
Logical Methods in Computer Science
Volume 16, Issue 1, 2020, pp. 27:1–27:31
https://lmcs.episciences.org/

Submitted Jan. 30, 2019
Published Feb. 28, 2020

UNIQUE PERFECT MATCHINGS, FORBIDDEN TRANSITIONS
AND PROOF NETS FOR LINEAR LOGIC WITH MIX

LÊ THÀNH DŨNG NGUYỄN

Université publique, France
e-mail address: nltd@nguyentito.eu

Abstract. This paper establishes a bridge between linear logic and mainstream graph
theory, building on previous work by Retoré (2003). We show that the problem of correctness
for MLL+Mix proof nets is equivalent to the problem of uniqueness of a perfect matching.
By applying matching theory, we obtain new results for MLL+Mix proof nets: a linear-time
correctness criterion, a quasi-linear sequentialization algorithm, and a characterization of
the sub-polynomial complexity of the correctness problem. We also use graph algorithms
to compute the dependency relation of Bagnol et al. (2015) and the kingdom ordering of
Bellin (1997), and relate them to the notion of blossom which is central to combinatorial
maximum matching algorithms.

In this journal version, we have added an explanation of Retoré’s “RB-graphs” in terms
of a general construction on graphs with forbidden transitions. In fact, it is by analyzing
RB-graphs that we arrived at this construction, and thus obtained a polynomial-time
algorithm for finding trails avoiding forbidden transitions; the latter is among the material
covered in another paper by the author focusing on graph theory.

1. Introduction

1.1. Algorithmics of proofs in linear logic. One of the major innovations introduced at
the birth of linear logic [Gir87] was a representation of proofs as graphs, instead of trees as
in natural deduction or sequent calculus. A distinctive property of these proof nets is that
checking that a proof is correct cannot be done merely by a local verification of inference
steps: among the graphs which locally look like proof nets, called proof structures, some are
invalid proofs. Hence the correctness problem: given a proof structure, is it a real proof net?

A lot of work has been devoted to this decision problem, and in the case of the mul-
tiplicative fragment of linear logic (MLL), whose proof nets are the most satisfactory, it
can be considered solved from an algorithmic point of view. Indeed, Guerrini [Gue11] and
Murawski and Ong [MO06] have found linear-time tests for MLL correctness; the problem has

Key words and phrases: correctness criteria, matching algorithms.
∗ Extended version of a FSCD 2018 paper.
The manifesto https://pageperso.lif.univ-mrs.fr/~sylvain.sene/affiliation.html (in French;

archived on 2020–02–12 on the Internet Wayback Machine (https://archive.org/)) explains the given
affiliation.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(1:27)2020
c© Lê Thành Dũng Nguyễn
CC© Creative Commons

https://lmcs.episciences.org/
https://pageperso.lif.univ-mrs.fr/~sylvain.sene/affiliation.html
https://archive.org/
http://creativecommons.org/about/licenses

27:2 Lê Thành Dũng Nguyễn Vol. 16:1

also been shown to be NL-complete by Jacobé de Naurois and Mogbil [JdNM11]. Both the
linear-time algorithms we mentioned also solve the corresponding search problem: computing
a sequentialization of a MLL proof net, i.e., a translation into sequent calculus.

However, for MLL extended with theMix rule [FR94] (MLL+Mix), the precise complexity
of deciding correctness has remained unknown (though a polynomial-time algorithm was
given by Danos [Dan90]). Thus, one of our goals in this paper is to study the following
problems:

Problem 1.1 (MixCorr). Given a proof structure π, is it an MLL+Mix proof net?

Problem 1.2 (MixSeq). Reconstruct a sequent calculus proof for an MLL+Mix proof net.

1.2. Proof nets vs graph theory. It turns out that a linear-time algorithm for MixCorr
follows immediately from already known results1, see Theorem 4.1. The key is to use a
construction by Retoré [Ret99, Ret03] to reduce it to the problem of uniqueness of a given
perfect matching, which can be solved in linear time [GKT01]:

Problem 1.3 (UniquenessPM). Given a graph G, together with a perfect matching M of
G, is M the only perfect matching of G? Equivalently, is there no alternating cycle for M?

This brings us to the central idea of this paper: from the point of view of algorithmics,
MLL+Mix proof nets and unique perfect matchings are essentially the same thing. This allows
us to apply matching theory to the study of proof nets, leading to several new results. Indeed,
one would expect graph algorithms to be of use in solving problems on proof structures,
since they are graphs! But for this purpose, a bridge between the theory of proof nets and
mainstream graph theory is needed, whereas previous work on the former mostly made use
of “homemade” objects such as paired graphs (an exception being Murawski and Ong’s use of
dominator trees). By building on Retoré’s discovery of a connection with perfect matchings,
this paper proposes such a bridge.

Thus, proof structures are revealed to be part of a family of graph-theoretic objects
which admit equivalent (as shown by Szeider [Sze04]) “structure from acyclicity” properties.
In linear logic, the corresponding acyclicity property has been known for a long time: it is the
Danos–Regnier correctness criterion [DR89], a necessary and sufficient condition for a proof
structure to be a proof net. These connections have also inspired new results concerning
other members of this family, not only perfect matchings but also, e.g., “edge-colored graphs”;
that is the subject of another paper by the author [Ngu19].

Another occurrence of an equivalent “structure from acyclicity” result, of historical
interest for us, is Retoré’s “aggregates” [Ret93, Chapter 2]2, an early attempt to define a
purely graph-theoretic counterpart to the theory of MLL+Mix correctness. It turns out that
these aggregates occur naturally in graph theory as a tractable case of the “rainbow path
problem” as we show in [Ngu19].

1A similar historical remark can be made about correctness for MLL without Mix, see Remark 4.2.
2To be more accurate, in the reference given, which is a PhD thesis written in French, they are called

“agrégats”. However, the word “aggregate” is indeed the official translation, and appeared in the title of the
never published note Graph theory from linear logic: Aggregates (Preprint 47, Équipe de Logique, Université
Paris 7). That title is also a good summary for what we try to achieve in the present paper and in [Ngu19].

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:3

1.3. Contributions. First, we establish our equivalence by giving a translation from graphs
equipped with perfect matchings to proof structures (Section 3) — Retoré’s pre-existing
construction takes care of the converse direction3. We also propose later an alternative to
Retoré’s translation (Section 5.1), having better properties with respect to sequentialization;
this yields a new graph-theoretic proof of the sequentialization theorem, i.e., the equivalence
between MLL+Mix proof nets and Danos–Regnier acyclic proof structures.

1.3.1. Complexity of problems on proof nets. As already mentioned, we give the first linear-
time algorithm for MixCorr (Section 4.1). As for its sub-polynomial complexity (Section 4.2),
we show that MixCorr is in randomized NC and in quasiNC (informally, NC is the class of
problems with efficient parallel algorithms). On the other hand, we have a sort of hardness
result: if MixCorr were in NC — in particular, if it were in NL, as for MLL without
Mix — this would imply a solution to a long-standing conjecture by Lovász (Conjecture 4.7)
concerning the related unique perfect matching problem:

Problem 1.4 (UniquePM [KVV85, GKT01, HMT06]). Given a graph G, determine
whether it admits exactly one perfect matching and, if so, find this matching.

We then turn to the sequentialization problem, for which we provide a graph-theoretic
reformulation — thanks to our new translation in Section 5.1 — and an algorithm relying on
this reformulation. This gives us a quasi-linear time4 solution to MixSeq (Section 5.2); to
our knowledge, this beats previous algorithms for MixSeq.

As a demonstration of our matching-theoretic toolbox, we also show how to compute some
information on the set of all sequentializations, namely Bellin’s kingdom ordering [Bel97] of
the links of a MLL+Mix proof net (rediscovered by Bagnol et al. [BDS15] under the name
of order of introduction). We give a polynomial time and a quasiNC algorithm (Section 6),
both relying on an effective characterization of this ordering.

1.3.2. Further connections to graph theory. We also show that this notion of kingdom
ordering admits a direct counterpart in unique perfect matchings. The above-mentioned
characterization, when rephrased in the language of graph theory (Section 6.2), turns out to
involve objects which play a major role in matching algorithms, namely blossoms [Edm65].
In this way, we obtain a new result of independent interest in combinatorics. The appendix
of the conference version of this paper contained a direct proof of this result; instead of
reproducing it here, we have moved it to the companion paper [Ngu19], and limit ourselves
here to the equivalence with the already known [Bel97] proof net version.

Finally, in Section 7 — a new section added for this journal version5 — we analyse
Retoré’s “RB-graphs” reduction [Ret03], and show that it can be understood in terms of
graphs with forbidden transitions [Sze03] which can be seen as the generalized paired graphs.
This reveals a minor subtlety about what kind of cycles RB-graphs actually detect in paired
graphs.

3This is a first difference with the conference version, which did not include Retoré’s translation.
4More precisely, O(n(logn)2(log log n)2) time. Both this and our quasiNC algorithms rely on very recent

advances, respectively on dynamic bridge-finding data structures [HRT18] and on the perfect matching
existence problem [ST17]. Any further progress on these problems would lead to an improvement of our
complexity bounds.

5This results of that new section were previously claimed without proof in a contributed talk at the 1st
International Workshop on Trends in Linear Logic and Applications (TLLA 2017).

27:4 Lê Thành Dũng Nguyễn Vol. 16:1

Contents

1. Introduction 1
1.1. Algorithmics of proofs in linear logic 1
1.2. Proof nets vs graph theory 2
1.3. Contributions 3
2. Preliminaries 4
2.1. Terminology 4
2.2. Perfect matchings, alternating cycles and sequentialization 5
2.3. Proof structures, proof nets and the correctness criterion 6
3. An equivalence through mutual reductions 9
3.1. From proof structures to perfect matchings: Retoré’s RB-graphs 9
3.2. From perfect matchings to proof structures 11
4. On the complexity of MLL+Mix correctness 13
4.1. An immediate linear-time algorithm 13
4.2. Characterizing the sub-polynomial complexity 14
5. Tackling sequentialization via an appropriate translation 15
5.1. A new encoding: graphification 15
5.2. A sequentialization algorithm for MLL+Mix proof nets 17
6. On the kingdom ordering of links 19
6.1. Computing the kingdom ordering 20
6.2. Dependencies and blossoms in unique perfect matchings 21
7. A reconstruction of RB-graphs via forbidden transitions 24
8. Conclusion 26
8.1. Further hardness results: pomset logic and visible acyclicity 26
8.2. Open questions 27
8.3. Other variants of proof nets through the lens of graph theory 27
Acknowledgments 28
References 28
Appendix A. Proof of Lemma 6.5 30

2. Preliminaries

2.1. Terminology.

2.1.1. Graph theory. By default, “graph” refers to an undirected graph. Our paths and cycles
are not allowed to contain repeated vertices6; we will sometimes identify them with
their sets of edges (which characterize them) and apply set operations on them. A bridge of
a graph is an edge whose removal increases the number of connected components.

