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Abstract. In this paper we regard languages and their acceptors – such as deterministic
or weighted automata, transducers, or monoids – as functors from input categories that
specify the type of the languages and of the machines to categories that specify the type of
outputs.

Our results are as follows: a) We provide sufficient conditions on the output category so
that minimization of the corresponding automata is guaranteed. b) We show how to lift
adjunctions between the categories for output values to adjunctions between categories of
automata. c) We show how this framework can be instantiated to unify several phenomena
in automata theory, starting with determinization, minimization and syntactic algebras.
We provide explanations of Choffrut’s minimization algorithm for subsequential transducers
and of Brzozowski’s minimization algorithm in this setting.

1. Introduction

There is a long tradition of interpreting results of automata theory through the lens of
category theory. Typical instances of this scheme interpret automata as algebras (together
with a final map) as put forward in [2, 4, 15], or as coalgebras (together with an initial
map), see for example [17,22]. This dual narrative proved very useful [7] in explaining at an
abstract level Brzozowski’s minimization algorithm and the duality between reachability
and observability (which goes back all the way to the work of Arbib and Manes [4] and
Kalman [18]).

In this paper, we adopt a slightly different approach, and we define directly the notion
of an automaton (over finite words) as a functor from a category representing input words,
to a category representing the computation and output spaces. For example, deterministic
automata are represented as functors valued in the category of sets and functions, non-
deterministic automata as functors valued in the category of sets and relations, while
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weighted automata over a semiring S as functors valued in the category of S-modules. The
notions of a language and of language accepted by an automaton are adapted along the
same pattern.

We provide several developments around this idea. First, we recall (see [12]) that the
existence of a minimal automaton for a language is guaranteed by the existence of an
initial and a final automaton in combination with a factorization system. The idea of using
factorization systems in the context of minimization has of course a long history, going
back at least to Goguen [15]. However, the functorial presentation that we adopted allows
us to give a unifying perspective of the minimization of various forms of automata and
algebraic structures used for language recognition. Additionally, we explain how, in the
functor presentation that we have adopted, the existence of initial and final automata for a
language can be phrased in terms of Kan extensions. As an immediate corollary, we identify
sufficient conditions on the output category for the existence of the corresponding minimal
automaton: existence of certain limits and colimits, as well as of a suitable factorization
system.

We also show how adjunctions between categories can be lifted to the level of automata
for languages in these categories (Lemma 3.4). This lifting accounts for several constructions
in automata theory, determinization to start with. Indeed, determinization of automata can
be understood via a lifting of the Kleisli adjunction between the categories Rel (of sets and
relations) and Set (of sets and functions); and reversing non-deterministic automata can be
understood via a lifting of the self-duality of Rel.

We then use this framework in order to explain several well-known constructions in
automata theory.

The most involved contribution (Theorem 4.5) is to rephrase in this framework the
minimization result for subsequential transducers due to Choffrut [10]. We do this by
instantiating the category of outputs with the Kleisli category for the monad T X = B∗×X+1,
where B is the output alphabet of the transducers. In this case, despite the lack of
completeness of the ambient category, one can still prove the existence of an initial and of a
final automaton, as well as, surprisingly, of a factorization system.

The second concrete application presented in Section 5 is a proof of correctness of
Brzozowski’s minimization algorithm, for both deterministic and weighted automata. Brzo-
zowski’s minimization algorithm for deterministic automata can be understood by lifting
the adjunctions between Set and its opposite category Setop , as an immediate application of
Lemma 3.4. Similarly, upon viewing weighted automata as functors valued in the category
S-Mod of S-modules, a weighted version of Brzozowski’s minimization algorithm described
in [7] can be explained by lifting the adjunction between S-Mod and its opposite S-Modop .

Lastly, in Section 6 we show how the syntactic monoid for a language can be obtained in
the same spirit as the minimal automaton. To this end, we replace the category representing
finite words with one suitable for representing biaction and monoid recognizers of languages.

Related work. Many of the constructions outlined here have already been explained from
a category-theoretic perspective, using various techniques. For example, the relationship
between minimization and duality was subject to numerous papers, see for example [6–8] and
the references therein. The coalgebraic perspective on minimization was also emphasized in
papers such as [1, 3, 23]. We briefly mention the relationship with well-pointed coalgebras in
Remark 3.3. However, we argue that in some instances the functorial approach may be better
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suited for explaining minimization, an example being that of subsequential transducers, see
Section 4.

In [16] subsequential structures (i.e. subsequential transducers without initial state
and inital prefix) are modeled as coalgebras for an endofunctor on Set. However, the
corresponding notion of coalgebra morphism does not accurately capture the suitable notion
of subsequential morphisms. In Section 4 we model subsequential transducers as functors
valued in a Kleisli category Kl(T ). This category does not have powers, hence working with
coalgebras for an endofunctor on Kl(T ) is not possible, see Remark 3.3. On the other hand,
if one uses instead coalgebras for a Set-endofunctor, as in [16], then only certain “normalized”
subsequential structures can be fully dealt with coalgebraically.

Understanding determinization and codeterminization by lifting adjunctions to coalge-
bras was considered in [19], and is related to our results from Section 3.3.

The paper which is closest in spirit to our work is a seemingly forgotten paper [5].
However, in this work, Bainbridge models the state space of the machines as a functor. Left
and right Kan extensions are featured in connection with the initial and final automata, but
in a slightly different setting. Lemma 3.4, which albeit technically simple, has surprisingly
many applications, builds directly on his work.

The functorial approach to non-deterministic automata presented in this paper is
reminiscent of the work on automata in quantaloid-enriched categories developed in [21].
However, in this paper we do not consider neither relational presheaves (which are lax
functors) nor enriched categories. We also aimed to keep the requirements on the output
category as simple as possible.

2. Languages and Automata as Functors

In this section, we introduce the notion of automata via functors, and this is the com-
mon denominator of the different contributions of this paper. We then discuss automata
minimization in this generic setting.

2.1. Automata as functors. We introduce automata as functors starting from the special
case of classical deterministic automata. In the standard definition, a deterministic automaton
is a tuple:

〈Q,A, q0, F, δ〉
where Q is a set of states, A is an alphabet (not necessarily finite), q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δa : Q→ Q is the transition map for all letters a ∈ A.
The semantic of an automaton is to define what is a run over an input word u ∈ A∗, and
whether it is accepting or not. Given a word e = a1 . . . an, the automaton accepts the word
if δan ◦ · · · ◦ δa1(q0) ∈ F , and otherwise rejects it.

If we see q0 as a map init from the one element set 1 = {0} to Q, that maps 0 to q0,
and F as a map final from Q to the set 2 = {0, 1}, where 1 means ‘accept’ and 0 means
‘reject’, then the semantic of the automaton is to associate to each word u = a1 . . . an the
map from 1 to 2 defined as final ◦ δan ◦ · · · ◦ δa1 ◦ init . If this map is (constant equal to) 1,
this means that the word is accepted, and otherwise it is rejected.

Pushing this idea further, we can see the semantics of the automaton as a functor
from the category Iword spanned by the graph of vertices {in, states, out} in Figure 1 to
Set, and more precisely one that sends the object in to 1 and out to 2. The arrows of the
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Iword in states out

Set 1 Q 2
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init

δa

final

Figure 1: Deterministic automata as functors

three-object category Iword are spanned by ., / and a for all a ∈ A, and the composite of

states states statesw w′ is given by the concatenation ww′. Notice the left to right
order of composition.

In the above category, the arrows from in to out are of the form .w/ for w an arbitrary
word in A∗. Furthermore, since a language can be seen as a map from A∗ to the set 1→ 2
of functions from 1 to 2, we can model it as a functor from the full subcategory Oword on
objects in and out to the category Set, which maps in to 1 and out to 2.

