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Abstract. The complexity of parity games is a long standing open problem that saw a
major breakthrough in 2017 when two quasi-polynomial algorithms were published.

This article presents a third, independent approach to solving parity games in quasi-
polynomial time, based on the notion of register game, a parameterised variant of a parity
game. The analysis of register games leads to a quasi-polynomial algorithm for parity
games, a polynomial algorithm for restricted classes of parity games and a novel measure
of complexity, the register index, which aims to capture the combined complexity of the
priority assignement and the underlying game graph.

We further present a translation of alternating parity word automata into alternating
weak automata with only a quasi-polynomial increase in size, based on register games—this
improves on the previous exponential translation.

We also use register games to investigate the parity index hierarchy: while for words
the index hierarchy of alternating parity automata collapses to the weak level, and for
trees it is strict, for structures between trees and words, it collapses logarithmically, in the
sense that any parity tree automaton of size n is equivalent, on these particular classes of
structures, to an automaton with a number of priorities logarithmic in n.

1. Introduction

A play in a parity game consists of a player, whom we shall call Eve, and her opponent,
Adam, moving a token along the edges of a graph labelled with integer priorities, forever,
thus forming an infinite path. Eve’s objective is to force the highest priority that occurs
infinitely often to be even, while Adam tries to stop her.

These games arise at the intersection of logic, games, and automata theory. In particular,
they are the acceptance games for alternating parity automata, both on trees and on ω-words.
The complexity of solving parity games—that is, of deciding which player has a winning
strategy—still is, despite extended efforts, an open problem: it is in UP∩coUP [Jur98]
yet it is not known to admit a polynomial algorithm. After over twenty-five years of
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incremental improvements, Calude, Jain, Khoussainov, Li, and Stephan published the first
quasi-polynomial solution [CJK+17]. Only a little later in the same year, Jurdziński and
Lazić presented an independent progress-measure based algorithm that achieves the same
complexity [JL17]. This article presents a third, independent approach to solving parity
games in quasi-polynomial time. The automata-theoretic method also solves the more
general problem of translating alternating parity word automata into alternating weak
automata with quasi-polynomial increase in state space, and offers some new insights into
the descriptive complexity of parity games—that is, the complexity of formalisms that can
recognise winning regions in parity games—and the parity index problem.

Register Games. Our first contribution is to present register games, a parameterised variant
of parity games, that we then use to analyse the complexity of parity games and parity
automata, both on infinite words and infinite trees. A register game consists of a normal
parity game, augmented with a fixed number of registers that keep partial record of the
history of the game. Although the register game is harder for Eve than the parity game on
the same arena, if she can win the parity game, then she can also win the register game as
long as she has a large enough number of registers. Exactly how many registers she needs
depends on the parity game arena. We call this the register-index of the parity game: it is a
measure of complexity which takes into account both the priority assignment of the parity
game and the structure of the underlying graph.

Two key properties of register games then enable us to derive complexity results for finite
parity games as well as for parity automata on both words and restricted classes of trees.
First, register games are automata-definable: there is, for every integer k, an alternating
parity tree automaton that accepts infinite parity games of fixed maximal priority in which
Eve wins the k register game; furthermore, for any alternating parity automaton A, we
can define a family of parameterised automata Ak that use the k-register game as their
acceptance game instead of standard parity games. Second, the register-index is bounded
logarithmically in the number of disjoint cycles of a parity game arena.

A quasi-polynomial algorithm for parity games. For finite arenas, where the number of
disjoint cycles is bounded by the number of positions, solving parity games reduces to solving
the register game with a number of registers logarithmic in the size of the game. This results

in a quasi-polynomial parity game algorithm with running time in 2O((logn)3), as well as
a parameterised polynomial algorithm that solves classes of parity games with bounded
register-index.

Word automata transformations. The complexity of solving parity games is intimately related
to the complexity of turning alternating parity word automata (APW) into alternating weak
word automata (AWW). Indeed, solving parity games amounts to checking the emptiness of
an APW on the trivial singleton alphabet. Since the emptiness of AWW on the singleton
alphabet can be checked in linear time [KV98], a translation from APW to AWW immediately
yields an algorithm for solving parity games of which the time complexity matches the
size-increase and time-complexity of the automata translation. Note, however, that the
automata-translation question is more general, since automata need not be defined over a
one-letter alphabet, and even a binary alphabet can add substantial complexity.
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Nevertheless, until 2017, the best known algorithms for the two problems were roughly
the same: exponential in the number of priorities. A competitive tool for solving parity
games is even based on the translation from parity to weak automata [SMPV16]. In 2017,
however, the advent of quasi-polynomial algorithms created a gap between the complexity
of solving parity games, and the automata translation.

In this article, we show that the analysis of parity games that are infinite, or at least
of unbounded size, allows us to generalise the quasi-polynomial time complexity of solving
parity games to the blow-up incurred when turning alternating parity word automata into
alternating weak automata1.

The index hierarchy. While the translation of alternating parity automata into weak is
always possible for word automata [KV01], this is not the case for tree automata. Indeed,
while alternating weak automata suffice to capture all ω-regular word languages, no fixed
number of priorities suffices to capture all regular tree languages—this follows from the
equivalence between alternating parity automata and the modal µ-calculus [Wil01], and
the strictness of the modal µ-calculus alternation hierarchy [Bra98]. We say that the parity
index hierarchy is strict on trees, but collapses to the weak level over words.

We study automata on structures that are, in some sense, between words and trees
and show, using register games, a logarithmic collapse of the index hierarchy: for every
alternating parity automaton A with n states, there is an alternating parity automaton A′
with only O(log n) priorities that is equivalent to A over these structures.

Of other quasi-polynomial automata. Separating automata have been proposed as a way
to understand the underlying combinatorial structure of the different quasi-polynomial
algorithms [BC18]. We conclude with a discussion on what it would take for other quasi-
polynomial algorithms for parity games, when seen as separating automata, to be extended
into translations of alternating parity automata into weak automata.

This article is based on Lehtinen’s quasi-polynomial algorithm for parity games [Leh18],
which introduced the notion of register games, and Boker and Lehtinen’s extension of this
technique into a translation of alternating parity word automata into weak automata [BL18].
Here the definition of register games is simplified, generalised to infinite parity games, and
presented from an automata-theoretic, rather than modal µ-calculus, perspective.

2. Parity Games

Definition 2.1 (Parity games). A parity game is an infinite-duration two-player zero-
sum path-forming game, played between Eve and her opponent Adam on a potentially
infinite game graph G = (V, Ve, Va, E,Ω) called the arena. The positions V of the arena
are partitioned into those belonging to Eve, Ve, and those belonging to Adam, Va. The
priority assignment Ω : V → I maps every position in V to a priority in a finite co-domain
I = {i, i + 1.., d} where i ∈ {0, 1}. The edge-relation E ⊆ V × V defines the successors
of each position. Without loss of generality we assume all positions to have at least one
successor. On finite parity games of size n, we can assume d ≤ n.

1Recently a translation based on universal trees and infinite progress measures has further improved this

upper bound to n
O(log d

log n
)
[DJL19].
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A play is an infinite sequence of positions π = v0v1... such that (vi, vi+1) ∈ E for all i ≥ 0.
A play π is winning for Eve if the highest priority that occurs infinitely often along π is
even; otherwise it is winning for Adam.

A (positional) strategy σ for a player P ∈ {Adam,Eve} in a parity game G maps every
position v belonging to P in G to one of its successors. A play is said to agree with a
strategy σ for P if vi+1 = σ(vi) whenever vi belongs to P . A strategy σ for player P is said
to be winning for P from a position v if all plays starting at v that agree with σ are winning
for P . We call the positions from which Eve has a winning strategy Eve’s winning region in
G, written We(G); Adam’s winning region is written Wa(G).

We write G, v for the parity game G with a designated initial position v. A winning
strategy in G, v is a strategy that is winning from v.

Theorem 2.2 (Positional Determinacy [EJ91, Mos91]). In all positions in a parity game,
one of the players has a positional winning strategy.

It will sometimes be convenient, for clarity and aesthetics, to assign priorities to edges,
with Ω : E → I. A parity game with edge priorities can be converted into one with vertex
priorities by introducing intermediate, priority-carrying nodes onto edges and giving a low
priority to other vertices. Conversely, a vertex-labelled parity game can be converted into
an edge-labelled one by assigning the priority of a vertex to its outgoing edges.

