the same question as in Example 2.2, namely what is the distance
between the Bell state β and the product of its marginals. We recall that the Bell state is
‘maximally entangled’ and that the quantum theory allows, informally stated, higher levels
of entanglement than in classical probability theory. Hence we expect an outcome that is
higher than the value 1

2 obtained in Example 2.2 for the classical maximally entwined state.
The key steps are:

β − β1 ⊗ β2 =

 1/4 0 0 1/2
0 −1/4 0 0
0 0 −1/4 0
1/2 0 0 1/4

 so that
∣∣β − β1 ⊗ β2

∣∣ =

 1/2 0 0 1/2
0 1/4 0 0
0 0 1/4 0
1/2 0 0 1/2


Hence:

trd
(
β, β1 ⊗ β2

)
= 1

2tr
(∣∣β − β1 ⊗ β2

∣∣) = 1
2

(
1/2 + 1/4 + 1/4 + 1/2

)
= 3

4 .

In the earlier version of this paper [19] these distance computations are generalised to n-ary
products, both for classical and for quantum states. Both distances then tend to 1, as n

goes to infinity, but the classical distance is one step behind, via formulas 2n−1−1
2n−1 versus

2n−1
2n . Here we only consider n = 2.

The following result is a quantum analogue of Proposition 2.3. Our formulation gener-
alises the standard formulation of e.g. [35, §9.2] and its proof to arbitrary, not necessarily
finite-dimensional Hilbert spaces. We will see an even more general version involving von
Neumann algebras later on.

Proposition 2.11. For states %1, %2 on the same Hilbert space H ,

trd(%1, %2) =
∨

p∈Ef(H )

∣∣ %1 |= p− %2 |= p
∣∣ = max

s∈Ef(H ) sharp
(%1 |= s)− (%2 |= s).

As before, the maximum means the supremum is actually reached by a sharp effect. The
proof of this result is in the appendix.
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2.4. Preliminaries on von Neumann algebras.

Our final example of a distance function requires a short introduction to von Neumann
algebras. We do not however pretend to explain the basics of the theory of von Neumann
algebras here; for this we refer to [29] (and [40]). We just recall some elementary definitions
and facts which are relevant here.

To define von Neumann algebras we must speak about unital C∗-algebras first.

Definition 2.12. A unital C∗-algebra A is a complex vector space endowed with:

(1) an associative multiplication that is linear in both coordinates;
(2) an element 1, called unit, such that 1 · a = a = a · 1 for all a ∈ A ;
(3) a unary operation ( · )∗, called involution, such that (a∗)∗ = a, (ab)∗ = b∗a∗, (λa)∗ = λa∗,

and (a+ b)∗ = a∗ + b∗ for all a, b ∈ A and λ ∈ C;

(4) a complete norm, ‖ · ‖, with ‖ab‖ ≤ ‖a‖ ‖b‖ and ‖a∗a‖ = ‖a‖2 for all a, b ∈ A .

Two types of elements deserve special mention: an element a of a unital C∗-algebra A
is called self-adjoint when a∗ = a, and positive when a ≡ b∗b for some b ∈ A .1 Elementary
matters relating to self-adjoint elements are usually easily established: the reader should
have no trouble verifying, for example, that every element a of a unital C∗-algebra A
can be written as a ≡ b + ic for unique self-adjoint b, c ∈ A (namely, b = 1

2(a + a∗) and

c = 1
2i(a − a

∗).) On the other hand, the everyday properties of the positive elements are
often remarkably difficult to prove from basic principles, such as the facts that the sum
of positive elements is positive, that the set A+ of positive elements of A is norm closed
(see parts (iii) and (i) of Theorem 4.2.2 of [29]), that every positive element a ∈ A+ has a
unique positive square root,

√
a (see Theorem 4.2.6(ii) of [29]), and that every self-adjoint

element a of A may be written uniquely as a ≡ b − c where b, c ∈ A+ with bc = 0 (see
Proposition 4.2.3(iii) of [29]).

The elements of a unital C∗-algebra are ordered by a ≤ b when b− a is positive. We
write [0, 1]A ⊆ A for subset of effects 0 ≤ e ≤ 1; they will be used as quantum predicates.
Such an effect e is called sharp (or a projection) if e2 = e.

Definition 2.13. A unital C∗-algebra A is a von Neumann algebra (aka. W ∗-algebra) if
firstly the unit interval [0, 1]A is a directed complete partial order (dcpo), and secondly the
positive linear functionals ω : A → C with ω(1) = 1 that preserve these (directed) suprema
separate the elements of [0, 1]A . This means that e1, e2 ∈ [0, 1]A are equal provided that
ω(e1) = ω(e2) for all such ω.

There are several equivalent alternative definitions of the notion of ‘von Neumann
algebra’, but this one, essentially due to Kadison (see [28]), is most convenient here.

For the purposes of this paper we consider as morphisms f : A → B between von
Neumann algebras: linear maps which are unital (that is, f(1) = 1), positive (a ≥ 0
implies f(a) ≥ 0) and normal.2 The latter normality requirement means that the restriction
f : [0, 1]A → [0, 1]B preserves directed joins (i.e. is Scott-continuous). This yields a category
vNA of von Neumann algebras. It occurs naturally in opposite form, as vNAop.3

1In [29] a different but in the end equivalent definition of “positive” is used, see Theorem 4.2.6 of [29].
2It is not difficult to see that a positive morphism between von Neumann algebras sends self-adjoint

elements to self-adjoint elements, and preserves the involution.
3Depending on the context other choices of morphisms between von Neumann algebras may be more

appropriate. The proper ‘structure preserving maps’, for example, preserve multiplication too, and form a
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Each non-zero4 morphism f in vNA has operator norm equal to 1, i.e. ‖f‖op = 1, where
‖f‖op =

∨
{‖f(x)‖ | ‖x‖ = 1}. Below we apply the operator norm to a (pointwise) difference

‖f − g‖op of parallel morphisms f, g in vNA. Using ‖f − g‖op as distance, each homset of
vNA is a complete metric space.5

2.5. States of von Neumann algebras.

A state of a von Neumann algebra A is a morphism % : A → C in vNA. We write
Stat(A ) = Hom(A ,C) for the set of states; it is easy to see that it is a convex set. For an
effect e ∈ [0, 1]A we write % |= e for the value %(e) ∈ [0, 1]. When A is the von Neumann
algebra B(H ) of bounded operators on a Hilbert space H , then ‘effect’ has a consistent
meaning, since [0, 1]B(H ) = Ef(H ). Moreover, density operators % on H are in one–one
correspondence with states of B(H ), via % 7→ tr(%( · )); in fact, this correspondence extends
to a linear bipositive isometry between trace-class operators on H and normal — but not
necessarily positive — functionals on B(H ) (see [2, Thm 2.68]).

For states of von Neumann algebras we use half of the operator norm as distance, since
it coincides with the ‘validity’ distance whose formulation is by now familiar. The proof is
again delegated to the appendix.

Proposition 2.14. Let %1, %2 : A → C be two states of a von Neumann algebra A . Their
validity distance vld(%1, %2), as defined on the left below, satisfies:

vld(%1, %2) :=
∨

e∈[0,1]A

∣∣∣ %1 |= e− %2 |= e
∣∣∣ = max

s∈[0,1]A sharp
%1 |= s− %2 |= s = 1

2‖%1 − %2‖op.

Via the last equation it is easy to see that vld is a complete metric.

Corollary 2.15. Let A be a von Neumann algebra.

(1) For each predicate e ∈ [0, 1]A the ‘evaluate at e’ map eve = (−)(e) = (−) |=
e : Stat(A )→ [0, 1] is both affine and non-expansive.

(2) The convex map α : D(Stat(A ))→ Stat(A ) is non-expansive.
(3) The ‘states’ functor Stat = Hom(−,C) : vNAop → Conv restricts to a functor

Stat : vNAop → ConvCMet.

