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Abstract. B-terms are built from the B combinator alone defined by B ≡ λfgx.f(g x),
which is well known as a function composition operator. This paper investigates an
interesting property of B-terms, that is, whether repetitive right applications of a B-term
cycles or not. We discuss conditions for B-terms to have and not to have the property
through a sound and complete equational axiomatization. Specifically, we give examples of
B-terms which have the cyclic property and show that there are infinitely many B-terms
which do not have the property. Also, we introduce another interesting property about a
canonical representation of B-terms that is useful to detect cycles, or equivalently, to prove
the cyclic property, with an efficient algorithm.

Introduction

The ‘bluebird’ combinator B = λfgx. f(g x) is well known [Sch24, Cur30a, Smu12] as a
bracketing combinator or composition operator, which has a principal type (α → β) →
(γ → α)→ γ → β. A function B f g (also written as f ◦ g) takes a single argument x and
returns the term f(g x). In the general case that g takes n arguments, the composition can
be given by λx1 . . . xn. f(g x1 . . . xn). We call it the n-argument composition of f and g.
Interestingly, the function can be given as Bn f g where en stands for the n-fold composition
e ◦ · · · ◦ e︸ ︷︷ ︸

n

of the function e, or equivalently defined by en x = e (. . . (e︸ ︷︷ ︸
n

x)). This fact can be

shown by an easy induction.
Now we consider the 2-argument composition expressed as B2 = λfgxy. f(g x y). From

the definition, we have B2 = B ◦B = B B B. Note that function application is considered
left-associative, that is, f a b = (f a) b. Thus B2 is expressed as a term in which all
applications nest to the left, never to the right. We call such terms flat [Oka03]. We
write X(k) for the flat term defined by X X X . . . X︸ ︷︷ ︸

k

= (. . . ((X X) X) . . . ) X︸ ︷︷ ︸
k

(that can

be written as I X
~k in Barendregt’s notation [Bar84]). Using this notation, we can write

B2 = B(3).
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Figure 1. ρ-property of the B combinator

Okasaki [Oka03] investigated facts about flatness. For example, he shows that there is
no universal combinator X that can represent any combinator by X(k) with some k. We
shall delve into the case of X = B. Consider the n-argument composition operator Bn.
We have already seen that B2 is βη-equivalent to the flat term B(3). For n = 3, using
f (g x) = B f g x, we have

B3 = B B2 B

= B (B B B) B

= B B (B B) B B

= B (B B) B B B B

= B B B B B B B B,

and thus B3 = B(8). How about the 4-argument composition B4? In fact, there is no integer

k such that B4 = B(k) with respect to βη-equality. Moreover, for any n > 3, there does
not exist k such that Bn = B(k). This surprising fact is proved by a quite simple method;
listing all B(k)s for k = 1, 2, . . . and checking that none of them is equivalent to Bn. An
easy computation gives B(6) = B(10) = λxyzwv. x (y z) (w v), and hence B(i) = B(i+4) for
every i ≥ 6. Then, by computing B(k)s only for k ∈ {1, 2, . . . , 6}, we can check that B(k) is
not βη-equivalent to Bn with n > 3 for k ∈ {1, 2, . . . }. Thus we conclude that there is no
integer k such that Bn = B(k).

This is the starting point of our research. We say that a combinator X has the ρ-property
if there exist two distinct integers i and j such that X(i) = X(j). In this case, we have
X(i+k) = X(j+k) for any k ≥ 0 (à la finite monogenic semigroup [Lja68]). Fig. 1 shows a
computation graph of B(k). The ρ-property is named after the shape of the graph.

This paper discusses the ρ-property of combinatory terms, particularly terms built
from B alone. We call such terms B-terms and CL(B) denotes the set of all B-terms. For
example, the B-term B B enjoys the ρ-property with (B B)(52) = (B B)(32) and so does
B (B B) with (B (B B))(294) = (B (B B))(258) as reported in [Nak08]. Several combinators
other than B-terms can be found to enjoy the ρ-property, for example, K = λxy. x and
C = λxyz. x z y because of K(3) = K(1) and C(4) = C(3). They are less interesting in the
sense that the cycle starts immediately and its size is very small, comparing with B-terms
like B B and B (B B). As we will see later, B (B (B (B (B (B B)))))(≡ B6 B) has the
ρ-property with the cycle of size more than 3× 1011 which starts after more than 2× 1012

repetitive right applications. This is why the ρ-property of B-terms is intensively discussed
in the present paper. A general definition of the ρ-property is presented in Section 1.

The contributions of the paper are two-fold. One is to give a characterization of CL(B)
(Section 2) and another is to provide a sufficient condition for the ρ-property and anti-ρ-
property of B-terms (Section 3). In the former, we introduce a canonical representation
of B-terms and establish a sound and complete equational axiomatization for CL(B). In
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the latter, the ρ-property of BnB with n ≤ 6 is shown with an efficient algorithm and the
anti-ρ-property for B-terms of particular forms is proved.

This paper extends and refines our paper presented in FSCD 2018 [IN18]. Compared to
our previous work, we have made several improvements. First, we add relationships to the
existing work, the Curry’s compositive normal form and the Thompson’s group. Second,
we report progress on proving and disproving the ρ-property of B-terms. For proving the
ρ-property, we add more precise information on the implementation of our ρ-property checker.
For disproving the ρ-property, we introduce another proof method for a specific B-term
and expand the set of B-terms which are known not to have the ρ-property. Furthermore,
we discuss other possible approaches for further steps to show a conjecture by the second
author [Nak08].

1. The ρ-property of terms

The ρ-property of a combinator X is that X(i) = X(i+j) holds for some i, j ≥ 1. We
adopt βη-equality of corresponding λ-terms for the equality of combinatory terms in this
paper. We could use another equality, for example, induced by the axioms of combinatory
logic. The choice of equality is not essential here, e.g., B(9) and B(13) are equal even up
to the combinatory axiom of B, as well as βη-equality. (See Section 4 for more details.)
Furthermore, for simplicity, we only deal with the case where X(n) is normalizable for all n.
If X(n) is not normalizable, it is much more difficult to check equivalence with the other
terms. This restriction does not affect the results of the paper because all B-terms are
normalizing.

Let us write ρ(X) = (i, j) if a combinator X has the ρ-property due to X(i) = X(i+j)

with minimum positive integers i and j. For example, we have ρ(B) = (6, 4), ρ(C) = (3, 1),
ρ(K) = (1, 2) and ρ(I) = (1, 1). Besides them, several combinators introduced in Smullyan’s
book [Smu12] have the ρ-property:

ρ(D) = (32, 20) where D = λxyzw. x y (z w)

ρ(F ) = (3, 1) where F = λxyz. z y x

ρ(R) = (3, 1) where R = λxyz. y z x

ρ(T ) = (2, 1) where T = λxy. y x

ρ(V ) = (3, 1) where V = λxyz. z x y.

Except for the B and D (= B B) combinators, the property is ‘trivial’ in the sense that the
loop starts early and the size of the cycle is very small.

On the other hand, the combinators S = λxyz. x z (y z) and O = λxy. y (x y) in
the book do not have the ρ-property since their right application expands the λ-terms as
illustrated by

S(2n+1) = λxy. x y (x y (. . . (x y︸ ︷︷ ︸
n

(λz.x z (y z))) . . . )),

O(n+1) = λx. x (x (. . . (x︸ ︷︷ ︸
n

(λy.y (x y)).

The definition of the ρ-property is naturally extended from single combinators to terms
obtained by combining several combinators. We found by computation that several B-terms
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have the ρ-property as shown below.

ρ(B0B) = (6, 4) ρ(B4B) = (191206, 431453)

ρ(B1B) = (32, 20) ρ(B5B) = (766241307, 234444571)

ρ(B2B) = (258, 36) ρ(B6B) = (2641033883877, 339020201163)

ρ(B3B) = (4240, 5796)

The details will be shown in Section 3.1.
From his observation on repetitive right applications for several B-terms, Nakano [Nak08]

has conjectured as follows.

Conjecture 1.1. A B-term e has the ρ-property if and only if e is a monomial, i.e., e is
equivalent to BnB with n ≥ 0.

