
Logical Methods in Computer Science
Volume 16, Issue 1, 2020, pp. 25:1–25:26
https://lmcs.episciences.org/

Submitted Feb. 14, 2018
Published Feb. 25, 2020

FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH

BOUNDED EXPANSION

WOJCIECH KAZANA AND LUC SEGOUFIN

INRIA and ENS Cachan

Abstract. We consider the evaluation of first-order queries over classes of databases
with bounded expansion. The notion of bounded expansion is fairly broad and generalizes
bounded degree, bounded treewidth and exclusion of at least one minor. It was known that
over a class of databases with bounded expansion, first-order sentences could be evaluated
in time linear in the size of the database. We give a different proof of this result. Moreover,
we show that answers to first-order queries can be enumerated with constant delay after a
linear time preprocessing. We also show that counting the number of answers to a query
can be done in time linear in the size of the database.

1. Introduction

Query evaluation is certainly the most important problem in databases. Given a query q
and a database D it computes the set q(D) of all tuples in the output of q on D. However,
the set q(D) may be larger than the database itself as it can have a size of the form nl where
n is the size of the database and l the arity of the query. Therefore, computing entirely q(D)
may require too many of the available resources.

There are many solutions to overcome this problem. For instance one could imagine that
a small subset of q(D) can be quickly computed and that this subset will be enough for the
user needs. Typically one could imagine computing the top-` most relevant answers relative
to some ranking function or to provide a sampling of q(D) relative to some distribution. One
could also imagine computing only the number of solutions |q(D)| or providing an efficient
test for whether a given tuple belongs to q(D) or not.

In this paper we consider a scenario consisting in enumerating q(D) with constant
delay. Intuitively, this means that there is a two-phase algorithm working as follows: a
preprocessing phase that works in time linear in the size of the database, followed by an
enumeration phase outputting one by one all the elements of q(D) with a constant delay
between any two consecutive outputs. In particular, the first answer is output after a time
linear in the size of the database and once the enumeration starts a new answer is being
output regularly at a speed independent from the size of the database. Altogether, the set
q(D) is entirely computed in time f(q)(n+ |q(D)|) for some function f depending only on q
and not on D.

Key words and phrases: enumeration, first-order, constant delay, bounded expansion.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(1:25)2020
c© W. Kazana and L. Segoufin
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

25:2 W. Kazana and L. Segoufin Vol. 16:1

One could also view a constant delay enumeration algorithm as follows. The preprocessing
phase computes in linear time an index structure representing the set q(D) in a compact
way (of size linear in n). The enumeration algorithm is then a streaming decompression
algorithm.

One could also require that the enumeration phase outputs the answers in some given
order. Here we will consider the lexicographical order based on a linear order on the domain
of the database.

There are many problems related to enumeration. The main one is the model checking
problem. This is the case when the query is boolean, i.e., outputs only true or false. In this
case a constant delay enumeration algorithm is a Fixed Parameter Linear (FPL) algorithm
for the model checking problem of q, i.e., it works in time f(q)n. This is a rather strong
constraint as even the model checking problem for conjunctive queries is not FPL (assuming
some hypothesis in parametrized complexity) [PY99]. Hence, in order to obtain constant
delay enumeration algorithms, we need to make restrictions on the queries and/or on the
databases. Here we consider first-order (FO) queries over classes of structures having
“bounded expansion”.

The notion of class of graphs with bounded expansion was introduced by Nešetřil and
Ossona de Mendez in [NdM08a]. Its precise definition can be found in Section 2.2. At this
point it is only useful to know that it contains the class of graphs of bounded degree, the
class of graphs of bounded treewidth, the class of planar graphs, and any class of graphs
excluding at least one minor. This notion is generalized to classes of structures via their
Gaifman graphs or adjacency graphs.

For the class of structures with bounded degree and FO queries the model checking
problem is in FPL [See96] and there also are constant delay enumeration algorithms [DG07,
KS11]. In the case of structures of bounded treewidth and FO queries (actually even MSO
queries with first-order free variables) the model checking problem is also in FPL [Cou90] and
there are constant delay enumeration algorithms [Bag06, KS13b]. For classes of structures
with bounded expansion the model checking problem for FO queries was recently shown to
be in FPL [DKT13, GK11].

Our results can be summarized as follows. For FO queries and any class of
structures with bounded expansion:

• we provide a new proof that the model checking problem can be solved in FPL,
• we show that the set of solutions to a query can be enumerated with constant delay,
• we show that computing the number of solutions can be done in FPL,
• we show that, after a preprocessing in time linear in the size of the database, one can test

on input ā whether ā ∈ q(D) in constant time.

Concerning model checking, our method uses a different technique than the previous ones.
There are several characterizations of classes having bounded expansion [NdM08a]. Among
them we find characterizations via “low tree depth coloring” and “transitive fraternal augmen-
tations”. The previous methods were based on the low tree depth coloring characterization
while ours is based on transitive fraternal augmentations. We show that it is enough to
consider quantifier-free queries in a given normal form. The normal form is at the core of
our algorithms for constant delay enumeration and for counting the number of solutions.
As for the previous proofs, we exhibit a quantifier elimination method, also based on our
normal form. Our quantifier elimination method results in a quantifier-free query but over a

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:3

recoloring of a functional representation of a “fraternal and transitive augmentation” of the
initial structure.

Our other algorithms (constant delay enumeration, counting the number of solution or
testing whether a tuple is a solution or not) start by eliminating the quantifiers as for the
model checking algorithm. The quantifier-free case is already non trivial and require the
design and the computation of new index structures. For instance consider the simple query
R(x, y). Given a pair (a, b) we would like to test whether (a, b) is a tuple of the database in
constant time. In general, index structures can do this with log n time. We will see that we
can do constant time, assuming bounded expansion.

In the presence of a linear order on the domain of the database, our constant delay
algorithm can output the answers in the corresponding lexicographical order.

Related work. We make use of a functional representation of the initial structures. Without
this functional representations we would not be able to eliminate all quantifiers. Indeed,
with this functional representation we can talk of a node at distance 2 from x using the
quantifier-free term f(f(x)), avoiding the existential quantification of the middle point. This
idea was already taken in [DG07] for eliminating first-order quantifiers over structures of
bounded degree. Our approach differs from theirs in the fact that in the bounded degree
case the functions can be assumed to be permutations (in particular they are invertible)
while this is no longer true in our setting, complicating significantly the combinatorics.

Once we have a quantifier-free query, constant delay enumeration could also be obtained
using the characterization of bounded expansion based on low tree depth colorings. Indeed,
using this characterization one can easily show that enumerating a quantifier-free query over
structures of bounded expansion amounts in enumerating an MSO query over structures of
bounded tree-width and for those known algorithms exist [Bag06, KS13b]. However, the
known enumeration algorithms of MSO over structures of bounded treewidth are rather
complicated while our direct approach is fairly simple. Actually, our proof shows that
constant delay enumeration of FO queries over structures of bounded treewidth can be
done using simpler algorithms than for MSO queries. Moreover, it gives a constant delay
algorithm outputting the solutions in lexicographical order. No such algorithms were known
for FO queries over structures of bounded treewidth. In the bounded degree case, both
enumeration algorithms of [DG07, KS11] output their solutions in lexicographical order.

Similarly, counting the number of solutions of a quantifier-free query over structures
of bounded expansion reduces to counting the number of solutions of a MSO query over
structures of bounded treewidth. This latter problem is known to be in FPL [ALS91]. We
give here a direct and simple proof of this fact for FO queries over structures of bounded
expansion.

Our main result is about enumeration of first-order queries. We make use of a quantifier
elimination method reducing the general case to the quantifier-free case. As a special
we obtain a new proof of the linear time model checking algorithm, already obtained
in [DKT13, GK11]. Both these results were also obtained using (implicitly or explicitly)
a quantifier elimination method. As our enumeration of quantifier-free query also needs a
specific normal form, we could not reuse the results of [DKT13, GK11]. Hence we came up
with our own method which differ in the technical details if not in the main ideas.

In [DKT13] it is also claimed that the index structure used for quantifier elimination
can be updated in constant time. It then tempting to think that enumeration could be
achieved by adding each newly derived output tuple to the index structure and obtain the

25:4 W. Kazana and L. Segoufin Vol. 16:1

next output in constant time using the updated index. This idea does not work because
constant update time can only be achieved if the inserted tuple does not modify too much
the structure of the underlying graph. In particular the new structure must stay within
the class under investigation. This is typically not the case with first-order query that may
produce very dense results.

This paper is the journal version of [KS13a]. All proofs are now detailed and the whole
story has been simplified a bit, without changing the key ideas. Since the publication
of the conference version, constant delay enumeration has been obtained for first-order
queries over any class of structures having local bounded expansion [SV17] or being nowhere
dense [SSV18] These two classes of structures generalize bounded expansion. However the
preprocessing time that has been achieved for these two classes is not linear but pseudo-linear
(i.e for any ε there is an algorithm working in time O(n1+ε)) and the enumeration algorithms
are significantly more complicated.

2. Preliminaries

In this paper a database is a finite relational structure. A relational signature is a tuple
σ = (R1, . . . , Rl), each Ri being a relation symbol of arity ri. A relational structure over σ
is a tuple D =

(
D,RD

1 , . . . , R
D
l

)
, where D is the domain of D and RD

i is a subset of Dri .

We will often write Ri instead of RD
i when D is clear from the context.

We use a standard notion of size. The size of RD
i , denoted ||RD

i || is the number of tuples
in RD

i multiplied by the arity ri. The size of the domain of D, denoted |D|, is the number
of elements in D. Finally the size of D, denoted by ||D||, is

||D|| = |D|+ ΣRi∈σ||RD
i ||.