In this section we fix an arbitrary small category I and a full subcategory O. We denote
by ι the inclusion functor

O I .ι

We think of I as a specification of the inner computations that an automaton can
perform, including black box behavior, not observable from the outside. On the other hand,
the full subcategory O specifies the observable behavior of the automaton, that is, the
language it accepts. In this interpretation, a machine/automaton A is a functor from I to a
category of outputs C, and the “behavior” or “language” of A is the functor L(A) obtained

by precomposition with the inclusion O Iι . We obtain the following definition:

Definition 2.1 (C-languages and C-automata). A C-language is a functor L : O → C and
a C-automaton is a functor A : I → C. A C-automaton A accepts a C-language L when
A ◦ ι = L; i.e. the following diagram commutes:

O C

I

L

ι
A

We write Auto(L) for the subcategory of the functor category [I, C] where

(1) objects are C-automata that accept L, and
(2) arrows are natural transformations α : A → B so that the natural transformation obtained

by composition with the inclusion functor ι is the identity natural transformation on L,
that is, α ◦ ι = idL.

Example 2.2 (word automata and their languages). We can model various forms of word

automata and their languages using the input categories Oword Iword and varying

the category of outputs:

(1) As described in Figure 1, deterministic automata can be seen as Set-automata, i.e. as
functors A : Iword → Set that map in to 1 and out to 2.
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The language accepted byA is the composite L : Oword Iword SetA , which

essentially specifies for each word w ∈ A∗ a function L(.w/) : 1→ 2, establishing whether
the word w is accepted or not. Indeed, if w = a1 . . . an, then L(.w/) is exactly the
function final ◦ δan ◦ · · · ◦ δa1 ◦ init described in the introduction of this section.

(2) Non-deterministic automata can be modeled as Rel-automata, where Rel is the category
whose objects are sets and maps are relations between them.

Indeed, a non-deterministic automaton is completely determined by the relations
described in the next diagram, where the set of initial states is modeled as a relation
from 1 to the set of states Q, the set of final states as a relation from Q to 1 and the
transition relation by any input letter a, as a relation on Q:

1 Q 1/
init

/

δa

/
final

Explicitly, we consider Rel-automata A : Iword → Rel so that A(in) = 1 and A(out) = 1.

The language accepted by A is the composite L : Oword Iword RelA . This

functor specifies for each word w ∈ A∗ a relation L(.w/) : 1 1/ . Notice that the

set Rel(1, 1) of relations on the set 1 is isomorphic to 2, and the relation L(.w/) simply
models whether the word w is accepted by the automaton or not.

(3) Weighted automata over a semiring S can be modeled as functors A : Iword → S-Mod
valued in the category S-Mod of S-modules and S-linear morphisms and mapping both
in and out to S (seen as a module over itself). Indeed, such an automaton is determined
by the linear maps described in the next diagram, where the state space Q has an
S-module structure.

S Q Sinit

δa

final

Indeed, to give a linear map init : S → Q amounts to giving one element of the module
Q, i.e. an initial state for the automaton.

The language accepted by A, i.e. the composite L : Oword Iword S-ModA

specifies for each word w ∈ A∗ a linear transformation L(.w/) : S → S. Up to isomor-
phism, this is the same as specifying one scalar in S for each word in A∗, hence we
obtain the weighted language A∗ → S classically accepted by the automaton.

2.2. Minimization of C-automata. In this section we show that the notion of a minimal
automaton is an instance of a more generic notion of minimal object that can be defined
in an arbitrary category K whenever there exist an initial object, a final object, and a
factorization system (E ,M).

Let X,Y be two objects of K. We say that:

X (E ,M)-divides Y if X is an E-quotient of an M-subobject of Y .
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Let us note immediately that in general this notion of (E ,M)-divisibility may not be
transitive1. It is now natural to define an object M to be (E ,M)-minimal in the category, if
it (E ,M)-divides all objects of the category. Note that there is no reason a priori that an
(E ,M)-minimal object in a category, if it exists, be unique up to isomorphism. Nevertheless,
in our case, when the category has both initial and a final object, we can state the following
minimization lemma:

Lemma 2.3. Let K be a category with initial object I and final object F and let (E ,M) be
a factorization system for K. Define for every object X:

• Min to be the factorization of the unique arrow from I to F ,
• Reach(X) to be the factorization of the unique arrow from I to X, and Obs(X) to be the

factorization of the unique arrow from X to F .

Then

• Min is (E,M)-minimal, and
• Min is isomorphic to both Obs(Reach(X)) and Reach(Obs(X)) for all objects X.

Proof. The proof essentially consists of a diagram:

X

I Reach(X) Obs(Reach(X)) F

Min

Using the definition of Reach and Obs, and the fact that E is closed under composition,
we obtain that Obs(Reach(X)) is an (E ,M)-factorization of the unique arrow from I to F .
Thus, thanks to the diagonal property of a factorization system, Min and Obs(Reach(X))
are isomorphic. Hence, furthermore, since Obs(Reach(X)) (E ,M)-divides X by construction,
the same holds for Min. In a symmetric way, we have the next diagram:

X

I Reach(Obs(X)) Obs(X) F

Min

This shows that Reach(Obs(X)) is also isomorphic to Min.

An object X of K is called reachable when X is isomorphic to Reach(X). We denote by

Reach(K) the full subcategory of K consisting of reachable objects. Similarly, an object X
of K is called observable when X is isomorphic to Obs(X). We denote by Obs(K) the full
subcategory of K consisting of observable objects.

We can express reachability Reach and observability Obs as the right, respectively the
left adjoint to the inclusion of Reach(K), respectively of Obs(K) into K. It is indeed a
standard fact that factorization systems give rise to reflective subcategories, see [9]. In

1There are nevertheless many situations for which it is the case; in particular when the category is regular,
and E happens to be the class of regular epis. This covers in particular the case of all algebraic categories
with E-quotients being the standard quotients of algebras, andM-subobjects being the standard subalgebras.
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our case, this is the reflective subcategory Obs(K) of K. By a dual argument, the category
Reach(K) is coreflective in K. We can summarize these facts in the next lemma.

Lemma 2.4. Let K be a category with initial object I and final object F and let (E ,M) be
a factorization system for K. We have the adjunctions

Reach(K) ⊥ K ⊥ Obs(K) .

Obs

Reach

(2.1)

In what follows we will instantiate K with the category Auto(L) of C-automata accepting
a language L. Assuming the existence of an initial and a final automaton for L – denoted
by Ainit(L), respectively Afinal (L) – and, of a factorization system, we obtain the functorial
version of the usual notions of reachable sub-automaton Reach(A) and observable quotient
automaton Obs(A) of an automaton A. The minimal automaton Min(L) for the language L
is obtained via the factorization

Ainit(L) Min(L) Afinal (L) . (2.2)

Lemma 2.3 implies that the minimal automaton divides any other automaton recognizing
the language, while a particular instance of Lemma 2.4 pertaining to deterministic automata
is given in [7, Section 9.4].

Remark 2.5. The duality between reachability and observability can be stated as the
duality between Reach(K) and Obs(Kop). Indeed, if we consider the factorization system
(M, E) on Kop , then it immediately follows that Obs(Kop) is isomorphic to Reach(K)op .
Hence the two adjunctions from (2.1) are dual to each other.

Remark 2.6 (Minimization via adjunctions). As a consequence of Lemma 2.3, minimization
can be seen as an endofunctor Min : K → K, isomorphic to the functors obtained by
considering any circuit in diagram (2.1).

We will come back to this observation of regarding minimization via adjunctions, in
Section 5, where we will show how Brzozowski’s algorithms fits in the same conceptual
approach, using however a longer chain of adjunctions.

2.3. Minimization of C-automata: sufficient conditions on C. In this section we
provide sufficient conditions on C so that the category Auto(L) of C-automata accepting a
C-language L satisfies the three conditions of Lemma 2.3. The sufficient conditions on C are
as follows

(1) completeness
(2) cocompleteness
(3) existence of a factorization system

In Corollary 2.10 below we show that when this conditions are satisfied then the initial
and final automata for a language exist and the minimal automaton can be obtained via the
factorization described in diagram (2.2).

Remark 2.7. Before proceeding to the technical details, a few remarks are in order.

(1) First, this notion of minimization is parametric in the factorization system one chooses
on C.
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(2) Second, we emphasize that these conditions are only sufficient. In Section 4 we consider
the example of sequential transducers and we instantiate C with a Kleisli category.
Although this category is not complete, the final automaton exists.

(3) Finally, depending on the category I, we may relax the conditions in Corollary 2.10,
see Lemma 3.2. The reader may skip the rest of this section and consider Example 3.1.

