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Abstract. An astonishing fact was established by Lee A. Rubel (1981): there exists a
fixed non-trivial fourth-order polynomial differential algebraic equation (DAE) such that
for any positive continuous function ϕ(t) on the reals, and for any positive continuous
function ε(t), it has a C∞ solution with |y(t)−ϕ(t)| < ε(t) for all t. Lee A. Rubel provided
an explicit example of such a polynomial DAE. Other examples of universal DAE have
later been proposed by other authors. However, Rubel’s DAE never has a unique solution,
even with a finite number of conditions of the form y(ki)(ai) = bi.

The question whether one can require the solution that approximates ϕ(t) to be the
unique solution for a given initial data is a well known open problem [Rubel 1981, page 2],
[Boshernitzan 1986, Conjecture 6.2]. In this article, we solve it and show that Rubel’s
statement holds for polynomial ordinary differential equations (ODEs), and since polynomial
ODEs have a unique solution given an initial data, this positively answers Rubel’s open
problem. More precisely, we show that there exists a fixed polynomial ODE such that for
any ϕ(t) and ε(t) there exists some initial condition that yields a solution that is ε(t)-close
to ϕ(t) at all times. In particular, the solution to the ODE is necessarily analytic, and we
show that the initial condition is computable from the target function and error function.

1. Introduction

An astonishing result was established by Lee A. Rubel in 1981 [Rub81]. There exists a
universal fourth-order algebraic differential equation in the following sense.

Theorem 1.1 [Rub81]. There exists a non-trivial fourth-order implicit differential algebraic
equation

P (y′, y′′, y′′′, y′′′′) = 0 (1.1)
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Figure 1: On left, graphical representation of function g. On right, two S-modules glued
together.

where P is a polynomial in four variables with integer coefficients, such that for any continuous
function ϕ on (−∞,∞) and for any positive continuous function ε(t) on (−∞,∞), there
exists a C∞ solution y to (1.1) such that

|y(t)− ϕ(t)| < ε(t)

for all t ∈ (−∞,∞).

Even more surprising is the fact that Rubel provided an explicit example of such a
polynomial P that is particularly simple:

3y′4y
′′
y′′′′2 −4y′4y′′′2y

′′′′
+ 6y′3y′′2y′′′y′′′′ + 24y′2y′′4y′′′′

−12y′3y′′y′′′3 − 29y′2y′′3y′′′2 + 12y′′7 = 0.
(1.2)

While this result looks very surprising at first sight, Rubel’s proofs turns out to use
basic arguments, and can be explained as follows. It uses the following classical trick to
build C∞ piecewise functions: let

g(t) =

{
e−1/(1−t

2) for − 1 < t < 1
0 otherwise.

It is not hard to see that function g is C∞ and Figure 1 shows that g looks like a “bump”.
Since it satisfies

g′(t)
g(t) = − 2t

(1− t2)2
,

then
g′(t)(1− t2)2 + g(t)2t = 0

and f(t) =
∫ t
0 g(u)du satisfies the polynomial differential algebraic equation

f ′′(1− t2)2 + f ′(t)2t = 0.

Since this equation is homogeneous, it also holds for af + b for any a and b. The idea is then
to obtain a fourth order DAE that is satisfied by every function y(t) = γf(αt+β) + δ, for all
α, β, γ, δ. After some computations, Rubel obtained the universal differential equation (1.2).

Functions of the type y(t) = γf(αt+ β) + δ generate what Rubel calls S-modules: a
function that values A at a, B at b, is constant on [a, a + δ], monotone on [a + δ, b − δ],
constant on [b− δ, b], by an appropriate choice of α, β, γ, δ. Summing S-modules corresponds
to gluing then together, as is depicted in Figure 1. Note that finite, as well as infinite sums1

of S-modules still satisfy the equation (1.2) and thus any piecewise affine function (and

1With some convergence or disjoint domain conditions.
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hence any continuous function) can be approximated by an appropriate sum of S-modules.
This concludes Rubel’s proof of universality.

As one can see, the proof turns out to be frustrating because the equation essentially
allows any behavior. This may be interpreted as merely stating that differential algebraic
equations is simply too lose a model. Clearly, a key point is that this differential equation
does not have a unique solution for any given initial condition: this is the core principle used
to glue a finite or infinite number of S-modules and to approximate any continuous function.
Rubel was aware of this issue and left open the following question in [Rub81, page 2].

“It is open whether we can require in our theorem that the solution that
approximates ϕ to be the unique solution for its initial data.”

Similarly, the following is conjectured in [Bos86, Conjecture 6.2].

“Conjecture. There exists a non-trivial differential algebraic equation such
that any real continuous function on R can be uniformly approximated on
all of R by its real-analytic solutions”

The purpose of this paper is to provide a positive answer to both questions. We prove
that a fixed polynomial ordinary differential equations (ODE) is universal in above Rubel’s
sense. At a high level, our proofs are based on ordinary differential equation programming.
This programming is inspired by constructions from our previous paper [BGP16a]. Here,
we mostly use this programming technology to achieve a very different goal and to provide
positive answers to these above open problems.

We also believe they open some lights on computability theory for continuous-time
models of computations. In particular, it follows that concepts similar to Kolmogorov
complexity can probably be expressed naturally by measuring the complexity of the initial
data of a (universal-) polynomial ordinary differential equation for a given function. We
leave this direction for future work.

The current article is an extended version of [BP17]: here all proofs are provided, and
we extend the statements by proving that the initial condition can always be computed from
the function in the sense of Computable Analysis.

1.1. Related work and discussions. First, let us mention that Rubel’s universal differ-
ential equation has been extended in several papers. In particular, Duffin proved in [Duf81]
that implicit universal differential equations with simpler expressions exists, such as

n2y
′′′′
y′

2
+ 3n(1− n)y

′′′
y
′′
y′ + (2n2 − 3n+ 1)y

′′3
= 0

for any n > 3. The idea of [Duf81] is basically to replace the C∞ function g of [Rub81] by
some piecewise polynomial of fixed degree, that is to say by splines. Duffin also proves that
considering trigonometric polynomials for function g(x) leads to the universal differential
equation

ny
′′′′
y′

2
+ (2− 3n)y

′′′
y
′′
y′ + 2(n− 1)y′′

3
= 0.

This is done at the price of approximating function ϕ respectively by splines or trigonometric
splines solutions which are Cn (and n can be taken arbitrary big) but not C∞ as in [Rub81].
Article [Bri02] proposes another universal differential equation whose construction is based
on Jacobian elliptic functions. Notice that [Bri02] is also correcting some statements of
[Duf81].
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All the results mentioned so far are concerned with approximations of continuous
functions over the whole real line. Approximating functions over a compact domain seems to
be a different (and somewhat easier for our concerns) problem, since basically by compactness,
one just needs to approximate the function locally on a finite number of intervals. A 1986
reference survey discussing both approximation over the real line and over compacts is
[Bos86]. Recently, over compact domains, the existence of universal ordinary differential
equation C∞ of order 3 has been established in [CJ16]: it is shown that for any a < b, there
exists a third order C∞ differential equation y′′′ = F (y, y′, y′′) whose solutions are dense in
C0([a, b]). Notice that this is not obtained by explicitly stating such an order 3 universal
ordinary differential, and that this is a weaker notion of universality as solutions are only
assumed to be arbitrary close over a compact domain and not all the real line. Order 3 is
argued to be a lower bound for Lipschitz universal ODEs [CJ16].

Rubel’s result has sometimes been considered to be the equivalent, for analog computers,
of the universal Turing machines. This includes Rubel’s paper motivation given in [Rub81,
page 1]. We now discuss and challenge this statement.

Indeed, differential algebraic equations are known to be related to the General Purpose
Analog Computer (GPAC) of Claude Shannon [Sha41], proposed as a model of the Differential
Analysers [Bus31], a mechanical programmable machine, on which he worked as an operator.
Notice that the original relations stated by Shannon in [Sha41] between differential algebraic
equations and GPACs have some flaws, that have been corrected later by [PE74] and [GC03].
Using the better defined model of GPAC of [GC03], it can be shown that functions generated
by GPAC exactly correspond to polynomial ordinary differential equations. Some recent
results have established that this model, and hence polynomial ordinary differential equations
can be related to classical computability [BCGH07] and complexity theory [BGP16a].

However, we do not really agree with the statement that Rubel’s result is the equivalent,
for analog computers, of the universal Turing machines. In particular, Rubel’s notion of
universality is completely different from those in computability theory. For a given initial
data, a (deterministic) Turing machine has only one possible evolution. On the other
hand, Rubel’s equation does not dictate any evolution but rather some conditions that
any evolution has to satisfy. In other words, Rubel’s equation can be interpreted as the
equivalent of an invariant of the dynamics of (Turing) machines, rather than a universal
machine in the sense of classical computability.

Notice that while several results have established that (polynomial) ODEs are able
to simulate the evolution of Turing machines (see e.g. [BCGH07, GCB08, BGP16a]), the
existence of a universal ordinary differential equation does not follow from them. To
understand the difference, let us restate the main result of [GCB08], of which [BGP16a] is a
more advanced version for polynomial-time computable functions.

Theorem 1.2. A function f : [a, b] → R is computable (in the framework of Computable
Analysis) if and only if there exists some polynomials p : Rn → Rn, p0 : R → R with
computable coefficients and α1, . . . , αn−1 computable reals such that for all x ∈ [a, b], the
solution y : R>0 → Rn to the Cauchy problem

y(0) = (α1, . . . , αn−1, p0(x)), y′ = p(y)

satisfies that for all t > 0 that

|f(x)− y1(t)| 6 y2(t) and lim
t→∞

y2(t) = 0.
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Since there exists a universal Turing machine, there exists a “universal” polynomial
ODE for computable functions. But there are major differences between Theorem 1.2 and
the result of this paper (Theorem 1.3). Even if we have a strong link between the Turing
machines’s configuration and the evolution of the differential equation, this is not enough to
guarantee what the trajectory of the system will be at all times. Indeed, Theorem 1.2 only
guarantees that y1(t)→ f(x) asymptotically. On the other hand, Theorem 1.3 guarantees
the value of y1(t) at all times. Notice that our universality result also applies to functions
that are not computable (in which case the initial condition is computable from the function
but still not computable).

We would like to mention some implications for experimental sciences that are related to
the classical use of ODEs in such contexts. Of course, we know that this part is less formal
from a mathematical point of view, but we believe this discussion has some importance:
A key property in experimental sciences, in particular physics is analyticity. Recall that a
function is analytic if it is equal to its Taylor expansion in any point. It has sometimes been
observed that “natural” functions coming from Nature are analytic, even if this cannot be
a formal statement, but more an observation (see e.g. [BC08, Moo90, KM99]). We obtain
a fixed universal polynomial ODE, so in particular all its solution must be analytic2, and
it follows that universality holds even with analytic functions. All previous constructions
mostly worked by gluing together C∞ or Cn functions, and as it is well known “gluing” of
analytic functions is impossible. We believe this is an important difference with previous
works.

As we said, Rubel’s proof can be seen as an indication that (fourth-order) polynomial
implicit DAE is too loose model compared to classical ODEs, allowing in particular to glue
solutions together to get new solutions. As observed in many articles citing Rubel’s paper,
this class appears so general that from an experimental point of view, it makes littles sense to
try to fit a differential model because a single equation can model everything with arbitrary
precision. Our result implies the same for polynomial ODEs since, for the same reason, a
single equation of sufficient dimension can model everything.

Notice that our constructions have at the end some similarities with Voronin’s theorem.
This theorem states that Riemann’s ζ function is such that for any analytic function f(z)
that is non-vanishing on a domain U homeomorphic to a closed disk, and any ε > 0, one
can find some real value t such that for all z ∈ U , |ζ(z + it) − f(z)| < ε. Notice that ζ
function is a well-known function known not to be solution of any polynomial DAE (and
consequently polynomial ODE), and hence there is no clear connection to our constructions
based on ODEs. We invite to read the post [LR] in “Gödel’s Lost Letter and P=NP” blog
for discussions about potential implications of this surprising result to computability theory.

1.2. Formal statements. Our results are the following:

Theorem 1.3 (Universal PIVP). There exists a fixed polynomial vector p in d variables
with rational coefficients such that for any functions f ∈ C0(R) and ε ∈ C0(R,R>0), there
exists α ∈ Rd such that there exists a unique solution y : R → Rd to y(0) = α, y′ = p(y).
Furthermore, this solution satisfies that |y1(t)− f(t)| 6 ε(t) for all t ∈ R, and it is analytic.

