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Abstract. Infinite time Turing machine models with tape length α, denoted Tα, strengthen
the machines of Hamkins and Kidder with tape length ω. A new phenomenon is that for
some countable ordinals α, some cells cannot be halting positions of Tα given trivial input.
The main open question in a paper of Rin from 2014 asks about the size of the least such
ordinal δ.

We answer this by providing various characterizations. For instance, δ is the least ordinal
with any of the following properties:
• For some ξ < α, there is a Tξ-writable but not Tα-writable subset of ω.
• There is a gap in the Tα-writable ordinals.
• α is uncountable in Lλα .
Here λα denotes the supremum of Tα-writable ordinals, i.e. those with a Tα-writable code
of length α.

We further use the above characterizations, and an analogue to Welch’s submodel
characterization of the ordinals λ, ζ and Σ, to show that δ is large in the sense that
it is a closure point of the function α 7→ Σα, where Σα denotes the supremum of the
Tα-accidentally writable ordinals.
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1. Introduction

1.1. Motivation. The infinite time Turing machines introduced by Hamkins and Kidder
(see [HL00]) are, roughly, Turing machines with a standard tape that run for transfinite
ordinal time. One of the main motivations for studying these machines is the fact that they
model a class of functions that is closely related to Σ1

1 and Π1
1 sets in descriptive set theory.

Soon after they were introduced, several variations were proposed, for instance with an
arbitrary ordinal as tape length [Koe09], or an exponentially closed ordinal as tape length
and time bound [Koe05, KS09].

More recently, the second author studied machines with an arbitrary ordinal as tape
length, but no ordinal bound on the running time [Rin14]. These machines are natural
generalizations of infinite time Turing machines for tapes of length α, and are thus called
α-ITTMs. They do not include ordinal parameters, which are present in most other models
[Koe05, KS09, COW18]. For a given ordinal α ∈ On and program e ∈ N there exists a unique
machine, Tα[e]. We will frequently identify a program with the corresponding machine.
The set {Tα[e] | e ∈ N} of all machines with tape length α is called the device or machine
model Tα. It is known that the computability strength1 of Tα can increase with α, though it
remains equal when the increase in α is small. When α itself is not too large, increasing its
size necessarily makes the computational strength greater or equal. However, it turns out
that for sufficiently large tapes, the machine models’ computability strengths are not always
commensurable: there exist pairs of countable ordinals such that two devices with these
tape lengths can each compute functions that the other one can’t [Rin14, Proposition 2.9].
Thus α-ITTMs fail to be linearly ordered by computational strength. What is responsible
for this phenomenon is that, in spite of the lack of ordinal parameters, a machine can use its
tape length α to perform computations that rely on the exact size of α—an ability which,
because of the lack of parameters, can permit two differently sized machines to exploit their
tape lengths in ways the other cannot. This phenomenon clearly does not occur for models
that include ordinal parameters (as in [COW18]), since one can then always simulate a
shorter tape on a longer one (cf. [Rin14, Proposition 2.1]). This is because one can easily
move the head up to cell ξ and halt there whenever one is allowed to mark the ξth cell, as
is possible when computing with parameter ξ. Indeed, it is straightforward to see that an
ordinal parameter ξ < α is equivalent to an oracle that allows a machine Tα to emulate the
computational behavior of smaller machine Tξ.

In the present article, we are interested in the writability strength of α-ITTMs without
parameters, i.e., in the set of possible outputs of such a machine at the time when it halts.
One of the tools in [Rin14] to help classify the machines in question is the connection
between computability strength and ordinals α such that Tα cannot reach2 all of its cells. In
particular, let δ denote the least such ordinal. Rin already showed that δ equals the least
ordinal γ such that the computability strength of Tγ (as defined above) is incomparable
with that of some machine with a shorter tape [Rin14, Proposition 2.1]. The main question
left open was to identify δ.3 We answer this by giving various characterizations of δ in the

1Computability strength in the present sense is a relative notion: given α, β ∈ On, we write Tα � Tβ when

the set of functions f : 2min(α,β) → 2min(α,β) computable by Tα (that is to say, computable by Tα[e] for some
e ∈ N) is a subset of the set of such functions computable by Tβ .

2An ordinal µ is defined to be reachable by Tα when there exists a program P such that Tα running P on
trivial input (input ~0) halts with the final head position located at cell µ.

3See the discussion after [Rin14, Proposition 2.9].
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next theorem. Some of them are formulated via α-ITTMs. The remaining ones are stated in
term of constructible set theory and resemble fine-structural properties of the constructible
universe L, where first-order definability is replaced with variants of infinite time writability.

Theorem 1.1. The next conditions for α > ω hold for the first time at the same ordinal:

(a) Not every cell is Tα-reachable (Tα-eventually reachable).
(b) There is a gap in the Tα-writable (Tα-eventually writable) ordinals.
(c) For some µ, ν with ω ≤ µ ≤ ν < α, there is a Tν-writable but not Tα-writable subset of

µ.
(d) λα < λ̂α.

(e) ζα < ζ̂α.
(f) α is uncountable in Lλα.
(g) α is regular in Lλα.
(h) α is a cardinal in Lλα.

(i) As (f), (g) or (h), but for λ̂α, ζα, ζ̂α or Σ̂α = Σα.

In (d)–(i), λα and ζα denote the versions of λ and ζ for Tα without ordinal parameters,

while λ̂α and ζ̂α denote those with parameters.
Let λ, ζ and Σ denote the suprema of writable, eventually writable and accidentally

writable ordinals for ITTMs. The previous characterizations imply that Σ < δ. By (f),
we can obtain triples (µ, ν, ξ) with µ < ν < ξ < δ and Lµ ≺ Lν ≺ Lξ by forming
countable elementary substructures of Lδ in Lλ̂δ . Thus Σ < δ holds by Welch’s submodel

characterization of λ, ζ and Σ (cf. [Wel09, Theorem 30 & Corollary 32]).
The next result (cf. Theorem 3.17) is proved via a variant of the submodel characteriza-

tion for α-ITTMs (cf. Theorem 2.9).