The definition of monomial will be given in Section 2.3 in the context of a canonical
representation of B-terms. The “if” part of the conjecture for n ≤ 6 is shown by the above
results; the “only if” part will be shown for specificB terms which will be discussed Section 3.2.
Note that the ρ-property of X can be rephrased in terms of the set generated by right
application, that is, the finiteness of the set {nf (X(n)) | n ≥ 1} where nf (e) represents the
normal form of e. Conjecture 1.1 claims that for any B-term e, the finiteness of the set
{nf (e(n)) | n ≥ 1} is decidable since so is the word problem of B-terms.

2. Checking equivalence of B-terms

The set of all B-terms, CL(B), is closed under application by definition, that is, the repetitive
right application of a B-term always generates a sequence of B-terms. Hence, the ρ-property
can be decided by checking ‘equivalence’ among generated B-terms, where the equivalence
should be checked through βη-equivalence of their corresponding λ-terms in accordance with
the definition of the ρ-property. It would be useful if we have a fast algorithm for deciding
equivalence over B-terms.

In this section, we give a characterization of the B-terms to efficiently decide their
equivalence. We introduce a method for deciding equivalence of B-terms without calculating
the corresponding λ-terms. To this end, we first investigate equivalence over B-terms with
examples and then present an equation system as a characterization of B-terms so as to
decide equivalence between two B-terms. Based on the equation system, we introduce a
canonical representation of B-terms. The representation makes it easy to observe the growth
caused by repetitive right application of B-terms, which will be later used for proving the
anti-ρ-property of B2. We believe that this representation will be helpful to prove the
ρ-property or the anti-ρ-property for the other B-terms.

2.1. Equivalence over B-terms. Two B-terms are said to be equivalent if their corre-
sponding λ-terms are βη-equivalent. For instance, B B (B B) and B (B B) B B are
equivalent. This can be shown by the definition B x y z = x (y z). For another (non-trivial)
instance, B B (B B) and B (B (B B)) B are equivalent. This is illustrated by the fact
that they are equivalent to λxyzwv. x (y z) (w v) where B is replaced with λxyz. x (y z) or
the other way around at the =β equation. Similarly, it is hard to directly show equivalence
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between the two B-terms, B (B B) (B B) and B (B B B), which requires long calculation
like:

B B (B B) =η λx.B B (B B) x

=β λx.B (B B x)

=η λxy.B (B B x) y

=η λxyz.B (B B x) y z

=β λxyz.B B x (y z)

=β λxyz.B (x (y z))

=β λxyz.B (B x y z)

=β λxyz.B B (B x y) z

=η λxy.B B (B x y)

=β λxy.B (B B) (B x) y

=η λx.B (B B) (B x)

=β λx.B (B (B B)) B x

=η B (B (B B)) B.

This kind of equality makes it hard to investigate the ρ-property of B-terms. To solve this
annoying issue, we will introduce a canonical representation of B-terms in Section 2.3.

2.2. Equational axiomatization for B-terms. Equality between two B-terms can be
decided through their canonical representation introduced in Section 2.3. The representation
is based on a sound and complete equation system as described in the next theorem.

Theorem 2.1. Two B-terms are βη-equivalent if and only if their equality is derived from
the following equations:

B x y z = x (y z) (B1)

B (B x y) = B (B x) (B y) (B2)

B B (B x) = B (B (B x)) B (B3)

The proof of the “if” part, which corresponds to the soundness of the equation system
(B1), (B2), and (B3), is given here. We will later prove the “only if” part with the uniqueness
of the canonical representation of B-terms.
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Proof. Equation (B1) is immediate from the definition of B. Equations (B2) and (B3) are
shown by

B (B e1 e2) = λxy.B (B e1 e2) x y B B (B e1) = λx.B B (B e1) x

= λxy.B e1 e2 (x y) = λx.B (B e1 x)

= λxy. e1 (e2 (x y)) = λxyz.B e1 x(y z)

= λxy. e1 (B e2 x y) = λxyz. e1 (x (y z))

= λx.B e1 (B e2 x) = λxyz. e1 (B x y z)

= B (B e1) (B e2) = λxy.B e1 (B x y)

= λx.B (B e1) (B x)

= B (B (B e1)) B

where the α-renaming is implicitly used.

Equation (B2) has been employed by Statman [Sta11] to show that no Bω-term can be
a fixed-point combinator where ω = λx. x x. This equation exposes an interesting feature of
the B combinator. Write equation (B2) as

B (e1 ◦ e2) = (B e1) ◦ (B e2) (B2’)

by replacing every B combinator with ◦ infix operator if it has exactly two arguments.
The equation is a distributive law of B over ◦, which will be used to obtain the canonical
representation of B-terms. Equation (B3) is also used for the same purpose as the form of

B ◦ (B e1) = (B (B e1)) ◦B. (B3’)

We also have a natural equation B e1 (B e2 e3) = B (B e1 e2) e3 which represents
associativity of function composition, i.e., e1 ◦ (e2 ◦ e3) = (e1 ◦ e2) ◦ e3. This is shown with
equations (B1) and (B2) by

B e1 (B e2 e3) = B (B e1) (B e2) e3 = B (B e1 e2) e3.

2.3. Canonical representation of B-terms. To decide equality between two B-terms, it
does not suffice to compute their normal forms under the definition of B, B x y z → x (y z).
This is because two distinct normal forms may be equal up to βη-equivalence, e.g., B B (B B)
and B (B (B B)) B. We introduce a canonical representation of B-terms, which makes
it easy to check equivalence of B-terms. We will eventually find that for any B-term e
there exists a unique finite non-empty weakly-decreasing sequence of non-negative integers
n1 ≥ n2 ≥ · · · ≥ nk such that e is equivalent to (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB). Ignoring
the inequality condition gives polynomials introduced by Statman [Sta11]. We will use these
decreasing polynomials for our canonical representation as presented later. A similar result
is found in [Cur30b] as discussed later.

First, we explain how this canonical form is obtained from a B-term. We only need
to consider B-terms in which every B has at most two arguments. One can reduce the
arguments of B to less than three by repeatedly rewriting occurrences of B e1 e2 e3 e4 . . . en
into e1 (e2 e3) e4 . . . en. The rewriting procedure always terminates because it reduces the
number of B. Thus, every B-term in CL(B) is equivalent to a B-term built by the syntax

e ::= B | B e | e ◦ e (2.1)
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where e1 ◦ e2 denotes B e1 e2. We prefer to use the infix operator ◦ instead of B that has
two arguments because associativity of B, that is, B e1 (B e2 e3) = B (B e1 e2) e3 can
be implicitly assumed. This simplifies the further discussion on B-terms. We will deal
with only B-terms in syntax (2.1) from now on. The ◦ operator has lower precedence than
application in this paper, e.g., terms B B ◦B and B ◦B B represent (B B)◦B and B ◦(B B),
respectively.

The syntactic restriction by (2.1) does not suffice to proffer a canonical representation
of B-terms. For example, both of the two B-terms B ◦B B and B (B B) ◦B are given in
the form of (2.1), but we can see that they are equivalent using (B3’).

A polynomial form of B-terms is obtained by putting a restriction on the syntax so
that no B combinator occurs outside of the ◦ operator while syntax (2.1) allows the B
combinators and the ◦ operators to occur in an arbitrary position. The restricted syntax is
given as

e ::= eB | e ◦ e eB ::= B | B eB

where terms in eB have a form of B(. . . (B(B B)) . . . ), that is BnB with some n, called
monomial. The syntax can be simply rewritten into e ::= BnB | e ◦ e, which is called
polynomial.

Definition 2.2. A B-term BnB is called monomial. A polynomial is a B-term given in the
form of

(Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB)

where k > 0 and n1, . . . , nk ≥ 0 are integers. In particular, a polynomial is called decreasing
when n1 ≥ n2 ≥ · · · ≥ nk. The length of a polynomial P is the number of monomials in P ,
i.e., the length of the polynomial above is k. The numbers n1, n2, . . . , nk are called degrees.

In the rest of this subsection, we prove that for any B-term e there exists a unique
decreasing polynomial equivalent to e. First, we show that e has an equivalent polynomial.