Furthermore, α can be computed from f and ε in the sense of Computable Analysis, more
precisely (f, ε) 7→ α is ([ρ→ ρ]2, ρd)-computable (refer to Section 2.3 for formal definitions).

2Which is not the case for polynomial DAEs.
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It is well-known that polynomial ODEs can be transformed into DAEs that have the
same analytic solutions, see [CPSW05] for example. The following then follows for DAEs.

Theorem 1.4 (Universal DAE). There exists a fixed polynomial p in d+ 1 variables with
rational coefficients such that for any functions f ∈ C0(R) and ε ∈ C0(R,R>0), there
exists α0, . . . , αd−1 ∈ R such that there exists a unique analytic solution y : R → R to
y(0) = α0, y

′(0) = α1, . . . , y
(d−1)(0) = αd−1, p(y, y′, . . . , yd) = 0. Furthermore, this solution

satisfies that |y(t)− f(t)| 6 ε(t) for all t ∈ R.
Furthermore, α can be computed from f and ε in the sense of Computable Analysis, more

precisely (f, ε) 7→ α is ([ρ→ ρ]2, ρd)-computable (refer to Section 2.3 for formal definitions).

Remark 1.5. Notice that both theorems apply even when f is not computable. In this
case, the initial condition(s) α exist but are not computable. We will prove that α is always
computable from f and ε, that is the mapping (f, ε) 7→ α is computable in the framework of
Computable Analysis, with an adequate representation of f, ε and α.

Remark 1.6. Notice that we do not provide explicitly in this paper the considered polyno-
mial ODE, nor its dimension d. But it can be derived by following the constructions. We
currently estimate d to be more than three hundred following the precise constructions of
this paper (but also to be very far from the optimal). We did not try to minimize d in the
current paper, as we think our results are sufficiently hard to be followed in this paper for
not being complicated by considerations about optimization of dimensions.

Remark 1.7. Both theorems are stated for total functions f and ε over R. It trivially
applies to any continuous partial function that can be extended to a continuous function
over R. In particular, it applies to any functions over [a, b]. It is not hard to see that it also
applies to functions over (a, b) by rescaling R into (a, b) using the cotangent:

z(t) = y
(
− cot

(
t−a
b−aπ

))
satisfies z′(t) = φ′(t)p(z(t)), φ′(t) = π

b−a(1 + φ(t)2).

More complex domains such as [a, b) and (a, b] (with a possibly infinite) can also be obtained
using a similar method.

Remark 1.8. Since the solution of a polynomial (or analytic) differential equation is
analytic, our results can be compared with the problem of building uniform approximations
of continuous function on the real line by analytic ones, and hence can be seen as a
strengthening of such results (see e.g. [Kap55]).

Remark 1.9. Let Y (α) be the solution given by Theorem 1.3 satisfying Y (α)(0) = α. Note
that the theorem does not specify the existence of Y (α)(t) for all t and α. In fact, because
of function fastgen in what follows, Y (α) will explode in finite time for all α that have
certain coordinates rational, and the length of the interval of life depends on α. Therefore,
given α ∈ Rd, any ball around α contains a β such that Y (β) explodes in finite time for the
function Y corresponding to our constructions.

Remark 1.10. It may look at first like that Theorem 1.3 violates Brouwer’s Invariance of
domain but this is not the case. Indeed, continuing with the notation of above remark, Y
is continuous3 and Y is injective4 with image in S :=

⋃
a<bC

0((a, b),Rd) (see Remark 1.9

3This is the local continuity of the solution to a smooth differential equation with respect to the initial
condition.

4This is the fact that for an autonomous ODE, two trajectories are either disjoint or the same.
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about domains). Clearly S is of much higher dimension than α ∈ Rd but Y is not dense in
S so there is no contradiction. On the other hand, if we only consider the first coordinate
Y1, then Y1 is dense in C0(R,R) but is not injective.

1.3. Overview of the proof. A first a priori difficulty is that if one considers a fixed
polynomial ODE y′ = p(y), one could think that the growth of its solutions is constrained by
p and thus cannot be arbitrary. This would then prevent us from building a universal ODE
simply because it could not grow fast enough. This fact is related to Emil Borel’s conjecture
in [Bor99] (see also [Har12]) that a solution, defined over R, to a system with n variables
has growth bounded by roughly en(x), the n−th iterate of exp. The conjecture is proved
for n = 1 [Bor99], but has been proven to be false for n = 2 in [Vij32] and [BBV37]. Bank
[Ban75] then adapted the previous counter-examples to provide a DAE whose non-unique
increasing real-analytic solutions at infinity do not have any majorant. See the discussions
(and Conjecture 6.1) in [Bos86] for discussions about the growth of solutions of DAEs, and
their relations to functions en(x).

Thus, the first important part of this paper is to refine Bank’s counter-example to
build fastgen, a fast-growing function that satisfies even stronger properties. The second
major ingredient is to be able to approximate a function with arbitrary precision everywhere.
Since this is a difficult task, we use fastgen to our advantage to show that it is enough to
approximate functions that are bounded and change slowly (think 1-Lipschitz, although the
exact condition is more involved). That is to say, to deal with the case where there is no
problem about the growth and rate of change of functions in some way. This is the purpose
of the function pwcgen which can build arbitrary almost piecewise constant functions as
long as they are bounded and change slowly.

It should be noted that in the entire paper, we construct generable functions (in several
variables) (see Section 2.1). For most of the constructions, we only use basic facts like the
fact that generable functions are stable under arithmetic, composition and ODE solving.
We know that generable functions satisfy polynomial partial equations and use this fact
only at the very end to show that the generable approximation that we have built, in fact,
translates to a polynomial ordinary differential equation.

The rest of the paper is organised as follows. In Section 2, we recall some concepts and
results from other articles. The main purpose of this section is to present Theorem 2.13.
This theorem is the analog equivalent of doing an assignment in a periodic manner. Section
3 is devoted to fastgen, the fast-growing function. In Section 4, we show how to generate a
sequence of dyadic rationals. In Section 5, we show how to generate a sequence of bits. In
Section 6, we show how to leverage the two previous sections to generate arbitrary almost
piecewise constant functions. Section 7 is then devoted to the proof of our main theorem.

2. Concepts and results from previous work

2.1. Generable functions. The following concept can be attributed to [Sha41]: a function
f : R→ R is said to be a PIVP (Polynomial Initial Value Problem) function if there exists a
system of the form y′ = p(y), where p is a (vector of) polynomial, with f(t) = y1(t) for all t,
where y1 denotes first component of the vector y defined in Rd. We need in our proof to
extend this concept to talk about multivariate functions. In [BGP17], we introduced the
following class, which can be seen as extensions of [GBC09]. Let K be the smallest generable
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field (see [BGP17] for formal definitions and properties), the reader only needs to know that
Q ⊆ K ⊆ RP where RP is the set of polynomial-time computable reals, and K is closed
under images of generable functions.

Definition 2.1 (Generable function). Let d, e ∈ N, I be an open and connected subset of
Rd and f : I → Re. We say that f is generable if and only if there exists an integer n > e,
a n × d matrix p consisting of polynomials with coefficients in K, x0 ∈ Kd, y0 ∈ Kn and
y : I → Rn satisfying for all x ∈ I:

• y(x0) = y0 and Jy(x) = p(y(x)) I y satisfies a polynomial differential equation5,
• f(x) = (y1(x), . . . , ye(x)) I the components of f are components of y.

This class strictly generalizes functions generated by polynomial ODEs. Indeed, in the
special case of d = 1 (the domain of the function has dimension 1), the above definition is
equivalent to saying that y′ = p(y) for some polynomial p. The interested reader can read
more about this in [BGP17].

For the purpose of this paper, we will need to consider a slight generalisation of this
notion where the initial condition is considered to be (depending of) a parameter, therefore
defining not just a single function but a family of function, and most importantly, all sharing
the same differential equation. Formally:

Definition 2.2 (Uniformly-generable function). Let d,m, e ∈ N, I be an open and connected
subset of Rd, Γ ⊆ Rm, and f : Γ× I → Re. We say that f is uniformly-generable if and only
if there exists an integer n > e, a n× d matrix p consisting of polynomials with coefficients
in K, x0 ∈ Kd ∩ I and a (ρm, ρn)−computable function y0 : Γ→ Rn such that for all γ ∈ Γ,
there exists y : I → Rn satisfying for all x ∈ I:

• y(x0) = y0(γ) and Jy(x) = p(y(x)) I y satisfies a polynomial differential equation
• f(γ;x) = (y1(x), . . . , ye(x)) I the components of f are components of y.

For readability, we will distinguish parameters from variables using a semicolon, for
example f(γ;x) is parameterized by γ. This should make it clear from the context what is
considered as parameter and what is considered as a variable.

Remark 2.3. Although we have chosen x0 and the coefficients of p to be in K in the
definition above, it is clear that we can change this set at the cost of increasing the set Γ of
parameters. For example we could take all coefficients to be rational or in {0, 1} by adding
one extra parameter per coefficient and hence “hiding” them in y0. The only real constraint
is that since y0 must remain computable, we still need all elements of K to be computable.

For the purpose of this paper, the reader only needs to know that the class of generable
functions enjoys many stability properties that make it easy to create new functions from
basic operations. Informally, one can add, subtract, multiply, divide and compose them at
will, the only requirement is that the domain of definition must always be connected. In
particular, the class of generable functions contains some common mathematical functions:

• (multivariate) polynomials;
• trigonometric functions: sin, cos, tan, etc;
• exponential and logarithm: exp, ln;
• hyperbolic trigonometric functions: sinh, cosh, tanh.

5Jy denotes the Jacobian matrix of y.
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Two famous examples of functions that are not in this class are the ζ and Γ, we refer the
reader to [BGP17] and [GBC09] for more information.

A nontrivial fact is that generable functions are always analytic. This property is
well-known in the one-dimensional case but is less obvious in higher dimensions, see [BGP17]
for more details. Moreover, generable functions satisfy the following crucial properties.

Lemma 2.4 (Closure properties of generable functions [BGP17]). Let f :⊆ Rd → Rn and

g :⊆ Re → Rm be generable functions. Then f + g, f − g, fg, f
g and f ◦ g are generable6.

Lemma 2.5 (Generable functions are closed under ODE [BGP17]). Let d ∈ N, J ⊆ R an
interval, f :⊆ Rd → Rd generable, t0 ∈ J ∩ K and y0 ∈ dom f ∩ Kd. Assume there exists
y : J → dom f satisfying

y(t0) = y0, y′(t) = f(y(t))

for all t ∈ J , then y is generable (and unique).

Those results can be generalised to uniformly-generable functions with the obvious
restrictions on the domains and the roles of parameters. For example, if f(α;x) and g(β; y)
are uniformly-generable over A×X and B × Y respectively, then h(α, β; y) := f(α; g(β; y))
is uniformly-generable over A×B × Y . We will use those facts implicitly, and in particular
the following result:

Theorem 2.6 (Uniformly-generable functions are closed under ODE). Let d,m ∈ N,
Γ ⊆ Rm, t0 ∈ K, J an open interval containing t0, f0 : Γ → Rd a (ρm, ρd)−computable
function and F :⊆ Γ×Rd → Rd uniformly-generable. Assume that there exists f : Γ×J → Rd
satisfying7

f(γ; t0) = f0(γ), ∂f
∂t (γ; t) = F (γ; f(γ; t))

for all γ ∈ Γ and t ∈ J . Then f is uniformly-generable (and unique).

Proof. Apply Definition 2.2 to F to get n ∈ N, x0 ∈ Kn, y0 : Γ → Rn computable and p
polynomial matrix with coefficients in K. Then given γ ∈ Γ, there exists y :⊆ Rd → Rn such
that

y(x0) = y0(γ), Jy(x) = p(y(x))

and F (γ;x) = (y1(x), . . . , yd(x)) =: y1..d(x) for all (γ, x) ∈ domF . Let z(t) = y(f(γ; t))
which is well-defined by assumption and check that

z′(t) = Jy(f(γ; t))∂f∂t (γ; t) = p(y(f(γ; t)))F (γ; f(γ; t)) = p(z(t))z1..d(t) = q(z(t))

for some polynomial q that does not depend on γ, and z(t0) = y(f(γ; t0)) = y(f0(γ)) which
is a computable function of γ since f0 is computable and (γ, x) 7→ y(x) is also computable
(note that y depends on γ) by Proposition 2.7.

An important point, which we have in fact already used in the proof of the previous
proposition, is that generable functions are always computable, in the sense of Computable
Analysis.