Theorem 1.2. Σξ < δ for all ξ < δ.4

The structure of the paper is as follows. Section 1.2 contains some background on
α-ITTMs. In Section 2, we prove some auxiliary results about writable and clockable ordinals.
These are used in Sections 3.1-3.4 to prove the characterizations of δ stated in Theorem 1.1
and the lower bounds for δ in Theorem 1.2.

For reading this paper, we assume that the reader is familiar with infinite time Turing
machines, basic facts about Gödel’s constructible universe and the proof of Welch’s submodel
characterization of λ, ζ and Σ from [Wel09, Theorem 30 & Corollary 32]. The latter is used
in the proof of Theorem 2.9.

1.2. The setting. We briefly introduce the main notions and results related to α-ITTMs
and refer the reader to [HL00, KS09, Rin14, Wel09] for details. We always assume that the
tape length α is infinite and multiplicatively closed, i.e. µ · ν < α for all µ, ν < α. It is easy
to see that this is equivalent to closure under Gödel pairing. An α-ITTM has three tapes of
length α for input, working space and output and each cell can contain 0 or 1. Programs for
Tα are just regular Turing machine programs. The machine can process a subset of α by
representing it on the tapes via its characteristic function. Thus we will freely identify a
set with its characteristic function. The input tape carries the subset of α that is given to
the machine at the start of the computation, and its content is never changed, while the

4This strengthens the result from [Rin14] that ζ < δ and an unpublished result by Robert Lubarsky that
Σ < δ.
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results of a computation are written on the output tape. The remaining tape is a work tape.
Furthermore, each tape has a head for reading and writing, all of which move independently
of each other. It is easy to see that one can equivalently allow any finite number or in fact α
many work tapes (using that α is multiplicatively closed). Moreover, the model from [HL00]
with a single head can simulate our model and is thus equivalent.

The machine Tα[e] runs along an ordinal time axis. At successor times, the configuration
of the machine is obtained from the preceding one, as usual for a Turing machine, with
the extra convention that a head is reset to position 0 if it is moved to the left from a
limit position. At limit times, the content of each cell as well as the head positions are
determined as the inferior limits of the sequences of earlier contents of that cell and earlier
head positions; if for some head the inferior limit of the sequence of earlier positions is α,
then it is reset to 0.

A T̂α-program computes relative to a finite parameter subset p of α. This is given to
the program by writing the characteristic function of p to one of the work tapes before the
computation starts. As we will only be concerned with the case that α is closed under the
Gödel pairing function and the function’s restriction to α is easily seen to be computable by
an α-ITTM, we can assume that parameters are single ordinals below α.

We now turn to various notions of writability from [HL00]. A subset x of α is called
Tα-writable if there is a Tα-program P that halts with x on the output tape when the initial
input is empty, i.e., all cells contain 0. Moreover, x is called eventually Tα-writable if there is
a Tα-program P such that the output tape will have the contents x and never change again
from some point on, if the initial input is empty, although the contents of other tapes might
change. Finally, x is called accidentally Tα-writable if there is an Tα-program such that x
appears as the content of the output tape at some time of the computation with empty
input. Analogous to [HL00, Theorem 3.8], these three notions of writability are distinct (see
Lemma 2.4).

As for ITTMs, an ordinal is called Tα-clockable if it is the halting time of a Tα-program
with input ~0.

The above notions are defined for T̂α in an analogous way.
As for Turing machines, there is a universal Tα-program Uα that simulates all compu-

tations with empty input. This can be obtained by dividing the work and output tapes
into infinitely many tapes of the same length. Note that any T̂α-program can be simulated
by a Tα-program that considers all possible parameters. Thus Uα accidentally writes every
T̂α-accidentally writable subset of α.

To compare the writability strength of these machines for different ordinals, we often
consider Tα-writable subsets x of some ordinal ξ ≤ α. Naively, we could just write x to
the initial segment of length ξ of the output tape and leave the rest empty, but then we
could no longer distinguish between x as a subset of ξ and as a subset of α. Therefore,
we introduce the following notion. A subset x of ξ is called Tα-writable as a subset of
ξ if there is a Tα-program with empty input that halts with the characteristic function
of x on the output tape, and if ξ < α, then the head is in position ξ at the end of the
computation. Similarly, we call x eventually writable as a subset of ξ if the contents of the
output tape eventually stabilizes at the characteristic function of x and the head on the
output tape eventually stabilizes at ξ. For any ξ ≤ min{α, β}, we say that Tα has strictly
greater writability strength than Tβ with respect to subsets of ξ if every subset of ξ that is
Tβ-writable as a subset of ξ is also Tα-writable as a subset of ξ, but not conversely.
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Moreover, we frequently use codes for ordinals. An α-code is a subset of α interpreted as
a binary relation ∈α on α via Gödel pairing such that (α,∈α) is well-founded and extensional.
This structure is isomorphic to a transitive set. The coded set is defined as the image of 0
in the transitive collapse. We work with the image of 0 instead of the whole set, since the
former allows us to code arbitrary sets (this is necessary in Lemmas 3.4 and 3.5), while the
latter would only yield codes for transitive sets.

We further call an ordinal Tα-writable, Tα-eventually writable or Tα-accidentally writable
if it has an α-code with the corresponding property.5 The analogous notions for T̂α are
defined similarly. Note that one could similarly talk about writability for arbitrary sets, and
it is easy to see that for sets of ordinals, this would agree with the original definition of
writability. However, for clarity we will only use this terminology for ordinals.

2. Writable and clockable ordinals

In this section, we study variants of writability for Tα and T̂α, the associated ordinals, their
characterizations and connections with clockable ordinals.

The ordinals λ, ζ and Σ, which play an important role in the study of infinite time
Turing machines, have analogues for α-tape machines. We define λ̂α, ζ̂α, Σ̂α and λα, ζα,
Σα as the suprema of the Tα-writable, Tα-eventually writable and Tα-accidentally writable
ordinals (with respect to α-codes) with and without ordinal parameters, respectively.