3. Register Games

This section describes the key technical development of this article: register games. These
are parameterised variations of parity games, also played on a parity game arena. Crucially,
the winning condition of a k-register game is a parity condition that ranges over priorities
[0..2k + 1] rather than the priorities of the arena. The larger the parameter k, the easier
the k-register game becomes for Eve who, on arenas in which she has a winning parity
game strategy, is guaranteed to also have a winning k-register game strategy, for some large
enough k. Note that the mechanics of register games have been simplified, compared to
their first appearance in [Leh18]; see Remark 3.5.

3.1. Definitions and Observations. Informally, the k-register game consists of a normal
parity game, augmented with a tuple (r0, ..., rk) of registers that keeps a partial record of
the history of the game. During a turn, several things happen: the player whose turn it is in
the parity game moves onto a successor position of their choice, which has some priority p
and Eve chooses an index i, 0 ≤ i ≤ k; then, the registers get updated according to both i
and p, and an output between 0 and 2k + 1 is produced, also according to i and p.

The update wipes out the contents of registers with index lower than i: for j < i, rj
is set to 0. Meanwhile ri is set to p and rj for j > i to max(rj , p). In other words, each
register rj keeps track of the highest priority seen since Eve last chose i with i ≥ j. The
output is 2i if max(ri, p) is even, and 2i+ 1 otherwise. Then, in the limit, Eve wins a play if
the largest output that occurs infinitely often is even.

Since the winning condition of the register game is a parity condition, we can formally
define the k-register game on a parity game arena G as a parity game on an arena Rke(G),
of which the positions are positions of G paired with vectors in Ik+1 that represent the
contents of the registers. An additional binary variable t indicates whether the next move
consists of Eve’s choice of register (t = 0), or a move in the underlying parity game (t = 1).
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Definition 3.1 (Register game). Let G be a parity game (V G, V G
e , V

G
a , E

G,ΩG) and let I
be the co-domain of ΩG : V G → I. For a fixed parameter k ∈ N, the arena of the k-register
game Rke(G) on G in which Eve controls the registers, consists of Rke(G) = (V, Ve, Va, E,Ω)
as follows.

While G carries its priorities on its vertices, for the sake of clarity, Rke(G) carries them
on its edges, Ω : E → [0..2k + 1].

• V is a set of positions (v, r̄, t) ∈ V G × Ik+1 × {0, 1},
• Va consists of (v, r̄, 1) such that v ∈ V G

a ,
• Ve consists of V \ Va,
• E is the disjoint union of sets of edges Emove and Ei for all i ∈ [0..k] where:

Emove consists of edges ((v, r̄, 1), (w, r̄, 0)) such that (v, w) ∈ EG.
For each i ∈ [0..k], Ei consists of edges ((v, r̄, 0), (v, r̄′, 1)) such that:

– r′j = max(rj ,Ω
G(v)) for j > i,

– r′j = ΩG(v) for j = i, and

– r′j = 0 for j < i.

• Ω assigns priorities from [0..2k + 1] to edges as follows:
– Edges of Emove have priority 0;
– ((p, r̄, 0), (p, r̄′, 1)) ∈ Ei has priority 2i if max(ri, p) is even, and priority 2i+1 otherwise.

Terminology. Given a play in Rke(G), we call the underlying play its projection onto the
first element of each visited position. At a position (v, r̄, t), we write that: a priority p ∈ I
occurs if ΩG(v) = p; a register i ∈ [0..k] contains a priority p ∈ I if ri = p; Eve chooses
register i and outputs j ∈ [0..2k + 1] if the play follows an edge in Ei of priority j.

A strategy for Adam in G induces a strategy for Adam in Rke(G). A strategy for Eve in
G paired with a register-choosing strategy in Rke(G) induces a strategy for Eve in Rke(G).
Observe that as the winning condition depends on the outputs that occur infinitely often,
and that registers up to the largest one chosen infinitely often renew their contents infinitely
often, if a player has a winning strategy in Rke(G) from (v, r̄, t), then they have a winning
strategy from all (v, , ). We will then simply say that they have a winning strategy from v.

The k-register game arena Rka(G) where Adam controls the registers is similar to
Rke(G) except that positions (v, r̄, 0) are in Va, edges in Emove have priority 0, and edges
((v, r̄, 0), (v, r̄′, 1)) of Ei have priority 2i+ 2 if ri is even, and 2i+ 1 otherwise. The k-register
game with Eve (resp., Adam) in control of registers on an arena G is the parity game on the
arena Rke(G) (resp., Rka(G)). Unless specified, the k-register game on G refers to Rke(G).

For fixed k, Rke(G) is a parity game on an arena of size polynomial in the size of G and
of priority domain [0..2k + 1]: it can be solved in polynomial time in the size of G using
any solver exponential in the number of priorities (e.g. a progress measure algorithm [Jur00]).

We now establish two important facts about register games: if Adam has a winning
strategy from a position v in a parity game G, then he has a winning strategy from all
positions (v, r̄, t) in Rke(G) for any k. However, if Eve has a winning strategy in G from v,
then she also has a winning strategy from all (v, r̄, t) in Rke(G) as long as k is large enough.

Lemma 3.2. If Adam has a winning strategy in the parity game G starting at v, then he
also has a winning strategy in Rke(G) starting at v for all k.
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Proof. Assume Adam has a strategy τ in G that is winning from v. On any play π starting
at v that agrees with τ , the highest priority p seen infinitely often is odd. Let i be the
highest register chosen infinitely often by Eve during π. Then, eventually—that is, after the
last occurrence of anything higher than p and after Eve no longer chooses registers higher
than i—whenever p is seen, ri is set to p and remains at p until Eve again chooses i. Then,
since p is odd, this outputs 2i+ 1. Since p occurs infinitely often and i is picked infinitely
often, 2i + 1 is output infinitely often. It is also the highest value output infinitely often
because i is the highest index picked infinitely often. Since 2i+ 1 is odd, π is winning for
Adam. The strategy τ is therefore winning for Adam in Rke(G) from position v.

Lemma 3.3. If Eve has a winning strategy in the parity game G with parity co-domain I
at a position vι, then she also has a winning strategy in Rke(G) from vι for k ≥ i where 2i is
the largest even priority in I.

Proof. Given a strategy σ in the parity game G that is winning for Eve from vι, let σ′ be
the following strategy for Eve in Rke(G) where k ≥ i and 2i is the largest even priority
in I: at positions (v, r̄, 1) the strategy σ′ follows σ, that is if v belongs to Eve, then
σ′(v, r̄, 1) = (w, r̄, 0) where σ(v) = w; at positions (v, r̄, 0) where ΩG(v) = 2i or 2i+ 1 for
some i, the strategy σ′ chooses register i.

We now argue that σ′ is winning for Eve in Rke(G) from vι. Since σ′ follows σ in the
underlying game, the highest priority p that occurs on any play beginning at vι that agrees
with σ′ is even, say p = 2i for some i. The highest register chosen infinitely often is therefore
i. Since eventually nothing higher than p occurs anymore, ri will eventually remain p in
perpetuity, and therefore, eventually, every time Eve chooses i, this outputs 2i; since this is
the highest register chosen infinitely often, nothing higher is output infinitely often. Hence
Eve wins every play that agrees with σ′ from vι.

The number of registers that Eve needs to win the register game on a parity game in
which she has a winning strategy depends on the complexity of her winning strategy. We
define this as the register index of a parity game and consider it as a measure of complexity
for parity games, comparable to measures such as entanglement [BGKR12].

Definition 3.4 (Register-index). A parity game G has register-index k at v ∈We(G) if
k is the smallest integer such that Eve wins Rke(G) from v, and at v ∈Wa(G) if k is the
smallest integer such that Adam wins Rka(G) from v. A parity game G has register index k
if k is the minimal integer such that it has register index up to k at all positions.

Remark 3.5. The register game defined here differs slightly from the one defined in [Leh18]
and used in [BL18]. Here, for a more elegant presentation, Eve chooses a register at every
turn, but has an additional 0-indexed register she can default to. This avoids having an
additional priority that encodes that Eve must reset infinitely often. Furthermore, and
perhaps more significantly, the register update mechanism is simplified: instead of values
shifting between registers, all registers below the chosen one get reset to 0 while the chosen
register updates to the current priority. This new game mechanism simplifies Eve’s strategies
and in particular the proof of Theorem 4.2. Finally, we do not restrict register games to
finite arenas, but consider them on potentially infinite ones.
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3.2. Examples. In this section we explore which features of parity games affect the register
index, and which do not. Since the register-index depends on a player’s winning regions,
the examples presented in this section are all on one-player games: all positions belong to
Adam. They can be embedded into two-player games of arbitrary complexity; however, for
the register-index, only the game induced by the simplest winning strategy matters.