Proposition 2.7 (Generable implies computable). Assume f : Γ × I → Re is uniformly
generable according to Definition 2.2: Hence there is a (ρm, ρn)−computable function y0 :
Γ→ Rn and a n× d matrix p consisting of polynomials with coefficients in K, x0 ∈ Kd that

6With the obvious dimensional condition associated with each operation.
7We are assuming that for all γ ∈ Γ, (γ; f(γ; t)) ∈ domF .
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define y(γ;x0) = y0(γ) and Jy(x) = p(y(γ;x)). Then the function that maps (γ, x) ∈ Γ× I
to y(γ;x) is ([ρm, ρd], ρn)−computable.

Proof. We established in proposition [BGP17, Proposition 31] that y(x) is necessarily real-
analytic on some neighbourhood V = V (x) of x for all x that corresponds to some point of
the domain of f .

Some explicit upper bound on the radius of convergence is provided by [PG16, Theorem
5]: Assuming t0 = 0, k = deg(p) ≥ 2, α = max(1, ‖y0‖), the radius is at least 1/M with

M = M(y0) = (k − 1)Σpαk−1, where Σp is basically the sum of the absolute value of the
coefficients of polynomials in matrix p.

Consequently, using classical techniques for evaluating a converging power series whose
convergence radius is known up to a given precision (by restricting the sum up to suitable
index) we get that y is computable over the ball V (y0) of radius 1/(2M).

Computability of y then follows from classical analytic continuation techniques: A
Turing machine can then extend the computation starting from a new point y1 in V (y0(γ)),
and then repeat the above process to compute y over some ball V (y1) of radius 1/(2M(y1)),
and so on. Repeating the process, eventually, it will reach x and will be able to compute
y(x). Refer to [KTZ18, Thi18] for similar techniques and a finer complexity analysis.

2.2. Helper functions and constructions. We mentioned earlier that a number of com-
mon mathematical functions are generable. However, for our purpose, we will need less
common functions that one can consider to be programming gadgets.

Remark 2.8. In this subsection, some of the functions will be introduced as mapping
arguments to value, i.e. as usual mathematical functions, but some others by the properties
of their solutions (e.g. reach, pereach, pil). In the latter case, an explicit expression of a
function satisfying those properties can be found in the proof.

One such operation is rounding (computing the nearest integer). Note that, by construc-
tion, generable functions are analytic and in particular must be continuous. It is thus clear
that we cannot build a perfect rounding function and in particular we have to compromise
on two aspects:

• we cannot round numbers arbitrarily close to n+ 1
2 for n ∈ Z because of continuity: thus

the function takes a parameter λ to control the size of the “zone” around n+ 1
2 where the

function does not round properly;
• we cannot round without error due to the uniqueness of analytic functions: thus the

function takes a parameters µ that controls how good the approximation must be.

Lemma 2.9 (Round, [BGP17]). There exists a generable function round such that for any
n ∈ Z, x ∈ R, λ > 2 and µ > 0:

• if x ∈
[
n− 1

2 , n+ 1
2

]
then |round(x, µ, λ)− n| 6 1

2 ;

• if x ∈
[
n− 1

2 + 1
λ , n+ 1

2 −
1
λ

]
then |round(x, µ, λ)− n| 6 e−µ.

Another very useful operation is the analog equivalent of a discrete assignment, done in
a periodic manner. More precisely, we consider a particular class of ODEs

y′(t) = pereach(t, φ(t), y(t), g(t))

adapted from the constructions of [BGP16a], where g and φ are sufficiently nice functions.
Solutions to this equation alternate between two behaviours, for all n ∈ N:
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t

Figure 2: Illustration of pil(µ, ·) from Lemma 2.12 for various values of µ: it has period 1,
is very small (6 e−µ) half of the time, and the integral of the remaining half is at
least 1.

• During Jn = [n, n+ 1
2 ], the system performs y(t)→ g for some ḡ satisfying mint∈Jn g(t) 6

g 6 maxt∈Jn g(t) (note that this is voluntarily underspecified). So in particular, if g(t) ≈ ḡ
over this time interval, then y(t)→ ḡ and the system performs an “assignment” in the
sense that y(n+ 1

2) := ḡ. Then φ controls how good the convergence is: the error is of the

order of e−φ.
• During J ′n = [n+ 1

2 , n+ 1], the systems tries to keep y constant, ie y′ ≈ 0. More precisely,

the system enforces that |y′(t)| 6 e−φ(t).

As a result of this behavior, if g(t) ≈ ḡ for t ∈ [n, n + 1
2 ] then the system performs the

“assignment” y(n+ 1) := ḡ with some error that is exponential small in φ.
We now go to the proof of the existence of such a function pereach (formally stated as

Theorem 2.13): We will need the following bound on tanh, which essentially tells us that
tanh(t) gets exponentially close (in |t|) to ±1 as t→ ±∞.

Lemma 2.10. For any t ∈ R, | tanh(t)− sgn(t)| 6 e−|t|.

Lemma 2.11 (Reach, [BGP16b]). There exists a generable function reach such that for
any φ ∈ C0(R>0), g ∈ C0(R) and y0 ∈ R, the unique solution to

y(0) = y0, y′(t) = φ(t)reach(g(t)− y(t))

exists over R>0. Furthermore, for any I = [a, b] ⊆ [0,+∞), if there exists ḡ ∈ R and η ∈ R>0

such that |g(t)− ḡ| 6 η for all t ∈ I, then for all t ∈ I,

|y(t)− ḡ| 6 η + exp

(
−
∫ t

a
φ(u)du

)
whenever

∫ t

a
φ(u)du > 1.

Furthermore, for all t ∈ I,

min(ḡ − η, y(a)) 6 y(t) 6 max(ḡ + η, y(a))

and in particular
|y(t)− ḡ| 6 max(η, |y(a)− ḡ|).

Proof Remark. The statement of [BGP16b, Lemma 40] only contains the first and third
inequalities but in fact the proof also contains the second inequality (which is strictly stronger
than the third but less immediate to use).

Lemma 2.12 (Periodic integral-low, see Figure 2). There exists a generable function
pil : R>0 × R→ R>0 such that:

• pil(µ, ·) is 1-periodic, for any µ ∈ R>0;
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•
∫ 1/2
0 pil(µ(t), t)dt > 1 for any µ ∈ C0(R>0);

• |pil(µ, t)| 6 e−µ for any µ ∈ R>0 and t ∈
[
1
2 , 1
]
.

Proof. For any t ∈ R and µ ∈ R>0, let

pil(µ, t) = A
(
1 + tanh

(
2(sin(2πt)− 1

2)(A+ µ)
))
.

where A = 3. Clearly pil is generable and 1-periodic in t. Let µ ∈ R>0 and t ∈ [12 , 1], then

sin(2πt) 6 0

2(sin(2πt)− 1
2)(A+ µ) 6 −A− µ

| tanh(2(sin(2πt)− 1
2)(A+ µ))− (−1)| 6 e−A−µ using Lemma 2.10

A| tanh(2(sin(2πt)− 1
2)(A+ µ))− (−1)| 6 Ae−A−µ

|pil(µ, t)| 6 e−µ.

Let µ ∈ C0(R>0) and t ∈ [0, 12 ]. Observe that pil(µ(t), t) > 0 and, furthermore, if t ∈ [18 ,
3
8 ]

then

sin(2πt) >

√
2

2

2(sin(2πt)− 1
2)(A+ µ(t)) >

√
2− 1 since A+ µ(t) > 1

tanh(2(sin(2πt)− 1
2)(A+ µ(t))) > tanh(

√
2− 1) >

1

3

pil(µ(t), t) > 4
3A.

It follows that∫ 1
2

0
pil(µ(t), t)dt >

∫ 3
8

1
8

pil(µ(t), t)dt >

(
3

8
− 1

8

)
4

3
A >

A

3
> 1.

Theorem 2.13 (Periodic reach). There exists a generable function pereach : R2
>0×R2 → R

such that for any I = [n, n+ 1] with n ∈ N, y0 ∈ R, φ, ψ ∈ C0(I,R>0) and g ∈ C0(I,R), the
unique solution to

y(n) = y0, y′(t) = ψ(t)pereach(t, φ(t), y(t), g(t))

exists over I. Furthermore,

(i) For all ḡ ∈ R and η, θ ∈ R>0 such that |g(t) − ḡ| 6 η and ψ(t)φ(t) > θ > 1 for all
t ∈ [n, n+ 1

2 ], we have that |y(n+ 1
2)− ḡ| 6 η + exp (−θ).

(ii) For all t ∈ [n, n + 1], ḡ ∈ R and η ∈ R>0 such that |g(u) − ḡ| 6 η for all u ∈ [n, t],
we have that |y(t)− ḡ| 6 max(η, |y(n)− ḡ|).

(iii) For all t ∈ [n+ 1
2 , n+ 1], |y(t)− y(n+ 1

2)| 6
∫ t
n+

1
2
ψ(u) exp (−φ(u)) du.

(iv) For all θ ∈ R>0 such that ψ(t)φ(t) > θ > 1 for all t ∈ [n, n + 1
2 ], we have that

y(n+ 1
2) > min

u∈[n,n+1
2 ]
g(u)− exp (−θ).

(v) For all t ∈ [n, n+ 1], min
(
y(n),minu∈[n,t] g(t)

)
6 y(t) 6 max

(
y(n),maxu∈[n,t] g(t)

)
.

Proof. Define pereach(t, φ, y, g) = pil(φ + r2, t)r where r = φreach(g − y) where pil is
defined in Lemma 2.12 and reach is defined in Lemma 2.11. Fix n ∈ N and I = [n, n+ 1].
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First notice that pil is nonnegative by Lemma 2.12 thus by Lemma 2.11, the solution must
exists over I. We now prove each point separately:

(i) We have that∫ n+
1
2

n
pil(φ(u) + r(u)2, u)ψ(u)φ(u)du > θ

∫ n+ 1
2

n
pil(φ(u) + r(u)2, u)du > θ > 1

by Lemma 2.12. Thus |y(n+ 1
2)− ḡ| 6 η + e−θ by Lemma 2.11.

(ii) Apply Lemma 2.11 to the interval [n, t].
(iii) We have that

|y′(t)| = |ψ(t)pil(φ(t) + r(t)2, u)r(t)| 6 ψ(t)e−φ(t)−r(t)
2 |r(t)| 6 ψ(t)e−φ(t)

by Lemma 2.12, for all t ∈ [n+ 1
2 , n+ 1]. The inequality follows by integration.

(iv) Let m = min
u∈[n,n+1

2 ]
g(u) and M = max

u∈[n,n+1
2 ]
g(u), define ḡ = m+M

2 and η =

M−m
2 . Then the assumptions of item (i) are satisfied and we get that |y(n+ 1

2)− ḡ| 6
η + e−θ so in particular y(t) > ḡ − η − e−θ but ḡ − η = m so this concludes.

(v) The last item is more subtle because we want to use item (ii) but we do not
know if y(n) − ḡ and y(t) − ḡ have the same sign. Let m = minu∈[n,t] g(u) and

M = maxu∈[n,t] g(u), define ḡ = m+M
2 and η = M−m

2 . Then the assumptions of
Lemma 2.11 are satisfied over [n, t] and we get that min(ḡ − η, y(n)) 6 y(t) but
ḡ − η = m so this concludes.

2.3. Computable Analysis and Representations. In order to prove the computability
of the map (f, ε) 7→ α in Theorems 1.3 and 1.4, we need to express the related notion of
computability for real numbers, functions and operators. We recall here the related concepts:
Computable Analysis, specifically Type-2 Theory of Effectivity (TTE) [Wei00], is a theory
to study algorithmic aspects of real numbers, functions and higher-order operators over real
numbers. Subsets of real numbers are also of great interest to this theory but will not need
them in this paper. This theory is based on classical notions of computability (and complexity)
of Turing machines which are applied to problems involving real numbers, usually by means
of (effective) approximation schemes. We refer the reader to [Wei00, BHW08, Bra05] for
tutorials on Computable Analysis. In order to avoid a lengthy introduction on the subject,
we simply introduce the elements required for the paper at a very high level. In what follows,
Σ is a finite alphabet.