We consider now the sufficient conditions on C and we start with the factorization
system. It is well known that given a factorization system (E ,M) on C, we can extend
it to a factorization system (E[I,C],M[I,C]) on the functor category [I, C] in a point-wise
fashion. That is, a natural transformation is in E[I,C] if all its components are in E , and
analogously, a natural transformation is in M[I,C] if all its components are in M. In turn,
the factorization system on the functor category [I, C] induces a factorization system on its
subcategory Auto(L) for an arbitrary language L.

Lemma 2.8. If C has a factorization system (E ,M), then Auto(L) has a factorization
system (EAuto(L),MAuto(L)), where EAuto(L) consists of all the natural transformations with
components in E and MAuto(L) consists of all natural transformations with components
in M.

The proof of Lemma 2.8 is the same as the classical one that shows that factorization
systems can be lifted to functor categories.

As for the existence of the initial and final automaton accepting a given language, we
first notice that these can be stated in terms of Kan extensions, see [20].

Lemma 2.9. If the left Kan extension LanιL of L along ι exists, then it is an initial object
in Auto(L), that is, Ainit(L) exists and is isomorphic to LanιL.

Dually, if the right Kan extension RanιL of L along ι exists, then so does the final
object Afinal (L) of Auto(L) and Afinal (L) is isomorphic to RanιL.

Proof Sketch. Assume the left Kan extension exists. Then the canonical natural transfor-
mation L → LanιL ◦ ι is an isomorphism since ι is full and faithful. Whenever A accepts
L, that is, A ◦ ι = L, we obtain the required unique morphism LanιL → A using the
universal property of the Kan extension. The argument for the right Kan extension follows
by duality.

Corollary 2.10. Assume C is complete, cocomplete and has a factorization system and let
L be a C-language. Then the initial L-automaton and the final L-automaton exist and are
given by the left, respectively right Kan extensions of L along ι. Furthermore, the minimal
C-automaton Min(L) accepting L is obtained via the factorization

LanιL Min(L) RanιL .

3. Word Automata

In Sections 3 to 5 we restrict our attention to the case of word automata, for which we recall
the input category Iword from Figure 1 (i.e., the three-object category with arrows spanned
by ., / and a for all a ∈ A) and its full subcategory Oword on objects in and out.

in states out.

a

/
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We consider C-languages, which are now functors L : Oword → C. If L(in) = X and
L(out) = Y we call L a (C, X, Y )-language. Similarly, we consider C-automata that are
functors A : Iword → C. If A(in) = X and A(out) = Y we call A a (C, X, Y )-automaton.

3.1. Minimization of word automata. We first provide a couple of instances of the
generic minimization results given in the previous section and then we show how they can
be refined considering the particular structure of the category Iword.

Example 3.1. (1) Deterministic automata, i.e., (Set, 1, 2)-automata. Since Set is complete
and cocomplete, the initial and final automaton accepting a language L can be computed
as in Corollary 2.10.
• The initial automaton Ainit(L) is described in the next diagram.

1 A∗ 2ε

δa

L?

Its state space is the set A∗ of all words, the initial state is the empty word ε, the set
of final states consist of the words belonging to the accepted language, and, for each
input letter a, the transition map δa is defined by w 7→ wa.
• The final automaton Afinal (L) is described in the next diagram.

1 2A
∗

2L

δa

ε?

Its state space is the set 2A
∗

of all languages, the initial state is the language accepted
by the automaton, the final state consists of all the languages that contain the empty
word, and, for each input letter a ∈ A, the transition map δa is taking left quotients
of a language by the letter a, that is, A∗ 3 K 7→ a−1K = {u ∈ A∗ | au ∈ K}.
• The factorization system of Auto(L) is inherited from Set, consisting of surjective,

respectively injective functions.
Indeed, Ainit(L) and Afinal(L) are the initial, respectively the final objects in the

category Auto(L). To see this, notice that for any other automaton A in Auto(L) with
state space A(states) = Q, we have a unique morphism from Ainit(L) to A, as described
in the next diagram on the left. This is a natural transformation, determined by its
component on the object states, i.e., by the function reachedState : A∗ → Q, which maps a
word w ∈ A∗ to the state of Q reached by reading w. Similarly, there is a unique automata
morphism from A to Afinal (L), determined by the function acceptedLanguage : Q→ 2A

∗

which maps a state q ∈ Q to the language accepted by q.
In particular, as shown in the next diagram (on the right), the unique morphism

from Ainit(L) to Afinal (L) is determined by the function A∗ → 2A
∗

which maps a word
w ∈ A∗ to the quotient language w−1L. If we factorize this map, we obtain the quotient
of A∗ by the syntactic equivalence ∼ defined by w ∼ w′ if and only if w−1L = w′−1L,
that is, we obtain the state space of the minimal automaton accepting L.
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A∗

1 Q 2

2A
∗

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

A∗

1 Min(L) 2

2A
∗

L?

L

ε

i f

ε?

(2) Non-deterministic automata, i.e., (Rel, 1, 1)-automata. The category Rel has countable
products and coproducts, so the initial and final automata do exist and both have as
state space the set A∗. However, the missing ingredient for obtaining a meaningful
notion of minimal automaton in this case is a suitable factorization system.

(3) Weighted automata over a field K, i.e., (K-Mod,K,K)-automata. We have a similar
situation depicted in the two diagrams below. The initial automaton has as state space
the vector space of finitely supported functions from A∗ → K, while the final automaton
has as state space the vector space of all functions A∗ → K. These are precisely the
coproduct, respectively the product of A∗ many copies of K in the category K-Mod. In
the diagram below, the linear transformations ε and ε? are precisely the injection into
the coproduct, respectively the projection from the product which correspond to the
ε-component. The linear transformation, denoted (by an abuse) by L, maps the unit
of the field to the weighted language L : A∗ → K accepted by the automaton. While
the linear map L? can be defined on a basis of

⊕
u∈A∗

K as follows: for a given u ∈ A∗,

it maps the unit of K of the u-component of the coproduct to L(u). If we factorize
the unique linear transformation from

⊕
u∈A∗

K to
∏
u∈A∗

K we obtain precisely the vector

space of the minimal automaton accepting L.
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⊕
u∈A∗

K

K Q K

∏
u∈A∗

K

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

⊕
u∈A∗

K

K Min(L) K

∏
u∈A∗

K

L?

L

ε

i f

ε?

The examples above are instances of the next generic lemma, which refines the statement
of Corollary 2.10 taking into account the particular structure of the input category Iword.

Lemma 3.2 (from [12]). If C has countable products and countable coproducts, and a factor-
ization system, then the minimal C-automaton accepting L is obtained via the factorization
in the next diagram. ∐

u∈A∗
L(in)

L(in) Min(L) L(out)

∏
u∈A∗

L(out)

L?

L

ε

i f

ε?

The initial automaton Ainit(L) has as state space the copower
∐
u∈A∗

L(in). The map

ε = Ainit(L)(.) : L(in)→
∐
u∈A∗

L(in)

is the coproduct injection corresponding to ε ∈ A∗. The map

L? = Ainit(L)(/) :
∐
u∈A∗

L(in)→ L(out)

is given on the component of the coproduct corresponding to u ∈ A∗ by L(.u/). Lastly, for
each a ∈ A the map Ainit(L)(a) is given on the component of the coproduct that corresponds
to u ∈ A∗ as the coproduct injection corresponding to the word ua.

The final automaton Afinal (L) can be obtained by a duality argument. It has as state
space the power

∏
u∈A∗

L(out). The map

L = Afinal (L)(.) : L(in)→
∏
u∈A∗

L(out)
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is obtained using the universal property of the product by considering for each u ∈ A∗ the
map L(.u/) : L(in)→ L(out). The map

ε? = Afinal (L)(/) :
∏
u∈A∗

L(out)→ L(out)

is the projection corresponding to the ε component of the product. Lastly, for each a ∈ A
the map Afinal(L)(a) is obtained by taking the product by u ∈ A∗ of the projections∏
u∈A∗

L(out)→ L(out) on the au component.

In [12] we gave a direct proof for the initiality of Ainit(L). Here we can also notice
that this is exactly the result of colimit computation of the left Kan extension of L along
ι mentioned in Corollary 2.10. Indeed, we can use the fact that there are no morphisms
from out to states in I and the only morphism on which you take the colimit are of the form
.w : in→ states for all w ∈ A∗.