We begin by looking at register games with a small number of registers, starting with
0-register games. We observe that Eve wins the 0-register game if she has a strategy σ such
that plays that agree with σ see finitely many odd priorities, such as the game depicted
in Figure 1. Indeed, if Eve follows such a strategy, then eventually all outputs in the 0-
register games are 0. Among well-known parity games with register-index 0 are the example
games for which strategy improvement and divide-and-conquer algorithms exhibit worst-case
complexity [BDM17, Fri09].

While parity games with register-index 0 must be quite simple, register-index 1 already
captures games with more complexity. Example 3.6 for instance dicusses games with high
entanglement, high tree-width, and a large number of priorities that have register-index
1. Known examples of families of parity games of register-index 1 are those that exhibit
worst-case complexity for Zielonka’s recursive algorithm and the quasi-polynomial progress
measure algorithms [Fri11, FJS+17]. In these games every odd priority is immediately
followed by a larger even priority, so Eve still has an easy 1-register game strategy consisting
of choosing register 1 whenever an even priority occurs, and register 0 otherwise.

Example 3.6. Figure 2 shows an edge-labelled arena in which Eve wins the parity game
but loses the 0-register game. In the 0-register game, Adam’s strategy is to loop at the
current position once (this clears the register), then move to the other position and repeat;
Eve has no choice but to produce outputs 1 and 0 infinitely often. Eve can win the 1-register
game by choosing register 1 after seeing 2, and register 0 after seeing 1 or 0.

Figure 3 illustrates a slightly more complicated family of parity games, which has linear
entanglement, tree-width and number of priorities, yet constant register-index 1. It consists
of arenas with vertices v0...vn with priority edges (vj , vi) of priority 2i for j ≤ i and 2j − 1
for j > i. Eve’s strategy is to choose register 1 whenever she sees an even priority and
register 0 otherwise. Since odd priorities only occur after a larger even priority, with this
strategy register 1 permanently contains even priorities. Then every occurrence of an even
priority leads to output 2, while odd priorities lead to output 1.

We have seen some parity games of low register-index. Building parity games of high
register-index is more involved and requires, as we shall see, exponentially many positions.

Lemma 3.7. For all n, there exists a parity game of register-index at least n.

Proof. Let H0 be the game arena consisting of a single node, belonging to Adam, with a
self-loop of priority 0. This unique node is also the initial node of H0.

Then, for all n > 0, the arena Hn consists of two distinct copies of Hn−1 with initial
positions v0 and v1 respectively, with an edge (v0, v1) of priority 2n− 1 and an edge (v1, v0)
of priority 2n. The position v0 is also the initial position of Hn. See Figure 4.

Eve wins these parity games Hn because all cycles are dominated by an even priority. We
will show that for n > 0, Adam has a winning strategy in the n− 1-register game Rn−1

e (Hn).
We reason inductively, and show that for each Hn, n > 0, that i) from the initial position

in Rme (Hn) for m ≥ n − 1, with a register configuration in which register contents are
bounded by 2n − 1, Adam can force the game to output 2n − 1 or a higher odd priority,
before returning to the initial position, and ii) Eve loses in Rn−1

e (Hn).
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Figure 3: Parity game of register-index 1

Base case: Adam has a winning strategy in R0
e(H1): His strategy is to loop once in the

current position to see 0—this sets the register content to 0; he then moves to the other
position and repeats. This causes both 0 and 1 to be output infinitely often.

If Adam uses this strategy in Rme (H1) for m ≥ 0, starting from a register configuration
in which register contents are bounded by 1, although he can’t win, he can force the game
to output 1 or a higher odd priority before returning to the initial position.

Inductive step: Assume i) and ii) for Hn.
i) Consider the following strategy for Adam in Rme (Hn+1) for m ≥ n. He first moves

from v, the initial position of Hn+1 onto the initial position v′ of the second component
of Hn+1, via the odd priority 2n+ 1. Then, he plays in Hn, which only contains priorities
smaller than 2n+1, with a strategy that is winning in Rn−1

e (Hn). To counter this strategy,
Eve has to eventually choose a register of index n or higher, after which Adam returns
to the initial position. This is his strategy τn. Observe that if at the initial position
all register contents are bounded by 2n+ 1, then Eve will either lose in the second Hn

component, or choose a register of index n or higher when it contains the odd priority
2n+ 1, outputting 2n+ 1 or a higher odd priority.

ii) We now show that he also has a winning strategy in Rne(Hn+1). He begins by playing
τn until 2n + 1 is output and the play is back at the initial position. Note that some
registers now might contain 2n + 2, so he can not yet repeat τn. Instead, he plays a
strategy that is winning in Rn−1

e (Hn) in the first Hn component of Hn+1. Again, Eve
will lose unless she chooses register n. After she has chosen the register n, all the registers
hold values smaller than 2n+ 1. Adam can then return to the initial position, and again
use τn to force output 2n+ 1. Thus by alternating between using τn to force the maximal
odd output, and clearing the registers of higher priorities in order to be able to use τn+1

again, Adam forces 2n+ 1 to be output infinitely often.
Hence Hn has register-index at least n.
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Figure 4: H0, H1, H2, H3 : A family of parity games of high register-index

3.3. The register-index as a measure of complexity. Given the elusiveness of a poly-
nomial algorithm for parity games, there is a rich line of research in algorithms that are
polynomial for restricted classes of parity games. The size of the priority co-domain is
perhaps the simplest way of measuring the complexity of parity games: many parity game
algorithms are exponential in the number of priorities, and therefore polynomial on parity
games with a fixed number of priorities. There are also many graph-theoretic restrictions,
such as bounded tree-width, bounded clique-width and bounded entanglement, that allow
for polynomial algorithms. These two classes of restrictions are orthogonal in the sense that
the size of the priority assignment is agnostic to the underlying graph and vice-versa.

In contrast, the register-index can be seen as a measure of complexity that takes into
account both the complexity of the priority assignment and the structure of the underlying
parity game graph. Since for bounded k the register game over a game G is just a parity game
of polynomial size in |G|, solving parity games of bounded register-index is polynomial. Since
we may not know the register-index in advance, by solving both Rke(G) and Rka(G) up to
fixed k, we obtain a parameterised polynomial algorithm which solves games of register-index
up to k, and does not return an answer for other arenas.

From the analysis in the previous sections, this algorithm seems likely to be effective on
many—perhaps most—reasonable parity games. In particular, parameter 1 suffices to solve
various parity games that are hard for existing algorithms, including other quasi-polynomial
algorithms; furthermore, the register-index is independent of measures such as tree-width
and entanglement. In this sense, this algorithm is complementary to existing ones. In any
case, as we shall see in the next section, a logarithmic parameter suffices to solve all finite
parity games, making this algorithm quasi-polynomial.

4. Register Games and Finite Parity Games

So far we have defined both parity and register games on potentially infinite arenas. In
this section we consider the special case of finite arenas, which is of particular interest
for verification and synthesis. We show that for finite parity games, the register-index is
logarithmically bounded in the number of disjoint cycles, and by extension in the size of the
game. We deduce a quasi-polynomial algorithm for solving finite parity games.
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4.1. Logarithmic bound on the register index of finite parity games. This section
presents the key technical result, from which the various results in the sequel follow: the
register-index is logarithmic in the number of disjoint cycles in a finite parity game.

For a finite directed graph G, we call dc-size the maximal number of vertex-disjoint
cycles in G; the dc-size of a parity game is that of the underlying directed graph.

In order to build strategies from subgame strategies, we define the notion of a defensive
strategy. Indeed, an arbitrary winning strategy in a subgame may output a finite number of
large odd priorities; this is problematic when this strategy is used in a subgame that a play
can enter infinitely often. Defensive strategies avoid high odd priorities from the start.

Definition 4.1 (Defensive register-index). For a subgame G with priorities bounded by p,
in which Eve has a winning strategy, a winning strategy σ for Eve in Rke(G) is defensive
if, from positions (v, r̄, 0) where rk ≥ p and rk is even, a play that agrees with σ never
outputs 2k + 1. G has defensive register-index k if k is the minimal integer such that Eve
has a defensive winning strategy in Rke(G) from all positions.

Theorem 4.2. The register-index k of a finite parity game of dc-size z is at most 1 + log z.

Proof. From the definition of register-index, it suffices to consider the single-player parity
games G induced by any winning strategy for Eve in her winning region. Observe that in
the register games on G, all positions with multiple successors belong to Adam and Eve’s
strategy consists of just choosing a register after each move in the underlying game.