The core concept of TTE is that of representation: a representation of a space X is
simply a surjective function δ :⊆ Σω → X. If x ∈ X and p ∈ Σω is such that δ(p) = x
then p is called a δ-name of x: p is one way of describing x with a (potentially infinite)
string. In TTE, all computations are done on infinite string (names) using Type 2 machines,
which are Turing machines operating on infinite strings but where each bit of the output
only depends on a finite prefix of the input. Type 2 machines give rise to the notion of
computable functions from Σω to Σω. Given two representations δX , δY of some spaces X
and Y , one can define two interesting notions:

• δX -computable elements of X: those are the elements x such that δX(p) = x for some
computable name p (p : N→ Σ is computable by a usual Turing machine);
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• (δX , δY )-computable functions from X to Y : those are the functions f :⊆ X → Y for
which we can find a computable realiser F (F :⊆ σω → ω is computable by a Type 2
machine) such that f ◦ δX = δY ◦ F .

X Y

Σω Σω

f

F

δX δY

In this paper, we will only need a few representations to manipule real numbers, sequences
and continuous real functions:

• νN :⊆ Σω → N is a representation of the integers. The details of the encoding at not very
important, since natural representations such as unary and binary representations are
equivalent.
• νQ :⊆ Σω → N is a representation of the rational numbers, again the details of the encoding

at not very important for natural representations.
• ρ :⊆ Σω → R is the Cauchy representation of real numbers which intuitively encodes

a real number x by a converging sequence of intervals [ln, rn] 3 x of rationals numbers.
Alternatively, one can also use Cauchy sequences with a known rate of convergence.
• [δX , δY ] :⊆ Σω → X×Y is the representation of pairs of elements of (X,Y ) where the first

(resp. second) component uses δX (resp. δY ). In particular, δk is a shorthand notation of
the representation [δ, [δ, [. . .]]] of Xk. In this paper we will often use ρk to represent Rk.
• δω :⊆ Σω → XN is the representation of sequences of elements of X, represented by δ. For

example ρω can be used to represent sequences of real numbers.
• [δX → δY ]Z :⊆ Σω → C0(Z, Y ) is the representation of continuous8 functions from Z ⊆ X

to Y , we omit Z if Z = X. We will mostly need [ρk → ρ] which represents9 C0(Rk,R) as
a list of boxes which enclose the graph of the function with arbitrary precision. Informally,
it means we can “zoom” on the graph of the function and plot it with arbitrary precision.

It will be enough for the reader to know that those representations are well-behaved. In
particular, the following functions are computable (we always use ρ to represent R):

• the arithmetical operations +,−, ·, / :⊆ R× R→ R,
• polynomials p : Rn → R with computable coefficients,
• elementary functions cos, sin, exp over R.

Furthermore, the following operators on continuous functions are computable:

• the arithmetical operators +,−, ·, / :⊆ C0(R)× C0(R)→ C0(R),
• composition ◦ : C0(X,Y )× C0(Y, Z)→ C0(X,Z),
• inverse ·−1 : C0(X,Y )→ C0(Y,X) for increasing (or decreasing) functions,
• evaluation C0(X,Y )×X → Y , (f, x) 7→ f(x).

We will also use the fact that the map XN × N→ X, (x, i) 7→ xi is ([δω, νN ], δ)-computable
for any space X represented by δ.

8Without giving too much details, this requires X and Y to be T0 spaces with countable basis and δX , δY
to be admissible. It will be enough to know that ρ is admissible for the usual topology on R.

9Technically, is equivalent to a representation of.
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t

Sequence of arbitrarily
growing spikes. But the dis-
tance between them increases
as well.

Figure 3: Illustration of g (in dotted blue) from Lemma 3.1: we start from a function f (in
red) that spikes and then integrate it to make it increasing.

Refer to [Wei00, BHW08, Bra05] for more complete discussions, and in particular to
[KTZ18, Thi18] for computability and complexity issues related to ordinary differential
equations solving.

3. Generating fast growing functions

Our construction crucially relies on our ability to build functions of arbitrary growth. At
the end of this section, we obtain a function fastgen with a straightforward specification:
for any infinite sequence a0, a1, . . . of positive numbers, we can find a suitable α ∈ R such
that fastgen(α;n) > an for all n ∈ N. Furthermore, we can ensure that fastgen(α; ·) is
increasing. Notice, and this is the key point, that the definition of fastgen is independent of
the sequence a: a single generable function (and thus differential system) can have arbitrary
growth by simply tweaking its initial value.

Our construction builds on the following lemma proved by [Ban75], based on an example
of [BBV37]. The proof essentially relies on the function 1

2−cos(x)−cos(αx) which is generable

and well-defined for all positive x if α is irrational. By carefully choosing α, we can make
cos(x) and cos(αx) simultaneously arbitrary close to 1. This function is illustrated on
Figure 3.

Lemma 3.1 [Ban75]. There exists a positive generable function g and an absolute constant
c > 0 such that for any increasing sequence a ∈ NN with an > 2 for all n, there exists α ∈ R
such that g(α, ·) is defined over [1,∞), nondecreasing and for any n ∈ N and t > 2πbn,

g(α, t) > can where bn =
∏n−1
k=0 ak. Furthermore, the map a 7→ α is (νωN , ρ)-computable.

Proof. We give a sketch of the proof, following the presentation from [Ban75]. For any α ∈ R
and t > 0, let

f(α, t) =
1

2− cos(t)− cos(αt)
.
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Since sin and cos are generable, it follows that f is generable because it has a connected
domain of definition. Indeed, f(α, t) is well-defined except on

X = {(α, 2kπ) : α ∈ Q, k ∈ N, kα ∈ N}
which is a totally disconnected set in R2. Let

αa =
∞∑
n=1

b−1n where bn =
n−1∏
k=0

ak (3.1)

which is well-defined if an is a strictly increasing sequence. Indeed, it implies that bn > (n−1)!
and αa 6

∑∞
n=0

1
n! = e. One can easily show (by contradiction for example) that αa must

be irrational. Also define

g(α, t) =

∫ t

1
f(α, u)du

which is generable. Let n ∈ N, define δn =
∑∞

k=n+1
bn
bk

. Let t ∈ [2π(bn − δn), 2πbn], write

ε = 2πbn − t ∈ [0, 2πδn] and observe that

1− cos(t) = 1− cos(t− 2πbn) = 1− cos(ε) 6 ε2 6 4π2δ2n.

Furthermore, and note that

1− cos(αt) = 1− cos(2παbn − ε)

= 1− cos

(
2π

n∑
k=0

bn
bk

+ 2π
∞∑

k=n+1

bn
bk
− ε

)

= 1− cos

(
2π

∞∑
k=n+1

bn
bk
− ε

)
since bn

bk
∈ N for k 6 n

= 1− cos (2πδn − ε)

6 (2πδn − ε)2 since 1− cos(x) 6 x2

6 (2πδn)2 since ε 6 2πδn.

It follows that

f(αa, t) = (1− cos(t) + 1− cos(αt))−1 > (4π2δ2n + 4π2δ2n)−1 > 1
8π2δ2n

.

Thus

g(αa, 2πbn) =

∫ 2πbn

1
f(αa, t)dt

>
∫ 2πbn

2π(bn−δn)
f(αa, t)dt since f is positive

>
∫ 2πbn

2π(bn−δn)

1
8π2δ2n

dt

= δn
8π2δ2n

= 1
8π2δn

.

But note that

δn =
∞∑

k=n+1

bn
bk

6
∞∑

k=n+1

an−kn since bn
bk

= (an · · · ak−1)−1
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=
a−1n

1− a−1n
6 2a−1n since an > 2.

It then easily follows that
g(αa, 2πbn) > an

16π2

and the result follows from the fact that g is nondecreasing.
The computability of the map a 7→ α is the only missing result. It is immediate from

(3.1) that the map (a, n) 7→ bn is ([νωN , νN], νN)-computable since each bn is a product of
finitely many ai. Furthermore, bn > (n− 1)! thus for any n > 1,∣∣∣∣∣αa −

n∑
i=1

b−1i

∣∣∣∣∣ 6 ∑
i>n−1

1

(i− 1)!
6
∑
i>n

1

i!
6
∑
i>0

1

n!2i
6 2

n! 6 22−n.

It follows that
(∑n

i=1 b
−1
i

)
i∈N is a Cauchy sequence of αa of known convergence rate. It

suffice to note that (b, n) 7→
∑n

i=1 b
−1
i is ([νωN , νN], ρ)-computable, since it only involves a

finite number of sum and inverses of real numbers.

Remark 3.2. As noted earlier, Lemma 3.1 and the Theorem 3.3 build partial functions.
Indeed we only show that the solution exists at all times t ∈ R>0 for certain well-chosen α.
In particular, it can be easily checked that the ODE in Lemma 3.1 explodes in finite time
for all rational α.

Essentially, Lemma 3.1 proves that there exists a function g such that for any n ∈ N,
g(α, a0a1 · · · an−1) > an. Note that this is not quite what we are aiming for: the function
g is indeed > an but at times a0a1 · · · an−1 instead of n. Since a0a1 · · · an−1 is a very big
number compared to n, g does not grow fast enough for our needs. The idea is to “accelerate”
g by composing it with a fast growing function h, ideally such that h(n) > a0 · · · an−1. This
would ensure that g(h(n)) > n. This is a chicken-and-egg problem because to build such a
function h, we need to build a fast growing function! We now try to explain how to solve
this problem.

Fix a sequence (an)n and let g be the function from Lemma 3.1 and αa be the parameter
that corresponds to a (we omit the αa for readability so g(x) = g(αa, x)). Consider the
following sequence:

x0 = a0, xn+1 = xng(xn).

Then observe that

x1 = x0g(x0) = a0g(a0) > a0a1, x2 = x1g(x1) > a0a1g(a0a1) > a0a1a2, . . .

It is not hard to see that xn > a0a1 · · · an > an. We then use our generable gadget of
Section 2.2 to simulate this discrete sequence with a differential equation. Intuitively, we build
a differential equation such that the solution y satisfies y(n) ≈ xn. More precisely, we use two
variables y and z such that over [n, n+1/2], z′ ≈ 0 and y(t)→ zg(z) and over [n+1/2, n+1],
y′ ≈ 0 and z(t)→ y. Then if y(n) ≈ z(n) ≈ xn then y(n+ 1) ≈ z(n+ 1) ≈ xn+1.

Theorem 3.3. There exists Γ ⊆ R and a positive uniformly-generable function fastgen :
Γ × R>0 → R such that for any x ∈ RN

>0, there exists α ∈ Γ such that for any n ∈ N and
t ∈ R>0,

fastgen(α; t) > xn if t > n.

Furthermore, fastgen(α; ·) is nondecreasing. In addition, the map x 7→ α is (ρω, ρ)-
computable.
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Proof. Let δ = 4. Apply Lemma 3.1 to get g and c. Let a ∈ NN be an increasing sequence
such that an > xn, then there exists αx ∈ R such that for all n ∈ N,

g(αx, t) > can (3.2)

for all t > 2πbn where bn =
∏n−1
k=0 ak. Consider the following system of differential equations,

for φ = 2,{
y(0) = δ + 2π
z(0) = δ + 2π

,

{
y′(t) = pereach

(
t, φ, y(t), δ + 1

cz(t)g(αx, z(t))
)

z′(t) = pereach
(
t+ 1

2 , φ, z(t), 1 + y(t)
) .

Apply Theorem 2.13 to show that y and z exist over R>0. We will show the following result
by induction on n ∈ N:

min(y(n), z(n)) > δ + 2πbn. (3.3)

The result is trivial for n = 0 since y(0) = z(0) = δ + 2π = δ + 2πb0 > 1 + 2πb0. Let n ∈ N
and assume that (3.3) holds for n. Apply Theorem 2.13 (item (iii)) to z to get that for any
t ∈ [n, n+ 1

2 ],

|z(t)− z(n)| 6
∫ t

n
exp (−φ) du 6

∫ n+
1
2

n
exp (−φ) du 6 1

2e
−φ 6 1.

In particular, it follows that for any t ∈ [n, n+ 1
2 ],

z(t) > z(n)− 1 > 2πbn since z(n) > 1 + 2πbn

g(αx, z(t)) > can using (3.2)

z(t)g(αx, z(t)) > 2πbncan since z(t) > 2πbn

= 2πcbn+1 since bn+1 = bnan

δ + 1
cz(t)g(αx, z(t)) > δ + 2πbn+1.