We will prove some basic properties of these ordinals. Similar to the case of ITTMs
in [Wel09, Section 2], an α-word (i.e. an α-length bit sequence) is an element of Lλ̂α , Lζ̂α
or LΣ̂α

if and only if it is T̂α-writable, T̂α-eventually writable or T̂α-accidentally writable,

respectively. For λ̂α, this follows immediately from Lemma 2.2, for ζ̂α from Lemma 2.3 and
for Σ̂α from Lemma 2.1 below.

Moreover, an α-word is an element of Lλα , Lζα or LΣα if and only if it is contained as an
element in some set with a Tα-writable, Tα-eventually writable or Tα-accidentally writable
code, respectively. For λα this follows from Lemma 2.5 and for ζα from Lemma 2.6. The
claim for Σα follows from the previous one about Σ̂α by Lemma 2.4.

Given the previous characterization, the reader might wonder whether all elements of
Lλα are necessarily Tα-writable. This holds if and only if Tα reaches all its cells: if every
ordinal below α is Tα-writable, then one can reach any cell via a program that searches for
an isomorphism with an α-code for the given ordinal, and the converse is easy to see.

We will frequently use the fact that for any multiplicatively closed ξ, any γ with a
Tα-writable ξ-code, Lγ also has a Tα-writable ξ-code, and the same holds for T̂α-writable
codes. To see this, one partitions ξ into γ many pieces with order type ξ and successively
writes ξ-codes for Lµ onto the µth piece for all µ < γ.

The next lemma is used to prove that λ̂α equals the supremum of T̂α-clockable ordinals.
It shows that any T̂α-program that does not halt on input ~0 runs into a loop between ζ̂α
and Σ̂α, as for standard ITTMs.

Lemma 2.1. On input ~0, any T̂α-program either halts before time ζ̂α or runs into an
ever-repeating loop in which the configuration at time ζ̂α is the same as that of time Σ̂α.

5 Note that the present terminology differs from that of [Rin14], in which Tα-writability and Tα-eventual
writability referred to ω-length binary output sequences (as in [HL00]), and ω-codes rather than α-codes
represented ordinals (and only countable ordinals were considered). Results from there need not hold for the
current sense of Tα-writability, Tα-eventual writability, etc.
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Proof. We refer the reader to the proof of this fact for ITTMs [Wel00, Section 2] and only
sketch the changes that are necessary to adapt it to α-ITTMs. Since ordinal parameters are
allowed in the definitions of λ̂α, ζ̂α and Σ̂α, it is sufficient to prove that the limit behaviour
in each cell is the same when the time approaches ζ̂α and Σ̂α. In other words, if the contents
of the ξth cell converges when the time appoaches ζ̂α, then it converges to the same value at
Σ̂α, otherwise it diverges at Σ̂α. We need ordinal parameters, since an ITTM with parameter
ξ is used to observe the ξth cell.

The difference to the setting of ITTMs is that here the head doesn’t move to the first
cell at every limit time. We want to show that for any computation of Tα, the head position
at time ζ̂α is equal to the head position at time Σ̂α. To adapt the proof, we define a program
that simulates the given machine, and writes the current head position on an additional
tape by writing 1 in every cell that precedes the head position and 0 everywhere else. At
every limit time, the inferior limit of the head positions is calculated and the contents of the
remaining cells are deleted. Now the proof for ITTMs shows that the tape contents for the
simulation are identical at the times ζ̂α and Σ̂α and thus the head positions are also equal
for the original program.

Note that the version of the previous lemma for ζα and Σα fails if ζα < ζ̂α: a universal
Tα-program (see Section 1.2) simulates all T̂α-programs and thus its first ever-repeating loop

begins at ζ̂α. Moreover, ζα < ζ̂α is possible by Section 3.4 below.
The fact that the suprema of writable and clockable ordinals are equal [Wel00, Theorem

1.1] easily generalizes as follows to the setting with ordinal parameters.

Lemma 2.2. λ̂α equals the strict supremum of T̂α-clockable ordinals.

Proof. Let ξ denote the supremum of T̂α-clockable ordinals.
To show λ̂α ≤ ξ, take any Tα-writable ordinal β. The following program halts after at

least β steps. The program writes an α-code for β, counts through the code by successively
deleting the next remaining element and halts when all elements are deleted.

To show λ̂α ≥ ξ, take any T̂α-clockable ordinal β. Let P be a T̂α-program that halts at
time β. By Lemma 2.1, β < ζ̂α. Thus there is an eventually T̂α-writable ordinal γ > β.

Consider the following T̂α-program. The program writes each version µ of γ and runs P
up to time µ. Whenever µ changes, begin a new simulation. It is clear that this will halt
when µ ≥ β. When this happens, output an α-code for µ. Thus µ is T̂α-writable.

Since λ̂α is itself not T̂α-writable, the previous argument shows that the supremum is
strict.

Lemma 2.3. ζ̂α equals the strict supremum of T̂α-stabilization times of the tape contents.

Proof. Let γ denote the supremum of T̂α-stabilization times of the tape contents.
To show that ζ̂α ≤ γ, suppose that P eventually writes ξ. We consider a program Q

that simulates P and additionally sets a flag. It is set to 0 when the output of P changes
and to 1 once we have counted through µ, if the current output of P codes an ordinal µ.
Then Q’s stabilization time is at least ξ.

By Lemma 2.1, γ ≤ ζ̂α. To show that the supremum is strict, assume that some program
P stabilizes exactly at time ζ̂α. We search via the universal Tα-program for (an accidentally
writable code for) some µ such that the output of P eventually stabilizes before µ. Then µ

is eventually T̂α-writable, contradicting the fact that µ > ζ̂α.
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The next result describes the basic relations between the ordinals associated to Tα and
T̂α.

Lemma 2.4.

(1) λ̂α is Tα-eventually writable.

(2) ζ̂α is Tα-accidentally writable.

(3) Σ̂α = Σα.

Therefore λα ≤ λ̂α < ζα ≤ ζ̂α < Σα = Σ̂α.

Proof. To show 1, we simulate all T̂α-programs, beginning with the first step of each
computation and proceeding with one step of each program at a time. This is done by
partitioning the tape into α many tapes of length α. For each i < α, we define γi,j as

follows. If the ith T̂α-program Pi halts in step j of the run of Pi with output a (code for an)
ordinal γ, let γi,j = γ. Otherwise let γi,j = 0. Let further γj =

∑
i<α γi,j . The output of our

algorithm is set to the value γ[j] =
∑

i≤j γi once the jth step of each program is completed.