We show by induction on the number of positions n in G that the defensive register-index
of G is bounded by 1 + log z; the theorem follows. The base case, n = 1, is trivial. For the
inductive step where G has at least two positions, let G′ be the game induced by positions
of G of priority up to p− 2, where p is the even supremum of priorities that appear in G.
Then, let G1, . . . , Gj be the maximal strongly connected subgames of G′. Let k1, . . . , kj be
their respective defensive register-indices, and m the maximal among these. If there are
no such subgames, then p is the maximal priority in all cycles; then Eve wins defensively
in R1

e(G) by choosing register 1 when p occurs and register 0 otherwise. Since no priority
higher than p occurs, r1 always contains either p or the initial value of r1; this strategy is
therefore winning and defensive.

Case of a unique i for which ki = m and m > 0: We show that the defensive register-
index of G is no more than m. Since the dc-size of Gi is no larger than z, and from the
inductive hypothesis m ≤ 1 + log z, this suffices.

Eve’s strategy in the m-register game on G is as follows: within a subgame Gj she uses
the bottom kj registers to simulate her defensive winning strategy in the kj-register game
on Gj ; elsewhere, she chooses register m whenever p occurs and register 0 otherwise.

Assume that this strategy is played from a register-configuration where the top register
contains an even priority greater or equal to the largest priority in G. First observe
that after choosing register m upon seeing p, rm is set to p. Furthermore, this strategy
encounters p between any two entrances into Gi, and outside of Gi Eve chooses register
0 6= m whenever p does not occur; therefore plays that agree with this strategy always
enter Gi with either p or the larger even initial rm-value in register m. Thus, since the
strategy within Gi is defensive, it never outputs 2m+ 1 in Gi. Similarly, when p occurs
max(rm, p) is always even: rm is either its initial value, p, or a smaller priority from Gi.
Plays that agree with this strategy either eventually stay within a subgame Gj where
Eve follows a winning strategy, or change subgames infinitely often. In the latter case,
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p is seen infinitely often, thus producing 2m as output infinitely often. This strategy is
therefore both defensive and winning for Eve.

Note that if this strategy is played from a register-configuration in which the top register
is not an even priority greater or equal to the highest priority in G, then a play might
output 2km + 1 once, but the values output infinitely often will still be the same as above,
so the strategy is still winning.

Case of i, j where i 6= j and ki = kj = m: We show that the defensive register-index of
G is at most m+ 1. This suffices, since by the induction hypothesis, each of Gi and Gj
has dc-size at least 2m−1; then G has dc-size at least 2m as Gi and Gj are disjoint. Eve’s
strategy in the m+ 1-register game on G is as follows: in a subgame Gi, she uses registers
up to ki to simulate a winning strategy in the ki-register game on Gi; elsewhere, she
chooses register m+ 1 when p is seen, and register 0 otherwise. This strategy is winning as
a play either eventually stays within a subgame where Eve is following a winning strategy,
or it enters some subgame infinitely often. In this case, it must see p infinitely often; then
2(m+ 1) is the highest value output infinitely often since after the first occurrence of p
register m+ 1 permanently contains p. Furthermore, if the initial content of register m+ 1
is an even priority larger than any occurring in G, then every time Eve chooses register
m+ 1, the output is even; the strategy is therefore defensive.

Case of m = 0: Eve can win the 1-register game on G, using a strategy as above: within a
subgame Gi, she uses her strategy in the 0-register game, and chooses register 1 whenever
p is seen. This strategy is winning since a play either remains in a subgame and follows a
winning strategy, or sees p infinitely often and therefore outputs 2 infinitely often, but
does not output 3 infinitely often. If initially r1 contains an even priority greater or equal
to the maximal priority in G, this strategy never outputs 3 and is therefore defensive.

Remark 4.3. The logarithmic bound was shown in [Leh18] with respect to the size of
a finite parity game directly; in [BL18] it was strengthened to a logarithmic bound with
respect to the maximal number of disjoint strongly connected components. Here we opt for
the number of vertex-disjoint cycles, which is equivalent but more intuitive.

4.2. A quasi-polynomial algorithm for parity games. The quasi-polynomial solvability
of parity games then follows: to solve a parity game G of size n, one can always solve

R1+logn
e (G) instead.

Corollary 4.4 (Also [CJK+17, JL17]). Parity games are solvable in quasi-polynomial time.

Proof. Let n be the number of positions in a parity game G with d distinct priorities and m
edges. The game Rke(G) has O(ndk+1) positions, priorities up to 2k + 1 and O((m+ nk)dk)
edges. Since Rke(G) is presented with its priorities on its edges, for the complexity analysis
we take the size of Rke(G) to be O(kndk), to account for an additional vertex for each of the
O(kndk) edges of significant priority—that is, those in Er for some r ∈ [0..k].

From Theorem 4.2, the register-index of a parity game of size n is at most 1 + log n.
Therefore solving parity games G reduces to solving Rke(G) where k = 1 + log n. The Rke(G)
game can then be solved with an algorithm exponential in the number of priorities of one’s
choice, say the small progress measure algorithm [Jur00], to obtain a quasi-polynomial

algorithm that runs in time 2O((logn)3).
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Without further optimisations, the complexity of this algorithm is not competitive
with respect to existing quasi-polynomial algorithms; its space-complexity, due to building

R1+logn
e (G), is also quasi-polynomial. We refer the reader to Parys’s [Par20] and to Daviaud,

Jurdziński and Thejaswini’s [DJT20] recent work that shows how to bring both the space
and time complexity down to match other quasi-polynomial algorithms. Furthermore, as
discussed in Section 3.2, many games have low register-index, including those that exhibit
worst-case complexity for other algorithms; on such games this approach is expected to work
well. Section 7 discusses further ideas to adapt this approach for practical usage.

One of the principal appeals of this technique for analysing parity games comes un-
doubtedly from the logic and automata-theoretic perspective. In the sequel, we turn our
attention to infinite parity games, or at least parity games of unbounded size, which we use
to build automata transformations based on register games.

5. Register Games and Parity Automata

Parity automata are closely related to parity games. On one hand, the language of parity
games (represented as infinite trees) with a fixed number of priorities in which Eve has a
winning strategy is recognised by an alternating parity tree automaton. On the other hand,
the acceptance game for alternating parity automata—both on trees and on words—is an
infinite parity game.

In this section we first establish that register games are, like parity games, automata-
definable: the winning regions of k-register games on arenas with d priorities are recognised
by an alternating parity tree automaton of size O(dk). We then use register games on infinite
and unbounded arenas to define a quasi-polynomial translation from alternating parity word
automata into alternating weak word automata.

We finish with a discussion of how these techniques generalise to restricted classes of
tree automata, on which we observe a partial collapse of the parity index hierarchy.

We begin this section by fixing notations and definitions for ω-word and tree automata
with parity acceptance conditions.

5.1. Automata on Words, Trees and Games.

Words, trees, games and graphs. A word over Σ is a (possibly infinite) sequence w = w0·w1 · · ·
of letters in Σ. We write suffixes(w) for the set of suffixes of w (which includes w itself).
We consider a tree to be an infinite directed rooted tree in the graph-theoretic sense; in
particular, the children of a node are not ordered. A Σ-tree t (resp. Σ-graph) is a tree (resp.
graph) together with a mapping of each of its nodes to a letter in Σ. We write subtrees(t)
for the set of Σ-subtrees of t (which includes t itself). A Σ-graph with an initial vertex
unfolds into an infinite Σ-tree; a regular Σ-tree can be finitely represented by a Σ-graph
(i.e., Kripke structures).

We will use a game alphabet Γd = {Ai, Ei|i ∈ [0..d]} to represent parity games with
priorities up to d. A Γd-tree, or graph, is interpreted as the infinite or finite parity game on
the arena consisting of the tree, or graph respectively, where positions labelled Ei belong to
Eve, positions labelled Ai belong to Adam, and positions labelled Ei or Ai have priority i.
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Automata. Several different definitions of alternating tree automata exist. One variable is
the branching type of the input trees: fixed or arbitrary, with or without an order on the
successors. In the context of parity games, it is most natural to operate in a setting with
arbitrary branching without an order on the successor nodes—that is, an automaton can not
distinguish between the left and right branch of a binary tree, unless this is encoded in the
labelling. Another difference in automata definitions is how flexible the transition condition
is with respect to ε-transitions and the combination of path quantifiers (♦,�) and boolean
connectives (∨,∧). Usually, all of these definitions give the same expressiveness ([Wil99,
Proposition 1] and [Kir02, Remark 9.4]), except for the case of very restricted automata, in
which they do not [BS18]. In our definition of alternating automata, there are no epsilon
transitions and path quantifiers are applied directly on states.