By query we mean a formula of first-order logic, FO, built from atomic formulas of
the form x = y or Ri(x1, . . . , xri) for some relation Ri, and closed under the usual Boolean
connectives (¬,∨,∧) and existential and universal quantifications (∃, ∀). We write φ(x̄) to
denote a query whose free variables are x̄, and the number of free variables is called the
arity of the query. A sentence is a query of arity 0. We use the usual semantics, denoted
|=, for first-order. Given a structure D and a query q, an answer to q in D is a tuple ā
of elements of D such that D |= q(ā). We write q(D) for the set of answers to q in D, i.e.
q(D) = {ā | D |= q(ā)}. As usual, |q| denotes the size of q.

Let C be a class of structures. The model checking problem for FO over C is the
computational problem of given first-order sentence q and a database D ∈ C to test whether
D |= q or not.

We now introduce our running examples.

Example A-1. The first query has arity 2 and returns pairs of nodes at distance 2 in a
graph. The query is of the form ∃zE(x, z) ∧ E(z, y).

Testing the existence of a solution to this query can be easily done in time linear in the
size of the database. For instance one can go trough all nodes of the database and check
whether it has non-nill in-degree and out-degree. The degree of each node can be computed
in linear time by going through all edges of the database and incrementing the counters
associated to its endpoints.

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:5

Example B-1. The second query has arity 3 and returns triples (x, y, z) such that y is
connected to x and z via an edge but x is not connected to z. The query is of the form
E(x, y) ∧ E(y, z) ∧ ¬E(x, z).

It is not clear at all how to test the existence of a solution to this query in time linear
in the size of the database. The problem is similar to the one of finding a triangle in a
graph, for which the best know algorithm has complexity even slightly worse than matrix
multiplication [AYZ95]. If the degree of the input structure is bounded by a constant d, we
can test the existence of a solution in linear time by the following algorithm. We first go
through all edges (x, y) of the database and add y to a list associated to x and x to a list
associated to y. It remains now to go through all nodes y of the database, consider all pairs
(x, z) of nodes in the associated list (the number of such pairs is bounded by d2) and then
test whether there is an edge between x and z (by testing whether x is in the list associated
to z).

We aim at generalizing this kind of reasoning to structures with bounded expansion.

Given a query q, we care about “enumerating” q(D) efficiently. Let C be a class of
structures. For a query q(x̄), the enumeration problem of q over C is, given a database
D ∈ C, to output the elements of q(D) one by one with no repetition. The maximum time
between any two consecutive outputs of elements of q(D) is called the delay. The definition
below requires a constant time delay. We formalize these notions in the forthcoming section.

2.1. Model of computation and enumeration. We use Random Access Machines
(RAM) with addition and uniform cost measure as a model of computation. For fur-
ther details on this model and its use in logic see [DG07]. In the sequel we assume that the
input relational structure comes with a linear order on the domain. If not, we use the one
induced by the encoding of the database as a word. Whenever we iterate through all nodes
of the domain, the iteration is with respect to the initial linear order.

We say that the enumeration problem of q over a class C of structures is in the class
CD◦Lin, or equivalently that we can enumerate q over C with constant delay, if it can be
solved by a RAM algorithm which, on input D ∈ C, can be decomposed into two phases:

• a precomputation phase that is performed in time O(||D||),
• an enumeration phase that outputs q(D) with no repetition and a constant delay between

two consecutive outputs. The enumeration phase has full access to the output of the
precomputation phase but can use only a constant total amount of extra memory.

Notice that if we can enumerate q with constant delay, then all answers can be output in time
O(||D||+ |q(D)|) and the first output is computed in time linear in ||D||. In the particular case
of boolean queries, the associated model checking problem must be solvable in time linear
in ||D||. Notice also that the total amount of memory used after computing all answers is
linear in ||D||, while a less restrictive definition requiring only a constant time delay between
any two outputs may yield in a total amount of memory linear in ||D||+ ||q(D)||.

Note that we measure the running time complexity as a function of ||D||. The multiplica-
tive factor will depend on the class C of database under consideration and, more importantly,
on the query q. In our case we will see that the multiplicative factor is non elementary in |q|
and that cannot be avoided, see the discussion in the conclusion section.

We may in addition require that the enumeration phase outputs the answers to q using
the lexicographical order. We then say that we can enumerate q over C with constant delay
in lexicographical order.

25:6 W. Kazana and L. Segoufin Vol. 16:1

Example A-2. Over the class of all graphs, we cannot enumerate pairs of nodes at distance
2 with constant delay unless the Boolean Matrix Multiplication problem can be solved in
quadratic time [BDG07]. However, over the class of graphs of degree d, there is a simple
constant delay enumeration algorithm. During the preprocessing phase, we associate to each
node the list of all its neighbors at distance 2. This can be done in time linear in the size of
the database as in Example B- 1. We then color in blue all nodes having a non empty list
and make sure each blue node points to the next blue node (according to the linear order on
the domain). This also can be done in time linear in the size of the database and concludes
the preprocessing phase. The enumeration phase now goes through all blue nodes x using
the pointer structure and, for each of them, outputs all pairs (x, y) where y is in the list
associated to x.

Example B-2. Over the class of all graphs, the query of this example cannot be enumerated
with constant delay because, as mentioned in Example B- 1, testing whether there is one
solution is already non linear. Over the class of graphs of bounded degree, there is a simple
constant delay enumeration algorithm, similar to the one from Example A- 2.

Note that in general constant delay enumeration algorithms are not closed under any
boolean operations. For instance if q and q′ can be enumerated with constant delay, we
cannot necessarily enumerate q ∨ q′ with constant delay as enumerating one query after the
other would break the “no repetition” requirement. However, if we can enumerate with
constant delay in the lexicographical order, then a simple argument that resembles the
problem of merging two sorted lists shows closure under union:

Lemma 2.1. If both queries q(x̄) and q′(x̄) can be enumerated in lexicographical order with
constant delay then the same is true for q(x̄) ∨ q′(x̄).

Proof. The preprocessing phase consists in the preprocessing phases of the enumeration
algorithms for q and q′.

The enumeration phase keeps two values, the smallest element from q(D) that was
not yet output and similarly the smallest element from q′(D) that was not yet output. It
then outputs the smaller of the two values and replaces it in constant time with the next
element from the appropriate set using the associated enumeration procedure. In case the
elements are equal, the value is output once and both stored values are replaced with their
appropriate successors.

It will follow from our results that the enumeration problem of FO over the class of
structures with “bounded expansion” is in CD◦Lin. The notion of bounded expansion was
defined in [NdM08a] for graphs and then it was generalized to structures via their Gaifman
or Adjacency graphs. We start with defining it for graphs.

2.2. Graphs with bounded expansion and augmentation. By default a graph has no
orientation on its edges and has colors on its vertices. In an oriented graph every edge is an
arrow going from the source vertex to its target. We can view a (oriented or not) graph as a
relational structure G = (V G, EG, PG

1 , . . . , PG
l), where V G is the set of nodes, EG ⊆ V 2 is

the set of edges and, for each 1 ≤ i ≤ l, PG
i is a predicate of arity 1, i.e., a color. We omit

the subscripts when G is clear from the context. In the nonoriented case, E is symmetric
and irreflexive and we denote by {u, v} the edge between u and v. In the oriented case

we denote by (u, v) the edge from u to v. We will use the notation ~G when the graph is

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:7

oriented and G in the nonoriented case. An orientation of a graph G is any graph ~H such

that {u, v} ∈ EG implies (u, v) ∈ E ~H or (v, u) ∈ E ~H. The in-degree of a node v of ~G is the

number of nodes u such that (u, v) ∈ E. We denote by ∆−(~G) the maximum in-degree of

a node of ~G. Among all orientations of a graph G, we choose the following one, which is
computable in time linear in ||G||. It is based on the degeneracy order of the graph. We find
the first node of minimal degree, orient its edges towards it and repeat this inductively in

the induced subgraph obtained by removing this node. The resulting graph, denoted ~G0,
has maximum in-degree which is at most twice the optimal value and that is enough for our
needs.

In [NdM08a] several equivalent definitions of bounded expansion were shown. We present
here only the one we will use, exploiting the notion of “augmentations”.

Let ~G be an oriented graph. A 1-transitive fraternal augmentation of ~G is any graph ~H

with the same vertex set as ~G and the same colors of vertices, including all edges of ~G (with

their orientation) and such that for any three vertices x, y, z of ~G we have the following:

(transitivity): if (x, y) and (y, z) are edges in ~G, then (x, z) is an edge in ~H,

(fraternity): if (x, z) and (y, z) are edges in ~G, then at least one of the edges: (x, y), (y, x)

is in ~H,

(strictness): moreover, if ~H contains an edge that was not present in ~G, then it must have
been added by one of the previous two rules.

Note that the notion of 1-transitive fraternal augmentation is not a deterministic operation.
Although transitivity induces precise edges, fraternity implies nondeterminism and thus
there can possibly be many different 1-transitive fraternal augmentations. We care here
about choosing the orientations of the edges resulting from the fraternity rule in order to
minimize the maximum in-degree.

Following [NdM08b] we fix a deterministic algorithm computing a “good” choice of
orientations of the edges induced by the fraternity property. The precise definition of the
algorithm is not important for us, it only matters here that the algorithm runs in time linear
in the size of the input graph (see Lemma 2.3 below). With this algorithm fixed, we can

now speak of the 1-transitive fraternal augmentation of ~G.

Let ~G0 be an oriented graph. The transitive fraternal augmentation of ~G0 is the

sequence ~G0 ⊆ ~G1 ⊆ ~G2 ⊆ . . . such that for each i ≥ 1 the graph ~Gi+1 is the 1-transitive

fraternal augmentation of ~Gi. We will say that ~Gi is the i-th augmentation of ~G0. Similarly
we denote the transitive fraternal augmentation of a nonoriented graph G by considering

the orientation ~G0 based on the degeneracy order as explained above.