For directed graphs, the notion of connectedness we consider is weak connectedness, i.e.,
connectedness of the graph obtained by forgetting the edge directions. A predecessor (resp.
successor) of a vertex is the source (resp. target) of some incoming (resp. outgoing) edge.

6This choice of terminology is common, see, e.g., [BJG09, §1.4]. The adjective “elementary” is sometimes
used to refer to such paths and cycles.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:5

(a) Two PMs of the same graph. (b) A graph with a unique PM.

Figure 1. Examples of perfect matchings (PMs). The edges in the matchings
are thick and blue.

2.1.2. Complexity classes. We refer to [JdNM11, §1.4] for the logarithmic space classes L
(deterministic) and NL (non-deterministic) and to [CSV84] for the class AC0 of constant-depth
circuits. The class NCk (resp. quasiNCk [Bar92]) consists of the problems which can be solved
by a uniform7 family of circuits of depth O(logk n) and polynomial (resp. quasi-polynomial,
i.e., 2O(logc n)) size; NC =

⋃
k NC

k and quasiNC =
⋃
k quasiNC

k.
It is well-known that AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P.

2.2. Perfect matchings, alternating cycles and sequentialization.

Definition 2.1. Let G = (V,E) be a graph. A matching (resp. perfect matching) M in G is
a subset of E such that every vertex in V is incident to at most one (resp. exactly one) edge
in M . An alternating path (resp. cycle) for M is a path (resp. cycle) where, for every pair of
consecutive edges, one of them is in the matching and the other one is not.

Testing the existence of a perfect matching in a graph — or, more generally, finding a
maximum cardinality matching — is one of the central computational problems in graph
theory. Combinatorial maximum matching algorithms, starting8 with Edmonds’s blossom
algorithm [Edm65]9, use alternating paths to iteratively increase the size of the matching;
similarly, alternating cycles are important for the problems UniquenessPM and UniquePM
because they witness the non-uniqueness of perfect matchings.

Lemma 2.2 (Berge [Ber57]). Let G be a graph and M be a perfect matching of G. Then if
M ′ 6= M is a perfect matching, the symmetric difference M4M ′ is a vertex-disjoint union
of cycles, which are alternating for both M and M ′. Conversely, if C is an alternating cycle
for M , then M4C is another perfect matching.

As an example, consider Figure 1a. The matching on the left admits an alternating cycle,
the outer square; by taking the symmetric difference between this matching and the set of
edges of the cycle, one gets the matching on the right. Conversely, the symmetric difference
between both matchings (which, in this case, is their union) is the square. Note also that in
Figure 1b, there is no alternating cycle because vertex repetitions are disallowed.

7For NCk and quasiNCk, we may take this to mean that there is a deterministic logarithmic space Turing
machine which, given n in unary, computes the circuit for inputs of size n. We will not enter into the details
of AC0 uniformity.

8Note that the problem was solved long before in the special case of bipartite graphs. In fact, a solution
for this case was found in Jacobi’s posthumous papers [Jac65, JO09].

9This paper is one of the first to propose defining efficient algorithms as polynomial-time algorithms; it
also contributed to the birth of the field of polyhedral combinatorics.

27:6 Lê Thành Dũng Nguyễn Vol. 16:1

Another approach to finding perfect matchings, using linear algebra, was initiated by
Lovász [Lov79] and leads to a randomized NC algorithm by Mulmuley et al. [MVV87].
Recently, Svensson and Tarnawski have shown that this algorithm can be derandomized to
run in deterministic quasiNC [ST17].

There is also a considerable body of purely mathematical work on matchings, starting
from the 19th century. Let us mention for our purposes a result dating from 1959.

Theorem 2.3 (Kotzig [Kot59]). Let G be a graph. Suppose that G admits a unique perfect
matching M . Then M contains a bridge of G.

As shown by Retoré [Ret03], Kotzig’s theorem leads to an inductive characterization of
the set of graphs equipped with a unique perfect matching.

Theorem 2.4 (Sequentialization for unique perfect matchings [Ret03]). The class UPM of
graphs equipped with an unique perfect matching is inductively generated as follows:
• The empty graph (with the empty matching) is in UPM.
• The disjoint union of two non-empty members of UPM is in UPM.
• Let (G = (V,E),M ⊆ E) ∈ UPM and (G′ = (V ′, E′),M ′ ⊆ E′) ∈ UPM, with V and
V ′ disjoint. Let U ⊆ V , U ′ ⊆ V ′ such that U 6= ∅ (resp. U ′ 6= ∅) unless G (resp. G′)
is the empty graph, and let x, x′ be two fresh vertices not in V nor V ′. Then (G′′ =
(V ′′, E′′),M ′′ ⊆ E′′) ∈ UPM, where
– V ′′ = V ∪ V ′ ∪ {x, x′}
– E′′ = E ∪ E′ ∪ {(x, x′)} ∪ (U × {x}) ∪ (U ′ × {x′})
– M ′′ = M ∪M ′ ∪ {(x, x′)}

Remark 2.5. By relaxing the non-emptiness condition on U and U ′, the disjoint union
operation becomes unnecessary; this is actually the original statement [Ret03, Theorem 1].
Our motivation for this change is to get a good fit with Theorem 5.6: we want the disjoint
union of graphs to correspond to the Mix rule on proof nets.

The inspiration for the above theorem comes from linear logic: it is a graph-theoretic
version of the sequentialization theorems for proof nets, with Kotzig’s theorem being analogous
to the “splitting lemmas” which appear in various proofs of sequentialization. Section 5 is
dedicated to investigating this connection further.

2.3. Proof structures, proof nets and the correctness criterion. A proof structure
is some kind of graph-like object with the precise definition varying in the literature (we will
come back to this point in Remark 3.4). Since our aim is to apply results from graph theory,
it will be helpful to commit to a representation of proof structures as graphs.

We write deg− for the indegree and deg+ for the outdegree of a vertex.

Definition 2.6. A proof structure is a non-empty directed acyclic multigraph (V,A) with a
labeling of the vertices l : V → {ax,⊗,O} such that, for v ∈ V :
• if l(v) = ax, then deg−(v) = 0 and deg+(v) ≤ 2,
• if l(v) ∈ {⊗,O}, then deg−(v) = 2 and deg+(v) ≤ 1.
Vertices of a proof structure will also be called links. A terminal link is a link with outdegree 0.
A sub-proof structure is a vertex-induced subgraph which is a proof structure.

Remark 2.7. It is customary to add “dangling outgoing edges” from the terminal links and
to consider them to be the conclusions of the proof net. See Definition 3.2 and Remark 3.4.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:7

ax ax

⊗ O

O

ax
` A,A⊥

ax
` B,B⊥ ⊗

` A⊗B,A⊥, B⊥
O

` A⊗B,A⊥OB⊥
O

` (A⊗B)O(A⊥OB⊥)

Figure 2. A proof net (left) and its sequentialization (right), written as
a sequent calculus proof. Edges are usually labeled by the MLL formulae
appearing in the sequentialization; since we focus on the combinatorics of
proof structures and not on their logical meaning, we omit them here.

` A,A⊥
(ax-rule)

` Γ, A ` B,∆
` Γ, A⊗B,∆

(⊗-rule) ` Γ, A,B

` Γ, AOB
(O-rule)

` Γ ` ∆

` Γ,∆
(Mix rule)

Figure 3. Rules for the MLL+Mix sequent calculus; note the correspondence
with Definition 2.8.

Definition 2.8. The set of MLL proof nets is the subset of proof structures inductively
generated by the following rules:
• ax-rule: a proof structure with a single ax-link is a proof net.
• ⊗-rule: if N and N ′ are proof nets, u is a link of N and v is a link of N ′, then taking
the disjoint union of N and N ′, adding a new ⊗-link w, an edge from u to w and an edge
from v to w gives a proof net, as long as the resulting graph is a proof structure (i.e., the
degree constraints are satisfied).
• O-rule: if N is a proof net and u, v are links of N , then adding a new O-link w, an edge
from u to w and an edge from v to w gives a proof net, with the same proviso as above.

The set of MLL+Mix proof nets is inductively generated by the above rules together with
the Mix rule: if N and N ′ are proof nets, their disjoint union is a proof net.

A proof structure is said to be correct if it is a MLL+Mix proof net.

Remark 2.9. As with any inductively defined set, membership proofs for the set of MLL
(resp. MLL+Mix) proof nets may be presented as inductive derivation trees, which are
isomorphic to the usual sequent calculus proofs of MLL (resp. MLL+Mix): see Figure 2 for
an example, and Figure 3 for the inference rules of the sequent calculus. An example of
inductive construction presented directly on proof nets is given in Figure 4.

Remark 2.10. The proof structures and proof nets defined here are cut-free. This restriction
is without loss of generality, since a cut link has exactly the same behavior as a terminal
⊗-link with respect to correctness and sequentialization.

To tackle the problem of correctness, it is useful to have non-inductive characterizations
of proof nets, called correctness criteria, at our disposal. Many of them are formulated using
the notion of paired graphs. We will state a criterion first discovered by Danos and Regnier
for MLL [DR89] and extended to MLL+Mix by Fleury and Retoré [FR94].

27:8 Lê Thành Dũng Nguyễn Vol. 16:1

ax ax

⊗

ax ax

⊗ O

ax ax

⊗ O

O

Figure 4. Two successive applications of the O-rule to obtain the proof
net of Figure 2 at the end; compare with the two bottom inferences of the
sequent calculus proof of Figure 2. The leftmost proof net can be obtained
by invoking the ax-rule to create two proof nets, then combining them with a
⊗-rule.

Definition 2.11. A paired graph consists of an undirected graph G = (V,E) and a set P of
unordered pairs of edges such that:
• if {e, f} ∈ P, then e and f have a vertex in common;
• the pairs are disjoint: if p, p′ ∈ P and p 6= p′, then p ∩ p′ = ∅.
When {e, f} ∈ P, the edges e and f are said to be paired.

A switching S is a set of edges containing exactly one from every pair in P . The switching
graph for S is the spanning subgraph (V,E \ (

⋃
P \ S)) of G, where

⋃
P is the union of all

pairs in P . A switching path (resp. cycle) is a path (resp. cycle) which intersects each pair of
P at most once.

Remark 2.12. Equivalently, switching cycles are cycles which exist in some switching graph.

Definition 2.13. Let π be a proof structure. Its correctness graph C(π) is the paired graph
obtained by forgetting the directions of the edges and the labels of the vertices in π, and
pairing together two edges when their targets10 are the same O-link.