Lemma 2.3 [Sta11]. For any B-term e, there exists a polynomial equivalent to e.

Proof. We prove the statement by induction on the structure of e. In the case of e ≡ B, the
term itself is polynomial. In the case of e ≡ B e1, assume that e1 has equivalent polynomial
(Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB). Repeatedly applying equation (B2’) to B e1, we obtain
a polynomial equivalent to B e1 as (Bn1+1B) ◦ (Bn2+1B) ◦ · · · ◦ (Bnk+1B). In the case of
e ≡ e1 ◦ e2, assume that e1 and e2 have equivalent polynomials P1 and P2, respectively. A
polynomial equivalent to e is given by P1 ◦ P2.

Next, we show that for any polynomial P there exists a decreasing polynomial equivalent
to P . A key equation of the proof is

(BmB) ◦ (BnB) = (Bn+1B) ◦ (BmB) when m < n, (2.2)

which is shown by

(BmB) ◦ (BnB) = Bm(B ◦ (Bn−mB))

= Bm(B ◦ (B (Bn−m−1B)))

= Bm((B(B(Bn−m−1B))) ◦B)

= (Bn+1B) ◦ (BmB)

using equations (B2’) and (B3’).
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Lemma 2.4. Any polynomial P has an equivalent decreasing polynomial P ′ such that

• the length of P and P ′ are equal, and
• the lowest degrees of P and P ′ are equal.

Proof. We prove the statement by induction on the length of P . When the length is 1, that
is, P is a monomial, P itself is decreasing and the statement holds. When the length k of
P is greater than 1, take P1 such that P ≡ P1 ◦ (BnB). From the induction hypothesis,
there exists a decreasing polynomial P ′1 ≡ (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (Bnk−1B) equivalent to
P1, and the lowest degree of P1 is nk−1. If nk−1 ≥ n, then P ′ ≡ P ′1 ◦ (Bn B) is decreasing
and equivalent to P . Since the lowest degrees of P and P ′ are n, the statement holds. If
nk−1 < n, P is equivalent to

(Bn1 B) ◦ · · · ◦ (Bnk−1B) ◦ (BnB) = (Bn1B) ◦ · · · ◦ (Bn+1B) ◦ (Bnk−1B)

due to equation (2.2). Putting the last term as P2 ◦ (Bnk−1B), the length of P2 is k − 1 and
the lowest degree of P2 is greater than or equal to nk−1. From the induction hypothesis,
P2 has an equivalent decreasing polynomial P ′2 of length k − 1 and the lowest degree of P ′2
greater than or equal to nk−1. Thereby we obtain a decreasing polynomial P ′2 ◦ (Bnk−1B)
equivalent to P and the statement holds.

Example 2.5. Consider a B-term e = B (B B B) (B B) B. First, applying equation (B1),

e = B (B B B) (B B) (B B) = B B B (B B (B B)) = B (B (B B (B B)))

so that every B has at most two arguments. Then replacing each two-argument B to the
infix ◦ operator, obtain B (B (B ◦ (B B))). Applying equation (B2’), we have

B (B (B ◦ (B B))) = B ((B B) ◦ (B (B B)))

= (B (B B)) ◦ (B (B (B B)))

= (B2B) ◦ (B3B).

Applying equation (2.2), we obtain the decreasing polynomial (B4B) ◦ (B2B) equivalent
to e.

Every B-term has at least one equivalent decreasing polynomial as shown so far. To
conclude this subsection, we show the uniqueness of decreasing polynomial equivalent to any
B-term, that is, every B-term e has no two distinct decreasing polynomials equivalent to e.

The proof is based on the idea that B-terms correspond to unlabeled binary trees. Let
M be a term which is constructed from variables x1, . . . , xk and their applications. Then
we can show that if the λ-term λx1. . . . xk.M is in CL(B), then M is obtained by putting
parentheses to some positions in the sequence x1 . . . xk. More precisely, we have the
following lemma.

Lemma 2.6. Every B-term is βη-equivalent to a λ-term of the form λx1. . . . xk. M with
some k > 2 where M satisfies the following two conditions: (1) M consists of only the
variables x1, . . . , xk and their applications, and (2) for every subterm of M which is in the
form of M1 M2, if M1 has a variable xi, then M2 does not have any variable xj with j ≤ i.
Proof. We prove the statement by induction. In the case of e ≡ B, e is equivalent to
λx1x2x3. x1(x2x3), the statement holds. In the case of e ≡ B e1, e is equivalent to
λx1x2. e1 (x1 x2). From the induction hypothesis, e1 is equivalent to λx1x2 . . . xk. e

′
1 where

e′1 satisfies the conditions (1) and (2). Then, we can see that e′1 [(x1 x2)/x1] also satisfies
the conditions (1) and (3).
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From this lemma, we see that we do not need to specify variables in M and we can simply
write like ? ? (? ?) = x1 x2 (x3 x4). Formally speaking, every λ-term in CL(B) uniquely
corresponds to a term built from ? alone by the map (λx1 . . . xk.M) 7→M [?/x1, . . . , ?/xk].
We say an unlabeled binary tree (or simply, binary tree) for a term built from ? alone
since every term built from ? alone can be seen as an unlabeled binary tree. (A term ?
corresponds to a leaf and t1 t2 corresponds to the tree with left subtree t1 and right subtree
t2.) To specify the applications in binary trees, we write 〈t1, t2〉 for the application t1 t2.
For example, B-terms B = λxyz. x (y z) and B B = λxyzw. x y (z w) are represented by
〈?, 〈?, ?〉〉 and 〈〈?, ?〉, 〈?, ?〉〉, respectively.

We will present an algorithm for constructing the corresponding decreasing polynomial
from a given binary tree. First let us define a function Li with integer i which maps binary
trees to lists of integers:

Li(?) = [ ] Li(〈t1, t2〉) = Li+||t1||(t2) ++ Li(t1) ++ [i]

where ++ concatenates two lists and ||t|| denotes the number of leaves. For example,
L0(〈〈?, ?〉, 〈?, ?〉〉) = [2, 0, 0] and L1(〈〈?, 〈?, ?〉〉, 〈?, 〈?, ?〉〉〉) = [4, 4, 2, 1, 1]. Informally, the
Li function returns a list of integers which is obtained by labeling both leaves and nodes
in the following steps. First each leaf of a given tree is labeled by i, i + 1, i + 2, . . . in
left-to-right order. Then each internal node of the tree is labeled by the same label as
its leftmost descendant leaf. The Li functions return a list of labels of internal nodes in
decreasing order. Figure 2 shows three examples of labeled binary trees obtained by this
labeling procedure for i = −1. Let tj (j = 1, 2, 3) be the unlabeled binary tree corre-
sponding to ej . From the labeled binary trees in Figure 2, we have L−1(t1) = [1,−1,−1],
L−1(t2) = [3, 1, 1,−1,−1], and L−1(t3) = [5, 2, 2, 2, 0,−1,−1,−1]. One may notice that a
binary tree t′3 corresponding η-equivalent terms of e3 is obtained by removing the leaf 7 and
its root. From L−1(t′3) ++ [−1] = L−1(t3), we have L(t′3) = L(t3). It is easy to show that the
L function returns the same values for η-equivalent B-terms. The length of the list equals
the number of nodes, that is, smaller by one than the number of variables in the λ-term.

Definition 2.7. L is the function which takes a binary tree t and returns the list of
non-negative integers in L−1(t), that is, the list obtained by excluding trailing all −1’s in
L−1(t).

The following lemma claims that the L function computes a list of degrees of a decreasing
polynomial corresponding to a given λ-term.

Lemma 2.8. A decreasing polynomial (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB) is βη-equivalent to
the λ-term e ∈ CL(B) corresponding to a binary tree t such that L(t) = [n1, n2, . . . , nk].

Proof. We prove the statement by induction on the length of the polynomial P .
When P ≡ BnB with n ≥ 0, it is found to be equivalent to the λ-term

λx1x2x3 . . . xn+1xn+2xn+3. x1 x2 x3 . . . xn+1 (xn+2 xn+3)

by induction on n. This λ-term corresponds to the binary tree t = 〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈?, ?〉〉.