In step λ̂α of the simulation, all steps j < λ̂α of each T̂α-program are completed.
Moreover, each T̂α-program has either already halted or diverges by Lemma 2.2. Hence the
output of the simulation takes the constant value γ =

∑
j<λ̂α

γj = supj<λ̂α γ[j] from step

λ̂α onwards.
It remains to show that γ = λ̂α. To see that γ ≤ λ̂α, note that γ[j] < λ̂α for all j < λ̂α,

since γ[j] is T̂α-writable. To see that γ ≥ λ̂α, note that every T̂α-writable ordinal is of the

form γi,j for some i < α and j < λ̂α and γi,j ≤ γj ≤ γ.

The proof of 2 is similar. We simulate all T̂α-programs as above. For each i < α, let
γi,j,k denote the output of the ith program Pi in step k of the run of Pi, if this codes an
ordinal, is constant in the interval [j, k) and j is minimal with this property. Let γi,j,k = 0
otherwise. Let further γj,k =

∑
i<α γi,j,k. The algorithm’s output is set to γ[k] =

∑
j<k γj,k

after the jth steps of each program are completed for all j < k. Now let k = ζ̂α.
To see that γ[k] ≤ ζ̂α, note that

∑
j<l γj,k is T̂α-eventually writable for all l < k by

Lemma 2.1. To see that γ[k] ≥ ζ̂α, note that every T̂α-eventually writable ordinal is of the
form γi,j,k for some i < α and j < k by Lemma 2.3.6

Finally, 3 follows from the fact that any T̂α-accidentally writable subset of α is Tα-
accidentally writable. This was already shown in Section 1.2.

We will see that λα < λ̂α and ζα < ζ̂α for some α in Section 3.4.
We can now prove a version of Theorem 2.2 without parameters.

Lemma 2.5. λα equals the supremum of Tα-clockable ordinals.

Proof. Let γ denote the supremum of Tα-clockable ordinals.
It is easy to see that λα ≤ γ (as for λ̂α).

To see that γ ≤ λα, take any Tα-clockable ordinal ξ. Then ξ < λ̂α by Lemma 2.2 and
thus ξ < ζα by Lemma 2.4. Fix a Tα-program P halting at time ξ and a Tα-program Q that
eventually writes some µ ≥ ξ. For each ordinal ν output by Q, we simulate P up to time ν
and output ν if P halts. The output is a Tα-writable ordinal ν ≥ ξ. Thus ξ < λα.

6We did not specify at which time of the simulation the output equals γ[k]. It can be arranged that this

happens at time k for k = ζ̂α.
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Similarly as in Lemma 2.3 for ζ̂α, we obtain the following version without parameters.

Lemma 2.6. ζα equals the strict supremum of Tα-stabilization times of the tape contents.

Proof. Let γ denote the supremum of Tα-stabilization times of the tape contents.
It is easy to see that ζα ≤ γ (as for ζ̂α).

We have γ ≤ ζ̂α by Lemma 2.1 and hence γ < Σα by Lemma 2.4. The next argument
for the inequality γ ≤ ζα and for the fact that this is a strict supremum is virtually the
same as in Lemma 2.3. Suppose that some program P stabilizes at a time η ≥ ζα. Since
η ≤ γ < Σα, η is accidentally Tα-writable. We search via the universal Tα-program for (an
accidentally writable code for) the least µ such that the output of P eventually stabilizes at
time µ. Then µ = η is eventually Tα-writable, contradicting the fact that η ≥ ζα.

We next show that λ̂α is admissible and ζ̂α is Σ2-regular. We first fix some notation.
Given a class Σ of formulas, an ordinal γ is called Σ-regular if for no β < γ, there is a
cofinal function f : β → γ that is Σ-definable over Lγ from parameters in Lγ . Moreover,

Σ1-regular ordinals are called admissible. To show that λ̂α is admissible, we need the
following lemma (which must be folklore). To state the lemma, recall that Σ-collection
states that for any Σ-formula ϕ(x, y) and set A with ∀x ∈ A ∃y ϕ(x, y), there is a set B
with ∀x ∈ A ∃y ∈ B ϕ(x, y).

Lemma 2.7. Let γ ∈ Ord and n ∈ ω. The following statements are equivalent:

(a) γ is Σn+1-regular.7

(b) Lγ |= Πn-collection.
(c) Lγ |= Σn+1-collection.

Proof. Assume that (a) holds. To show (b), take a Πn-formula ϕ(x, y, z) and A,B ∈ Lγ
with Lγ |= ∀x ∈ A ∃y ϕ(x, y,B). Let further fA : γA → A denote the order-preserving
enumeration of A with respect to ≤L and f : γA → γ the function with f(α) equal to the
least β < γ with Lγ |= ∃y ∈ Lβ ϕ(fA(α), y, B). Then fA is ∆1-definable over Lγ from A.

We claim that f is ∆n+1-definable over Lγ from A,B. Note that it follows from
Σk-regularity by induction on i ≤ k that Σi- and Πi-formulas are closed under bounded
quantification. Thus ∃y ∈ Lβ ϕ(fA(α), y, B) is (in Lγ) equivalent to a Πn-formula and the
function sending α to Lf(α) is definable by the conjunction of a Σn and a Πn-formula, so it

is ∆1
n+1-definable over Lγ from A,B. It follows that f is ∆1

n+1-definable over Lγ from A,B.
By (a), ran(f) is bounded by some β < γ. Thus Lβ witnesses Π0-collection for ϕ(x, y, z)

and A,B. Therefore (b) holds.
It is easy to see that (b) implies (c) and (c) implies (a).

The next result is analogous to the fact that λ is admissible [HL00, Corollary 8.2].

Lemma 2.8. 8

(1) λ̂α is admissible.

(2) ζ̂α is Σ2-regular.