Proof. (1) It is standard that the map eve is affine, so we concentrate on its non-
expansiveness: for states %1, %2 we have:∣∣ eve(%1)− eve(%2)

∣∣ =
∣∣ %1 |= e− %2 |= e

∣∣ ≤ ∨
a∈[0,1]A

∣∣ %1 |= a− %2 |= a
∣∣ = vld(%1, %2).

strict subcategory vNA′ of vNA, similar to how Sets forms a strict subcategory of K̀ (D). Further, if we
had wished to work with tensor products of von Neumann algebras, we had required the morphisms in vNA
to be not just positive but completely positive, see [37].

4The unique morphism A → {0} is unital, because it sends 1 to 1 = 0, but has operator norm 0.
5Here is a proof that vNA(A ,B) is complete: We must show that a Cauchy sequence f1, f2, . . . in

vNA(A ,B) converges. By Theorem 1.5.6 of [29], the sequence f1, f2, . . . ‖ − ‖op-converges to a bounded
linear map f : A → B. It is clear that f will be unital, and positive (since the norm-limit of positive
elements of B is again positive, see Theorem 4.2.2 of [29]), so it remains to be shown that f is normal.
Given directed D ⊆ [0, 1]A we must show that

∨
d∈D f(d) = f(

∨
D). For this it suffices to show that∨

d∈D ω(f(d)) ≡ ω(
∨

d∈D f(d)) = ω(f(
∨

D)) for all positive normal linear functionals ω : B → C, which is
the case when ω ◦ f is normal. But since ω ◦ f1, ω ◦ f2, · · · ‖ − ‖op-converges to ω ◦ f , this is indeed so
(because the predual of B is complete, see the text under Definition 7.4.1 of [29].)
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(2) Suppose we have two formal convex combinations Ω =
∑

i ri|ωi 〉 and Ψ =
∑

j sj |%j 〉 in

D(Stat(A )). The map α : D(Stat(A ))→ Stat(A ) is non-expansive since:

vld
(
α(Ω), α(Ψ)

)
=
∨

e

∣∣ (∑i ri · ωi) |= e− (
∑

j sj · %j) |= e
∣∣

=
∨

e

∣∣ ∑
i ri · ωi(e)−

∑
j sj · %j(e)

∣∣
=
∨

e

∣∣ ∑
i ri · eve(ωi)−

∑
j sj · eve(%j)

∣∣
=
∨

e

∣∣Ω |= eve −Ψ |= eve
∣∣

≤
∨

p∈Met(Stat(A ),[0,1])

∣∣Ω |= p−Ψ |= p
∣∣

(2.4)
= kvd

(
Ω,Ψ

)
.

(3) We have to prove that for a positive unital map f : A → B between von Neumann
algebras the associated state transformer f∗ = (−) ◦ f : Hom(B,C) → Hom(A ,C) is
affine and non-expansive. The former is standard, so we concentrate on non-expansiveness.
Let %1, %2 : B → C be states of B. Then:

vld
(
f∗(%1), f∗(%2)

)
=
∨

e∈[0,1]A

∣∣ f∗(%1)(e)− f∗(%2)(e)
∣∣

=
∨

e∈[0,1]A

∣∣ %1(f(e))− %2(f(e))
∣∣

≤
∨

d∈[0,1]B

∣∣ %1(d)− %2(d)
∣∣

= vld
(
%1, %2

)
.

3. Distances between effects (predicates)

There are several closely connected views on what predicates are in a probabilistic setting.
Informally, one can consider fuzzy predicates X → [0, 1] on a space X, or only the sharp
ones X → {0, 1}. Instead of restricting oneself to truth values in [0, 1], one can use R-valued
predicates X → R, which are often called ‘observables’. Alternatively, one can restrict to
the non-negative ones X → [0,∞). There are ways to translate between these views, by
restriction, or by completion. The relevant underlying mathematical structures are: effect
modules, order unit spaces, and ordered cones. Via suitable restrictions, see [23, Lem. 13,
Thm. 14] for details, the categories of these structures are equivalent. Here we choose to use
effect modules because they capture [0, 1]-valued predicates, which we consider to be most
natural. Moreover, there is a standard adjunction between effect modules and the convex
sets that we have been using in the previous section. This adjunction will be explored in the
next section.

In this section we recall some basic facts from the theory of effect modules (see [17, 10,
24]), and add a few new ones, especially related to ω-joins and metric completeness, see
Proposition 3.3. With these results in place, we observe that in our main examples — fuzzy
predicates on a set and effects in a von Neumann algebras — the induced ‘Archimedean’
metric can also be expressed using validity |=, but now in dual form wrt. the previous
section: for the distance between two predicates we now take a join over all states and use
the validities of the two predicates in these states.

We briefly recall what an effect module is, and refer to [17] and its references for more
details. This involves three steps.
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(1) A partial commutative monoid (PCM) is given by a set E with an element 0 ∈ E and
a partial binary operation > : E × E → E which is commutative and associative, in
a suitably partial sense, and has 0 has unit element: given a, b, c ∈ E, the expression
a> (b> c) is defined iff (a> b) > c is defined, and they are equal in that case; a> b is
defined iff b> a is defined, and they are equal in that case; and a> 0 is always defined,
and is equal to a.

(2) An effect algebra is a PCM E in which each element x ∈ E has a unique orthosupplement
x⊥ ∈ E with x> x⊥ = 1, where 1 = 0⊥. Moreover, if x> 1 is defined, then x = 0. Each
effect algebra carries a partial order given by: x ≤ y iff x> z = y for some z. It satisfies
x ≤ y iff y⊥ ≤ x⊥. Moreover, x> y exists iff x ≤ y⊥ iff y ≤ x⊥. For more information
on effect algebras we refer to [13].

(3) An effect module is an effect algebra E with a (total) scalar multiplication operation
[0, 1] × E → E which acts as a bihomomorphism: it preserves in each coordinate
separately scalar multiplications · and partial sums (>, 0), when defined, and maps the
pair (1, 1) to 1.

We write EMod for the category of effect modules. A map f : E → D in EMod preserves 1,
sums >, when they exist, and scalar multiplication; such an f then also preserves ortho-
supplements and 0. There are (non-full) subcategories DcEMod ↪→ ω-EMod ↪→ EMod
of directed complete and ω-complete effect modules, with joins of directed (or countable
ascending) subsets, with respect to the existing order of effect algebras. The sum > and
scalar multiplication · operations are required to preserve these joins in each argument
separately6. Since taking the orthosupplement a 7→ a⊥ is an order anti-isomorphism it
sends joins to meets and vice-versa. In particular, ω/directed meets exist in ω-/directed
complete effect modules. Morphisms in DcEMod and ω-EMod are homomorphisms of
effect modules that additionally preserve the relevant joins.

Below it is shown how this effect module structure arises naturally in our main examples.
The predicate functors Pred are special cases of constructions for ‘effectuses’, see [17].

Lemma 3.1. (1) For the distribution monad D on Sets there is a ‘predicate’ functor on
its Kleisli category:

K̀ (D)
Pred // DcEModop given by

{
X 7→ [0, 1]X(

X
f−→ D(Y )

)
7→

(
[0, 1]Y

f∗−→ [0, 1]X
)

This functor is faithful, and it is full (& faithful) if we restrict it to the subcategory
K̀ fin(D) ↪→ K̀ (D) with finite sets as objects.

(2) There is also a ‘predicate’ functor:

vNAop Pred // DcEModop given by

{
A 7→ [0, 1]A

B
f−→ A 7→ [0, 1]B

f−→ [0, 1]A

This functor is full and faithful.