Definition 2.2 [NdM08a]. Let C be a class of graphs. C has bounded expansion if there exists
a function ΓC : N→ R such that for each graph G ∈ C its transitive fraternal augmentation
~G0 ⊆ ~G1 ⊆ ~G2 ⊆ . . . of G is such that for each i ≥ 0 we have ∆−(~Gi) ≤ ΓC(i).

Consider for instance a graph of degree d. Notice that the 1-transitive fraternal
augmentation introduces an edge between nodes that were at distance at most 2 in the initial
graph. Hence, when starting with a graph of degree d, we end up with a graph of degree at
most d2. This observation shows that the class of graphs of degree d has bounded expansion

as witnessed by the function Γ(i) = d2i . Exhibiting the function Γ for the other examples of
classes with bounded expansion mentioned in the introduction: bounded treewidth, planar
graphs, graphs excluding at least one minor, requires more work [NdM08a].

25:8 W. Kazana and L. Segoufin Vol. 16:1

The following lemma shows that within a class C of bounded expansion the i-th aug-
mentation of G ∈ C can be computed in linear time, the linear factor depending on i and on
C.

Lemma 2.3 [NdM08b]. Let C be a class of bounded expansion. For each G ∈ C and each

i ≥ 0, ~Gi is computable from G in time O(||G||).

A transitive fraternal augmentation introduces new edges in the graphs in a controlled
way. We will see that we can use these extra edges in order to eliminate quantifiers in a first-
order query. Lemma 2.3 shows that this quantifier elimination is harmless for enumeration
as it can be done in time linear in the size of the database and can therefore be done during
the preprocessing phase.

2.3. Graphs of bounded in-degree as functional structures. Given the definition of
bounded expansion it is convenient to work with oriented graphs. These graphs will always
be such that the maximum in-degree is bounded by some constant depending on the class
of graphs under investigation. It is therefore convenient for us to represent our graphs as
functional structures where the functions links the current node with its predecessors. This
functional representation turns out to be also useful for eliminating some quantifiers.

A functional signature is a tuple σ = (f1, . . . , fl, P1, . . . , Pm), each fi being a functional
symbol of arity 1 and each Pi being an unary predicate. A functional structure over σ
is then defined as for relational structures. FO is defined as usual over the functional
signature. In particular, it can use atoms of the form f(f(f(x))), which is crucial for
the quantifier elimination step of Section 4 as the relational representation would require

existential quantification for denoting the same element. A graph ~G of in-degree l and

colored with m colors can be represented as a functional structure f~G, where the unary
predicates encode the various colors and v = fi(u) if v is the ith element (according to some

arbitrary order that will not be relevant in the sequel) such that (v, u) is an edge of ~G. We
call such node v the ith predecessor of u (where “ith predecessor” should really be viewed as
an abbreviation for “the node v such that fi(u) = v” and not as a reference to the chosen
order). If we do not care about the i and we only want to say that v is the image of u under
some function, we call it a predecessor of u. If a node u has j predecessors with j < l, then
we set fk(u) = u for all k > j. This will allow us to detect how many predecessors a given
node has without quantifiers by checking whether fj(u) = u or not. Given a nonoriented

graph G we define f~G to be the functional representation of ~G0 as described above. Note

that f~G is computable in time linear in ||G|| and that for each first order query φ(x̄), over
the relational signature of graphs, one can easily compute a first order query ψ(x̄), over the

functional signature, such that φ(G) = ψ(f~G).

Example A-3. Consider again the query computing nodes at distance 2 in a nonoriented
graph. There are four possible ways to orient a path of length 2. With the functional point
of view we further need to consider all possible predecessors. Altogether the distance 2 query
is now equivalent to:∨

f,g

f(g(x)) = y ∨ g(f(y)) = x ∨ f(x) = g(y) ∨ ∃z f(z) = x ∧ g(z) = y

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:9

where the small disjuncts correspond to the four possible orientations and the big one to
all possible predecessors, each of them corresponding to a function name, whose number
depends on the function ΓC .

Example B-3. Similarly, the reader can verify that the query of Example B- 1 is equivalent
to: ∨

f,g

∧
h

(h(x) 6= z ∧ h(z) 6= x)∧
[
(f(x) = y ∧ g(y) = z)

∨ (x = f(y) ∧ g(y) = z)

∨ (f(x) = y ∧ y = g(z))

∨ (x = f(y) ∧ y = g(z))
]
.

Augmentation for graphs as functional structures. The notion of 1-transitive
fraternal augmentation can be adapted directly to the functional setting. However it will be
useful for us to enhance it with extra information. In particular it will be useful to remember
at which stage the extra edges are inserted. We do this as follows.

Given a graph f~G, its 1-transitive fraternal augmentation f~G
′

is constructed as follows.

The signature of f~G
′

extends the signature of f~G with new function symbols for taking

care of the new edges created during the expansion and f~G
′

is then an expansion, in the

logical sense, of f~G over this new signature: f~G and f~G
′

agree on the relations in the old
signature.

For any pair of functions f and g in the signature of f~G there is a new function h in

the signature of f~G
′

representing the transitive part of the augmentation. It is defined as

the composition of f and g, i.e. hf
~G
′

= ff
~G ◦ gf~G

Similarly, for any pair of functions f and g in the signature of f~G, and any node x in

the domain of both ff
~G and gf

~G there will be a function h in the new signature representing

the fraternity part of the augmentation. I.e h is such that hf
~G
′
(ff

~G
′
(x)) = gf

~G(x) or

hf
~G
′
(gf

~G
′
(x)) = ff

~G
′
(x).

Given a class C of bounded expansion, the guarantees that the number of new function
symbols needed for the i-th augmentation is bounded by ΓC(i) and does not depend on
the graph. Hence a class C of bounded expansion generates finite functional signatures
σC(0) ⊆ σC(1) ⊆ σC(2) ⊆ . . . such that for any graph G ∈ C and for all i:

(1) f~Gi is a functional structure over σC(i) computable in linear time from G,

(2) f~Gi+1 is an expansion of f~Gi,

(3) for every FO query φ(x̄) over σC(i) and every j ≥ i we have that φ(f~Gi) = φ(f~Gj).

We denote by αC(i) the number of function symbols of σC(i). Notice that we have αC(i) ≤
Σj≤iΓC(j).

We say that a functional signature σ′ is a recoloring of σ if it extends σ with some extra
unary predicates, also denoted as colors, while the functional part remains intact. Similarly,

a functional structure f~G
′

over σ′ is a recoloring of f~G over σ if σ′ is a recoloring of σ and

f~G
′

differs from f~G only in the colors in σ′. We write φ is over a recoloring of σ if φ is
over σ′ and σ′ is a recoloring of σ. Notice that the definition of bounded expansion is not
sensitive to the colors as it depends only on the binary predicates, hence adding any fixed
finite number of colors is harmless.

25:10 W. Kazana and L. Segoufin Vol. 16:1

Given a class C of graphs, for each p ≥ 0, we define Cp to be the class of all recolorings

f~G
′
p of f~Gp for some G ∈ C. In other words Cp is the class of functional representations of

all recolorings of all p-th augmentations of graphs from C. Note that all graphs from Cp are
recolorings of a structure in σC(p), hence they use at most αC(p) function symbols.

From now on we assume that all graphs from C and all queries are in their functional
representation. It follows from the discussion above that this is without loss of generality.

2.4. From structures to graphs. A class of structures is said to have bounded expansion
if the set of adjacency graphs of the structures of the class has bounded expansion.

The adjacency graph of a relational structure D, denoted by Adjacency(D), is a func-
tional structure defined as follows. The set of vertices of Adjacency(D) is D ∪ T where D is
the domain of D and T is the set of tuples occurring in some relation of D. For each relation
Ri in the schema of D, there is a unary symbol PRi coloring the elements of T belonging to
Ri. For each tuple t = (a1, . . . , ari) such that D |= Ri(t) for some relation Ri of arity ri, we
have an edge fj(t) = aj for all j ≤ ri.

Observation 2.4. It is immediate to see that for every relational structure D we can
compute Adjacency(D) in time O(||D||).

Let C be a class of relational structures. We say that C has bounded expansion if the
class C’ of adjacency graphs (seen as graphs) of structures from C has bounded expansion.

Remark 2.5. In the literature, for instance [DKT13, GK11], a class C of relational structures
is said to have bounded expansion if the class of their Gaifman graphs has bounded expansion.
It is easy to show that if the class of Gaifman graphs of structures from C has bounded
expansion then the class of adjacency graphs of structures from C also has bounded expansion.
The converse is not true in general. However the converse holds if the schema is fixed, i.e.
C is a class of structures all having the same schema. We refer to [Kaz13] for the simple
proofs of these facts.

Let ΓC′ be the function given by Definition 2.2 for C’. The following lemma is immediate.
For instance R(x̄) is rewritten as ∃yPR(y) ∧

∧
1≤i≤r fi(y) = xi.

Lemma 2.6. Let C be a class of relational structures with bounded expansion and let C’ be
the underlying class of adjacency graphs. Let φ(x̄) ∈ FO. In time linear in the size of φ we
can find a query ψ(x̄) over σC′(0) such that for all D ∈ C we have φ(D) = ψ(Adjacency(D)).

As a consequence of Lemma 2.6 it follows that model checking, enumeration and counting
of first-order queries over relational structures reduce to the graph case. Therefore in the rest
of the paper we will only concentrate on the graph case (viewed as a functional structure),
but the reader should keep in mind that all the results stated over graphs extend to relational
structures via this lemma.

3. Normal form for quantifier-free first-order queries

We prove in this section a normal form on quantifier-free first-order formulas. This normal
form will be the ground for all our algorithms later on. It says that, modulo performing
some extra augmentation steps, a quantifier-free formula has a very simple form.

Fix class C of graphs with bounded expansion. Recall that we are now implicitly
assuming that graphs are represented as functional structures.

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:11

A formula is simple if it does not contain atoms of the form f(g(x)), i.e., it does not
contain any compositions of functions. We first observe that, modulo augmentations, any
formula can be transformed into a simple one.