7A formula is called Σ0 if it contains only bounded quantifiers, Σn+1 if it logically equivalent to a formula
of the form ∃x0, . . . , xnϕ, where ϕ is Πn, and Πn if it is logically equivalent to a formula of the form ¬ϕ,
where ϕ is Σn. It follows that these classes of formulas are closed under the connectives ∧ and ∨.

8An anonymous referee asked whether this also holds for λα and ζα.
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Proof. To show that λ̂α is admissible, it is sufficient to show that Lλ̂α is a model of Π0-

collection by Lemma 2.7. To this end, take any Π0-formula ϕ(x, y, z) and A,B ∈ Lλ̂α with

Lλ̂α |= ∀x ∈ A ∃y ϕ(x, y,B). Thus A has a T̂α-writable code. We generate outputs γ via

the universal Tα-program. When A ∈ Lγ and Lγ |= ∀x ∈ A ∃y ϕ(x, y,B), output γ and halt.

This program will halt since λ̂α is Tα-accidentally writable by Lemma 2.4, thus producing
some γ < λ̂α. Hence Π0-collection holds in Lλ̂α .

The proof of 2 is similar. By Lemma 2.7, it is sufficient to show Π1-collection in Lζ̂α .

To see this, take a Π1-formula ϕ(x, y, z) and A,B ∈ Lζ̂α with Lζ̂α |= ∀x ∈ A ∃y ϕ(x, y,B).

Thus A,B ∈ Lζ̂α have T̂α-eventually writable codes. Consider the following T̂α-program.

For the current versions of A and B, we search for (a code for) an ordinal γ via the universal
Tα-program Uα and simultaneously for each x ∈ A for some y ∈ Lγ with ϕ(x, y,B). More
precisely, we implement the following (simultaneous) subroutines for all x ∈ A. Take x ∈ A
and y ∈ Lγ as the current candidate for ϕ(x, y,B). We run a search for counterexamples to
ϕ(x, y,B) via Uα; if no counterexample is found, then we keep y, but discard it otherwise.
If the subroutines eventually stabilize for all x, then γ is the eventual output. On the other
hand, there might be some x ∈ A such that all its candidates are discarded at some time;
we then move on to γ + 1. Clearly there is an eventual output γ < ζ̂α. Hence Π1-collection
holds in Lζ̂α .

We will further use the next variant of the submodel characterisation of λ, ζ and Σ. We
say that a tuple (α0, . . . , αn) is least with a certain property if ∀i ≤ n αi ≤ βi for any other
such tuple (β0, . . . , βn).

Theorem 2.9. (λ̂α, ζ̂α, Σ̂α) is the least triple (µ, ν, ξ) with α < µ < ν < ξ and Lµ ≺Σ1

Lν ≺Σ2 Lξ.

Proof. The proof of Lλ̂α ≺Σ1 Lζ̂α ≺Σ2 LΣ̂α
is virtually the same as for (λ, ζ,Σ) in [Wel09,

Corollary 32].

The proof of minimality of ζ̂α in [Wel09, Theorem 30] for α = ω adapts to this setting.
We briefly discuss the crucial role of parameters in our version. The distinction between
computations with and without parameters is not visible in Welch’s proof, as finite parameters
are always writable. First, to show that the content of a tape cell stabilizes at time ζ̂α if and
only if it stabilizes at time Σ̂α, it is necessary to let the machine check the evolution of the
contents of each cell separately for each cell as in Lemma 2.1. This is clearly possible for the
ξth cell if ξ is given as a parameter. Second, it is frequently needed that any element x of a
set y with a T̂α-writable code has itself a T̂α-writable code. This need not be true for Tα, as
x might correspond to an ordinal in the code for y that is not Tα-reachable. However, the
statement for T̂α-writable codes and its analogue for T̂α-eventually writable codes clearly
hold for T̂α. Finally, for our machines the read-write-head is no longer reset to 0 at all limit
times. In the ω-case, this is used to show that the snapshots at times ζ and Σ agree. But
this issue has already been dealt with in the proof of Lemma 2.1.

To see that λ̂α is also minimal, take a triple (µ, ν, ξ) as above. Since ν ≥ ζ̂α, every

halting T̂α-program halts before µ and hence µ ≥ λ̂α. To finally see that Σ̂α is minimal,
suppose that (µ, ν, ξ) is a triple with ξ < Σ̂α. Since Lλ̂α ≺Σ1 LΣ̂α

there is such a triple below

λ̂α, but this contradicts the fact that ν ≥ ζ̂α.
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Is there a version of the previous result for (λα, ζα,Σα)? This was asked by one of the

referees of this paper. For this triple, it is natural to consider the class Σ
(α)
n of formulas with

parameter α, and in fact Lλα ≺Σ
(α)
1

Lζα ≺Σ
(α)
2

LΣα remains valid. To see that (λα, ζα,Σα) is

not necessarily the least such triple, suppose that ζα < ζ̂α (this is possible by Lemma 3.15

below). We have Lζα ≺Σ
(α)
2

Lζ̂α , since Lζα ≺Σ
(α)
2

LΣα and Lζ̂α ≺Σ
(α)
2

LΣ̂α
. Hence (λα, ζα, ζ̂α)

is a triple with the required property, but ζ̂α < Σα by Lemma 2.4.

3. Writability strength, reachability and L-levels

3.1. Local cardinals. We characterize δ by connecting properties of levels of the con-
structible universe with writability strength. To aid this, we begin with some elementary
observations.

Let Card∗ denote the set of ordinals α > ω that are cardinals in Lλα . The next
observation states some properties of this set. We will see in Section 3.2 that δ = min(Card∗).

Observation 3.1. Suppose that κ is an uncountable cardinal.

(1) Card∗ is unbounded in κ.
(2) For any α < κ, there is a sequence of length α of successive multiplicatively closed

ordinals below κ that is disjoint from Card∗.
9

Proof. It is sufficient to prove 1 assuming that κ is regular. Take any ξ < κ and let

π : h
L
(κ+)L (ξ + 1)→ Lβ denote the transitive collapse. Then α = π(κ) is a cardinal in Lβ

and ξ < α < λα < β. Hence α ∈ Card∗.