6In fact, it can be shown that maps (−) > y preserve directed (or countable ascending) joins automatically
when all such directed (or countable ascending) joins exist, see Lemma 3.2 (1i). Preservation by scalar
multiplication can also be proved, but is outside the scope of this paper.
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Writing (−)op on both sides in point (2) looks rather formal, but makes sense since the
category vNA of von Neumann algebras is naturally used in opposite form, see also the
next section.

Proof. (1) It is easy to see that the set [0, 1]X of fuzzy predicate on a set X is an effect
module, in which a sum p > q exists if p(x) + q(x) ≤ 1 for all x ∈ X, and in that
case (p> q)(x) = p(x) + q(x). Clearly, p⊥(x) = 1− p(x) and (r · p)(x) = r · p(x) for a
scalar r ∈ [0, 1]. The induced order on [0, 1]X is the pointwise order, which is (directed)
complete.

For a Kleisli map f : X → D(Y ) the predicate transformation map f∗ : [0, 1]Y → [0, 1]X

from (2.2) preserves the effect module structure. Moreover, it is Scott-continuous by
the following argument. Let qi ∈ [0, 1]X be a directed collection of predicates, and let
x ∈ X. Write the support of f(x) ∈ D(Y ) as {y1, . . . , yn}. Then:

f∗
(∨

i qi
)
(x)

(2.2)
= f(x)(y1) ·

(∨
i qi
)
(y1) + · · ·+ f(x)(yn) ·

(∨
i qi
)
(yn)

=
(∨

i f(x)(y1) · qi(y1)
)

+ · · ·+
(∨

i f(x)(yn) · qi(yn)
)

since + is Scott-continuous

=
∨
i f(x)(y1) · qi(y1) + · · ·+ f(x)(yn) · qi(yn)

=
∨
i f
∗(qi)(x)

=
(∨

i f
∗(qi)

)
(x).

Assume f∗ = g∗ for f, g : X → D(Y ), and let x ∈ X, y ∈ Y . Write 1{y} ∈ [0, 1]Y for
the singleton predicate that is 1 on y ∈ Y and zero everywhere else. Then f(x)(y) =
f∗(1{y})(x) = g∗(1{y})(x) = g(x)(y). Hence f = g, showing that Pred is faithful.

Now let X,Y be finite sets and h : [0, 1]Y → [0, 1]X be a map in DcEMod. Define
f(x)(y) = h(1{y})(x) ∈ [0, 1]. We claim that f(x) is a distribution on Y = {y1, . . . , yn},
say, and that f∗ = h. This works as follows.∑

y∈Y f(x)(y) =
∑

i h(1{yi})(x)

=
(
>i h(1{yi})

)
(x)

= h
(
>i 1{yi}

)
(x)

= h(1Y )(x)

= 1X(x)

= 1.

f∗(q)(x) =
∑

i f(x)(yi) · q(yi)
= >i h(1{yi})(x) · q(yi)
= h(>i q(yi) · 1{yi})(x)

= h(q)(x).

(2) It is not hard to see that the unit interval [0, 1]A of a unital C∗-algebra A is an effect
module, see also [17]. If A is a von Neumann algebra, then this interval is a dcpo,
by definition. Each map f of von Neumann algebras restricts to these intervals, and
is in fact entirely determined by its behaviour on unit intervals: an arbitrary element
can be written as a linear combination of (four) positive elements (see Corollary 4.2.4
of [29]); the latter can be scaled down with a scalar, if needed, so that they fit in the
unit interval.

For comparison with what follows we recall that the Archimedean property of an order
unit space (see [34, 27]) with unit 1 is typically formulated as follows. Let x be an arbitrary
element that satisfies x ≤ 1

n · 1, for all n ≥ 1, then x ≤ 0. This Archimedean property is
crucial for defining a norm on order unit spaces.
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An analogous Archimedean property is given for effect modules in [22, 23]. Its formulation
is more subtle, and runs as follows. For arbitrary elements x, y, if 1

2 · x ≤
1
2 · y > 1

2n · 1 for
all n ≥ 1, then x ≤ y. This formulation uses the fact that sums r · x> s · y with r + s ≤ 1
always exist in an effect module.

Also for Archimedean effect modules one can define an ‘Archimedean’ distance function
ard as:

ard(x, y) = max
(∧
{r ∈ (0, 1] | 1

2 · x ≤
1
2 · y > r

2 · 1},
∧
{r ∈ (0, 1] | 1

2 · y ≤
1
2 · x> r

2 · 1}
)

In this situation we can write ‖x‖ = ard(0, x) ∈ [0, 1], so that x ≤ ‖x‖ · 1 (see Lemma 3.2(3)
below). But we need to be careful that we cannot express the distance ard in terms of ‖ − ‖
since there is no general subtraction in effect modules — but there is a partial operation 	,
see below.

In [22, 23] it is shown that:

• the full subcategory AEMod of Archimedean effect modules is equivalent to the category
of order unit spaces; the ‘Archimedean’ distances on order unit spaces and effect modules
coincide;
• Archimedean effect modules carry this (1-bounded) metric ard, and all maps of effect

modules are automatically non-expansive. This gives a functor AEMod→Met.

We need to collect a few basic facts about this Archimedean distance function ard,
especially about its relation to (partial) subtraction 	 in the last point below.

Lemma 3.2. Let E be an Archimedean effect module. For x, y ∈ E with x ≤ y one can
define7 y 	 x = (y⊥ > x)⊥. Then:

(1) This minus operation 	 satisfies the following properties:
(a) x	 0 = x and 1	 y = y⊥ and x	 x = 0;
(b) if y ≤ z then: x > y = z iff x = z 	 y; in particular, x = (x > y) 	 y and

(z 	 y) > y = z;
(c) x> y ≤ z iff x ≤ z 	 y (and y ≤ z);
(d) if x ≤ y then (y > z)	 x = (y 	 x) > z;
(e) if x ≤ y ≤ z then y 	 x ≤ z 	 x;
(f) if x ≥ y then x ≤ y > z iff x	 y ≤ z;
(g) if x ≤ y then r · y 	 r · x = r · (y 	 x) for r ∈ [0, 1];
(h) if r ≤ s in [0, 1], which is itself an Archimedean effect module, then s	 r = s− r

and (s− r) · x = s · x	 r · x;
(i) Let S be a non-empty subset of [0, y⊥]E. If S has a join

∨
S in E, then y >

∨
S

exists, and is the join of {y > s | s ∈ S} in E. If S has a meet
∧
S in E, and8

{y > s | s ∈ S} has a meet
∧
s∈S y > s in E, then y >

∧
S =

∧
s∈S y > s.

7Indeed, recall that a > b exists iff b ≤ a⊥. Thus y⊥ > x exists since x ≤ y ≡ y⊥⊥.
8The condition that the y > s have a meet in E cannot be dropped. To see this, recall from [26], Lemma 2,

that projections P and Q on closed linear subspaces C and D of a Hilbert sapce H , respectively, have an
infimum in the set of positive operators B(H )+ on H , namely the projection R onto C ∩ D. However,
by [26], Corollary 4, P and Q only have an infimum in the space of self-adjoint bounded operators B(H )sa
on H when P and Q commute. By inspecting and adapting the proofs of these results, one easily sees
that when P and Q do not commute, then 1

2
P and 1

2
Q have 1

2
R as meet in [0, 1]B(H ), while 1

2
· 1 > 1

2
P

and 1
2
· 1 > 1

2
Q have no meet in [0, 1]B(H ) at all.
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(j) Let S be a non-empty subset of [y, 1]E. If S has a join
∨
S in E, and {s	y | s ∈ S}

has a join
∨
s∈S s	 y in E, then

∨
s∈S s	 y = (

∨
S)	 y. If S has a meet

∧
S in E,

then (
∧
S)	 y exists, and is the meet of {s	 y | s ∈ S} in E.