For the final automaton, the proof follows by duality.

Remark 3.3. When the category C has copowers, then a (C, X, Y )-automaton gives rise to
a pair (α, f) consisting of an algebra α : FQ→ Q for the functor F : C → C, FZ = X+A ·Z
and of a morphism f : Q→ Y .

Dually, when the category C has powers, then a (C, X, Y )-automaton gives rise to a pair
(ξ, i) consisting of a coalgebra ξ : Q→ HQ for the functor H : C → C, HZ = Y × ZA and of
a morphism i : X → Q. This is a mild generalization of the notion of pointed colagebras,
see e.g. [1], where C is assumed concrete over Set and the map i corresponds to selecting
an element in Q. In [1] minimal automata are seen as well-pointed coalgebras. However, in
Section 4 we will see an example of automata in a Kleisli category that does not have powers,
and where the equivalence between the functorial approach and the coalgebraic one breaks.

3.2. Lifting Adjunctions to Categories of Automata. In Example 2.2 we have seen
how languages L ⊆ A∗ can be modeled as functors from Oword to either Set or Rel, using the
fact that Set(1, 2) ' Rel(1, 1) ' 2. We will see how the relationship between deterministic
and non-deterministic automata, i.e., (Set, 1, 2)-automata and (Rel, 1, 1)-automata, can be
derived from the relationship between the categories Set and Rel, and, is a special instance
of a more general phenomenon. This is the subject of the present section, in which we will
juggle with languages and automata interpreted over different output categories connected
via adjunctions.

Assume we have an adjunction between two categories C and D

C ⊥ D ,
F

G

with F a G : D → C. Let (−)∗ and (−)∗ denote the induced natural isomorphisms between
the homsets. In particular, given objects I in C and O in D, we have bijections

C(I,GO) D(FI,O)
(−)∗

(−)∗
(3.1)
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These bijections induce a one-to-one correspondence between (C, I, GO)-languages and
(D, F I,O)-languages, which by an abuse of notation we denote by the same symbols:

(C, I, GO)-languages (D, F I,O)-languages
(−)∗

(−)∗

Indeed, given a (C, I, GO)-language L : O → C we obtain a (D, F I,O)-language L∗ : O →
D by setting L∗(.w/) = (L(.w/))∗ ∈ D(FI,O). Conversely, given a (D, F I,O)-language L′
we obtain a (C, I, GO)-language (L′)∗ by setting (L′)∗(.w/) = (L′(.w/))∗.

The next lemma shows how we can lift an adjunction between the output categories C
and D to an adjunction between categories of automata that accept essentially the same
language, admitting two equivalent representations in C and D.

Lemma 3.4. Assume LC and LD are (C, I, GO)-, respectively (D, F I,O)-languages so that
LD = (LC)∗. Then the adjunction F a G lifts to an adjunction F a G : Auto(LD) →
Auto(LC). The lifted functors F and G are defined as F , resp. G on the state object, that

is, the following diagram commutes

Auto(LC) ⊥ Auto(LD)

C ⊥ D

State

F

G
State

F

G

where the functor State : Auto(LC) → C is the evaluation at states, that is, it sends an
automaton A : Iword → C to A(states).

Proof sketch. The functor F maps an C-automaton A : Iword → C from Auto(LC) to the
D-automaton FA : Iword → D mapping . : in → states to F (A(.)), a : states → states
to F (A(a)) and / : states → out to the adjoint transpose (A(/))∗ : FA(states) → O of
A(/) : A(states)→ GO. In a diagram

I A(states) GO FI FA(states) O
A(.)

A(a)

A(/) F F (A(.))

F (A(a))

(A(/))∗

The functor G is defined similarly on an D-automaton B.

FI B(states) O I GB(states) GO
B(.)

B(a)

B(/) G (B(.))∗

G(B(a))

G(B(/))

We show next that we have an isomorphism

Auto(LD)(FA,B) ∼= Auto(LC)(A, GB)

Indeed, consider a morphism α : FA → B in Auto(LD). We define a natural transformation
α∗ : A → GB by setting its component at states as the adjoint transpose (αstates)∗ of

αstates : FA(states)→ B(states) .
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It is now easy to verify that α∗ is indeed an automata morphism in Auto(LC) and that the
mapping α 7→ α∗ gives rise to the desired isomorphism.

3.3. Application: non-deterministic automata and (co)determinization. As a first
application of Lemma 3.4, we see how determinization of non-deterministic automata can be
seen as a right adjoint to the inclusion of deterministic automata into non-deterministic ones.
Similarly, codeterminization is a left adjoint to the inclusion of codeterministic automata
into non-deterministic ones.

Given a language L ⊆ A∗ we can model it in several equivalent ways: as a (Set, 1, 2)-
language LSet, or as a (Setop , 2, 1)-language LSetop , or, lastly as a (Rel, 1, 1)-language LRel.
This is because we can model the fact w ∈ L using a morphisms in either of the three
isomorphic homsets

Set(1, 2) ∼= Setop(2, 1) ∼= Rel(1, 1) ∼= 2 . (3.2)

These isomorphisms, can be seen in turn as arising from the next two adjunctions:

Set ⊥ Rel ⊥ Setop

FP

UP

Uop
P

F op
P

The adjunction between Set and Rel is the Kleisli adjunction for the powerset monad: FP is
identity on objects as maps a function f : X → Y to itself f : X 9 Y , but seen as a relation.
The functor UP maps X to its powerset P(X), and a relation R : X → Y to the function
UP(R) : P(X) → P(Y ) mapping A ⊆ X to {y ∈ Y | ∃x ∈ X.(x, y) ∈ R}. The adjunction
between Setop and Rel is the dual of the previous one, composed with the self-duality of Rel.

The isomorphisms of homsets from (3.2) can be rephrased as

Set(1, UP1) ∼= Rel(FP1, 1) and Setop(Uop
P 1, 1) ∼= Rel(1, F op

P 1) .

In particular, we can regard LSet above as a (Set, 1, UP1)-language and LRel as a (Rel, FP1, 1)-
language. Using the notations from Lemma 3.4, we have that LRel = (LSet)∗. Similarly, we
obtain that LRel = (LSetop )∗.

Determinization and codeterminization (without restriction to reachable states as in the
operations determinize and codeterminize introduced in Section 5) of a Rel-automaton
can be seen as applications of Lemma 3.4 and are obtained by lifting the adjunctions between
Set, Rel and Setop as in the next diagram. The left adjoint FP transforms a deterministic
automaton into a non-deterministic one, while the right adjoint UP is the determinization

functor. On the other hand, the left adjoint functor Uop
P is the codeterminization functor.
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Auto(LSet) ⊥ Auto(LRel) ⊥ Auto(LSetop )

Set ⊥ Rel ⊥ Setop

FP

UP

Uop
P

F op
P

FP

UP

Uop
P

F op
P

(3.3)

4. Choffrut’s minimization of subsequential transducers

In [10, 11] Choffrut establishes a minimality result for subsequential transducers, which are
deterministic automata that output a word while processing their input. In this section, we
show that this result can be established in the functorial framework of this paper.

We first present the model of subsequential transducers in Section 4.1, show how these
can be identified with automata in the Kleisli category of a suitably chosen monad, and
state the minimization result, Theorem 4.5. The subsequent sections provide the necessary
material for proving the theorem.

4.1. Subsequential transducers and automata in a Kleisli category. Subsequential
transducers are (finite state) machines that compute partial functions from input words in
some alphabet A to output words in some other alphabet B. In this section, we recall the
classical definition of these objects, and show how it can be phrased categorically.

Definition 4.1. A subsequential transducer is a tuple

T = (Q,A,B, q0, t, u0, (− · a)a∈A, (− ∗ a)a∈A) ,

where

• A is the input alphabet and B the output one,
• Q is a (finite) set of states.
• q0 is either undefined or belongs to Q and is called the initial state of the transducer.
• t : Q ⇀ B∗ is a partial termination function.
• u0 ∈ B∗ is either undefined and is defined if and only if q0 is, and is the initialization

value.
• − · a : Q ⇀ Q is the partial transition function for the letter a, for all a ∈ A.
• −∗a : Q ⇀ B∗ is the partial production function for the letter a for all a ∈ A; it is required

that q ∗ a be defined if and only if (q · a) is.