Then we have that L(t) = [n] holds from L−1(t) = [n,−1,−1, . . . ,−1︸ ︷︷ ︸
n+1

].

When P ≡ P ′◦(BnB) with P ′ ≡ (Bn1B)◦· · ·◦(BnkB), k ≥ 1 and n1 ≥ · · · ≥ nk ≥ n ≥ 0,
there exists a λ-term βη-equivalent to P ′ corresponding to a binary tree t′ such that
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(a) Binary tree t1
for λ-term e1
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(b) Binary tree t2
for λ-term e2
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(c) Binary tree t3 for λ-term e3

where e1 = λx1x2x3x4. x1 x2 (x3 x4)

e2 = λx1x2x3x4x5x6. x1 x2 (x3 x4 (x5 x6))

e3 = λx1x2x3x4x5x6x7x8x9. x1 (x2 x3) (x4 x5 x6 (x7 x8)) x9

(=η λx1x2x3x4x5x6x7x8. x1 (x2 x3) (x4 x5 x6 (x7 x8)))

and L(t1) = [1]

L(t2) = [3, 1, 1]

L(t3) = [5, 2, 2, 2, 0]

Figure 2. Labeled binary trees

L(t′) = [n1, . . . , nk] from the induction hypothesis. The binary tree t′ must have the form
of 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸

nk leaves

, t1〉, . . . , tm〉 with m ≥ 1 and some trees t1, . . . , tm, otherwise L(t′)

would contain an integer smaller than nk. From the definition of L and Li, we have

L(t′) = Lsm(tm) ++ · · ·++ Ls1(t1) (2.3)

where sj = nk + 1 +
∑j−1

i=1 ||ti||. Additionally, the structure of t′ implies P ′ = λx1. . . . xl.
x1 x2 . . . xnk+1 e1 . . . em where ei corresponds to a binary tree ti for i = 1, . . . ,m. From
Bn B = λy1. . . . yn+3. y1 y2 . . . yn+1 (yn+2 yn+3), we compute a λ-term βη-equivalent to
P ≡ P ′ ◦ (BnB) by

P = λx. P ′(BnB x)

= λx. (λx1 . . . xl. x1 x2 . . . xnk+1 e1 . . . em)

(λy2 . . . yn+3. x y2 . . . yn+1 (yn+2 yn+3))

= λxx2 . . . xl. (λy2 . . . yn+3. x y2 . . . yn+1 (yn+2 yn+3)) x2 . . . xnk+1 e1 . . . em

= λxx2 . . . xl.

(λyn+1yn+2yn+3. x x2 . . . xn yn+1 (yn+2 yn+3)) xn+1 . . . xnk+1 e1 . . . em
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where nk ≥ n is taken into account. We split the proof into four cases: (i) nk = n and
m = 1, (ii) nk = n and m > 1, (iii) nk = n+ 1, and (iv) nk > n+ 1. In the case (i) where
nk = n and m = 1, we have

P = λxx2 . . . xlyn+3. x x2 . . . xn xn+1 (e1 yn+3).

whose corresponding binary tree t is 〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈t1, ?〉〉. From equation (2.3),

L(t) = Ln+1(t1) ++ [n+ 1] = L(t′) ++ [n+ 1] = [n1, . . . , nk, n+ 1], thus the statement holds.
In the case (ii) where nk = n and m > 1, we have

P = λxx2 . . . xl. x x2 . . . xn xn+1 (e1 e2) e3 . . . em.

whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈t1, t2〉, t3〉, . . . , tm〉. Hence,

L(t) = L(t′) ++ [n+ 1] holds again from equation (2.3). In the case (iii) where nk = n+ 1,
we have

P = λxx2 . . . xl. x x2 . . . xn xn+1 (xn+2 e1) e2 . . . em, or

whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈?, t1〉, t2〉, . . . , tm〉. Hence,

L(t) = L(t′) ++ [n + 1] holds from equation (2.3). In the case (iv) where nk ≥ n + 2,
we have

P = λxx2 . . . xl. x x2 . . . xn xn+1 (xn+2 xn+3) . . . e1 . . . em,

whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈?, ?〉, . . . , t1〉, . . . , tm〉. Hence,

L(t) = L(t′) ++ [n+ 1] holds from equation (2.3).

Example 2.9. Consider the λ-terms e1, e2, e3 given in Figure 2. The λ-terms e1, e2, and e3
given in Figure 2 are βη-equivalent to B1B, (B3B) ◦ (B1B) ◦ (B1B), and (B5B) ◦ (B2B) ◦
(B2B) ◦ (B2B) ◦ (B0B), respectively, since L(t1) = [1], L(t2) = [3, 1, 1], L(t3) = [5, 2, 2, 2, 0].
(Recall tj (j = 1, 2, 3) is the unlabeled binary tree corresponding to ej)

We conclude the uniqueness of decreasing polynomials for B-terms shown in the following
theorem.

Theorem 2.10. Every B-term e has a unique decreasing polynomial.

Proof. For any given B-term e, we can find a decreasing polynomial for e from Lemma 2.3
and Lemma 2.4. Since no other decreasing polynomial can be equivalent to e from Lemma 2.8,
the present statement holds.

This theorem implies that the decreasing polynomial of B-terms can be used as their
canonical representation, which is effectively derived as shown in Lemma 2.3 and Lemma 2.4.

As a corollary of the theorem, we can show the “only if” statement of Theorem 2.1,
which corresponds to the completeness of the equation system.

Proof of Theorem 2.1. Let e1 and e2 be equivalent B-terms, that is, their λ-terms are βη-
equivalent. From Theorem 2.10, their decreasing polynomials are the same. Since the
decreasing polynomial is derived from e1 and e2 by equations (B1), (B2), and (B3) according
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to the proofs of Lemma 2.3 and Lemma 2.4, equivalence between e1 and e2 is also derived
from these equations.

Comparison with Curry’s compositive normal form. Curry [Cur30b] has introduced
a similar normal form for terms built from regular combinators1, including B-terms. Curry’s
normal form is called compositive [Pip89] since it is given as a composition of four special
terms, a K-term, W -term, C-term, and B-term. A B-term in Curry’s normal form is
expressed by

(Bn1Bm1) ◦ (Bn2Bm2) ◦ · · · ◦ (BnkBmk)

where k > 0, n1 > n2 > · · · > nk ≥ 0 and mi > 0 for any i = 1, . . . , k. Since we have

BnBm = Bn(B ◦ · · · ◦B︸ ︷︷ ︸
m

) = (BnB) ◦ · · · ◦ (BnB)︸ ︷︷ ︸
m

because of equation (B2’), the form is equivalent to

(Bn1B) ◦ · · · ◦ (Bn1B)︸ ︷︷ ︸
m1

◦ (Bn2B) ◦ · · · ◦ (Bn2B)︸ ︷︷ ︸
m2

◦ · · · ◦ (BnkB) ◦ · · · ◦ (BnkB)︸ ︷︷ ︸
mk

which gives a decreasing polynomial. Curry informally proved the uniqueness of the normal
form by an observation that BnBm = λx0. . . . xn+m+1.x0 . . . xn (xn+1 . . . xn+m+1), while we
have shown the exact correspondence between a B-terms as a lambda term and its normal
form in decreasing polynomial representation.

2.4. Relationship with Thompson’s Group. In this subsection, we explore a relation-
ship between polynomials and Thompson’s group F [MT73]. Thompson’s group F is
defined to be the group generated by formal elements xn (n = 0, 1, . . . ) with relations
xmxn = xnxm+1 for any m > n. Consider the map

f : CL(B) 3 (Bn1B) ◦ · · · ◦ (BnkB) 7→ x−1n1
. . . x−1nk

∈ F.
The map f is well-defined since for any m > n,

f((BnB)◦(BmB)) = x−1n x−1m = (xmxn)−1 = (xnxm+1)
−1 = x−1m+1x

−1
n = f((Bm+1B)◦(BnB)).

We can think of (CL(B), ◦) as a semigroup since (X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z) for any
X,Y, Z ∈ CL(B), and f : CL(B)→ F is a semigroup homomorphism under this semigroup
structure of CL(B). By definition, f is a semigroup isomorphism between CL(B) and the
subsemigroup N of F generated by x−1n (n = 0, 1, . . . ).