Note that φ > 1 then apply Theorem 2.13 (item (iv)) to y using the above inequality to get
that

y(n+ 1
2) > δ + 2πbn+1 − e−1 > δ − 1 + 2πbn+1

and (item (v)) for any t ∈ [n, n+ 1
2 ],

y(t) > min(y(n), δ + 2πbn+1) > min(1 + 2πbn, δ + 2πbn+1) > 1 + 2πbn, (3.4)

and (item (iii)) for any t ∈ [n+ 1
2 , n+ 1],

|y(t)− y(n+ 1
2)| 6

∫ t

n+
1
2

e−φdu 6 e−φ

2 6 1. (3.5)

Thus y(t) > y(n+ 1
2)− e−1 > δ− 2− 2πbn+1 for any t ∈ [n+ 1

2 , n+ 1]. Note that φ > 1 and
apply Theorem 2.13 (item (iv)) to z using the above inequality to get that

z(n+ 1) > min
u∈[n+1

2 ,n+1]

y(u)− e−1 > δ − 2 + 2πbn+1 − e−1 > δ − 3 + 2πbn+1.

And since δ − 3 > 1, we have shown that y(n+ 1) and z(n+ 1) are greater than 1 + 2πbn+1.
Furthermore, (3.4) and (3.5) prove that for any t ∈ [n, n+ 1],

y(t) > min(1 + 2πbn, δ − 2 + 2πbn+1) > 1 + 2πbn.
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We can thus let fastgen(α; t) = y(1 + t) and get the result since 1 + 2πbn+1 > an. Finally,
(αx; t) 7→ y(t) is uniformly-generable by Theorem 2.6 because pereach and g are generable
and the initial condition is computable.

The computability of the map x 7→ α follows from the computability of the map a 7→ α
(Lemma 3.1) and the map x 7→ a. Note that the only condition which a ∈ NN has to satisfy
is an > xn. Given a real number represented by its Cauchy sequence, with a known rate of
convergence, it is trivial to compute an integer upper bound on this number.

4. Generating a sequence of dyadic rationals

A major part of the proof requires to build a function to approximate arbitrary numbers
over intervals [n, n+ 1]. Ideally we would like to build a function that gives x0 over [0, 1], x1
over [1, 2], etc. Before we get there, we solve a somewhat simpler problem by making a few
assumptions:

• we only try to approximate dyadic numbers, i.e. numbers of the form m2−p, and
furthermore we only approximate with error 2−p−3;
• if a dyadic number has size p, meaning that it can be written as m2−p but not m′2−p+1

then it will take a time interval of p units to approximate: [k, k + p] instead of [k, k + 1];
• the function will only approximate the dyadics over intervals [k, k + 1

2 ] and not [k, k + 1].

This processus is illustrated in Figure 4: given a sequence d0, d1, . . . of dyadics, there is
a corresponding sequence a0, a1, . . . of times such that the function approximates dk over
[ak, ak + 1

2 ] within error 2−pk where pk is the size of dk. The theorem contains an explicit
formula for ak that depends on some absolute constant δ.

Figure 4 highlights a feature of dygen: it is an almost piecewise constant function.
However we only control the values it takes over small intervals [ai, ai + 1

2 ], and we have
no idea what is the value the rest of the time (even if we know that it is almost piecewise
constant).

t

d0

a0

d1

a1

d2

a2

d3

a3

Figure 4: Graph of dygen for d0 = 2−1, d1 = 2−3 + 2−1, d2 = 2−5 + 2−2 and d3 = 2−4

(other values ignored) assuming that δ = 9. We get that a0 = 0, a1 = 10, a2 = 22,
a3 = 36.

Let Dp = {m2−p : m ∈ {0, 1, . . . , 2p − 1}} and D =
⋃
n∈NDp denote the set of dyadic

rationals in [0, 1). For any q ∈ D, we define its size by L(q) = min {p ∈ N : q ∈ Dp}.
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Theorem 4.1. There exists δ ∈ N>0, Γ ⊆ R2 and a uniformly-generable function dygen :
Γ× R>0 → R such that for any dyadic sequence q ∈ DN, there exists (α, β) ∈ Γ such that
for any n ∈ N,

|dygen(α, β; t)− qn| 6 2−L(qn)−3 for any t ∈ [an, an + 1
2 ]

where an =
∑n−1

k=0(L(qk) + δ). Furthermore, |dygen(α, β; t)| 6 1 for all α, β and t. In
addition, the map q 7→ (α, β) is (νωQ, [ρ, ρ])-computable.

Lemma 4.2. For any q ∈ Dp, there exists q′ ∈ Dp+3 such that | sin(2q′π) − q| 6 2−p

and |q′| 6 1. Furthermore, x 7→ sin(2πx) is 8-Lipschitz. In addition, the map q 7→ q′ is
(νQ, νQ)-computable.

Proof. Let f(x) = sin(2πx) for x ∈ [0, 14 ]. Clearly f is surjective from [0, 14 ] to [0, 1] thus

there exists x′ ∈ [0, 14 ] such that f(x′) = q. Furthermore, since f ′(x) = 2π cos(2πx) and

2π 6 8, f is 8-Lipschitz. Let q′ = b2p+3x′c2−p−3, then q′ ∈ Dp+3 and |q′ − x′| 6 2−p−3 by
construction. Clearly |q′| 6 1, and furthermore,

|f(q′)− q| 6 |f(q′)− f(x′)|+ |f(x′)− q| 6 8|q′ − x′|+ 0 6 8 · 2−p−3 6 2−p.

Note that f is not only surjective from [0, 14 ] to [0, 1] but also increasing and 8-Lipschitz.
Furthermore, f is (ρ, ρ)-computable thus a simple dichotomy is enough to find a suitable
rational x′. To conclude, use the fact that the map x′ 7→ q′ is (νQ, νQ)-computable. Note
that it is crucial that x′ is rational because the floor function is not (ρ, ρ)-computable.

Proof of Theorem 4.1. Let δ = 9. Consider the function

f(α, t) = sin
(
2απ2t

)
defined for any α, t ∈ R. Then f is generable because sin and exp are generable. For all
n ∈ N, note that qn ∈ DL(qn) ⊆ DL(qn)+δ−3 and apply Lemma 4.2 to qn to get q′n ∈ DL(qn)+δ

such that
| sin(2q′nπ)− qn| 6 2−L(qn)−δ+3. (4.1)

Now define

αq =

∞∑
k=0

q′k2
−ak where ak =

k−1∑
`=0

(L(q`) + δ). (4.2)

It is not hard to see that αq is well-defined (i.e. the sum converges). Let n ∈ N, then

f(αq, an) = sin(2παq2
an)

= sin

(
2π

∞∑
k=0

q′k2
−ak+an

)

= sin

(
2π

n−1∑
k=0

q′k2
−ak+an + 2πq′n + 2π

∞∑
k=n+1

q′k2
−ak+an

)
.

But for any k 6 n− 1,

an − ak =
n−1∑
`=k

(L(q`) + δ) > L(qk) + δ
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and since q′k ∈ DL(qk)+δ and an − ak ∈ N, it follows that q′k2
−ak+an ∈ N. Consequently,

f(αq, an) = sin

(
2πq′n + 2π

∞∑
k=n+1

q′k2
−ak+an

)
= sin

(
2π(q′n + u)

)
where u =

∑∞
k=n+1 q

′
k2
−ak+an . But for any k > n+ 1,

ak − an =

k−1∑
`=n

(L(q`) + δ) > L(qn) +

k−1∑
`=n

δ = L(qn) + δ(k − n).

Consequently,

|u| 6
∞∑

k=n+1

|q′k|2−ak+an 6
∞∑

k=n+1

2−L(qn)−δ(k−n) 6 2−L(qn)
∞∑
k=1

2−δk 6 2−L(qn)−δ+1.

Since x 7→ sin(2πx) is 8-Lipschitz, it follows that

|f(αq, an)− qn| = | sin
(
2π(q′n + u)

)
− qn|

6 | sin
(
2π(q′n + u)

)
− sin(2πq′n)|+ | sin(2q′nπ)− qn|

6 8|u|+ 2−L(qn)−δ+3 using (4.1)

6 8 · 2−L(qn)−δ+1 + 2−L(qn)−δ+3

6 2−L(qn)−δ+5. (4.3)

Recall that round is the generable rounding function from Lemma 2.9, and fastgen the fast
growing function from Theorem 3.3. Let α, β, t ∈ R, if fastgen(β; t) exists then let

dygen(α, β; t) = f(α, r(β; t))

where
r(β; t) = round

(
t− 1

4 , fastgen(β; t) ln 2, 4
)
.

Note that dygen is uniformly-generable because f, round and fastgen are uniformly-
generable. Apply10 Theorem 3.3 to get βq ∈ R such that for any n ∈ N and t ∈ R>0,

fastgen(βq; t) > an + L(qn) + δ if t ∈ [an, an + 1).

Let n ∈ N and t ∈ [an, an + 1
2 ], then t− 1

4 ∈
[
an − 1

2 + 1
λ , an + 1

2 −
1
λ

]
for λ = 4. Thus we

can apply Lemma 2.9 and get that

|r(βq, t)− an| 6 e−fastgen(βq ;t) ln 2 = 2−fastgen(βq ;t) 6 2−an−L(qn)−δ 6 1. (4.4)

Observe that ∣∣∣∂f∂t (αq, t)
∣∣∣ = 2π|αq|2t| cos(2αqπ2t)| 6 2π2t 6 2t+3.

Thus for any t, t′ ∈ R,

|f(αq, t)− f(αq, t
′)| 6 23+max(t,t′)|t− t′|.

It follows that for any n ∈ N and t ∈ [an, an + 1
2 ],

|dygen(αq, βq; t)− qn| = |f(αq, r(βq; t))− qn|
6 |f(αq, r(βq; t))− f(αq, an)|+ |f(αq, an)− qn|

6 23+max(an,r(βq ;t))|r(βq; t)− an|+ 2−L(qn)−3 using (4.3)

10Technically speaking, we apply it to the sequence xn = ak if n = ak + L(qn) + δ, and xn = 0 otherwise.
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6 23+an+12−L(qn)−an−δ + 2−L(qn)−δ+5 using (4.4)

6 2−L(qn)−δ+4 + 2−L(qn)−δ+5

6 2−L(qn)−δ+6

6 2−L(qn)−3 since δ − 6 > 3.

To see that the map q 7→ (αq, βq) is computable, first note that the map qn 7→ q′n is
computable (Lemma 4.2), thus the map q 7→ q′ is (νωQ, ν

ω
Q)-computable. It is clear from

(4.2) that q′ 7→ a is also computable. Using a similar argument as above, one can easily
see that the partial sums (of the infinite sum) defining αq in (4.2) form a Cauchy sequence

with convergence rate k 7→ 2−k because ak > kδ > k. Finally, q 7→ βq is computable by
Theorem 3.3.

5. Generating a sequences of bits

We saw in the previous section how to generate a dyadic generator. Unfortunately, we saw
that it generates dyadic dn at times an, whereas we would like to get dn at time n for our
approximation. Our approach is to build a signal generator that will be high exactly at
times an. Each time the signal will be high, the system will copy the value of the dyadic
generator to a variable and wait until the next signal. Since the signal is binary, we only
need to generate a sequence of bits. Note that this theorem has a different flavour from the
dyadic generator: it generates a more restrictive set of values (bits) but does so much better
because we have control over the timing and we can approximate the bits with arbitrary
precision.

Figure 5 shows what bitgen looks like: it is an almost piecewise constant function such
that the value in the interval [n, n+ 1

2 ] is almost the nth digit of α.

t

1

0

1

0

1

0

1

0

0 10 22 36

Figure 5: (Ideal) graph of bitgen for b ∈ {0, 1}N where b0 = b10 = b22 = b36 = 1 and all the
other bits are 0.

Remark 5.1. Although it is possible to define bitgen using dygen, it does not, in fact,
give a shorter proof but definitely gives a more complicated function.

Theorem 5.2. There exists Γ ⊆ R and a generable function bitgen : Γ× R2
>0 → R such

that for any bit sequence b ∈ {0, 1}N, there exists αb ∈ Γ such that for any µ ∈ R>0, n ∈ N
and t ∈ [n, n+ 1

2 ],

|bitgen(αb, µ, t)− bn| 6 e−µ.

Furthermore, |bitgen(α, µ, t)| 6 1 for all α, µ and t. Finally, the map b 7→ αb is (νωN , ρ)-
computable.
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Proof. Consider the function

f(α, t) = sin
(
2πα4t + 4π

3

)
defined for any α, t ∈ R. Then f is generable because sin and exp are generable. For any
b ∈ {0, 1}N, let

αb =
∞∑
k=0

2bk4
−k−1. (5.1)

Let b ∈ {0, 1}N and n ∈ N, observe that

f(αb, n) = sin

(
2π

∞∑
k=0

2bk4
−k−14n + 4π

3

)

= sin

2π
n−1∑
k=0

2bk4
n−k−1

︸ ︷︷ ︸
∈N

+2π2bn4−1 + 2π
∞∑

k=n+1

2bk4
n−k−1 + 4π

3


= sin

(
πbn + 4π

3 + δ
)

where

δ = 2π

∞∑
k=n+1

2bk4
n−k−1 = 4π

∞∑
k=0

bk4
−k−2 6 4π

∞∑
k=0

4−k−2 = 4π 4−2

3 =
π

3
.