A switching path (resp. cycle) in π is a sequence of edges of π whose image in C(π) is a
switching path (resp. cycle).

Examples of switchings graphs of a correctness graph are given in Figure 5.

Theorem 2.14 (Danos–Regnier correctness criterion). A proof structure π is a MLL (resp.
MLL+Mix) proof net if and only if all the switching graphs of C(π) are trees (resp. forests).

Remark 2.15. Equivalently, π is a MLL+Mix proof net if and only if it contains no switching
cycle.

The above is usually called a sequentialization theorem: it means that a proof structure
which satisfies the correctness criterion admits a sequent calculus derivation.

The analogy with Theorem 2.4 is that proof nets are to proof structures what unique
perfect matchings are to perfect matchings. The next section is dedicated to formalizing this
analogy into an equivalence.

10That is, the targets of the directed edges in π they come from.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:9

ax ax

⊗ O

O

ax ax

⊗ O

O

Figure 5. Two switching graphs out of four possibilities for the proof struc-
ture of Figure 2.

3. An equivalence through mutual reductions

We will now see how to turn a proof structure into a graph equipped with a perfect matching,
in such a way that switching cycles become alternating cycles, and vice versa. Such a
translation from proof structures to perfect matchings was first proposed by Retoré [Ret03],
under the name of RB-graphs. After recalling the definition of RB-graphs and their properties
in Section 3.1, we propose our own translation in the converse direction — which we call the
proofification construction — in Section 3.2.

Thus, this section sets up the reductions (in the sense of complexity theory) that will be
exploited in Section 4. But further developments in Section 5 and Section 6 will require the
introduction of a new translation (graphification) from proofs to graphs.

Remark 3.1. The nature of the object corresponding to a matching edge in a proof structure
will vary depending on the translation considered: for RB-graphs, they correspond to edges
or terminal links, whereas in the case of proofifications, they are translated into ⊗-links.
(And in the graphifications of Section 5.1, they correspond to links.)

Thus, by taking the proofification of a RB-graph of a proof structure, one gets a different
proof structure, with the edges of the former being sent to ⊗-links of the latter. It is unclear
whether this transformation has any meaning in terms of linear logic; in particular it does
not preserve correctness for MLL without Mix.

3.1. From proof structures to perfect matchings: Retoré’s RB-graphs. To define
RB-graphs, it is more convenient to start from a slightly altered definition of proof structures.

Definition 3.2. A proof structure with conclusions is a non-empty directed acyclic multigraph
(V,A) with a partial labeling of the vertices l : V ⇀ {ax,⊗,O} such that, for v ∈ V :
• if l(v) = ax, then deg−(v) = 0 and deg+(v) = 2;
• if l(v) ∈ {⊗,O}, then deg−(v) = 2 and deg+(v) = 1;
• else, v is unlabeled, and then deg−(v) = 1 and deg+(v) = 0.
In the latter case, v is called a conclusion vertex and its unique incoming edge is called a
conclusion edge.

Compared with Definition 2.6, the bounds on the outdegree have become equalities, while
a new kind of vertex has been added. The idea is that, when the inequality on the outdegree
is strict, there are “missing” outgoing edges, which are materialized here as conclusion edges.

27:10 Lê Thành Dũng Nguyễn Vol. 16:1

ax ax

⊗

ax ax

⊗

Figure 6. An instance of the bijection of Proposition 3.3: the proof structure
(according to Definition 2.6) on the left corresponds to the proof structure
with conclusions (Definition 3.2) on the right.

Yet the object being manipulated is still fundamentally the same; indeed, the following is
immediate (see Figure 6 for an example):

Proposition 3.3. Given a proof structure with conclusions, the subgraph induced by the
labeled vertices is a proof structure according to Definition 2.6. This correspondence is
bijective: conversely, there is a unique way to add unlabeled conclusions to a proof structure.

Remark 3.4. Here we are confronted with the fact that there is no single canonical definition
of MLL proof structures (although two given definitions are always canonically isomorphic).
Depending on the task at hand, different combinatorial formalizations of the same object
may be more or less convenient. To define proof nets inductively, it was easier to use proof
structures without conclusions and rely on the notion of terminal link. This will also prove
useful for the sequentialization algorithm of Section 5.2. But the conclusion edges are logically
significant11: they correspond to the formulas in the sequent being proven.

Starting from this, we can now introduce RB-graphs. The definition we use is taken from
Straßburger’s lecture notes at ESSLLI’06 [Str06], and differs slightly from Retoré’s original
one (edges are handled more uniformly in Straßburger’s version).

Definition 3.5 [Ret03, Str06]. Let (V,A, l) be a proof structure with conclusions. The
corresponding RB-graph is a graph G equipped with a perfect matching M such that:
• M is in bijection with the directed edges A;
• the non-matching edges of G are derived from the labeling l : V ⇀ {ax,⊗,O} of the links,
following the rules of Figure 7 (conclusion vertices do not induce non-matching edges).

An example of RB-graph is given in Figure 8. The interest of this translation lies in:

Proposition 3.6 (implicit in [Ret03]). The switching cycles in a proof structure are in
bijection with the alternating cycles in its RB-graph.

Corollary 3.7 (Retoré’s correctness criterion [Ret03]). A proof structure satisfies the Danos–
Regnier criterion for MLL+Mix if and only if the perfect matching of its RB-graph is unique.

11An annoying point, however, is that the conclusion vertices have no significance, so sometimes proof
structures are defined with “dangling edges” with no target. However, dangling edges drag us out of the
world of graphs, and into hypergraphs — indeed, they are hyperedges of arity 1. Proof structures are also
often defined as the dual hypergraph: links are hyperedges, and formulas are vertices. For our purposes, we
have chosen to keep proof structures as actual graphs, to make the connections with graph theory clearer.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:11

ax
⊗ O

Figure 7. Translation of proof structures links (top) to RB-graphs (bottom).

Figure 8. RB-graph corresponding to the proof net of Figure 2.

3.2. From perfect matchings to proof structures. The translation we present below
involves “k-ary O-links”. When k > 1, these are just binary trees of k−1 O-links (correctness
is independent of the choice of binary tree: semantically, this is associativity of O) with k
leaves (incoming edges) and a single root (outgoing edge); the k = 1 case corresponds to a
single edge and no link.

Definition 3.8. Let G = (V,E) be a graph and M be a perfect matching of G. We define
the proofification of (G,M) as the proof structure π built as follows:
• For each non-matching edge e = (u, v) ∈ E \M , we create an ax-link axe whose two
outgoing edges we will call Au,v and Av,u.
• For each vertex u ∈ V , if deg(u) > 1, we add a k-ary O-link with k = deg(u)− 1, whose
incoming edges are the Au,v for all neighbors v of u such that (u, v) /∈M , and we call its
outgoing edge Bu. If deg(u) = 1, we add an ax-link calling one of its outgoing edges Bu.
• For each matching edge (u, v) ∈M , we add an ⊗-link whose incoming edges are Bu and
Bv. These ⊗-links are the terminal links of π.

27:12 Lê Thành Dũng Nguyễn Vol. 16:1

ax

e

ax

f

ax

g

O
x

O
y

⊗
a

⊗
b

w z

w x

y z

e

f

g

a b

Figure 9. The proofification of the graph of Figure 1a.

ax ax

⊗ O

ax ax

O ⊗

⊗

Figure 10. The proofification of the graph in Figure 1b. Since the perfect
matching in Figure 1b was unique, we get a MLL+Mix proof net. One can
check that in this case, it is even correct for MLL.
This proof net will also be used as an example in Section 6.

Examples of proofification are provided in Figure 9 (annotated figure) and Figure 10.

Proposition 3.9. Let G be a graph and M be a perfect matching of G. The alternating
cycles for M in G are in bijection with the switching cycles in the proofification of (G,M).

Proof. Let π be the proofification of (G,M). Any switching cycle in π changes direction
only at ax-links and ⊗-links, and therefore can be partitioned into an alternation of ⊗-links,
corresponding to matching edges, and of paths starting with some Bu, ending with some
Bv and crossing some axe, corresponding to non-matching edges e = (u, v). Therefore, it
corresponds to an alternating cycle for M , and the mapping defined this way is bijective.

We end this section on a property of the sequentializations of π.

Proposition 3.10. Let G be a graph with a unique perfect matching M and let π be
the proofification of (G,M). A matching edge e ∈ M is a bridge of G if and only if its
corresponding ⊗-link is introduced by the last rule of some sequentialization of π.

Proof. This follows from the fact that a ⊗-link may be introduced by the last rule of a
sequentialization if and only if it is splitting, i.e., its removal disconnects its two precedessors.

This is consistent with the discussion at the end of Section 2.2: a bridge in a unique perfect
matching may be taken as a “last rule” in its “sequentialization” in the sense of Theorem 2.4.
However, RB-graphs do not satisfy a property analogous to the above proposition. This is one
of the motivations for the introduction of our new translation (Section 5.1), cf. Theorem 5.6.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:13

4. On the complexity of MLL+Mix correctness

Through the translations of the previous section, MLL+Mix proof nets become unique
perfect matchings and conversely: these translations provide reductions between the problems
MixCorr and UniquenessPM, allowing us to draw complexity-theoretic conclusions on
proof nets from known results in graph theory. We first look at the time complexity of
MixCorr, then turn to its complexity under constant-depth (AC0) reductions.

4.1. An immediate linear-time algorithm. Computing Retoré’s RB-graphs (Section 3.1)
and deciding UniquenessPM [GKT01, §3] can both be done in linear time, so:

Theorem 4.1. MixCorr can be decided in linear time.

Remark 4.2. By using the “Euler–Poincaré lemma” (an old part of the linear logic folklore,
written down in, e.g., [BDS15]) to count the uses of the Mix rule in a proof net, this also
allows us to decide the correctness of a proof structure for MLL without Mix in linear time.

Historically, all the necessary ingredients for Theorem 4.1 and for its corollary for MLL
already existed before the announcement (at LICS’99, in July 1999) of Guerrini’s linear-time
correctness criterion for MLL [Gue11]. Indeed, Retoré first presented his RB-graphs at
the 1996 Linear Logic Tokyo Meeting [Ret96], and Gabow et al.’s algorithm [GKT01] was
published at the STOC’99 conference in May 1999.

Yet this does not make Guerrini’s work obsolete: the latter also gives a way to compute
a sequentialization in linear time for MLL proof nets. The other previously known linear-
time algorithm for MLL correctness [MO06] also provides a linear-time sequentialization
procedure. For MLL+Mix, we do not quite manage to match this complexity, though we
obtain a quasi-linear algorithm, cf. Section 5.2.