Lemma 3.1. Let ψ(x̄) be a formula over a recoloring of σC(p). Then, for q = p+ |ψ|, there
is a simple formula ψ′(x̄) over a recoloring of σC(q) such that:

for all graphs f~G ∈ Cp there is a graph f~G
′ ∈ Cq computable in time linear in ||f~G||

such that ψ(f~G) = ψ′(f~G
′
).

Proof. This is a simple consequence of transitivity. Any composition of two functions in f~G

represents a transitive pair of edges and becomes an single edge in the 1-augmentation f~H

of f~G. Then y = f(g(x)) over f~G is equivalent to
∨
h y = h(x)∧Pf,g,h(x) over f~H, where h

is one of the new function introduced by the augmentation and the newly introduced color
Pf,g,h holds for those nodes v, for which the f(g(v)) = h(v). As the nesting of compositions
of functions is at most |ψ|, the result follows. The linear time computability is immediate
from Lemma 2.3.

We make one more observation before proving the normal form:

Lemma 3.2. Let f~G ∈ Cp. Let u be a node of f~G. Let S be all the predecessors of u in

f~G and set q = p + ΓC(p). Let f~G
′ ∈ Cq be the (q − p)-th augmentation of f~G. There

exists a linear order < on S computable from f~G
′
, such that for all v, v′ ∈ S, v < v′ implies

v′ = f(v) is an edge of f~G
′

for some function f from σC(q).

Proof. This is because all nodes of S are fraternal and the size of S is at most ΓC(p). Hence,
after one step of augmentation, all nodes of S are pairwise connected and, after at most
ΓC(p)− 1 further augmentation steps, if there is a directed path from one node u of S to
another node v of S, then there is also a directed edge from u to v. By induction on |S| we
show that there exists a node u ∈ S such that for all v ∈ S there is an edge from v to u. If
|S| = 1 there is nothing to prove. Otherwise fix v ∈ S and let S′ = S \ {v}. By induction
we get a u in S′ satisfying the properties. If there is an edge from v to u, u also works for S
and we are done. Otherwise there must be an edge from u to v. But then there is a path of
length 2 from any node of S′ to v. By transitivity this means that there is an edge from any
node of S′ to v and v is the node we are looking for.

We then set u as the minimal element of our order on S and we repeat this argument
with S \ {u}.

Lemma 3.2 justifies the following definition. Let p be a number and let q = p+ ΓC(p).
A p-type τ(x) is a quantifier-free formula over the signature σC(q) with one free variable x
consisting of the conjunction of a maximal consistent set of clauses of the form f(g(x)) = h(x)

or f(x) 6= x. Given a node u of some graph f~G of Cp, its p-type is the set of clauses satisfied

by u in the (q − p)-th augmentation f~G
′

of f~G. From Lemma 3.2 it follows that the p-type

of u induces a linear order on its predecessors in f~G. Indeed the predecessors of u in f~G
can be deduced from the p-type by looking at the clauses f(x) 6= x where f is a function
symbol from σC(p) and the linear order can be deduced from the clauses h(f(x)) = g(x).
Lemma 3.2 guarantees that these latter clauses induce a linear order. In the sequel we
denote this property as “the p-type τ induces the order f1(x) < f2(x) < · · · ” and for i < j
we refer to the h linking fi(x) to fj(x) as hi,j .

25:12 W. Kazana and L. Segoufin Vol. 16:1

Note that for a given p there are only finitely many possible p-types and that each of
them can be specified with a conjunctive formula over σC(q).

We now state the normal form result.

Proposition 3.3. Let φ(x̄y) be a simple quantifier-free query over a recoloring of σC(p).
There exists q that depends only on p and φ and a quantifier-free query ψ over a recoloring
of σC(q) that is a disjunction of formulas:

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y), (3.1)

where τ(y) implies a p-type of y; ∆=(x̄y) is either empty or contains one clause of the form
y = f(xi) or one clause of the form f(y) = g(xi) for some i, f and g; and ∆ 6=(x̄y) contains
arbitrarily many clauses of the form y 6= f(xi) or f(y) 6= g(xj). Moreover, ψ is such that:

for all f~G ∈ Cp there is a f~G
′ ∈ Cq computable in time linear in ||f~G|| with φ(f~G) =

ψ(f~G
′
).

Proof. Set q as given by Lemma 3.2. We first put φ into a disjunctive normal form (DNF)
and in front of each such disjunct we add a big disjunction over all possible p-types of y
(recall that a type can be specified as a conjunctive formula). We deal with each disjunct
separately.

Note that each disjunct is a query over σC(q) of the form:

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y),

where all sub-formulas except for ∆= are as desired. Moreover, ψ1(x̄), ∆=(x̄y) and ∆ 6=(x̄y)
are in fact queries over σC(p). At this point ∆= contains arbitrarily many clauses of the
form y = f(xi) or f(y) = g(xi). If it contains at least one clause of the form y = f(xi), we
can replace each other occurrence of y by f(xi) and we are done.

Assume now that ∆= contains several conjuncts of the form fi(y) = g(xk). Assume
wlog that τ is such that f1(y) < f2(y) < · · · , where f1(y), f2(y), · · · are all the predecessors
of y from σC(p). Let i0 be the smallest index i such that a clause of the form fi(y) = g(xk)
belongs to ∆=. We have fi0(y) = g(xk) in ∆= and recall that τ specifies for i < j a function
hi,j in σC(q) such that hi,j(fi(y)) = fj(y). Then, as y is of type τ , a clause of the form
fj(y) = h(xk′) with i0 < j is equivalent to hi0,j(g(xk)) = h(xk′).

Example A-4. Let us see what Lemma 3.1 and the normalization algorithm do for p = 0
and some of the disjuncts of the query of Example A- 3:

In the case of f(g(x)) = y note that by transitivity, in the augmented graph, this clause
is equivalent to one of the form y = h(x) ∧ Pf,g,h(x) (this case is handled by Lemma 3.1).

Consider now ∃z f(z) = x ∧ g(z) = y. It will be convenient to view this query when
z plays the role of y in Proposition 3.3. Notice that in this case it is not in normal form
as ∆= contains two elements. However, the two edges f(z) = x and g(z) = y are fraternal.
Hence, after one augmentation step, a new edge is added between x and y and we either
have y = h(x) or x = h(y) for some h in the new signature.

Let τh,f,g(z) be 0-type stating that h(f(z)) = g(z) and τh,g,f (z) be 0-type stating that
h(g(z)) = f(z). It is now easy to see that the query ∃z f(z) = x ∧ g(z) = y is equivalent to

∃z
∨
h

y = h(x) ∧ τh,f,g(z) ∧ f(z) = x ∨

x = h(y) ∧ τh,g,f (z) ∧ g(z) = y.

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:13

4. Model checking

In this section we show that the model checking problem of FO over a class of structures
with bounded expansion can be done in time linear in the size of the structure. This gives
a new proof of the result of [DKT13]. Recall that by Lemma 2.6 it is enough to consider
oriented graphs viewed as functional structures.

Theorem 4.1 [DKT13]. Let C be a class of graphs with bounded expansion and let ψ be

a sentence of FO . Then, for all f~G ∈ C, testing whether f~G |= ψ can be done in time

O(||f~G||).

The proof of Theorem 4.1 is done using a quantifier elimination procedure: given a
query ψ(x̄) with at least one free variable we can compute a quantifier-free query φ(x̄) that is
“equivalent” to ψ. Again, the equivalence should be understood modulo some augmentation
steps for a number of augmentation steps depending only on C and |ψ|. When starting with
a sentence ψ we end-up with φ being a boolean combination of formulas with one variable.
Those can be easily tested in linear time in the size of the augmented structure, which in
turn can be computed in time linear from the initial structure by Lemma 2.3. The result
follows. We now state precisely the quantifier elimination step:

Proposition 4.2. Let C be a class of graphs with bounded expansion witnessed by the
function ΓC. Let ψ(x̄y) be a quantifier-free formula over a recoloring of σC(p). Then one
can compute a q and a quantifier-free formula φ(x̄) over a recoloring of σC(q) such that:

for all f~G ∈ Cp there is an f~G
′ ∈ Cq such that:

φ(f~G
′
) = (∃yψ)(f~G)

Moreover, f~G
′

is computable in time O(||f~G||).

Proof. In view of Lemma 3.1 we can assume that ψ is simple. We then apply Proposition 3.3
to ψ and p and obtain a q and an equivalent formula in DNF, where each disjunct has the
special form given by (3.1). As disjunction and existential quantification commute, it is
enough to treat each part of the disjunction separately.

We thus assume that ψ(x̄y) is a quantifier-free conjunctive formula over a recoloring of
σC(q) of the form (3.1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y).

Let’s assume that the p-type τ satisfied by y enforces f1(y) < f2(y) < · · · , where
f1(y), f2(y), · · · are all the images of y by a function from σC(p) such that fi(y) 6= y.
Moreover, for each i < j, τ contains an atom of the form hi,j(fi(y)) = fj(y) for some
function hi,j ∈ σC(q).

We do a case analysis depending on the value of ∆=.

• If ∆= is y = g(xk) for some function g and some k, then we replace y with g(xk) everywhere
in ψ(x̄y) resulting in a formula φ(x̄) having obviously the desired properties.
• Assume now that ∆= is of the form f(y) = g(xk). Without loss of generality we can assume

that f is fi0 and k = 1. In other words ∆= contains only the constraint fi0(y) = g(x1).
The general idea is to limit the quantification on y to a finite set (whose size depends

only on C and ψ), depending only on x1. We then encode these sets using suitable extra
colors. To do this, for each node w we first compute a set Witness(w) such that for each

tuple v̄ we have f~Gq |= ∃y ψ(v̄y) iff f~Gq |= ∃y ∈Witness(g(v1)) ψ(v̄y). Moreover, for

25:14 W. Kazana and L. Segoufin Vol. 16:1

all w, |Witness(w)| ≤ N where N is a number depending only on p. We then encode
these witness sets using suitable extra colors.