The subsequential transducer computes a partial function [[T ]] : A∗ ⇀ B∗ defined as:

[[T ]](a1 . . . an) = u0(q0 ∗ a1)(q1 ∗ a2) . . . (qn−1 ∗ an)t(qn) for all a1 . . . an ∈ A∗,
where each qi is either undefined or belongs to Q, with q0 inherited from the definition of T ,
and qi = qi−1 · ai for all i = 1 . . . n.

These subsequential transducers are modeled in our framework as automata in the
category of free algebras for the monad T , that we describe now.
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Definition 4.2. The monad T : Set→ Set is defined by

T X = B∗ ×X + 1

with unit ηX and multiplication µX defined for all x ∈ X and w, u ∈ B∗ as:

µX : T 2X → T X
ηX : X → B∗ ×X + 1 (w, (u, x)) 7→ (wu, x)

x 7→ (ε, x) (w,⊥) 7→ ⊥
⊥ 7→ ⊥

where we denote by ⊥ the unique element of 1 (used to model the partiality of functions).

Recall that the category of free T -algebras, i.e., the Kleisli category Kl(T ) for T , has
as objects sets X,Y, . . . and as morphisms f : X 9 Y functions f : X → B∗ ×X + 1 in Set
(that is partial functions from X to B∗ × Y ).

Let T be a subsequential transducer. The initial state of the transducer q0 and the
initialization value u0 together form a morphism i : 1 9 Q in the category Kl(T ). Similarly,
the partial transition function and the partial production function for a letter a of the input
alphabet A are naturally identified to Kleisli morphisms δa : Q9 Q in Kl(T ). Finally, the
partial termination function together with the partial production function are nothing but a
Kleisli morphism of the form t : Q 9 1. To summarize, we obtained that a subsequential
transducer T in the sense of [11] is specified by the following morphisms in Kl(T ):

1 Q 1/
i

/

δa

/
t

that is, by a functor AT : Iword → Kl(T ) or equivalently, a (Kl(T ), 1, 1)-automaton. The
subsequential function realized by the transducer T is a partial function A∗ ⇀ B∗ and
is fully captured by the (Kl(T ), 1, 1)-language LT : Oword → Kl(T ) accepted by AT , which
is obtained as AT ◦ ι. Indeed, this Kl(T )-language gives for each word w ∈ A∗ a Kleisli
morphism LT (.w/) : 1 9 1, or equivalently, outputs for each word in A∗ either a word in
B∗ or the undefined element ⊥.

Putting all this together, we can state the following lemma, which validates the categorical
encoding of subsequential transducers:

Lemma 4.3. Subsequential transducers are in one to one correspondence with (Kl(T ), 1, 1)-
automata, and partial maps from A∗ to B∗ are in one to one correspondence with (Kl(T ), 1, 1)-
languages. Furthermore, the acceptance of languages is preserved under these bijections.

Remark 4.4. The morphisms of (Kl(T ), 1, 1)-automata as in Definition 2.1 are very similar
to the morphisms of subsequential structures provided in [16, Definition 3.4], with the sole
exception that now we also have to take into account the initial states of the transducers.
On the other hand, Choffrut [11] considers morphisms of transducers that may also output
formal inverses of words in B∗. Nevertheless, as discussed in [16, Remark 3.12] and as follows
from the development of the present paper, this is not necessary for minimization.

In the rest of this section we will see how to obtain Choffrut’s minimization result as an
application of Lemma 2.3. I.e., we have to provide in the category of (Kl(T ), 1, 1)-automata,

(1) an initial object,
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(2) a final object, and,
(3) a factorization system.

The existence of the initial transducer is addressed in Section 4.3, the one of the
final transducer is the subject of Section 4.4. In Section 4.5 we show how to construct a
factorization system. Putting together all these results, we obtain:

Theorem 4.5 (Categorical version of [10,11]). For every (Kl(T ), 1, 1)-language, there exists
a minimal (Kl(T ), 1, 1)-automaton for it.

Let us note that only the existence of the automaton is mentioned in this statement,
and the way to compute it effectively is not addressed as opposed to Choffrut’s work.
Nevertheless, Lemma 2.3 describes what are the basic functions that have to be implemented,
namely Reach and Obs.

The rest of this section is devoted to establish the three above mentioned points.
Unfortunately, as it is usually the case with Kleisli categories, Kl(T ) is neither complete, nor
cocomplete. It does not even have binary products, let alone countable powers. Also, the
existence of a non-trivial factorization system does not generally hold in Kleisli categories.
Hence, providing the above three pieces of information requires a bit of work.

In the next section we present an adjunction between (Kl(T ), 1, 1)-automata and
(Set, 1, B∗+ 1)-automata which is then used in the subsequent ones for proving the existence
of initial and final automata. We finish the proof with a presentation of the factorization
system.

4.2. Back and forth to automata in set. In order to understand what are the properties
of the category of (Kl(T ), 1, 1)-automata, an important tool will be the ability to see
alternatively a subsequential transducer as an automaton in Kl(T ) as we have seen above,
or as an automaton in Set, since Set is much better behaved than Kl(T ). These two points
of view are related through an adjunction, making use of the results of Section 3.2 and
Lemma 2.8.

Indeed, we start from the well known adjunction between Set and Kl(T ):

Set ⊥ Kl(T ) .

FT

UT

(4.1)

We recall that the free functor FT is defined as the identity on objects, while for any function
f : X → Y the morphism FT f : X 9 Y is defined as ηY ◦ f : X → T Y . For the other
direction, the functor UT maps an object X in Kl(T ) to T X and a morphism f : X 9 Y
(which is seen here as a function f : X → T Y ) to µY ◦ T f : T X → T Y .

A simple, yet important observation is that the language of interest, which is a partial
function L : A∗ ⇀ B∗ can be modeled either as a (Kl(T ), 1, 1)-language LKl(T ), or, as a
(Set, 1, B∗ + 1)-language LSet. This is because for each w ∈ A∗ we can identify L(w) either
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with an element of Kl(T )(1, 1) or, equivalently, as an element of Set(1, B∗ + 1).

LKl(T ) : Oword → Kl(T ) LSet : Oword → Set

in 7→ 1 in 7→ 1

out 7→ 1 out 7→ B∗ + 1

.w/ 7→ L(w) : 1 9 1 .w/ 7→ L(w) : 1→ B∗ + 1

To see how this fits in the scope of Section 3.2, notice that LKl(T ) is an (Kl(T ), FT 1, 1)-
language, while LSet is an (Set, 1, UT 1)-language and they correspond to each other via the
bijections described in (3.1).
Applying Lemma 3.4 for the Kleisli adjunction (4.1) we obtain an adjunction FT a UT
between the categories of Kl(T )-automata for LKl(T ) and of Set-automata accepting LSet,
as depicted in the diagram below. We will make heavy use of this correspondence in what
follows.

Auto(LSet) ⊥ Auto(LKl(T ))

Set ⊥ Kl(T ) .

State

FT

UT

State

FT

UT

4.3. The initial Kl(T )-automaton for the language LKl(T ). The functor FT is a left
adjoint and consequently preserves colimits and in particular the initial object. We thus
obtain that the initial LKl(T )-automaton is FT (Ainit(LSet)), where Ainit(LSet) is the initial
object of Auto(LSet). This automaton can be obtained by Lemma 3.2 as the functor
Ainit(LSet) : Iword → Set specified by Ainit(LSet)(states) = A∗ and for all a ∈ A
Ainit(LSet)(.) : 1→ A∗ Ainit(LSet)(/) : A∗ → B∗ + 1 Ainit(LSet)(a) : A∗ → A∗

0 7→ ε w 7→ L(w) w 7→ wa

Hence, by computing the image of Ainit(LSet) under FT , we obtain the following description

of the initial Kl(T )-automaton Ainit(LKl(T )) accepting LKl(T ): Ainit(LKl(T ))(states) = A∗

and for all a ∈ A
Ainit(LKl(T ))(.) : 1 9 A∗ Ainit(LKl(T ))(/) : A∗ 9 1 Ainit(LKl(T ))(a) : A∗ 9 A∗

0 7→ (ε, ε) w 7→ L(w) w 7→ (ε, wa)
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4.4. The final Kl(T )-automaton for the language LKl(T ). The case of the final Kl(T )-
automaton is more complicated, since it is not constructed as easily. However, assuming the
final automaton exists, it has to be sent by UT to a final Set-automaton, since UT preserves
limits. We shall see in Lemma 4.6 that UT : Auto(LKl(T ))→ Auto(LSet) reflects final objects,
and hence in order to prove that a given Kl(T )-automaton A is a final object of Auto(LKl(T ))
it suffices to show that UT (A) is the final object in Auto(LSet). The proof of the following
lemma generalizes the fact that UT reflects final objects and can be proved in the same
spirit.