This is because the methods used in [Gue11, MO06] are quite different from ours: instead
of using the Danos–Regnier switching acyclicity criterion, their starting points are respectively
contractibility (cf. Remark 4.4) and translation to essential nets (cf. Section 8.3.2), which does
not work with the Mix rule. Therefore, linear time correctness for MLL+Mix is absolutely
not a trivial generalization of the previous literature on MLL without Mix. The discussion
at the start of Section 6 makes a similar point with respect to sequentialization.

Remark 4.3. Our decision procedure has the advantage of being simpler to describe than
the aforementioned algorithms for MLL correctness. That said, this apparent simplicity is due
to our use of the algorithm of Gabow et al. [GKT01] as a black box. Looking inside the black
box reveals, for instance, that it uses the incremental tree set union data structure of Gabow
and Tarjan [GT85], which, intringuingly, is also a crucial ingredient of both [Gue11, MO06].

Finding an alternating cycle is indeed more tricky than in appears at first sight. Naively,
one would perform a graph traversal which visits alternatively matching edges and non-
matching edges. The issue is that this would not not ensure that the alternating cycle
found is elementary, i.e., that there are no vertex repetitions, which is an essential condition
(that we have included in our definition of “cycle” in Section 2.1). The difficulty of the
problem indeed lies in the interaction of this global constraint with the local alternation
condition. The analogous issue, seen directly on proof structures, is that the traversal does
not remember whether a premise of a O-link has already been traversed before (in fact the
standard path-finding algorithms rely on a kind of history independence: it does not matter
how you reached some intermediate vertex, as long as your path was of minimum length).

27:14 Lê Thành Dũng Nguyễn Vol. 16:1

Remark 4.4. Gabow et al.’s algorithm for UniquenessPM relies on the technique of
blossom shrinking pioneered by Edmonds [Edm65], a kind of graph contraction which may
remind us of Danos’s contractibility correctness criterion [Dan90] for MLL without Mix.
Indeed, there exists a formal connection: a rewrite step of big-step contractibility [BDS15]
corresponds, when translated to either Retoré’s RB-graphs or our graphifications (Section 5.1),
to contracting a blossom. However, not all blossoms are redexes for big-step contractibility.
See Section 6.2 for further discussion of blossoms.

4.2. Characterizing the sub-polynomial complexity. For MLL proof nets without Mix,
correctness is known to be NL-complete under AC0 reductions thanks to the Mogbil–Naurois
criterion [JdNM11]. What about MLL+Mix? Since the reductions of Section 3 can be
computed in constant depth, we have:
Theorem 4.5. MixCorr and UniquenessPM are equivalent under AC0 reductions.

Thus, it will suffice to study the complexity of UniquenessPM. Let us start with a
positive result, using the parallel algorithms for perfect matchings mentioned in Section 2.2.
Proposition 4.6. UniquenessPM is in randomized NC and in deterministic quasiNC.
Proof. Let G = (V,E) be a graph and M be a perfect matching of G. M is not unique
if and only if, for some e ∈ M , the graph Ge = (V,E \ {e}) has a perfect matching. To
test the uniqueness of M , run the |M | parallel instances, one for each Ge, of a randomized
NC [MVV87] or deterministic quasiNC [ST17] algorithm for deciding the existence of a perfect
matching, and compute the disjunction of their answers in AC0.

Being in quasiNC is a much weaker12 result than being in NL. But as we shall now see,
even showing that UniquenessPM is in NC (recall that NL ⊂ NC) would be a major result.
It would answer in the affirmative the following conjecture dating back from the 1980’s:
Conjecture 4.7 (Lovász13). UniquePM is in NC.

Indeed, the following shows that UniquenessPM ∈ NC⇒ UniquePM ∈ NC (and the
converse follows from the definitions).

Proposition 4.8. There is a NC2 reduction from UniquePM to UniquenessPM.
Proof. This is a consequence of a NC2 algorithm by Rabin and Vazirani [RV89, §4] which,
given a graph G, computes a set of edges M such that if G admits a unique perfect matching,
then M is this matching. Starting from any graph G, run this algorithm and test whether
its output is a perfect matching. If not, then G does not admit a unique perfect matching; if
it is, then G is a positive instance of UniquePM if and only if (G,M) is a positive instance
of UniquenessPM.

To sum up these results about UniquenessPM, which apply to MixCorr:
Theorem 4.9. MixCorr is in randomized NC and in deterministic quasiNC; it is in
deterministic NC if and only if Conjecture 4.7 is true.

12In fact, one can show that NL (NSPACE(O(log3/2 n)) ⊆ quasiNC3, and the problem of finding a perfect
matching lies in the latter, according to Svensson and Tarnawski’s analysis.

13The conjecture is attributed to Lovász by a paper by Kozen et al. [KVV85] which claims to solve it.
But Hoang et al. [HMT06] note that “this was later retracted in a personal communication by the authors”.
Still, the proposed solution works for bipartite graphs.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:15

⊗ O

(a) Translation rules for sets of incoming edges.

ax ax

⊗ O

O

(b) Graphification of the proof
structure of Figure 2

Figure 11. The graphification construction.

5. Tackling sequentialization via an appropriate translation

We are now interested in using our graph-theoretical tools to deal with problems concerning
the order of logical rules, typically that of computing a sequentialization (problem MixSeq
from the introduction). However, there is a mismatch between RB-graphs and proof nets: a
bridge in a RB-graph does not necessarily correspond to the last rule of some sequentialization
of the proof net — in fact, it generally does not even correspond to a terminal link. The
key issue is indeed that the successor relation (called S(π) in section 6.1), i.e., “there is a
directed edge from l to l′” is forgotten by the translation to RB-graphs.

A toy case to witness the inconvenience caused by this mismatch is the following:
we would like to deduce the sequentialization theorem for the Danos–Regnier criterion
(Theorem 2.14) as an immediate corollary of Retoré’s sequentialization for unique perfect
matchings (Theorem 2.4). But this is not possible with RB-graphs – instead, one must resort
to a proof by induction using Kotzig’s theorem (Theorem 2.3), see [Ret99, §2.4].

5.1. A new encoding: graphification. To fulfill the desiderata mentioned above, we
introduce the following construction, which involves a trick to encode the successor relation.

Definition 5.1. Let π be a proof structure and L be its set of links. The graphification of
π is the graph G = (V,E) equipped with a perfect matching M ⊆ E with
• the matching edges corresponding to the links: V =

⋃
l∈L{al, bl}, M = {(al, bl) | l ∈ L},

• and the remaining edges in E \M reflect the incoming edges of the ⊗-links and O-links,
as specified by Figure 11a.

Figure 11b shows an example of this construction. As another example, Figure 1b from
Section 2.2 is actually the graphification of Figure 6 from Section 3.1.

Remark 5.2. There is an ambiguity about the “O of ax” configuration (cf. Figure 12) that
can occur in correct proof nets: should it result in a multigraph with parallel non-matching
edges, or in a simple graph? For simplicity we choose the simple graph option, since that is
the setting for most of the literature on matchings, but this detail has very little importance.

Remark 5.3. To extend Remark 3.1, there is no clear relationship between graphifications
and either of the two translations seen until now (RB-graphs and proofifications).

27:16 Lê Thành Dũng Nguyễn Vol. 16:1

ax

O

Figure 12. The “O of ax” configuration and its graphification.

Just like RB-graphs, graphifications provide a linear time and AC0 reduction from
MixCorr to UniquenessPM: the complexity results of the previous section could have
been obtained using graphifications (as was done in the conference version). We focus on the
soundness of the reduction, since its complexity is more or less intuitive.

Proposition 5.4 (Graphification-based correctness criterion). A proof structure satisfies
the Danos–Regnier correctness criterion for MLL+Mix if and only if the perfect matching of
its graphification is unique.

Proof. By negating the two sides of the equivalence, the goal becomes proving that a proof
structure π contains a switching cycle if and only if its graphification (G,M) contains an
alternating cycle.

Consider any alternating cycle for M in G of length 2n, and take the Z/(n)-indexed
sequence of vertices corresponding to the matching edges in the cycle. By construction of
the graphification, if two edges in M are incident to a common non-matching edge, then the
corresponding links in π are adjacent: thus, in our sequence, each vertex is adjacent to the
previous and the next one, and thus we have a cycle. If it were not a switching cycle, it
would contain three consecutive links p, q, r with q a O-link and p, r its predecessors14; but
then the alternating cycle would have to cross two incident non-matching edges (from p to q
and from q to r), which is impossible. Thus, π contains a switching cycle.

To show the converse we will exhibit a right inverse to the map from alternating cycles
to switching cycles defined above. Consider a switching cycle: it can be partitioned into
directed paths from ax-links to ⊗-links. Let l be an intermediate link in such a path, and
e, p, s be matching edges corresponding respectively to l, its predecessor, and its successor in
the directed path. s has a unique endpoint u which is incident to both endpoints of e; e has
a unique endpoint v which is not incident to both endpoints of p. To join e with s, we use
the edge (u, v). By taking all these non-matching edges for all maximal directed paths in the
cycle, as well as a choice of two edges incident to each matching edge corresponding to an
ax-link, and the matching edges (al, bl) corresponding to all the links l in the cycle, we get
an alternating cycle.

The situation was a bit nicer for RB-graphs, with an actual bijection between cycles
(Proposition 3.6) unlike the case of graphifications. That said, the main technical advantages
of the latter that we sought are summarized by the following properties.

Lemma 5.5. Let π be a proof structure with graphification (G,M) and l be a link of π such
that (al, bl) ∈M is a bridge of G. Then l is a terminal link in π, and if l is a ⊗-link, then
removing l from π disconnects its predecessors.

14To expand on this point: this is because we have prohibited vertex repetitions in our definition of cycles.
This is legitimate since a graph is a forest if and only if it does not contain a non-vertex-repeating cycle.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:17

Proof. Suppose for contradiction that l is not a terminal link, and let l′ be a successor of l.
Then for some endpoint v of (al′ , bl′), (al, v) and (bl, v) are both edges in G, and they make
up a path between al and bl not going through (al, bl). Thus, (al, bl) cannot be a bridge.

The fact that (al, bl) is a bridge means that by removing this edge, al and bl are in
different connected components; if l is a ⊗-link, each of these connected components contain
the matching edge corresponding to one predecessor of l.

Theorem 5.6. Let π be a proof structure and (G,M) be its graphification. There is a bijection
between the sequent calculus proofs corresponding to π (if any) and the sequentializations
(i.e., the derivation trees for the inductive definition of Theorem 2.4) of (G,M) (if any),
through which occurrences of Mix rules correspond to disjoint unions and conversely.

This entails, in particular, the analogous property to Proposition 3.10 for graphifications.