It is known [Bel04] that every element of N corresponds to an infinite sequence of binary
trees (t0, t1, . . . ) (called a binary forest) where there exists k0 such that tk = ? for any
k ≥ k0.

Definition 2.11. The binary forest representation of an element of N is defined inductively
as follows.

(1) The binary forest representation of x−1n is (?, . . . , ?︸ ︷︷ ︸
n

, 〈?, ?〉, ?, . . . ).

(2) If y ∈ N corresponds to the binary forest (t0, t1, . . . ), yx
−1
n corresponds to the binary

forest
(t0, t1, . . . , tn−1, 〈tn, tn+1〉, tn+2, . . . ).

1 A regular combinator is a combinator in which no lambda abstraction occurs inside function application.
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We can see the binary forests corresponding to x−1n x−1m and x−1m+1x
−1
n are equal to each other

for any n,m.

(In fact, [Bel04] gave forest representations for the elements in the submonoid of F
generated by xn (n = 0, 1, . . . ), not x−1n ). We show the binary forest representation of
x−1n1

. . . x−1nk
can be obtained from the binary tree corresponding to the λ-term of (Bn1B) ◦

· · · ◦ (BnkB).

Theorem 2.12. Let 〈. . . 〈〈?, t1〉, t2〉 . . . , tk〉 be the binary tree corresponding to the λ-term of
the polynomial (Bn1B) ◦ · · · ◦ (BnkB). Then, the binary forest representation of f((Bn1B) ◦
· · · ◦ (BnkB)) = x−1n1

. . . x−1nk
is given by

(t1, t2, . . . , tk, ?, ?, . . . ).

Proof. We prove the theorem by induction on k. For binary trees t1, t2, . . . , tm, we write
ϕ(t1, t2, . . . , tm) for the binary tree 〈. . . 〈〈?, t1〉, t2〉, . . . , tm〉. Since the binary tree correspond-
ing to the λ-term of BnB is given by ϕ(?, . . . , ?︸ ︷︷ ︸

n

, 〈?, ?〉), the statement holds for the binary

forest representations of xn = f(BnB). Suppose n1 ≥ · · · ≥ nk ≥ nk+1. Then, the binary
forest representation of x−1n1

. . . x−1nk
x−1nk+1

is in the form of (?, . . . , ?︸ ︷︷ ︸
nk+1

, 〈t1, t2〉, t3, . . . , tm, ?, . . . ).

The binary tree t = ϕ(?, . . . , ?︸ ︷︷ ︸
nk+1

, 〈t1, t2〉, t3, . . . , tm) satisfies L(t) = [n1, . . . , nk, nk+1] if the

binary tree t′ = ϕ(?, . . . , ?︸ ︷︷ ︸
nk+1

, t1, t2, t3, . . . , tm) satisfies L(t′) = [n1, . . . , nk]. By Lemma 2.8, t

is the binary tree corresponding to the λ-term of (Bn1B) ◦ · · · ◦ (Bnk+1B), and this implies
the desired result.

3. Results on the ρ-property of B-terms

In this section we show several approaches to if- and only-if-parts of Conjecture 1.1 for their
special cases. For B-terms having the ρ-property, we introduce an efficient implementation
to compute the entry point and the size of the cycle. For B-terms not having the ρ-property,
we give two methods for proving that they do not have it.

3.1. B-terms having the ρ-property. As shown in Section 1, we can check that B-terms
equivalent to BnB with n ≤ 6 have the ρ-property by computing (BnB)(i) for each i.
However, it is not easy to check it by computer without an efficient implementation because
we should compute all (B6B)(i) with i ≤ 2980054085040 (= 2641033883877 + 339020201163)

to know ρ(B6B) = (2641033883877, 339020201163). A naive implementation which computes
terms of (B6B)(i) for all i and stores all of them has no hope to detect the ρ-property.

We introduce an efficient procedure to find the ρ-property of B-terms which can
successfully compute ρ(B6B). The procedure is based on two orthogonal ideas, Floyd’s
cycle-finding algorithm [Knu97] and an efficient right application algorithm over decreasing
polynomials presented in Section 2.3.

The first idea, Floyd’s cycle-finding algorithm (also called the tortoise and the hare
algorithm), enables us to detect the cycle with constant memory usage, that is, the history of
all terms X(i) does not need to be stored to check the ρ-property of the X combinator. The
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key to this algorithm is the fact that there are two distinct integers i and j with X(i) = X(j)

if and only if there is an integer m with X(m) = X(2m), where the latter requires to compare
X(i) and X(2i) from smaller i and store only these two terms for the next comparison between
X(i+1) = X(i)X and X(2i+2) = X(2i)XX when X(i) 6= X(2i). The following procedure
computes the entry point and the size of the cycle if X has the ρ-property.

(1) Find the smallest m such that X(m) = X(2m).
(2) Find the smallest k such that X(k) = X(m+k).
(3) Find the smallest 0 < c ≤ k such that X(m) = X(m+c). If not found, put c = m.

After this procedure, we find ρ(X) = (k, c). The third step can be run in parallel during
the second one. See [Knu97, exercise 3.1.6] for the detail. Although we have tried the other
cycle detection algorithm developed by Brent [Bre80] and Gosper [BGS72, item 132], they
show a similar performance.

Efficient cycle-finding algorithms do not suffice to compute ρ(B6B). Only with the idea
above running on a laptop (2.7 GHz Intel Core i7 / 16GB of memory), it takes about 2
hours even for ρ(B5B) and fails to compute ρ(B6B) with an out-of-memory error.

The second idea enables us to compute X(i+1) efficiently from X(i) for B-terms X. The
key to this algorithm is to use the canonical representation of X(i), that is a decreasing
polynomial, and directly compute the canonical representation of X(i+1) from that of X(i).
Additionally, the canonical representation enables us to quickly decide equivalence which
is required many times to find the cycle. It takes time just proportional to their lengths.
If the λ-terms are used for finding the cycle, both application and deciding equivalence
require much more complicated computation. Our implementation based on these two ideas
computes ρ(B5B) and ρ(B6B) in 2 minutes and 6 days, respectively.

For two given decreasing polynomials P1 and P2, we show how a decreasing polynomial
P equivalent to (P1 P2) can be obtained. The method is based on the following lemma
about an application of one B-term to another B-term.

Lemma 3.1. For B-terms e1 and e2, there exists k ≥ 0 such that e1◦(B e2) = B (e1 e2)◦Bk.

Proof. Let P1 be a decreasing polynomial equivalent to e1. We prove the statement by case
analysis on the maximum degree in P1. When the maximum degree is 0, we can take k′ ≥ 1
such that P1 ≡ B ◦ · · · ◦B︸ ︷︷ ︸

k′

= Bk′ . Then,

e1 ◦ (B e2) = B ◦ · · · ◦B︸ ︷︷ ︸
k′

◦(B e2) = (Bk′+1 e2) ◦B ◦ · · · ◦B︸ ︷︷ ︸
k′

= B (e1 e2) ◦Bk′

where equation (B3’) is used k′ times in the second equation. Therefore the statement holds
by taking k = k′. When the maximum degree is greater than 0, we can take a decreasing
polynomial P ′ for a B-term and k′ ≥ 0 such that P1 = (B P ′) ◦B ◦ · · · ◦B︸ ︷︷ ︸

k′

= (B P ′) ◦Bk′
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due to equation (B2’). Then,

e1 ◦ (B e2) = (B P ′) ◦B ◦ · · · ◦B︸ ︷︷ ︸
k′

◦(B e2)

= (B P ′) ◦ (Bk′+1 e2) ◦B ◦ · · · ◦B︸ ︷︷ ︸
k′

= B (P ′ ◦ (Bk′ e2)) ◦Bk′

= B (B P ′ (Bk′ e2)) ◦Bk′

= B (P1 e2) ◦Bk′

= B (e1 e2) ◦Bk′ .

Therefore, the statement holds by taking k = k′.