Lemma 4.6. The functor UT : Auto(LKl(T ))→ Auto(LSet) reflects final objects.

Proof. Recall that we have the following two adjunctions for the categories Kl(T ) of Kleisli
algebras, respectively EM(T ) of Eilenberg-Moore algebras, and the comparison functor
K : Kl(T )→ EM(T ) between them.

Kl(T ) EM(T )

Set

K

UT

UTFT

FT (4.2)

The partial function L : A∗ ⇀ B∗ from Section 4.2 can also be modeled as an (EM(T ), T1, T1)-

language LEM(T ) : O → EM(T ). Applying Lemma 3.4 for the adjunction F T a UT we obtain

an adjunction F T a UT between the categories of EM(T )-automata for LEM(T ) and of

Set-automata for LSet. We also have a lifting K : Auto(LKl(T )) → Auto(LEM(T )) of the
comparison functor K, which maps a Kl(T )-automaton A to the EM(T )-automaton K ◦ A.
We obtain the following situation, which is just a lifting of diagram (4.2) to the categories of
automata.

Auto(LKl(T )) Auto(LEM(T ))

Auto(LSet)

K

UT

UTFT

FT

One can readily check that the functor UT is the composite UT ◦K. The functor K is full
and faithful (a property inherited from K) and thus reflects final objects. On the other hand,
the final object in Auto(LEM(T )) can be computed using Lemma 3.2, since the underlying
category EM(T ) has all limits. Moreover, this final automaton is the reflection of the final
Set-automaton Afinal (LSet).

We are now ready to describe the final Kl(T )-automaton. The final object in Auto(LSet) is
the automaton Afinal (LSet) as described using Lemma 3.2. The functor Afinal (LSet) : I → Set



32:20 T. Colcombet and D. Petrişan Vol. 16:1

specified by

Afinal (LSet)(states) = (B∗ + 1)A
∗ Afinal (LSet)(/) : (B∗ + 1)A

∗ → B∗ + 1
K 7→ K(ε)

Afinal (LSet)(.) : 1 → (B∗ + 1)A
∗

0 7→ L
Afinal (LSet)(a) : (B∗ + 1)A

∗ → (B∗ + 1)A
∗

K 7→ λw.K(aw)

To describe the set of states of the final automaton in Auto(LKl(T )) we need to introduce
a few notations. Essentially we are looking for a set of states Q so that B∗ × Q + 1 is
isomorphic to (B∗+1)A

∗
. The intuitive idea is to decompose each function in K ∈ (B∗+1)A

∗

(except for the one which is nowhere defined, that is the function κ⊥ = λw.⊥) into a word in
B∗, the common prefix of all the B∗-words in the image of K, and an irreducible function,
i.e., a function such that the common prefix of all the words in the codomain is empty.

For v ∈ B∗ and a function K 6= κ⊥ in (B∗ + 1)A
∗
, denote by v ? K the function defined

for all u ∈ A∗ by (v ? K)(u) = v K(u) if K(u) ∈ B∗ and (v ? K)(u) = ⊥ otherwise.
Define also the longest common prefix of K, lcp(K) ∈ B∗, as the longest word that is

prefix of all K(u) 6= ⊥ for u in A∗ (this is well defined since K 6= κ⊥). The reduction of K,
red(K), is defined as:

red(K)(u) =

{
v if K(u) = lcp(K) v,

⊥ otherwise.

Finally, K is called irreducible if lcp(K) = ε (or equivalently if K = red(K)). We denote by

Irr(A∗, B∗) the irreducible functions in (B∗ + 1)A
∗
.

What we have constructed is a bijection ϕ between

T (Irr(A∗, B∗)) = B∗ × Irr(A∗, B∗) + 1 and (B∗ + 1)A
∗
,

that is defined as

ϕ : B∗ × Irr(A∗, B∗) + 1 → (B∗ + 1)A
∗

(u,K) 7→ u ? K
⊥ 7→ κ⊥ ,

(4.3)

and the converse of which maps every K 6= κ⊥ to (lcp(K), red(K)), and κ⊥ to ⊥.
Given a ∈ A and K ∈ (B∗ + 1)A

∗
we denote by a−1K the function in (B∗ + 1)A

∗
that

maps w ∈ A∗ to K(aw).
We can now define the automaton Afinal (LKl(T )) : I → Kl(T ) by setting

• Afinal (LKl(T ))(in) = 1,

• Afinal (LKl(T ))(states) = Irr(A∗, B∗), and,

• Afinal (LKl(T ))(out) = 1,

and defining Afinal (LKl(T )) on arrows as follows

Afinal (LKl(T ))(.) : 1 9 Irr(A∗, B∗) 0 7→ (lcp(L), red(L))

Afinal (LKl(T ))(/) : Irr(A∗, B∗) 9 1 K 7→ K(ε)

Afinal (LKl(T ))(a) : Irr(A∗, B∗) 9 Irr(A∗, B∗) K 7→

{
⊥ if a−1K = κ⊥ ,

(lcp(a−1K), red(a−1K)) otherwise

Lemma 4.7. The Kl(T )-automaton Afinal (LKl(T )) is a final object in Auto(LKl(T )).
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Proof. We show that UT (Afinal(LKl(T ))) is isomorphic to the final automaton Afinal(LSet).
Indeed, at the level of objects the bijection between the sets UT (Afinal (LKl(T )))(states) and

Afinal (LSet)(states) is given by the function ϕ defined in (4.3). It is easy to check that also
on arrows UT (Afinal (LKl(T ))) is the same as Afinal (LSet) up to the correspondence given by
the function ϕ.

4.5. A factorization system on Auto(LKl(T )). The factorization system on Auto(LKl(T ))
is obtained using Lemma 2.8 from a factorization system on Kl(T ). There are several non-
trivial factorization systems on Kl(T ), one of which is obtained from the regular epi-mono
factorization system on Set, or equivalently, from the regular epi-mono factorization system
on the category of Eilenberg-Moore algebras for T . Notice that this is a specific result for
the monad T since in general, there is no reason that the Eilenberg-Moore algebra obtained
by factorizing a morphism between free algebras be free itself. Nevertheless, in order to
capture precisely the syntactic transducer defined by Choffrut [10,11], we will provide yet
another factorization system (EKl(T ),MKl(T )), which we define concretely as follows. Given
a morphism f : X 9 Y in Kl(T ) we write π1(f) : X → B∗ + {⊥} and π2(f) : X → Y + {⊥}
for the ‘projections’ of f , defined by

π1(f)(x) =

{
u if f(x) = (u, y) ,

⊥ otherwise,
and π2(f)(x) =

{
y if f(x) = (u, y) ,

⊥ otherwise.

We say that a partial function g : X → Y + {⊥} is surjective when for every y ∈ Y there
exists x ∈ X so that g(x) = y.

The class EKl(T ) consists of all the morphisms of the form e : X 9 Y such that π2(e) is
surjective and the class MKl(T ) consists of all the morphisms of the form m : X 9 Y such
that π2(m) is injective and π1(m) is the constant function mapping every x ∈ X to ε.

Lemma 4.8. (EKl(T ),MKl(T )) is a factorization system on Kl(T ).

Proof. Notice that f is an isomorphism in Kl(T ) if and only if f ∈ EKl(T ) ∩MKl(T ).
If f : X 9 Y is a morphism in Kl(T ) then we can define

Z = {y ∈ Y | ∃x ∈ X.∃u ∈ B∗. f(x) = (u, y)} .
We define e : X 9 Z by e(x) = f(x) and m : Z 9 Y by m(y) = (ε, y). One can easily check
that f = m ◦ e in Kl(T ).