It follows that if bn = 0 then πbn+ 4π
3 +ε ∈

[
4π
3 ,

5π
3

]
and if bn = 1 then πbn+ 4π

3 +ε ∈
[
7π
3 ,

8π
3

]
.

Thus
f(αb, n) ∈

[
−1,−

√
3
2

]
if bn = 0, f(αb, n) ∈

[√
3
2 , 1

]
if bn = 1. (5.2)

Furthermore,

|αb| =
∞∑
k=0

2bk4
−k−1 6 2

4

∞∑
k=0

4−k 6 2
3 . (5.3)

Let ε ∈
[
−1

2 ,
1
2

]
, then for any t ∈ R,

|f(αb, t+ ε)− f(αb, t)| =
∣∣sin (2παb4t+ε + 4π

3

)
− sin

(
2παb4

t + 4π
3

)∣∣
=
∣∣2 cos(2παb(4

t + 4t+ε) + 8π
3 ) sin

(
2παb(4

t+ε − 4t)
)∣∣

6 2| sin(2παb(4
t+ε − 4t))|

6 4π|αb||4t+ε − 4t|

6 4π
2

3
4t|4ε − 1| using (5.3)

6
8π

3
4t2ε using that |ε| 6 1

2

6 4tBε (5.4)

for some constant B > 0. Recall that round is the generable rounding function from
Lemma 2.9. Let α, t ∈ R, µ ∈ R>0 and define

g(α, t) = f(α, r(t)) where r(t) = round(t− 1
4 , t ln 4 + lnB, 4).
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Note again that g is generable because f and round are generable. Let n ∈ N and t ∈ [n, n+ 1
2 ],

then t − 1
4 ∈

[
n− 1

4 , n+ 3
4

]
=
[
n− 1

4 + 1
λ , n+ 1

2 −
1
λ

]
for λ = 4. Thus we can apply

Lemma 2.9 and get that

|r(t)− n| 6 e−(n+1) ln 4+lnB = 4−n−1

B .

It follows using (5.4) that

|g(αb, t)− f(αb, n)| = |f(αb, r(t))− f(αb, n)| 6 4tB 4−n−1

B = 1
4 .

And since
√
3
2 −

1
4 > 1

2 , we conclude using (5.2) that for any t ∈
[
n, n+ 1

2

]
,

g(αb, t) ∈
[
−1,−1

2

]
if bn = 0, g(αb, t) ∈

[
1
2 , 1
]

if bn = 1. (5.5)

Finally, let α, t ∈ R, µ ∈ R>0 and define

bitgen(α, µ t) =
1 + tanh(2µg(α, t))

2
.

Note that bitgen is generable because tanh and g are generable. Let µ ∈ R>0, n ∈ N and
t ∈

[
n, n+ 1

2

]
. If bn = 0, then it follows from (5.5) that

g(αb, n) 6 −1
2

| tanh(2µg(αb, n))− sgn(2µg(αb, n))| 6 e−2µ|g(αb,n)| using Lemma 2.10

| tanh(2µg(αb, n)) + 1| 6 e−µ

|bitgen(αb, µ, t)− bn| 6 1
2e
−µ 6 e−µ since bn = 0.

Similarly, if bn = 1, then

g(αb, n) > 1
2

| tanh(2µg(αb, n))− sgn(2µg(αb, n))| 6 e−2µ|g(αb,n)|

| tanh(2µg(αb, n))− 1| 6 e−µ

|bitgen(αb, µ, t)− bn| 6 1
2e
−µ 6 e−µ since bn = 1.

Finally, it is clear from (5.1) that the partial sums are easily computable and form a Cauchy
sequence that converges at rate 4−k, thus αb is computable from b.

6. Generating an almost piecewise constant function

We have already explained the main intuition of this section in previous sections. Using the
dyadic generator and the bit generator as a signal, we can construct a system that “samples”
the dyadic at the right time and then holds this value still until the next dyadic. In essence,
we just described an almost piecewise constant function. This function still has a limitation:
its rate of change is small so it can only approximate slowly changing functions. Figure 6
illustrates how this process works at the high-level.

Theorem 6.1. There exists an absolute constant δ ∈ N, p ∈ N, Γ ⊆ Rp and a uniformly-
generable function pwcgen : Γ× R>0 → R such that for any dyadic sequence q ∈ DN, there

exists αq ∈ Γ such that for any n ∈ N, putting an =
∑n−1

k=0(δ + L(qk)), we have that

|pwcgen(αq; t)− qn| 6 2−L(qn) for any t ∈ [an + 1
2 , an+1]
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Figure 6: Illustration of the process to generate an almost piecewise-constant function:
bitgen is used to generate a copy signal, which we synchronise with dygen to
copy exactly the sequence of dyadic numbers we specified. In-between copies, we
ensure that copied value does not change (sample and hold).

and pwcgen(αq; t) ∈ In for any t ∈ [an, an + 1
2 ] where11

In :=
[
pwcgen(αq; an), pwcgen(αq; an + 1

2)
]

+ 2−L(qn)[−1, 1].

Finally, the map q 7→ αq is (νωQ, ρ
p)-computable.

Proof. Apply Theorem 4.1 to get δ ∈ N, dygen uniformly-generable, and αq, βq such that
for any n ∈ N,

|dygen(αq, βq; t)− qn| 6 2−L(qn)−3 for any t ∈ [an, an + 1
2 ]

where an =
∑n−1

k=0(L(qk) + δ). Let b ∈ {0, 1}N be the bit sequence defined by

bn =

{
1 if n = ak for some k

0 otherwise.

Apply Theorem 5.2 to get bitgen and γb such that for any µ ∈ R>0, n ∈ N and t ∈ [n, n+ 1
2 ],

|bitgen(γb, µ, t)− bn| 6 e−µ.

Let xn = L(qn) + 3 and apply Theorem 3.3 to get λa and fastgen such that for any n ∈ N,

fastgen(λa; t) > xn for all t ∈ [n, n+ 1].

Consider the following system for all t ∈ R>0:

y(0) = q0, y′(t) = ψ(t)r(t), r(t) = pereach(t, φ(t), y(t), g(t))

where
φ(t) = t+ fastgen(λa; t), ψ(t) = 2bitgen(γb, φ(t) +R(t), t),

g(t) = dygen(αq, βq; t), R(t) = 1 + r(t)2.

11With the convention that [a, b] = [min(a, b),max(a, b)] and I + αJ = {x+ αy : x ∈ I, y ∈ J}.
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We omitted the parameters α, β, γ, λ in the functions g and φ to make it more read-
able. It is clear that g and φ are uniformly-generable since bitgen, fastgen, dygen are
uniformly-generable. It follows that12 (q0, α, β, γ, λ, t) 7→ y(t) is also uniformly-generable by
Theorem 2.6. Indeed, the only extra thing we need to check is that the initial condition is a
computable function of the parameters, which it is since we just need to extract q0 from the
list of parameters.

We will show the result by induction. Let n ∈ N and assume that |y(an)− qn| 6 2−xn .
Note that this is trivially satisfied for n = 0 since a0 = 0 and thus y(a0) = y(0) = q0. We
will now do the analysis of the behavior of y over [an, an+1] by making a case distinction
between [an, an + 1] and [an + 1, an+1]. Note that for all t, R(t) > |r(t)| > 0.
When t ∈ [an,an + 1

2 ], we have that

|bitgen(γb, µ, t)− ban | 6 e−µ

but ban = 1 by definition thus

bitgen(γb, φ(t) +R(t), t) > 1− e−φ(t) > 1
2

since φ(t) > fastgen(λa; t) > 1. Furthermore,

φ(t) > fastgen(λa; t) > fastgen(λ;n) > xn > 2.

Thus ψ(t)φ(t) = 2bitgen(γb, φ(t) +R(t), t)φ(t) > xn > 2. Furthermore,

|g(t)− qn| = |dygen(αq, βq; t)− qn| 6 2−xn (6.1)

thus we can apply Theorem 2.13 to get the existence of y and item (i) to get that

|y(an + 1
2)− qn| 6 2−xn + e−xn 6 2−xn+1. (6.2)

Note that (6.1) implies that

qn − 2−xn 6 g(t) 6 qn + 2−xn

and thus (6.2) proves that

y(an + 1
2)− 2−xn+1 6 qn 6 y(an + 1

2) + 2−xn+1. (6.3)

Furthermore, Theorem 2.13 item (v) also gives us that

min(y(an), qn − 2−x) 6 y(t) 6 max(y(an), qn + 2−xn)

min(y(an), y(an + 1
2)− 3 · 2−xn) 6 y(t) 6 max(y(an), y(an + 1

2) + 3 · 2−xn) using (6.3)

y(t) ∈ [y(an), y(an + 1
2)] + [−3 · 2−xn , 3 · 2−xn ]

y(t) ∈ [y(an), y(an + 1
2)] + [−2−L(qn), 2−L(qn)]. (6.4)

When t ∈ [an + k + 1
2 ,an + k + 1] for an 6 an + k < an+1, we have that

y′(t) = ψ(t)pereach(t, φ(t), y(t), g(t))

where |ψ(t)| 6 2 since |bitgen| 6 1 by Theorem 5.2 and

φ(t) > t+ fastgen(λa; t) > t+ fastgen(λ;n) > t+ xn.

12Technically, we have to include q0 in the parameters, even though the sequence q is implicitly encoded
in other parameters. This is because the initial condition must be q0 for the proof to work.
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Thus by Theorem 2.13 item (iii) we have that

|y(t)− y(an + k + 1
2)| 6

∫ t

an+k+
1
2

ψ(u) exp(−φ(u))du 6 1
22e−xn

∫ t

an+k+
1
2

e−udu.

When t ∈ [an + k,an + k + 1
2 ] for an < an + k < an+1, we have that

|bitgen(γb, µ, t)− ban+k| 6 e−µ

but ban+k = 0 by definition thus

|bitgen(γb, φ(t) +R(t), t)| 6 e−φ(t)−R(t).

Furthermore,

φ(t) > t+ fastgen(λa; t) > t+ fastgen(λ;n) > t+ xn.

Thus
|ψ(t)| = 2|bitgen(γb, φ(t) +R(t), t)| 6 2e−t−xne−R(t) 6 2e−t−xne−|r(t)|.

It follows that
y′(t) = ψ(t)r(t)

where
|ψ(t)r(t)| 6 2e−φ(t)−R(t)|r(t)| 6 2e−t−xn .

Consequently,

|y(t)− y(an + k)| 6
∫ an+k+

1
2

an+k
|ψ(u)r(u)|du 6 e−xn

∫ an+k+
1
2

an+k
e−udu.

Putting everything together we get that for all t ∈ [an + 1
2 , an+1],

|y(t)− y(an + 1
2)| 6 e−xn

∫ t

an+1
e−udu 6 e−xn

and thus using (6.2), for all t ∈ [an + 1
2 , an+1],

|y(t)− qn| 6 e−xn + |y(an + 1
2)− qn| 6 e−xn + 2−xn+1 6 2−xn+2 6 2−L(qn).

Also recall (6.4) that for all t ∈ [an, an + 1
2 ],

y(t) ∈ [y(an), y(an + 1
2)] + [−2−L(qn), 2−L(qn)].

We have already shown that the map Y (q0, αq, βq, γq, λa, t) = y(t) is uniformly-generable.
Finally, we need to show computability of the map q 7→ (αq, βq, γb, λa). Computability of αq
and βq follows from Theorem 4.1. The sequence (an)n, and thus (bn)n, is easily computed
from q. It follows that from Theorem 5.2 that γb is computable from b, and from Theorem 3.3
that λa is computable from a.
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7. Proof of the main theorem

The proof works in several steps. First we show that using an almost constant function,
we can approximate functions that are bounded and change very slowly. We then relax all
these constraints until we get to the general case. In the following, we only consider total
functions over R. See Remark on page 6 for more details.

Definition 7.1 (Universality). Let I ⊆ R and C ⊆ C0(I) × C0(I,R>0). We say that the
universality property holds for C if there exists d ∈ N, Γ ⊆ Rd and a uniformly-generable
function u : Γ× I → R such that for every (f, ε) ∈ C, there exists α ∈ Γ such that

|u(α; t)− f(t)| 6 ε(t) for all t ∈ I.
The universality property is said to be effective if furthermore the map (f, ε) 7→ α is
([ρ→ ρ]2, ρd)-computable.