For 2, we again take a regular κ. Let β = ωω
α
, 1 ≤ η < α and γ = ωω

α+η
the ηth

multiplicatively closed ordinal above β. Note that the inductive definition of multiplication
can be carried out in Lγ , since γ is multiplicatively closed. It follows that there is a definable
(over Lγ) surjection from η onto the set of multiplicatively closed ordinals between β and γ.

Moreover, it is easy to see that there are uniformly in n ∈ ω definable (over Lγ) functions
sending ordinals θ to surjections θ → θn. From these, we obtain a function sending θ to a
surjection θ → θω, the least multiplicatively closed ordinal above θ.

Using the previous functions, one easily obtains a definable (over Lγ) surjection from β
onto γ. In particular, γ is not a cardinal in Lλγ .

By Observation 3.1, the following ordinals are well-defined.

Definition 3.2.

(a) For any ordinal ξ, let µξ be the least α with Lλα |= |α| > ξ.
(b) Let µ∗ = min(Card∗).

The next lemma shows that the ordinals in the previous definition are equal for ξ = ω.

Lemma 3.3. µ∗ = µω.

9We defined λα only for multiplicatively closed ordinals, so the remaining ordinals are by definition not
elements of Card∗.
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Proof. µω ≤ µ∗ is clear. Assume towards a contradiction that µω < µ∗. By the definition of
µ∗, there is a surjection f : ξ → µω in Lλµω for some ξ < µω. Consider a Tµω -program that
searches for such a ξ < µω and a surjection f : ξ → µω. We fix ξ and f that are found by
the program.

Note that ξ is Tµω -writable, so Tµω can simulate Tξ. Once our search suceeds, we search
for a surjection g : ω → ξ via a Tξ-program. This will also suceed, since such a surjection
exists in Lλξ by the definition of µω. We have produced a surjection f ◦ g : ω → µω in Lµω .
But this contradicts Definition 3.2.

Lemma 3.4. The following statements are equivalent:

(a) Lλα |= |α| > ξ.
(b) There is no α-code for a surjection f : ξ → α that is Tα-writable with ξ as a parameter.
(c) Lλ̂α |= |α| > ξ.

(d) There is no T̂α-writable α-code for a surjection f : ξ → α.

Proof. It is easy to see that (a) is equivalent to (b), (c) to (d) and (d) implies (b). To
see that (b) implies (d), it suffices to write such a code only from ξ. This can be done by
simulating the program for (d) simultaneously for all ordinal parameters and halting when
the required code appears.

Using the previous lemma, one can observe that µξ equals the least α > ξ in Card∗ and
therefore, the function ξ 7→ µξ enumerates the successor elements of Card∗ (i.e. those

which are not limits of Card∗).
10 To see this, it suffices to show that for α = µξ, we have

Lλ̂α |= ξ+ = α. Note that ν := (ξ+)Lλ̂α ≤ α by the definition of µξ and Lemma 3.4. Since

one can simulate shorter tapes by using ordinal parameters, the function γ 7→ λ̂γ is monotone.
We must then have ν = α, since ν < α would contradict the minimality of α.

We further obtain the next equivalences by virtually the same proof as for Lemma 3.4.

Lemma 3.5. The following statements are equivalent:

(a) Lλα |= α is a cardinal.
(b) There is no Tα-writable α-code for a surjection f : ξ → α for some ξ < α.
(c) Lλ̂α |= α is a cardinal.

(d) There is no T̂α-writable α-code for a surjection f : ξ → α for some ξ < α.

We can replace the surjections in Definition 3.2 by cofinal functions. This yields results
analogous to Lemmas 3.3, 3.4 and 3.5 with virtually the same proofs, which we do not state
explicitly.

Definition 3.6.

(1) For any ordinal ξ, let νξ be the least α with Lλα |= cof(α) > ξ.
(2) Let ν∗ be the least α > ω that is regular in Lλα .

The previous results yield the next equality.

Lemma 3.7. µω = νω.

Proof. It is clear that µω ≤ νω. Assume towards a contradiction that µω < νω. We first
search for a Tµω -writable cofinal function f : ω → µω using the analogue to Lemma 3.4 for
νω. We then search for a sequence of surjections fn : ω → f(n). This will succeed since

10We would like to thank an anonymous referee for this observation.
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f(n) < µω for all n ∈ ω and by the definition of µω. The algorithm yields a Tµω -writable
surjection from ω onto µω, contradicting the definition of µω.

It follows from the combined results in this section that µ∗ = ν∗ is the least α with
either of the properties (a) α is uncountable in Lλα (b) α is regular in Lλα or (c) α is a
cardinal in Lλα . This proves that the least ordinals satisfying (f)-(h) of Theorem 1.1 are
equal.

To see that these equal the least ordinal with (i) of Theorem 1.1, first note that for λ̂α,

this follows from the previous results. Moreover, the claim for Σα = Σ̂α and ζ̂α holds, since
we have Lλ̂α ≺Σ1 LΣα and Lλ̂α ≺Σ1 Lζ̂α by Theorem 2.9. The argument for ζα is analogous

to the proofs of Lemmas 3.4 and 3.5.

3.2. Reachable cells. We now give characterizations of δ via some results in the previous
section.

Proposition 3.8. δ = µ∗.

Proof. To see that δ ≤ µ∗, it suffices to show that Tµ∗ doesn’t reach all its cells. We thus
assume otherwise. Then there is a well-defined map f : µ∗ → Ord that sends each α < µ∗
to the least halting time of a program that halts with its head in the αth cell. Since the
values are bounded by λµ∗ ≤ λ̂µ∗ by Lemma 2.5, f is Σ1-definable over Lλ̂µ∗

. Since λ̂µ∗ is

admissible by Lemma 2.8, ran(f) is bounded by some T̂µ∗-writable ordinal ξ. Now consider

the following T̂µ∗-computable function g : ω → µ∗. Let g(n) denote the halting position of the
nth program, if this halts before time ξ, and g(n) = 0 otherwise. Thus Lλ̂µ∗

|= cof(µ∗) = ω.

But Lemmas 3.3 and 3.7 imply that Lλ̂µ∗
|= cof(µ∗) > ω.