Proof. We convert a sequentialization S of (G,M) into a sequentialization Σ of π inductively
as follows. Since G 6= ∅, the last rule of S is either a disjoint union or the introduction
of a bridge e = (al, bl) ∈ M by joining together (Ga,Ma) and (Gb,Mb) with respective
sequentializations Sa and Sb. In the latter case, l is a terminal link of π.
• If Ga = Gb = ∅, then l is an ax-link, and Σ consists of a single ax-rule.
• If Ga 6= ∅ and Gb = ∅, then l is a O-link, and the removal of l from π yields a proof
structure π′ whose graphification is (Ga,Ma). Σ then consists of a O-rule introducing l
applied to the sequentialization of π′ corresponding to Sa.
• If Ga 6= ∅ and Gb 6= ∅, then l is a ⊗-link. Since e is a bridge, the removal of l from π
yields two proof structures πa and πb whose respective graphifications are (Ga,Ma) and
(Gb,Mb). Σ then consists of an ⊗-rule applied to the translations of Sa and Sb.

If the last rule of S is a disjoint union rule, it is translated into a Mix rule in Σ.
The bijectivity can be proven by defining the inverse transformation and by checking

that it is indeed its inverse.

In particular, π is a MLL+Mix proof net if and only (G,M) admits a sequentialization,
that is, according to Theorem 2.4, if and only if M is the only perfect matching of G.
Proposition 5.4 tells us that this is equivalent to π satisfying the Danos–Regnier acyclicity
criterion. Therefore, this criterion characterizes MLL+Mix proof nets: as we wanted, we just
proved the sequentialization theorem for MLL+Mix (Theorem 2.14).

5.2. A sequentialization algorithm for MLL+Mix proof nets. In Section 4.1, we saw
how to decide MLL+Mix correctness in linear time, matching the known time complexity for
MLL correctness. But the algorithms for MLL correctness still have an advantage: they can
compute a sequentialization in linear time, whereas we only have a decision procedure for
MixCorr which returns a yes/no answer15. We do not know how to compute MLL+Mix
sequentializations in linear time. Nevertheless, by applying our bridge between proof nets
and graph theory, we get the first quasi-linear time algorithm for MixSeq. The beginning of
the next section will discuss why the problem seems harder with Mix.

Our algorithm proceeds by first determining the root of the derivation tree and the link
it introduces. To obtain the children of the root, it suffices to recurse on the connected
components created by removing this link.

15It can find a switching cycle, witnessing incorrectness, but cannot produce a certificate of correctness.

27:18 Lê Thành Dũng Nguyễn Vol. 16:1

Furthermore, through the correspondence of Theorem 5.6, finding a link which is
introduced by the last rule of some sequentialization amounts to finding a bridge in the
matching of the graphification of the proof net (cf. Section 5.1). This is in fact a bit more
convenient with graphifications than with general unique perfect matchings, thanks to the
following property:

Lemma 5.7. All bridges in the graphification of some proof structure are matching edges.

Proof. Let e be a non-matching edge. Then there are matching edges (u, v) and (s, t) such
that the link corresponding to (u, v) is the predecessor of the one for (s, t), and e = (u, s). The
non-matching edge (v, s) is then also present in the graph, and so e cannot be a bridge.

The algorithm will alternate between finding and deleting bridges; a deletion may cut
cycles and thus create new bridges, which we want to detect without traversing the entire
graph each time. To do so, we use a dynamic bridge-finding data structure designed for this
kind of use case by Holm et al. [HRT18]. It keeps an internal state corresponding to a graph,
whose set of n vertices is immutable but whose set of edges may vary, and supports the
following operations in O((log n)2(log log n)2) amortized time:
• updating the graph by inserting or deleting an edge;
• computing the number of vertices of the connected component of a given vertex;
• finding a bridge in the connected component of a given vertex;
• determining whether two vertices are in the same connected component.

Theorem 5.8. MixSeq can be solved in O(n(log n)2(log log n)2) time.

Proof. Let π be a MLL+Mix proof net with n links, and (G = (V,E),M) be its graphification.
Both V and E have cardinality O(n) (in fact, |V | = 2n and |M | = n).

The algorithm starts by initializing the bridge-finding data structure D with the graph G,
computing the weakly connected components of π in linear time, and selecting a link in each
component. On each selected link l, we call the following recursive procedure; its role is to
sequentialize the sub-proof net of π containing l whose graphification is a current connected
component of G (G and D being mutable global variables):
• Let u be one endpoint of the matching edge corresponding to l. Using the bridge-finding
structure, find a bridge e = (v, w) in the component of u; necessarily, e ∈M . Remove the
edge e from G (and reflect this change on D with a deletion operation).
• If both v and w are isolated vertices, e corresponds to an ax-link and the entire sub-proof
net consisted of this link. In this case, return a sequentialization with a single ax-rule.
• If one of v and w is isolated, and the other is not — by symmetry, let us assume the latter
is v — then e corresponds to a O-link l′. Let p and p′ be its predecessors.
– Remove all edges incident to v.
– If the matching edges corresponding to p and p′ are in the same connected component

of G, recurse on p, add a final O-link and return the resulting sequentialization.
– If p and p′ are in different connected components of G, recurse on p and p′, use the

results as the two premises of a Mix rule, add a final O-link and return the resulting
sequentialization.

• If neither v nor w is isolated, e corresponds to a ⊗-link. This is handled similarly to the
O+Mix case above.

Let us evaluate the time complexity. At each recursive call, one bridge is eliminated from
G, so the number of recursive calls is n. The cost of each recursive call is O(1) except for

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:19

the updates and queries of the bridge-finding data structure. In total, there are |E| = O(n)
deletions, |M | = n bridge queries, and at most n connectedness tests, and each of those takes
O((log n)2(log log n)2) amortized time. Hence the O(n(log n)2(log log n)2) bound.

Remark 5.9. If we want to compute a sequentialization for a unique perfect matching, in
general, a complication is the existence of bridges which are not in the matching.

Interestingly, one can determine whether a bridge e is in M without looking at M : it is
the case if and only if both of the connected components created by removing e have an odd
number of vertices. This leads to an algorithm for UniquePM; it is virtually the same as
the one proposed by Gabow et al. [GKT01, §2]16, from which we took our inspiration.

Remark 5.10. One needs to use a sparse representation for derivation trees: the size of a
fully written-out sequent calculus proof is, in general, not linear in the size of its proof net.

6. On the kingdom ordering of links

One may wonder if we could not have just tweaked an algorithm for MLL sequentialization into
an algorithm for MixSeq. In order to argue to the contrary, let us briefly mention a difference
between Bellin and van de Wiele’s study of the sub-proof nets of MLL proof nets [BvdW95]
and its extension to the MLL+Mix case by Bellin [Bel97]. Any MLL sub-proof net of a MLL
proof net may appear in the sequentialization of the latter; however, for MLL+Mix, Figure 13
serves as a counterexample: the sub-proof structure containing all links but the ⊗-link is
correct for MLL+Mix, but it cannot be an intermediate step in a sequentialization of the
entire proof net. A normality condition is needed to distinguish those sub-proof nets which
may appear in a sequentialization, and this is why sequentialization algorithms which are
morally based on a greedy parsing strategy, such as Guerrini’s linear-time algorithm [Gue11],
do not adapt well to the presence of the Mix rule.

Any link l in a MLL+Mix proof net π admits a minimum normal sub-proof net of π
containing l, its kingdom [Bel97]. Bellin’s kingdom ordering is the partial order on links
corresponding to the inclusion between kingdoms. We give an algorithm to compute this
order for any MLL+Mix proof net: this is yet another application of matching theory. It
uses a characterization of the kingdom ordering in terms of a relation called dependency by
Bagnol et al. [BDS15] (who, in turn, take this name from the closely related dependency
graph of Mogbil and Naurois [JdNM11]). We will also see how this dependency relation can
be reformulated, through our correspondence between proof structures and perfect matchings,
in terms of the blossoms mentioned in Section 2.2 and Section 4.1.

One may in fact define the kingdom ordering, written �π, without reference to the
notion of normal sub-proof net (we will not introduce the latter formally here):

Definition 6.1. Let π be a MLL+Mix proof net. For any two links p, q of π, p�π q if and
only if, in any sequentialization of π, the rule introducing q has, among its premises, a proof
net containing p.

From this point of view, the kingdom ordering gives us information about the set of all
sequentializations. Let us give some examples. The proof net of Figure 10 admits a unique

16Not to be confused with their algorithm for UniquenessPM [GKT01, §3] that we used in Section 4.1.
They only claim a bound of O(m log4 n) because the best dynamic 2-edge-connectivity data structure known
at the time has operations in O(log4 n) amortized time.

27:20 Lê Thành Dũng Nguyễn Vol. 16:1

O ⊗ O

ax

ax

ax

Figure 13. A MLL+Mix proof net which highlights a difficulty in solving
MixSeq.

sequentialization, so this directly gives us the kingdom ordering: for instance the middle
⊗-link is the greatest element. On the other hand, in the proof net of Figure 13, both O-links
may be introduced by a last rule, so there is no greatest element. In fact, the kingdom
ordering coincides with the predecessor relation. So it does not distinguish between the 3
terminal links even though, unlike the 2 others, the ⊗-link cannot be introduced last.

Before proceeding further, here is another property of MLL proof nets which is con-
tradicted by Figure 13 for MLL+Mix proof nets, providing more evidence that MixSeq is
trickier algorithmically than MLL sequentialization.

Proposition 6.2. Let π be a MLL proof net and l be a maximal link for �π. Then there
exists a sequentialization of π whose last rule introduces l.

Proof. If l is a terminal O-link, no other assumption is needed for the existence of such a
sequentialization. Else, l is a terminal ⊗-link and it suffices to show that l is splitting, i.e.,
that the removal of l splits π into two connected components.

Suppose that it is not the case, and consider some sequentialization of π: it must contain
a O-rule, applied to a sub-proof net π′ for which l is splitting, which turns it into a sub-proof
net for which l is not splitting anymore. Let p be the O-link introduced by that rule; its
predecessors lie in different connected components of π′ \ {l}. Since π′ is a MLL proof net,
the predecessors of p are connected by a switching path in π′, which must cross l. This shows
that l is a dependency of p in the sense of Definition 6.3, contradicting the maximality of l.
(This only uses the fact that D(π) ⊆�π, which is the “easy” part of Bellin’s theorem.)

6.1. Computing the kingdom ordering.

Definition 6.3. Let π be a proof structure. We write D(π) for the dependency relation
defined as follows: for any two links p 6= q of π, p is a dependency of q when q is a O-link
and there exists a switching path between the predecessors of q going through p.

For instance, in the proof net of Figure 10 (Section 3.2), the left O-link depends on the
left ⊗-link, but not on the other ⊗-links or O-links; the middle ⊗-link has no dependency.
In the case of Figure 13, the dependency relation is empty.