(2) Scalar multiplication preserves meets in its first argument: (
∧
S) · 1 =

∧
s∈S(s · 1) for

any set of scalars S ⊆ [0, 1].
(3) Given r ∈ [0, 1] and x ≤ y from E we have ard(x, y) ≤ r iff y 	 x ≤ r · 1. In particular,

y 	 x ≤ ard(x, y) · 1. Moreover, ‖y‖ ≤ r iff y · 1 ≤ r; and y · 1 ≤ ‖y‖.
(4) The sum > is continuous wrt. the Archimedean metric ard, in the sense that when

x1, x2, . . . ∈ E converge to x ∈ E wrt. ard, and y1, y2, . . . ∈ E converge to y ∈ E, and
xn is summable with yn for each n, then x> y exists too, and ard(xn > y, x> y)→ 0.
Orthosupplement (−)⊥, scalar multiplication ·, and 	 are continuous in a similar sense
too.

Proof. (1) The first point is trivial, and left to the reader. For (1b) we use: x = z 	 y =
(z⊥ > y)⊥ iff x⊥ = z⊥ > y iff x> z⊥ > y = 1 iff z = x> y. Next, for (1c),

x> y ≤ z ⇔ ∃w. x> y > w = z ⇔ ∃w. x> w = z 	 y as just shown

⇔ x ≤ z 	 y.

Point (1d) is obtained as follows. We have:

(y > z)⊥ > x> (y 	 x) > z
(1b)
= (y > z)⊥ > y > z = 1,

so that (y 	 x) > z =
(
(y > z)⊥ > x

)⊥
= ((y > z)	 x.

For (1e) let x ≤ y ≤ z, say via z = y > w. Then z 	 x = (y > w)	 x = (y 	 x) > w
by the previous point. Hence y 	 x ≤ z 	 x.

Assume now x ≥ y for (1f). In one direction, if x ≤ y> z, then, by the previous point,
x	 y ≤ (y > z)	 y = z. The other direction follows similary by adding y on both sides.

For (1g) let x ≤ y and r ∈ [0, 1]. Then r · y = r · (x> (y 	 x)) = (r · x) > (r · (y 	 x)),
so r · x ≤ r · y, and (r · y)	 (r · x) = r · (y 	 x), by (1b).

Point (1h) is easy and left to the reader. For (1i) and (1j) first note that the
map y > (−) : [0, y⊥]E −→ [y, 1]E is not only order preserving, but also an order
isomorphism, with inverse (−) 	 y : [y, 1]E −→ [0, y⊥]E , by (1b) and (1e). Therefore
y > (−) : [0, y⊥]E −→ [y, 1]E preserves and reflects joins.

So if a non-empty subset S of ⊆ [0, y⊥]E has a join
∨
S in E (which must be the join

in [0, y⊥]E too,) then y >
∨
S is the join of the y > s in [y, 1]E . We claim that y >

∨
S

is the join of the y > s in E too, using here that S is non-empty. Indeed, let u ∈ E
with y > s ≤ u for all s ∈ S be given; we must show that y >

∨
S ≤ u. Since there is

some s0 ∈ S, we have y ≤ y> s0 ≤ u, and so u ∈ [y, 1]E , which entails that y>
∨
S ≤ u,

since y >
∨
S is the least upper bound of the y > s in [y, 1]E .

Now suppose that S is a non-empty subset of [0, y⊥]E that has a meet in E, and
suppose that {y > s | s ∈ S} has a meet

∧
s∈S y > s in E too. We must show that∧

s∈S y>s = y>
∧
S. (Note that

∧
S ≤ y⊥ since S is non-empty, and so y>

∧
S exists.)

Since y > (−) : [0, y⊥]E −→ [y, 1]E , being an order isomorphism, preserves (and reflects)
meets, and

∧
S is the meet of S in E, and so in [0, y⊥]E too, we see that y >

∧
S is the

meet of the y > s in [y, 1]E . Since
∧
s∈S y > s is the meet of the y > s in E, and thus

in [y, 1]E too, we get y >
∧
S =

∧
s∈S y > s.

Whence (1i) holds, and (1j) is established similarly.
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(2) Given a set S ⊆ [0, 1] of scalars, we must show that (
∧
S) · 1 =

∧
s∈S s · 1. The difficulty

here is not whether (
∧
S) · 1 is a lower bound of the s · 1, but whether it is the greatest

lower bound. To prove this, let x ∈ E with x ≤ s · 1 for all s ∈ S be given; we
must prove that x ≤ (

∧
S) · 1. Since E is Archimedean it suffices (by the definition

of the Archimedean property for effect module above) to prove that for given n > 1
we have 1

2 · x ≤
1
2 · ( (

∧
S) · 1 ) > 1

2n · 1 ≡
1
2(
∧
S + 1

n) · 1. Since the elements of S are

just plain real numbers we can find s ∈ S with s ≤
∧
S + 1

n . Using this s, we see

that 1
2 · x ≤ (1

2s) · 1 ≤
1
2(
∧
S + 1

n) · 1. Whence x ≤ (
∧
S) · 1.

(3) Let sequences x1, x2, . . . and y1, y2, . . . in E ard-converging to elements x and y of E,
respectively, be given, such that xn > yn exists for all n. We must show that x> y exists,
and that x1 > y1, x2 > y2, . . . ard-converges to x> y.

To show that x > y exists we need to show that x ≤ y⊥, and for this in turn, it
suffices given integer n > 0 (since E is Archimedean) to prove that 1

2x ≤
1
2y
⊥ > 1

2n · 1.

Since ard(xm, x) → 0 as m → ∞, we can find an M such that ard(xm, x) < 1
2n for

all m ≥M . From this, and the definition of ard, it follows readily that 1
2x ≤

1
2xm> 1

4n · 1
for all m ≥M . By a similar argument, but now using that ard(ym, y)→ 0 as m→∞,
we can, by choosing M larger if necessary, have 1

2y ≤
1
2ym > 1

4n · 1 for all m ≥M too.

Note that (1
2a > 1

2b)
⊥ = 1

2a
⊥ > 1

2b
⊥ for all a, b ∈ E. So upon application of ( · )⊥, the

aforementioned inequality gives
1
2y
⊥
m > 1

2( 1
2n · 1)⊥ = (1

2ym > 1
4n · 1)⊥

≤ (1
2y > 1

2 · 1
⊥)⊥

= 1
2y
⊥ > 1

2 · 1 = 1
2y
⊥ > 1

2( 1
2n · 1) > 1

2( 1
2n · 1)⊥,

which implies that 1
2y
⊥
m ≤ 1

2y
⊥ > 1

4n · 1, for all m ≥ M . As the final ingredient, note

that xM ≤ y⊥M since xM > yM exists. Altogether we get:

1
2x ≤

1
2xM > 1

4n · 1 ≤
1
2y
⊥
M > 1

4n · 1 ≤
1
2y
⊥ > 1

2n · 1.

Whence x ≤ y⊥, and so x> y exists.
Concerning the continuity of > it remains to be shown that xn>yn converges to x>y.

For this we need the observation that ard(a> c, b> c) = ard(a, b) for all a, b, c ∈ E for
which a>c and b>c exist. (Hint: looking at the definition of ard note that given r ∈ (0, 1]
we have 1

2a ≤
1
2b> 1

2r · 1 iff 1
2(a> c) ≤ 1

2(b> c) > 1
2r · 1.) Indeed, this identity gives us

ard(xn > yn, x> y) ≤ ard(xn > yn, xn > y) + ard(xn > y, x> y) = ard(yn, y) + ard(xn, x),
and so ard(xn > yn, x> y)→ 0 as n→∞.

The continuity of · and ( · )⊥ follows along similar lines, but involves the equations
ard(x⊥, y⊥) = ard(x, y), ard(r · x, r · y) = r · ard(x, y) and ard(r · x, s · x) = |r − s| · ‖x‖,
whose proofs we leave to the reader.