This lemma indicates that, from two decreasing polynomials P1 and P2, a decreasing
polynomial P equivalent to (P1 P2) can be obtained in the following steps where L1 and L2

are lists of non-negative numbers as shown in Section 2.3 corresponding to P1 and P2.

Algorithm 3.2 (Application of B-terms P1 and P2 in canonical representation).

(1) Build P ′2 by raising each degree of P2 by 1, i.e., when P2 ≡ (Bn1 B) ◦ · · · ◦ (Bnl B),
P ′2 ≡ (Bn1+1B) ◦ · · · ◦ (Bnl+1B). In terms of the list representation, a list L′2 is built
from L2 by incrementing each element.

(2) Find a decreasing polynomial P12 corresponding to P1 ◦P ′2 by equation (2.2). In terms of
the list representation, a list L12 is constructed by appending L1 and L′2 and repeatedly
applying (2.2).

(3) Obtain P by lowering each degree of P12 after eliminating the trailing 0-degree units,
i.e., when P12 ≡ (Bn1 B) ◦ · · · ◦ (Bnl B) ◦ (B0B) ◦ · · · ◦ (B0B) with n1 ≥ · · · ≥ nl > 0,
P ≡ (Bn1−1B) ◦ · · · ◦ (Bnl−1B). In terms of the list representation, a list L is obtained
from L12 by decrementing each element after removing trailing 0’s.

In the first step, a decreasing polynomial P ′2 equivalent to B P2 is obtained. The second
step yields a decreasing polynomial P12 for P1 ◦ P ′2 = P1 ◦ (B P2). Since P1 and P2 are
decreasing, it is easy to find P12 by repetitive application of equation (2.2) for each unit of
P ′2, à la insertion operation in insertion sort. In the final step, a polynomial P that satisfies
(B P ) ◦Bk = P12 with some k is obtained. From Lemma 3.1 and the degree of decreasing
polynomials, P is equivalent to (P1 P2).

Example 3.3. Let P1 and P2 be decreasing polynomials represented by lists L1 = [4, 1, 0]
and L2 = [2, 0]. Then a decreasing polynomial P equivalent to (P1 P2) is obtained as a list
L in three steps:

(1) A list L′2 = [3, 1] is obtained from L2.
(2) A decreasing list L12 is obtained by

L12 = [4, 1, 0, 3, 1] = [4, 1, 4, 0, 1] = [4, 5, 1, 0, 1] = [6, 4, 1, 0, 1] = [6, 4, 1, 2, 0] = [6, 4, 3, 1, 0]

where equation (2.2) is applied in each underlined pair.
(3) A list L = [5, 3, 2, 0] is obtained from L12 as the result of the application by decrementing

each element after removing trailing 0’s.

The implementation based on the right application over decreasing polynomials is
available at https://github.com/ksk/Rho as a program named bpoly. In the current

https://github.com/ksk/Rho


8:16 M. Ikebuchi and K. Nakano Vol. 16:2

implementation, every decreasing polynomial is represented by a list (simulated by an array
with offset and live length) whose k-th element stores the number of occurrences of (BkB).
For example, (B3B)◦(B2B)◦(B2B)◦(B0B)◦(B0B) is represented by a list [2,0,2,1] where
the 0-th element is the leftmost 2. Since (BkB)m is equivalent to BkBm, this representation
can be seen as a variant of Curry’s normal form mentioned in Section 2.3 by inserting the
identity function BkB0 for each skipped degree k (e.g., (B3B1) ◦ (B2B2) ◦ (B1B0) ◦ (B0B2)
for the above). Using the Curry’s normal form, we can adopt a slightly-improved algorithm

by equation BnBm ◦Bn′Bm′ = Bn′+mBm′ ◦BnBm if n < n′ at the step (2) in Algorithm 3.2.
Regarding cycle detection of the implemenation, Floyd’s, Brent’s and Gosper’s algorithms
are used. Note that the program does not terminate for the combinator which does not have
the ρ-property. It will not help to decide if a combinator has the ρ-property. One might
observe how the terms grow by repetitive right applications through running the program,
though.

3.2. B-terms not having the ρ-property. A computer can check that a B-term has the
ρ-property just by calculation but cannot show that a B-term does not have the ρ-property.
In this subsection, we present two methods to prove that specific B-terms do not have the
ρ-property. One employs decreasing polynomial representation as previously discussed and
the other makes use of tree grammars for binary tree representation.

3.2.1. Using polynomial representation. We show that B2 does not have ρ-property as an
experiment. Note that B2 has the decreasing polynomial representation (B0B) ◦ (B0B)
which has the smallest length, 2, among the B-terms that are expected not to have the
ρ-property.

To disprove the ρ-property of B2, we show the following lemmas about the regularity of
decreasing polynomial representation of B2

(i) for certain i. In these statements, we use

tm =
m2 +m

2
and

n⊙
i=k

fi = fk ◦ fk+1 ◦ fk+2 ◦ · · · ◦ fn−1 ◦ fn.

In particular,
⊙n

i=k fi is an identity function if k > n.

Lemma 3.4. For any k and m with 0 ≤ k ≤ m and l > 0,
m⊙
i=k

(Bm−iB)2 ◦ (BlB)2 = (B2m−2k+l+2B)2 ◦
m⊙
i=k

(Bm−iB)2 (3.1)

holds.

Proof. This statement can be obtained by applying equation (2.2) for 4(m−k+1) times.

Lemma 3.5. For any m ≥ 1 and 0 ≤ j ≤ m,

B2
(tm+j) =

j⊙
i=1

(B2m−i−j+2B)2 ◦
m⊙

i=j+1

(Bm−iB)2 (3.2)

holds.
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Proof. We prove the statement by induction on m. In the case of m = 1, tm = 1. When
j = 0, equation (3.2) is clear. When j = 1, equation (3.2) is shown by

B2
(2) = ((B0 B) ◦ (B0 B)) ((B0 B) ◦ (B0 B))

= (B2 B) ◦ (B2 B) = (B2 B)2

by the application procedure over decreasing polynomial representation.
For the step case, we show that if equation (3.2) holds for m = k ≥ 1 and 0 ≤ j ≤ k,

then it also holds for m = k + 1 and 0 ≤ j ≤ k + 1. It is proved by induction on j where k
is fixed. When j = 0, from the outer induction hypothesis, we obtain

B2
(tk+1)

= B2
(tk+k+1)

= B2
(tk+k)

B2

=

(
k⊙
i=1

(B2k−i−k+2B)2

) ((
B0B

)
◦
(
B0B

))
=

k⊙
i=1

(Bk−i+1B)2 ◦
(
B0B

)
◦
(
B0B

)
=

k+1⊙
i=1

(B(k+1)−iB)2

by applying the application procedure over decreasing polynomial representations, hence
the statement holds for j = 0. When 0 < j ≤ k + 1, from the inner induction hypothesis
and Lemma 3.4, we similarly obtain

B2
(tk+1+j)

= B2
(tk+1+j−1)B

2

=

j−1⊙
i=1

(B2k−i−j+5B)2 ◦
k+1⊙
i=j

(Bk−i+1B)2

((B0B
)
◦
(
B0B

))
=

j−1⊙
i=1

(B2k−i−j+4B)2 ◦
k⊙
i=j

(Bk−iB)2 ◦
(
B2B

)
◦
(
B2B

)
=

j−1⊙
i=1

(B2k−i−j+4B)2 ◦
(
B2k−2j+4B

)2
◦

k⊙
i=j

(Bk−iB)2

=

j⊙
i=1

(B2(k+1)−i−j+2B)2 ◦
k+1⊙
i=j+1

(B(k+1)−iB)2.

Therefore, the statement holds for m = k + 1.

These lemmas immediately lead to the anti-ρ-property of B2.

Theorem 3.6. The B-term B2 does not have the ρ-property.

Proof. We prove the statement by contradiction. If B2 has the ρ-property, then the set of
the normal forms of S = {B2

(i) | i > 0} is finite. Hence we can take m as the maximum

length of decreasing polynomial representation among all B-terms in S. However, decreasing
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polynomial representation of B2
(tm+1)

has length m + 1 according to Lemma 3.5. This

contradicts the assumption of m.