An alternating parity tree automaton is a tuple 〈Σ, Q, ι, δ,Ω〉 where Σ is a finite alphabet,
Q is a finite set of states, ι ∈ Q is an initial state, δ : Q×Σ→ B+({♦,�}×Q) is a transition
function, B+(X) is the set of positive boolean formulas over X, and Ω : Q→ I is a priority
assignment that assigns priorities from I = [0..i] or I = [1..i], for some i ∈ N, to states.
Intuitively, given a state and a letter, the transition function returns a positive boolean
formula that defines which states the automaton can transition to, and whether it considers
the next state at a non-deterministically chosen child (♦), or at all of the children (�).
Positive boolean formulas over {♦,�} ×Q are called transition conditions. The transition
graph of A is the graph (Q,E) where (q, q′) ∈ E if q′ appears in δ(q, α) for some α ∈ Σ.

Büchi and co-Büchi automata are special cases of parity automata in which I = {1, 2}
and I = {0, 1} respectively. An automaton is weak if every strongly connected component in
the transition graph consists of states with either only odd priorities or only even priorities.
Observe that a weak automaton can be seen as either a Büchi or co-Büchi automaton by
using priorities 1 and 2, or 1 and 0, respectively.

The size of an automaton is the maximum of the alphabet size, the number of states,
the number of subformulas in the transition function, and the acceptance condition’s index,
that is |I|. Observe that in alternating automata, the difference between the size of an
automaton and the number of states in it can stem from a transition function that has
exponentially many subformulas.

How exactly nondeterminism in tree automata is defined also varies in the literature.
In general, it only concerns the boolean connectives of the transition condition and not
the path quantifiers. We consider an alternating automaton to be nondeterministic (resp.
universal) if its transition conditions only use the ∨ (resp. ∧) connective, in addition to the
path quantifiers ♦ and �.

A word automaton is simply a tree automaton that operates on unary trees, that is,
ω-words. For word automata, the path quantifiers ♦ and � are equivalent as there is always
exactly one successor.

We will also mention deterministic word automata, in which the transition condition
has no boolean connectives, and safety automata, in which the only rejecting state is a
rejecting sink.

The class of an automaton is determined by its transition mode (deterministic, nonde-
terministic, or alternating), its acceptance condition, and whether it runs on words or trees.
We often abbreviate automata classes by acronyms in {D, N, A} × {W, B, C, P} × {W,
T}. The first letter stands for the transition mode; the second for the acceptance-condition
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(weak, Büchi, co-Büchi, and parity); and the third indicates whether the automaton runs on
Words or on Trees. For example, AWW stands for an alternating weak automaton on words.

We define the semantics of automata directly in terms of their acceptance games.

Definition 5.1 (Acceptance game). Given a Σ-tree t and an APT A = 〈Σ, Q, ι, δ,Ω〉, the
acceptance game G(t,A) is the following parity game:

• The set of positions is subtrees(t)× (Q ∪ B+({♦,�} ×Q)).
• For a ∈ Σ, a Σ-tree u whose root is labeled a, transition conditions b and b′, and state
q ∈ Q, there is an edge from:
– (u, q) to (u, δ(q, a))
– (u, b ∨ b′) to (u, b) and (u, b′)
– (u, b ∧ b′) to (u, b) and (u, b′)
– (u,♦q) to (u′, q), for every child u′ of u.
– (u,�q) to (u′, q), for every child u′ of u.
• Positions (�q, u) and (b ∧ b′, u) belong to Adam; other positions belong to Eve.
• A position (u, b) is of priority Ω(b) if b is a state q, and 0 otherwise.

Observe that the acceptance games of regular, i.e., finitely representable, trees are finite
since these trees only have finitely many distinct subtrees. For a Kripke structure S, we
write G(S,A) for the acceptance game G(t,A) where t is the tree represented by S, and
observe that it is finite.

We say that an APT A with initial state ι accepts a tree t if and only if Eve has a
winning strategy in the acceptance game G(t,A) from (t, ι). A tree automaton accepts or
rejects a graph according to whether it accepts or rejects its infinite tree unfolding. The set
of trees accepted by A is called the language of A, denoted by L(A). Two automata are
equivalent if they recognise the same language.

As a word is a special case of a tree, Definition 5.1 and other results that will be shown
on acceptance games apply also to word automata. In the word setting, the presentation of
the acceptance game can be simplified: ♦q and �q are equivalent, and may thus be written q,
and Q ∪ B+(Q) is equal to B+(Q).

5.2. Automata for Register Games. We define for every APT A and positive integer
k, the parameterised version Ak, which is an APT that will be shown to accept a tree t
if and only if Eve wins the k-register game on G(t,A) starting from (t, ι). The idea is to
emulate the k-register game by keeping track of register configurations with a tuple r̄ ∈ Ik+1

that is updated according to which priorities are seen and Eve’s register choices, which are
represented as nondeterministic choices in Ak. The outputs are captured by the priorities
of the states of Ak. Here we note a slight subtlety: In the k-register game on G(t,A), Eve
chooses registers not only at positions (u, q) where q is a state of A, but also at positions
(u, b) where b is a boolean formula. In Ak only states can have priorities (i.e., there can
only be one priority per move in t) so we aggregate the outputs from these choices between
two states by taking the largest output into the priority of the next state—this is the third
element p ∈ [0..2k + 1] of the states of Ak.

Definition 5.2. Given an APT A = 〈Σ, Q, ι, δ,Ω〉 with Ω : Q→ I and a positive integer k,
we define an APT Ak = 〈Σ, Q′, ι′, δ′,Ω′〉 as follows:

• Q′ = Q× Ik+1 × [0..2k + 1]
• ι′ = (ι, (0, .., 0), 0)
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• Ω′: For every q ∈ Q, r̄ ∈ Ik+1, and p ∈ [0..2k + 1], we have Ω′(q, r̄, p) = p.
• δ′: For every q ∈ Q, r̄ ∈ Ik+1, p ∈ [0..2k + 1], and a ∈ Σ, we have δ′((q, r̄, p), a) =∨

i∈[0..k] move(δ(q, a), newi(r̄,Ω(q)),max(ri,Ω(q))) where for transition conditions b, b′:

– newi(r̄, p) = r̄′ where r′j = max(rj , p) for j > i, ri = p and rj = 0 for j < i;

– move(♦q′, r̄, p) =
∨
i∈[0..k] ♦(q′, newi(r̄, 0),m) where m = 2i if max(ri, p) is even; 2i+ 1

otherwise;
– move(�q′, r̄, p) =

∨
i∈[0..k] �(q′, newi(r̄, 0),m) where m = 2i if max(ri, p) is even; 2i+ 1

otherwise;
– move(b∧b′, r̄, p) =

∨
i∈[0..k] move(b, newi(r̄, 0),max(ri, p))∧move(b′, newi(r̄, 0),max(ri, p))

– move(b∨b′, r̄, p) =
∨
i∈[0..k] move(b, newi(r̄, 0),max(ri, p))∨move(b′, newi(r̄, 0),max(ri, p))

Lemma 5.3. Given an APT A and a positive integer k, the parameterised APT Ak accepts
a tree t if and only if Eve wins the k-register game on G(t,A) from (t, ι).

Proof. Recall that Ak accepts a tree t if and only if Eve wins the parity game G(t,Ak) from
the initial position, which consists of Ak’s initial state and t’s root. Thus, we should show
that Eve wins G(t,Ak) from the initial position if and only if she wins the k-register game
on G(t,A) from the initial position. The intuition for the equivalence between the games is
that G(t,Ak) encodes the k-register game on G(t,A) by having the register-configuration in
the state space, Eve’s register choices as new disjunctions, and the highest output between
two states as priorities.

Positions of G(t,Ak) are in

subtrees(t)×
(

(Q× Ik × [1..2k + 1]) ∪ B+({♦,�} ×Q× Ik × [1..2k + 1])
)

while positions of the k-register game on G(t,A) are in subtrees(t)×
(
Q∪B+({♦,�}×Q)

)
×Ik.

G(t,Ak) begins at (t, (ι, (0, .., 0), 0)) while the k-register game on G(t,A) begins at
(t, ι, (0, .., 0)).