Lemma 7.2. There exists a constant c > 0 such that the universality property holds for all
(f, ε) on R>0 such that for all t ∈ R>0:

• ε is decreasing and − log2 ε(t) 6 c′ + t for some constant c′,
• f(t) ∈ [0, 1],
• |f(t)− f(t′)| 6 cε(t+ 1) for all t′ ∈ [t, t+ 1].

Furthermore, the universality property is effective for this class.

Proof Sketch. This is essentially a application of pwcgen with a small twist. Indeed the
bound on f guarantees that dyadic rationals are enough. The bound on the rate of change of
f guarantees that a single dyadic can provide an approximation for a long enough time. And
the bound on ε guarantees that we do not need too many digits for the approximations.

Proof. Let c = 1
8 . Apply Theorem 6.1 to get p, δ ∈ N and pwcgen. Let f and ε be as

described in the statement. For any n ∈ N, let qn ∈ D be such that

|f(n)− qn| 6 2−L(qn) 6 cε(n+ 1). (7.1)

Since by assumption, − log2 ε(n+ 1) 6 c′ + n+ 1, we can always choose qn so that

L(qn) =
⌈
c′
⌉

+ n+ 1.

Then by Theorem 6.1, there exists αq ∈ Rp such that

|pwcgen(αq; t)− qn| 6 2−L(qn) for any t ∈ [an + 1
2 , an+1]

and

pwcgen(αq; t) ∈
[
pwcgen(αq; an), pwcgen(αq; an + 1

2)
]

for any t ∈ [an, an + 1
2 ] (7.2)

where

an =
n−1∑
k=0

(δ + L(qk)) =
n−1∑
k=0

(δ +
⌈
c′
⌉

+ n+ 1) = n(δ +
⌈
c′
⌉

+ 1) + 1
2n(n− 1).

Introduce the function
ξ(t) = t(δ +

⌈
c′
⌉

+ 1) + 1
2 t(t− 1)

so that an = ξ(n) and note that ξ is increasing and generable. Let t ∈ [ξ−1(an+ 1
2), ξ−1(an+1)],

since ξ is increasing, so is ξ−1 and

n = ξ−1(an) 6 ξ−1(an + 1
2) 6 t 6 ξ−1(an+1) = n+ 1.
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So in particular,
|f(n)− f(t)| 6 cε(n+ 1)

by the assumption on f , since t ∈ [n, n+ 1]. It follows that

|pwcgen(αq; ξ(t))− f(t)| 6 |pwcgen(αq; ξ(t))− qn|
+ |qn − f(n)|+ |f(n)− f(t)|

6 2−L(qn) + 2−L(qn) + cε(n+ 1) since ξ(t) ∈ [an + 1
2 , an+1]

6 3cε(n+ 1)

6 3cε(t) since ε is decreasing

6 ε(t) since 3c 6 1.

So in particular, in implies that for all n ∈ N,

|pwcgen(αq; an + 1
2)− f(ξ−1(an + 1

2))| 6 3cε(n+ 1) (7.3)

and
|pwcgen(αq; an+1)− f(n+ 1)| 6 3cε(n+ 2). (7.4)

Let t ∈ [ξ−1(an+1), ξ−1(an+1 + 1
2)], it follows using (7.2) that there exists λ ∈ [0, 1] such that

pwcgen(αq; ξ(t)) = λpwcgen(αq; an+1) + (1− λ)pwcgen(αq; an+1 + 1
2).

We also have that

n+ 1 = ξ−1(an+1) 6 t 6 ξ−1(an+1 + 1
2) 6 ξ−1(an+2) = n+ 2.

Thus

|pwcgen(αq; ξ(t))− f(t)| 6 λ|pwcgen(αq; an+1)− f(t)|
+ (1− λ)|pwcgen(αq; an+1 + 1

2)− f(t)|
6 |pwcgen(αq; an+1)− f(n+ 1)|+ |f(n+ 1)− f(t)|

+ |pwcgen(αq; an+1 + 1
2)− f(ξ−1(an+1 + 1

2))|
+ |f(ξ−1(an+1 + 1

2))− f(t)|
6 3cε(n+ 2) + |f(n+ 1)− f(t)| using (7.3)

+ 3cε(n+ 2) using (7.4)

+ |f(ξ−1(an+1 + 1
2))− f(t)|

6 3cε(n+ 2) + cε(n+ 2) since t ∈ [n+ 1, n+ 2]

+ 3cε(n+ 2)

+ cε(t) since ξ−1(an+1 + 1
2) ∈ [t, t+ 1]

6 7cε(n+ 2) + cε(t)

6 8cε(t) since ε decreasing

6 ε(t) since 8c 6 1.

Putting everything together, we can get that

|pwcgen(αq; ξ(t))− f(t)| 6 ε(t) for all t > ξ−1(a0 + 1
2).

But note that ξ−1(a0 + 1
2) 6 ξ−1(a1) = 1 so we have that

|pwcgen(αq; ξ(t))− f(t)| 6 ε(t) for all t > 1
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and note that (α; t) 7→ pwcgen(α; ξ(t)) is uniformly-generable.
Note that this is not exactly the claimed result since it is only true for t > 1 instead of

t > 0 but this can remedied for with proper shifting. Indeed, consider the operator

(Sf)(t) = f(max(t− 1, 0)).

We claim that if (f, ε) satisfies the assumption of the Lemma, then so does (Sf, Sε) and

|pwcgen(α; ξ(t))− (Sf)(t)| 6 (Sε)(t) for all t > 1

|pwcgen(α; ξ(t))− f(t− 1)| 6 ε(t− 1) for all t > 1

|pwcgen(α; ξ(t+ 1))− f(t)| 6 ε(t) for all t > 0.

We need to show computability of the map (f, ε) 7→ αq. By Theorem 6.1, it is enough
to show computability of (f, ε) 7→ q. Since the continuous function evaluation map is
computable (for the representation we use), the maps (f, n) 7→ f(n) and (ε, n) 7→ cε(n+ 1)
are ([[ρ → ρ], νN], ρ)-computable. It follows that for every n, we can compute an integer
pn such that 2−pn 6 cε(n + 1). Indeed, cε(n + 1) > 0 thus such a pn exists and any
Cauchy sequence for cε(n+ 1) is eventually positive; therefore it suffices to compute rational
approximations of cε(n+ 1) with increasing precision until we get a positive one, from which
we can compute pn. Given such a pn, one can compute a dyadic approximation qn of f(n)
with precision pn. This sequence (qn)n then satisfies (7.1).

Lemma 7.3. The universality property holds for all (f, ε) on R>0 such that f and ε are
differentiable, ε is decreasing and f(t) ∈ [0, 1] for all t ∈ R>0. Furthermore, the universality
property is effective for this class if we are given a representation of f ′ and ε′ as well13

Proof Sketch. Consider F = f ◦ h−1 and E = ε ◦ h−1 where h is a fast-growing function
like fastgen. Then the faster h grows, the slower E and F change and thus we can apply
Lemma 7.2 to (F,E). We recover an approximation of f from the approximation of F .

Proof. Apply Lemma 7.2 to get c > 0 and u uniformly-generable. For every n ∈ N, let

an = max

(
maxu∈[0,n+2] |f ′(u)|

cε(n)
,
−minu∈[0,n+1] ε

′(u)

ln(2)ε(n)

)
− 1.

Check that an is increasing because ε is decreasing. Then apply Theorem 3.3 to get αa.
Recall that fastgen(αa; ·) is positive, thus we can let

g(α; t) =

∫ t

0
1 + fastgen(α;u)du, hα(t) = g(α, t).

Clearly g is uniformly-generable since fastgen is uniformly-generable. Since fastgen is
increasing, hα is increasing. Furthermore,

hαa(n+ 1) >
∫ 1+n

n
fastgen(αa;u)du >

∫ 1+n

n
fastgen(αa;n)du = fastgen(αa;n) > an.

Thus hαa(n)→ +∞ as m→ +∞. This implies that hαa is bijective from R>0 to R>0. Note
that since hαa is increasing then h−1αa is also increasing. Also since hαa(t) > t then h−1αa (t) 6 t
for all t ∈ R>0. Let f, ε be as described in the statement. For any ξ ∈ R>0, let

F (ξ) = f(h−1αa (ξ)), E(ξ) = ε(h−1αa (ξ)).

13In other words, the map (f, f ′, ε) 7→ α is ([ρ→ ρ]4, ρd])−computable. This is necessary because one can
build some computable f such that f ′ is not computable [Wei00].
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Then for any t ∈ R>0,

F ′(hαa(t)) = (h−1αa )′(hαa(t))f ′(h−1αa (hαa(t)))

= 1
h′αa (t)

f ′(t) since h′(h−1)′ ◦ h = 1

= 1
1+fastgen(αa;t)

f ′(t).

Also note that since h′αa(t) = 1 + fastgen(αa; t) > 1, then (h−1αa )′(t) 6 1 and thus h−1αa is
1-Lipschitz. Let ξ ∈ R>0 and ξ′ ∈ [ξ, ξ + 1]. Write ξ = hαa(t) and ξ′ = hαa(t′), then

|F (ξ)−F (ξ′)|
E(ξ+1) 6

|ξ−ξ′|maxu∈[ξ,ξ′] |F ′(ξ)|
E(ξ+1)

6
maxu∈[t,t′] |F ′(hαa (u))|

E(ξ+1) since |ξ − ξ′| 6 1

= max
u∈[t,t′]

|f ′(u)|
E(ξ+1)(1+fastgen(αa;u))

6
maxu∈[t,t+1] |f ′(u)|

ε(h−1
αa (hαa (t)+1))(1+fastgen(αa;t))

since fastgen is increasing.

but since h−1αa is 1-Lipschitz and increasing, h−1αa (hαa(t) + 1) 6 h−1αa (hαa(t)) + 1 = t+ 1,

6
maxu∈[t,t+1] |f ′(u)|

ε(t+1)(1+fastgen(αa;t))
since ε is decreasing

6
maxu∈[t,t+1] |f ′(u)|

ε(t+1)(1+fastgen(αa;btc)) since fastgen is decreasing

6
maxu∈[t,t+1] |f ′(u)|
ε(t+1)(1+abtc))

6
maxu∈[t,t+1] |f ′(u)|

ε(t+1)
maxu∈[0,btc+2] |f

′(u)|
cε(btc)

= c
maxu∈[t,t+1] |f ′(u)|
maxu∈[0,btc+2] |f ′(u)|

ε(btc)
ε(t+1)

6 c since ε is decreasing.

Similarly,

E′(hαa(t)) = (h−1αa )′(hαa(t))ε′(h−1αa (hαa(t)))

= 1
h′αa (t)

ε′(t)

= 1
1+fastgen(αa;t)

ε′(t).

Thus

− log2E(ξ) = − 1
ln 2

∫ ξ

0

E′(e)

E(e)
de− 1

2 log2E(0)

= −1
2 log2 ε(0) + 1

ln 2

∫ ξ

0

−E′(e)
E(e)

de

6 −1
2 log2 ε(0) + ξ

ln 2 sup
e∈[0,ξ]

−E′(e)
E(e)

6 −1
2 log2 ε(0) + ξ

ln 2 sup
t∈[0,h−1

αa (ξ)]

−E′(hαa(t))

E(hαa(t))
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6 −1
2 log2 ε(0) + ξ

ln 2 sup
t∈[0,h−1

αa (ξ)]

−ε′(t)
ε(t)(1 + fastgen(αa; t))

6 −1
2 log2 ε(0) + ξ

ln 2 sup
t∈[0,ξ]

−ε′(t)
ε(t)(1 + fastgen(αa; t))

using h−1αa (ξ) 6 ξ

6 −1
2 log2 ε(0) + ξ

ln 2 sup
t∈[0,ξ]

−ε′(t)
ε(t)(1 + abtc)

6 −1
2 log2 ε(0) + ξ

ln 2 sup
t∈[0,ξ]

−ε′(t)

ε(t)
−minu∈[0,btc+1] |ε′(u)|

ln(2)ε(btc)

= −1
2 log2 ε(0) + ξ sup

t∈[0,ξ]

ε(btc)
ε(t)

ε′(t)

minu∈[0,btc+1] ε′(u)

6 −1
2 log2 ε(0) + ξ since ε is decreasing and ε′ is negative

and thus
− log2E(ξ) 6 c′ + ξ

for some constant c′. Therefore we can apply Lemma 7.2 to (F,E) and get βE,F ∈ Rp such
that

|u(βE,F ; ξ)− F (ξ)| 6 E(ξ) for all ξ ∈ R>0.