(4) Let x ≤ y in E and r′ ∈ [0, 1] be given. Recall that we must show that y 	 x ≤ r′ · 1 iff
ard(x, y) ≤ r′. Since x ≤ y, we have

∧
{r ∈ (0, 1] | 1

2 · x ≤
1
2 · y > r

2 · 1} = 0, so:

ard(x, y) =
∧
{r ∈ (0, 1] | 1

2 · y ≤
1
2 · x> r

2 · 1} (3.1)
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Suppose that ard(x, y) ≤ r′. We must show that y 	 x ≤ r′ · 1. It suffices to show
that y 	 x ≤ ard(x, y) · 1. Indeed:

ard(x, y) · 1 =
(∧
{r ∈ (0, 1] | 1

2 · y ≤
1
2 · x> r

2 · 1}
)
· 1

(2)
=
∧
{r · 1 | 1

2 · y ≤
1
2 · x> r

2 · 1}
(1f)
=
∧
{r · 1 | 1

2 · y 	
1
2 · x ≤

r
2 · 1}

≥
(

1
2 · y 	

1
2 · x

)
>
(

1
2 · y 	

1
2 · x

)
(1g)
= 1

2 ·
(
y 	 x

)
> 1

2 ·
(
y 	 x

)
= y 	 x.

For the other direction, suppose that y 	 x ≤ r′ · 1. We must show that ard(x, y) ≤ r′.
If r′ = 0, then this is clearly true (since then y 	 x = 0, thus x = y, thus ard(x, y) = 0.)

So we may assume that r′ 6= 0. Then 1
2 ·y	

1
2 ·x = 1

2 ·(y	x) ≤ r′

2 ·1, so 1
2 ·y ≤

1
2 ·x> r′

2 ·1,
which implies ard(x, y) ≤ r′, by (3.1).

Proposition 3.3. Let E be an ω-complete effect module. Then:

(1) E is Archimedean;
(2) E is metrically complete for the above Archimedean distance function ard;
(3) for each ascending sequence e1 ≤ e2 ≤ e3 ≤ · · · which is Cauchy, one has

∨
en = lim en.

Proof. (1) Assume 1
2 · x ≤

1
2 · y > 1

2n · 1 for all n ≥ 1. We need to prove x ≤ y. Recall that
the partial addition and scalar multiplication preserve all ω-joins, by our definition of
ω-completeness. So since

∧
n

1
2n = 0, we compute

1
2 · y = 1

2 · y >
∧
n

1
2n · 1 =

∧
n

1
2 · y > 1

2n · 1 ≥
1
2 · x.

Thus x = 1
2 · x> 1

2 · x ≤
1
2 · y > 1

2 · y = y.
(2) We use an auxiliary result that we will prove in a moment:

assume that for each sequence a1, a2, . . . ∈ E for which
∑

n ‖an‖ ≤ 1,

the sums bN := >n≤N an converge;

then E is complete.

(∗)

We first remark that the sums bN := >n≤Nan exists, as can be seen using induc-
tion. Indeed, if bN ≡ >n≤N an exists, then so does (>n≤N an) > aN+1, because

since
∑

n ‖an‖ ≤ 1, we have
∑

n≤N ‖an‖ ≤ ‖aN+1‖⊥ ≡ 1 − ‖aN+1‖, and thus, using

Lemma 3.2(3), >n≤N an ≤>n≤N ‖an‖ · 1 =
(∑

n≤N ‖an‖
)
· 1 ≤ ‖aN+1‖⊥ · 1 ≤ a⊥N+1.

We start by proving that E is complete using statement (∗). Let x1, x2, . . . ∈ E be a
Cauchy sequence; we need to prove that it converges, given the assumption in (∗). We
replace x1, x2, . . . by 1

2 · x1,
1
2 · x2, . . . so that we may assume that xn ≤ 1

2 · 1 for all n,

because if ( 1
2 · xn )n converges, then so does (xn)n, and since x1, x2, . . . is Cauchy, so is

1
2 · x1,

1
2 · x2, · · · . Similarly, by replacing (xn)n by an appropriate subsequence we may

assume that ard(xm, xn) < (1
2)n for all m ≥ n. In particular, ard(xn+1, xn) < (1

2)n+1,
which implies, by the definition of ard, that

1
2 · xn ≤

1
2 · xn+1 > 1

2(1
2)n+1 · 1 and 1

2 · xn+1 ≤ 1
2 · xn > 1

2(1
2)n+1 · 1.

Since xn ≤ 1
2 · 1 and xn+1 ≤ 1

2 · 1, this implies:

xn ≤ xn+1 > (1
2)n+1 · 1 and xn+1 ≤ xn > (1

2)n+1 · 1.
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We then have:

x1 ≤ x2 > (1
2)2 · 1 ≤ x3 > (1

2)3 · 1 > (1
2)2 · 1

≤ · · ·
≤ xn+1 > (1

2)n+1 · 1 > · · ·> (1
2)2 · 1

= xn+1 > (1
2 − (1

2)n+1) · 1.

The trick is to consider the elements an := (xn+1 > (1
2)n+1 · 1)	 xn. We check that

these an satisfy the requirement in (∗):

an = (xn+1 > (1
2)n+1 · 1)	 xn ≤ (xn > (1

2)n+1 · 1 > (1
2)n+1 · 1)	 xn = (1

2)n · 1.

Thus we have ‖an‖ ≤ (1
2)n (by Lemma 3.2(3)), and so

∑
n ‖an‖ ≤ 1. We may now

additionally assume that the sums bN := >n≤N an converge. These sums can be
re-organised as:

bN = >n≤N an

=
(
(xN+1 > (1

2)N+1 · 1)	 xN
)

>
(
(xN > (1

2)N ) · 1	 xN−1

)
> · · ·

>
(
(x2 > (1

2)2) · 1	 x1

)
=
(
xN+1 > (1

2)N+1 · 1 > (1
2)N · 1 > · · ·> (1

2)2 · 1
)
	 x1

=
(
xN+1 > (1

2 − (1
2)N+1) · 1

)
	 x1.

We claim that we can now also show that the sequence of xN converges, since:

xN+1 = (bN > x1)	 (1
2 − (1

2)N+1) · 1.

Indeed, the right-hand-side converges, as N goes to infinity, by Lemma 3.2(4).
We will now prove (∗). So let a1, a2, . . . ∈ E for which s :=

∑
n ‖an‖ ≤ 1 and sums

bN := >n≤N an exist. These bN form an ascending chain, so by ω-completeness of E,

the suppremum b :=
∨
N bN exists. We are done if we can show that b is the limit of the

bN . For M ≤ N we have:

bN 	 bM = aN > · · ·> aM+1 ≤ ‖aN‖ · 1 > · · ·> ‖aM+1‖ · 1
=
(
‖aN‖+ · · ·+ ‖aM+1‖

)
· 1.

This means:

b	 bM =
(∨

N bN
)
	 bM

=
(∨

N≥M bN
)
	 bM

=
∨
N≥M bN 	 bM by Lemma 3.2 (1i)

≤
∨
N≥M

(
‖aN‖+ · · ·+ ‖aM+1‖

)
· 1

=
(∨

N≥M ‖aN‖+ · · ·+ ‖aM+1‖
)
· 1

=
(
s− (‖aM‖+ · · ·+ ‖a1‖)

)
· 1, where, recall, s :=

∑
n ‖an‖ ∈ [0, 1].

The latter scalar becomes arbitrarily small as M goes to infinity. This means that
ard(b, bM ) can be made arbitrarily small (see Lemma 3.2(3).) Hence limM bM = b, as
required.
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(3) Let e1 ≤ e2 ≤ · · · be a Cauchy sequence and let ε > 0. We can find an N ∈ N such that
ard(en, em) < ε for all n,m ≥ N . For m ≥ N we have em ≤

∨
n en, so that:

(
∨
n en)	 em = (

∨
n≥m en)	 em

=
∨
n≥m(en 	 em) by Lemma 3.2 (1i)

≤
∨
n≥m ard(en, em) · 1 by Lemma 3.2 (3)

=
(∨

n≥m ard(en, em)
)
· 1

≤ ε · 1.