Theorem 6.4 (Bellin [Bel97, Lemma 2]17). Let π be a MLL+Mix proof net. The transitive
closure of D(π) ∪ S(π) is �π, where (p, q) ∈ S(π) means that p is a predecessor of q.

17This theorem was rediscovered by Bagnol et al. [BDS15, Theorem 11] in the special case of MLL proof
nets without Mix (they refer to the kingdom ordering as the “order of introduction”). We borrow the notations
D(π) and S(π) from them.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:21

The dependency relation can be computed by reduction to a matching problem in the
case of MLL+Mix proof nets: even though it is well-defined in arbitrary proof structures,
we need MLL+Mix correctness to compute it, because our matching algorithm relies on
the absence of alternating cycles. It is mostly a matter of applying a lemma from our
paper [Ngu19]; since the latter has not been peer-reviewed as of the time of writing, we
reproduce the proof in the appendix.

Lemma 6.5 ([Ngu19] / Appendix A). Let M be a matching of some graph G = (V,E).
Suppose that:
• there are no alternating cycles for M — equivalently, M is the unique perfect matching of
the subgraph induced by the vertices matched by M ;
• there are exactly two unmatched vertices u, v.
Then the existence of an alternating path for M with endpoints u, v and crossing a prescribed
matching edge e ∈M can be reduced in AC0 to the existence of a perfect matching; furthermore,
such a path can be found in linear time.

Remark 6.6. An alternating path between unmatched vertices is often called an augmenting
path; combinatorial maximum matching algorithms generally work by iteratively searching
for augmenting paths, see, e.g., [Tar83, Chapter 9].

Theorem 6.7. Let π be a MLL+Mix proof net with a link p and a O-link q. Deciding
whether (p, q) ∈ D(π) can be done in linear time, in randomized NC and in quasiNC.

Proof. A degenerate case is when p is a predecessor of q: in this case, p depending on q is
equivalent to π becoming incorrect if q is turned into a ⊗-link, and thus the complexity is
the same as that of (the complement of) the correctness problem.

When p is not a predecessor of q, the definition of dependency translates into the problem
defined in the above lemma by taking the graphification of π, and removing the matching
edge corresponding to q. The endpoints of this edge then become unmatched, and we choose
as prescribed intermediate edge the matching edge corresponding to p. The fact that π is a
proof net ensures that the acyclicity assumption of Lemma 6.5 is satisfied.

We directly obtain the linear time complexity, and since the existence of a perfect
matching can be decided in randomized NC or quasiNC (cf. Section 2.2), so can our problem.

A transitive closure can be computed in polynomial time, and reachability in a directed
graph can be decided in NL ⊂ quasiNC, so we get in the end:

Corollary 6.8. There are a polynomial-time algorithm and a quasiNC algorithm to compute
the kingdom ordering �π of any MLL+Mix proof net π.

6.2. Dependencies and blossoms in unique perfect matchings. We will now see how,
through the correspondence of Section 3, Bellin’s theorem can be rephrased as a statement
on unique perfect matchings.

Definition 6.9. Let G be a graph and M be a perfect matching of G. A blossom for M is a
cycle whose vertices are all matched within the cycle, except for one, its root. The matching
edge incident to the root is called the stem of the blossom.

27:22 Lê Thành Dũng Nguyễn Vol. 16:1

Figure 14. A blossom of length 5, with its stem on the left.

ax ax

⊗ O

O

ax ax

⊗ O

O

Figure 15. The proof net of Figure 2 and its graphification (cf. Figure 11b);
the directed edges of the proof net correspond to blossoms of length 3 in its
graphification.

That is, a blossom consists of an alternating path between two vertices, starting and
ending with a matching edge, together with a non-matching edge from the root to each of
these two vertices. See Figure 14 for an illustration; as another example, in Figure 1b, the
two triangles are blossoms with a common stem. The stem of a blossom is not part of the
cycle. Blossoms are central to combinatorial matching algorithms, e.g., [Edm65, GKT01], as
we have previously mentioned.

Definition 6.10. When e ∈M is in some blossom with stem f ∈M , we write e→ f .

This is the graph-theoretical counterpart of the dependency relation, as is shown by the
following two propositions.

Proposition 6.11. Let π be a MLL+Mix proof net and (G,M) be its graphification. Let
p, q be links in π with corresponding matching edges ep, eq ∈M . Then ep → eq if and only if
p is a dependency of q or a predecessor of q, i.e., (p, q) ∈ D(π) ∪ S(π).

Both the cases (p, q) ∈ S(π) and (p, q) ∈ D(π) occur in the proof net of Figure 2, see
respectively Figure 15 and Figure 16.

Proof. If (p, q) ∈ S(π), then by construction there exists a blossom of length 3 containing
p with stem q. If (p, q) ∈ D(π), then for the same reason as Proposition 5.4, we can get,
from the switching path between the predecessors of q visiting p, an alternating path for M
starting and ending with the edges corresponding to those predecessors and crossing the

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:23

ax ax

⊗ O

O

ax ax

⊗ O

O

Figure 16. A blossom of length 7 corresponding to a dependency. The
yellow cycle is not a switching cycle, but should be seen as a switching path
between both predecessors of the O-link.

edge corresponding to p. By adding two non-matching edges to the same endpoint of the
matching edge for q, we get a blossom with stem q.

Conversely, let q be a link, e the corresponding matching edge, and B be a blossom with
stem q. Let us first note that if B contains a non-matching edge joining e with the matching
edge corresponding to a successor of q, then by replacing this non-matching edge with its twin
incident to the other endpoint of q, we get an alternating cycle; this is impossible because we
have assumed π to be a MLL+Mix proof net. Therefore, the first and last matching edges in
B are both precedessors of q. If they are the same — that is, if B has length 3 and contains
a single matching edge — then this edge corresponds to a predecessor p of q. Otherwise, B
gives an alternating path between two distinct predecessors of q; necessarily q is a O-link
(otherwise, there would be an alternating cycle), and all links corresponding to matching
edges in B are dependencies of q.

Proposition 6.12. Let G be a graph, M be a perfect matching of G and π be the proofification
of (G,M). Let e, f ∈M with corresponding ⊗-links le, lf ∈M . Then e→ f if and only if le
is a dependency of some O-link q from which lf is reachable (by a directed path).

Proof. Let B be a blossom with stem f , whose two non-matching edges incident to f are a
and b. B translates into a switching path between axa and axb in π. Now, axa and axb are
also leaves of a binary tree of O-links whose root has the single successor lf ; by taking q to
be the lowest common ancestor of axa and axb in this tree, lf is reachable from q, and every
link in the path between axa and axb depends on q. Conversely, any switching path between
the two predecessors of a O-link corresponds to a blossom for M in G.

Remark 6.13. In Proposition 6.11, the “if” direction holds even for incorrect proof structures;
in Proposition 6.12, note that no uniqueness property is required of the perfect matching.

Thus, we see that Bellin’s theorem is equivalent to the following theorem where →+ is
the transitive closure of →.

Theorem 6.14. Let G be a graph with a unique perfect matching M , and e, f ∈ M . The
edge e occurs before f in all sequentializations for M if and only if e→+ f .

For instance, in Figure 1b, the middle edge e is the only bridge, and it is the stem of the
two triangular blossoms which contain the other matching edges.

27:24 Lê Thành Dũng Nguyễn Vol. 16:1

This graph-theoretic version is somewhat simpler to state than the original theorem: one
takes the transitive closure of a single relation, instead of a union of two unrelated relations.
And as far as we know, this is a new result in graph theory. We have included it in the
companion paper [Ngu19], aimed at a broader audience of graph theorists, where we present
a direct combinatorial proof with no mention of proof nets.

7. A reconstruction of RB-graphs via forbidden transitions

In this section, we come back to Retoré’s RB-graphs (Section 3.1) and factorize Retoré’s
correctness criterion (Corollary 3.7) as a composition of:
• the Danos–Regnier correctness graph (Definition 2.13);
• a reduction to the UniquenessPM problem for a general notion of constrained cycles,
namely closed trails avoiding forbidden transitions.

We introduced the latter in [Ngu19], but here the logical order of exposition is the reverse
of the order of discovery: it was by attempting to understand Retoré’s RB-graphs that we
found this reduction.

Definition 7.1 [Sze03]. Let G = (V,E) be a graph. A transition graph for a vertex v ∈ V
is a graph whose vertices are the edges incident to v: T (v) = (∂(v), Ev). A transition system
on G is a family T = (T (v))v∈V of transition graphs.

A graph equipped with a transition system is called a graph with forbidden transitions.
A path v1, e1, v2 . . . , ek−1, vk is said to be compatible if for i = 1, . . . , k−1, ei and ei+1 are

adjacent in T (vi+1). For a cycle, we also require ek−1 and e1 to be adjacent in T (v1) = T (vk).
(So the edges of T (v) actually specify the allowed transitions.)

Remark 7.2. By “transition” we mean a pair of consecutive edges in a path/cycle. A
transition system could equivalently be specified by literally giving the set of forbiden
transitions, i.e., of edge pairs that cannot occur consecutively. This generalizes paired graphs
(Definition 2.11) by dropping the disjointness requirement on pairs: switching graphs do not
make sense anymore, but switching cycles (generalized to compatible cycles) still do.

Finding a compatible path is proved to be NP-complete in [Sze03]. As in the case of
alternating paths in matchings (cf. Remark 4.3), the difficulty is in the interaction of a local
constraint — any transition (pair of consecutive edges) must be allowed — and a global one,
namely the fact there must be no repeated vertices. Indeed, recall from Section 2.1 that
by definition, paths and cycles cannot repeat vertices twice. This is important to ensure
that Berge’s lemma for alternating cycles (Lemma 2.2) holds. Following the terminology
of [BJG09, §1.4], let us introduce a relaxation of this global condition.

Definition 7.3. A trail (resp. closed trail) is a “path” (resp. “cycle”) in which we allow vertex
repetitions, but edge repetitions are prohibited. Compatible trails and compatible closed trails
in a graph with forbidden transitions are defined analogously to the above definition.

Remark 7.4. For perfect matchings, an alternating cycle is the same as an alternating
closed trail: repeating a vertex would imply repeating its unique matching edge. However,
this is not true for general graphs with forbidden transitions: see Figure 17a for an example
with compatible closed trails, but no compatible cycles.

The relevance of this notion is that for compatible trails, we showed the problem to
be tractable [Ngu19] by using an “edge-colored line graph” construction. This construction

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:25

(a) A paired graph (pairs indicated by
non-black colors) containing 2 compati-
ble closed trails which are not cycles. (b) The PM-line graph of the figure on the left.