3.2.2. Using tree grammars. Another way for disproving the ρ-property of B-terms is to
consider the βη-normal form of their λ-terms. As shown in Section 2, the βη-normal form
of a B-term can be regarded as a binary tree. We can disprove the ρ-property of B-terms
by observing what happens on the binary trees during the repetitive right application. More
specifically, we first find a set which is closed under the application of a given term, and
then show the length of the spine of trees is unbounded on the repetitive right application.
This leads to the anti-ρ-property of the term as shown in Theorem 3.8.

First, we introduce some notations. In this section, we write 〈?, ?, ?, . . . , ?〉 for the binary
tree 〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉 and identify B-terms with their corresponding binary trees. For
a binary tree t = 〈?, t1, . . . , tk〉, we define l(t) = (the number of leaves in t), a(t) = k, and
Ni(t) = ti for i = 1, . . . , k. If X ′ is a B-term, l(X ′), a(X ′), and Ni(X

′) are defined to be
l(t), a(t), and Ni(t) for the binary tree t corresponding to X ′. Suppose the βη-normal form
of X ′ is λx′1 . . . x

′
n′ . x

′
1 e1 . . . ek and let X be another B-term whose βη-normal form is

λx1 . . . xn. e. We can see X ′ X = (λx′1 . . . x
′
n′ . x

′
1 e1 · · · ek) X = λx′2 . . . x

′
n′ . X e1 · · · ek

and from Lemma 2.6, its βη-normal form is{
λx′2 . . . x

′
n′xk+1 . . . xn. e[e1/x1, . . . , ek/xk] (k ≤ n)

λx′2 . . . x
′
n′ . e[e1/x1, . . . , en/xn] en+1 · · · ek (otherwise).

Here e[e1/x1, . . . , ek/xk] is the term which is obtained by substituting e1, . . . , ek to the
variables x1, . . . , xk in e.

By simple computation with this fact, we get the following lemma:

Lemma 3.7. Let X and X ′ be B-terms. Then

l(X ′ X) = l(X ′)− 1 + max{l(X)− a(X ′), 0} (3.3)

a(X ′ X) = a(X) + a(N1(X
′)) + max{a(X ′)− l(X), 0} (3.4)

N1(X
′ X) =

{
N1(X)[N2(X

′)/x2, . . . , Nm(X ′)/xm] (if N1(X
′) is a leaf)

N1(N1(X
′)) (otherwise)

(3.5)

where m = min{l(X), a(X ′)}.

From this lemma, we obtain a key theorem to prove the anti-ρ-property.

Theorem 3.8. Let X be a B-term and T be a set of B-terms. If
{
X(i)

∣∣ i ≥ 1
}
⊂ T and

l(X)− a(X ′) ≥ 1 for any X ′ ∈ T , then X does not have the ρ-property.

Proof. It suffices to show the following: Under the hypotheses of the theorem, for any i ≥ 1,
there exists j > i that satisfies l(X(j)) > l(X(i)). Suppose, for contradiction, that there
exists i ≥ 1 that satisfies l(X(i)) = l(X(j)) for any j > i. We get a(X(j)) = l(X)− 1 by (3.3)
and then a(N1(X(j−1))) = l(X) − a(X) − 1 by (3.4). Here, l(X) − a(X) ≥ 2 since if the
βη-normal form of X is λx′1 . . . x

′
n′ . x

′
1 e1 . . . ek, each ei (i = 1, . . . , k − 1) has at least one

variable and ek has at least two variables because otherwise the λ-term is not η-normal.
Therefore a(N1(X(j−1))) ≥ 1, so N1(X(j−1)) is not a leaf for any j > i. From (3.5), we



Vol. 16:2 ON PROPERTIES OF B-TERMS 8:19

obtain N1(X(j−1)) = N1(N1(X(j−2))) = · · · = N1(· · ·N1(︸ ︷︷ ︸
j−i

X(i)) · · · ) for any j > i. However,

this implies that X(i) has infinitely many variables and it yields contradiction.

Using this theorem, we prove that the B-term (BkB)(k+2)n does not have the ρ-property.

The βη-normal form of (BkB)(k+2)n is given by

λx1 . . . xk+(k+2)n+2. x1 x2 · · · xk+1 (xk+2 xk+3 · · · xk+(k+2)n+2).

This is deduced from Lemma 2.8 since the binary tree corresponding to the above λ-term
is t = 〈?, . . . , ?︸ ︷︷ ︸

k+1

, 〈?, . . . , ?︸ ︷︷ ︸
(k+2)n+1

〉〉 and L(t) = [k, . . . , k︸ ︷︷ ︸
(k+2)n

]. In particular, we get l((BkB)(k+2)n) =

k + (k + 2)n+ 2.
To apply Theorem 3.8, we introduce a set Tk,n which satisfies the hypotheses of Theo-

rem 3.8. First we inductively define a set of terms T ′k,n as follows:

(1) ? ∈ T ′k,n
(2) 〈?, s1, . . . , s(k+2)n〉 ∈ T ′k,n if si = ? for a multiple i of k+ 2 and si ∈ T ′k,n for the others.

Then we define Tk,n by Tk,n =
{
〈t0, t1, . . . , tk+1〉

∣∣∣ t0, t1, . . . , tk+1 ∈ T ′k,n
}

. Since the

binary tree of (BkB)(k+2)n is 〈?, . . . , ?︸ ︷︷ ︸
k+1

, 〈?, ?, . . . , ?︸ ︷︷ ︸
(k+2)n

〉〉, we can see (BkB)(k+2)n ∈ Tk,n. Now

we shall prove that Tk,n is closed under right application of (BkB)(k+2)n.

Lemma 3.9. If X ∈ Tk,n then X (BkB)(k+2)n ∈ Tk,n.

Proof. From the definition of Tk,n, if X ∈ Tk,n then X can be written in the form
〈t0, t1, . . . , tk+1〉 for some t0, . . . , tk+1 ∈ T ′k,n. In the case where t0 = ?, we have

X (BkB)(k+2)n = 〈t1, . . . , tk+1, 〈?, ?, . . . , ?︸ ︷︷ ︸
(k+2)n

〉〉 ∈ Tk,n. In the case where t0 has the

form of 2 in the definition of T ′k,n, then we have X = 〈?, s1, . . . , s(k+2)n, t1, . . . , tk+1〉
with si = ? for a multiple i of k + 2 and si ∈ T ′k,n for others, hence

X (BkB)(k+2)n = 〈s1, . . . , sk+1, 〈sk+2, . . . , s(k+2)n, t1, . . . , tk+1, ?〉〉.
We can easily see s1, . . . , sk+1, and 〈sk+2, . . . , s(k+2)n, t1, . . . , tk+1, ?〉 are in T ′k,n.

From the definition of Tk,n, we can compute that a(X) equals k + 1 or (k + 2)n+ k + 1
if X ∈ Tk,n. Particularly, we get the following:

Lemma 3.10. For any X ∈ Tk,n, a(X) ≤ (k + 2)n+ k + 1 = l((BkB)(k+2)n)− 1.

By Theorem 3.8, we get the desired result:

Theorem 3.11. For any k ≥ 0 and n > 0, (BkB)(k+2)n does not have the ρ-property.

We give more examples of B-terms which satisfy the condition in Theorem 3.8 with
some set T .

Example 3.12. Consider X = (B2B)2 ◦ (BB)2 ◦ B2 = 〈?, 〈?, 〈?, 〈?, ?, ?〉, ?〉, ?〉〉. We
inductively define T ′ as follows:

(1) ? ∈ T ′
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(2) For any t ∈ T ′, 〈?, t, ?〉 ∈ T ′
(3) For any t1, t2 ∈ T ′, 〈?, t1, ?, 〈?, t2, ?〉, ?〉 ∈ T ′

Then T = {〈t1, 〈?, t2, ?〉〉 | t1, t2 ∈ T ′} satisfies the conditions in Theorem 3.8:

Claim 3.13. {X(k) | k ≥ 1} ⊂ T .

Proof. By definition, X ∈ T . Let X ′ = 〈t1, 〈?, t2, ?〉〉 ∈ T . Then, we have

X ′X =


〈?, t2, ?, 〈?, 〈?, 〈?, ?, ?〉, ?〉, ?〉〉 if t1 = ?