To see that µ∗ ≤ δ, take any α < µ∗. Since µ∗ = µω by Lemma 3.3, Tα can write an
ω-code for α. Therefore, Tα can reach all cells by counting through this code.

We call a cell eventually Tα-reachable if the head on the output tape eventually stabilizes
on this cell. It is natural to ask whether a similar result holds for this notion of reachability.
Let η denote the least ordinal such that Tη does not eventually reach all its cells.

Proposition 3.9. δ = η.

Proof. It is clear that δ ≤ η. Assume towards a contradiction that δ < η. Then every cell of
Tδ is eventually reachable. We partition the tapes into δ many portions of length δ. For
each cell ξ, we work in the ξth portion and enumerate ξ-candidates (n, α) that consist of
a natural number and an ordinal by accidentally writing them via Uδ. While the current
ξ-candidate is considered, we pause Uδ and run the nth program on the ξth portions of the
tapes as long as the head position on the output tape is stable at the ξth cell from time α
onwards, with a code for n on the output tape. Once the head moves, we run Uδ for the
next step and switch to the next ξ-candidate. Note that if the nth program stabilizes at all,
then it does so at or before time ζ̂δ by Lemma 2.1. This is accidentally writable by Lemma
2.4. Thus the program eventually writes an output from which we can read off a function
f : δ → ω mapping ξ to n as above. It is injective, since the nth program has a unique
eventual head position, if its head stabilizes at all. Since f ∈ Lζ̂δ , we have Lζ̂α |= |δ| = ω.

Since Lλ̂α ≺Σ1 Lζ̂α , Lλ̂α |= |δ| = ω. But this contradicts Lemma 3.3 and Proposition 3.8.
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It is easy to see that the Tδ-reachable cells form an interval, since Tδ can simulate Tα
for all Tδ-reachable α < δ and Tα reaches all its cells. Hence δ equals the least α such that
the Tα-reachable cells are bounded.

Observation 3.10. There are arbitarily large countable ordinals α such that Tα can reach
unboundedly many cells, but not all of them.

Proof. Recall that that the tape length is always assumed to be multiplicatively closed (see
Section 1.2).

We first claim that for any limit ordinal ξ and any i ∈ ω, the ξith cell is Tξω -reachable.
(Note that ξω is multiplicatively closed.) To see this, note that it is easy to implement a
Tα-program for ordinal multiplication (uniformly in α) that sets the head to position βγ
when the cells with indices β and γ are marked. in this way, for any ordinal β < α and
i ∈ ω, we can move the head to position βi and write 1s to the first βi many cells if the
βth tape cell is marked with 1 at the beginning of the computation. By carrying out these
procedures one after the other, we can also write 1s to the first βω many cells and move
the head βω many positions to the right. Now, to identify ξ when α = ξω, carry out this
procedure successively for all ν < α, starting with ν = 0. As long as ν < ξ, this will still
leave 0s on the tape, but when considering ν = ξ, the whole tape will be filled with 1s, which
can be detected. Thus, we can identify the ξth tape cell. Using the multiplication algorithm,
it is now easy to see that ξi is also reachable for all i ∈ ω.

We further claim that that λ̂ξ = λ̂ξω for all multiplicatively closed ordinals ξ. To see
this, it suffices to note that tapes of length ξω can be simulated on tapes of length ξ by
splitting the tape into ω many portions and simulating a tape of length ξi on the ith portion.

Now take any countable ordinal ξ such that Lλ̂ξ+1 |= ξ is uncountable. There are

unboundedly many such countable ordinals, since any image of ω1 in the transitive collapse
of a countable elementary substructure of Lω2 is of this form. Since we have seen that
there are unboundedly many Tξω -reachable cells, it remains to show that not all cells are
Tξω -reachable. Assuming otherwise, Lλ̂ξω+1 = Lλ̂ξ+1 contains a surjection f : ω → ξω,

contradicting the fact that ξ is uncountable in Lλ̂ξ+1.

3.3. Writability strength. The next result shows that writability strength can decrease
when the tape length increases.

Proposition 3.11. The following property of an ordinal α occurs for the first time at δ:
for some µ, ν with ω ≤ µ ≤ ν < α, there is a Tν-writable but not Tα-writable subset of µ.

Proof. To see that δ has the required property, it suffices to find a Tν-writable but not
Tδ-writable subset of ω for some ν < δ. Note that Tν can write an ω-code of ν for all ν < δ
by Lemma 3.3 and Proposition 3.8. Assuming the claim fails, Tδ could thus write an ω-code
for any ν < δ and would therefore reach its νth cell.

That δ is least follows from the fact that smaller devices can reach all their cells and
therefore simulate all devices smaller than they are.

This suggests the question whether the writability strength for subsets of ω is comparable
for different machines. The next result shows that this is the case.

Proposition 3.12. For every α, there is an ordinal τα ≤ λα such that the Tα-writable
subsets of ω are exactly those contained in Lτα. Hence Tα and Tβ are comparable in their
writability strength for subsets of ω for all α, β.



2:14 Merlin Carl, Benjamin Rin, and Philipp Schlicht Vol. 16:2

Proof. We first claim that every Tα-writable real x is contained in some Lβ with a Tα-writable
ω-code. Note that x ∈ Lλα by Lemma 2.5. If β is least with x ∈ Lβ , then Lβ has a real code
in Lβ+1 by acceptability of the L-hierarchy. Hence such a code is Tα-accidentally writable
without parameters. We run the universal Tα-program Uα to search for an ω-code of an
L-level that contains x. Eventually, such an ω-code for some Lτ is written on the output
tape and the machine stops.

It remains to see that every real in some Lτ with a Tα-writable ω-code y for Lτ is itself
Tα-writable, but this is clear since each element of Lτ is coded in y by a natural number.

It is easy to see that the previous result fails for subsets of other ordinals if the machine
has non-reachable cells.

We now turn to characterizations of δ via eventually and accidentally writable sets. The
next result follows from Proposition 3.8, the fact that every Tα-accidentally writable subset
of α is an element of LΣα by Lemma 2.1 and the discussion at the end of Section 3.1.

Proposition 3.13. The following properties of α occur first at δ:

(a) There is no Tα-eventually writable ξ-code (ω-code) of α for some ξ < α.
(b) There is no Tα-accidentally writable ξ-code (ω-code) of α for some ξ < α.