Figure 17. A graph with forbidden transitions and its PM-line graph.

has other uses but, in the case of compatible (closed) trails, it can be replaced by a version
using perfect matchings that we define below — which in fact is the edge-colored line graph
composed with a previously known reduction, see [Ngu19] for details. All this arguably goes
to show that the objects which we manipulate are not contrived to fit with RB-graphs: they
arise naturally from other considerations.

Definition 7.5. Let G be a graph and T be a transition system on G. The PM-line graph
LPM (G,T) is defined as the graph:
• with vertex set {ue | e ∈ E, u is an endpoint of e};
• with edge set M t E′, where
M = {(ue, ve) | e = (u, v) ∈ E} E′ = {(ue, uf) | u ∈ V, e, f ∈ ∂(u) are adjacent in T (u)}
• equipped with the perfect matching M .

Proposition 7.6 [Ngu19]. Closed trails of length k in G compatible with T correspond
bijectively to alternating cycles of length 2k in LPM (G,T).

An example is given by Figure 17b: it contains two alternating cycles corresponding to
the compatible closed trails of Figure 17a.

Finally, we relate the PM-line graph construction to RB-graphs.

Proposition 7.7. Let π be a proof structure with conclusions (Definition 3.2) and C(π) its
correctness graph (adapting Definition 2.13 to handle conclusion vertices/edges). Let T be
the transition system corresponding to the paired edges of C(π).

Then LPM (C(π), T) is exactly the RB-graph for π.

Proof. Immediate by comparing Figure 7 with Definition 7.5.

The moral of the story is that the actual function of RB-graphs is to detect compatible
closed trails. It turns out that for the correctness graphs of proof structures, this is the same
as switching cycles, but as Figure 17a shows this is not true in general. The particularity of
correctness graphs that entails this equivalence is that if a vertex is incident to two edges
that are paired together, then it is incident to at most one unpaired edge (which corresponds
to the outgoing edge of a O link in the proof structure).

27:26 Lê Thành Dũng Nguyễn Vol. 16:1

8. Conclusion

We have presented a correspondence between proof nets and perfect matchings, and demon-
strated its usefulness through several applications of graph theory to linear logic: our results
give the best known complexity for MLL+Mix correctness and sequentialization, by taking
advantage of sophisticated graph algorithms. Beyond that, we have also contextualized
this correctness problem as a member of a family of equivalent constrained cycle-finding
problems in graphs, and used this to shed some light on earlier work on proof nets. These
connections also have some benefits for graph theory, as the rephrasing of Bellin’s theorem
and our discovery of the “PM-line graph” construction illustrate; this is what we attempt to
demonstrate in the companion paper [Ngu19]. In general, we hope to see fruitful interactions
arise between those two domains.

8.1. Further hardness results: pomset logic and visible acyclicity. To take advan-
tage of this connection, one can peruse the literature on graphs to look for results with
potential applications to proof nets. For instance, there is a NP-hardness result for a certain
constrained path-finding problem on arc-colored directed graphs [GLMM13]. From this, we
deduced in [Ngu19] that finding an alternating circuit — for a certain notion of perfect
matching in a directed graph — is NP-hard. In other words, the absence of alternating
circuits — one possible generalization of the UniquenessPM problem to directed graphs
(for which Berge’s lemma doesn’t hold) — is coNP-hard.

It turns out that circuits (i.e., directed cycles) also appear in the study of proof nets:
• Retoré’s pomset logic [Ret97] is a conservative extension of MLL+Mix with a self-dual
non-commutative connective /. The extension of the Danos–Regnier correctness criterion
to pomset logic proof nets allows both premises of a /-link to be traversed consecutively by
a “switching cycle”, but only if the left premise is taken before the right one: the direction
of the cycle therefore becomes relevant. In [Ngu20], we show that the correctness problem
for pomset logic is coNP-complete18, by adapting our proofification construction to take
directed graphs as input. A direct proof of the NP-hardness of the directed alternating
cycle problem is also provided in [Ngu20].
• The visible acyclicity condition was first introduced by Pagani for as a relaxation of the
usual correctness criterion for MELL+Mix (by MELL we mean Multiplicative-Exponential
Linear Logic) proof structures [Pag06]; it was later extended to differential interaction
nets [Pag12]. It is defined as the absence of certain “visible cycles”, which become directed
when exponential boxes are present. One can show that visible acyclicity is coNP-hard (a
result that we first announced at the DICE 2018 workshop) by imitation of the proof for
pomset logic. However, we do not know whether it is in coNP.

Interestingly, both pomset logic correctness and visible acyclicity were motivated by semantic
considerations: they are necessary and sufficient conditions for the soundness of the denotation
of proof structures in coherence spaces.

18This contradicts (assuming that P 6= NP) the polynomial time claim of [Ret97, Proposition 5], whose
purported proof relies on a “standard breadth search algorithm” to find an alternating path for a perfect
matching in a digraph. Remark 4.3 explains the subtle issue with this argument.

A similar mistake appears in Hughes’s paper on combinatorial proofs: he claims that a “simple breadth-first
search” [Hug06, Footnote 3] can determine, in linear time, some condition that amounts to the correctness of
a MLL+Mix proof structure. In that case, the mistake is harmless, thanks to our Theorem 4.1.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:27

8.2. Open questions. Now that we have shed a new light on MLL+Mix proof nets, it
would be interesting to revisit the well-studied theory of MLL proof nets. Therefore, we
would like to find the right graph-theoretical counterpart to the connectedness condition
in the Danos–Regnier criterion for MLL. The goal would be to extract the combinatorial
essence of the statics of MLL proof structures, forgetting about logic; without having to
handle the dynamics (cut-elimination), one could hope to distill some simpler combinatorial
object, in the same way that perfect matchings are simpler than MLL+Mix proof structures.

But unique perfect matchings do not seem to be the right setting to do so; and one year
after the conference version of this paper, despite the connections described here with, e.g.,
forbidden transitions, we still have not found a natural graph-theoretic decision problem
equivalent to correctness for MLL without Mix. (As far as naturality is concerned, perfect
matchings set a high bar, given their importance in discrete mathematics!)

Here by “equivalent” we mean, in particular, through low-complexity reductions (hope-
fully computable both in linear time and in AC0). Though the NL-completeness of MLL
correctness means that it is equivalent to directed reachability, Mogbil and Naurois’s correct-
ness criterion [JdNM11] uses a subroutine for connectivity in undirected forests, a L-complete
problem, in its reduction. A related question is to understand why all known linear-time
correctness criteria for MLL — including the one presented here — rely on the same sophis-
ticated data structure, as mentioned in Remark 4.3. (Namely, “incremental tree set union”: a
restricted union-find data structure with O(1) amortized operations.)

In the same vein, the present paper does not treat at all — except for the short Remark 4.4
— the contractibility criterion introduced by Danos [Dan90], despite its importance in recent
developments in proof nets (e.g., [HH16, BH18]). It is also part of the divide between
MLL and MLL+Mix proof nets: contractibility, reformulated as graph parsing, underlies a
linear-time sequentialization algorithm for MLL [Gue11], while no such algorithm is known
for MLL+Mix. Aside from the obvious question of sequentalizing MLL+Mix nets in linear
time, looking for a mainstream graph-theoretic account of contractibility is also of interest.

Another question19 would be to give a graph-theoretic account of the notion of empire in
proof nets, similarly to our treatment of kingdoms in Section 6. Empires were used in Girard’s
original proof of the first correctness criterion (the so-called “long trip” criterion) [Gir87];
while the kingdom of a link l in a MLL+Mix proof net is the minimum normal subnet having
l as a conclusion, the empire of l is, dually, the maximum such subnet. To achieve this
goal, the obvious place to start would be the characterization of empires in proof nets given
in [Bel97, Lemma 3] using certain paths (“chains”) in proof nets.

8.3. Other variants of proof nets through the lens of graph theory. We gather here
miscellaneous ideas on extending the graph-theoretic viewpoint beyond MLL+Mix, that we
have not had the time to pursue further. Any assertion that we make below should therefore
be seen as purely speculative.

8.3.1. Jumps and quantifiers. We have argued that our graphification construction (Sec-
tion 5.1) faithfully reflects the intrinsic order of logical rules in a proof net. It should therefore
be possible to incorporate jumps, which are a way to prescribe sequentiality constraints on
proof nets. By doing so, one would extend our results to MLL+Mix with (first-order or
second-order) quantifiers ∀/∃: the technology of jumps was first introduced to handle proof

19This was suggested to the author by Gianluigi Bellin.

27:28 Lê Thành Dũng Nguyễn Vol. 16:1

nets with quantifiers [Gir91]. This treatment should also accomodate more general uses of
jumps such as [DGF08].

8.3.2. Essential nets. Larmarche’s essential nets for intuitionistic MLL admit a correctness
criterion formulated using a standard notion on graphs, namely the domination between
vertices in a control flow graph. This is at the heart of Murawski and Ong’s linear time
algorithm for MLL correctness [MO06]. So it would be interesting, in view of the aforemen-
tioned goal of understanding why the “incremental tree set union” data structure of [GT85]
seems necessary to decide MLL correctness in linear time (it occurs in the computation of a
“dominator tree” in [MO06]), to compare this domination criterion with the criteria based on
unique perfect matchings.

A first remark is that, via a classical correspondence between directed graphs and graphs
equipped with bipartite perfect matchings, the essential net obtained from a MLL proof
structure by the reduction of [MO06] (the so-called “trip translation”) can be identified with
a maximal bipartite subgraph of its RB-graph. The missing piece is to understand whether
this is an instance of a purely graph-theoretic reduction from the domination condition to
the UniquenessPM problem.

Acknowledgments

This work started as a side project during an internship in the Operations Research team
at the Laboratoire d’Informatique de Paris 6, supervised by Christoph Dürr, who taught
the author the expressive power of perfect matchings; this paper would not exist without
him. Thanks also to Kenji Maillard, Michele Pagani, Marc Bagnol, Antoine Amarilli, Alexis
Saurin, Stefano Guerrini and Virgile Mogbil for discussions, references and encouragements,
and to Thomas Seiller for his writing advice on the initial conference version.

We are also grateful to the anonymous reviewers for their useful and detailed feedback
on previous versions of this paper.

References

[Bar92] David A. Mix Barrington. Quasipolynomial size circuit classes. In [1992] Proceedings of the
Seventh Annual Structure in Complexity Theory Conference, pages 86–93, June 1992.

[BDS15] Marc Bagnol, Amina Doumane, and Alexis Saurin. On the dependencies of logical rules. In
FOSSACS, 18th International Conference on Foundations of Software Science and Computation
Structures, London, United Kingdom, April 2015.

[Bel97] Gianluigi Bellin. Subnets of proof-nets in multiplicative linear logic with MIX. Mathematical
Structures in Computer Science, 7(6):663–669, December 1997.

[Ber57] Claude Berge. Two Theorems in Graph Theory. Proceedings of the National Academy of Sciences,
43(9):842–844, September 1957.