Lemma 3.2 (1f) gives
∨
n en ≤ em > ε · 1, and in particular 1

2 · (
∨
n en) ≤ 1

2 · em > ε
2 · 1.

Hence ard(
∨
n en, em) ≤ ε, so that limm em =

∨
n en.

With this information about distances and joins and their relation in effect modules we
return to our main examples from Lemma 3.1. We describe the Archimedean metrics in these
cases in more detail, and discover that we can describe them also as ‘validity’ metrics, but
in dual form: here they involve joins over states, and not over predicates like in Section 2.

Proposition 3.4. (1) Let X be an arbitrary set. The Archimedean metric ard induced on
the effect module [0, 1]X of fuzzy predicates on X is the supremum metric (2.3), as
observed in [22, 23]. But this metric can alternatively be described via validities, as (in
the last equation) in:

ard(p, q) = spd(p, q)
(2.3)
=

∨
x∈X

∣∣p(x)− q(x)
∣∣ =

∨
ω∈D(X)

∣∣ω |= p− ω |= q
∣∣.

(2) Let A be a von Neumann algebra. The Archimedean metric ard on the effect module
[0, 1]A of effects of A is the distance induced by the norm ‖ − ‖ of A . Moreover, this
distance can be described as on the right below.

ard(e, d) =
∥∥ e− d∥∥ =

∨
ω : A→C

∣∣ω |= e− ω |= d
∣∣.

Proof. (1) Let p, q ∈ [0, 1]X . We abbreviate s :=
∨
x |p(x)−q(x)| and t :=

∨
ω |ω |= p−ω |= q|.

First note that for x ∈ X the unit (or ‘Dirac’) distribution η(x) = 1|x〉 satisfies
η(x) |= p = p(x). This yields s ≤ t. The converse inequality t ≤ s follows from:

t =
∨
ω

∣∣ω |= p− ω |= q
∣∣ =

∨
ω

∣∣ ∑
x ω(x) · p(x)−

∑
x ω(x) · q(x)

∣∣
≤
∨
ω

∑
x ω(x) ·

∣∣p(x)− q(x)
∣∣

≤
∨
ω

∑
x ω(x) · s

=
∨
ω(
∑

x ω(x)) · s
= s.

(2) From [29, Cor. 4.3.10] we see that for a self-adjoint element a ∈ A we have ‖a‖ =∨
ω |ω(a)|, where ω ranges over (normal) states A → C. Thus:

ard(e, d) =
∥∥ e− d∥∥ =

∨
ω

∣∣ω(e− d)
∣∣

=
∨
ω

∣∣ω(e)− ω(d)
∣∣ =

∨
ω

∣∣ω |= e− ω |= d
∣∣.
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4. State-and-effect triangles

In this section the results from the two previous sections are combined. This will happen via
the adjunction EModop � Conv between effect modules and convex sets from [15]. This
adjunction is restricted by imposing completeness requirements on both sides. Then it is
shown how our standard examples give rise to commuting state-and-effect triangles with full
and faithful state and predicate functors.

Recall from Section 2 that we write ConvMet for the category of convex metric spaces,
and ConvCMet for the subcategory of convex complete metric spaces.

Lemma 4.1. The adjunction from [15] on the left below restricts to the adjunction on the
right.

EModop
,,

> Convmm DcEModop
--

> ConvCMetmm
(4.1)

All functors are given by ‘homming into [0, 1]’.

Proof. The proof boils down to two points:

(1) For a directed complete effect module E, the convex set DcEMod
(
E, [0, 1]

)
is a (convex)

complete metric space.
(2) For a convex complete metric space X, the effect module ConvCMet

(
X, [0, 1]

)
is

directed complete.

As to point (1), let E be a directed complete effect module. The homset DcEMod(E, [0, 1])
carries the supremum metric (2.3). This metric is complete with pointwise limits:
(limhn)(e) = limhn(e). It is easy to see that such a limit map limhn preserves sums
> and scalar multiplication. Hence it is a map of effect modules, and thus automatically a
non-expansive (and continuous) function. In order to see that it is also Scott-continuous,
let (ei) be directed collection of elements in E. Writing h = limhn, with each hn Scott-
continuous, we have to prove h(

∨
ei) =

∨
h(ei). This works as follows. For each n and j we

have:∣∣h(
∨
i ei)−

∨
i h(ei)

∣∣ ≤ ∣∣h(
∨
i ei)− hn(

∨
i ei)

∣∣+
∣∣∨

i hn(ei)− hn(ej)
∣∣

+
∣∣hn(ej)− h(ej)

∣∣+
∣∣h(ej)−

∨
i h(ei)

∣∣
≤ spd(h, hn) +

∣∣∨
i hn(ei)− hn(ej)

∣∣+ spd(h, hn) +
∣∣h(ej)−

∨
i h(ei)

∣∣.
By choosing n suitably large, the two spd distances can be made arbitrarily small. Having
fixed n, the term |

∨
i hn(ei)− hn(ej)| can be made arbitrary small too by choosing j suitably

large, since the directed net (hn(ei) )i in [0, 1] converges to its supremum
∨
i hn(ei). Since the

final term |h(ej)−
∨
i h(ei)| vanishes too as j increases we see that |h(

∨
i ei)−

∨
i h(ei)| = 0,

and so h(
∨
i ei) =

∨
i h(ei).

The homset DcEMod
(
E, [0, 1]

)
also has a convex structure, given by the map:

D
(
DcEMod

(
E, [0, 1]

)) α // DcEMod
(
E, [0, 1]

)
with α(ω)(e) =

∑
h ω(h) · h(e),

where h ranges over DcEMod
(
E, [0, 1]

)
. Notice that each element e ∈ E gives rise to a

non-expansive predicate eve : DcEMod(E, [0, 1])→ [0, 1] via eve(h) = h(e). It satisfies for
ω ∈ D

(
DcEMod(E, [0, 1])

)
,

ω |= eve =
∑

h ω(h) · eve(h) =
∑

h ω(h) · h(e) = α(ω)(e).
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Now we can show that the algebra map α on DcEMod
(
E, [0, 1]

)
is non-expansive, using

the Kantorovich metric (2.4) on distributions:

spd
(
α(ω1), α(ω2)

) (2.3)
=
∨
e

∣∣α(ω1)(e)− α(ω2)(e)
∣∣ =

∨
e

∣∣ω1 |= eve − ω2 |= eve
∣∣

≤
∨
p

∣∣ω1 |= p− ω2 |= p
∣∣

(2.4)
= kvd(ω1, ω2).

Each map f : E → D in EMod gives an affine map (−) ◦ f : Hom(D, [0, 1])→ Hom(E, [0, 1])
in Conv; it is easy to show that it is also non-expansive.

For point (2) we have to prove that for each convex complete metric space X the set
ConvCMet(X, [0, 1]) of affine non-expansive maps is a directed complete effect module.
We concentrate on directed completeness, since the effect module structure is standard,
see [15]. Hence let (pi) be a directed collection of non-expansive affine maps pi : X → [0, 1].
We take p =

∨
i pi pointwise. This map is affine since affine sums are by definition finite, so

that they commute with directed joins:

p(
∑

n rn|xn 〉) =
(∨

i pi
)
(
∑

n rn|xn 〉) =
∨
i pi(

∑
n rn|xn 〉)

=
∨
i

∑
n rn · pi(xn)

=
∑

n rn ·
(∨

i pi(xn)
)

=
∑

n rn · p(xn).

It is not hard to see that p is non-expansive.

The next two results summarise our main concrete findings.

Proposition 4.2. The Kleisli subcategory K̀ fin(D), with finite sets only, of the distribution
monad D on Sets gives rise to a triangle as below, in which the two up-going functors are full
and faithful and make the two corresponding triangles commute up-to natural isomorphism.