We say that a set of ordinals has a gap if it is not an interval. For standard ITTMs there
are no gaps in the writable ordinals, since from a code for an ordinal one can write a code
for any smaller ordinal by simply truncating the code [HL00, Theorem 3.7]. However, for
δ-codes truncating would require addressing every tape cell, which is not possible when there
are non-reachable cells.

Lemma 3.14. δ is least such that the Tδ-writable ordinals have a gap.

Proof. There are no gaps in the Tα-writable ordinals for α < δ, since every cell is reachable
and hence codes can be truncated at any length. We now show that [θ, δ) is the first gap for
Tδ, where θ is the least cell that is not Tδ-reachable. To see this, note that it follows from
the equality δ = µ∗ = µω in Lemma 3.3 and Proposition 3.8 that every Tδ-reachable α has a
Tδ-writable ω-code and it is also clear that δ has a Tδ-writable δ-code. If some α ∈ [θ, δ)
had a Tδ-writable δ-code, then one would be able to reach α by counting through the code,
but this contradicts the choice of θ.

3.4. The role of parameters. While Σα = Σ̂α by Lemma 2.4, the next result shows that
the analogous statement for λ̂α and ζ̂α fails. We would like to thank Philip Welch for
providing a proof of the implication from (a) to (c). This answered an open question in a
preliminary version of this paper.

Theorem 3.15. The following statements are equivalent:

(a) α is countable in Lλα.

(b) As in (a), but with λα replaced by λ̂α, ζα, ζ̂α or Σα = Σ̂α.

(c) λ̂α = λα.

(d) ζ̂α = ζα.

Proof. To see the equivalence of (a) and (b), recall that Lλ̂α ≺Σ1 Lζ̂α ≺Σ1 LΣ̂α
= LΣα by

Theorem 2.9 and Lλα ≺Σ
(α)
1

Lζα ≺Σ
(α)
1

LΣα , where Σ
(α)
1 denotes Σ1-formulas only in the
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parameter α, as discussed at the end of Section 2. Thus the claim follows from the fact that

countability of α is expressible by a Σ
(α)
1 -formula.

Now assume (a) and (b). Since the set of ordinals with Tα-writable ω-codes is downwards
closed, α has a Tα-writable ω-code. Then any cell is Tα-reachable by counting through the
code. Hence (c) and (d) hold.

Conversely, assume that (a) and (b) fail. Thus α is uncountable in LΣα .
To show that (c) fails, let H denote the set of e ∈ N such that Tα[e] halts and outputs

an α-code for an ordinal γe. Since all Tα-clockable ordinals are below λα by Lemma
2.5, H ∈ Lλα+1. Since α is uncountable in LΣα by our assumption and the L-hierarchy is
acceptable [BP68, Theorem 1], H ∈ Lα ⊆ Lλα . Note that the function f : H → λα, f(e) = γe
is Σ1-definable from H over Lλ̂α . Since λ̂α is admissible by Lemma 2.8, λα = supe∈H γe < λ̂α.

To show that (d) fails, let H∗ denote the set of e ∈ N such that Tα[e] eventually outputs an
α-code for an ordinal γ∗e . Since all stabilization times are below ζα by Lemma 2.3, H∗ ∈ Lζα+1

and therefore H∗ ∈ Lα ⊆ Lζα , as above. Moreover, the function g : H∗ → ζα, g(e) = γ∗e is Σ2-

definable from H∗ over Lζ̂α . Since ζ̂α is Σ2-regular by Lemma 2.8, ζα = supe∈H∗ γ∗e < ζ̂α.

We obtain the next Corollary via Lemma 3.4 and Proposition 3.8.

Corollary 3.16. δ equals the least ordinal α with each of the following properties:

(a) λα < λ̂α.

(b) ζα < ζ̂α.

3.5. Upper and lower bounds. We have the following upper bound for δ. Let σ be the
least ordinal α such that every Σ1-statement true in L already holds in Lα (Lσ equals the
Σ1-hull of ∅ in L, since it contains every uniquely Σ1-definable set). Since both the statement
that a program halts and the existence of an ever-repeating loop are Σ1-statements, the
existence of δ is a Σ1-statement and hence δ < σ.

For a lower bound, we see that δ is a closure point of the function mapping α to Σα.

Theorem 3.17. Σα < δ for all α < δ.11

Proof. By Proposition 3.8, Lemma 3.3, Lemma 3.7 and the discussion after it, δ is a
regular cardinal in the admissible set Lλ̂δ . Hence there is a strictly increasing sequence

〈ξβ | β < δ〉 ∈ Lλ̂δ of ordinals with α < ξβ < δ such that 〈Lξβ | β < δ〉 ∈ Lλ̂δ is a chain

of elementary substructures of Lδ. In particular, Lξ0 ≺Σ1 Lξ1 ≺Σ2 Lξ2 . Since the triple

(λ̂α, ζ̂α, Σ̂α) is least with this property by Theorem 2.9, we have Σα = Σ̂α ≤ ξ2 < δ.

4. Open questions

Since we considered various conditions that occur at δ for the first time, it is natural to ask
which of them are equivalent everywhere.

Question 4.1. Which of the conditions in Theorem 1.1 are equivalent for all ordinals?

11This strengthens the result from [Rin14] that ζ < δ and an unpublished result by Robert Lubarsky that
Σ < δ.
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Throughout the paper, we worked with the functions mapping a multiplicatively closed
ordinal α to the values λα, λ̂α, ζα, ζ̂α and Σα = Σ̂α. The versions of these functions with
parameters are monotone, since T̂β can simulate T̂α for α ≤ β. Moreover, the versions
without parameters are monotone below δ for a similar reason, and at δ by Theorem 3.17.

Question 4.2. Are the functions α 7→ λα, ζα monotone above δ?

We are further interested in the supremum θα of Tα-reachable cells. For instance, one
can ask the next question.

Question 4.3. Is the function α 7→ θα monotone?

Finally, we ask whether similar results to those in this paper hold for machines with
Σn-limit rules [FW11].
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