Now, observe that in the k-register game on G(t,A) at position (u, q, r̄), for a state q ∈ Q
and a Σ-tree u whose root is labeled a, Eve has to choose a register i ∈ [0..k] before the parity
game proceeds to (u, δ(q, a)) with register configuration r̄′, which is exactly newi(r̄,Ω(q)).
Similarly in G(t,Ak), from (u, q, x̄, p) Eve chooses i ∈ [0..k] before proceeding with the
transition condition δ(q, a) with register configuration newi(r̄,Ω(q)). In the register game on
G(t,A), this produces an output 2i if max(ri,Ω(q)) is even; 2i + 1 otherwise. In G(t,Ak)
the value max(ri,Ω(q)) is kept in the state of the successor position.

When the games proceed, in both the register game on G(t,A) and in the parity game
on G(t, Ak), the decision falls to Adam if δ(q, a) is a conjunction or prefixed by � and to
Eve otherwise. Then, between each subformula of the transition condition, Eve again has a
choice of register in both games. In the register game on G(t,A), this produces an output 2i
if max(ri, 0) (that is ri) is even; 2i+ 1 otherwise. The largest output between two positions
in Q× subtrees(t) of G(t,A) is recorded via the third element of the automata-component of
G(t,Ak), which determines the priority of the successor state.

Then a winning strategy for Eve in one game translates into a winning strategy for
Eve in the other game by mapping Eve’s choices of registers in the register game on G(t,A)
to her choices in G(t,Ak) at disjunctions over [0..k] in the transition condition of A and
vice versa, and mapping her choices in the underlying parity game G(t,A) to the remaining
choices in G(t,Ak), and vice-versa.
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Remark 5.4. The µ calculus-minded reader can get an idea of the equivalent modal µ-
calculus formula from [Leh18] where the definability of register games was presented from
a logic-perspective, rather than in terms of automata. The following proof in particular
uses the automata-equivalent of the canonical modal µ-calculus formulas that witness the
strictness of the alternation hierarchy [Bra98].

Corollary 5.5. There is a parity automaton of size dO(logn) that, over Γd-graphs of size n
and priorities up to d, recognises the parity games in which Eve has a winning strategy.

Proof. Let Pd be the alternating parity automaton on Γd-trees that, over parity game
graphs with priorities up to d, recognises parity games with priorities up to d in which
Eve has a winning strategy. This is simply an automaton with states 0, 1 . . . d where the
priority of a state i is i and the transition condition is δ(q, Ei) = ♦i and δ(q, Ai) = �i. The
acceptance game G(t,Pd) for any Γd-tree t is identical to t once we collapse positions with a
unique successor. It follows that t and G(t,Pd) have identical register-index. Then, from
Theorem 4.2 and Lemma 5.3, over Γd-graphs of size up to n and priorities up to d, Pdlogn+1

recognises the same language as Pd, which recognises the games in which Eve has a winning
strategy.

This corollary casts the quasi-polynomial complexity of parity games in terms of their
descriptive complexity—that is, in terms of the complexity of the logical formalisms able to
capture their winning regions. Note that here we only consider the complexity of recognising
parity games with a bounded number of priorities (here bounded by the size of the game) in
which Eve has a winning strategy; for parity games with an unbounded number of priorities,
this task is beyond the expressivity of parity automata and the µ calculus [DG08].

Remark 5.6. Observe that the register-index is bisimulation-invariant. Indeed, we can
build an automaton that accepts exactly parity games with priorities up to d that have
register-index at most k. Since alternating parity automata, like formulas of the modal
µ-calculus, are bisimulation invariant, so is the register-index.

5.3. Register Games and Word Automata. We turn our attention to automata over
ω-words. On words, deterministic parity automata, non-deterministic Büchi automata and
alternating weak automata all are expressive enough to capture all ω-regular languages [Lin88].
However, our understanding of the trade-offs in conciseness between different acceptance
conditions is incomplete. For instance, an ABW can be turned into an AWW with quadratic
size blow-up [KV01], but the current corresponding lower bound is at Ω(n log n). Until
recently the best translation from APW into AWW was exponential [KV98]; here we improve
it to quasi-polynomial; the lower bound remains at Ω(n log n).

In this section we use register games to define a quasi-polynomial translation from APW
to AWW. It is based on observing that the acceptance parity games of an automaton on an
ultimately periodic word have a register-index that depends solely on the automaton and is
at most logarithmic in its size. Given that equivalence over ultimately periodic words implies
equivalence over all words [McN66], this will suffice to turn APW into equivalent APW with
a logarithmic number of priorities and of quasi-polynomial size; from there, Kupferman and
Vardi’s classic translation into weak automata [KV98] produces a weak automaton which is
also of only quasi-polynomial size.
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We begin by showing that the dc-size of G(t,A), for a tree t that represents the
computations of a finite Kripke structure with minimum feedback vertex set size at most
d in each of its (maximal) strongly connected components (SCC), is linear in d|A|. Then,
since the register index is logarithmic in the dc-size, it is not the number of states in a
Kripke structure that influences the register index of the acceptance game, but rather its
minimum feedback vertex set. For Kripke structures representing ultimately periodic words,
this measure is 1. While a weaker lemma based directly on the single cycle of a Kripke
structure representing an ultimately periodic word w would suffice, the next section will use
this stronger lemma.

Definition 5.7. Given a directed graph G, a feedback vertex set is a set of vertices that
contains at least one vertex of every cycle in G. Let the fvs-size of G be the size of a
minimum feedback vertex set of G.

Lemma 5.8. Given a Kripke structure S with fvs-size up to d in each of its SCCs and an
APT A with n states, the parity game G(S,A) has register index at most 1 + log dn.

Proof. We first note that the register index of a parity game is the maximal one among its
SCCs. We show that the dc-size of any SCC in G(S,A) is at most dn. Then, by Lemma 4.2,
its register index is at most 1 + log dn.

First note that every SCC of G(S,A) results from a single SCC of S and a single SCC
of A. It is therefore enough to assume that both S and A consist of a single SCC.

We consider the graph H that is derived from G(S,A) by ignoring the intermediate
positions (v, b), where b is a boolean formula between positions of the form (v, q), for a state
q. That is, let H be the graph consisting of just the vertices (v, q) of G(S,A), where q is a
state. The edges of H connect positions (v, q) and (v′, q′) if (v′, q′) is reachable from (v, q)
in G(S,A) directly, that is, with a path which does not visit yet another position (v′′, q′′)
where q′′ is a state.

Observe that G(S,A) has dc-size no larger than that of the graph H: a set of disjoint
cycles in G(S,A) induces a set of disjoint cycles in H.

Let F be a feedback vertex set of S, having up to d vertices. Since every cycle C in H
corresponds to some cycle of S, it must contain a vertex (v, q), such that q is a state of A
and v ∈ F . Hence, for every v ∈ F , there are up to n vertex-disjoint cycles in H that have
a vertex of the form (v, q). Therefore, there are up to |F |n ≤ dn disjoint cycles in H, and
therefore in G(S,A).

In particular, given an ultimately periodic word and an APW A with n states, since the
fvs-size of a lasso Kripke structure representing a word is 1, the parity game G(w,A) has
register-index at most 1 + log n. Then A is equivalent to its 1 + log n parameterised version.
On can then obtain an equivalent weak automaton of quasi-polynomial size by applying
Kupferman and Vardi’s transformation [KV98] to A1+logn instead of A.

Lemma 5.9. Every APW A is equivalent to its parameterised version Ak, for k = 1+log |A|.

Proof. As two ω-regular languages are equivalent if they agree on all ultimately periodic
words [McN66], it suffices to argue that A and Ak agree on ultimately periodic words.

From Lemma 5.3, Ak accepts an ultimately periodic word w if and only if if Eve wins the
k-register game on G(Sw,A) where Sw is a finite Kripke structure representing w. Since Sw
is a lasso, and it has fvs-size 1. From Lemma 5.8, Eve wins the k-register game on G(Sw,A)
exactly when Eve wins the parity game on G(Sw,A), that is, when A accepts w.
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Theorem 5.10. There is a translation of alternating parity word automata into alternating
weak word automata incurring at most a quasi-polynomial size increase. In particular, every
APW A of size (resp. number of states) n is equivalent to an AWW of size (resp. number of

states) 2O((logn)3).