The intuition behind the Witness set is as follows. Assume first that ∆ 6= is empty.
Then we only need to test the existence of y such that fi0(y) = g(x1). To do so, we scan
through all nodes u, test if τ(u) holds and if so we add u to Witness(fi0(u)) if this set is
empty and do nothing otherwise. Clearly each witness set has size at most one and the
desired properties are verified. Moreover if v is in Witness(g(x1)) then fi0(v) = g(x1).
Therefore it is then enough to color with a new color red all nodes having a non-empty
witness set and ∃y τ(y) ∧ fi0(y) = g(x1) is then equivalent to red(g(x1)).

The situation is slightly more complicated if ∆ 6= is not empty. Assume for instance
that ∆ 6= contains only constraints of the form y 6= h(xk). Then the previous procedure
does not work because Witness(g(x1)) may be such that it is equal to h(xk). However
there are only c nodes that we need to avoid, where c depends only on the formula, hence
if Witness(g(x1)) contains at least c+ 1 nodes we are sure that at least one of them will
satisfy all the inequality constraints. We implement this by scanning through all nodes u,
test if τ(u) holds and if so we add u to Witness(fi0(u)) if this set has a size smaller or
equal to c do nothing otherwise. The difficulty is to encode this set into the formula. If the
witness set is of size c+ 1 one of its element must make all inequalities true hence a new
color as before does the job. When the set has a smaller size we need to test each of its
elements against the inequalities. For this we introduce a predicates Qi, and add a node u
to Qi if u has been added as the ith element in Witness(fi0(u)). As before any element
y in Witness(g(x1)) is such that fi0(y) = g(x1). It remains to test whether the ith such
element satisfies y 6= h(x). In other words whether h(x) is the ith witness of g(x1) or not.
It is easy to check that the ith witness of g(x1) is h(x) iff Qi(h(xk)) ∧ fi0(h(xk)) = g(x1).

The general case, when ∆ 6= contains also clauses of the form h1(y) 6= h2(xk) is more
complex and require an even bigger witness set but this is essentially what we do.

Computation of the Witness function. We start by initializing Witness(v) = ∅ for all v.

We then successively investigate all nodes u of f~Gq and do the following. If f~Gq |= ¬τ(u)

then we move on to the next u. If f~Gq |= τ(u) then let u1, . . . , ul be the current value of
Witness(fi0(u)) — if Witness(fi0(u)) is empty then we add u to this set and move on

to the next node of f~Gq.
Let βp be αC(p)(αC(p) + 1)|x̄|+ 1.
Let i be minimal such that there exists j with fi(uj) = fi(u) (notice that i ≤ i0). Note

that because fj(w) = hi,j(fi(w)) for all w verifying τ and all j > i, this implies that u
and uj agree on each fj with j ≥ i and disagree on each fj with j < i.

Let Si = {fi−1(uj) | fi(uj) = fi(u)}, where f0(uj) is uj in the case where i = 1. If
|Si| < βp then we add u to Witness(fi0(u)).

Analysis of the Witness function. Clearly the algorithm computing the witness function
runs in linear time.

Moreover, for each node v, Witness(v) can be represented as the leaves of a tree of
depth at most αC(p) and of width βp. To see this, notice that all nodes u of Witness(v)
are such that fi0(u) = v. Note also that if two nodes u and u′ satisfying τ share a
predecessor, fi(u) = fi(u

′), then for all j > i, u and u′ agree on fj as fj = hi,j ◦ fi for
all nodes satisfying τ . The depth of the least common ancestor of two nodes u and u′

of Witness(v) is defined as the least i such that u and u′ agree on fi. One can then

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:15

verify that by construction of Witness(v) the tree has the claimed sizes. Hence the size

of Witness(v) is bounded by β
αC(p)+1
p .

We now show that for each tuple v̄ and each node u such that f~Gq |= ψ(v̄u) there is a

node u′ in Witness(g(v1)) such that f~Gq |= ψ(v̄u′).

To see this assume f~Gq |= ψ(v̄u). If u ∈Witness(g(v1)) we are done. Otherwise note

that fi0(u) = g(v1) and that f~Gq |= τ(u). Let i and Si be as described in the algorithm
when investigating u. As u was not added to Witness(fi0(u)), we must have |Si| > βp.
Let u1, . . . , uβp be the elements of Witness(g(v1)) providing βp pairwise different values
for fi−1. Among these, at most αC(p)|v̄| of them may be of the form fj(vl) for some j
and l as each vl has at most αC(p) predecessors. Notice that for all j > i and all `, u
agrees with u` on fi and therefore they also agree on fj for j > i as fj = hi,j ◦ fi for
all nodes satisfying τ . When j < i the values of fj(u`) and fj(u`′) must be different if
` 6= `′ as otherwise u` and u`′ would also agree on fi−1 as fi−1 = hj,i−1 ◦ hi−1 for all nodes
satisfying τ . Therefore, for each ` and each j < i there are at most αC(p) of the u` such
that fj(u`) is a predecessor of vl.

Altogether, at most αC(p)
2|v̄|+ αC(p)|v̄| nodes u` may falsify an inequality constraint.

As βp is strictly bigger than that, one of the u` is the desired witness.

Recoloring of f~Gq. Based on Witness we recolor f~Gq as follows. Let γp = (βp + 1)αC(p)+1.

For each v ∈ f~Gq, the ith witness of v is the ith element inserted in Witness(v) by the
algorithm.

For each i ≤ γp we introduce a new unary predicate Pi and for each u ∈ f~Gq we set
Pi(u) if Witness(u) contains at least i elements.

For each i ≤ γp, we introduce a new unary predicate Qi and for each v ∈ f~Gq we set

Qi(v) if the ith witness of fi0(v) is v.
For each i ≤ γp and each h, h′ ∈ αC(q) we introduce a new unary predicate Pi,h,h′ and

for each v ∈ f~Gq we set Pi,h,h′(v) if the ith witness of h(v) is an element u with h′(u) = v.

We denote by f~G
′

the resulting graph and notice that it can be computed in linear

time from f~G.

Computation of φ. We now replace ψ(x̄, y) by the following formula:∨
i≤γp

ψ1(x̄) ∧ ψi(x̄)

where ψi(x̄) checks that the ith witness of g(x1) makes the initial formula true.
Notice that if y is the ith witness of g(x1) then fi0(y) = g(x1). Hence the equality

fj(y) = h(xk) with j < i0 is equivalent over f~G
′

to hj,i0(h(xk)) = g(x1) ∧ Pi,hj,i0 ,fj (h(xk))

and the equality y = h(xk) is equivalent over f~G
′

to fi0(h(xk)) = g(x1) ∧ Qi(h(xk)).
From the definition of p-type, the equality fj(y) = h(xk) with j > i0 is equivalent to
hi0,j(g(x1)) = h(xk).

25:16 W. Kazana and L. Segoufin Vol. 16:1

This implies that ψi(x̄) can be defined as

Pi(g(x1)) ∧
∧

fj(y)6=h(xk)∈∆ 6=

j<i0

¬
(
hj,i0(h(xk)) = g(x1) ∧ Pi,hj,i0 ,fj (h(xk))

)
∧

∧
fj(y) 6=h(xk)∈∆ 6=

j≥i0

hi0,j(g(x1)) 6= h(xk)

∧
∧

y 6=h(xk)∈∆ 6=

¬
(
fi0(h(xk)) = g(x1) ∧Qi(h(xk))

)
.

• It remains to consider the case when ∆= is empty. This is a simpler version of the previous
case, only this time it is enough to construct a set Witness which does not depend on v. It

is constructed as in the previous case and verifies: for all tuples v̄ of f~Gq, if f~Gq |= ψ(v̄u)

for some node u, then there is a node u′ ∈Witness such that f~Gq |= ψ(v̄u′). Moreover,
|Witness| ≤ γp. We then argue as in the previous case.

Example A-5. Consider one of the quantified formulas as derived by Example A- 4:

∃z y = h(x) ∧ τh,f,g(z) ∧ f(z) = x.

The resulting quantifier-free query has the form:

P (x) ∧ h(x) = y

where P (x) is a newly introduced color saying “∃z τh,f,g(z) ∧ f(z) = x”. The key point is
that this new predicate can be computed in linear time by iterating through all nodes z,
testing whether τh,f,g(z) is true and, if this is the case, coloring f(z) with color P .

Applying the quantifier elimination process from inside out using Proposition 4.2 for
each step and then applying Lemma 3.1 to the result yields:

Theorem 4.3. Let C be a class of graphs with bounded expansion. Let ψ(x̄) be a query of
FO over a recoloring of σC(0) with at least one free variable. Then one can compute a p and
a simple quantifier-free formula φ(x̄) over a recoloring of σC(p) such that:

∀f~G ∈ C, we can construct in time O(||f~G||) a graph f~G
′ ∈ Cp such that

φ(f~G
′
) = ψ(f~G).

We will make use of the following useful consequence of Theorem 4.3:

Corollary 4.4. Let C be a class of graphs with bounded expansion and let ψ(x̄) be a formula

of FO over σC(0) with at least one free variable. Then, for all f~G ∈ C, after a preprocessing

in time O(||f~G||), we can test, given ū as input, whether f~G |= ψ(ū) in constant time.

Proof. By Theorem 4.3 it is enough to consider quantifier-free simple queries. Hence it is
enough to consider a query consisting in a single atom of either P (x) or P (f(x)) or x = f(y)
or f(x) = g(y).

During the preprocessing phase we associate to each node v of the input graph a list
L(v) containing all the predicates satisfied by v and all the images of v by a function symbol
from the signature. This can be computed in linear time by enumerating all relations of
the database and updating the appropriate lists with the corresponding predicate or the
corresponding image.