Lastly, we can show that the diagonal property holds. Assume we have a commuting
square in Kl(T ).

X Y

Z W

e

f g
d

m

We will prove the existence of d : Y 9 Z so that d ◦ e = f and m ◦ d = g. Assume y ∈ Y .
If g(y) = ⊥ we set d(y) = ⊥. Otherwise assume g(y) = (v, t), for some v ∈ B∗ and t ∈ W .
Since e ∈ EKl(T ), there exists u ∈ B∗ and x ∈ X so that e(x) = (u, y). Assume f(x) = (w, z)
for some w ∈ B∗ and z ∈ Z. We set d(y) = (v, z). First, we have to prove that this definition
does not depend on the choice of x.
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Assume that we have another x′ ∈ X so that e(x′) = (u′, y) and assume f(x′) = (w′, z′).
Using the fact that m ∈ MKl(T ), we will show that z = z′, and thus d(y) is well defined.
Indeed, notice that{

g ◦ e(x) = (uv, t)

g ◦ e(x′) = (u′v, t) ,
or equivalently,

{
m ◦ f(x) = (uv, t)

m ◦ f(x′) = (u′v, t) ,

Assume that m(z) = (ε, t1) and m(z′) = (ε, t2). This entails{
m ◦ f(x) = (uv, t) = (w, t1)

m ◦ f(x′) = (u′v, t) = (w′, t2) .

We obtain that t1 = t2 = t. Since m ∈ MKl(T ) (and thus π2(m) is injective) we get that
z = z′, which is what we wanted to prove. It is easy to verify that d◦e = f and m◦d = g.

This completes the proof of Theorem 4.5.

5. Brzozowski’s minimization algorithm

5.1. Presentation. Brzozowski’s algorithm is a minimization algorithm for automata. It
takes as input a non-deterministic automaton A, and computes the deterministic automaton:

determinize(transpose(determinize(transpose(A)))),

in which

• determinize is the operation from classical automata theory that takes as input a
deterministic automaton, applies a powerset construction and at the same time restricts
to the reachable states, yielding a deterministic automaton, and
• transpose is the operation that takes as input an non-deterministic automaton reverses all

its edges, and swaps the role of initial and final states (it accepts the mirrored language).

In this section, we will establish the correctness of Brzozowski’s algorithm: this sequence of
operations yields the minimal automaton for the language. For easing the presentation we
shall present the algorithm in the form:

determinize(codeterminize(A)),

in which codeterminize is the operation that takes a non-deterministic automaton, and
constructs a backward deterministic one (it is equivalent to the sequence transpose ◦
determinize ◦ transpose).

In the next section, we show how determinize and codeterminize can be seen as
adjunctions, and we use it immediately after in a correctness proof of Brzozowski’s algorithm.

We will use the representation of non-deterministic automata as (Rel, 1, 1)-automata
(see Example 2.2) and the fact that determinization, respectively codeterminization, can be
seen as right, respectively left, adjoints, as discussed in Section 3.3.
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5.2. Brzozowski’s minimization algorithm. The correctness of Brzozowski’s algorithm
can be seen in the following chain of adjunctions from Lemma 2.4 and diagram (3.3) (that
all correspond to equivalences at the level of languages):

Reach(LSet) ⊥ Auto(LSet) ⊥ Auto(LRel) ⊥ Auto(LSetop ) ⊥ Obs(LSetop )

E FP

Reach UP

Uop
P

F op
P

Obs

E

A path in this diagram corresponds to a sequence of transformations of automata. It
happens that when Obs is taken, the resulting automaton is observable, i.e., there is an
injection from it to the final object. This property is preserved under the sequence of right

adjoints Reach ◦ UP ◦ F op
P ◦E. Furthermore, after application of Reach, the automaton is

also reachable. This means that applying the sequence Reach ◦ UP ◦ F op
P ◦ E ◦ Obs ◦ U

op
P

to a non-deterministic automaton produces a deterministic and minimal one for the same

language. We check for concluding that the sequence Obs ◦ Uop
P is what is implemented by

codeterminize, that the composite F op
P ◦E essentially transforms a backward deterministic

observable automaton into a non-deterministic one, and that finally Reach ◦ UP is what is
implemented by determinize. Hence, this indeed is Brzozowski’s algorithm.

Remark 5.1. The composite of the two adjunctions in (3.3) is almost the adjunction
of [7, Corollary 9.2] upon noticing that the category Auto(LSetop ) of Setop-automata accepting
a language LSetop is isomorphic to the opposite of the category Auto(LrevSet) of Set-automata
that accept the reversed language seen as functor LSetop . This observation in turn can be
proved using the symmetry of the input category I.

5.3. Weighted Brzozowski’s minimization algorithm. The weighted version of Brzo-
zowski’s minimization algorithm presented in [7] can also be explained in our framework
using the chain of adjunctions described in the next diagram. Given a semiring S, a
weighted language L : A∗ → S, can be modeled either as a functor LS-Mod : Oword → S-Mod
or, equivalently, as a functor LS-Modop : Oword → S-Modop , using the observation that
S-Mod(S, S) ∼= S-Modop(S, S) ∼= S. Notice that the category Auto(LS-Modop ) is the
opposite of the category of automata accepting the reversed language Lrev , defined by
Lrev (w) = L(wrev ). The adjunction between S-Mod and its opposite obtained by taking the
dual spaces, lifts by virtue of Lemma 3.4 to an adjunction between the corresponding cate-
gories of automata, where the lifting S− is essentially reversing the automaton. Thus the oper-
ations of the weighted Brzozowski’s algorithm correspond to a path E◦Reach◦S−◦E◦Obs◦S−
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in the next diagram.

Reach(LS-Mod) ⊥ Auto(LS-Mod) ⊥ Auto(LS-Modop ) ⊥ Obs(LS-Modop )

S-Mod ⊥ S-Modop

E S−

Reach S−

Obs

E

S−

S−

6. Monoids for language recognition

In this section we show that the notion of a syntactic monoid for a given language L ⊆ A∗
fits in the functorial framework introduced in this paper. We argue that the syntactic monoid
can be obtained using the generic principles outlined in Section 2 by changing accordingly
the input category. However, it is not the monoids recognizing a language that will be
modeled as Set-valued functors, but rather biaction recognizers. We will prove that we have
initial and final biactions recognizing a language and that the minimal biaction recognizing
a language (obtained via an epi-mono factorization) can be in fact equipped with a monoid
structure and yields precisely the syntactic monoid for that language.

We start with the definitions of monoid and biaction recognizers.

Definition 6.1. We call monoid recognizer a tuple (φ : A∗ → M,P ⊆ M) consisting of
a monoid homomorphism φ and a subset P of M . It recognizes the language {w ∈ A∗ |
φ(w) ∈ P}. We say that a monoid recognizer (φ : A∗ →M,P ⊆M) is a surjective monoid
recognizer when the morphism φ is surjective. A morphism between monoid recognizers
(φ : A∗ →M,P ⊆M) and (φ′ : A∗ →M ′, P ′ ⊆M ′) is a monoid morphism h : M →M ′ such
that h ◦ φ = φ′ and h−1(P ′) = P .

Definition 6.2. An A∗-biaction is a set X equipped with left and right A∗-actions2 · : A∗×
X → X and · : X ×A∗ → X which commute, that is, (u · x) · v = u · (x · v) for all u, v ∈ A∗
and x ∈ X. Morphisms of A∗-biactions are functions that are morphisms of both the left
and right A∗-actions.

Definition 6.3. An A∗-biaction recognizer is a tuple (φ : A∗ → X,P ⊆ X) where φ is a
morphism of A∗-biactions and P is a subset of X. We call the elements of P , the accepting
elements of X. The language recognized by (φ : A∗ → X,P ⊆ X) is the set {w ∈ A∗ |
φ(w) ∈ P}. The A∗-biaction recognizer is called surjective when φ is so. A morphism
between A∗-biaction recognizers (φ : A∗ → X,P ⊆ M) and (φ′ : A∗ → X ′, P ′ ⊆ M ′) is an
A∗-biaction morphism h : X → X ′ such that h ◦ φ = φ′ and h−1(P ′) = P .