Proof. From Lemma 5.9, an APW A with n states and d priorities is equivalent to its
parameterised APW Ak for k = 1 + log n, having n · dk · (2k + 1) states and 2k + 1
priorities. The automaton Ak can then be turned into a weak automaton using standard
techniques [KV98] with a O(md′) blow-up, where m is the number of states and d′ the

number of priorities, which yields an AWW with 2O((logn)3) many states, since m is here

O(knk+1), which is in 2O((logn)2) and d′ = 2k + 1 is O(log n).
If the size of A is dominated by the size e of its transition function, namely when e > n,

observe that the parameter k, the number of states in Ak, and the number of priorities in

Ak do not depend on e, while the size of Ak’s transition function is O(k2edk) is in 2O((log e)2).
Since the translation in [KV98] does not blow up the transition-function size more than it

blows up the number of states, we end up with an AWW of size in 2O((log e)3).

5.4. Register Games and Tree automata. While the parity hierarchy collapses for
alternating word automata, that is, AWWs suffice to recognise all word languages recognised
by APWs, it is strict for alternating tree automata [Lin88, Bra98, BL18]: For every positive
integer n, there is an APT A with O(n) states and O(n) priorities, such that there is no
APT equivalent to A with less than n priorities. Hence the weak condition does not suffice
to capture all tree-languages captures by parity automata, so a general translation from
APT to AWT does not exist. However, even for APT that are equivalent to an AWT, such
a translation is at least exponential [BL18], in contradistinction to the quasipolynomial
translation of APW to AWW.

A natural question is then to consider the index hierarchy of alternating automata on
entities that are “between” words and trees—that is, infinite trees generated by Kripke
structures that are more complex than lassos, but more restrictive than trees. Examples of
such classes are “flat Kripke structures” [DDS15], in which every SCC has a single cycle,
“weak Kripke structures” [KF11], in which SCCs cannot have two vertex-disjoint cycles and
Kripke structures with finite Cantor–Bendixson rank [BW18].

We show that the parity hierarchy collapses logarithmically for alternating automata
on the classes of Kripke structures with bounded fvs-size in each of its SCCs. That is, for
every APT A with n states, there is an APT A′ with O(log n) priorities, such that A and
A′ are equivalent with respect to trees generated by Kripke structures of which the SCCs
have bounded fvs-size. Kripke structures of which the SCCs have bounded fvs-size subsume
Kripke structures that are flat, weak or of finite Cantor–Bendixson rank.

Theorem 5.11. Every APT A with n states is equivalent to an APT A′ with 1 + log dn
priorities with respect to Kripke structures with fvs-size of up to d in each of their SCCs.

Proof. Let k = 1 + log dn. Setting A′ to be the k-parameterised version Ak of A fits the
bill. Indeed: A accepts a Kripke structure S iff Eve wins G(S,A). By Lemma 5.8, for every
Kripke structure S with fvs-size of up to d in each of its SCCs, the register index of G(S,A)
is at most k. Hence, Eve wins G(S,A) iff she wins the k-register game on G(S,A), and by
Lemma 5.3, this happens iff Ak accepts S.
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Corollary 5.12. Every APT with n states is equivalent to an APT with O(log n) priorities
with respect to Kripke structures whose SCCs are bounded in one of the following measures:
minimum feedback vertex set, minimum feedback edge set, maximal number of vertex-disjoint
cycles, and maximal number of edge-disjoint cycles.

Proof. Observe that the minimum feedback vertex set is always smaller than or equal to the
minimum feedback edge set, and likewise the maximal number of vertex-disjoint cycles is
smaller than or equal to the maximal number of edge-disjoint cycles. Hence, it is enough to
consider the vertex-version of these measures.

The result with respect to the minimum feedback vertex set follows directly from
Theorem 5.11. The result with respect to the maximal number of disjoint cycles follows from
Theorem 5.11 and the Erdős-Pósa Theorem [EP65], which states that the maximal number
of disjoint cycles is logarithmically bounded in the minimum feedback vertex set.

It may be the case that this collapse of the index-hierarchy on these structures goes
further, all the way to weak, as on words, combining techniques from Kupferman and
Vardi [KV98] and Daviaud, Jurdziński and Lehtinen [DJL19] for example, or to priorities
{1, 2, 3} as for trees with a countable number of infinite branches [ISB16]. We leave this as
an open problem, as well as the related question of what is the simplest class of trees on
which the hierarchy is strict.

6. Other Quasi-polynomial Automata

In this section we discuss the relationship between our approach and the notion of separating
automata for solving parity games. Czerwiński et al. [CDF+19] have argued that the existing
quasi-polynomial parity game algorithms can all be seen as separating automata. We consider
the converse question: we make explicit how separating automata imply a tree automaton
that recognises the winning regions of parity games of bounded size and propose a criterion
delineating when a separating automaton also implies a translation of alternating parity
automata into weak automata.

6.1. From separating automata to tree automata. Bojańczyk and Czerwiński consider
automata that separate plays that agree with winning strategies for each player in parity
games of size up to n with up to d priorities [BC18]. Finding a deterministic safety automaton
of size f(n, d) that separates these word languages suffices to solve parity games in time
polynomial in f(n, d). If the separation condition is strengthened to a separation between
the language of plays that agree with a positional winning strategy for Eve in some parity
game of size n with d priorities and the language of plays that do not satisfy the parity
condition, then a quasi-polynomial lower bound applies [CDF+19].

From a deterministic separating word automaton, one can build a tree automaton that
recognises parity game arenas of size up to n in which Eve has a winning strategy:

Proposition 6.1. Let A be a DPW over the alphabet [0..d] that:

• Accepts words that agree with a positional winning strategy for Eve in some parity game
of size up to n with up to d priorities, and
• Rejects words that agree with a positional winning strategy for Adam in some parity game

of size up to n with up to d priorities.
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Then, there is an APT A′ of the same size and acceptance condition as A that recognises
parity game arenas of size up to n with up to p priorities in which Eve has a winning strategy.

Proof. While A operates on an alphabet of priorities, A′ operates on the richer game alphabet
Γd that also encodes the ownership of nodes. A′ has the same state-space, initial state and
priority assignment as A. The only difference is the transition function of A′ which is simply
δ′(q, Ei) = ♦δ(q, i) and δ′(q,Ai) = �δ(q, i). In other words, A′ gives the decision of which
branch to choose to the player who owns the current position, but otherwise operates exactly
as A. Whichever player has a winning strategy in a parity game G of size n with up to d
priorities encoded as a Γ-graph can copy their positional winning strategy in the acceptance
game G(G,A′); since A separates the plays resulting from such strategies, A′ will accepts if
and only if Eve has a winning strategy in G.

Remark 6.2. Proposition 6.1 extends to good for games word automata [HP06, BL19].
These are (not necessarily deterministic) automata A over an alphabet Σ for which, given
any Σ-labelled arena G—that is, a graph of which the positions are partitioned between two
players and labelled with Σ—Eve wins the synchronised product of G and A if and only if
she has a strategy σ in G such that every path that agrees with σ forms a word accepted by
A. Good-for-games parity automata, like deterministic automata, can be turned into APTs
in the way outlined in Proposition 6.1.

However, the register automaton that recognises whether Eve wins the k-register game
over an arena of size n with up to d priorities, although separating plays that agree with
a winning positional strategy for Eve from plays that are winning for Adam, is neither
deterministic nor good for games. First, observe that for k > 0, it is indeed trivially a
separating automaton for words with up to d priorities since all words have register index 1.
It is not good for games (of register index larger than k). It is only “good for small games”
in the sense that when interpreted on games, it is only guaranteed to operates correctly on
parity games of size up to 2k−1.

6.2. From tree automata to automata transformations. As we have seen in Section
5.3, register games are also suited for handling the parity games of unbounded size that stem
from word automata, thus allowing for a quasi-polynomial translation from alternating parity
word automata to alternating weak automata. The same generalisation is not immediate for
Calude et al.’s and Jurdziński and Lazić’s algorithms; in particular, a safety-automata based
approach, as the one proposed by Czerwiński et al. [CDF+19] is unlikely to suffice since
safety automata are not as expressive as parity automata. This raises the following question:
when does an automaton that recognises the winning regions of parity games of bounded
size imply a translation from alternating parity word automata into weak automata?

We propose infinite directed acyclic graphs (dags) of bounded width as a key ingredient.
The acceptance games for word automata take this shape, which make them an interesting
stepping stone between words and trees. We shall see that tree automata with an acceptance
condition X (e.g. Büchi or weak) that recognise infinite parity game dags of bounded width
(rather than of bounded size) in which Eve has a winning strategy can be used to turn
alternating parity word automata into word automata with the same acceptance condition
X. The translation is easy: it consists of the synchronised composition of the two automata.