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:17

Now, because we use the RAM model, given u we can in constant time recover the
list L(u). Using those lists it is immediate to check all atoms of the formula in constant
time.

Theorem 4.1 is a direct consequence of Theorem 4.3 and Corollary 4.4: Starting with a
sentence, and applying Theorem 4.3 for eliminating quantifiers from inside out we end up
with a Boolean combination of formulas with one variable. Each such formula can be tested
in O(||f~G||) by iterating through all nodes v of f~G and in constant time (using Corollary 4.4)
checking if v can be substituted for the sole existentially quantified variable.

On top of Theorem 4.1 the following corollary is immediate from Theorem 4.3 and
Corollary 4.4:

Corollary 4.5. Let C be a class of graphs with bounded expansion and let ψ(x) be a formula

of FO over σC(0) with one free variable. Then, for all f~G ∈ C, computing the set ψ(f~G)

can be done in time O(||f~G||).

5. Enumeration

In this section we consider first-order formulas with free variables and show that we can enu-
merate their answers with constant delay over any class with bounded expansion. Moreover,
assuming a linear order on the domain of the input structure, we will see that the answers
can be output in the lexicographical order. As before we only state the result for graphs,
but it immediately extends to arbitrary structures by Lemma 2.6.

Theorem 5.1. Let C be a class of graphs with bounded expansion and let φ(x̄) be a first-order
query. Then the enumeration problem of φ over C is in CD◦Lin.
Moreover, in the presence of a linear order on the vertices of the input graph, the answers to
φ can be output in lexicographical order.

The proof of Theorem 5.1 is by induction on the number of free variables of φ. The
unary case is done by Corollary 4.5. The inductive case is a simple consequence of the
following:

Proposition 5.2. Let C be a class of graphs with bounded expansion and let φ(x̄y) be a
first-order query or arity 2 or more. Let G be a graph of C. Let < be any linear order on
the nodes of G. After a preprocessing working in time linear in the size of G we can, on
input a tuple ā of nodes of G, enumerate with constant delay and in the order given by <
all b such that G |= φ(āb) or answer nill if no such b exists.

Proof. Fix a class C of graphs with bounded expansion and a query φ(x̄y) with k ≥ 2 free

variables. Let f~G be the functional representation of the input graph and V be its set of
vertices. Let < be any order on V .

During the preprocessing phase, we apply Theorem 4.3 to get a simple quantifier-free

query ϕ(x̄y) and a structure f~G
′ ∈ Cp, for some p that does not depend on f~G, such that

ϕ(f~G
′
) = φ(f~G) and f~G

′
can be computed in linear time from f~G.

Furthermore we normalize the resulting simple quantifier-free query using Proposition 3.3,

and obtain an equivalent quantifier-free formula ψ and a structure f~G
′′ ∈ Cq, where q depends

25:18 W. Kazana and L. Segoufin Vol. 16:1

only on p and ϕ, f~G
′′

can be computed in linear time from f~G
′
, ϕ(f~G

′
) = ψ(f~G

′′
) and ψ is

a disjunction of formulas of the form (3.1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y),

where ∆=(x̄y) is either empty or contains one clause of the form y = f(xi) or one clause of
the form f(y) = g(xi) for some i, f and g; and ∆ 6=(x̄y) contains arbitrarily many clauses of
the form y 6= f(xi) or f(y) 6= g(xj).

In view of Lemma 2.1 it is enough to treat each disjunct separately. In the sequel we
then assume that ψ has the form described in (3.1). We let ψ′(y) be the formula ∃x̄ψ(x̄y)
and ψ′′(x̄) the formula ∃yψ(x̄y).

If ∆= contains an equality of the form y = f(xi) we then use Corollary 4.4 and test

whether f~G
′′ |= ψ(āf(ai)) and we are done as f(ai) is the only possible solution for ā.

Assume now that ∆= is either empty or of the form f(y) = g(xi).
We first precompute the set of possible candidates for y (i.e., those y satisfying ψ′) and

distribute this set within their images by f . In other words we define a function L : V → 2V

such that
L(w) = {u | w = f(u) ∧ u ∈ ψ′(f~G′′)}.

In the specific case where ∆= is empty we pick an arbitrary node w0 in f~G
′′

and set

L(w0) = ψ′(f~G
′′
) and L(w) = ∅ for w 6= w0. This can be done in linear time by the following

procedure. We first use Corollary 4.5 and compute in linear time the set ψ′(f~G
′′
). We

next initialize L(w) to ∅ for each w ∈ V . Then, for each u ∈ ψ′(f~G′′), we add u to the set
L(f(u)).

Let W be the function from V k−1 to V such that W (v̄) = g(vi). In the specific case
where ∆= is empty we set W (v̄) = w0, where w0 is the node chosen above.

Notice that for each v̄u, f~G
′′ |= ψ(v̄u) implies u ∈ L(W (v̄)) and if u ∈ L(W (v̄)) then

∆=(v̄u) is true. Hence, given ā it remains to enumerate within L(W (ā)) the nodes b satisfying
∆6=(āb).

To do this with constant delay, it will be important to jump from an element u of L(w)
to the smallest (according to <) element u′ ≥ u of L(w) satisfying the inequality constraints.

For this we define for S1, . . . , SαC(q) ⊆ V the element nextf1,S1,...,fαC(q),SαC(q)
(u) to be the

first element w ≥ u of L(f(u))1 such that f1(w) /∈ S1, . . . , and fαC(q)(w) /∈ SαC(q). If such w
does not exist, the value of nextf1,S1,...,fαC(q),SαC(q)

(u) is NULL. When all Si are empty, we

write next∅(u) and by the above definitions we always have next∅(u) = u. We denote such
functions as shortcut pointers of u. The size of a shortcut pointer nextf1,S1,...,fαC(q),SαC(q)

(u)

is the sum of sizes of the sets Si.
In order to avoid writing too long expressions containing shortcut pointers, we introduce

the following abbreviations:

• nextf1,S1,...,fαC(q),SαC(q)
(u) is denoted with next~S(u),

• nextf1,S1,...,fi,Si∪{ui},...,fαC(q),SαC(q)
(u) is denoted with next~S[Si+={ui}](u).

Set γq = (k − 1) · αC(q)2.

1In order to simplify the notations we consider explicitly the case where ∆= is not empty. If empty then
L(f(u)) should be replaced by L(w0).

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:19

Computing all shortcut pointers of size γq would take more than linear time. We
therefore only compute a subset of those, denoted SCL, that will be sufficient for our needs.
SCL is defined in an inductive manner. For all u such that u ∈ L(f(u)), next∅(u) ∈ SCL.
Moreover, if the shortcut pointer next~S(u) ∈ SCL is not NULL and has a size smaller than
γq, then, for each i, next~S[Si+={ui}](u) ∈ SCL, where ui = fi(next~S(u)). We then say

that next~S(u) is the origin of next~S[Si+={ui}](u). Note that SCL contains all the shortcut

pointers of the form nextfi,{fi(u)}(u) for u ∈ L(f(u)) and these are exactly the shortcut
pointers of u of size 1. By SCL(u) ⊆ SCL we denote the shortcut pointers of u that are in
SCL .

The set SCL contains only a constant number of shortcut pointers for each node u.

Claim 5.3. There exists a constant ζ(q, k) such that for every node u we have |SCL(u)| ≤
ζ(q, k).

Proof. The proof is a direct consequence of the recursive definition of SCL(u). Fix u.
Note that there is exactly 1 shortcut pointer of u of size 0 (namely next∅(u)) and αC(q)
shortcut pointers of u of size 1. By the definition of SCL, any shortcut pointer next~S(u)
can be an origin of up to αC(q) shortcut pointers of the form next~S[Si+={ui}](u), where

ui = fi(next~S(u)) and the size of next~S[Si+={ui}](u) is the size of next~S(u) plus 1. This

way we see that SCL(u) contains up to αC(q)
2 shortcut pointers of size 2 and, in general, up

to αC(q)
s shortcut pointers of size s. As the maximal size of a computed shortcut pointer is

bounded by γq, we have |SCL(u)| ≤
∑

0≤i≤γq αC(q)
i. Both αC(q) and γq depend only on q

and k, which concludes the proof.

Moreover SCL contains all what we need to know.

Claim 5.4. Let next~S(u) be a shortcut pointer of size not greater than γq. Then there
exists next ~S′(u) ∈ SCL such that next~S(u) = next ~S′(u). Moreover, such next ~S′(u) can
be found in constant time.

Proof. If next~S(u) ∈ SCL, then we have nothing to prove. Assume then that next~S(u) /∈
SCL. We write nextf1,S′1,...,fαC(q),S

′
αC(q)

(u) � nextf1,S1,...,fαC(q),SαC(q)
(u) if for each 1 ≤ i ≤

αC(q) we have S′i ⊆ Si. Note that for a given u the � relation is a partial order on the
set of shortcut pointers of u. A trivial observation is that if nextf1,S′1,...,fαC(q),S

′
αC(q)

(u) �
nextf1,S1,...,fαC(q),SαC(q)

(u), then nextf1,S′1,...,fαC(q),S
′
αC(q)

(u) ≤ nextf1,S1,...,fαC(q),SαC(q)
(u).

Let next ~S′(u) ∈ SCL be a maximal in terms of size shortcut pointer of u such that
next ~S′(u) � next~S(u). Such a shortcut pointer always exists as next∅(u) � next~S(u)
and next∅(u) ∈ SCL. Note that the size of next ~S′(u) is strictly smaller than the size of
next~S(u), so it is strictly smaller than γq. One can find next ~S′(u) by exploring all the
shortcut pointers of u in SCL(u). This can be done in constant time using Claim 5.3.