DcEModop
--

> ConvCMetmm

K̀ fin(D)
Hom(−,2)=Pred

ee

Stat=Hom(1,−)

88

We briefly explain the functor Pred = Hom(−, 2) : K̀ fin(D)→ EModop. Since D(2) ∼=
[0, 1] we get Pred(X) = Hom(X, 2) = Sets(X,D(2)) = Sets(X, [0, 1]) = [0, 1]X .

Proof. We use the full and faithful predicate functor Pred = [0, 1](−) : K̀ fin(D) →
DcEModop from Lemma 3.1 (1). The states functor Stat : K̀ fin(D) → Conv = EM(D)
is the full and faithful Kleisli extension functor, restricted to finite sets. The functor
restricts to metric spaces ConvMet ↪→ Conv by Lemma 2.6 and to complete spaces
ConvCMet ↪→ ConvMet by Lemma 2.4. We need to check that the two triangles com-
mute.

In one direction we have, for a finite set X,(
DcEMod

(
−, [0, 1]

)
◦ Pred

)
(X) = DcEMod

(
[0, 1]X , [0, 1])

∼= K̀ fin(D)
(
1, X

)
since Pred is full & faithful

∼= D(X)

= Stat(X)
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In the other direction:(
ConvCMet

(
−, [0, 1]

)
◦ Stat

)
(X) = ConvMet

(
D(X), [0, 1]

)
∼= Met(X, [0, 1]) using X with discrete metric

= Sets(X, [0, 1])

= Pred(X).

The description, in the above triangle, of the predicate and state functors via homsets
Hom(−, 2) and Hom(1,−) comes from effectus theory [17, 10]. It also applies to von Neumann
algebras, when we use their category in opposite form, as vNAop. For instance, the initial
object in vNA is the algebra C of complex numbers; it forms the final object 1 in vNAop.
Thus, a map 1→ A in vNAop is a state A → C, as we have described before. In a similar
way one can check that maps A → 2 = 1 + 1 in vNAop correspond to effects in the unit
interval [0, 1]A , see below, or [17] for details.

Proposition 4.3. The opposite of the category vNA of von Neumann algebras fits in a
triangle as below, in which the predicate and state functors are full and faithful and make
the triangles commute up-to natural isomorphism.

DcEModop
--

> ConvCMetmm

vNAop
Hom(−,2)=Pred

ff

Stat=Hom(1,−)

88

The predicate functor Pred = Hom(−, 2) : vNAop → EModop can be described via
maps into 2 in the following way. The object 2 = 1 + 1 is formed in vNAop. Hence it is
0× 0 in vNA, where the initial object 0 is the algebra C of complex numbers. One then
needs to check that Hom(C2,A ) ∼= [0, 1]A for a von Neumann algebra A via f 7→ f(1, 0),
which is easy, and left to the reader. In a similar way the maps in Hom(1,A ) are the maps
of von Neumann algebras A → C. These are the states, as used before.

Proof. In Lemma 3.1 (2) we have seen that the predicate functor Pred = [0, 1](−) : vNAop →
DcEModop is full and faithful. For convenience we abbreviate F = ConvCMet(−, [0, 1])
and G = DcEMod(−, [0, 1]) so that F a G at the top of the above triangle.

Starting from the predicate functor Pred the above triangle commutes, since Pred is
full and faithful:

GPred(A ) = DcEMod
(

Pred(A ), [0, 1]
)

= DcEMod
(

Pred(A ),Pred(C)
)

∼= vNA
(
A ,C

)
= Stat(A ).

Commutation of the second triangle is less obvious. It relies on some facts concerning
the linear combinations of normal states on A , which form a closed linear subspace A∗
of the continuous dual A ∗ = {f : A → C | f is bounded and linear} of A (see e.g. A90,
A91, and A92 of [1].) This “pre-dual” A∗ of A determines the order and norm of A
in the sense that the map a 7→ â : A → (A∗)∗ which sends a ∈ A to the bounded
functional â : A∗ → C given by â(ϕ) = ϕ(a) is a linear isomorphism A → (A∗)∗ that
preserves (and reflects) both the norm and the order (see A94 of [1]). Restricted to effects,
we get a natural isomorphism Pred = [0, 1](−) ⇒ [0, 1]((−)∗)∗ . Since a bounded linear
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functional f : A∗ → C on the pre-dual A∗ of a von Neumann algebra A is completely
determined by its action on the states of A , and this action is affine, contractive and maps
into [0, 1] when f is from [0, 1](A∗)∗ , restricting such f to states gives a natural isomorphism
[0, 1]((−)∗)∗ → ConvCMet(Stat(−), [0, 1]). Composing this with the natural isomorphism
mentioned before we get a natural isomorphism Pred⇒ FStat.

With these isomorphisms GPred ∼= Stat and Pred ∼= FStat in place we can show that
the functor Stat : vNAop → ConvCMet is full and faithful, since for two von Neumann
algebras A and B we have:

ConvCMet
(

Stat(A ),Stat(B)
)
∼= ConvCMet

(
Stat(A ),GPred(B)

)
∼= DcEModop

(
FStat(A ),Pred(B)

)
∼= DcEModop

(
Pred(A ),Pred(B)

)
∼= vNAop

(
A ,B

)
.

5. Concluding remarks

In this paper we have given a systematic unifying description of metrics on states and
predicates from the perspective of the duality between state transformers and predicate
transformers, notably in state-and-effect triangles. This unifying perspective is most promi-
nent in the use of ‘validity’ metrics, both on states (via joins over predicates) and on
predicates (via joins over states).

We have concentrated on the discrete version of classical probability and on quantum
probability. What about continuous classical probability? Most of it has already been
done in [8], see also [11], albeit in slightly different form, using ω-complete ordered cones
instead of directed complete effect modules, together with a ‘cone duality’ result of the
form Hom(L+

p (X,µ),R≥0) ∼= L+
q (X,µ) when 1

p + 1
q = 1; here, X is a measurable space with

measure µ. In the language of triangles, this duality corresponds to commutation of the
triangles, as in the above Propositions 4.2 and 4.3. In a next step, as in [11], a category of
‘kernels’ can be formed, as comma category (1 ↓ B) of the base category B that we use in
triangles. For instance, the comma category (1 ↓ K̀ (D)) contains distributions as objects,
and distribution preserving maps between them. They can be used to define Bayesian
inversion in the form of a dagger functor on such a comma category, see notable [11] —
and [9] for a wider perspective on inversion and disintegration.
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Appendix A. Missing proofs from Section 2

Proof of Proposition 2.3. Let ω1, ω2 ∈ D(X) be two discrete probability distributions on the
same set X. Recall from (2.1) that by definition: tvd

(
ω1, ω2

)
= 1

2

∑
x∈X

∣∣ω1(x) − ω2(x)
∣∣.

We will prove the two inequalities labeled (a) and (b) in:

tvd
(
ω1, ω2

) (a)

≤ max
U⊆X

ω1 |= 1U − ω2 |= 1U ≤
∨

p∈[0,1]X

∣∣∣ω1 |= p− ω2 |= p
∣∣∣ (b)

≤ tvd
(
ω1, ω2

)
.

This proves Proposition 2.3 since the inequality in the middle is trivial.
We start with some preparatory definitions. Let U ⊆ X be an arbitrary subset. Recall

that we write ωi(U) =
∑

x∈U ωi(x) = (ω |= 1U ). We partition U in three disjoint parts, and
take the relevant sums:

U> = {x ∈ U | ω1(x) > ω2(x)}
U= = {x ∈ U | ω1(x) = ω2(x)}
U< = {x ∈ U | ω1(x) < ω2(x)}

{
U↑ = ω1(U>)− ω2(U>) ≥ 0

U↓ = ω2(U<)− ω1(U<) ≥ 0.