The technical details of the synchronised composition are cumbersome, but the idea is
straight-forward: the synchronised composition of B and A is an automaton that accepts a
tree t if and only if A accepts the acceptance game of B and t when viewed as a Γ-tree.
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Definition 6.3 (Synchronised Composition). Let A = (ΣA, QA, ιA, δA,ΩA) be an APT
with priorities up to d. Let B = (Γd, QB, ιB, δB,ΩB) be an APT over the game alphabet Γd.

The synchronised product B ×A is defined as:

• State space QA ×QB;
• Alphabet ΣA;
• Ω(qA, qB) = ΩB(qB).
• Transition relation: δ((qA, qB), α) = fα(qA, δ

B(qB, label(qA)) where:

– fα(qA,♦p) = ♦fα(δA(qA, α), p)
– fα(qA,�p) = �fα(δA(qA, α), p)
– fα(b ∧ b′,♦p) = fα(b, p) ∨ fα(b′, p)
– fα(b ∨ b′,♦p) = fα(b, p) ∨ fα(b′, p)
– fα(♦q,♦p) = ♦(q, p)
– fα(�q,♦p) = ♦(q, p)
– fα(b ∧ b′,�p) = fα(b, p) ∧ fα(b′, p)
– fα(b ∨ b′,�p) = fα(b, p) ∧ fα(b′, p)
– fα(♦q,�p) = �(q, p)

– fα(�q,�p) = �(q, p)
– fα(b, c ∨ c′) = fα(b, c) ∨ fα(b, c′)
– fα(b, c ∧ c′) = fα(b, c) ∧ fα(b, c′)
– fα(b, p) = fα(b, δB(p, label(b))) where
p ∈ QB and

– label(b ∧ b′) = label(�q) = A0

– label(b ∨ b′) = label(♦q) = E0

– label(q) = EΩA(q)

Observe that A×B has the acceptance condition of B. Indeed, the product construction
preserves the priorities and the non-reachability of states of B: if q′B is not reachable from
qB, then (qA, q

′
B) is not reachable from any (q′A, q

′
B). Then, if B is weak, then A×B is weak.

Lemma 6.4. A×B accepts a ΣA-tree t if and only if B accepts the acceptance game G(t,A)
seen as a Γd-tree for d the maximal priority in A.

Proof. We show that G(G(t,A),B) and G(t,A× B) have the same winner. The transition
relation is designed so that G(G(t, A), B) is identical to G(t,A×B). More precisely, we identify
positions ((t, qA), qB) and ((t, bA), bB) in G(G(t, A), B) with (t, (qA, qb)) and (t, fα(bA, bB))
in G(t,A × B), respectively, where α is the label of t. We now show that this mapping
preserves successors, position ownership and priorities; the preservation of winner follows.

Preservation of successors: We observe:
• ((t, qA), qB) has successor ((t, qA), δB(qB, EΩ(qA)))

• (t, (qA, qB)) has successor (t, fα(qA, δ
B(qB, EΩ(qA))))

• ((t, b ∧ b′),♦p)) has successors ((t, b), p) and ((t, b′), p)
• (t, fα(b ∧ b′,♦p)) has successors (t, fα(b, p)) and ((t, fα(b′, p)))
• ((t,♦q),♦p)) has successors ((t′, q), p) for all children t′ of t.
• (t, f(♦q,♦p)) has successors (t′, (q, p)) for all children t′ of t.
• Similarly for other combinations of modalities and boolean operators.

Preservation of ownership: Eve owns position ((t, ba), bB) in G(G(t, A), B) whenever bA
is a disjunction or a ♦-formula, and positions with a unique successor. Similarly, Eve owns
(t, fα(ba, bB)) in G(t,A×B) whenever bB is a disjunction or ♦-formula, and positions with
a unique successor.

Preservation of priorities: The priority of both ((t, qA), qB) and (t, (qA, qB)) is ΩB(p)
and the priority of other positions is 0.

Then, since G(G(t,A),B) and G(t,A× B) must have the same winner, A× B accepts a
tree t if and only if B accepts G(A,B).
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Then, if for a class C of trees, for all t ∈ C, B accepts G(t,A) if and only if A accepts
t, then A× B is equivalent to A over C. In other words, to turn an automaton A into a
simpler automaton that is equivalent on a particular class of structures, it suffices to find an
automaton B with a simple acceptance condition that accepts only the winning acceptance
games of A over that class of structures. In particular, to turn a parity word automaton
into a Büchi or weak automaton, it suffices to study Büchi or weak automata that recognise
the winner in acceptance games over words.

Definition 6.5. An infinite dag is of bounded width m if its vertices can be partitioned
into sets L0, L1, L2, . . . no larger than n such that every edge goes from some layer Li to
the next layer Li+1.

Corollary 6.6. An alternating parity automaton B(m,d) that over regular parity game dags
of bounded width m with up to d priorities recognises those in which Eve has a winning
strategy induces a translation from alternating parity word automata to alternating automata
with the number of priorities of B(m,d) and with state and size blow-up linear in |B(m,d)|.

Proof. The acceptance game of a ultimately periodic word w and an APW A with up to
d priorities is a regular parity game dag of width |A| with up to d priorities; hence B(|A|,d)

recognises the winning regions of the acceptance games of A over ultimately periodic words.
The automaton A×B(|A|,d) is, from Lemma 6.4, equivalent to A on ultimately periodic words
and therefore over all words. The synchronised product A× B(|A|,d) is therefore equivalent
to A and has the acceptance condition of B(|A|,d). The blow-up is linear in B(|A|,d)

The register index approach is an instantiation of this method: indeed, the key measure
we use to bound the register index, dc-size, is also bounded in finite structures that can be
unfolded into a dag of bounded width. From these observations, it seems that reasoning
about parity games of arbitrary size but with a bounded number of disjoint cycles, or infinite
parity games of bounded width, rather than only finite parity games, is a key distinction
between algorithms for solving finite parity games and translations from one type of automata
into another. Indeed, this strategy was recently used by Daviaud, Jurdziński and Lehtinen
to provide an alternative quasi-polynomial APW to AWW translation, based on universal

trees, with size increase in n
O(log d

logn
)

[DJL19].

7. Conclusions

We have presented an automata-theoretic take on solving parity games in quasi-polynomial
time based on the notion of register games. This perspective enabled us to go beyond finite
parity games, and provide a quasi-polynomial translation of alternating parity automata
into weak automata.

Solving parity games in practice. This article has focused on the automata-theoretic aspect
of register games, rather than how they can be used to solve parity games in practice. We
would therefore forgive the reader for questioning the practicality of this quasi-polynomial
algorithm, which, among its less flattering features, has quasi-polynomial space complexity.

Recent work by Parys [Par20], as well as by Daviaud, Jurdziński and Thejaswini [DJT20],
show that the register-game approach can be optimised to have both time and space-
complexity in line with the state-of-the-art. Furthermore, there is much unexplored potential
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both for improving the practical viability of this algorithm, and for using the insights of this
analysis to improve existing solvers.

Indeed, we have seen that building parity games with truly complex winning strategies—
in the sense of requiring more than a small constant number of register in the register
game—is subtle business: see the construction in Lemma 3.7. We therefore conjecture that
the parameterised version of this algorithm, which solves parity games of register index 1,
is a plausible candidate for solving most reasonable parity games in polynomial time, and
perhaps also in practice. Increasing the parameter to 2 or 3 could ensure it only fails for
purpose-built counter-examples. The insight that even complex-looking parity games tend
to have low register index could be useful in itself, for optimising existing solvers, which are
not necessarily quasi-polynomial, but still more effective in practice.

Finally, the register index approach seems suited for a symbolic implementation: given a
symbolically represented parity game, the k-register game can also be represented symbolically
without significant blow-up. This would bypass the space-complexity of the algorithm for
parity games that benefit from concise symbolic representations.

Further open problems. We have, throughout this article, pointed to some problems that
remain open. The most obvious, of course, is the complexity of solving parity games. Another
fundamental question is the conciseness gap between alternating parity and alternating weak
word automata: a quasi-polynomial upper bound and a quasi-linear lower bound. One of the
difficulties for closing this gap is the lack of techniques on one hand to prove lower bounds
for alternating automata, and on the other to use alternations effectively to describe the
winning regions of parity games.

We also mentioned the parity index problem, which is connected to the automata-
theoretic concerns that this article touches upon. The question of where exactly, when
moving from words to trees, the index hierarchy becomes strict, is particularly interesting.
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[DG08] Anuj Dawar and Erich Grädel. The descriptive complexity of parity games. In Computer Science
Logic, pages 354–368. Springer, 2008.
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Theory of Computing Systems, 58(4):614–663, 2016.
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