〈t′1, 〈?, 〈?, t2, ?, 〈?, ?, ?〉, ?〉, ?〉〉 if t1 = 〈?, t′1, ?〉
〈t11, 〈?, 〈?, t12, ?, 〈?, 〈?, t2, ?〉, ?〉, ?〉, ?〉〉 if t1 = 〈?, t11, ?, 〈?, t12, ?〉, ?〉,

and, in either case, X ′X ∈ T .

Claim 3.14. l(X)− a(X ′) ≥ 1 for any X ′ ∈ T .

Proof. Since a(X ′) is equal to either 1, 3, or 5, and l(X) = 8, l(X)− a(X ′) ≥ 3.

Thus, (B2B)2 ◦ (BB)2 ◦B2 does not have the ρ-property.

Example 3.15. Consider X = (BB)3 ◦B3 = 〈?, 〈?, ?, ?, ?〉, ?, ?〉. We inductively define
T ′ as follows:

(1) ? ∈ T ′
(2) For any t ∈ T ′, 〈?, t, ?, ?〉 ∈ T ′

Then T = {〈t1, 〈?, t2, ?, ?〉〉 | t1, t2 ∈ T ′} satisfies the conditions in Theorem 3.8:

Claim 3.16. {X(k) | k ≥ 1} ⊂ T .

Proof. By definition, X ∈ T . Let X ′ = 〈t1, 〈?, t2, ?, ?〉〉 ∈ T . Then, we have

X ′X =

{
〈?, t2, ?, ?, 〈?, 〈?, ?, ?, ?〉, ?, ?〉〉 if t1 = ?

〈t′1, 〈?, 〈?, 〈?, t2, ?, ?〉, ?, ?〉, ?, ?〉〉 if t1 = 〈?, t1 ?, ?〉

and, in either case, X ′X ∈ T .

Claim 3.17. l(X)− a(X ′) ≥ 1 for any X ′ ∈ T .

Proof. a(X ′) equals 1 or 4 and l(X) = 8, so l(X)− a(X ′) ≥ 4.

Thus, (BB)3 ◦B3 does not have the ρ-property.

Theorem 3.8 gives a possible technique to prove that l(X(i)) diverges, or, the anti-ρ-
property of X, for some B-term X. Since the hypotheses of Theorem 3.8 implies that l(X(i))
is also monotonically non-decreasing, we can consider another problem on B-terms: “Give
a necessary and sufficient condition for l(X(i)) to be monotonically non-decreasing for a
B-term X.”
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4. Possible approaches

The present paper introduces a canonical representation to make equivalence check of B-
terms easier. The idea of the representation is based on that we can lift all ◦’s (2-argument
B) to the outside of B (1-argument B) by equation (B2’). One may consider it the other
way around. Using the equation, we can lift all B’s (1-argument B) to the outside of ◦
(2-argument B). Then one of the arguments of ◦ becomes B. By equation (B3’), we can
move all B’s right. Thereby we find another canonical representation for B-terms given by

e ::= B | B e | e ◦B.
We can show the uniqueness of this representation by giving a bijective transformation f
from it to the polynomial representation. We define f inductively by

f(B) = B0B

f(B e) = (Bn1+1B) ◦ · · · ◦ (Bnk+1B) if f(e) = (Bn1B) ◦ · · · ◦ (BnkB)

f(e ◦B) = f(e) ◦ (B0B).

Note that B0B = B and the second rule of f does not change the equivalence class of
B-terms because B(e1 ◦ · · · ◦ ek) = (B e1) ◦ · · · ◦ (B ek) (Equation (B2’)). We can see the
inverse of this function is given by

f−1(B0B) = B

f−1((Bn1B) ◦ · · · ◦ (BnkB)) = B (f−1((Bn1−1B) ◦ · · · ◦ (Bnk−1B))) (nk > 0)

f−1((Bn1B) ◦ · · · ◦ (BnkB) ◦ (B0B)) = (f−1((Bn1B) ◦ · · · ◦ (BnkB))) ◦B.
Function application (written as @, explicitly) over this canonical representation can be

recursively defined by

B @ e = B e
(e1 ◦B) @ e2 = e1 @ (B e2)

(B e) @ B = e ◦B
(B e1) @ (e2 ◦B) = ((B e1) @ e2) ◦B
(B B) @ (B e) = (B (B e)) ◦B

(B (e1 ◦B)) @ (B e2) = ((B e1) @ (B (B e2))) ◦B
(B (B e1)) @ (B e2) = B ((B e1) @ e2).

Notice that the pattern matching is exhaustive. The correctness of the equations is proved
by equations (B2’) and (B3’). Termination of the recursive definition is shown by a simple
lexicographical order of the first and the second operand of application. Note that this
canonical form can be represented by a sequence of (B �) and (� ◦B) where � stands for a
hole. Also, a sequence of them exactly corresponds to a single term in canonical form by
hole application. e.g., [(B �), (B �), (� ◦B)] represents B (B (B ◦B)) where a nullary
constructor B is filled in the last element (� ◦B). This fact may be used to find the ρ- or
anti-ρ-properties. By writing 0 and 1 for (B �) and (� ◦ B), the above equation can be
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Table 1. Summary of known results on the ρ-property of B-terms

having ρ-property BnB with 0 ≤ n ≤ 6

having anti-ρ-property (BkB)(k+2)n with k ≥ 0, n > 0

(B2B)2 ◦ (BB)2 ◦B2

(BB)3 ◦B3

rewritten as follows:

ε@y = 0y

1x@y = x@0y

0x@ε = 1x

0x@1y = 1(0x@y)

0ε@0y = 100y

01x@0y = 1(0x@00y)

00x@0y = 0(0x@y)

where ε is used for the end marker (filling B at the end). A monomial B-term corresponds to
a binary sequence that does not contain 1. If x@y is always greater than x in some measure
when y contains 1, we can claim the “only-if” part of Conjecture 1.1.

Waldmann [Wal13] suggests that the ρ-property of BnB may be checked even without
converting B-terms into canonical forms. He simply defines B-terms by

e ::=Bk | e e

and regards Bk as a constant which has a rewrite rule Bk e1 e2 . . . ek+2 → e1 (e2 . . . ek+2).
He implemented a check program in Haskell to confirm the ρ-property. Even in the
restriction on rewriting, he found that (B0B)(9) = (B0B)(13), (B1B)(36) = (B1B)(56),

(B2B)(274) = (B2B)(310) and (B3B)(4267) = (B3B)(10063), in which it requires a few more
right applications to find the ρ-property than the case of canonical representation. If the
ρ-property of BnB for any n ≥ 0 is shown under the restricted equivalence given by the
rewrite rule, then we can conclude the “if” part of Conjecture 1.1.

5. Concluding remark

We have investigated the ρ-properties of B-terms in particular forms so far. Table 1
summarizes all results we obtained. While the B-terms equivalent to BnB with n ≤ 6 have
the ρ-property, the B-terms (BkB)(k+2)n with k ≥ 0 and n > 0, (B2B)2 ◦ (BB)2 ◦B2, and
(BB)3 ◦B3 do not. We have also introduced a canonical representation of B-terms which is
useful to prove or disprove of specific B-terms.

We introduce remaining problems related to these results. The ρ-property is defined
for any combinatory terms (and closed λ-terms). We investigated it mainly for B-terms
as a simple but interesting instance to give a partial solution of Conjecture 1.1 in the
present paper. The conjecture implies that the ρ-property of B-terms is decidable. One
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could consider the decidability of the ρ-property for BCK and BCI-terms which is still
open. Also, the decidability for the ρ-property of S-terms and L-terms can be considered.
Waldmann’s work on a rational representation of normalizable S-terms [Wal00] may be
helpful to solve it. We expect that none of the S-terms have the ρ-property as S itself does
not, though. Regarding L-terms, Statman’s work [Sta89] may be helpful where equivalence
of L-terms is shown decidable up to a congruence relation induced by L e1 e2 → e1 (e2 e2).
It would be interesting to investigate the ρ-property of L-terms in this setting.
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