The proof of the next lemma is straightforward. The second part was used in [14].

Lemma 6.4. Any monoid recognizer is an A∗-biaction recognizer. Conversely, any surjective
A∗-biaction recognizer is a surjective monoid recognizer.

2both denoted by · by abuse of notation
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In order to describe A∗-biactions as functors, we will consider the category IMon described
in the diagram below. Just as the input category for word automata, IMon has three objects:
in, states and out. The homsets in this category can be intuitively described as follows:

• IMon(in, states) and IMon(in, out) are both isomorphic to the set of finite words over A;
• the sets IMon(states, states) and IMon(states, out) consist of the finite words over A with

one “hole”.

Concretely, for each w ∈ A∗ we have morphisms w : in→ states and w : in→ out. For every
two words u, v ∈ A∗ we have morphisms u�v : states→ states and u�v : states→ out.

in states outw

w′

u�v

u′�v′ (6.1)

The composition defined as a substitution of the � symbol. We define it formally as follows:

u�v ◦ w = uwv : in→ states , u′�v′ ◦ u�v = u′u�vv′ : states→ states ,

u�v ◦ w = uwv : in→ out , and u′�v′ ◦ u�v = u′u�vv′ : states→ out

Definition 6.5. An (IMon, Set, 1, 2)-automaton is a functor A : IMon → Set such that
A(in) = 1 and A(out) = 2. A morphism of (IMon,Set, 1, 2)-automata is a natural transfor-
mation α : A → B so that both αin and αout are the identity morphisms on 1, respectively 2.

Let OMon be the full subcategory of IMon on objects in and out. We denote by ι the
inclusion

OMon IMon .
ι

The language accepted by an (IMon, Set, 1, 2)-automaton A : IMon → Set is the composite
functor L = A◦ι : OMon → Set. Just as for word automata, the functor L encodes a language
L ⊆ A∗ consisting of the words w ∈ A∗ such that the map L(w) : 1→ 2 is constant to 1, that
is, L(w)(0) = 1.

Lemma 6.6. The category of (IMon, Set, 1, 2)-automata is equivalent to that of A∗-biaction
recognizers.

Proof. Consider an (IMon,Set, 1, 2)-automaton A : IMon → Set. Then, the set Q = A(states)
can be equipped with commuting left and right A∗-actions. Indeed, we define the left action
· : A∗×Q→ Q by u · q = A(u�ε)(q) and the right action · : Q×A∗ → Q by q · v = A(ε�v)(q).
We define φ : A∗ → Q by φ(w) = A(w)(0).

One can check that A being a functor entails that these are well defined and commuting
left and right actions and that φ is a morphism of biactions. Furthermore, we define the
subset of accepting elements of Q as the subset whose characteristic function is the morphism
A(ε�ε) : Q→ 2.

Conversely, given an A∗-biaction recognizer (φ : A∗ → X,P ⊆ X) we define A : IMon →
Set as follows. We define A(states) = X and we put

• A(w)(0) = φ(w);
• A(u�v)(x) = φ((u · x) · v);
• A(u�v)(x) = χP ((u · x) · v);

where χP is the characteristic function of P .
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Remark 6.7. The functors constructed in the proof of Lemma 6.6 preserve the accepted
language, that is, for each language L ⊆ A∗ we obtain an equivalence between the categories
of (IMon,Set, 1, 2)-automata accepting L, respectively of A∗-biaction recognizers for L.

The following lemma immediately follows from Corollary 2.10.

Lemma 6.8. Given a language L : OMon → Set, the initial and final (IMon, Set, 1, 2)-
automata accepting L exist and can be computed as left, respectively right Kan extensions of
L along ι : OMon → IMon.

Furthermore, the minimal (IMon,Set, 1, 2)-automaton accepting L is obtained via the
factorization

LanιL Min(L) RanιL .

Using the colimit computation of the left Kan extension LanιL, we obtain the concrete
description of the initial automaton Ainit(L) accepting L. We have that

Ainit(L)(states) =
∐
u∈A∗

1 ' A∗

and for all w, u, v ∈ A∗ we have

• Ainit(L)(w) : 1→ A∗, 0 ∈ 1 7→ w ∈ A∗;
• Ainit(L)(u�v) : A∗ → A∗, w 7→ uwv;
• Ainit(L)(u�v) : A∗ → 2, w 7→ L(uwv)(0).

Dually, using the limit computation of the right Kan extension RanιL, we obtain the
concrete description of the final automaton Afinal (L) accepting L. We have that

Afinal (L)(states) =
∏

u,v∈A∗
2 ' 2A

∗×A∗

and for all w, u, v ∈ A∗ we have

• Afinal (L)(w) : 1→ 2A
∗×A∗ , 0 ∈ 1 7→ {(u, v) ∈ A∗ ×A∗ | L(uwv)(0) = 1};

• Afinal (L)(u�v) : 2A
∗×A∗ → 2A

∗×A∗ , B 7→ {(u′, v′) ∈ A∗ ×A∗ | (uu′, v′v) ∈ B};

• Afinal (L)(u�v) : 2A
∗×A∗ → 2, B 7→

{
1, (u, v) ∈ B
0, otherwise

We thus obtain a diagram similar to that for word automata below Lemma 3.2.∐
u∈A∗

1

1 Min(L) 2

∏
(u,v)∈A∗×A∗

2

L(u−v)?

L(−w−)

w

i f

(u,v)?

(6.2)

The unique natural transformation α from the initial automaton Ainit(L) to the final
automaton Afinal (L) is determined by the function αstates : A∗ → 2A

∗×A∗ defined by

w ∈ A∗ 7→ {(u, v) ∈ A∗ ×A∗ | uwv ∈ L}
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The epi-mono factorization of this maps yields precisely the quotient of A∗ by the syntactic
congruence

w ∼L w′ if and only if ∀u, v ∈ A∗ uwv ∈ L⇔ uw′v ∈ L ,
that is, the carrier set of the syntactic monoid for the language L.

Theorem 6.9. The minimal automaton Min(L) corresponds to the syntactic monoid Syn(L)
of the language L.

Proof. The minimal (IMon,Set, 1, 2)-automaton accepting L corresponds via the equivalence
of Lemma 6.6 to a surjective A∗-biaction recognizer. Thus, using Lemma 6.4, we obtain
that Min(L) corresponds to a surjective monoid recognizer for L, Syn(L), with carrier set
Min(L)(states). Consider any other monoid recognizer (φ : A∗ →M,P ⊆M) for L. By the
first part of Lemma 6.4, any monoid recognizer can be seen as an A∗-biaction recognizer, and
thus as an (IMon, Set, 1, 2)-automaton A. By Lemma 2.3, we know that Min(L) is isomorphic
to Obs(Reach(A)), that is, to a quotient of a sub-automaton of A. One can easily check
that Reach(A) corresponds to a surjective A∗-biaction recognizer, and thus to a surjective
monoid recognizer for L. If follows that M is the quotient of a submonoid of Syn(L).

7. Conclusion

In this paper we propose a view of automata as functors and we showed how to recast
well understood classical constructions in this setting, and in particular minimization of
subsequential transducers. We argue that this perspective gives a unified view of language
recognition and syntactic objects.

In a similar vein to the developments of Section 6, we can obtain the syntactic algebras
recognizing languages for any algebraic theory over the category Set. The category IMon is
specific to the algebraic theory of monoids: one can notice that the hom-sets IMon(states, out),
respectively IMon(states, out) are isomorphic to “contexts (or terms) with one hole” also
known as linear unary polynomials in universal algebra. In order to obtain a similar treatment
for syntactic algebras for an arbitrary algebraic theory, one should change the input category
and replace IMon by a similar category, but where the morphisms are either terms or linear
unary polynomials. A simpler input category could be obtained by considering the notion of
“unary presentation” developed in [24].

We can go beyond regular languages and obtain in this fashion the “syntactic space
with an internal monoid” of a possibly non-regular language [14]. To this end one would just
have to compute the product and the coproduct in (6.2) in the category of Stone spaces.

We hope we can extend the framework to work with tree automata in monoidal categories.
We discussed mostly NFA determinization, but we can obtain a variation of the generalized
powerset construction [23] in this framework.
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