[BH18] Gianluigi Bellin and Willem B. Heijltjes. Proof Nets for Bi-Intuitionistic Linear Logic. In Hélène
Kirchner, editor, 3rd International Conference on Formal Structures for Computation and
Deduction (FSCD 2018), volume 108 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 10:1–10:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BJG09] Jørgen Bang-Jensen and Gregory Gutin. Digraphs. Theory, algorithms and applications. 2nd ed.
London: Springer, 2nd ed. edition, 2009.

[BvdW95] Gianluigi Bellin and Jacques van de Wiele. Subnets of Proof-nets in MLL-. In Proceedings of the
Workshop on Advances in Linear Logic, pages 249–270, New York, NY, USA, 1995. Cambridge
University Press.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:29

[CSV84] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
Journal on Computing, 13(2):423–439, May 1984.

[Dan90] Vincent Danos. La Logique Linéaire appliquée à l’étude de divers processus de normalisation
(principalement du Lambda-calcul). PhD thesis, Université Paris-Diderot – Paris VII, 1990.

[DGF08] Paolo Di Giamberardino and Claudia Faggian. Proof nets sequentialisation in multiplicative
linear logic. Annals of Pure and Applied Logic, 155(3):173–182, October 2008.

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical
Logic, 28(3):181–203, 1989.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(0):449–467,
January 1965.

[FR94] Arnaud Fleury and Christian Retoré. The mix rule. Mathematical Structures in Computer Science,
4(2):273–285, 1994.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, January 1987.
[Gir91] Jean-Yves Girard. Quantifiers in Linear Logic II. In Corsi and Sambin, editors, Nuovi problemi

della logica e della filosofia della scienza, pages 79–90, Bologna, 1991. CLUEB.
[GKT01] Harold N. Gabow, Haim Kaplan, and Robert E. Tarjan. Unique maximum matching algorithms.

Journal of Algorithms, 40(2):159–183, August 2001.
[GLMM13] Laurent Gourvès, Adria Lyra, Carlos A. Martinhon, and Jérôme Monnot. Complexity of trails,

paths and circuits in arc-colored digraphs. Discrete Applied Mathematics, 161(6):819–828, April
2013.

[GT85] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30(2):209–221, April 1985.

[Gue11] Stefano Guerrini. A linear algorithm for MLL proof net correctness and sequentialization.
Theoretical Computer Science, 412(20):1958–1978, April 2011.

[HH16] Dominic Hughes and Willem Heijltjes. Conflict nets: Efficient locally canonical MALL proof
nets. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), 2016, pages 437–446, New York, U. S. A., July 2016. ACM.

[HMT06] Thanh Minh Hoang, Meena Mahajan, and Thomas Thierauf. On the bipartite unique perfect
matching problem. In Automata, Languages and Programming, 33rd International Colloquium,
ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, pages 453–464, 2006.

[HRT18] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log2 n) amortized
time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2018), pages 35–52. Society for Industrial and Applied Mathematics, January 2018.

[Hug06] Dominic J.D. Hughes. Proofs Without Syntax. Annals of Mathematics, 143(3):1065–1076, No-
vember 2006.

[Jac65] Carl Gustav Jacob Jacobi. De investigando ordine systematis aequationum differentialium
vulgarium cujuscunque. Journal für die reine und angewandte Mathematik, (64):297–320, 1865.

[JdNM11] Paulin Jacobé de Naurois and Virgile Mogbil. Correctness of linear logic proof structures is
NL-complete. Theoretical Computer Science, 412(20):pp. 1941–1957, April 2011.

[JO09] Carl Gustav Jacob Jacobi and François Ollivier. Looking for the order of a system of arbitrary
ordinary differential equations. De investigando ordine systematis aequationum differentialium
vulgarium cujuscunque. Applicable Algebra in Engineering, Communication and Computing,
20(1):7–32, 2009.

[Kot59] Anton Kotzig. Z teórie konečných grafov s lineárnym faktorom. II. Matematicko-fyzikálny časopis,
09(3):136–159, 1959.

[KVV85] Dexter Kozen, Umesh V. Vazirani, and Vijay V. Vazirani. NC algorithms for comparability
graphs, interval graphs, and testing for unique perfect matching. In Foundations of Software
Technology and Theoretical Computer Science, Fifth Conference, New Delhi, India, December
16-18, 1985, Proceedings, pages 496–503, 1985.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In Fundamentals of Com-
putation Theory, pages 565–574, 1979.

[MO06] Andrzej S. Murawski and C.-H. Luke Ong. Fast verification of MLL proof nets via IMLL. ACM
Transactions on Computational Logic, 7(3):473–498, July 2006.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987.

27:30 Lê Thành Dũng Nguyễn Vol. 16:1

[Ngu19] Lê Thành Dũng Nguyễn. Constrained path-finding and structure from acyclicity. CoRR,
abs/1901.07028, 2019.

[Ngu20] Lê Thành Dũng Nguyễn. Complexity of correctness for pomset logic proof nets. CoRR,
abs/1912.10606, 2020.

[Pag06] Michele Pagani. Acyclicity and coherence in multiplicative and exponential linear logic. In Pierre-
Louis Curien, editor, Proceedings of the Twentieth International Workshop on Computer Science
Logic, volume 4207 of Lecture Notes in Computer Science, pages 531–545, Szeged, Hungary, 2006.
Springer.

[Pag12] Michele Pagani. Visible acyclic differential nets, Part I: Semantics. Annals of Pure and Applied
Logic, 163(3):238–265, 2012.

[Ret93] Christian Retoré. Réseaux et séquents ordonnés. PhD thesis, Université Paris-Diderot - Paris VII,
February 1993.

[Ret96] Christian Retoré. Perfect matchings and series-parallel graphs: multiplicatives proof nets as R&B-
graphs: [Extended Abstract]. Electronic Notes in Theoretical Computer Science, 3(Supplement
C):167–182, January 1996.

[Ret97] Christian Retoré. Pomset logic: A non-commutative extension of classical linear logic. In Gerhard
Goos, Juris Hartmanis, Jan Leeuwen, Philippe Groote, and J. Roger Hindley, editors, Typed
Lambda Calculi and Applications, volume 1210, pages 300–318. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1997.

[Ret99] Christian Retoré. Handsome proof-nets: R&B-graphs, perfect matchings and series-parallel
graphs. Research Report 3652, INRIA, March 1999.

[Ret03] Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theoretical Computer
Science, 294(3):473–488, February 2003.

[RV89] Michael O. Rabin and Vijay V. Vazirani. Maximum matchings in general graphs through
randomization. Journal of Algorithms, 10(4):557–567, December 1989.

[ST17] Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-NC. In
Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 696–707. IEEE Computer Society, 2017.

[Str06] Lutz Straßburger. Proof Nets and the Identity of Proofs. Research Report 6013, INRIA, October
2006.

[Sze03] Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete Applied Mathe-
matics, 126(2-3):261–273, 2003.

[Sze04] Stefan Szeider. On theorems equivalent with Kotzig’s result on graphs with unique 1-factors. Ars
Combinatoria, 73:53–64, 2004.

[Tar83] Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1983.

Appendix A. Proof of Lemma 6.5

We rely on a version of Berge’s lemma (Lemma 2.2) for paths:

Lemma A.1 (Berge [Ber57]). Let G be a graph and M be a matching of G. If P is an
augmenting path for M — i.e., an alternating path whose endpoints are unmatched — then
M4P is a matching and |M4P | = |M | + 1. (Thus, adding P “augments” M , hence the
name.) Conversely, if M is a matching with |M ′| > |M |, then M4M ′ is a vertex-disjoint
union of:
• |M ′| − |M | augmenting paths for M ;
• some (possibly zero) cycles which are alternating for both M and M ′.

Let u, v ∈ V be the unmatched vertices. If there is an augmenting path for M in G, its
endpoints must be u and v, and this is equivalent to the existence of a perfect matching in
G. Let e = (a, b), G′ = (V,E \ {e}) and M ′ = M \ {e}.

Vol. 16:1 UNIQUE PERFECT MATCHINGS AND PROOF NETS 27:31

Suppose G′ admits a perfect matching M ′′. Then the symmetric difference M ′4M ′′
consists of two vertex-disjoint alternating paths for M ′ whose endpoints are {u, v, a, b}, by
Berge’s lemma for paths; indeed, our assumptions prevent the existence of alternating cycles
for M , and therefore for M ′ ⊂M as well.

We claim that these paths either go from u to a and b to v, or from u to b and a to v.
Otherwise, there would be an alternating path from a to b for M ′ in G′, and together with
(a, b) = e ∈M , this would give us an alternating cycle for M in G.

In both cases, let us join the two paths together by adding e. We get a path starting
with u, ending with v, crossing e and alternating for M in G. Conversely, from such a path,
one can get a perfect matching in G′.

It is clear that the reduction is in AC0. For the linear time complexity, we exploit the
fact that we already have at our disposal a matching M ′ of G′ which leaves only 4 vertices
unmatched. A perfect matching can then be found as follows: find a first augmenting path P
for M ′ in linear time, and then a second one P ′ for M ′4P , both steps being done in linear
time (using a similar (but simpler) algorithm than for UniquenessPM, see [GT85] and
[Tar83, Section 9.4]). If both augmenting paths exist, then M4P4P ′ is a perfect matching,
and conversely, if G′ admits a perfect matching, then the procedure succeeds in finding some
P and P ′. (This does not mean that P and P ′ are the same as the paths in the previous
part of the proof, since they may not be vertex-disjoint.)

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. Algorithmics of proofs in linear logic
	1.2. Proof nets vs graph theory
	1.3. Contributions

	2. Preliminaries
	2.1. Terminology
	2.2. Perfect matchings, alternating cycles and sequentialization
	2.3. Proof structures, proof nets and the correctness criterion

	3. An equivalence through mutual reductions
	3.1. From proof structures to perfect matchings: Retoré's RB-graphs
	3.2. From perfect matchings to proof structures

	4. On the complexity of MLL+Mix correctness
	4.1. An immediate linear-time algorithm
	4.2. Characterizing the sub-polynomial complexity

	5. Tackling sequentialization via an appropriate translation
	5.1. A new encoding: graphification
	5.2. A sequentialization algorithm for MLL+Mix proof nets

	6. On the kingdom ordering of links
	6.1. Computing the kingdom ordering
	6.2. Dependencies and blossoms in unique perfect matchings

	7. A reconstruction of RB-graphs via forbidden transitions
	8. Conclusion
	8.1. Further hardness results: pomset logic and visible acyclicity
	8.2. Open questions
	8.3. Other variants of proof nets through the lens of graph theory

	Acknowledgments
	References
	Appendix A. Proof of Lemma 6.5