For any α, β, t, let
ū(α, β; t) = u(β; g(α, t)).

Clearly ū is uniformly-generable because u and g are uniformly-generable. Then for any
t ∈ R>0, recall that g(αa; t) = hαa(t) and thus

|ū(αa, βE,F ; t)− f(t)| = |u(β;hαa(t))− F (hαa(t))| 6 E(hαa(t)) = ε(t).

To show the effectiveness of the property, it suffices to show that (f, f ′, ε) 7→ (a,E, F )
is computable. Indeed, αa and βE,F are computable from a,E, F by Lemma 7.2 and
Theorem 3.3. Given a, the maps E and F are computable from f and ε because hαa is
computable and increasing, thus its inverse is computable. Finally, to show computability
of a, notice that to define a suitable value for each an, it is enough to compute an upper
bound on the maximum of continuous functions – defined from f, f ′, ε, ε′ – over compact
intervals, which is a computable operation.

Lemma 7.4. The universality property holds for all (f, ε) on R>0 such that f and ε are
differentiable and ε is decreasing. Furthermore, the universality property is effective for this
class if we are given a representation of f ′ and ε′ as well.

Proof. Apply Lemma 7.3 to get p ∈ N and u uniformly-generable. Let a ∈ NN be an
increasing sequence, and apply Theorem 3.3 to get αa. Recall that fastgen(αa; ·) is positive
and increasing. Let f, ε be as described in the statement. For any t ∈ R>0, let

F (t) = 1
2 + f(t)

1+fastgen(αa;t)
, E(t) = ε(t)

1+fastgen(αa;t)
.

Then for any n ∈ N and t ∈ [n, n+ 1], we have that

|F (t)− 1
2 | =

f(t)
1+fastgen(αa;t)

6 |f(t)|
1+an

.
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Thus we can choose an = 2 maxu∈[t,t+1] |f(u)| and get that |F (t) − 1
2 | 6

1
2 for all t ∈ R>0,

and thus F (t) ∈ [0, 1]. Furthermore, F is differentiable and E is decreasing because ε is
decreasing and fastgen increasing. Apply Lemma 7.3 to (F, ε) to get βF ∈ Rp such that

|u(βF ; t)− F (t)| 6 E(t) for all t ∈ R>0.

For any α, β, t, let
ū(α, β; t) = (1 + fastgen(α; t))(u(β; t)− 1

2).

Clearly ū is uniformly-generable because u and fastgen are uniformly-generable. Then for
any t ∈ R>0,

|ū(αa, βF ; t)− f(t)| =
∣∣∣(1 + fastgen(αa; t))

(
u(β;hαa(t))− 1

2 −
f(t)

1+fastgen(αa;t)

)∣∣∣
= (1 + fastgen(αa; t))| (u(β;hαa(t))− F (t))|
6 (1 + fastgen(αa; t))E(t)

6 ε(t).

The effectiveness of αa and βF comes from previous lemmas and boils down again to compute
an upper bound on the maximum of a continuous function.

Lemma 7.5. The universality property holds for all continuous (f, ε) on R>0. Furthermore,
the universality property is effective for this class.

Proof. Apply Lemma 7.4 to get p ∈ N and u uniformly-generable. Let f ∈ C0(R>0,R) and

ε ∈ C0(R>0,R>0). Then there exists f̃ ∈ C1(R>0,R) and a decreasing ε̃ ∈ C1(R>0,R>0)
such that

|f̃(t)− f(t)| 6 ε̃(t) 6 ε(t)
2 . (7.5)

We can then apply Lemma 7.4 to (f̃ , ε̃) to get αf̃ ∈ Rp such that

|u(αf̃ ; t)− f̃(t)| 6 ε̃(t) for all t ∈ R>0.

But then for any t ∈ R>0,

|u(αf̃ ; t)− f(t)| 6 |u(αf̃ ; t)− f̃(t)|+ |f̃(t)− f(t)|
6 ε̃(t) + ε̃(t)

6 ε(t).

To show the computability of αf̃ , it suffices to show computability of f̃ and ε, and their

derivatives, from f and ε, and apply Lemma 7.4. Is it not hard to find C1 functions satisfying
(7.5). For example, one can proceed over all intervals [n, n + 1] and then use C1 pasting.
Over a compact interval, one can use an effective variant of Stone-Weierstrass theorem.

Lemma 7.6. There exists a uniformly-generable function u such that for all f ∈ C0(R>0,R),
ε ∈ C0(R,R>0) and δ > 0, there exists α such that

• |u(α; t)− f(t)| 6 ε(t) for all t > 0,
• |u(α; t)| 6 |f(−t)|+ ε(t) for all t ∈ [−δ, 0],
• |u(α; t)| 6 ε(t) for all t 6 −δ.
Furthermore, the map (f, ε, δ) 7→ α is ([[ρ→ ρ]2, ρ], ρ)−computable.
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Proof. Apply Lemma 7.5 to get u. Note that t 7→ f(
√
t), t 7→ ε(

√
(t)) and max are

continuous, so there exists α such that

|u(α; t)− f(
√
t)| 6 1

2 min(ε(
√
t), ε(−

√
t)) for all t > 0.

For any α, t define

U(α, β, δ; t) = s(t)u(α; t2), s(t) = 1
2 + 1

2 tanh(A(t)( δ2 + t)), A(t) = fastgen(β; t).

Let an be a sequence such that for all n ∈ N,

an > 2
δ

(
sup

t∈[n,n+1]
|f(t)|+ sup

t∈[−n−1,n+1]
− log ε(t)

)
.

Then there exists βa such that for all n ∈ N,

fastgen(β; t) > an for all t > n.

Let t > 0, then

A(t) = fastgen(β; t)

> abtc

> 2
δ

(
sup

u∈[btc,dte]
|f(u)|+ sup

u∈[−dte,dte]
− log ε(u)

)
> 2

δ (|f(t)| − log ε(t))

( δ2 + t)A(t) > |f(t)| − log ε(t)

|1− tanh(( δ2 + t)A(t))| 6 e−|f(t)|+log ε(t)

|1− s(t)| 6 ε(t)
2 e−|f(t)|.

It follows that

|f(t)− U(α, β, δ; t)| 6 |f(t)− u(α; t2)|+ |u(α; t2)(1− s(t))|
6 1

2ε(t) + |u(α; t2)||1− s(t)|
6 1

2ε(t) + |u(α; t2)||1− s(t)|

6 1
2ε(t) + (|f(t)|+ 1

2ε(t))
ε(t)
2 e−|f(t)|

6 ε(t) using e−xx 6 1.

Let t ∈ [−δ, 0], then |s(t)| 6 1 thus

|U(α, β, δ; t)| 6 |u(α; t2)| 6 |f(−t)|+ ε(t).

Let t 6 −δ, then with a similar argument as above

|s(t)| 6 ε(t)
2 e−|f(−t)|.

It follows that

|U(α, β, δ; t)| 6 |u(α; t2)||s(t)| 6 (|f(−t)|+ ε(t)) ε(t)2 e−|f(−t)| 6 ε(t).

The effectiveness of α comes from Lemma 7.5 and the fact the map (f, t) 7→ f(
√
t) is

([[ρ→ ρ], ρ], ρ)−computable since
√
. is (ρ, ρ)−computable. To show the computability of β,

it suffices to show the computability of an, which boils down to computing an upper bound
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for f and ε over compact intervals. The effectiveness for δ is trivial since it is the identity
mapping (δ is given unmodified to U).

Lemma 7.7. The universality property holds for all continuous (f, ε) on R. Furthermore,
the universality property is effective for this class.

Proof. Let c = 1
4 . Apply Lemma 7.6 to get u. Then there exists α such that

• |u(α; t)− f(t)| 6 cε(t) for all t > 0,
• |u(α; t)| 6 |f(−t)|+ cε(t) for all t ∈ [−1, 0],
• |u(α; t)| 6 cε(t) for all t 6 −1.

For all t ∈ R, let
g(t) = f(−t)− u(α;−t).

Since this is a continuous function, we can apply the lemma again to get α′ such that

• |u(α′; t)− g(t)| 6 cε(t) for all t > 0,
• |u(α′; t)| 6 |g(−t)|+ cε(t) for all t ∈ [−1, 0],
• |u(α′; t)| 6 cε(t) for all t 6 −1.

For all α, α′, t let
U(α, α′; t) = u(α;u) + u(α′;−t).

We claim that U satisfies the theorem:

• If t > 1 then −t 6 −1 thus

|U(α, α′; t)− f(t)| 6 |u(α; t)− f(t)|+ |u(α′;−t)| 6 cε(t) + cε(t) 6 ε(t).

• If 0 6 t 6 1 then −1 6 −t 6 0 thus

|U(α, α′; t)− f(t)| 6 |u(α; t)− f(t)|+ |u(α′;−t)|
6 cε(t) + |g(−t)|+ cε(t)

6 cε(t) + |g(−t)|+ cε(t)

6 cε(t) + |f(t)− u(α; t)|+ cε(t)

6 3cε(t) 6 ε(t).

• If t 6 0 then −t > 0 and thus

|U(α, α′; t)− f(t)| = |u(α′; t) + u(α; t)− f(t)|
= |u(α′;−t)− g(−t)|
6 cε(t).

The computability of α follows directly from the previous lemma.

We can now show the main theorem.

Proof of Theorem 1.3. This is mostly rewriting but we do it full for completeness.
Apply Lemma 7.7 to get a uniformly-generable function u : Γ× R→ R. By definition

of u, there exists an integer d, a polynomial matrix q with coefficients in K, t0 ∈ K and a
computable function y0 : Γ→ Rd such that for all α ∈ Γ there exists yα : R→ Rd such that

• yα(t0) = y0(α) and y′α(t) = q(yα(t)) for all t ∈ R,
• (yα(t))1 = u(α; t) for all t ∈ R.
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Note that q is a polynomial that does not depend on α but potentially has coefficients in
K that are not rational. We can eliminate those as explained in Remark 2.3. Now we get
that for all continuous functions f, ε, there exists α ∈ Γ such that |f(t) − u(α, t)| 6 ε(t).
Therefore if we consider the unique solution to z(0) = y(α; 0) and z′ = q(z) then z(t) = yα(t)
and we have the result. Note that we have not used the initial condition z(t0) = y0(α)
because we want t0 = 0 in the statement of the theorem. Furthermore, the initial condition
y(α; 0) is computable from f and ε because y(α; 0) is computable from t0 and y0(α) by
Proposition 2.7, t0 ∈ K is computable, y0 is computable and α is computable from f, ε by
Lemma 7.7.
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[Bor99] Emile Borel. Mémoire sur les séries divergentes. Annales Scientifiques de l’Ecole Normale
Supérieure, 16:9–136, 1899.

[Bos86] Michael Boshernitzan. Universal formulae and universal differential equations. Annals of mathe-
matics, 124(2):273–291, 1986.

[BP17] Olivier Bournez and Amaury Pouly. A universal ordinary differential equation. In International
Colloquium on Automata Language Programming, ICALP’2017, 2017.

[Bra05] Vasco Brattka. Computability & complexity in analysis: Tutorial. http://www.cca-net.de/

vasco/cca/tutorial.pdf, 2005.
[Bri02] Keith Briggs. Another universal differential equation. arXiv preprint math/0211142, 2002.
[Bus31] Vannevar Bush. The differential analyzer. A new machine for solving differential equations. J.

Franklin Inst., 212:447–488, 1931.
[CJ16] Etienne Couturier and Nicolas Jacquet. Construction of a universal ordinary differential equation

C∞ of order 3. arXiv preprint arXiv:1610.09148, 2016.
[CPSW05] David C. Carothers, G. Edgar Parker, James S. Sochacki, and Paul G. Warne. Some properties

of solutions to polynomial systems of differential equations. Electron. J. Diff. Eqns., 2005(40),
April 2005.

[Duf81] Richard J Duffin. Rubel’s universal differential equation. Proceedings of the National Academy of
Sciences, 78(8):4661–4662, 1981.

http://www.cca-net.de/vasco/cca/tutorial.pdf
http://www.cca-net.de/vasco/cca/tutorial.pdf


Vol. 16:1 A UNIVERSAL ORDINARY DIFFERENTIAL EQUATION 28:37

[GBC09] Daniel S. Graça, Jorge Buescu, and Manuel L. Campagnolo. Computational bounds on polynomial
differential equations. Appl. Math. Comput., 215(4):1375–1385, 2009.
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