We use this notation in particular for U = X. In that case we can use:

1 = ω1(X) = ω1(X>) + ω1(X=) + ω1(X<)

1 = ω2(X) = ω2(X>) + ω2(X=) + ω2(X<)

Hence by subtraction we obtain, since ω1(X=) = ω2(X=),

0 =
(
ω1(X>)− ω2(X>)

)
+
(
ω1(X<)− ω2(X<)

)
That is,

X↑ = ω1(X>)− ω2(X>) = ω2(X<)− ω1(X<) = X↓ .

https://arxiv.org/abs/1804.02203
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As a result:

tvd
(
ω1, ω2

)
= 1

2

∑
x∈X

∣∣ω1(x)− ω2(x)
∣∣

= 1
2

(∑
x∈X>

(
ω1(x)− ω2(x)

)
+
∑

x∈X<

(
ω2(x)− ω1(x)

))
= 1

2

((
ω1(X>)− ω2(X>)

)
+
(
ω2(X<)− ω1(X<)

))
= 1

2

(
X↑ + X↓

)
= X↑

(A.1)

We have prepared the ground for proving the above inequalities (a) and (b).

(a) We will see that the above maximum is actually reached for the subset U = X>, first of
all because:

tvd
(
ω1, ω2

) (A.1)
= X↑= ω1(X>)− ω2(X>) = ω1 |= 1X> − ω2 |= 1X>

≤ max
U⊆X

ω1 |= 1U − ω2 |= 1U .

(b) Let p ∈ [0, 1]X be an arbitrary predicate. We write 1U & p for the pointwise product
predicate, with:

(
1U & p

)
= 1U (x) · p(x), which is p(x) if x ∈ U and 0 otherwise. Then:∣∣ω1 |= p− ω2 |= p

∣∣
=

∣∣∣(ω1 |= 1X> & p + ω1 |= 1X= & p + ω1 |= 1X< & p
)

−
(
ω2 |= 1X> & p + ω2 |= 1X= & p + ω2 |= 1X< & p

)∣∣∣
=

∣∣∣(ω1 |= 1X> & p − ω2 |= 1X> & p
)
−
(
ω2 |= 1X< & p − ω1 |= 1X< & p

)∣∣∣
=



(
ω1 |= 1X> & p − ω2 |= 1X> & p

)
−
(
ω2 |= 1X< & p − ω1 |= 1X< & p

)
if
(
ω1 |= 1X> & p − ω2 |= 1X> & p

) (∗)
≥
(
ω2 |= 1X< & p − ω1 |= 1X< & p

)(
ω2 |= 1X< & p − ω1 |= 1X< & p

)
−
(
ω1 |= 1X> & p − ω2 |= 1X> & p

)
otherwise

≤

{
ω1 |= 1X> & p − ω2 |= 1X> & p if (∗)
ω2 |= 1X< & p − ω1 |= 1X< & p otherwise

=

{∑
x∈X>

(ω1(x)− ω2(x)) · p(x) if (∗)∑
x∈X<

(ω2(x)− ω1(x)) · p(x) otherwise

≤

{∑
x∈X>

ω1(x)− ω2(x) if (∗)∑
x∈X<

ω2(x)− ω1(x) otherwise

=

{
X↑ if (∗)
X↓ = X↑ otherwise

= X↑
(A.1)
= tvd

(
ω1, ω2

)
.

Proof of Proposition 2.11. Let %1, %2 be two states (density operators) of a Hilbert space
H . The trick is to split the trace-class operator % := %1 − %2 into its positive and negative
parts: we have % = %+ − %−, where %+, %− : H →H are positive operators with %+%− = 0
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and |%| = %+ +%−, see [2, Cor 2.15]. Note that since %+, %− ≤ |%| the operators %+ and %− are
trace-class as well. The key is to note that tr(%+)−tr(%−) = tr(%) = tr(%1)−tr(%2) = 1−1 = 0,
so that tr(%+) = tr(%−). Hence:

trd(%1, %2)
(2.6)
= 1

2tr(|%|) = 1
2

(
tr(%+) + tr(%−)

)
= tr(%+) = tr(%−).

Now, given an effect p on H we have %1 |= p − %2 |= p = tr(%1 p) − tr(%2 p) =
tr(% p) = tr(%+ p) − tr(%− p) ≤ tr(%+ p) ≤ tr(%+) = trd(%1, %2), using p ≤ id. (Here
we used that tr(%− p) ≥ 0 by A87 of [1], because %− ≥ 0 and p ≥ 0.) Since similarly
%2 |= p− %1 |= p ≤ trd(%1, %2), we get:∨

p∈Ef(H )

∣∣ %2 |= p− %1 |= p
∣∣ ≤ trd(%1, %2).

The only thing that remains to be shown is that there is a projection s on H with %1 |=
s− %2 |= s = trd(%1, %2). It turns out that we need to pick the least projection s in B(H )
with %+s = %+ (which exists, see e.g. [2, Defn 2.107]). If t denotes the least projection with
%−t = %− then one can prove that ts = 0 (see e.g. 59IV1 of [40]), so that %−s = %−ts = 0.
Whence %1 |= s − %2 |= s = tr(%1s) − tr(%2s) = tr(%s) = tr(%+s) − tr(%−s) = tr(%+) =
trd(%1, %2).

Proof of Proposition 2.14. Let %1, %2 : A → C be two (normal) states of a von Neumann
algebra A and let e ∈ [0, 1]A be an arbitrary effect. If we bluntly apply the definition of the
operator norm we only get |%1 |= e− %2 |= e| = |(%1 − %2)(e)| ≤ ‖%1−%2‖op·‖e‖ ≤ ‖%1−%2‖op.
The factor “1

2” from Proposition 2.14 is then missing, so a more subtle approach is called
for. Writing % := %1 − %2 there is by [29, Thm 7.4.7] a sharp predicate s ∈ [0, 1]A such that
both %+ := %(s( · )s) and %− := −%(s⊥( · )s⊥) are positive and normal, and, moreover,

% = %+ − %− and ‖%‖op = ‖%+‖op + ‖%−‖op.

Further, by [29, Thm 4.3.2] we have ‖%1‖op = %1(1) and ‖%2‖op = %2(1). Then since %1

and %2 are states, we have %(1) = %1(1)− %2(1) = 1− 1 = 0, so %+(1)− %−(1) = %(1) = 0,
and thus ‖%+‖op = %+(1) = %−(1) = ‖%−‖op. But then, since ‖%‖op = ‖%+‖op + ‖%−‖op, we
get:

‖%+‖op = ‖%−‖op = 1
2‖%1 − %2‖op.

Now, given e ∈ [0, 1]A we have %1 |= e − %2 |= e = %(e) ≤ %+(e) ≤ %+(1) ≤ ‖%+‖op =
1
2‖%1 − %2‖op, and so

∨
e∈[0,1]A

%1 |= e− %2 |= e ≤ 1
2‖%1 − %2‖op. By a similar reasoning, we

get
∨
e∈[0,1]A

%2 |= e− %1 |= e ≤ 1
2‖%1 − %2‖op, and so:∨

e∈[0,1]A

∣∣ %1 |= e− %1 |= e
∣∣ ≤ 1

2‖%1 − %2‖op.

The only real thing left to prove is that 1
2‖%1 − %2‖op = %1(s) − %2(s), for the above

sharp predicate s, because all the equalities in Proposition 2.14 follow trivially from it.
Since %+ = %(s( · )s) we have %+(s) = %(s) = %+(1) = ‖%+‖op = 1

2‖%1 − %2‖op; and

since %− = −%(s⊥( · )s⊥) we have %−(s) = −%(s⊥ss⊥) = −%(0) = 0. Whence %1(s)− %2(s) =
%(s) = %+(s)− %−(s) = %+(s) = 1

2‖%1 − %2‖op.
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