We now claim that next~S(u) = next ~S′(u).
Let v = next ~S′(u). We know that v ≤ next~S(u). Assume now that there would exists

1 ≤ i ≤ αC(q) such that fi(v) ∈ Si. Then we have that next ~S′[S′i+={ui}](u) ∈ SCL, where

ui = fi(v), and this contradicts the maximality of next ~S′(u). This means that such an i
does not exist and concludes the fact that next~S(u) = next ~S′(u).

The following claim guarantees that SCL can be computed in linear time and has
therefore a linear size.

25:20 W. Kazana and L. Segoufin Vol. 16:1

Claim 5.5. SCL can be computed in time linear in ||f~G′′||.

Proof. For every u we compute SCL(u) in time linear in the size of SCL(u). By Claim 5.3
the total time is linear in the size of V as claimed.

The computation of SCL(u) is done in reverse order on u: Assuming SCL(v) has been
computed for all v > u we compute SCL(u) time linear in the size of L(u).

Note that we only care to compute next~S(u) when u ∈ L(u).
Consider a node u. If u is the maximaum vertex then all next~S(u) are NULL.
Assume now that u is not the maximum vertex and that for all v > u SCL(v) has been

computed. If u does not belong to L(u) we do nothing. If u ∈ L(u) we set next∅(u) = u
and we construct SCL(u) by induction on the size.

Assume next~S(u) ∈ SCL has already been computed. Let v = next~S(u) and assume

it is not NULL. Let ~S′ = ~S[Si+= {fi(v)}] and assume next ~S′(u) ∈ SCL(u).
It is easy to see that next ~S′(u) = next ~S′(v). By Claim 5.4 we can obtain in constant

time next ~S′′
(v) ∈ SCL(v) such that next ~S′(v) = next ~S′′

(v). As v > u the value of
next ~S′′

(v) has already been computed.

The computation of SCL concludes the preprocessing phase and it follows from Claim 5.5
that it can be done in linear time. We now turn to the enumeration phase.

Assume we are given ā. In view of Corollary 4.4 we can without loss of generality assume
that ā is such that G |= ψ′′(ā). If not we simply return nill and stop here.

By construction we know that all nodes b such that f~G
′′ |= ψ(āb) are in L = L(W (ā)).

Recall also that all elements b ∈ L make τ(b) ∧ ∆=(āb) true. For 1 ≤ i ≤ αC(q) we set
Si = {g(vj) : g(xj) 6= fi(y) is a conjunct of ∆ 6=}. Starting with b the first node of the sorted
list L, we apply the following procedure:

(1) If b is not NULL, let next ~S′(b) be the shortcut pointer from the application of Claim 5.4
to next~S(b). Set b′ = next ~S′(b). If b′ = NULL, stop here.

(2) If f~G
′′ |= ψ(āb′), output b′.

(3) Reinitialize b to the successor of b′ in L and continue with Step 1.

We now show that the algorithm is correct.

The algorithm clearly outputs only solutions as it tests whether f~G
′′ |= ψ(āb′) before

outputting b′.
By the definition of sets Si and next~S(b), for each b ≤ v < b′ there is a i and j such

that g(aj) = fi(v) and g(xj) 6= fi(y) is a conjunct of ∆6=. This way the algorithm does not
skip any solutions at Step 1 and so it outputs exactly all solutions.

It remains to show that there is a constant time between any two outputs. Step 1 takes
constant time due to Claim 5.4. From there the algorithm either immediately outputs a

solution at Step 2 or jumps to Step 3. In the second case, this means that f~G
′′ 6|= ψ(āb′), but

from the definitions of list L, sets Si and shortcut pointers next~S(b) this can only happen

if ∆ 6= is falsified and this is because of an inequality of the form y 6= g(xj) for some suitable
g and j (where g may possibly be identity). Hence b′ = g(aj). As all the elements on L are
distinct, the algorithm can skip over Step 2 up to (k− 1) · (αC(q) + 1) times for each tuple ā
(there are up to that many different images of nodes from ā under αC(q) different functions).
The delay is therefore bounded by k · (αC(q) + 1) consecutive applications of Claim 5.4.

As the list L was sorted with respect to the linear order on the domain, it is clear that
the enumeration procedure outputs the set of solutions in lexicographical order.

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:21

This concludes the proof of the theorem.

6. Counting

In this section we investigate the problem of counting the number of solutions to a query,
i.e., computing |q(D)|. As usual we only state and prove our results over graphs but they
generalize to arbitrary relational structures via Lemma 2.6.

Theorem 6.1. Let C be class of graphs with bounded expansion and let φ(x̄) be a first-order

formula. Then, for all f~G ∈ C, we can compute |φ(f~G)| in time O(||f~G||).

Proof. The key idea is to prove a weighted version of the desired result. Assume φ(x̄) has
exactly k free variables and for 1 ≤ i ≤ k we have functions #i : V → N. We will compute

in time linear in ||f~G|| the following number:

|φ(f~G)|# :=
∑

ū∈φ(f~G)

∏
1≤i≤k

#i(ui).

By setting all #i to be constant functions with value 1 we get the regular counting
problem. Hence Theorem 6.1 is an immediate consequence of the next lemma.

Lemma 6.2. Let C be class of graphs with bounded expansion and let φ(x̄) be a first-order
formula with exactly k free variables.
For 1 ≤ i ≤ k let #i : V → N be functions such that for each v the value of #i(v) can be
computed in constant time.

Then, for all f~G ∈ C, we can compute |φ(f~G)|# in time O(||f~G||).

Proof. The proof is by induction on the number of free variables.

The case k = 1 is trivial: in time linear in ||f~G|| we compute φ(f~G) using Corollary 4.5.

By hypothesis, for each v ∈ φ(f~G), we can compute the value of #1(v) in constant time.
Therefore the value

|φ(f~G)|# =
∑

v∈φ(f~G)

#1(v)

can be computed in linear time as desired.
Assume now that k > 1 and that x̄ and y are the free variables of φ, where |x̄| = k − 1.
We apply Theorem 4.3 to get a simple quantifier-free query ϕ(x̄y) and a structure

f~G
′ ∈ Cp, for some p that does not depend on f~G, such that ϕ(f~G

′
) = φ(f~G) and f~G

′
can

be computed in linear time from f~G. Note that |φ(f~G)|# = |ϕ(f~G
′
)|#, so it is enough to

compute the latter value.
We normalize the resulting simple quantifier-free query using Proposition 3.3, and obtain

an equivalent quantifier-free formula ψ and a structure f~G
′′ ∈ Cq, where q depends only

on p and ϕ, f~G
′′

can be computed in linear time from f~G
′
, ϕ(f~G

′
) = ψ(f~G

′′
) and ψ is a

disjunction of formulas of the form (3.1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y),

where ∆=(x̄y) is either empty or contains one clause of the form y = f(xi) or one clause of
the form f(y) = g(xi) for some suitable i, f and g; and ∆ 6=(x̄y) contains arbitrarily many

25:22 W. Kazana and L. Segoufin Vol. 16:1

clauses of the form y 6= f(xi) or f(y) 6= g(xj). Note that |ϕ(f~G
′
)|# = |ψ(f~G

′′
)|#, so it is

enough to compute the latter value.
Observe that it is enough to solve the weighted counting problem for each disjunct

separately, as we can then combine the results using a simple inclusion-exclusion reasoning
(the weighted sum for q ∨ q′ is obtained by adding the weighted sum for q to the weighted
sum for q′ and then subtracting the weighted sum for q ∧ q′). In the sequel we then assume
that ψ has the form described in (3.1).

The proof now goes by induction on the number of inequalities in ∆6=. While the
inductive step turns out to be fairly easy, the difficult part is the base step of the induction.

We start with proving the inductive step. Let g(y) 6= f(xi) be an arbitrary inequality
from ∆ 6= (where g might possibly be the identity). Let ψ− be ψ with this inequality removed
and ψ+ = ψ− ∧ g(y) = f(xi). Of course ψ and ψ+ have disjoint sets of solutions and we
have:

|ψ(f~G
′′
)|# = |ψ−(f~G

′′
)|# − |ψ+(f~G

′′
)|#.

Note that ψ− and ψ+ have one less conjunct in ∆ 6=. The problem is that ψ+ is not of
the form (3.1) as it may now contain two elements in ∆=. However it can be seen that the
removal of the extra equality in ∆= as described in the proof of Proposition 3.3 does not
introduce any new elements in ∆ 6=.

Claim 6.3. . There exists a query ψ+
NF such that: its size depends only on the size of ψ+, ψ+

NF
is in the normal form given by (3.1), it contains an inequality conjunct h(y) 6= g1(xi) (where

h might possibly be identity) iff ψ+ also contains such conjunct and ψ+
NF(f~G

′′
) = ψ+(f~G

′′
).

Moreover, ψ+
NF can be constructed in time linear in the size of ψ+.

Proof. The proof is a simple case analysis of the content of ∆= of ψ.
If its empty, then ψ+

NF is already in the desired form.
If it contains an atom of the form y = h2(xj), then equality g(y) = f(xi) is equivalent

to g(h2(xj)) = f(xi) and we are done.
If it contains an atom of the form h3(y) = h2(xj) and g is identity, then h3(y) = h2(xj)

is equivalent to h3(f(xi)) = h2(xj). If g is not identity, then τ(y) ensures us that either
g(y) determines h3(y) or vice versa. If we have h4(g(y)) = h3(y), then h3(y) = h2(xj) is
equivalent to h4(f(xi)) = h2(xj). The other case is symmetric.

The fact that ψ+
NF does not contain any additional inequalities, that it can be computed

in time linear in the size of ψ+ and that ψ+
NF(f~G

′′
) = ψ+(f~G

′′
) follows from the above

construction.

We can therefore remove the extra element in ∆+ and assume that ψ+ has the desired
form. We can now use the inductive hypothesis on the size of ∆ 6= to both ψ− and ψ+ in

order to compute both |ψ−(f~G
′′
)|# and |ψ+(f~G

′′
)|# and derive |ψ(f~G

′′
)|#.

It remains to show the base of the inner induction. In the following we assume that ∆6=

is empty. The rest of the proof is a case analysis on the content of ∆=.
Assume first that ∆= consists of an atom of the form y = f(x1).

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:23

Note that the solutions to ψ are of the form (v̄f(v1)). We have:

|ψ(f~G
′′
)|# =

∑
(v̄u)∈ψ(f~G

′′
)

#k(u)
∏

1≤i≤k−1

#i(vi)


=
∑

(v̄f(v1))∈ψ(f~G
′′

)

#k(f(v1))
∏

1≤i≤k−1

#i(vi)


=
∑

(v̄f(v1))∈ψ(f~G
′′

)

#1(v1)#k(f(v1))
∏

2≤i≤k−1

#i(vi)


In linear time we now iterate through all nodes w in f~G

′′
and set

#′1(w) := #1(w) ·#k(f(w))

#′i(w) := #i(w) for 2 ≤ i ≤ k − 1.

Let ϑ(x̄) be ψ with all occurrences of y replaced with f(x1). We then have:

|ψ(f~G
′′
)|# =

∑
(v̄f(v1))∈ψ(f~G

′′
)

#′1(v1)
∏

2≤i≤k−1

#′i(vi)


=

∑
v̄∈ϑ(f~G

′′
)

∏
1≤i≤k−1

#′i(vi)

= |ϑ(f~G
′′
)|#′

By induction on the number of free variables, as #′i(w) can be computed in constant

time for each i and w, we can compute |ϑ(f~G
′′
)|#′ in time linear in ||f~G′′|| and we are done.

Assume now that ∆= consists of an atom g(y) = f(x1). Let ψ′(y) be the formula

∃x̄ψ(x̄y) and ψ′′(x̄) the formula ∃yψ(x̄y). We first compute set ψ′(f~G
′′
) in linear time using

Corollary 4.5. We now define a function #′′k : V → N as:

#′′k(w) :=
∑

{u∈ψ′(f~G′′)
g(u)=w}

#k(u).

Note that this function can be easily computed in linear time by going through all nodes w
and adding #k(w) to #′′k(g(w)).

Finally we set:

#′1(w) := #1(w)#′′k(f(w))

#′i(w) := #i(w) for 2 ≤ i ≤ k − 1.

Let u1, u2 ∈ ψ′(f~G
′′
) be such that g(u1) = g(u2). Because ∆6= is empty, observe that

f~G
′′ |= ∀x̄(ψ(x̄u1)↔ ψ(x̄u2)). Based on this observation we now group the solutions to ψ

according to their last k − 1 values and get:

25:24 W. Kazana and L. Segoufin Vol. 16:1

|ψ(f~G
′′
)|# =

∑
(v̄u)∈ψ(f~G

′′
)

#k(u)
∏

1≤i≤k−1

#i(vi)


=

∑
v̄∈ψ′′(f~G

′′
)

∑
{u∈ψ′(f~G

′′
)

g(u)=f(v1)}

#k(u)
∏

1≤i≤k−1

#i(vi)



=
∑

v̄∈ψ′′(f~G
′′

)

 ∑
{u∈ψ′(f~G

′′
)

g(u)=f(v1)}

#k(u)

 ∏
1≤i≤k−1

#i(vi)

=
∑

v̄∈ψ′′(f~G
′′

)

#′′k(f(v1))
∏

1≤i≤k−1

#i(vi)


=

∑
v̄∈ψ′′(f~G

′′
)

#1(v1)#′′k(f(v1))
∏

2≤i≤k−1

#′i(vi)


=

∑
v̄∈ψ′′(f~G

′′
)

∏
1≤i≤k−1

#′i(vi)

= |ψ′′(f~G
′′
)|#′

By induction on the number of free variables, as #′i(w) can be computed in constant

time for each i and w, we can compute |ψ′′(f~G′′)|#′ and we are done with this case.
The remaining case when ∆= is empty is handled similarly to the previous one. We

then have
ψ(x̄y) = ψ1(x̄) ∧ τ(y).

After setting

#′1(w) := #2(w) ·
∑

u∈τ(f~G
′′

)

#1(u)

#′i(w) := #i+1(w) for 2 ≤ i ≤ k − 1

we see that
|ψ(f~G

′′
)|# = |ψ1(f~G

′′
)|#′

and we conclude again by induction on the number of free variables.

As we said earlier, Theorem 6.1 is an immediate consequence of Lemma 6.2.

7. Conclusions

Queries written in first-order logic can be efficiently processed over the class of structures
having bounded expansion. We have seen that over this class the problems investigated in
this paper can be computed in time linear in the size of the input structure. The constant
factor however is high. The approach taken here, as well as the ones of [DKT13, GK11],

Vol. 16:1 FIRST-ORDER QUERIES ON CLASSES OF STRUCTURES WITH BOUNDED EXPANSION 25:25

yields a constant factor that is a tower of exponentials whose height depends on the size
of the query. This nonelementary constant factor is unavoidable already on the class of
unranked trees, assuming FPT6=AW[∗] [FG04]. In comparison, this factor can be triply
exponential in the size of the query in the bounded degree case [See96, KS11].

Since the submission of this work, the result has been extended to a larger class of
structures. In [NdM11] the class of nowhere dense graphs was introduced and it generalizes
the notion of bounded expansion. It has been shown that the model checking problem
of first-order logic can be done in nearly linear time (i.e., for any ε > 0 it can be done
in O(n1+ε)) over any nowhere dense class of graph [GKS17]. Recently an enumeration
procedure has been proposed for first-order queries over nowhere dense graph classes, with a
nearly linear preprocessing time and constant delay [SSV18].

For graph classes closed under substructures, the nowhere dense property seems to be
the limit for having good algorithmic properties for first-order logic. Indeed, it is known
that the model checking problem of first-order logic over a class of structures that is not
nowhere dense cannot be FPT [KD09] (modulo some complexity assumptions).

For structures of bounded expansion, an interesting open question is whether a sampling
of the solutions can be performed in linear time. For instance: can we compute the j-th
solution in constant time after a linear preprocessing? This can be done in the bounded
degree case [BDGO08] and in the bounded treewidth case [Bag09]. We leave the bounded
expansion case for future research.

Finally it would be interesting to know whether the index structure computed in linear
time for the enumeration process could be updated efficiently. In the boolean case, queries
of arity 0, updates can be done in constant time [DKT13], assuming the underlying graph is
not changed too much. In particular a relabeling of a node require only constant update
time. It would be interesting to know whether this constant update time could also be
achieved for an index structure allowing for constant delay enumeration.

References

[ALS91] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy Problems for Tree-Decomposable Graphs.
J. of Algorithms, 12(2):308–340, 1991.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
[Bag06] Guillaume Bagan. MSO Queries on Tree Decomposable Structures Are Computable with Linear

Delay. In Conf. on Computer Science Logic (CSL), pages 167–181, 2006.
[Bag09] Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour l’évaluation de

requêtes logiques. PhD thesis, Université de Caen, 2009.
[BDG07] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries and

Constant Delay Enumeration. In Conf. on Computer Science Logic (CSL), pages 208–222, 2007.
[BDGO08] Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. Computing the jth

solution of a first-order query. RAIRO Theoretical Informatics and Applications, 42(1):147–164,
2008.

[Cou90] Bruno Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages 193–242. 1990.

[DG07] Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree are
computable with constant delay. ACM Trans. on Computational Logic (ToCL), 8(4), 2007.

[DKT13] Zdenek Dvorak, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses of
sparse graphs. J. ACM, 60(5):36:1–36:24, 2013.

[FG04] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

25:26 W. Kazana and L. Segoufin Vol. 16:1

[GK11] Martin Grohe and Stephan Kreutzer. Model Theoretic Methods in Finite Combinatorics, chapter
Methods for Algorithmic Meta Theorems. American Mathematical Society, 2011.

[GKS17] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. of the ACM, 64(3):17:1–17:32, 2017.

[Kaz13] Wojciech Kazana. Query evaluation with constant delay. (L’évaluation de requêtes avec un délai

constant). PhD thesis, École normale supérieure de Cachan, Paris, France, 2013.
[KD09] Stephan Kreutzer and Anuj Dawar. Parameterized complexity of first-order logic. Electronic

Colloquium on Computational Complexity (ECCC), 16:131, 2009.
[KS11] Wojciech Kazana and Luc Segoufin. First-order query evaluation on structures of bounded degree.

Logical Methods in Computer Science (LMCS), 7(2), 2011.
[KS13a] Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of structures

with bounded expansion. In Symp. on Principles of Database Systems (PODS), pages 297–308,
2013.

[KS13b] Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees. ACM
Trans. on Computational Logic (ToCL), 14(4), 2013.

[NdM08a] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion I.
Decompositions. Eur. J. Comb., 29(3):760–776, 2008.

[NdM08b] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion II.
Algorithmic aspects. Eur. J. Comb., 29(3):777–791, 2008.

[NdM11] Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. European J. of
Combinatorics, 32(4):600–617, 2011.

[PY99] Christos H. Papadimitriou and Mihalis Yannakakis. On the Complexity of Database Queries. J.
on Computer and System Sciences (JCSS), 58(3):407–427, 1999.

[See96] Detlef Seese. Linear Time Computable Problems and First-Order Descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

[SSV18] Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO queries over nowhere
dense graphs. In Symp. on Principles of Database Systems (PODS), pages 151–163, 2018.

[SV17] Luc Segoufin and Alexandre Vigny. Constant delay enumeration for FO queries over databases
with local bounded expansion. In Intl. Conf. on Database Theory, pages 20:1–20:16, 2017.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Model of computation and enumeration
	2.2. Graphs with bounded expansion and augmentation
	2.3. Graphs of bounded in-degree as functional structures
	2.4. From structures to graphs

	3. Normal form for quantifier-free first-order queries
	4. Model checking
	5. Enumeration
	6. Counting
	7. Conclusions
	References

